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Abstract

In linear mixed models, the conditional Akaike Information Criterion (cAIC) is
a procedure for variable selection in light of the prediction of specific clusters or
random effects. This is useful in problems involving prediction of random effects
such as small area estimation, and much attention has been received since suggested
by Vaida and Blanchard (2005). A weak point of cAIC is that it is derived as an
unbiased estimator of conditional Akaike information (cAI) in the overspecified case,
namely in the case that candidate models include the true model. This results in
larger biases in the underspecified case that the true model is not included in can-
didate models. In this paper, we derive the modified cAIC (McAIC) to cover both
the underspecified and overspecified cases, and investigate properties of McAIC. It
is numerically shown that McAIC has less biases and less prediction errors than
cAIC.

Key words and phrases: Asymptotically unbiased estimator, Akaike information
criterion, conditional AIC, Kullback-Leibler information, linear mixed model, small
area estimation, variable selection.

1 Introduction

Linear mixed models (LMM) and empirical best linear unbiased predictors (EBLUP) have
been studied for a long time in the literature from both theoretical and applied aspects.
The problem of selecting explanatory variables in LMM is important since one needs to
select significant variables in order to give a good prediction. One of the conventional
procedures for variable selection is the Akaike Information Criterion (AIC) proposed by
Akaike (1973, 1974) based on the marginal likelihood, which integrates out the likelihood
with respect to random effects in LMM. However, AIC is not appropriate when one is
interested in prediction of specific clusters or random effects. One of such problems is the
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small area estimation, and the predictor induced from LMM has been used and studied
actively and extensively in estimation of means of small geographical areas. Then it is
important to select variables in terms of minimizing the prediction errors for the focus
on specific random effects. An appropriate method in this direction is the conditional
Akaike information criterion (cAIC) suggested by Vaida and Blanchard (2005). The
cAIC is related to estimation of the expected Kullback-Leibler information based on the
conditional density given random effects, and cAIC is derived as an (asymptotically)
unbiased estimator of the conditional Akaike information (cAI) when the true model is
included in candidate models. Since Vaida and Blanchard (2005), the cAIC and the
relevant criteria have been studied by Liang, Wu and Zou (2008), Greven and Kneib
(2010), Srivastava and Kubokawa (2010), Donohue, Overholser, Xu and Vaida (2011),
Kubokawa (2011), Kubokawa and Nagashima (2012) and others.

A critical point of AIC, cAIC and Mallows’ Cp is that those procedures are derived
when a candidate model includes the true model. This assumption is called the overspec-
ified case. On the other hand, the underspecified case means that a candidate model does
not include the true model. Thus, we have the following questions:

(I) Is cAIC appropriate as an estimator of cAI in the underspecified case ?

(II) Can one extend cAIC to a procedure useful for both the under- and over-specified
cases ?

For the query (I), it is noted that the cAIC is not an asymptotically unbiased estimator
of cAI in the underspecified case. In fact, cAIC has large biases in the underspecified
case as illustrated in Tables 1 and 2. Thus, the drawback of cAIC gives a motivation for
addressing the query (II).

In this paper, we derive an asymptotically unbiased estimator of cAI in both under-
and over-specified cases. This procedure is here called the modified conditional AIC
(McAIC). The setup of linear mixed models and the concept of cAIC is explained in
Section 2. The problem of variable selection which we consider in this paper is also
described. In Section 3, we derive the McAIC as an asymptotically unbiased estimator
of cAI in both under- and over-specified cases. This approach was used by Fujikoshi and
Satoh (1997) to modify AIC and Mallows’ Cp in multivariate linear regression models.
The performance of McAIC is investigated numerically by simulation in Section 4, and it
is shown that McAIC and the corresponding model averaging procedure are better than
cAIC in terms of the prediction error. In Section 5, we apply the McAIC to estimate
small area land prices. All the proofs are given in the Appendix.

2 Setup of Models and Conditional AIC

2.1 Linear mixed models and conditional AIC

Consider a linear mixed model

yi =X iβ +Zibi + ϵi, i = 1, . . . ,m, (2.1)

where yi is an ni-variate vector of observations from i-th small area (or cluster), X i and
Zi are ni × p and ni × q matrices of covariates, respectively, β is a p-variate vector of
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unknown regression coefficients, bi is a q-variate vector of random effects, and ϵi is an
ni-variate vector of random errors. Here, bi ∼ Nq(0,Gi), ϵi ∼ Nni

(0, σ2Ini
), and bi’s

and ϵi’s are mutually independent, where Gi is a q × q covariance matrix, and σ2 is an
unknown variance. Let N =

∑m
i=1 ni be the total number of observations.

The model (2.1) is rewritten in matrix form as

y =Xβ +Zb+ ϵ, (2.2)

where X = (X t
1, . . . ,X

t
m)

t and Z = diag (Z1, . . . ,Zm) are N × p and N × r matrices,
respectively, for r = mq, b = (bt1, . . . , b

t
m)

t and ϵ = (ϵt1, . . . , ϵ
t
m)

t. It is seen that b ∼
Nr(0,G) for G = diag (G1, . . . ,Gm) and ϵ ∼ NN(0, σ

2IN).

Let θ be the collection of unknown parameters in model (2.2). The conditional density
function of y given (b,θ) is denoted by f(y|b,θ), and the density of b is π(b|G). The
marginal density function of y is written as

fπ(y|θ) =
∫
f(y|b,θ)π(b|G)db.

Using these notations, we consider to predict the distribution for the focus on specific
clusters or random effects. To measure the prediction error of some candidate model f̂ ,
Vaida and Blanchard (2005) used the expected Kullback-Leibler information based on the
conditional density, given by∫∫ [∫

log

{
f(ỹ|b,θ)

f̂(ỹ|b̂(y), θ̂(y))

}
f(ỹ|b,θ)dỹ

]
f(y, b|θ)dydb, (2.3)

where ỹ is a future sample vector independent of y given b, b̂(y) is the empirical Bayes

estimator of b and θ̂(y) is some estimator of θ. Since the numerator of (2.3) is irrelevant

to the model f̂(ỹ|b̂(y), θ̂(y)), it is sufficient to consider

cAI = −2

∫∫∫
log{f̂(ỹ|b̂(y), θ̂(y))}f(ỹ|b,θ)f(y, b|θ)dỹdydb, (2.4)

which is called the conditional Akaike Information (cAI). When cAI is estimated by

−2 log f̂(y|b̂(y), θ̂(y)), the bias is denoted by

∆cAI = cAI − E
[
−2 log f̂(y|b̂(y), θ̂(y))

]
.

Then the conditional AIC (cAIC) is defined by the bias corrected unbiased estimator of
cAI, given by

cAIC = −2 log f̂(y|b̂(y), θ̂(y)) + ∆̂cAI ,

where ∆̂cAI is an (asymptotically) unbiased estimator of ∆cAI , and is called a bias cor-
rection term or a penalty term.

3



2.2 Setup for the problem of variable selection

In this paper, we focus on the problem of selecting explanatory variables in linear mixed
model in the following setup.

First, we assume the same setup of the true model as in Vaida and Blanchard (2005).
Let N × pω matrix X consist of all the explanatory variables, and the true model be
given by y = Xβ∗ +Zb+ ϵ in the same framework of (2.2), where β∗ is a vector of the
true regression coefficients with p∗ non-zero components and pω − p∗ zero components,
b ∼ Nr(0, σ

2G0) and ϵ ∼ NN(0, σ
2IN) for a common parameter σ2 and a known matrix

G0. Thus the marginal density of y is

y ∼ NN(Xβ
∗, σ2Σ0), (2.5)

where Σ0 = ZG0Z
t + IN .

In the setup of the true model, the assumption of the covariance matrix σ2G0, used
by Vaida and Blanchard (2005), seems restrictive. However, it is not very restrictive as
long as we handle the problem of selecting only explanatory variables. When G0 includes
unknown parameters ψ, namely, G0 = G(ψ), we can use the variable selection procedure

by replacing ψ with an estimator ψ̂. More explanations about it will be given in Remark
3.1. If the selection of both explanatory variables and random effects were treated, the
setup of σ2G0 would be inappropriate.

Second, our objective is to select a good model from the collection of candidate models
{Mj} for j = 1, . . . , F . Model MF denotes the full (biggest) model including all the
explanatory variables, given by

MF : y =Xβ +Zbω + ϵω, (2.6)

where β is a pω-variate vector, bω ∼ Nr(0, σ
2
ωG0) and ϵω ∼ NN(0, σ

2
ωIN). Model Mj is

expressed as

Mj : y =Xjβj +Zbj + ϵj, (2.7)

where Xj consists of pj columns of X, βj is a pj-variate vector corresponding to Xj, bj
is a q-variate vector of random effects, and ϵj is an N -variate vector of random errors. It
is here assumed that bj ∼ Nr(0, σ

2
jG0) and ϵj ∼ NN(0, σ

2
jIN).

Third, we assume that the collection of candidate models includes both underspecified
and overspecified models, and that the full model includes the true model. Here, a
candidate model Mj is overspecified if Xβ∗ ∈ R[Xj], which means that Xβ∗ is in
the column space of Xj. If Xβ∗ ̸∈ R[Xj], Mj is called an underspecified model. This
definition is the same as in Fujikoshi and Satoh (1997), who modified AIC and Mallows’
Cp for underspecification in multivariate linear regression. We shall modify cAIC by Vaida
and Blanchard (2005) so that we can use a modified procedure in both the overspecified
and underspecified cases.
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3 Modification of cAIC

3.1 Evaluation of the bias of cAIC

We begin by deriving the bias of cAIC for model Mj in (2.7). The unknown parameters
are βj and σ

2
j and their maximum likelihood (ML) estimators are

β̂j =(X t
jΣ

−1
0 Xj)

−1X t
jΣ

−1
0 y,

σ̂2
j =

1

N
(y −Xjβ̂j)

tΣ−1
0 (y −Xjβ̂j).

The bias is given by

∆cAI = cAI − E[−2 log f(y|b̂j(y), θ̂j(y))],

where −2 log f(y|b̂j(y), θ̂j(y)) is

N log(2πσ̂2
j ) + (y −Xjβ̂j −Zb̂j)t(y −Xjβ̂j −Zb̂j)/σ̂2

j . (3.1)

As shown in the Appendix, the bias can be expressed as

∆cAI = E
[ 1

σ̂2
j

{
(2N − tr [Σ−1

0 ])σ2 − utΣ−2
0 u+ 2utΣ−2

0 (Xjβ̂j −Xβ∗)
}]
, (3.2)

for u = y −Xβ∗.

It is important to note that the distribution of σ̂2
j under the underspecified case is

different from that under the overspecified case. Thus, we need to clarify the distribution
of σ̂2

j . To this end, Nσ̂2
j is decomposed as

Nσ̂2
j =

{
Σ

−1/2
0 (y −Σ

1/2
0 M jΣ

−1/2
0 y)

}t{
Σ

−1/2
0 (y −Σ

1/2
0 M jΣ

−1/2
0 y)

}
=σ2

{
zt(IN −Mω)z + zt(Mω −M j)z

}
=σ2(W0 +W1),

where W0 = z
t(IN −Mω)z, W1 = z

t(Mω −M j)z,

z =Σ
−1/2
0 y/σ,

Mω =Σ
−1/2
0 X(X tΣ−1

0 X)−1X tΣ
−1/2
0 ,

M j =Σ
−1/2
0 Xj(X

t
jΣ

−1
0 Xj)

−1X t
jΣ

−1/2
0 .

Note that M j and Mω are symmetric and idempotent. Let v = Σ
−1/2
0 u/σ and η =

Σ
−1/2
0 Xβ∗/σ. Then, it is seen that

Mωη = η,

for both underspecified and overspecified models, and that

M jη

{
= η for overspecified models,
̸= η for underspecified models,
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since Xβ∗ ∈ R[Xj] for the overspecified case. Thus W0 can be rewritten as

W0 = (η + v)t(IN −Mω)(η + v) = vt(IN −Mω)v, (3.3)

so that W0 follows a chi-squared distribution with N − pω degrees of freedom, denoted by

W0 ∼ χ2
N−pω .

Also, W1 can be rewritten as

W1 =v
t(Mω −M j)v + 2ηt(Mω −M j)v + ηt(Mω −M j)η

=vt(Mω −M j)v + 2L+Nδ, (3.4)

where

L =ηt(Mω −M j)v,

δ =ηt(Mω −M j)η/N.
(3.5)

In the overspecified case, we have W1 ∼ χ2
pω−pj

since Mωη = M jη = η. In the under-
specified case, W1 follows a noncentral chi-squared distribution with pω − pj degrees of
freedom and with the noncentrality parameter Nδ, denoted by W1 ∼ χ2

pω−pj
(Nδ). Thus,

W1 ∼
{
χ2
pω−pj

for overspecified models,

χ2
pω−pj

(Nδ) for underspecified models.

Since utΣ−2
0 u = σ2vtΣ−1

0 v and

utΣ−2
0 (Xjβ̂j −Xβ∗) = σ2

{
vtΣ−1

0 M jv − ηt(Mω −M j)Σ
−1
0 v

}
,

we can rewrite (3.2) as

∆cAI =N · E
[
2N − trΣ−1

0

W0 +W1

− vtΣ−1
0 v

W0 +W1

+ 2
vtΣ−1

0 M jv

W0 +W1

− 2
ηt(Mω −M j)Σ

−1
0 v

W0 +W1

]
.

(3.6)

Although W0 +W1 has a central chi-squared distribution in the overspecified case, it
has a noncentral chi-squared distribution in the underspecified case. Thus, we need to
approximate the bias ∆cAI . For the purpose, assume the following conditions:

(A1) ηt(Mω −M j)η = O(N), which is the non-centrality parameter of W1.

(A2) ηt(Mω −M j)Σ
−1
0 (Mω −M j)η = O(N).

The condition (A1) is equivalent to δ = O(1) given in (3.5). It is also noted that
the condition (A2) is satisfied by (A1) if the maximum eigenvalue of Σ−1

0 is uniformly
bounded. Under these assumptions, we can get the following theorem which will be proved
in the Appendix.
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Theorem 3.1 In the overspecified case, the bias of cAIC is provided by the exact expres-
sion ∆cAI = B∗, where

B∗ = 2N ×
{N − tr [Σ−1

0 ] + tr [Σ−1
0 M j]

N − pj − 2
+

tr [Σ−1
0 ]− tr [Σ−1

0 M j]

(N − pj − 2)(N − pj)

}
. (3.7)

In the underspecified case, the bias of cAIC is approximated as

∆cAI = B∗ +B1 +B2 +B3 +O(N−1), (3.8)

where B1, B2 and B3 are defined by

B1 =
2N(λ− 1)

N − pj − 2
(N − tr [Σ−1

0 ]), (3.9)

B2 =2pjλ(λ− 1)− 4λ(λ− 1)2 + 2tr [Σ−1
0 M j](λ− 1)

+ 2(λ− 1)tr [Σ−1
0 ]× 2λ2 − (pj + 1)λ+ 1

N
, (3.10)

B3 =
4λ2

N
ηt(Mω −M j)Σ

−1
0 (Mω −M j)η, (3.11)

for λ = 1/(1 + δ).

It is noted that in the overspecified case the bias B∗ given in (3.7) is identical to that in
Vaida and Blanchard (2005). It is also noted that B1 = B2 = B3 = 0 in the overspecified
case, since λ = 1 and M jη = η.

3.2 Estimation of the bias

We now derive an asymptotically unbiased estimator of the bias ∆cAI . It follows from
Theorem 3.1 that it is sufficient to estimate B∗ + B1 + B2 + B3. Since B1 and B2 are
linear functions of λ, λ2 and λ3, we begin by estimating these polynomials of λ.

Let us define λ̂, λ̂2 and λ̂3 by

λ̂ =
N − pj
N − pω

σ̂2
ω

σ̂2
j

, (3.12)

λ̂2 =
(N − pj)(N − pj + 2)

(N − pω)(N − pω + 2)

(
σ̂2
ω

σ̂2
j

)2

, (3.13)

λ̂3 =
(N − pj)(N − pj + 2)(N − pj + 4)

(N − pω)(N − pω + 2)(N − pω + 4)

(
σ̂2
ω

σ̂2
j

)3

. (3.14)

In the overspecifed case, it is noted that Nσ̂2
ω = σ2W0 ∼ σ2χ2

N−pω
, W1 ∼ χ2

pω−pj
and

Nσ̂2
j = σ2(W0 +W1), so that

σ̂2
ω

σ̂2
j

∼ Be

(
N − pω

2
,
pω − pj

2

)
,
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where Be(·, ·) denotes the beta distribution. This implies that E[λ̂] = E[λ̂2] = E[λ̂3] = 1
in the overspecified case. In the underspecified case, on the other hand, it follows that
E[(σ̂2

ω/σ̂
2
j )

k] → λk as N → ∞ for k = 1, 2, 3, where the brief proof is given in the
Appendix.

Lemma 3.1 In the overspecified case, E[λ̂] = E[λ̂2] = E[λ̂3] = 1. In the underspecified

case, λ̂, λ̂2 and λ̂3 are asymptotically unbiased estimators of λ, λ2 and λ3, respectively.

Using estimators (3.12), (3.13) and (3.14), we can estimate B1 and B2 in (3.9) and
(3.10). However, because of B1 = O(N), a naive estimator that just substitutes λ̂ for λ
in B1 has a bias with order O(1). Then E[λ̂] can be expanded up to O(N−1) as

E[λ̂] =
N − pj
N − pω

E

[
W0

W0 +W1

]
=λ+

−2λ2(λ− 1) + pjλ(λ− 1)

N
+O(N−2), (3.15)

where the proof is given in (A.9) in the Appendix.

Lemma 3.2 Consider the following estimator for B1:

B̂1 =
2N(N − tr [Σ−1

0 ])

N − pj − 2

{
λ̂− 1 +

2(λ̂3 − λ̂2)− pj(λ̂2 − λ̂)

N

}
. (3.16)

Then, in the overspecified case, E[B̂1] = 0, and in the underspecified case, E[B̂1] =
B1 +O(N−1).

We next obtain an estimator of ηt(Mω −M j)Σ
−1
0 (Mω −M j)η which is a part of

B3. Define σ̃
2
j by

σ̃2
j = (y −Xjβ̂j)

tΣ−2
0 (y −Xjβ̂j).

From the fact that σ̃2
j = σ2(v + η)t(IN −M j)Σ

−1
0 (IN −M j)(v + η), it follows that

E[σ̃2
j ] = σ2

{
tr [Σ−1

0 (IN −M j)] + η
t(Mω −M j)Σ

−1
0 (Mω −M j)η

}
.

Hence an estimator of ηt(Mω −M j)Σ
−1
0 (Mω −M j)η is given by

σ̃2
j/σ̂

2
ω − tr [Σ−1

0 (IN −M j)].

Lemma 3.3 Consider the following estimator for B3:

B̃3 =
4

N

(
σ̂2
ω

σ̂2
j

)2

×
{
σ̃2
j

σ̂2
ω

− tr [Σ−1
0 (IN −M j)]

}
.

Then in the overspecified case, E[B̃3] = O(N−1). In the underspecified case, E[B̃3] =
B3 +O(N−1).
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Lemma 3.3 implies that in both overspecified and underspecified cases, B̃3 is an asymp-
totically unbiased estimator of B3 up to O(1), but B̃3 has a O(N−1) bias that cannot be
negligible for overspecified models. Since the cAIC by Vaida and Blanchard (2005) is an

exact unbiased estimator of cAI, we want to adjust B̃3 so that the adjusted estimator can
have a bias with order O(N−2) in the overspecified case.

Lemma 3.4 For B3, consider the following estimator as a higher order unbiased estima-
tor than B̃3:

B̂3 = B̃3 −
4tr [Σ−1

0 (In −M j)]pω
N2

+
8tr [Σ−1

0 (Mω −M j)]

N2
. (3.17)

Then, in the overspecified case, E[B̂3] = O(N−2). In the underspecified case, E[B̂3] =
B3 +O(N−1).

Using Lemmas 3.1, 3.2 and 3.4, we can estimate the bias ∆cAI by the estimator

∆̂cAI = B∗ + B̂1 + B̂2 + B̂3. (3.18)

The bias correction estimator can be used not only for overspecified models, but also for
underspecified models. Thus, we get the modified conditional Akaike information criterion
(McAIC) given by

McAIC = −2 log f(y|b̂j, β̂j, σ̂j) + ∆̂cAI . (3.19)

Theorem 3.2 In the overspecified case, it follows that

E[∆̂cAI ] = ∆cAI +O(N−2) and E[McAIC] = cAI +O(N−2).

In the underspecified case, it follows that

E[∆̂cAI ] = ∆cAI +O(N−1) and E[McAIC] = cAI +O(N−1).

Remark 3.1 In the derivation of McAIC, we assume that the covariance matrix of b is
σ2G0 for a known matrix G0. This setup seems restrictive, since σ2G0 involves some
unknown variance components in most linear mixed models. For example, we consider
the nested error regression model which wil be treated in the next section for simulation.
In this model, G0 is a function of ψ = τ 2/σ2 where τ 2 is a variance component of random

effects. Since a consistent estimator ψ̂ for ψ is available, we can use the plug-in estimator
G0(ψ̂) for G0(ψ). Then, McAIC can be extended by replacing G0(ψ) in (3.19) with

G0(ψ̂). The influence by this replacement may be limited as long as one considers the
problem of selecting only explanatory variables.

4 Simulation Study

In this section, we investigate the behaviors of the suggested criterion McAIC by simula-
tion through two kinds of experiments.

9



In the first experiment, we consider a class of the nested models denoted byMj, which
is described by

Mj : y =Xjβj +Zb+ ϵ, (4.1)

where βj = (β1, . . . , βj, 0, . . . , 0)
t, and b and ϵ are distributed as the same as in the

models in subsection 2.2 with G0 = Im i.e. q = 1. We set Zi = jni
in (2.1) for

jni
= (1, . . . , 1)t, an ni-vector of ones, and n1 = · · · = nm = n = N/m. Let X be

generated as vec (X t) ∼ N (0, IN ⊗ Σx) with Σx = (1 − ρx)Ipω + ρxJpω for ρx = 0.1
and Jpω = jpωj

t
pω . For the true model, β is given by β = (β1, . . . , βp∗ , 0, . . . , 0)

t and βj
is generated as βj = 2 × ((−1)j/(j + 0.7)) × U(1, 2), 1 ≤ j ≤ p∗ for a uniform random
variable U(1, 2) on the interval (1, 2).

We here handle the case that pω = 7, p∗ = 5, N = 50 and m = 10. The performance
of the criteria cAIC and McAIC is measured by the biases of estimating cAI and by the
relative frequency of selecting the true model. The true values of cAI in each model are
calculated from (A.2) based on 10,000 replications. The biases and the rates of selecting
each model are computed as their averages based on 1,000 replications. The results are
shown in Table 1 for σ2 = 1 and in Table 2 for σ2 = 0.5.

model cAI bias(cAIC) bias(McAIC) hit(cAIC) hit(McAIC)
1 217.81 16.234 -0.63453 0 0
2 184.14 12.17 -0.55772 0 0
3 167.68 7.2864 -0.25035 0.005 0.025
4 163.66 4.7962 -0.15384 0.05 0.087
5 158.84 -0.16459 -0.13939 0.778 0.812
6 160.59 -0.22447 -0.14562 0.117 0.062
7 162.47 -0.23391 -0.15563 0.05 0.014

Table 1: N = 50,m = 10, p∗ = 5, pω = 7, σ2 = 1

model cAI bias(cAIC) bias(McAIC) hit(cAIC) hit(McAIC)
1 210.62 18.465 -0.53668 0 0
2 168.35 16.2 -0.47607 0 0
3 142.9 11.564 -0.20047 0 0.001
4 134.82 8.4066 -0.083391 0.004 0.014
5 124.18 -0.16459 -0.13939 0.824 0.907
6 125.94 -0.22447 -0.14562 0.122 0.063
7 127.81 -0.23391 -0.15563 0.05 0.015

Table 2: N = 50,m = 10, p∗ = 5, pω = 7, σ2 = 0.5

Tables 1 and 2 show that although the conventional cAIC has large biases for under-
specified models, namely model 1 to 4, our proposed McAIC has smaller biases for both
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underspecified and overspecified models. Especially, because cAIC overestimates the cAI
for underspecified cases, cAIC tends to select larger models. The fact that McAIC can
estimate with small biases for each model may imply that this criterion provides an ap-
propriate weight vector for model averaging methods. We will check this hypothesis in
the next experiment.

In the second experiment, we handle the case of unknown G0 and consider the model
class which consists of all subsets of {β1, . . . , βpω}. The other set up is the same as in the
first experiment except forG0 = G(ψ) = ψIm where ψ = τ 2/σ2, namely b ∼ N (0, τ 2Im).
This model is known as the nested error regression model (NERM), and σ2 and τ 2 are
estimated by unbiased estimators proposed by Prasad and Rao (1990), which is given as
follows: Let S = yt(IN −Xj(X

t
jXj)

−1X t
j)y and S1 = y

t(E−EXj(X
t
jEXj)

−1X t
jE)y

where E = diag (E1, . . . ,Em) for Ei = Ini
− n−1

i Jni
. Then, unbiased estimators of σ2

and τ 2 are given by

σ̂2
j = S1(N −m− pj) and τ̂ 2j =

{
S − (N − pj)σ̂

2
j

}
/N∗,

where N∗ = N − tr [ZtXj(X
t
jXj)

−1X t
jZ]. Let pω = 5 and p∗ = 3. The parameter β is

generated in the same way as in the first experiment. We here measure the performance
of cAIC and McAIC via ∥ŷ −Xβ −Zb∥2/N for ŷ =Xβ̂ +Zb̂, which is here called the
prediction error because b̂ is a predictor of b. The prediction errors are given as averages
based on 1,000 replications.

In addition to cAIC and McAIC, we consider a model averaging procedure. The aim
of model averaging is to predict a future value by a weighted mean of fitted values for
the candidate models. The weighting functions are important in the model averaging
method, and we use some optimal weights suggested in Burnham and Anderson (2002).
In the context of McAIC, the weight is defined as follows: Let McAICj denote the value
of McAIC in model Mj and let McAICmin be the minimum McAIC value. Also, let
∆McAICj =McAICj −McAICmin. Then the weight is defined by

wj =
exp

(
−1

2
∆McAICj

)∑
k exp

(
−1

2
∆McAICk

) . (4.2)

Based on the weights given in (4.2), we can obtain a model averaged fitted value

ŷ =
∑
j

wjŷj,

where ŷj is the predictor based on model j, and the summation is taken over all the can-
didate models. We call this method ”Smoothed McAIC (S-McAIC)”. A similar method
based on cAIC is called ”Smoothed cAIC (S-cAIC)”.

Table 3 reports the prediction errors for the best model selected by cAIC and McAIC
and for the model averaged fitted values based on S-cAIC and S-McAIC. From the table, it
can be seen that McAIC and the corresponding averaging procedure S-McAIC are better
than cAIC and S-cAIC. Also, it is revealed that the prediction errors get smaller as the
sample size is larger. This implies that the information criteria can estimate the cAI more
accurately for the large sample size.
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case 1 2 3 4 5 6
N 50 50 50 80 80 80
σ2 1 0.5 0.5 1 0.5 0.5
τ 2 0.5 1 0.5 0.5 1 0.5
cAIC 0.23775 0.13346 0.13346 0.15529 0.084461 0.081887
McAIC 0.23473 0.13072 0.13072 0.15477 0.084100 0.081608
S-cAIC 0.23162 0.13068 0.13068 0.15150 0.082597 0.080020
S-McAIC 0.22942 0.12897 0.12897 0.15061 0.082037 0.079505

Table 3: Prediction errors of the fitted values based on cAIC, McAIC, S-cAIC and S-
McAIC

We recall that all the possible candidate models are treated in the second experiment,
while the nested models only are considered in the first experiment. As stated above,
McAIC and the model averaging procedure S-McAIC have better performance than cAIC
and S-cAIC for all the possible models. Although the details are omitted here, McAIC
is not necessarily better than cAIC when candidate models are nested. This observation
implies that cAIC is not bad as long as nested candidate models are considered, since
cAIC is justified in the overspecified case.

5 Empirical Study

We apply the variable selection procedures cAIC and McAIC to the posted land price
data along the Keikyu train line, which connects the suburbs in Kanagawa prefecture
to the Tokyo metropolitan area. This data set was used by Kubokawa and Nagashima
(2012) who studied parametric bootstrap methods in the linear mixed models.

We analyze the land price data in 2001 with covariates for 47 stations which we
consider as small areas, namely m = 47. For the ith small area, there are data of ni land
spots, and the total sample size is N =

∑m
i=1 ni = 189. The land price (Yen in hundreds

of thousands) per m2 of the k spot in the ith small area is denoted by yik, TRNi is the
time to take by train from the station i to the Tokyo station around 9:00 in the morning,
DSTik is the geographical distance from the spot k to the nearby station i, FOOTik is
the time to take on foot from the spot k to the nearby station i and FARik denotes
the floor-area ratio of the spot k. As explanatory variables, we consider nine variables
FARik, TRNi, TRN

2
i , DSTik, DST

2
ik, FOOT

2
ik, TRNi×DSTik and TRNi×FOOTik, which

are denoted by x1, . . . , x9 and x0 denotes constant term.

We employ NERM, which we handle in the previous section, and estimate unknown
parameters σ2 and τ 2 with the Prasad-Rao estimators. The variable selection procedure
is that regressors which minimizes the information criteria are added to the model based
on the forward stepwise selection.

Table 4 reports values of cAIC and McAIC in each model. Both criteria select the

12



model cAIC McAIC
x1 469.37 476.64
x1, x0 436.18 441.26
x1, x0, x2 417.57 420.14
x1, x0, x2, x3 410.75 412.22
x1, x0, x2, x3, x4 412.97 413.93
x1, x0, x2, x3, x4, x5 413.82 415.29

Table 4: Example of posted land price data

same model with {x1, x0, x2, x3}, namely,

yik = β0 + FARiβ1 + TRNiβ2 + (TRNi)
2β3 + vi + εik,

where the parameters are estimated by σ̂2 = 0.46152, τ̂ 2 = 0.077363 and (β̂0, β̂1, β̂2, β̂3) =
(5.0806, 6.3661× 10−3,−1.0542× 10−1, 6.4769× 10−4).

6 Concluding Remarks

In this paper, we have suggested the McAIC which has been derived by modifying the
exact cAIC by Vaida and Blanchard (2005). It has been shown that McAIC is an asymp-
totically unbiased estimator of the conditional Akaike information cAI for both overspec-
ified and underspecified models, while cAIC has a large bias for underspecified models.
The asymptotic unbiasedness of McAIC has been confirmed numerically by simulation.

As an application of McAIC, we have suggested the model averaging procedure with
the weights based on McAIC. When all the possible subsets of the full model are treated
as candidate models, it has been shown numerically that McAIC and the corresponding
model averaging procedure have better performance than cAIC.

A Appendix

A.1 Derivation of (3.2)

First compute the expectation with respect to ỹ ∼ f(ỹ|b,θ) in cAI. Then, cAI can be
written as

cAI =E
[
N log(2πσ̂2

j ) +Nσ2/σ̂2
j

]
+ E

[{
(Xjβ̂j −Xβ∗) +Z(b̂j − b)

}t{
(Xjβ̂j −Xβ∗) +Z(b̂j − b)

}/̂
σ2
j

]
. (A.1)

Note that b|y ∼ N
(
G0Z

tΣ−1
0 u, σ

2(G0 −G0Z
tΣ−1

0 ZG0)
)
and that

Xjβ̂j −Xβ∗ +Z(b̂j − b) = (IN −Σ−1
0 )u+Σ−1

0 (Xjβ̂j −Xβ∗)−Zb.
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Taking the expectation with respect to b|y ∼ π(b|y,θ) in (A.1), we rewrite cAI as

cAI =E
[
N log(2πσ̂2

j ) + (2N − tr [Σ−1
0 ])σ2/σ̂2

j

]
+ E

[
(Xjβ̂j −Xβ∗)tΣ−2

0 (Xjβ̂j −Xβ∗)/σ̂2
j

]
. (A.2)

Next, in a part of −2 log f(y|b̂j, θ̂j) in (3.1), it is noted that

y −Xjβ̂j −Zb̂j
=y −Xβ∗ − (Xjβ̂j −Xβ∗)−ZG0Z

tΣ−1
0

{
y −Xβ∗ − (Xjβ̂j −Xβ∗)

}
=Σ−1

0 u−Σ−1
0 (Xjβ̂j −Xβ∗). (A.3)

Thus, from (A.2) and (A.3), we can see that ∆cAI = cAI − E[−2 log f(y|b̂j, θ̂j)] is ex-
pressed as (3.2). �

A.2 Proof of Theorem 3.1

For (3.6), we decompose ∆cAI as

∆cAI = b1 + b2 + b3 + b4,

where b1 = NE[(2N − trΣ−1
0 )/(W0 + W1)], b2 = −NE[vtΣ−1

0 v/(W0 + W1)], b3 =
2NE[vtΣ−1

0 M jv/(W0 +W1)] and b4 = −2NE[ηt(Mω −M j)Σ
−1
0 v/(W0 +W1)].

We begin by expanding (W0 + W1)
−1 up to Op(N

−2). Let W = vt(IN −Mω)v +
vt(Mω − M j)v. Then, W0 + W1 = W + 2L + Nδ, W ∼ χ2

N−pj
, W = Op(N) and

L = Op(N
1/2), so that we can write (2L + Nδ)/W = δ +D and D = Op(N

−1/2). Thus,
it follows that

(W0 +W1)
−1 =(W + 2L+Nδ)−1 =W−1(1 + δ +D)−1 =

λ

W
(1 +Dλ)−1

=
λ

W

{
1−Dλ+ (Dλ)2 +Op(N

−3/2)
}
. (A.4)

Since δλ = 1− λ, it is seen that

Dλ = (1− N

W
)(λ− 1) +

2Lλ

W
.

Let A =W/(N − pj)− 1, which is of Op(N
−1/2). then,

1

W
=

1

N − pj

{
1− A+ A2 +Op(N

−3/2)
}

=
1

N
(1− A+ A2 +

pj
N
) +Op(N

−5/2),

1− N

W
=A− A2 − pj

N
+Op(N

−3/2). (A.5)
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Hence, (W0 +W1)
−1 can be evaluated as

(W0 +W1)
−1 =

λ

N

{
1− (A+

2L

N
)λ+ A2λ2 +

pjλ+ 4ALλ2

N
+

4L2λ2

N2

}
+Op(N

−5/2).

(A.6)

For any function q(·), we have E[q(vtGv)L] = 0 since q(vtGv)L is an odd function of v.
Also, E[A] = 0, E[A2] = 2/(N − pj), E[L

2] = Nδ. Hence, it is observed that

E[(W0 +W1)
−1] =

λ

N

{
1 +

−2λ2 + 4λ+ pjλ

N

}
+O(N−3). (A.7)

Using the expansions (A.6) and (A.7) , we can evaluate b1, b2, b3 and b4, respectively.

First, b1 can be evaluated as

b1 =N(2N − tr [Σ−1
0 ])× λ

N
×

{
1 +

−2λ2 + 4λ+ pjλ

N

}
+O(N−1)

=b∗1 + (2N − tr [Σ−1
0 ])(λ− 1)

{
N

N − pj − 2
+

−2λ2 + (pj + 2)λ

N

}
+O(N−1),

where

b∗1 =
N(2N − tr [Σ−1

0 ])

N − pj − 2
,

which is the exact b1 for overspecified models.

Next note that tr [Σ−1
0 ] = O(N), vtΣ−1

0 v− tr [Σ−1
0 ] = Op(N

1/2). Then, b2 is evaluated
as

b2 =−NE

[{
tr [Σ−1

0 ] + (vtΣ−1
0 v − tr [Σ−1

0 ])
}

× λ

N

{
1− (A+

2L

N
)λ+ A2λ2 +

pjλ+ 4ALλ2

N
+

4L2λ2

N2

}]
+O(N−1)

=− λtr [Σ−1
0 ]

{
1 +

−2λ2 + 4λ+ pjλ

N

}
+ λ2E[vtΣ−1

0 vA] +O(N−1).

From the second order moment of quadratic forms of standard normal random vectors, it
follows that

E[vtΣ−1
0 vA] =

2

N − pj

{
tr [Σ−1

0 ]− tr [Σ−1
0 M j]

}
.

Using this equality, we can evaluate b2 as

b2 =− λtr [Σ−1
0 ]

{
1 +

−2λ2 + 2λ+ pjλ

N

}
+O(N−1)

=b∗2 − tr [Σ−1
0 ](λ− 1)

{
N

N − pj − 2
+

−2λ2 + pjλ− 2

N

}
+O(N−1),
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where

b∗2 = −N ×
{

tr [Σ−1
0 ]

N − pj − 2
− 2tr [Σ−1

0 ]− 2tr [Σ−1
0 M j]

(N − pj)(N − pj − 2)

}
,

which is the exact b2 for overspecified models.

As for b3, it can be decomposed as

vtΣ−1
0 M jv

W0 +W1

=
vtM jΣ

−1
0 M jv

W0 +W1

+
vt(IN −M j)Σ

−1
0 M jv

W0 +W1

.

SinceM jv is independent of (IN −M j)v and W0+W1, and E[M jv] = 0, it follows that

E

[
vt(IN −M j)Σ

−1
0 M jv

W0 +W1

]
= 0.

Further, because vtM jΣ
−1
0 M jv and W0 +W1 are mutually independent, b3 is evaluated

as

b3 =2N × E[vtM jΣ
−1
0 M jv]× E[(W0 +W1)

−1]

=b∗3 + 2tr [Σ−1
0 M j](λ− 1) +O(N−1),

where

b∗3 =
2Ntr [Σ−1

0 M j]

N − pj − 2
,

which is the exact b3 for overspecified models.

Finally, we evaluate b4. Note that ηt(Mω −M j)Σ
−1
0 v = Op(N

1/2) from the assump-
tion (A2). Then, b4 can be expanded as

b4 =− 2N × E

[
ηt(Mω −M j)Σ

−1
0 v × λ

N

{
1− (A+

2L

N
)λ

}]
+O(N−1)

=
4λ2

N
ηt(Mω −M j)Σ

−1
0 (Mω −M j)η +O(N−1).

Combining the evaluations of b1, b2, b3 and b4 yields the result in (3.8), where B∗ is defined
by B∗ = b∗1 + b∗2 + b∗3. �

A.3 Proof of Lemma 3.1

It follows from W0 = N +Op(N
1/2) and (A.6) that

E

[(
σ̂2
ω

σ̂2
j

)k
]
= E

[(
W0

W0 +W1

)k
]
→ λk (N → ∞), (A.8)

which proves lemma 3.1. �
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A.4 Proof of Lemma 3.2

In the overspecified case, it follows from Lemma 3.1 that E[λ̂] = E[λ̂2] = E[λ̂3] = 1, so

that E[B̂1] = 0. In the underspecified case, we shall check (3.15). Using the expansion
(A.6) of (W0 +W1)

−1, we can approximate E[λ̂] as

E[λ̂] =
N − pj
N − pω

× E

[
W0

W0 +W1

]
=
N − pj
N − pω

λ

N
× E

[{
(N − pω) + v

t(IN −Mω)v − (N − pω)
}

×
{
1− (A+

2L

N
)λ+ A2λ2 +

pjλ+ 4ALλ2

N
+

4L2λ2

N2

}]
+O(N−2). (A.9)

Evaluating (A.9) up to O(N−1), we can get (3.15) and Lemma 3.2. �

A.5 Proof of Lemma 3.3

Let c1 = tr [Σ−1
0 (IN −M j)], c2 = tr [Σ−1

0 (IN −Mω)] and

D1 =v
t(IN −M j)Σ

−1
0 (IN −M j)v,

D2 =2ηt(IN −M j)Σ
−1
0 (IN −M j)v,

D3 =η
t(Mω −M j)Σ

−1
0 (Mω −M j)η. (A.10)

Since σ̃2
j = σ2(D1 +D2 +D3), we can rewrite B̃3 as

B̃3 =
4W0(D1 +D2 +D3)

(W0 +W1)2
− 4c1

N

W 2
0

(W0 +W1)2

=B̃31 − B̃32. (say)

From the exapansion (A.6) of (W0 +W1)
−1, it follows that

E[B̃31] =
4λ2

N2
× {E[W0D1] + E[W0D3]}+O(N−1)

=
4c1λ

2

N
+

4λ2D3

N
+O(N−1),

E[B̃32] =
4c1
N

× λ2

N2
× E[W 2

0 ] +O(N−1)

=
4c1λ

2

N
+O(N−1),

which proves Lemma 3.3. �

A.6 Proof of Lemma 3.4

It is noted that the adjustment term of B̂3 is of order O(N
−1) from (3.17). Then it follows

from Lemma 3.3 that E[B̂3] = B3 +O(N−1). Thus it is sufficient to evaluate E[B̃3] up to
O(N−1) for overspecified models.
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In the overspecified case, it is noted that Nσ̂2
j = σ2W and σ̃2

j = σ2D1 for D1 given in
(A.10). Then,

B̃3 =4× W0 ×D1

W 2
− 4c1

N

(
W0

W

)2

=B̃33 − B̃34. (say)

From (A.5), W−2 is expanded as

1

W 2
=

1

N2

(
1− 2A+ 3A2 +

2pj
N

)
+Op(N

−7/2).

Thus, E[B̃33] is written as

E[B̃33] =
4

N2
E
[
{(N − pω) +W0 − (N − pω)}{c1 + (D1 − c1)}

× {1− 2A+ 3A2 +
2pj
N

}
]
+O(N−2)

=
4

N2
×

{
(N − pω)c1

(
1 + 3E[A2] +

2pj
N

)
− 2c1E[W0A]− 2(N − pω)E[D1A] + E[W0D1]− c1(N − pω)

}
+O(N−2)

=
4(N − pω + 2pj)c1

N2
+

8(c2 − c1)

N2
+O(N−2), (A.11)

since W0 − (N − pω) = Op(N
1/2), c1 = O(N) and D1 − c1 = Op(N

1/2). Noting that

W0/W ∼ Be((N − pω)/2, (pω − pj)/2), we can evaluate E[W̃34] as

E[B̃34] =
4c1
N

(N − pω)(N − pω + 2)

(N − pj)(N − pj + 2)

=
4(N − 2pω + 2pj)c1

N2
+O(N−2). (A.12)

Combining (A.11) and (A.12) gives

E[B̃3] =
4c1pω
N2

+
8(c2 − c1)

N2
+O(N−2),

which shows Lemma 3.4. �
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