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Shinya Sugawara∗

This paper analyzes a system of insuring longevity risk in Japan using a
lump-sum forward payment of rent. The system is unique to the Japanese
private nursing home market and forces homes to cover most of the longevity
risk of residents. To consider the impact of this system, this study conducts
a prediction analysis of a counterfactual situation in which the system is
eliminated, based on a structural model for the industrial organization of the
private nursing home market. For the prediction analysis, a flexible technique
is proposed using a nonparametric Bayesian approach. The results indicate
there is an excess consumer payment under the current system, for which the
consumer can only be compensated if he or she lives for an unrealistically
long time in a nursing home. This result provides rich implications for the
amount of longevity risk nursing homes assume, as well as possible consumer
welfare to be gained from a government intervention to change the situation.
Keywords: Nursing home; Longevity risk; Risk premium; Long-term care
in Japan; Nonparametric Bayes; Industrial organization

1. Introduction

In spite of a growing demand for longevity risk insurance caused by aging populations
worldwide, this remains one of the largest uninsured risks. Many researchers have tried
to explain the small market size of insurance-like products, including Finkelstein and
Poterba (2004) for annuities, Brown and Finkelstein (2007) for private long-term care
insurance, and Davidoff and Welke (2006) for reverse mortgages. According to Cutler
(1996), a possible reason for the small size of the longevity risk insurance market might
be the difficulty of evaluating the risk, as a result of continuous improvements in medical
technologies. In fact, Mitchell et al. (1999) showed that there is a large difference between
the premiums and the expected return from annuities.
∗University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan and Nihon University 12-5 Gob-
ancho, Chiyoda, Tokyo 102-8251, Japan, email: sugawara@e.u-tokyo.ac.jp, Tel.: +81-3-5841-5539
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This study is concerned with a system of insuring longevity risk currently employed in
the Japanese private nursing home market, in which residents pay a lump-sum forward
payment of rent. The system is unique to this market, and forces nursing homes to
assume most of longevity risk associated with their residents. The mechanism is ap-
parently a relief for risk-averse elderly who have a limited income. However, a rational
home must increase the other forms of prices to manage the burden of the longevity risk.
This study considers the impact of this firm-driven management of longevity risk.

The system was established when access to the private nursing home market was
limited to wealthy consumers. This situation has since changed with the launch of the
social insurance program for elderly care in Japan, and private homes today appear to
be more accessible to ordinary consumers. Nevertheless, many homes still adopt this
price mechanism.

By way of comparison, as summarized in Norton (2000), private nursing homes in the
United States have a different system to those in Japan. In the American system, rents
are primarily paid by consumers. Once consumers have spent their assets and can no
longer afford the cost of a nursing home, the government covers the rent as a benefit of
Medicaid, the public insurance for low-income earners. Through this mechanism, which
is called the Medicaid spend-down, the government provides a safety net for consumers
to manage their longevity risk. To compare the systems in Japan and the United States,
we first need to analyze the implications of the Japanese lump-sum forward payment
system.

To consider the impact of the Japanese system, this study conducts a prediction
analysis for a system in which consumers do not pay the lump-sum forward payment
mechanism. A comparison of the systems provides two implications. First, the difference
in the payments can measure the impact of a possible intervention to remove the sticky
circumstance in terms of consumer welfare. Second, the difference can indicate the
longevity risk premium that homes assume. These two findings can then be used to
suggest policies to establish a sustainable mechanism for elderly care.

The prediction analysis is based on a structural econometric model for the industrial
organization of the private nursing home market. Owing to considerable sunk costs
and barriers to entry resulting from regulation policies, homes are likely to operate in
incomplete competition. To model this situation, the approach of the Berry et al. (1995)
was adopted, hereafter referred to as BLP. The BLP model simultaneously formulates
the demand and supply sides of an economy in which firms play a Bertrand competition
on the supply side. Owing to its tractability, the BLP model has been widely applied to
various industrial markets, including an automobile retail market by BLP themselves,
a service sector by Davis (2006), and a durable goods market by Gowrisankaran and
Rysman (2012), among others. In this study, the original model is extended from a static
BLP model to a dynamic model to capture the nature of the nursing home market.

The BLP model is conventionally analyzed using the generalized method of moments
(GMM). However, the moment conditions for the GMM are not always sufficient to con-
duct a prediction analysis. Therefore, this study proposes a flexible prediction technique
using a nonparametric Bayesian approach. This methodology allows for an estimation
without distributional assumptions and a prediction analysis. The approach used here
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follows that of previous Bayesian studies, such as Yang et al. (2003), Musalem et al.
(2009), and Jiang et al. (2009). These previous studies adopt parametric assumptions
to implement an efficient estimation algorithm via a Gibbs sampler. The methodology
in this study has the advantage of flexibility, owing to the nonparametric modeling, but
has a disadvantage in terms of its computational burden.

An empirical analysis is employed using real data taken from the list of nursing homes
in Shuukan Asahi Mook (2011). The estimation results produce reasonable estimates
for the model parameters. Furthermore, the prediction analysis shows that the outdated
system induces a large increase in the lifetime total payments for residents, except for
those who have unrealistically long lifetimes. This result may be due to risk-averseness
on the part of both consumers and the nursing homes. Therefore, government help to
hedge the longevity risk can increase the consumer surplus in the nursing home market.

The rest of the paper is organized as follows. In Section 2, I provide a brief review of
the Japanese private nursing home market. Section 3 introduces the econometric model
used in this study, and Section 4 presents the corresponding econometric methodology.
The proposed method is applied to real data in Section 5. Finally, Section 6 concludes
the paper.

2. The Japanese private nursing home market

2.1. The nursing home industry

To manage the world’s most rapidly aging population, the Japanese government launched
a national program, Long-Term Care Insurance (LTCI), in 2000. One of the main policy
objectives of the LTCI is the “Socialization of Care,” which requests the release of females
from informal family care. To achieve this purpose, the LTCI does not provide per-capita
cash transfers to the elderly, something that is allowed in a program in Germany, but
covers only purchased service costs. To satisfy the considerable demand induced by this
policy, the formal elderly care market has quickly grown into a large industry.

The LTCI is a social insurance system with universal coverage. The system compen-
sates 90% of purchased service costs, the prices of which are prescribed by a detailed
remuneration points system. Since there are few regional variations in the exchange rate
between points and money, this has become an almost fixed rewards system for care
services.

Among the wide variety of formal elderly care services, this study is concerned specif-
ically with nursing homes. A nursing home is defined as an institution for permanent
care. The LTCI covers both the public and private nursing home sectors.1

1The terms “public nursing home” and “private nursing home” are translations of the Japanese words
“Tokubetsu-Yougo Roujin Houmu” and “Yuuryou Roujin Houmu,” respectively. Tamiya et al. (2011)
used the term “private nursing home” for “Yuuryou Roujin Houmu,” but there is no consensus among
researchers on this English term. For example, Ikegami and Campbell (2000) refers to a private
nursing home as “residential care with private-pay.” In this study, private homes are treated as
a form of nursing home and juxtaposed with public homes for two reasons. First, their function
matches that of the standard definition of a nursing home, namely to provide general long-term care
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The two sectors are differentiated according to two features. First, LTCI coverage is
different for public and private homes. For public homes, the LTCI covers everything
except rent and food.2 Public homes provide uniform care at uniform prices under the
remuneration point system only for those who cannot leave a bed by themselves.

For private homes, the LTCI covers only those fees strictly categorized as care costs.
Care costs are not included in an ordinary payment, but instead are treated as a person-
specific additional payment. Then, private homes can provide divergent care at various
prices, and accept a variety of residents. There are two general categories of private
homes, according to resident eligibility. The first refers to homes for independent elderly
people. These homes do not provide care services. In this category, when a resident
requires permanent long-term care, he or she needs to exit the home. Private homes in
the other category, called homes with care, provide care services as a default option, and
a resident can stay in the home until his or her death. This study focuses on the latter
category, private nursing homes with care.

The second distinction is that public homes are operated by a local authority or a
non-profit organization. For-profit firms are not allowed to enter this market, but they
can operate private homes3. Owing to the history of private homes, described below,
most are owned by for-profit firms. Our data indicate that more than 90% of private
homes are owned by for-profit firms.

The background to the co-existence of public and private homes is as follows.4 The
first Japanese nursing homes were established in the late 19th century by religious and
philanthropic organizations as voluntary institutions for the poor and solitary elderly. A
legal basis for these institutions was first provided in 1923 as a part of a governmental
welfare program, but the amounts of the subsidies were limited. To manage their oper-
ating costs, homes accepted “free contract” dwellers whose financial status was beyond
the eligibility level of the welfare program, but who wanted to receive institutional care.
However, the quality of homes occasioned considerable complaints from the free con-
tractors because homes could provide only limited services in the range of the national
welfare program.

Private nursing homes were then formed to meet the demand of the free contractors.
Although the exact origin of private nursing homes is blurry, there is a record of an active
home from 1948. In 1963, the Act on the Social Welfare Service for the Elderly (Roujin
Fukushi Hou) updated the legal system of the long-term care sector. This Act prohibited
public homes from accepting free contract residents and prescribed legal requirements
for private nursing homes for the first time. In other words, this Act explicitly separated
public and private nursing homes. Until the 1990s, most residents in private homes

that does not specialize in medical care for those who permanently live in an institution. Second,
the Japanese term “Roujin Home,” which means nursing home, is commonly found in words such
as “Tokubetsu-Yougo Roujin Houmu” and “Yuuryou Roujin Houmu.” This must represent the fact
that these institutions are perceived as similar service goods by Japanese people.

2These costs were once included in what was covered by the LTCI, but were eliminated by the amend-
ment to the LTCI, as described in Tsutsui and Muramatsu (2007).

3Mitchel et al. (2004) stated that for-profit firms are not allowed to enter the institutional care market.
This statement is true because the authors define institutional care only as public homes.

4This section is drawn primarily from Momose (1997) and Sudou (2006a,b).
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were wealthy elders, while residents in public homes were less well-off and solitary elders
targeted by the welfare program. Several luxury private homes attracted wide attention
in the Japanese “bubble” economy in the late 1980s.

Figure 1 is here

The impact of the LTCI has been different for the private and public home sectors.
Private homes increased their total capacity from 32,302 in 1999 to 183,245 in 2009, while
public homes showed slower growth from 283,822 in 1999 to 414,668 in 2009. Figure 1
shows the annual growth rates of the capacity of public and private homes.5 Clearly,
the market for private homes has been expanding much more quickly than that of the
public home market.

The slow growth of the public home market is the result of a regulatory policy that,
in response to the rapid increase of the financial burden of the LTCI, replaced costly
institutional care with home care. To relax the considerable expansion of the fiscal
budget, local authorities suppressed the establishment of new homes. This policy induced
a long waiting list for those seeking elderly care, estimated to be 421,000 in 2009.6 As
a result of these exogenous restrictions on the supply of public homes, this study does
not consider the crowding-out effects of public homes on private home demand.

The government sought to control the number of private homes as well. To provide
a legal basis for this motivation, they announced the “Regulation of Volume” (Souryou
Kisei)7 in 2005. This regulation stated that, in 2014, the number of elderly in institutions,
including public homes and private homes with care, must be less than 37% of the eligible
number of elderly. This regulation became a new barrier to entry, because the rate had
already reached 41% in 2004. After active debates on this regulation, it was abandoned
in 2012. Figure 1 shows how the regulation caused a reduction in the growth rate of
private home capacity after 2005. This reduction implies that the potential demand for
nursing homes must be larger than the supply.

2.2. A price mechanism of private nursing homes

This section explains the price mechanism in the private nursing home market. In this
market, there is a traditional contract that requires a resident to make two forms of
payment. The first payment is a monthly fee that covers the costs of daily needs. The
second payment is a once-off initial payment (Nyuukyo kin), which is a lump-sum forward

5These figures are taken from the Survey on Institutions and Establishments for Long-Term Care for
public homes after 2000, and the Survey on Social Welfare Institutions for public homes in 1999 and
for private homes for the entire period. There are more recent figures, but those after 2009 have
a problem with consistency. Since the research agents changed from government officials to private
firms, the response rate has dropped drastically.

6The figure is taken from a press release by the Japan Ministry of Health, Labor and Welfare. The web
page is http://www.mhlw.go.jp/stf/houdou/2r98520000003byd.html and was accessed on October
26, 2013.

7As reviewed in Mehta (2006), there is a similar regulation in the US that specifies the number of beds
in nursing homes, called the control of need (CON), which restricts the expansion of the Medicaid
budget caused by the Medicaid spend-down.
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payment of rent until an expiration period. The length of time until the expiration period
is determined by the home. In addition to these two forms of payment, consumers need
to pay the costs of long-term care, 90% of which are covered by the LTCI.

The lump-sum forward payment has the following unique property. If a resident exits
the home before the expiration date, the rent for the remaining periods is paid back.
However, if a resident remains in the home beyond the expiration date, he or she does
not need to pay any additional rent.8 Under this contract, homes assume most of the
longevity risk associated with their residents.

This mechanism comes from the past, when access to the private home market was
limited to wealthy consumers who paid an expensive lump-sum forward payment with
a long expiration date. In those days, with such limited demand, the price mechanism
could have been a Nash equilibrium strategy for homes. However, the nursing home
industry has since experienced a significant transition, so that private homes are now
more accessible to ordinary consumers as a substitute for public homes with their long
waiting lists.

The lump-sum forward payment is not a formal rule, but rather an economic circum-
stance. Thus, it is legally possible to offer a contract in which rent is collected using a
monthly fee rather than a lump-sum forward payment, thus avoiding the longevity risk.
However, fewer than 35% of the homes in our dataset exercise this option. In addition,
most homes offer only one expiration period, which implies that homes do not practice
price discrimination in managing their longevity risk.

This payment mechanism is apparently a relief to risk-averse elderly without a source
of income other than their public pension. However, rational homes must compensate for
the longevity risk by using a different channel of the payment. In this case, they charge
a higher monthly fee. Thus, the monthly fee under the lump-sum forward payment
mechanism might reflect the longevity risk premium that homes cover. The amount of
the total payment under this price mechanism might be much larger by risk-averse homes.
Nevertheless, the mechanism exists, probably because of risk-averseness of consumers.
This study considers the impacts of this outdated, but sticky system of firm-driven
management of longevity risk.

3. A structural econometric model for the nursing home
market

3.1. Defining a market environment

This section presents a structural econometric model for the Japanese private nursing
home market as an extension of the BLP model. The basic setup of the economy is first

8A portion of the lump-sum forward payment is called an initial depreciation, which is not returned if a
resident exits before the expiration date. The empirical analysis assumes that a home does not collect
the lump-sum forward payment if the initial depreciation is 100% of the lump-sum forward payment.
Otherwise, for the sake of simplicity, the initial depreciation is not reflected in the definition of the
price variables.
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described in this subsection, with the details of the model following in the subsequent
subsections.

There are M local markets that are geographically isolated. For the mth market,
the demand side consists of Im consumers, and the supply side consists of Hm private
nursing homes. The homes play incomplete competition of the Bertrand type owing to
high sunk costs for the institution and the Regulation of Volume as barriers to entry.
An important finding of Berry et al. (1995) is that all the parameters can be identified
using only firms-side observations, making information on each consumer unnecessary.
Therefore, the sample used here consists only of information for H =

∑
mHm nursing

homes.
For the hmth home, we can observe three variables that describe payment information:

the monthly fee, phm ; the lump-sum forward payment, Fhm ; and the expiration period,
Thm (month). Based on Fhm and Thm , a new variable is created for monthly rent, fhm ,
which is defined as fhm = Fhm/Thm if Thm ̸= 0, or fhm = 0 if Thm = 0. Vector notation
is used here for notational simplicity, such as pm = (p1m , ..., pHm)

′ and p = (p′
1, ...,p

′
M )′,

where each component is indexed as ph for h = 1, 2, ...,H.
To consider the dynamic nature of the nursing home market, the original, static BLP

model needs to be extended. For dynamic modeling, an important factor is the lifetime
of consumers, denoted here as τim for the imth consumer. The lifetime is uncertain for
both homes and consumers, and this uncertainty is carefully modeled in the following
subsections.

3.2. Modeling the demand side

The model for the demand side represents the consumers’ optimization problem. The
consumers in the mth market decide to choose one home among Hm private homes, or
an outside option. The outside option represents anything other than a private home,
such as public homes, formal home care, or informal family care. From the dynamic
nature of the nursing home as a good, consumers optimize the present value of their
expected lifetime utility.

Two assumptions are used to simplify the demand-side modeling. The first assumption
is that there is no voluntary exit from a home, and hence, any exit is the result of the
resident’s death. This avoids complications caused by endogenous exit decisions. To
justify this assumption, the samples are restricted to private homes with care, and we
do not consider homes for independent elderly.

The second assumption is that consumers evaluate their remaining lifetime using a
subjective prediction. A consumer’s lifetime is a time horizon in the present value
calculation, and its uncertainty induces a difficulty in obtaining the expected lifetime
utility. For mathematical simplicity, a consumer-specific, subjective prediction for the
lifetime is introduced, but is integrated out in the formation of the econometric model.
For the imth consumer, the subjective lifetime is denoted as τ Iim . Note that risk-averse
consumers are likely to overestimate this value.

In addition, there is an assumption of an explicit functional form for the components of
the consumers’ lifetime utility. There are two components in the lifetime utility, namely
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the utility gains for each period and the disutility from the lifetime payment. The utility
gain for each period is assumed to take the form of a linear function of an observableKd×
1 vector, x̃hm , an unobservable home-specific effect, ξhm , and an unobservable individual
home match-specific effect, η̃imhm . The disutility from the lifetime payment is defined
as −P (·)α. The function P (·) measures the present value of the lifetime payment. The
argument to the function is discussed in more detail later. The coefficient −α measures
the disutility from a unit expenditure, and hence α > 0 is required. An individual
is allowed a specific time-discount factor, denoted as δim ∈ (0, 1). Consequently, the
present value of the lifetime utility of consumer im from a choice of thehmth home is

Uimhm =

τIim∑
t=1

δt−1
im

[x̃′
hm

β̃d + ξhm + η̃imhm ]− P (phm , fhm , Thm , τ
I
im , δim)α.

The present value of the lifetime payment is defined as

P (phm , fhm , Thm , τ
I
im , δim) =

τIim∑
t=1

δt−1
im

phm+Fhm−I[Thm ≥ τ Iim ]δ
τIim
im

(Thm−τ Iim)fhm , (3.1)

where the right-hand side of (3.1) consists of three parts. The first term represents the
present value of the monthly fees during the lifetime. The second term is the initial
payment in a lump sum, which does not depend on δim because it is paid in full upon
arriving at the home (i.e., t = 1). The third term corresponds to the return on the
initial payment should a consumer die before the expiration date (i.e., Thm ≥ τ Iim).
This amount would be returned to residents after their death, but it is assumed to be
contained in their utility. A dynasty model can justifies this assumption.

In Equation (3.1), I assume that one can decompose the terms Fhm and fhm into a
between-home mean and a home-and-individual-match variation, as follows:

−Fhm

1− δim

1− δ
τIim
im

α+ fhm

1− δim

1− δ
τIim
im

δ
τIim
im

I[Thm ≥ τ Iim ](Thm − τ Iim)α

]
= FhmαF + fhmαf,imhm + ηFf,imhm . (3.2)

Here, xhm = (x̃′
hm

, Fhm , fhm)
′, βd = (β̃′

d, αF , αfm)
′, and ηimhm = η̃imhm + ηFf,imhm .

For notational simplicity,

Vimhm = [(1− δim)/(1− δ
τIim
im

)]Uimhm = x′
hm

βd − phmα+ ξhm + ηimhm .

A consumer chooses to enter the hmth home if Vimhm = maxkm∈{0,1,2,...,Hm}{Vimkm},
where the subscript 0 represents an outside option for which Vim0 = ηim0. To establish an
econometric model without consumer information, the conditional distribution of ηimhm ,
given xhm , and phm are assumed to be i.i.d. type I extreme value distributions. Then,
this term is integrated out from the demand-side model as
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shm =

∫
Vimhm=maxj∈{0,1,2,...,Hm}{Vimj}

Vimhmπ(dηm)

=


exp[x′

hm
βd−phmα+ξhm ]

1+
∑Hm

km=1 exp[x
′
km

βd−pkmα+ξkm ]
for hm = 1, ...,Hm

1

1+
∑Hm

km=1 exp[x
′
km

βd−pkmα+ξkm ]
for hm = 0

.

To finish the demand-side modeling, let qhm be the logarithm of the share for hm =
1, 2, ..., Hm, which is expressed as

qhm = x′
hm

βd − phmα+ ξhm + ln
(
1−

Hm∑
km=1

exp(qkm)
)
. (3.3)

3.3. Modeling the supply side

The supply-side model represents the profit maximization problem of private nursing
homes. Following previous nursing home studies, as surveyed in Norton (2000), two
assumptions are placed on the homes’ optimization problem. First, to simplify the
problem, the capacity of homes is not considered. Second, what homes maximize is
their expected profit for a period at a steady state, given their occupancy status. This
assumption is required to avoid a complicated situation in which residence durations
overlap. In equilibrium, the marginal profit function from the ith consumer for the
hmth home takes the following form:

Πhm(τim) = phm + fhm −mchm − fhmI[Thm < τim ], (3.4)

where mchm is the marginal cost per resident, which is assumed to be homogeneous with
respect to residents.

The home maximizes its expected profit, using the per capita profit defined by equation
(3.4). Four assumptions are used to ensure a well-defined supply side competition. First,
homes are assumed to know the distribution of ηimhm . Under this assumption, Imshm is
the equilibrium number of residents.

The second assumption is to do with the control variables for the homes. The assump-
tion here is that homes play the Bertrand-type price competition, but that the monthly
rent, fhm , is determined exogenously in the housing market. Under this assumption, the
home has two control variables, phm and Thm , which are complementary. Then, I further
assume that homes first decide Thm , and then choose phm based on this decision.

Third, a home’s subjective expectations for their customers’ lifetimes are assumed
to be determined only by Thm and fhm . Therefore, these expectations are not affected
by phm or the actions of other homes. In other words, homes choose Thm to control
which customers they wish to attract, and phm determines how to manage their ex-
penditure, given these customers. Let Prs(Thm < τ |fhm , Thm) be a home’s subjective
probability that a resident in the home has a lifetime longer than Thm in the steady
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state. Furthermore, I assume that this subjective probability can be modeled using the
logit polynomial, which is given as

1− Prs(Thm < τ |fhm , Thm) = Γ(Thm , fhm ; γ)

=
exp(γ0 + γT1Thm + γT2T

2
hm

+ γf1fhm + γf2f
2
hm

+ γTFThmfhm)

1 + exp(γ0 + γT1Thm + γT2T 2
hm

+ γf1fhm + γf2f
2
hm

+ γTFThmfhm)
,

where γ = (γ0, γT1, γT2, γf1, γf2, γTf )
′.

Fourth is a conventional assumption of a log-linear form for the marginal cost function.
Specifically, the logarithm of the marginal cost is set to be a linear function of an
observable Ks × 1 vector, whm , and an unobservable home specific effect, ωhm .

Under the above four assumptions, the expected profit function is specified as follows:

Πhm = Imshm

[
phm + fhm −mchm − fhmPrs(Thm < τ |fhm , Thm)

]
.

A further assumption is that there exists an interior solution for the profit maximiza-
tion problem. The first-order condition for phm , given Thm , yields

phm = exp(whmβs+ωhm)−
1

α[exp(qhm)− 1]
−fhm

[
1−Prs(Thm < τ |fhm , Thm)

]}
. (3.5)

Consequently, the structural equations (3.3) and (3.5) provide a simultaneous model
for the demand and supply for hm = 1, ..., Hm. This model consists of 2Hm (not 2)
simultaneous equations, because in (3.3), qhm depends not only on phm , but also on
qkm , for km ̸= hm. The dependent variables are (qm,pm), the unobserved variables are
(ξm, ωm), and the coefficient parameters are θ̃ = (β′

d, β
′
s, α, γ

′)′.

4. An econometric framework via nonparametric Bayes

This section provides details of the econometric methodology for the model given in (3.3)
and (3.5). The section begins by explaining the difficulty with prediction analysis based
only on moment conditions. This holds for structural econometric models in general,
although the explanation concentrates on the model used in this study.

Conventional estimation methods are employed based on moment conditions in the
form of E[zξ|x,w] = E[zω|x,w] = 0, where z is some instrument. For this nonlinear
simultaneous model, there is a simpler estimation method, based on moment conditions,
than the method based on a likelihood function. The latter method requires evaluating
the joint distribution function accompanied by 2Hm nonlinear structural equations. This
is a reason why the GMM estimation is the standard econometric tool for the BLP model.

Prediction analysis provides a different situation. As an illustrative example, consider
a prediction problem for p, given counterfactual xm = x̃ and wm = w̃. For simplicity,
assume that the reduced form is analytically obtained for phm as

phm = gp(xm,wm, ξm, ωm; θ).
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There are three unknown factors on the right-hand side of the equation, namely ξm,
ωm, and θ. For θ, GMM estimates can be used. However, there is the problem of the
unobservables, (ξm, ωm).

Nevo (2000) proposed a method to manage these unobserved variables. His study
investigates the effects of a merger in the US cereal industry. In the prediction for
a counterfactual merger, he assumed that everything other than the merger status is
kept unchanged. Under this assumption, the counterfactual values of the explanatory
variables are predicted using the same values of (ξm, ωm). Specifically, he substituted
the values of the estimated residuals into the reduced form equation, (4).

On the other hand, in the counterfactual situation in this study for the private nursing
home market, eliminating the lump-sum forward payment would impose a drastic change
in the market structure. To reflect this large change, I try to allow different values of
(ξm, ωm) under the counterfactual situation. To do so, these unobservables are set as
stochastic terms in the prediction analysis and integrated from the reduced form, (4).

However, using the conventional econometric method via moment conditions, such
integration is feasible only when the reduced form, gp, takes specific forms. One example
is the reduced form that is additive and separable with respect to (ξm, ωm), such that

phm = gp(xm,wm, ξm, ωm; θ) = g̃p(xm,wm; θ) + a′ξm + b′ωm,

where a and b are constant vectors. Multiplying both sides by zm, we can integrate
out the terms for (ξm, ωm) using the moment conditions. However, it is difficult to
guarantee such an assumption of the functional form, because gp is a reduced form.
Thus, in general, we need to conduct a numerical integration for (ξm, ωm) using a Monte
Carlo algorithm that requires distributional assumptions. In addition, because the model
has as many as 2Hm simultaneous equations, another numerical step is often needed to
obtain the reduced form.

4.1. Estimation via nonparametric Bayesian analysis

This subsection provides an intuitive introduction to the nonparametric Bayesian ap-
proach. A practical and detailed explanation of the estimation procedure is provided
in in Appendix A. The nonparametric Bayesian analysis can be summarized as a sta-
tistical methodology that uses a likelihood function, which can represent an arbitrary
distribution. Unlike other nonparametric models, such as models that use kernel or
spline statistics, the nonparametric Bayes models are associated with well-defined closed
forms of the likelihood function and predictive distributions. This feature enables us to
conduct a numerical integration in a prediction analysis.

This study incorporates nonparametric modeling for ξhm and ωhm . Here, xhm andwhm

are assumed to include constant terms to measure the factors common to all homes, and
ξhm and ωhm represent home-specific residual terms. Since it is difficult to adopt a mean
restriction in nonparametric Bayes models, this study incorporates median conditions
for the residual terms, such that Med(ξhm |xhm ,whm) = Med(ωhm |xhm ,whm) = 0. The
Polya tree mixture is adopted here as a nonparametric Bayesian method that works
under the median constraint.
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An intuitive way to define a nonparametric likelihood function is through predic-
tive densities. Consider a problem of estimating a joint conditional distribution for
(ω1, ω2..., ωH) given θ̃. Suppose we have nonparametric predictive densities π(ωh|ω1, ..., ωh−1, θ̃),
for all h = 1, ...,H. Then, the joint conditional density function can be derived as

π(ω1, ..., ωH |θ̃) = π(ω1|θ̃)π(ω2|ω1, θ̃)π(ω3|ω1, ω2, θ̃)...π(ωH |ω1, ..., ωH−1, θ̃).

The remaining concern in this setting is the choice of a nonparametric prediction
distribution. An intuitive candidate is a histogram, given previous ωs. The Polya tree
mixture is a method that constructs nonparametric predictive distributions similar to
that of a histogram. See Appendix A.1 for a detailed discussion of this method.

4.2. Counterfactual prediction analysis

The main purpose of this study is to simulate a counterfactual situation in which the
lump-sum forward payment would be eliminated. Although we want to compare con-
sumer welfare with and without the mechanism, it is difficult to derive the lifetime utility
because consumers’ lifetimes and the time-discount factor are not observed. Instead, the
total amounts of lifetime payments are compared. Because the interest rate is not con-
sidered, this comparison is conservative in the sense that the present value of the lifetime
payment without the lump-sum forward payment is over-evaluated in terms of utility.

For this prediction analysis, three additional assumptions are added to yield the same
economic model described by (3.3) and (3.5) under the counterfactual fnew

hm
= 0 and

Tnew
hm

= 0. First, new nursing homes do not enter the market in the counterfactual
situation. This assumption is justified, at least in the short term, because the high sunk
costs and the Regulation of Volume are significant barriers to entry. In other words,
the prediction analysis is limited to the short-run effects of a change to the payment
mechanism.

Second, the current and the counterfactual situations are assumed to be generated
from the same, single equilibrium, even if there are potentially multiple equilibria for
the Bertrand competition on the supply side. When conducting estimations in game
theoretic models, it is commonly assumed that the dataset is generated by a single
equilibrium to guarantee identification9. In addition, the analysis in this study requires
that the single equilibrium should be played in the counterfactual situation, as mentioned
in footnote 12 of Berry et al. (1995, p.853).

Third, the home-specific error terms, ξhm and ωhm , have the same distributions un-
der the counterfactual situation. This is still a restrictive assumption, but it relaxes
the assumption of Nevo (2000), which used the same values for the error terms in the
counterfactual situation.

Under these assumptions, the prediction analysis consists of two steps. The first step
is the prediction of the monthly fees, phm , for the counterfactual situation. The second

9Several studies, such as Ciliberto and Tamer (2009), have proposed estimation methods that allow
multiple equilibria as a data generating process. However, it is difficult to adopt these methods into
this already complicate model.
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step calculates the lifetime payments with and without the lump-sum forward payment
mechanism. Details of the prediction for phm can be found in Appendix B. Hereafter,
the predicted monthly fee values, pnewhm

, are assumed to be derived using this prediction
technique.

The calculation of the lifetime payments with and without the lump-sum forward
payment begins by considering a match between a resident, im, and a home, hm. If
there is no lump-sum forward payment, the lifetime payment consists of the accumulated
monthly fees throughout the resident’s lifetime, τim , because this is the only form of
payment. Then, the predicted total payment is pnewhm

τim . Because interest rates are not
considered and a simple summation is used, this amount is a lower bound for the present
value of the consumer’s total payment.

For the lifetime payment with the lump-sum forward payment mechanism, three cases
are considered separately based on the value of τim and Thm . The first case is Thm = 0,
where the home does not collect a lump-sum forward payment, even in the current
situation. This case is abbreviated in the prediction analysis as it is not of particular
interest in this study. The remaining two cases assume that Thm > 0.

The second case is τim ≤ Thm , where the consumer exits the home before the expi-
ration date. In this case, the lifetime payment with the lump-sum forward payment
mechanism is (phm + fhm)τim . Because the payments with and without the mechanism
are both multiplied by τim , this term cancels out when comparing the lifetime payments
for the current and counterfactual situations. Thus, the difference between the lifetime
payments can be detected by comparing phm + fhm and pnewhm

, regardless of τim .
The third case is τim > Thm , where the consumer lives longer than the lump-sum for-

ward payment and there is no additional rent payment. The resulting lifetime payment
is phmτim + fhmThm . Unlike the previous case, the unobservable true lifetime τim cannot
be ignored when comparing the lifetime payments with and without the lump-sum for-
ward payment mechanism. In practice, several representative consumers are considered
with lifetimes of τim = 240 and 360, or 20 and 30 years of remaining life.

4.3. Identification

Identification in this model depends on three factors. In addition to the functional form
assumption and the distributional assumptions on (ξm, ωm) described earlier, we also
need exclusion restrictions.

To specify the requirements for the exclusion restrictions, note that, (3.3) and (3.5)
define the models for qhm given phm ,q(−hm) and ξhm and for phm given qhm and ωhm .
Then, the demand side needs a standard exclusion restriction that it is not correlated
to phm or q(−hm), but is correlated to qhm . For the supply side, phm does not depend on
p(−hm) and q(−hm), given qhm . Thus, it is sufficient to have exclusion restrictions that
is not correlated to qhm , but is correlated to phm . In other words, we do not need to
consider the correlation to p(−hm). Thus, the required exclusion restriction for the supply
side should not always be home-specific variables, but rather market-specific variables.

As a price of the flexible prediction analysis via nonparametric Bayesian modeling, this
study has a disadvantage in handling heterogeneity among consumers. Many previous
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studies have adopted random coefficient modeling for individual heterogeneity. On the
other hand, this study locates the heterogeneity in the error term, then integrates it
out of the econometric model, in a similar manner described in Berry (1994). This
approach allows for closed-form expressions for the error terms, which are required when
constructing the likelihood function via a change of variables.

5. An empirical study of the Japanese nursing home market

5.1. Data

This section applies the methodology to real data on the Japanese private nursing home
market. In principle, the required information for this study is found in the public
domain, because private nursing homes are legally obligated to disclose the information
when asked. However, as it is burdensome to obtain a disclosure for all the homes, a
list in a consumers’ guidebook is used, Shuukan Asahi Mook (2011), which is a special
volume of a leading weekly news magazine in Japan.

Prefectures are used as the unit for local markets. Prefectures are the largest sub-
national jurisdictions in Japan. An important assumption for the BLP model is that
markets are geographically isolated. To guarantee this assumption, the markets need
to incorporate a relatively large area. The prefecture is an ideal unit for this purpose.
Furthermore, since the prefecture authority has the power to grant an operating license,
private homes are likely to make a location decision at the prefecture level.

The sample consists of 1,265 homes. The sampling methodology is as follows: the
editors of Shuukan Asahi Mook (2011) sent questionnaires to all private homes, except
those that had a past legal fault. The population consists of “approximately 5,000”
homes, in their words. They edited the book using 2,343 responses. Of the homes listed
in the book, 745 were eliminated because they provide optional long-term care. From
the remaining 1,598 homes, a further 324 homes were removed from the sample because
of missing information. Then, nine homes were excluded as they were the only home in
their prefecture, because a monopoly market would yield a different market structure to
the oligopoly model being studied here. Approximately half the homes did not respond
to the questionnaire. The low response rate might have been caused by the enforcement
of an early deadline by the editors (three months).

The share of a home, shm , is defined as the ratio of the number of residents in the hmth
home to the number of the potential consumers in the market, m. As seen in equation
(3.3), there must be a positive share for the outside option. Then, those who did not
choose to live in a private nursing home should be included as potential consumers.
As the potential consumers, I adopt elderly(age 65 and older) with the LTCI eligibility
level of care required one or more, because they typically receive institutional care under
coverage of the LTCI. Table 1 shows the number of homes and the elderly in the different
prefectures.

Table 1 is here
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For variables related to the payment mechanism, there is a monthly fee, phm , a lump-
sum forward payment, Fhm , and an expiration period, Thm . Several homes report two
price variables, namely a minimum and maximum. Specifically, the expiration period
is unique for 1,226 homes, but the monthly fee and the lump-sum forward payment are
only unique for approximately half the homes. Since there are only a few homes that
offer multiple expiration period options, the variation in lump-sum forward payments
must be caused by a variation in monthly rents. Variations in monthly fees and monthly
rents may be caused by quality differences in services and rooms. However, the lack of
variation in expiration periods implies that separating equilibria as a tool to manage the
longevity risk does not seem to occur.

There are two categories of explanatory variables: components of x̃ are characteristics
of the consumer utility, and components of w are characteristics of the marginal cost per
resident. In addition to the common elements for these two categories, exclusion restric-
tions are required that are home-specific variables in x̃ and market-specific variables in
w, as mentioned in Section 4.3.

There are three variables for the common observable elements on the demand and
supply sides, as per Shuukan Asahi Mook (2011): the number of residents per worker, a
dummy variable that takes a value of unity when the home is operated by a chain, and
the number of years since opening10.

With respect to chains, most of chains consist of franchise homes in the private nursing
home market. Therefore, these chains are not likely to make a network-level decision, but
are likely to share operational methods, such as advertising. Thus, there is no distinct
behavioral model for chains in this study, and their behavioral difference is considered
as an explanatory variable. There is no dominant chain that has more than 20% of
the share in the Japanese private nursing home market. Therefore, a dummy variable
is created as a bundle of six chains, namely Benesse Style Care, Message, Watami no
Kaigo, Nichii Group, Life Commune, and Tsukui. These six chains account for more
than 20 homes in the dataset.

The exclusion restrictions are as follows. On the demand side, there is a home-specific
variable for the occupancy rate. This variable affects the consumer utility as a proxy
for the quality of the home, because an extremely small occupancy rate might be a
signal that the home has some problems. In contrast, this variable does not affect the
per-resident cost, because this is an aggregate value with regard to residents.

The supply-side exclusion restrictions are two market-specific variables of cost shifters,
namely the local averages of rents and wages. These variables naturally affect the
marginal cost, but not the utility, given the other price variables. The local average
for rent is defined as an annual average of monthly rents per 3.3 m2 in the capital city
of a prefecture. These figures are taken from the 2010 Annual Report on the Retail
Price Survey. For the average wage, there are no reliable data specific to care workers.

10Another dummy variable was tried that takes unity when the home is operated by a non-profit or-
ganization. However, this was eliminated from the empirical study because the convergence of its
coefficient is quite slow, and there is no serious difference to the coefficient estimates of the other
variables, with or without this variable. The slow convergence might be caused by an insufficient
sample size, because this dummy variable takes unity for less than 10% of the sample.
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Therefore, information is adapted from the medical and welfare sectors, which include
care workers. The local average wage is calculated by dividing the annual wages plus
bonuses by 12. These components are from the 2010 Basic Survey on Wage Structure.

Table 2 is here

Table 2 presents the descriptive statistics for the explanatory variables. Several volatile
variables have been adjusted to stabilize the estimation in the following inference ex-
ercises. First, the number of years since opening, the local average rent, and the local
average wage are standardized to have zero means and unit variances. Second, several
variables generated from T and f are divided by constants. Specifically, F is divided by
1,000 and T, T 2, f and f2, which appear in Γ(T, f ; γ), are divided by 10, 1, 000, 10 and
100, respectively.

5.2. Estimation results

In the implementation of the MCMC samplers, 1,000,000 posterior samples were gen-
erated after discarding 100,000 initial samples as the burn-in period. The computation
took approximately 20 days using three cores of Intel Xeon X5470 processors (3.33GHz).
The values of the hyperparameters and their sensitivity are discussed in Appendix A.2.3.

Table 3 is here

Table 3 reports the estimation results. The first and second columns show the posterior
means and standard deviations, the third column represents the 95% credible intervals,
and the last column reports the inefficiency factors (IF). The maximum of the inefficiency
factors is 1, 414, which implies that we would obtain the same variance in the posterior
sample means from more than 1, 000, 000/1, 414 ≃ 707 uncorrelated draws, even in the
worst case. For the sake of the convergence diagnosis, the figures for the posterior sample
paths and the posterior densities of the MCMC samples are presented in Appendix C.

Overall, the estimated posterior means for the coefficient parameters take reasonable
values. On the demand side, the number of residents per worker has a negative effect
on consumer utility, because consumers prefer homes with sufficient care workers. The
positive coefficient for the chain dummy indicates that chains provide efficient service
through scale effects. The effect of years since opening is not clear, indicating that
history plays a complicated role. A home that has existed for a long time might imply
that it is of a high quality, based on an accumulation of experience. However, it might
also indicate disutility from old facilities. In addition, the occupancy rate, which is an
exclusion restriction, has a positive effect on consumer utility, which implies that the
popularity of a home is a good proxy for its quality. The mean effects of the lump-sum
forward payment and the monthly rent on utility, αF and αf , contain zero in their 95%
credible intervals. It is difficult to interpret these results on their own. The payment
mechanism will be discussed in further detail in the prediction analysis.

On the supply side, because the logarithm of the marginal cost is defined as log(mchm) =
w′

hm
βs + ωhm , a positive coefficient means that the corresponding explanatory variable
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increases the marginal cost, and hence decreases the profit of homes. The negative ef-
fect of the number of residents per worker means that a reduction in the labor force
decreases the marginal cost, as expected. The positive coefficient for the chain dummy
might imply that the advertisement costs incurred by chains are greater than the revenue
generated from the efficient operation of the chains. Years since opening has a negative
effect. This can be interpreted to mean that an accumulation of operational experience
decreases running costs. For the exclusion restrictions, the local average rent has a pos-
itive coefficient as a factor that increases marginal cost. However, the sign of the local
average wage is ambiguous. This ambiguity might imply that the local average wage
of the medical and welfare sectors does not precisely capture the wages of institutional
care workers in private nursing homes.

The results show a bimodal posterior density for the scale parameter of the Polya
tree mixture, τω. This density is not caused by a problem of incomplete convergence,
but by the true posterior shape. This is seen in the stable sample path in which the
chain repeatedly visits both peaks. The peculiar shape of this posterior density function
indicates that the distribution of ωm should be different to the common probability
distributions, such as the normal distribution. This result shows the advantage of using
a nonparametric estimation.

5.3. Prediction results

This section presents the prediction analysis based on the estimation results. When Hm

is extremely large, as in Tokyo, which has 281 homes, it is computationally burdensome
to achieve the convergence for the prediction procedure in Section 4.2. Instead, the
prediction analysis concentrates on the Shizuoka prefecture, which has 32 homes. The
Shizuoka prefecture has divergence in industries such as agriculture, fishing, tourism, and
manufacturing. Owing to this economic status, there is a wide variety of nursing homes,
from reasonable quality homes to luxury private nursing homes, which were formerly
hotels. Thus, the Shizuoka prefecture is a suitable target for the prediction analysis

In the dual-loop Monte Carlo integral, the number of iterations for the outer loop is
set to L = 50. The values for θl are taken from the posterior samples obtained in the
estimation step at intervals of 1,500 periods. Because the maximum of the inefficiency
factors is 1,414, these values of θl can be treated as independent samples from posterior
distributions. The inner loop is set to have R = 5, 000 posterior sample generations
of qnewh , and pnewh for h = 1, ..., 32, after discarding R′ = 5, 000 initial samples as the
burn-in period. For each of θl, l = 1, ..., 50, the posterior sample paths of the predicted
values exhibit a sufficient convergence of the inner loops.

In the following prediction analysis, the lifetime payments for homes that currently do
not collect the lump-sum forward payment are not compared, although their information
is used for the prediction. Therefore, the target is the remaining 19 homes.

Figure 2 is here

Figure 2 presents a prediction result for the match of short-lived consumers and longer
expiration periods, τi ≤ Th. The X-axis indexes homes, while the Y -axis measures
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payments in 10,000 yen. Each home has two bars of monthly payments to indicate
the situation with and without the lump-sum forward payment mechanism. Figure 2
shows that lifetime payments under the counterfactual are smaller. In other words,
short-lived consumers can reduce their lifetime payment by abandoning the lump-sum
forward payment mechanism. In this situation, longevity risks are pooled and distributed
uniformly to all residents. Therefore, short-lived consumers cannot recoup their risk
premium and forced overpayment.

Figures 3 and 4 are here

Next, consider a match between long-lived consumers and shorter expiration periods,
Th < τi. Figures 3 and 4 gives comparisons of phτ + fhTh and pnewh τ for τ = 240 and
360, or 20 and 30 years of remaining life, respectively. The two bars show the lifetime
payments in the situation with and without the lump-sum forward payment mechanism.

The lifetime payments in the counterfactual situation exceed the actual payments only
in the case in which a consumer with 30 years of remaining life chooses a specific home.
In other words, to recoup the risk premium, consumers need to live in the home for
at least 30 years. However, in practice, 30 additional years of life is not realistic for
people entering a private nursing home with care. In addition, the expenses without the
lump-sum forward payment can be further reduced if we consider an interest rate.

The above results show that the lump-sum forward payment mechanism generally
forces consumers to pay more. This overpayment might be a result of risk averseness,
in the case of both homes and consumers. There must be a loss of consumer welfare at
the aggregate level, because the overpayment is common for most consumers.

The empirical results present several ideas for the efficient management for longevity
risk in Japan. The consumer surplus can be improved by abandoning the lump-sum
forward payment mechanism. On the other hand, the results also show the sharp risk-
averseness of both consumers and homes. If consumers accept the very high-risk pre-
mium, there might be a demand for annuities and private long-term care insurance, in
addition to the public LTCI. On the other hand, the risk-averseness of homes can be
managed if there is a method to hedge the longevity risk, such as the survivor bond
described in Blake and Burrows (2001).

6. Conclusion

This study analyzed the unique lump-sum forward payment that is used to manage
longevity risk in the Japanese private nursing home market. To consider the impact of
this system, a prediction analysis was conducted using a structural model based on the
work of Berry et al. (1995). This study also proposed a flexible nonparametric Bayesian
approach for the econometric analysis. The prediction results imply that the outdated
system forces consumers today to pay higher lifetime payments than necessary.
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A. Details of the nonparametric Bayesian estimation

This appendix complements the description of the nonparametric Bayesian analysis in
Section 4.1. First, an intuitive definition of the Polya tree mixture is provided, fol-
lowed by a description of the estimation procedure corresponding to the nonparametric
Bayesian modeling. Lastly, the values of the hyperparameters and primitives actually
used in the empirical study in Section 5 are presented.

A.1. Polya tree mixture

This section first describes the Polya tree mixture in a similar way to the intuitive de-
scription provided by Christensen et al. (2008). The Polya tree, as invented by Ferguson
(1974) and developed theoretically by Lavine (1992, 1994) and Mauldin et al. (1992),
is first defined, and then the Polya tree mixture is introduced as an extension to the
original Polya tree.

As in Section 4.1, the estimation problem is first considered for the joint conditional
distribution for (ω1, ω2..., ωH), given θ̃. The scalar random variable, ωh, is assumed to
have a common support, Ω, for all h.

To formulate a Polya tree, econometricians need to specify a base measure, G, on the
support, Ω, which has a well-defined density, g, and a known median, µ. Using the base
measure, the prior distribution of the Polya tree is constructed using a J-step iterative
process. In the first level, Ω is separated into two parts, R11 and R12, which are below
and above µ, respectively. With respect to the base measure, G, both of these regions
originally have probabilities of 1/2 because µ is the median of the base measure. We
change these probabilities to λ11 and λ12 such that λ11 + λ12 = 1. In this manipulation,
the shape of G is kept unchanged, but the integration constants in these regions are
changed. Using the analogy of the histogram, the regions on Rs are called bins.

The second level creates a binary separation for each of R11 and R12 at the 25 and 75
percentiles, respectively. Then, the probabilities are changed in the same manner as in
the first level. For example, on R11, the new bins, R21 and R22, have probabilities λ21

and λ22, respectively, such that λ21 + λ22 = λ11. Such binary separations are repeated
until the terminal level, J .

In the above construction, the probabilities of bins λj,κj , for j = 1, ..., J and κj =
1, 2, ..., 2j , are unknown parameters. Therefore, we use a hierarchical Bayesian model
to introduce a simple probabilistic structure for these parameters. From the above
construction using binary separations, we can see that each level creates new probabilities
by splitting them from the previous level. Let the latent variable, ζj,κj−1 ∈ [0, 1], be a
proportion of the probability of the previous level, λj−1,κj , which is distributed to a new
bin, Rj,2κj−1−1. Then, we have a representation for the new probability as

λj,2κj−1−1 = ζj,κj−1λj−1,κj−1 , λj,2κj−1 = (1− ζj,κj−1)λj−1,κj−1 .

Owing to conjugacy, it is convenient to impose an independent and identical Beta
prior distribution on ζj,κj−1 . Therefore, the prior and posterior distributions are written
as follows:
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ζj,κj−1 ∼ Beta(αj,2κj−1−1, αj,2κj−1),

ζj,κj−1 |ω1, ..., ωi−1 ∼ Beta(αj,2κj−1−1 + nj,2κj−1−1, αj,2κj−1 + nj,2κj−1),

where α·,· are hyperparameters, and nj,k =
∑i−1

h=1 I[ωh ∈ Rj,k] denotes the sample fre-
quency.

The result is histogram-like probability models for the J levels. The Polya tree utilizes
information from all the J levels by multiplying them together. Furthermore, the purpose
is to construct a nonparametric predictive density of ωi|ω1, ..., ωi−1, θ̃. For this purpose,
the nuisance parameters, λ = λ11, λ12, ..., λJ,2J , are integrated out. Consequently, we
have

f(ωi|ω1, ..., ωi−1, θ̃)

=

J∏
j=1

αj,kj + nj,kj

αj,2κj−1−1 + αj,2κj−1 + nj−1,κj−1

I[wi ∈ Rj,kj ]g(ωi),

where kj is 2κj−1 − 1 or 2κj−1.
The original Polya tree as defined above has a similar weakness to histograms, namely

discontinuity at the borders of the bins. To overcome this discontinuity problem, the
Polya tree mixture employs smoothing of the borders by introducing a variable base
measure, denoted by Gτ , where τ is a scale parameter. This scale parameter is also
estimated and integrated out in the definition of the nonparametric predictive density
such that

π(ωi|ω1, ..., ωi−1, θ̃) =

∫
π(ωi|ω1, ..., ωi−1, θ̃, τ)π(τ |θ̃)dτ.

To achieve the median constraint, it is assumed that µ does not depend on τ but τ
determines the percentiles of Gτ other than µ. Then, this integration smooths the bins
defined in the second and later levels. On the other hand, the border in the first level at
µ is kept unchanged to guarantee the median restriction that the marginal distribution
for ωi satisfies Pr(ωi ≤ µ) = 1/2.

The Polya tree mixture has three primitives that econometricians need to specify.
The first is the base measure, which is used to define the bins of the histogram. Here,
N(0, 1/τ) is employed as the base measure for the analysis of Japanese nursing homes.
Then, τ is a scale parameter that needs to be to be estimated. The second primitive is the
set of hyperparameters of the Polya tree prior, αj,kj , for j = 1, ..., J and kj = 1, 2, ..., 2j .
This study adopts a conventional choice introduced by Hanson and Johnson (2002),
which is aj,kj = cj2, for all kj , with a constant, c. The third primitive is the truncation
level, J . Choices for c and J are case-specific subjects, and are discussed further in
Appendix A.2.3.
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A.2. The Bayesian Estimation procedure

A.2.1. The likelihood function

This section describes the estimation framework specific to the econometric model for
the Japanese nursing home market, as described by the structural equations (3.3) and
(3.5). As a result of the mutual dependencies of the dependent variables, these structural
equations cannot be used directly to define the likelihood function. Instead, the likeli-
hood function is obtained using a change of variables from unobservables to dependent
variables, as suggested by Chintagunta et al. (2005). It is assumed that the distributions
of the unobservable terms follow independent Polya tree mixtures, with scale parameters
τξ and τω.

11. Thus, the parameter is θ = (θ̃′, τξ, τω)
′. The resulting likelihood function

is

π(p,q|θ,Data) =
[ M∏
m=1

|det(Jm)|
]
πω,ξ[ω11(p1,q1; f11 , T11 , θ̃), ξ11(p1,q1; f11 , T11 , θ̃),

ω21(p1,q1; f21 , T21 , θ̃), ξ21(p1,q1; f21 , T21 , θ̃),

..., ωH1(p1,q1; fH1 , TH1 , θ̃), ξH1(p1,q1; fH1 , TH1 , θ̃),

..., ωHM
(pM ,qM ; fHM

, THM
, θ̃), ξHM

(pM ,qM ; fHM
, THM

, θ̃)], (A.1)

where

ξhm(pm,qm; fhm , Thm , θ̃) = qhm − ln
[
1−

Hm∑
km=1

exp(qkm)
]
− x̃′

hm
β̃d + ThmfhmαF + phmα,

(A.2)

ωhm(pm,qm; fhm , Thm , θ̃) = ln

[
phm +

1

α[exp(qhm)− 1]
+ fhmΓ(Thm , fhm ; γ)

]
−w′

hm
βs.

, (A.3)

and Jm is the following Jacobian matrix of the transformation:

Jm =



∂ω1m/∂p1m ... ∂ω1m/∂pHm ∂ω1m/∂q1m ... ∂ω1m/∂qHm

...
. . .

...
...

. . .
...

∂ωHm/∂p1m ... ∂ωHm/∂pHm ∂ωHm/∂q1m ... ∂ωHm/∂qHm

∂ξ1m/∂p1m ... ∂ξ1m/∂pHm ∂ξ1m/∂q1m ... ∂ξ1m/∂qHm

...
. . .

...
...

. . .
...

∂ξHm/∂p1m ... ∂ξHm/∂pHm ∂ξHm/∂q1m ... ∂ξHm/∂qHm


,

11Jara et al. (2009) considered the multivariate version of the Polya tree mixture, which can capture the
correlation between random variables. However, this methodology was not used in this study as it is
difficult to include in the already complicated model.
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in which

∂ωhm

∂plm
=

{
1

phm+[α(exp(qhm )−1)]−1+fhmΓ(Thm ,fhm ;γ)
(≡ Zhm) for lm = hm

0 for lm ̸= hm

∂ωhm

∂qlm
=

{ (
− exp(qhm )

α[exp(qhm )−1]2

)
Zhm for lm = hm

0 for lm ̸= hm
,

∂ξhm

∂plm
=

{
α for lm = hm
0 for lm ̸= hm

,

∂ξhm

∂qlm
=

 1 +
exp[qhm ]

1−
∑Hm

km=1 exp[qkm ]
for lm = hm

exp[qlm ]

1−
∑Hm

km=1 exp[qkm ]
for lm ̸= hm

.

Using the formula for the determinant by parts, and the fact that Zhm > 0, which is
guaranteed under the support condition described later in (A.5), we have

|det(Jm)| = |det(Dm)|
( Hm∏
km=1

Zkm

)
,

where Dm is a matrix with the (i, j) element defined as

dmij =

 1 +
exp(qim )

1−
∑Hm

km=1 exp(qkm )
+

exp(qim )
[1−exp(qim )]2

for i = j

exp(qim )

1−
∑Hm

km=1 exp(qkm )
for i ̸= j

.

Consequently, Dm does not depend on parameters θ, but on a dependent variable,
qm. Thus, |det(Dm)| is negligible in the estimation, whereas it must be considered for
a prediction analysis.

The likelihood function requires additional restrictions for the supports of the depen-
dent variables to have well-defined logarithmic terms in (A.2) and (A.3). Specifically,

0 < 1−
Hm∑

km=1

exp(qkm), (A.4)

0 < phm +
1

α[exp(qhm)− 1]
+ fhmΓ(Thm , fhm ; γ). (A.5)

Condition (A.4) is automatically satisfied in the estimation step owing to the con-
struction of qhm in Section 3, but it must be verified in the prediction step described
below. Another condition, (A.5), is required in the estimation and prediction steps.
Furthermore, because (A.5) states that the support of the likelihood function depends
on parameters α and γ, (A.5) violates a regularity condition for the maximum likelihood
estimators to have preferable asymptotic properties. This fact is another motivation to
adopt a Bayesian estimation procedure.
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A.2.2. Prior and proposal distributions

The Bayesian estimation is implemented using the Markov chain Monte Carlo (MCMC)
algorithm. Owing to the construction of the Polya tree mixture using histogram-like
stochastic structures, the likelihood is not a smooth function of parameters. There-
fore, the Metropolis-Hastings (MH) algorithm is adopted using random walk proposal
distributions. The prior and proposal distributions are specified as follows.

The prior distributions assume that the coefficient parameters follow independent
normal distributions, and that the scale parameters of the Polya tree mixtures, each of
which is an inverse of the variance, follow independent Gamma distributions. Specifically,

βd ∼ N(µβd0,Σβd0), βs ∼ N(µβs0,Σβs0),

γ ∼ N(µγ0,Σγ0), α ∼ N(µα0, σ
2
α0),

τω ∼ Gamma(aτω10, aτω20), τξ ∼ Gamma(aτξ10, aτξ20),

where Gamma denotes the Gamma distribution.
For the proposal distributions, distributions are selected that can impose the support

conditions described so far. First, for the unconstrained parameters, βd and βw, the
normal proposal distributions are used. Second, for τξ and τω, the proposal distributions
are set as log-normal distributions to guarantee positive values. Third, a truncated
normal proposal is incorporated for γ to satisfy the support conditions (A.4) and (A.5).
Finally, the truncated log-normal proposal distribution is used for α, which must be
positive and satisfy the support condition.

A.2.3. Hyperparameters and primitives for the empirical study

The empirical analysis in Section 5 adopts the following hyperparameters and primitives.
The hyperparameters are set as follows:

βd ∼ N(0, 1000I), βs ∼ N(0, 1000I),

γ ∼ N(0, 10I), α ∼ N(1, 10),

τω ∼ Gamma(3, 10), τξ ∼ Gamma(3, 10).

For the normal proposal distributions, their variances are adjusted to have modest
rates of acceptance in the MH algorithm. Specifically, the acceptance rates for parame-
ters are located within the range 0.29 to 0.6.

For the Polya tree mixture, primitives are chosen as c = 10 and J = 5. In addition,
several alternative values are adopted to check the robustness of this choice. Here, 1,
100, and 1, 000 are incorporated for c. Of these values, c = 100 and 1, 000 yield posterior
samples similar to the primary result. The value of c = 1, which is used in the studies
by Hanson and Johnson (2002) and Hanson (2006), yields similar posterior means for
the parameters, but shows a slow convergence. Additionally, J = 8 is incorporated as
well. This value is recommended by Hanson and Johnson (2002) as a rule of thumb,
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namely J ≃ log2H. However, this value induces a slow convergence, although it yields
similar posterior means to J = 5. Both c = 1 and J = 8 impose finer definitions of
bins than c = 10 and J = 5. The slow convergence with these primitives is caused by
the complexity of the econometric model in this study relative to the previous statistical
papers.

B. Details of prediction of the monthly fee

This appendix describes the method of predicting the monthly fees under the counter-
factual to complement Section 4.2. To predict phm , the following predictive mean is
considered:

E[pnewhm
|fnew

hm
= 0, Tnew

hm
= 0,Data]

=

∫ ∫
phmπ(phm |Tnew

hm
= 0, fnew

hm
= 0, Data, θ)π(θ|Data)dphmdθ.

A dual-loop Monte Carlo integral is conducted to calculate the double integral nu-
merically. Furthermore, phm must be integrated on the marginal distribution, which
corresponds to the reduced form. As a result of the mutual dependency of phm and
the other dependent variables, it is difficult to obtain a closed form of the reduced form
analytically. Thus, a numerical solution for the simultaneous equation is required. The
numerical procedure is summarized as follows. Let L and R be appropriately large
integers representing the iterations for the outer and inner loops of the Monte Carlo
integration, respectively. The inner loop is accompanied by the numerical solution.

The outer loop approximates the integral with respect to θ. The random numbers
θl, l = 1, 2, ..., L, are generated from the posterior distribution of θ|Data. The posterior
samples of the MCMC estimation can be adopted as the random numbers in this step.

The inner loop implements the integral for phm . Given θl, prlhm
, r = 1, 2, ..., R, are

generated from the distribution of plrhm
|fnew

hm
= 0, Tnew

hm
= 0, θl,Data. To conduct the nu-

merical solution, the MCMC sampling is implemented for the inner loop, which requires
closed forms for the conditional predictive distributions for qnewhm

|pnew
m ,qnew

(−hm), f
new
hm

=

0, Tnew
hm

= 0, θ,Data and pnewhm
|qnew

m ,pnew
(−hm), f

new
hm

= 0, Tnew
hm

= 0, θ,Data, for hm =
1, 2, ..., Hm. Therefore, the random samples are iteratively drawn from these condi-
tional distributions, given the previous draws. After appropriate burn-in periods, R′, we
have random draws from the marginal predictive distributions, which can serve as prlnew.

The conditional predictive distributions are derived as follows. First, in a similar
manner to the derivation of the likelihood function, the joint predictive density for the
dependent variables is obtained using a change of variable as
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π(pnew
m ,qnew

m |fnew
hm

= 0, Tnew
hm

= 0, θ,Data)

= πω,ξ[ωhm(p
new
m ,qnew

m ; fnew
hm

= 0, Tnew
hm

= 0, θ̃), ξhm(p
new
m ,qnew

m ; fnew
hm

= 0, Tnew
hm

= 0, θ̃)|Data]

|det(Jm)|

∝ |Dm|
Hm∏

hm=1

[
Zhm(p

new
hm

, qnewhm
; θ)gτω [ω

new
hm

(pnewhm
, qhnew

m
; θ)]gτξ [ξ

new
hm

(pnewhm
,qnew

m ; θ)]

J∏
j=1

cj2 + nϵ[j,τω ,ωnew
hm

(pnew
hm

,qnew
hm

;θ)](ω)

2cj2 + nϵ[j−1,τω ,ωnew
hm

(pnew
hm

,qnew
hm

;θ)](ω)

J∏
j=1

cj2 + nϵ[j,τξ,ξ
new
hm

(pnew
hm

,qnew
hm

;θ)](ξ)

2cj2 + nϵ[j−1,τξ,ξ
new
hm

(pnew
hm

,qnew
hm

;θ)](ξ)

]
,

where

ωnew
hm

(pnewhm
, qnewhm

; θ) = ln
(
pnewhm

+
1

α[exp(qnewhm
)− 1]

)
−whmβs,

ξnewhm
(pnewhm

,qnew
m ; θ) = qnewhm

− x̃′
hm

β̃d − ln
[
1−

Hm∑
km

exp(qnewkm )
]
+ pnewhm

α,

Zhm(p
new
hm

, qnewhm
; θ) =

1

pnewhm
+ {α[exp(qnewhm

)− 1]}−1
,

and the support conditions yield

0 < 1−
Hm∑

km=1

exp(qnewkm ), 0 < pnewhm
+

1

α[exp(qnewhm
)− 1]

.

Given the above joint predictive densities, we can obtain the conditional predictive
densities to implement an MCMC prediction sampler. The conditional distribution for
pnewhm

is:

π(pnewhm
|qnew

m ,pnew
(−hm), f

new
hm

= 0, Tnew
hm=0, θ,Data)

∝ Zhm(p
new
hm

, qnewhm
; θ)gτω [ω

new
hm

(phm , qhm ; θ)]gτξ [ξ
new
hm

(phm ,qm; θ)]

J∏
j=1

cj2 + nϵ[j,τω ,ωnew
hm

(pnew
hm

,qnew
hm

;θ)](ω)

2cj2 + nϵ[j−1,τω ,ωnew
hm

(pnew
hm

,qnew
hm

;θ)](ω)

J∏
j=1

cj2 + nϵ[j,τξ,ξ
new
hm

(pnew
hm

,qnew
hm

;θ)](ξ)

2cj2 + nϵ[j−1,τξ,ξ
new
hm

(pnew
hm

,qnew
hm

;θ)](ξ)
,

where

pnewhm
>

1

α[1− exp(qnewhm
)]
.

On the other hand, the conditional predictive density for qnewhm
is
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π(qnewhm
|pnew

m ,qnew
(−hm), f

new
hm

= 0, Tnew
hm=0, θ,Data)

∝
M∏

m=1

|Dm|Zhm(p
new
hm

, qnewhm
; θ)gτω [ω

new
hm

(phm , qhm ; θ)]

J∏
j=1

cj2 + nϵ[j,τω ,ωnew
hm

(pnew
hm

,qnew
hm

;θ)](ω)

2cj2 + nϵ[j−1,τω ,ωnew
hm

(pnew
hm

,qnew
hm

;θ)](ω)

Hm∏
hm=1

[
gτξ [ξ

new
hm

(phm ,qm; θ)]
J∏

j=1

cj2 + nϵ[j,τξ,ξ
new
hm

(pnew
hm

,qnew
hm

;θ)](ξ)

2cj2 + nϵ[j−1,τξ,ξ
new
hm

(pnew
hm

,qnew
hm

;θ)](ξ)

]
,

,

where

qnewhm
< log[1−

∑
km ̸=hm

exp(qnewkm )], qnewhm
< log

[
1− 1

αpnewhm

]
.

After running the outer and inner loops, the double integral is approximated by
(1/L)

∑L
l=1(1/R)

∑R
r=1 p

rl
hm

. In the above steps, the inner loop is computationally bur-
densome, but can be conducted separately for each market. Owing to this separability,
the empirical analysis focuses a specific market.

C. Estimated posterior densities and sample paths

Figures 5, 6, 7 and 8 are here

D. Tables and Figures
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Prefecture # Homes # Elders Prefecture # Homes # Elders

Hokkaido 38 234,434 Aichi 70 214,087
Iwate 2 62,053 Mie 3 78,731
Miyagi 15 84,786 Shiga 4 45,764
Akita 2 61,281 Kyoto 7 108,892
Yamagata 3 55,587 Osaka 120 358,001
Fukushima 7 84,428 Hyogo 61 223,140
Ibaraki 16 90,099 Nara 9 53,548
Tochigi 6 64,671 Shimane 3 40,650
Gumma 12 75,409 Okayama 28 93,412
Saitama 76 189,482 Hiroshima 17 128,505
Chiba 74 174,744 Yamaguchi 5 71,385
Tokyo 281 423,639 Kagawa 6 46,256
Kanagawa 232 264,673 Ehime 12 74,667
Niigata 15 109,182 Fukuoka 52 203,339
Ishikawa 4 48,238 Saga 7 37,445
Yamanashi 3 31,571 Nagasaki 4 78,863
Nagano 13 92,933 Kumamoto 3 86,886
Gifu 7 75,766 Oita 9 60,433
Shizuoka 32 128,088 Kagoshima 7 87,718

Table 1: Numbers of homes and elders in prefectures, excluding prefectures with zero or
one home

Variable Notation in paper Mean S.D.

Monthly fee (10,000yen) p 19.90 6.28
Initial payment per month (10,000yen) f 10.90 13.96
Expiration period(month) T 46.34 42.17
Share s 0.00032 0.00045
Log(Share) q -8.418 0.798

# Residents per worker x, w 2.523 0.476
Years since opening x, w 7.378 5.986
Chain dummy x, w 0.315 0.465
Occupancy rate x 0.914 0.146
Local average rent w 6051 1813
Local average wage (1,000 yen) w 1025 120
Sample size H 1265

Table 2: Descriptive statistics
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Variable Mean 95% Interval IF

βd Constant -4.311***(0.238) [-4.772, -3.839] 631.52
# Residents per worker -0.675***(0.057) [-0.793, -0.570] 444.66
Chain dummy 0.379***(0.053) [0.278, 0.485] 38.971
Years since opening 0.018(0.030) [-0.043, 0.073] 24.017
αF 0.038(0.032) [-0.025, 0.102] 67.079
αf 0.001(0.003) [-0.005, 0.008] 85.607
Occupancy rate† 0.445***(0.165) [0.123, 0.777] 339.17

βs Constant 2.914***(0.068) [2.765, 3.044] 1414
# Residents per worker -0.409***(0.028) [-0.459, -0.345] 1410.8
Chain dummy 0.213***(0.025) [0.155, 0.255] 947.94
Years since opening -0.094***(0.015) [-0.124, -0.069] 749.74
Local average rent† 0.191***(0.016) [0.165, 0.228] 716.26
Local average wage† -0.010(0.016) [-0.049, 0.012] 682.02

α 0.139***(0.001) [0.137, 0.141] 260.15
γ γ0 0.282(2.986) [-5.903, 5.717] 17.022

γT1 -2.460(2.222) [-7.365, 1.297] 24.909
γT2 -2.196(2.324) [-7.266, 1.549] 14.281
γf1 -0.767(2.977) [-6.735, 4.883] 16.901
γf2 -2.488(1.995) [-7.191, 0.174] 13.609
γfT -0.512(3.132) [-6.673, 5.591] 8.3553

τω 2.924***(0.342) [2.262, 3.408] 619.66
τξ 0.925***(0.080) [0.772, 1.084] 50.701

Sample size 1265

Table 3: Estimation result for real data

Standard deviations in parentheses. ∗ ∗ ∗, ∗∗ and ∗ indicate that 99%, 95% and 90%
credible intervals do not include zero, respectively. Variables with † are exclusion re-
strictions.
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Figure 1: Annual growth rates of capacities of public and private homes

Figure 2: Prediction result for short-lived consumers (τi ≤ Th):
X axis indexes homes and Y axis measures monthly fees in 10,000 yen
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Figure 3: Prediction results for long-lived consumers: 20 year lifetime (τi > Th): τi = 240
X axis indexes homes and Y axis measures lifetime payments in 10,000 yen

Figure 4: Prediction results for long-lived consumers: 30 year lifetime (τi > Th): τi = 360
X axis indexes homes and Y axis measures lifetime payments in 10,000 yen
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Figure 5: Posterior densities for the MCMC sampler, 1
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Figure 6: Posterior densities for the MCMC sampler, 2
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Figure 7: Sample paths for the MCMC sampler, 1
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Figure 8: Sample paths for the MCMC sampler, 2
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