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Abstract

Taking account of the increasing importance of task trade in urban con-

texts, this paper provides a model of a system of cities in which ex ante iden-

tical locations specialize in tasks that differ in their skill intensity, resulting in

a unique size distribution of cities. The necessary and sufficient condition for

a power law including Zipf’s law is derived, and a quantitative analysis shows

that the model is consistent with the size distribution of U.S. cities. A wel-

fare analysis is also conducted, suggesting excess agglomeration with sizable

welfare loss under laissez-faire.
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1 Introduction

Urban economics is now undergoing what trade theory had experienced — a re-
finement of traditional thinking, recognizing the increasing importance of tasks as
an essential unit of modern economic activities (Duranton and Puga, 2005). How-
ever, what distinguishes this refinement in urban economics from that in the trade
literature is the focus of economists on the relation of tasks with urban diversity.
In their seminal work, Duranton and Puga (2001) discuss the task trade between
diversified and specialized cities. The former specialize in the development of new
products and their appropriate production technologies, whereas the latter special-
ize in stylized production based on the methods developed in the former cities.2

Urban diversity, which generally involves a network of people with different ideas,
helps to provide solutions to particular problems or develop new ideas, acting as
an agglomeration force or so-called urbanization economies (Jacobs, 1969). Due
to this agglomeration force, cities can exist even if they face substantial congestion
diseconomies.3 The specialization of cities by task then results in regional dispari-
ties reflecting variations in the relative magnitudes of these counteracting forces.

Therefore, we have good reason to examine the implications of task trade for a
system of cities, especially with respect to the size distribution of cities. However,
to our knowledge, no single paper has investigated the implications of task trade
across cities for the size distribution of cities using a rigorous general equilibrium
framework.4 Instead, the literature of the size distribution either does not focus on
specialization of cities itself or focuses on the specialization of cities in different

2 More precisely, the model provided by Duranton and Puga (2001) is the one of process inno-
vation. However, the same mechanism seems to work in the case of product innovation. Empirical
studies such as Feldman and Audretsch (1999) suggest this type of mechanism.

3 Empirical studies such as Feldman and Audretsch (1999) and Davis and Henderson (2008)
support this line of thinking by verifying the importance of urban diversity and differentiated local
service supplies in promoting innovative activities and enhancing the productivity of firms. Further-
more, the increasing importance of interactive tasks empirically shown by Michaels et al. (2013)
indirectly suggests urban diversity as a clue to understanding urban agglomeration.

4 Although the hierarchy model of Beckmann (1958) is interpreted as a model with task trade, it
is not a general equilibrium model. Models of the central place theory could be another alternative.
However, Hsu (2012) focuses on industry-level factors rather than tasks. More importantly, our
focus is the interactions between economic agents and product varieties within each city through
either market or non-market activities, which are not stressed in models of the central place theory.
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industries. However, as stressed by Duranton and Puga (2005), the nature of the
specialization of cities has been changing: from sectoral to functional specializa-
tion.

The purpose of this paper is to fill this gap between theory and reality. To this
end, we extend Matsuyama’s (2013) international trade model to a spatial equilib-
rium model of a system of cities with task trade in which ex ante identical locations
specialize ex post in different sets of tasks. Tasks differ in their skill intensity, and
those with higher skill intensity require complex and differentiated services, char-
acterized by monopolistic competition á la Dixit and Stiglitz (1977), to a greater
extent in production. Product varieties here act as an agglomeration force, that
ensures that concentration into a particular location, despite being associated with
higher congestion costs, is sustainable. Thus, the current model employs the tradi-
tional mechanism for the existence of cities and their disparities while adding a new
mechanism of specialization through task trades, which affects the balance between
agglomeration and dispersion forces and thus the size distribution of cities.

We then show that an equilibrium with specialization of cities through task trade
exists and is unique in the sense that there exists a unique, non-degenerate size dis-
tribution of cities. Furthermore, this equilibrium is shown to be characterized by the
comovement of income, population, the wage rate, the land rent, the average estab-
lishment size (in the monopolistic competition sector), and the number of varieties
which we interpret as urban diversity. We also derive the necessary and sufficient
condition for the size distribution of cities to obey a power law including Zipf’s law
as a special case.

A contribution of this paper with respect to these analytical results is that it
develops an interpretation that allows us to ensure that the model has the same
degree of analytical tractability as in Matsuyama’s (2013) international case, even
if we include migration across cities and an immobile factor of land, that is used
not only for production but also for consumption as in Pflüger and Tabuchi (2010).
The crucial step in the interpretation is the introduction of competitive developers,
which appear in studies from the urban literature such as Henderson (1974) and
Rossi-Hansberg and Wright (2007). The model accommodates the entry and exit of
developers and thus is consistent with the active creation and destruction of cities
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that is reported by Henderson and Wang (2007). Yet these developers are not per-
fect in the sense that their tool for competition is limited to subsidies to workers,
which implies that the market outcome is inefficient due to the unresolved distortion
arising from monopolistic competition.

Our another and main contribution is that we test the theory using data not just
deriving the condition for a power law. More specifically, we calibrate the model
using an occupational dataset for the United States and compare the prediction of
the model for the size distribution of cities to the actual size distribution. Interest-
ingly, the model can reproduce the observed size distribution fairly well under the
hypothesis that the spatial allocation of tasks is well captured by the theory.

Therefore, using the calibrated model, we also conduct a welfare analysis in
order to investigate whether laissez-faire is associated with excess agglomeration.
More specifically, we extend the model by introducing a government implementing
an income redistribution policy with an income tax and cross-city lump-sum trans-
fer. Welfare is measured in terms of the equilibrium utility of identical workers
who are freely mobile, thus have a same utility level and are the only agents who
derive utility from consumption in the economy. The results show that laissez-faire
is associated with excess agglomeration, which is Pareto-dominated by not only
autarky but also equilibrium with any non-zero income tax rate.5 More specifically,
the relationship between the tax rate and equilibrium utility is hump-shaped with
a single peak: utility under laissez-faire is 6.3% smaller than that under autarky;
then the utility increases to its highest level, 32.0% larger than that under autarky
or 38.3% larger than that under laissez-faire as the tax rate increases to 5.77%; and
a further increase in the tax rate reduces utility, which gradually converges to the
level achieved under autarky as the tax rate converges to 100%. That is, the welfare
loss due to the excess agglomeration under laissez-faire is substantial.

This paper is related to three strands of literature. The first strand is the liter-
ature on the international trade theory of Ricardian comparative advantage. The
current model is an application of Matsuyama’s (2013) model to the regional con-

5 Given an externality, it is not surprising that an equilibrium with some positive income tax rate
is more efficient than in the laissez-faire case. However, what is surprising is that even compared to
an equilibrium with a sufficiently high tax rate, which results in a dispersed spatial distribution and
thus reduces the benefits from agglomeration, laissez-faire is still inefficient.
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text. Matsuyama introduces monopolistic competition à la Dixit and Stiglitz (1977)
into Dornbusch et al. (1977), resulting in a model with symmetry break through
endogenous comparative advantage. He extends the analysis to multiple and arbi-
trarily large number of countries by developing a new method in which an equi-
librium reduces to a second-order difference or differential equations. The crucial
differences between his and ours are as follows: First, we interpret the sectors in
his analysis as tasks in order to take account of the importance of specialization of
cities by task as argued by Duranton and Puga (2005). Second, we introduce devel-
opers, as mentioned above. Third, we consider spatial equilibrium by introducing
migration of workers and land, the latter of which is used for consumption as well
as production. Finally and importantly, we apply the model to empirical data.

The second strand of literature is the research on the size distribution of cities.
To our knowledge, this is the first general equilibrium model that discusses both
theoretical and quantitative implications of the specialization of cities through task
trade for the size distribution of cities. Economic theories of the size distribution of
cities range from stochastic growth models to static deterministic ones. Some mod-
els of the former type such as Eeckhout (2004) do not focus on the specialization
of cities, whereas models such as Rossi-Hansberg and Wright (2007) and Duranton
(2007) (of the former type) and Hsu (2012) (of the latter type) focus on cross-city
variation in industries. Although the recent study by Behrens et al. (2010) takes
account of the findings of Hendricks (2011) and consequently focuses on within-
industry aspects as this paper does, our study differs from theirs, which focuses on
heterogeneous entrepreneurs within a framework á la Melitz (2003). Model-based
quantitative studies such as Desmet and Rossi-Hansberg (2013) and Behrens et al.
(2013) are also related to this research. However, our model focuses on task trade
and abstracts heterogeneous preference and exogenous productivity differentials.

The third is trade models which specify the production of goods as a continuum
of fragments, intermediate goods, or tasks. The current model does not include the
trade costs of tasks and thus heterogeneous trade costs, introduced by Grossman
and Rossi-Hansberg (2008) in order to validate the interpretation of each element
in the continuum as a task. Instead, we allow such an interpretation by calibrating
the model with data closely related to the tasks. Therefore, although the model
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specification is somewhat similar to previous models with a continuum of fragments
or intermediate inputs, we have a clear-cut rationale for interpreting each element
in the continuum as a task.6 Even without heterogeneous trade costs, the fraction
of traded tasks is determined endogenously, reflecting the comparative advantages
of cities that are in turn determined endogenously.

The remainder of this paper is organized as follows. We first provide the model
in Section 2. In Section 3, we discuss the equilibrium properties and the theoretical
implications of task trade for the size distribution of cities. We then calibrate the
model and investigate its quantitative implications in Section 4. Using the calibrated
model, we also conduct a welfare analysis by introducing an income redistribution
policy using an income tax and lump-sum transfers across cities in Section 5. Fi-
nally, we conclude this paper in Section 6.

2 The Model

In this section, we provide a simple spatial equilibrium model with a continuum of
tasks that are traded across cities and within firms. The economic agents consist of
mobile workers, developers, final good firms, and local firms within each city, the
last of which include monopolistically competitive and perfectly competitive firms.
The model is essentially an application of Matsuyama’s (2013) framework to the
urban context.

In the following, we explain the optimization problems of all agents in order.
For the sake of convenience, we first assume that there are J ∈ N ex ante identical
locations in the economy, each of which is endowed with one unit of land.7 We

6 The current model differs from these studies in more respects. Unlike Grossman and Rossi-
Hansberg (2008), each task is not related to a particular production factor. Rather, all tasks use the
same set of production inputs; the skill intensity of each task is different from each other; and there
is a continuous distribution of such skill intensity. In this sense, except for the use of labor and land
instead of labor and capital as production inputs, the specification of our model is close to those of
Dixit and Grossman (1982), Yi (2003), and Kohler (2004). However, the current model also shares
the same assumption with Grossman and Rossi-Hansberg (2008) as well as Feenstra and Hanson
(1996) in that there is no vertical linkage between different tasks or between intermediate inputs.
Importantly, the current model differs from all these studies in that it deals with an arbitrarily large
number of locations rather than just two countries or a single small open economy.

7 In this paper, we do not distinguish cities, regions, and locations and use these words inter-
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subsequently modify this assumption by making J diverge to infinity but making
the mass of each location converges to zero in such a way that the total mass of
locations is equal to unity, which allows us to consider the distribution of developers
and accommodate their free entry and exit.

2.1 Workers

There is unit mass of identical workers in the economy. Each worker is freely
mobile across locations and thus decides her location as well as consumption of
goods and services.

Suppose that a worker had already chosen her residence j ∈ {1,2, · · · ,J}, which
is also her workplace. Then, she solves the following utility maximization problem:

U j = max
c j,h j≥0

c1−α
j hα

j s.t. Pc j +R jh j =W j + R̄ j, 0 < α < 1.

Her income consists of labor income Wj and subsidy R̄ j, the latter of which is re-
ceived from the developer who managing location j as discussed in the next subsec-
tion. She uses these sources of income to consume homogeneous tradeable goods
c j and housing h j, the prices of which are P and R j, respectively. The constancy of
the expenditure share α of housing consumption is consistent with the prior studies
such as Davis and Ortalo-Magne (2011).

The associated indirect utility function, together with free migration, then im-
plies

Wj + R̄ j

W j′ + R̄ j′
=

(
R j

R j′

)α
∀ j ̸= j′,(1)

which imposes a restriction on the relationship between income and land rent dif-
ferentials.

changeably.
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2.2 Developers

As in urban models such as Henderson (1974) and Rossi-Hansberg and Wright
(2007), among others, we introduce competitive developers competing for workers
using subsidies R̄ j whose revenues consist of their rents from the cities that they
manage in order to take account of the active creation and destruction of cities
reported by Henderson and Wang (2007).

The associated zero-profit condition then implies that8

R̄ j =
R j

N j
∀ j,(2)

where N j denotes the population of location j, and R j is interpreted as the total
land rents given one unit of land. Note that this is the relationship that applies to
location j, at which some particular developer succeeded in attracting workers and
has thus revealed its existence in the economy. Stated differently, J is the number
of developers revealed in this manner, and although its finiteness is thus arbitrary,
it is relaxed when J becomes arbitrarily large and we consider the distribution of
developers that is presumed to be observed under free entry and exit.

2.3 Final Good Sector

The tradeable homogeneous final good is produced using a constant-returns-to-
scale (CRS) Cobb-Douglas production technology. More specifically, the produc-
tion of one unit of the final good requires a continuum of tasks {t : 0 ≤ t ≤ 1}:9

Y = exp
[∫ 1

0
ln(y(t))dt

]
,(3)

8 We abstract the endogenous determination of the physical area of each city because our focus
is not on how the urban structure is determined.

9 In Matsuyama (2013), what we consider to be a continuum of tasks here is interpreted as a
continuum of sectors, and the technology specified by (3) directly enters the utility function. How-
ever, in the regional context, this interpretation is not favorable given the transition from sectoral
specialization of cities to functional one argued by Duranton and Puga (2005).
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where Y and y(t) denote outputs of the final good and task t, respectively. The equal
weights and unit mass of the tasks imply that the total sales, which are equal to the
economy-wide income E = ∑J

j=1(W jN j +R j) times the expenditure share (1−α)
of the final good, are distributed to each task t.

Firms decide where each of these tasks is performed. For each fixed task
t ∈ [0,1], a typical firm decides the quantity y j(t) of production of task t at an ex-
isting location j ∈ {1,2, · · · ,J}. Once the task has been performed at each location,
outputs {y j(t)}J

j=1 are aggregated, and the result is used as a production input:

y(t) =
J

∑
j=1

y j(t) ∀t.(4)

Furthermore, task t performed at location j is a combination of skill-intensive
services XS, j(t) and labor-intensive services XL, j(t) by local suppliers. Its output
y j(t) is given by

y j(t) = XS, j(t)γ(t)XL, j(t)1−γ(t) ∀ j, t,(5)

where γ(t) ∈ [0,1] represents the skill-intensity of task t. In the following, we as-
sume that γ(t) is strictly monotonically increasing. For analytical convenience, we
also assume that γ(t) is continuously differentiable, i.e., γ′(t)> 0 for all t. We also
assume that γ(0) = 0 and γ(1) = 1.10

Therefore, letting PS, j and PL, j denote the prices of the skill-intensive and labor-
intensive services, respectively, we can write the profit maximization of the final
good firm as follows:

maxPY −
J

∑
j=1

∫
T j

[
PS, jXS, j(t)+PL, jXL, j(t)

]
dt s.t. (3)− (5), and T j ⊆ [0,1],

where the control variables consist of the measurable set T j of tasks performed at
location j as well as quantities (Y,{y(t)}t ,{y j(t),XS, j(t),XL, j(t)} j,t). Defining |T j|
as the Lebesgue measure of T j, we can see that if T j’s are all mutually exclusive,

10 We generalize this assumption in Section 4.
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which is indeed the case, |T j| fraction of the total sales (1−α)E is distributed to
location j. In addition, γ(t) and 1−γ(t) fractions of the distribution (1−α)E to task
t are distributed to the skill-intensive and labor-intensive sectors, respectively. Thus,
the skill-intensive sector at location j receives

∫
T j

γ(t)dt(1−α)E ≡Γ j|T j|(1−α)E,
where Γ j ≡ |T j|−1 ∫

T j
γ(t)dt is the average skill-intensity of location j.

In addition, as we discuss in the next two subsections, we assume that the market
structures of the skill-intensive and labor-intensive sectors are monopolistically and
perfectly competitive, respectively.11 More specifically, XS, j(t) denotes the com-
posite of a continuum of varieties {xS, j(v, t)}v∈[0,D j]. The quantity of each variety is
also a control variable, with the following technology:

XS, j(t) =
[∫ D j

0
xS, j(v, t)

σ−1
σ dv

] σ
σ−1

∀ j, t ∈ T j,

where D j is the number of varieties produced at location j, which we call urban

diversity, and σ > 1 is the elasticity of substitution between any two different vari-
eties.

The profit maximization then implies the following demand for variety v from
task t performed at location j:

xS, j(v, t) =
[

pS, j(v)
PS, j

]−σ
XS, j(t) ∀v, j, t ∈ T j,

where PS, j is the price index of the skill-intensive services at location j given by

PS, j =

[∫ D j

0
pS, j(v)−

1
θ dv

]−θ
∀ j.(6)

Here, θ ≡ 1/(σ−1).

11 This stylized specification reflects our view of the nature of skill-intensive services such as
management, research and development, and legal services as well as labor-intensive services such
as line production based on previously developed blueprints.
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2.4 Skill-intensive Local Service Sector

As mentioned in the previous subsection, the skill-intensive local service sector is
characterized by monopolistic competition á la Dixit and Stiglitz (1977), and each
firm produces one variety. In addition, as in Pflüger and Tabuchi (2010), we assume
that production inputs consist of both labor and land. More specifically, the fixed
and marginal costs of production are both measured in terms of their Cobb-Douglas
composite with a cost share parameter β ∈ (0,1) for land.

Formally, variety-v firm at location j solves

π j(v) = max
pS, j(v),q j(v)

[
pS, j(v)−mRβ

jW
1−β
j

]
q j(v)−Rβ

jW
1−β
j f s.t. q j(v) =

∫
T j

xS, j(v, t)dt,

where q j(v) is the output of variety-v firm at location j, and m and f denote the
shift parameters of marginal and fixed costs, respectively.

The profit maximization then implies the optimal pricing rule specified by pS, j(v)=

(1+θ)mRβ
jW

1−β
j , and substituting this into (6) and taking the ratio across two dif-

ferent locations, j and j′, we obtain

PS, j

PS, j′
=

(
R j

R j′

)β(Wj

Wj′

)1−β( D j

D j′

)−θ
∀ j ̸= j′.(7)

2.5 Labor-intensive Local Service Sector

Unlike the skill-intensive local service sector, the labor-intensive sector is charac-
terized by perfect competition with a CRS Cobb-Douglas production technology:

max
HL, j, LL, j

PL, jH
β
L, jL

1−β
L, j −R jHL, j −W jLL, j.

Note that the production of labor-intensive services also requires both labor and
land. For simplicity, we assume the same cost share parameter β as in the skill-
intensive sector.
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The profit maximization then implies

PL, j

PL, j′
=

(
R j

R j′

)β(Wj

Wj′

)1−β
∀ j ̸= j′.(8)

2.6 Equilibrium

We now define a market equilibrium. Since the locations are ex ante identical by
assumption, the symmetric configuration always exists. However, this configuration
does not seem robust to exogenous shocks to the economy, and thus, we focus on
another type of equilibrium, which is the only equilibrium other than the symmetric
one and which is unique at least in the limiting case J → ∞, which is of general
interest.

Specifically, we define an equilibrium with rankings. Without loss of gener-
ality, assume that 0 < |T1| < |T2| < · · · < |T j−1| < |T j| < · · · < |TJ|, i.e., as j

increases, the associated market share increases. It is then immediately demon-
strated that there must exist an increasing sequence {Tj}J

j=0 of thresholds such that
T j = (Tj−1,Tj] for all j ∈ {1,2, · · · ,J}; T0 = 0; and TJ = 1 under free migration and
free entry into the skill-intensive sector. That is, if cities are different, we should
observe a perfect sorting of tasks, and the higher the location index j is, the higher
the average skill intensity Γ j should be. Note that this configuration of the equilib-
rium is consistent with the argument advanced by Duranton and Puga (2001) that
cities sort themselves into specialized cities, some of which host the research and
development sectors testing prototype products, while others host the production
sectors producing goods in a stylized manner. It should, however, be noted that in
our model, there is no perfect specialization with respect to the service sectors in
the sense that every city hosts both skill-intensive and labor-intensive service sec-
tors. Stated differently, the important characteristic that distinguishes one city from
another is its average skill-intensity.

Therefore, we call the equilibrium on which we focus a sorting equilibrium and
define it as follows:

Definition 1. A sorting equilibrium is a set of prices (P,{PS, j,PL, j,R j,Wj} j,{pS, j(v)}v, j),

quantities (Y,{c j,h j,HL, j,LL, j} j,{y(t)}t{y j(t),XS, j(t),XL, j(t)} j,t ,{xS, j(v, t)}v,t, j,{q j(v)}v),
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transfers {R̄ j} j, populations {N j} j, diversities {D j} j, and a sequence {Tj}J
j=0 of

thresholds such that

1. workers maximize their utility by choosing quantities and locations;

2. firms maximize their profits;

3. markets clear:

(Land) R j = (1−α)β|T j|E +α(W jN j + R̄ jN j),(9)

(Labor) W jN j = (1−α)(1−β)|T j|E;(10)

4. there is free entry into developer and skill-intensive local service sectors; and

5. thresholds {Tj}J
j=0 are consistent with comparative advantage:

Pj+1(Tj)

Pj(Tj)
=

(
PS, j+1

PS, j

)γ(Tj)(PL, j+1

PL, j

)1−γ(Tj)

= 1,(11)

where PS, j+1/PS, j < 1 and PL, j+1/PL, j > 1 for all j.

Here, the market clearing conditions, i.e., (9) and (10), are evident from the
specifications of the utility and production technologies presented in the previous
subsections. Those of goods markets are omitted for ease of exposition. The condi-
tions that PS, j+1/PS, j < 1 and PL, j+1/PL, j > 1 imply that location j+1, compared
to location j, has a comparative advantage in the skill-intensive service sector and
thus has a comparative advantage in tasks with higher skill intensity. The thresh-
old Tj here is the task for which locations j and j+ 1 have the same comparative
advantage.

3 Equilibrium Properties and the Size Distribution
of Cities

In this section, we first consolidate the equilibrium condition presented in the pre-
vious section to obtain the fundamental equation governing the equilibrium of the
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economy in Subsection 3.1. We then prove the existence and uniqueness of a sort-
ing equilibrium in Subsection 3.2, which are consistent with the various observed
facts. The theoretical implications of our model for the size distribution of cities
are also derived in Subsection 3.3.

3.1 Fundamental Equation

For a given J, we first show that the equilibrium system of the economy reduces to
the following fundamental equation:(

Tj+1 −Tj

Tj −Tj−1

)α(1−β)+β−(1−α)(1−β)θγ(Tj)

=

(
Γ j+1

Γ j

)θγ(Tj)

∀ j ∈ {1,2, · · · ,J−1},

with T0 = 0 and TJ = 1. Given the definition of Γ j, i.e., Γ j = |Tj−Tj−1|−1 ∫ Tj
Tj−1

γ(t)dt,
the fundamental equation is a second-order difference equation with two boundary
conditions.

For this purpose, we start with the result that consolidating market clearing
conditions (9) and (10) along with the free-entry condition of the developer sector,
(2), yields

R j+1

R j
=

Wj+1N j+1 +R j+1

W jN j +R j
=

|T j+1|
|T j|

∀ j.(12)

That is, given the ordering of |T j|, the higher the market share |T j| is, the higher the
land rent R j and regional income are. In addition, it is also implied that differentials
of land rent R j and market share |T j are equal.

This result is then combined with the free-migration condition (1) to obtain

N j+1

N j
=

(
|T j+1|
|T j|

)1−α
∀ j,(13)

which states that the ordering of population N j is the same as the market share |T j|,
and that the differential of population N j is less than proportional to that of the
market share |T j| or, using (12), the land rent R j or local income E j. The latter is
interpreted as the spatial equilibrium imposing some upper bound on the population
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differential. As a result, the ordering of the wage rate W j is also the same as |T j|
because the labor market clearing condition (10) implies that the differential of
labor compensation WjN j is equal to that of the market share |T j|:

Wj+1

W j
=

(
|T j+1|
|T j|

)α
∀ j.(14)

These results immediately imply that a higher market share |T j| is associated
with higher congestion costs, which is a dispersion force, in the sense that the unit
production cost and thus the price PL, j of the labor-intensive local services is higher
in that location. More specifically, substituting (12) and (14) into (8), we obtain

PL, j+1

PL, j
=

(
|T j+1|
|T j|

)α(1−β)+β
∀ j.(15)

Another important implication of this result is that a location with a higher
market share |T j| is likely to exhibit comparative advantage in the production of
skill-intensive services. This can be seen by discussing the determination of urban
diversity, a factor that generates comparative advantage in skill-intensive services.
Substituting (7), (12), (14) and (15) into (11), we obtain(

R j+1

R j

)β(Wj+1

W j

)1−β
=

(
D j+1

D j

)θγ(Tj)

, or
(
|T j+1|
|T j|

)α(1−β)+β
=

(
D j+1

D j

)θγ(Tj)

for all j. That is, if a sorting equilibrium exists, higher congestion costs in a location
with a higher market share |T j| should be associated with greater urban diversity
D j, leading the location to exhibit comparative advantage in the production of skill-
intensive services. We here observe an agglomeration force represented by urban
diversity D j. Therefore, we can see that in this model, there is a close relationship
between these agglomeration and dispersion forces through regional comparative
advantage, which is a result of the task trade within firms and across locations. In
a sorting equilibrium, if it were to exist, regional disparities would emerge as a
balance between the agglomeration and dispersion forces, and this balance would
be affected by the task trade reflecting the function γ(t) and, thus, the distribution
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of the skill intensities in the economy.
Finally, by utilizing the free-entry condition into the skill-intensive sector, we

can derive the fundamental equation. First, note that the free entry, π j(v) = 0 for
all v and j, together with the optimal pricing rule, implies that the output q j(v) of
each variety v at location j is constant, i.e., q j(v) = f/(θm) ≡ q for all v and j.
Then, the market clearing condition for the skill-intensive sector yields D j pS, jq =

(1−α)Γ j|T j|E, or taking the ratio of this equation, we obtain

D j+1

D j
=

Γ j+1

Γ j

|T j+1|
|T j|

(
pS, j+1

pS, j

)−1

=
Γ j+1

Γ j

(
|T j+1|
|T j|

)(1−α)(1−β)
∀ j.

As mentioned in the previous section, the finiteness of J is arbitrary in the sense
that it does not accommodate free entry into the developer sector. To avoid this
arbitrariness, we investigate the distribution of the existing developers or cities in
a sorting equilibrium. We accomplish this by making J diverge to infinity while
limiting the total mass of cities to unity. Then, applying the Matsuyama’s (2013)
method to the fundamental equation,12 we obtain the following boundary value
problem for a second-order ordinary differential equation (ODE):

Φ′′

Φ′ =
θγ′(Φ)Φ′

G(Φ)
with Φ(0) = 0 and Φ(1) = 1,(16)

where

G(Φ)≡ α(1−β)+β− (1−α)(1−β)θγ(Φ).

Each city is characterized by the task t that it hosts because as J diverges to infinity,
|T j| converges to zero or, stated differently, T j converges to a point that character-
izes one of the existing cities. Here, Φ(t) is the Lorenz curve of the market share
that corresponds to ∑ j

k=1 |Tk| for some j. Thus, given the uniformity of task t, Φ′(t)

corresponds to |T j|, the market share of a location. In the following, given the one-
to-one correspondence between a city and a task, we call the city that hosts task t

12 Essentially, the method involves interpreting 1/J as a differential dt when J is sufficiently large
and then applying the asymptotic expansion. Here, it is crucial that as J diverges to infinity, each
city hosts only one task in the limit and thus is characterized by t.

16



city t. We assume that G(1)> 0 in order to focus on a meaningful case.13

3.2 Existence and Uniqueness of Endogenous Rankings

In order to prove the existence of a sorting equilibrium in the limiting case, it suf-
fices to show that there exists a solution to the fundamental equation (16). Impor-
tantly, we can obtain a unique solution to the fundamental equation analytically,
which implies the uniqueness of a sorting equilibrium. The economic interpreta-
tion of this result is as follows: although cities may differ, the associated variations
in city characteristics are limited to a range that is consistent with the unique dis-
tribution. Since cities are ex ante identical, we cannot identify which task each city
specializes in ex post.14

More specifically, we obtain the inverse function of the Lorenz curve (let H :
z → t denote the function, i.e., H(z)≡ Φ−1(z)):

H(z) =
∫ z

0 G(u)
1

(1−α)(1−β) du∫ 1
0 G(u)

1
(1−α)(1−β) du

∀z ∈ [0,1].(17)

For a given γ(t), this equation yields a unique inverse Lorenz curve H(z). Given
that H ′(z)> 0 and H ′′(z)< 0 for all t, Φ(t) is unique and has a property: Φ′(t)> 0
and Φ′′(t)> 0.

Then, using this result and normalizing the economy-wide income E to unity
without loss of generality, we can establish the following proposition:

Proposition 1. Suppose that γ′(t) > 0 and G(1) > 0. Then, a sorting equilibrium,

characterized by a Lorenz curve of the market size Φ(t), exists and is unique. In

13 Intuitively, this assumption implies that the magnitude of congestion costs, i.e., the power
α(1−β)+β appearing in (15), is larger than that of the agglomeration force, (1−α)(1−β)θγ(t),
net of the effect of the average skill intensity Γ j, thus resulting in bounded city sizes. It can be
easily shown that as G(1) converges to zero from above, the max-min ratio of population diverges
to infinity.

14 This resembles the implication of a stochastic process that is specified by a Markov chain with
a non-degenerate unique invariant distribution. That is, the realization of a random variable varies
randomly in a manner that is consistent with the invariant distribution. Importantly, this uniqueness
of the sorting equilibrium allows us to conduct the quantitative analysis discussed in Section 4. If
we have a cross-sectional dataset of cities, we can calibrate and test the model.
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addition, this equilibrium has the following properties: The market share of city t is

given by Φ′(t), and population N(t), land rent R(t), wage rate W (t), diversity D(t)

and the average establishment size ζ(t) (in the skill-intensive sector) in city t are

given by

N(t) =
Φ′(t)1−α∫ 1

0 Φ′(t)1−αdt
,

R(t) = [α(1−β)+β]Φ′(t),

W (t) = (1−α)(1−β)
∫ 1

0
Φ′(t)1−αdtΦ′(t)α,

D(t) =
θ

(1+θ) f
1−α

[α(1−β)+β]β

[
(1−α)(1−β)

∫ 1

0
Φ′(t)1−αdt

]−(1−β)
γ(Φ(t))Φ′(t)(1−α)(1−β),

ζ(t) =
(1+θ) f

θ
β[α(1−β)+β]β

[
(1−α)(1−β)

∫ 1

0
Φ′(t)1−αdt

]−β
Φ′(t)(1−α)β

for all t ∈ [0,1]. Therefore, as t increases, i.e., as a location specializes in a more

skill-intensive task, the values of all of these variables increase.

Proof. The market share Φ′(t) is simply a definition. Population function N(t)

follows if we apply the asymptotic expansion to (13):

N(t +∆t)
N(t)

=

[
1+

Φ′′(t)
Φ′(t)

∆t +o(|∆t|)
]1−α

= 1+(1−α)
Φ′′(t)
Φ′(t)

∆t +o(|∆t|).

Arranging this result and making ∆t converge to zero, we obtain

N′(t)
N(t)

= (1−α)
Φ′′(t)
Φ′(t)

∀t,

which, together with the normalization, i.e.,
∫ 1

0 N(t)dt = 1, implies the desired re-
sult of N(t). The land rent function R(t) follows immediately from the land and
labor market clearing conditions, where |T j| is now replaced with Φ′(t). The wage
function W (t) also follows from the labor market clearing condition with |T j| re-
placed with Φ′(t) and the population function N(t). The diversity function D(t) de-
rives from the market clearing condition for skill-intensive services, i.e., D j pS, jq =
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(1−α)Γ j|T j| = (1−α)
∫ Tj

Tj−1
γ(t)dt, together with the results for the land rent and

wage rate functions. Here,
∫ Tj

Tj−1
γ(t)dt is replaced with γ(Φ(t))Φ′(t). The estab-

lishment size function ζ(t) is given by the consistency, i.e., the labor compensation
calculated by W (t)D(t)ζ(t) must be equal to the market size (1−α)Φ′(t) times the
skill-intensity γ(Φ(t)) times the labor share 1−β. The statement that all of these
functions are increasing in t follows from the result that γ′(t),Φ′(t),Φ′′(t)> 0.

The comovement across these variables seems fit the reality. As argued in the
previous subsection, the result that R′(t) > 0 derives from urban congestion. The
comovement between W (t) and N(t) is an implication of the spatial equilibrium,
and the comparative advantage leads to the result that D′(t)> 0. ζ′(t)> 0 because
the differential of the wage rate times the number of firms in the skill-intensive
sector is less than that of the market size of the sector.15

3.3 Size Distribution of Cities

As has been argued in the literature, the upper tail of the population size of cities
in the United States is well approximated by a power law or, more specifically,
a Pareto distribution with a coefficient of one, the so-called Zipf’s law (Gabaix
and Ioannides, 2004; Gabaix, 2009). Economic mechanisms resulting in Zipf’s
law have also been proposed, ranging from random growth models such as Rossi-
Hansberg and Wright (2007) and Duranton (2007) to static models such as Hsu
(2012) and Behrens et al. (2010).

The purpose of this subsection is therefore to relate our model to the size dis-
tribution of cities. More specifically, we derive the necessary and sufficient condi-

15 This is easily understood in the discrete version. Using the market clearing condition WjD jζ j =
(1−α)(1−β)Γ j|T j|E, we get

Wj+1

Wj

D j+1

D j

ζ j+1

ζ j
=

Γ j+1

Γ j

|T j+1|
|T j|

.

Then, using the differentials derived in the previous subsection, we obtain

ζ j+1

ζ j
=

(
|T j+1|
|T j|

)(1−α)β
∀ j.
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tion under which the associated sorting equilibrium exhibits a power law including
Zipf’s law as a special case. As will be discussed below, this is equivalent to iden-
tifying the functional form of γ(t) guaranteeing that the size distribution of cities
obeys Zipf’s law. One might interpret this kind of approach as searching for a
knife-edge condition and thus conclude that the result presented below is not ro-
bust compared with previous theories, especially random growth models. However,
this is not necessarily the case, at least if the approach is consistent with a power
law. This is because a static model, regardless of whether it is a symmetry-breaking
one, requires us to assume a non-degenerate distribution of some exogenous vari-
able and because assuming such a distribution itself is not inconsistent with random
growth factors given the result shown clearly by Gabaix (2009): the random growth
of some variable with a lower bound results in a Pareto distribution. In addition, it
is noteworthy that we calibrate γ(t) and then test the model in Section 4 instead of
assuming a particular function γ(t) that results in Zipf’s law.

The next proposition states the implications of our model for the size distribu-
tion of cities:

Proposition 2. The size distribution of cities in the sorting equilibrium is charac-

terized by a truncated Pareto distribution if and only if γ(t) is given by

γ(t) =

{
a−{aη − [aη − (a−1)η] t}

1
η if η ̸= 0,

a− exp{lna− [lna− ln(a−1)] t} if η = 0,

where

a ≡ α(1−β)+β
(1−α)(1−β)θ

> 1.

Furthermore, if η =−α/[(1−α)(1−β)], the size distribution of cities is consistent

with Zipf’s law.

Proof. Only the essence is discussed here. The first part of the proposition is proven
in four steps: The first step is to notice, from Proposition 1, that N(t) obeys a power
law if and only if Φ′(t) obeys a power law.

The second step is to show that Φ′(t) follows a power law if and only if λ defined
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by λ ≡ G(Φ(t))−1 obeys a power law. In order to prove this statement, we begin
by differentiating t = H[Φ(t)] with respect to t to obtain 1 = H ′[Φ(t)]Φ′(t). Using
(17), we then obtain

Φ′(t) ∝ G(Φ(t))−
1

(1−α)(1−β) .

The third step is to prove that λ obeys a power law if and only if

γ′
[
γ−1(B(λ))

]
∝ λη̃, B(λ)≡ α(1−β)+β−λ−1

(1−α)(1−β)
.(18)

Here, η̃ is defined by η̃= η−1. In order to validate this statement, we first note that
the density function fZ(z) of z = Φ(t) is given by fZ(z) = fT [H(z)]H ′(z) = H ′(z),
where the first equality uses the relationship between t and z, i.e., t = H(z), and the
second uses the uniformity of task t. Then, using the relationship between λ and z

given by λ = G(z)−1 and the density function fZ(z), we obtain the density function
fΛ(λ) of λ as follows:

fΛ(λ) = fZ
[
γ−1(B(λ))

] ∂
∂λ

γ−1(B(λ)) ∝
λ−

[
1

(1−α)(1−β)+2
]

γ′ [γ−1(B(λ))]
.

The final step is to show that (18) holds if and only if γ(t) is given by the one
specified in the proposition.

The second part of the proposition is demonstrated using the results discussed
above and the fact that a random variable X1 given by X1 = Xω

2 (ω > 0), where X2

follows a Pareto distribution with coefficient δ > 0, obeys a Pareto distribution with
coefficient δ/ω.

4 Quantitative Analysis

In this section, we apply the model to empirical data. In Subsection 4.1, we describe
our methodology, our procedure and the results of the calibration. Then, in Subsec-
tion 4.2, we report the implications of the calibrated model for the size distribution
of cities.
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4.1 Calibration

In order to compute the equilibrium numerically, we need to specify the values
of the parameters (α,β,σ) and the functional form of γ(t). However, before pro-
ceeding to the calibration of these primitives, we should note that our model does
not concern how the distribution of the skill intensity γ(t) is determined; rather,
we examine how the distribution of income, the market share of skill-intensive and
labor-intensive sectors, or population is determined for a given distribution of skill
intensity γ(t). In addition, we also note that the population distribution is only in-
directly related to those of the other variables through general equilibrium effects.
Therefore, testing the model by examining the size distribution of cities allows us
to use the other distribution as a target of the calibration. Here, as a specific target,
we employ the distribution of the market size γ(Φ(t))Φ′(t) of the skill-intensive
sector.16

Given this consideration, we first generalize γ(t) in such a way that 0 ≤ γ(0) =
γ0 < γ1 = γ(1)≤ 1 and then specify the functional form of γ(t) as follows by guess-
ing that the upper tail of the market size is well approximated by a power law:

γ(t) =

{
ã−{(ã− γ0)

η − [(ã− γ0)
η − (ã− γ1)

η] t}
1
η if η ̸= 0,

ã− exp{ln(ã− γ0)− [ln(ã− γ0)− ln(ã− γ1)] t} if η = 0,

where ã > 1 is a parameter that is different from a in Proposition 2. Thus, instead
of assuming an exact power law directly, here we consider a slightly more general
γ(t) that includes an exact power law as a special case.

It is then suggested that we need to add two restrictions to the parameters (γ0,γ1)

to bound the max-min ratio of the market size of the skill-intensive sector as ob-
served in the data and to address the identification problem. More specifically, we
assume that γ0 > 0 and γ1 = 1. The former restriction follows immediately if we

16 An analogous example from the macroeconomics context is that macro economists using
Bewley-type dynamic general equilibrium models with heterogeneous agents, e.g., individuals with
exogenous heterogeneity in labor efficiency, calibrate the stochastic process of labor efficiency in
such a way that the model replicates the observed income distribution (Huggett (1993) and Aiyagari
(1994) are classical examples). However, they evaluate their performance by comparing the model
with the data in terms of the distribution of an asset or that of another endogenous variable that is at
the center of the discussion.
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notice that we need to use the market size of the skill-intensive sector normalized by
the minimal one, i.e., γ(Φ(0))Φ′(0) = γ0Φ′(0). The latter restriction derives from
the formula for determining the normalized market size ms(t) of the skill-intensive
sector in city t:

ms(t) ≡ ln
[

γ(Φ(t))Φ′(t)
γ(0)Φ′(0)

]
= ln

[
γ(Φ(t))
γ0Φ′(0)

]
+ ln

[
Φ′(t)
Φ′(0)

]
= ln

[
γ(Φ(t))

γ0

]
+

1
(1−α)(1−β)

ln
[

α(1−β)+β− (1−α)(1−β)θγ0

α(1−β)+β− (1−α)(1−β)θγ(Φ(t))

]
for all t ∈ [0,1], where the second line follows from the expression for Φ′(t), ob-
tained by differentiating t = H[Φ(t)] with respect to t and using the inverse function
theorem. This clearly suggests that if the values of the other parameters are taken
as given, there are likely multiple pairs of (γ0,γ1) that achieve the same ms(t).

Regarding the other parameters, we calibrate α and β independently in order
to approximate the observed housing expenditure share, reported by Davis and
Ortalo-Magne (2011), and the cost share of non-labor production factors, reported
by Valentinyi and Herrendorf (2008). σ is calibrated in such a way that the model
can match the natural logarithm of the observed max-min ratio of the market size
of all sectors, which is given by

ln
[

Φ′(1)
Φ′(0)

]
=

1
(1−α)(1−β)

ln
[

G(0)
G(1)

]
.

Formally, we solve the following constrained minimization problem in a brute
force manner with a discretized parameter space:

min
ã,η,γ0

max
i∈{1,2,··· ,N̂}

∣∣F̂ms(mi)−Fms(mi; ã,η,γ0)
∣∣

s.t.

ã > 1, 0 < γ0 < 1,

mdata =
1

(1−α)(1−β)
ln
[

G(0)
G(1)

]
,

where F̂ms and Fms are the distribution functions of the natural logarithm of the mar-
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Parameter Meaning Restriction Target Source
α Housing expenditure share (0,1) Housing expenditure share Davis and Ortalo-Magne (2011)
β Cost share of housing (0,1) Cost share of non-labor factors Valentinyi and Herrendorf (2008)
σ Elasticity of substitution (1,+∞) Max-Min ratio of labor compensation Occupational Employment Statistics
ã Parameter of γ(t) (1,+∞) Distribution of the skill share Occupational Employment Statistics
η Parameter of γ(t) (−∞,+∞)
γ0 minγ(t) (0,1)
γ1 maxγ(t) γ1 = 1

Table 1: Restrictions on and Targets of the Calibrated Parameters

α β σ ã η γ0 γ1
0.240 0.300 2.163 1.011 -0.477 0.480 1.000

Table 2: Calibrated Parameters

ket size of the skill-intensive sector for the data and the model, respectively. mdata is
the natural logarithm of the observed max-min ratio of the market size of all sectors.
We discretize the function with N̂ equidistant grid points and evaluate the distance
between two distributions using the maximal deviation. Table 1 summarizes the
restrictions on and targets of the calibrated parameters.

The data that we use in the calibration are taken from the May 2011 Occupa-

tional Employment Statistics compiled by the Bureau of Labor Statistics, which
reports the number of employments and the average annual wage rates for occu-
pations listed in the 2010 Standard Occupational Classification System for each of
the Metropolitan Statistical Areas (MSAs). We then exploit the equivalence be-
tween the normalized market size of the skill-intensive sector and the normalized
labor compensation of that sector due to the constancy of the labor cost share 1−β
in order to construct the distribution of the natural logarithm of the market size of
the skill-intensive sector from the data on labor compensation. We assume that the
skill-intensive and labor-intensive occupations are those listed in Table 3. These
occupations cover approximately 50.9% of the total occupations in the U.S. (17.1%
for the skill-intensive sector and 33.8% for the labor-intensive sector), reflecting the
exclusion of occupations that do not seem to be well captured by the model, such
as “Farming, Fishing, and Forestry Occupation (45-0000)” and “Transportation and
Material Moving Occupations (53-0000)”. We should also note that not all MSAs
are included in the sample, partly because of a lack of data for some of the major
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Skill-intensive Occupations Labor-intensive Occupations
Management Occupations (11-0000) Sales and Related Occupations (41-0000)
Business and Financial Operations Occupations (13-0000) Office and Administrative Support Occupations (43-0000)
Computer and Mathematical Occupations (15-0000) Production Occupations (51-0000)
Architecture and Engineering Occupations (17-0000)
Life, Physical, and Social Science Occupations (19-0000)
Legal Occupations (23-0000)
Arts, Design, Entertainment, Sports, and Media Occupations (27-0000)

Table 3: Definition of Skill-intensive and Labor-intensive Occupations

occupations listed in Table 3. However, more importantly, we restrict our attention
to the upper tail of the distribution in the sense that, after excluding MSAs that are
too small, the model can replicate the distribution of the natural logarithm of the
market size of the skill-intensive sector fairly well. In effect, 335 MSAs are cov-
ered after sample selection. This figure is not particularly different from those in
studies such as Rossi-Hansberg and Wright (2007). It is implied that mdata = 5.96.

The results of the calibration are reported in Table 2. As shown in Figure 1, the
model replicates the observed distribution of the natural logarithm of the market
size of the skill-intensive sector with the maximal deviation of 2.30%.

4.2 Quantitative Implications

Interestingly, our model successfully reproduces the observed city size distribution.
As shown in Figure 2, the rank-size plot of the model (the blue line) appropriately
approximates that of the data (the red dashed line) where the latter corresponds
to the sample that contains the largest 335 MSAs in the “Annual Estimates of the
Population of Metropolitan Statistical Areas” compiled by the Census Bureau. In
order to derive the prediction of the model, we first discretize the space of t, i.e.,
[0,1], with 335 equidistant grid points and then compute the natural logarithm of
population for each point using

ln
[

N(t)
N(0)

]
=

1
1−β

ln
[

G(0)
G(Φ(t))

]
.

Does this result imply that the model successfully explain the observed size
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Figure 1: Cumulative Distribution Function of the Normalized Market Size of the
Skill-intensive Sector
Note: The cumulative distribution of the data is constructed using the labor compensation of the
skill-intensive occupations as defined in Table 3.
Source: May 2011 Occupational Employment Statistics.

distribution of cities? We note that the result is conditional on the hypothesis that
the observed cross-city variations in the market size of the skill-intensive sector are
well captured by the model. Thus, one direction for future research is to investi-
gate the determinants of the economy-wide distribution of skill intensity. Important
examples include studies on so-called directed technical change such as Acemoglu
(2002). Moreover, because the size distribution of cities is stable, there should not
be significant change in the distribution of skill intensity for the normalized market
size of the skill-intensive sector to be stable if the model is promising. This point
raises another interesting question. Is it possible for the distribution of skill inten-
sity to be stable even if the economy has experienced skill-biased technical changes
as the U.S. has since the late 1970s? Unfortunately, because there is no consistent
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Figure 2: Rank-Size Plot
Note: The rank-size plot for the data includes the top 335 U.S. MSAs.
Source: U.S. Census Bureau.

panel dataset (at least for the U.S.), this type of time series analysis is limited to
some extent.

5 Welfare Analysis of Income Redistribution Policy

Finally, we extend the model by including a government that implements an income
redistribution policy in order to examine whether the market equilibrium is charac-
terized by excess agglomeration.17 In addition, we compute the optimal income tax
rate under the income redistribution policy specified in Subsection 5.1.

17To our knowledge, there are no studies in the literature on the size distribution of cities that
discusses the welfare effect of an income redistribution policy.
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5.1 Income Redistribution Policy Rule

We begin with a finite number of locations J. Let Eb, j and Ea, j denote before- and
after- tax regional income, respectively, i.e., Eb, j =N j(Wj+R̄ j)=W jN j+R j. Then,
let us introduce a government that implements the following income redistribution
policy rule:

Ea, j = (1− τ)Eb, j +
τE
J

∀ j,

where τ ∈ [0,1] is the proportional income tax rate; the case where τ = 0 corre-
sponds to the laissez-faire economy described and analyzed in the previous sec-
tions. That is, by levying a tax on individuals’ incomes Eb, j that are distributed
by the market, the policy makes the equilibrium outcome more equalized than in
the laissez-faire case. In addition, the lump-sum transfers among cities make this
dispersion effect more effective because as individuals concentrate in a city, the per

capita lump-sum transfer within the city, i.e., τE/(JN j), decreases.
In order to reflect this government policy rule, the land market clearing and

free-migration conditions should be modified as

R j = (1−α)β|T j|E +αEa, j,

Ea, j+1/N j+1

Ea, j/N j
=

(
R j+1

R j

)α
,

where Ea, j/N j represents the after-tax per capita income at location j, implying

R j+1

R j
=

(1−α)[α(1−β)(1− τ)+β]|T j+1|+ατJ−1

(1−α)[α(1−β)(1− τ)+β]|T j|+ατJ−1 ,

N j+1

N j
=

(1−α)(1− τ)|T j+1|+ τJ−1

(1−α)(1− τ)|T j|+ τJ−1

{
(1−α)[α(1−β)(1− τ)+β]|T j+1|+ατJ−1

(1−α)[α(1−β)(1− τ)+β]|T j|+ατJ−1

}−α

for all j.
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5.2 Modified Fundamental Equation

Using the modified equilibrium conditions, we obtain the following modified fun-
damental equation:

(
|T j+1|
|T j|

)1−β[1+θγ(Tj)]{(1−α)[α(1−β)+β]|T j+1|+ατJ−1

(1−α)[α(1−β)+β]|T j|+ατJ−1

}[α(1−β)+β][1+θγ(Tj)]

×
[
(1−α)(1− τ)|T j+1|+ τJ−1

(1−α)(1− τ)|T j|+ τJ−1

]−(1−β)[1+θγ(Tj)]

=

(
Γ j+1

Γ j

)θγ(Tj)

∀ j ∈ {1,2, · · · ,J−1}.

Replacing J−1 with ∆t as J becomes sufficiently large and using the method of
asymptotic expansion, we obtain the fundamental equation in the limiting case:

g(Φ,Φ′)Φ′′ = θγ′(Φ)Φ′,

where

g(Φ,Φ′) ≡ 1−β[1+θγ(Φ)]

Φ′ +
[α(1−β)+β][1+θγ(Φ)]

Φ′+ τ̃1
− (1−β)[1+θγ(Φ)]

Φ′+ τ̃2
,

τ̃1 ≡ ατ
(1−α)[β+α(1−β)(1− τ)]

,

τ̃2 ≡ τ
(1−α)(1− τ)

.

With τ = 0, this fundamental equation reduces to the one in the laissez-faire case.
This case is clearly complicated relative to the previous one, and we must use a

numerical method such as the fourth-order Runge-Kutta method. It should also be
noted that a solution to this ODE is not necessarily a sorting equilibrium because,
unlike in the previous case, we do not have any analytical characterization stating
that Φ(t) is a positive, strictly convex function. Instead, after solving the funda-
mental equation numerically, we need to check whether the function Φ(t) has this
property.18 However, an advantageous property of this ODE is that it is very easy

18 Using the land rent and wage rate functions stated in the next subsection, we have

PL(t) ∝
[
(1−α)(1− τ)+ τ/Φ′(t)

]−(1−β){
(1−α)[α(1−β)(1− τ)+β]Φ′(t)+ατ

}α(1−β)+β for all t ∈ [0,1],

which implies that the price PL(t) of the labor-intensive good and thus the congestion costs are
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to check the uniqueness of a solution for a given set of parameters. This is because
we know that Φ(t) is a Lorenz curve, and thus, Φ′(0) must be less than one. In ad-
dition, we have a boundary condition Φ(0) = 0. Therefore, by simply discretizing
the interval (0,1) and using each point as an initial guess for Φ′(0), we can obtain
all the possible solutions to the ODE with the help of forward shooting.

5.3 Optimal Tax Rate

Since we have already obtained empirically relevant values of the parameters in the
previous section, we use the parameter values listed in Table 2 as a benchmark.
Then, it was verified that for each τ ∈ [0,1], there is a unique solution to the fun-
damental equation that has the property Φ′(t),Φ′′(t)> 0 for all t, implying that the
solution is actually a sorting equilibrium.

Given the unique solution for each fixed tax rate τ∈ [0,1], the equilibrium utility
is calculated as19

lnŪ = ln
[

Ea(t)
N(t)R(t)α

]
− (1−α) lnP,

where

Ea(t) = [1−α(1− τ)]−1[(1−α)(1− τ)Φ′(t)+ τ],

lnP =
∫ 1

0
[β lnR(t)+(1−β) lnW (t)−θγ(Φ(t)) lnD(t)]Φ′(t)dt,

R(t) = [1−α(1− τ)]−1{(1−α)[α(1−β)(1− τ)+β]Φ′(t)+ατ
}
,

W (t) = (1−α)(1−β)
Φ′(t)
N(t)

,

N(t) = ec0
[
(1−α)(1− τ)Φ′(t)+ τ

]{
(1−α) [α(1−β)(1− τ)+β]Φ′(t)+ατ

}−α
,

D(t) =
θ

(1+θ) f
(1−α)γ(Φ(t))Φ′(t)R(t)−βW (t)−(1−β)

increasing in t if (Φ′(t) > 0 and) Φ′′(t) > 0 for all t ∈ [0,1]. Then, the argument in Subsection
3.1 suggests that if a solution to the fundamental equation exists, we should have a D(t) that is
increasing in t, which is the implication of endogenous comparative advantage of cities with higher
t in the skill-intensive sector. That is, if a solution to the fundamental equation exists and if Φ′(t)> 0
and Φ′′(t)> 0 for all t ∈ [0,1], the solution is actually a sorting equilibrium.

19Here, we omit terms that are independent of τ.
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for all t ∈ [0,1], where ec0 is computed by integrating N(t) over [0,1] and using the
normalization condition, i.e.,

∫ 1
0 N(t)dt = 1. The implication of the spatial equilib-

rium is that the first term in the above equation is independent of location or task
t such that utility is equalized across locations. In addition, Ea(t)/(N(t)R(t)α) is
equal to the total land-rent-adjusted after-tax income divided by the total popula-
tion. To see this, let ẽ denote the constant such that

Ea(t)
N(t)R(t)α = ẽ ∀t.

Then, multiplying both sides by N(t) and integrating the result over t ∈ [0,1], we
obtain

ẽ =
∫ 1

0 Ea(t)/R(t)αdt∫ 1
0 N(t)dt

=
∫ 1

0

Ea(t)
R(t)α dt,

where the second equality follows from the normalized population. Furthermore,
using the above results for Ea(t) and R(t), we obtain

ẽ = [1−α(1− τ)]−(1−α)e−c0,

where the first term represents the income multiplier effect under a non-zero tax rate
τ, and the second seems to represent the effect of the economy-wide or average land
rent. As a result, the equilibrium utility is calculated by

lnŪ =−(1−α) ln[1−α(1− τ)]− c0 − (1−α) lnP.(19)

Figure 3 then depicts the consequent relationship between tax rate τ and the
natural logarithm of the equilibrium utility lnŪ . This figure clearly shows (i) that
the laissez-faire outcome is Pareto-dominated by any non-zero tax rate; and (ii) that
lnŪ has a unique peak at a tax rate of approximately 5.77% with an utility level
that is 1.53% higher than in the laissez-faire case. The former result is primarily
due to excess concentration in the top cities as suggested by the population profile
N(t) depicted in the upper-right panel in Figure 5.20 N(t)/N(0) under laissez-faire

20 This finding agrees with Henderson (1974) in that the market economy (without competitive
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and that under the optimal tax are only significantly different at the upper tail of
the distribution. The decomposition of utility, depicted in the left panel of Figure 4,
does supports this interpretation. That is, as the tax rate τ converges to zero or as
individuals concentrate into super-star cities, as shown in the upper-right panel of
Figure 5, the term −c0 decreases rapidly compared to the other two counteracting
effects, i.e., −(1−α) ln[1−α(1− τ)] and −(1−α) lnP in (19).

The latter is due to the result that the positive welfare effect −c0 of a more
equalized population distribution through a decrease in the average land rent is sig-
nificant at lower levels of τ and then becomes weaker for higher levels of τ. The
other two effects are both decreasing in τ, and the negative slope of the income
multiplier effect −(1−α) ln[1−α(1−τ)] dominates the positive slope of −c0 even
after the slope of the price index effect −(1−α) lnP becomes nearly flat, resulting
in a single peak. Here, the result that −(1−α) lnP is decreasing in τ implies that
the price index lnP is increasing in τ. As suggested in the right panel of Figure 4
and Figure 5, this is because as τ increases and thus as individuals out-migrate from
super-star cities, the numbers of varieties in those cities decreases significantly. As
a result, even with the associated easing of congestion costs, i.e., decreases in land
rents R(t) and wage rates W (t) in those cities as depicted in the middle panels in
Figure 5, the price index lnP increases. Interestingly, given an increase in the tax
rate τ from zero to the optimal level, the average establishment profile ζ(t) adjusts
in a way that it weakens the positive effect of out-migration from top cities on lnP,
helping the overall welfare effect of an increase in τ to be positive. That is, a de-
creased establishment size in top cities weakens the negative effect of out-migration
on the number of varieties, and a stable establishment size in small- and medium-
sized cities enhances the increase in the numbers of varieties associated with in-
migration, as depicted in the lower panels of Figure 5.

It is noteworthy that the perfect redistribution, i.e., τ = 1, achieves a higher
utility than we find under the laissez-faire case. The utility that is achieved un-
der laissez-faire is 0.25% lower than that of the equilibrium with τ = 1 (Figure 3).

developers) is characterized by excess agglomeration. In addition, this result is not inconsistent with
that reported by Pflüger and Tabuchi (2010), who argue that with land use in both consumption and
production, the spatial configuration is characterized by either efficient or excess agglomeration.
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Importantly, the equilibrium with τ = 1 is not equivalent to the symmetric equi-
librium. That is, it is a sorting equilibrium, as is shown in Figure 5. The result
that population N(t) and the average establishment size ζ(t) are decreasing t is a
crucial qualitative difference from the other two cases: the optimal tax and laissez-
faire cases. It is also noteworthy that the equilibrium with τ = 1, although it is a
sorting equilibrium, does not differ quantitatively from the symmetric equilibrium.
The Lorenz curve Φ(t) (the green dot-dashed line) is fairly close to the 45-degree
line. In addition, except for cities with smaller market size, i.e., cities with smaller
t, the profiles of all variables are fairly flat, resulting in a good approximation of
the symmetric equilibrium in which all variables are the same across cities. Thus,
consistent with this observation, the two equilibria achieve the same utility level as
shown in Figure 3.

Does this result imply that free migration (and trade) harms welfare?21 Clearly,

21 Given that the symmetric equilibrium is equivalent to autarky, this question can be replaced
with the question, “Do free migration and trade Pareto-improve welfare?”, which is the regional
version of the question that is frequently asked in the trade literature.
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Figure 4: Decomposition of Utility lnŪ (left panel) and Final Good Price lnP (right
panel)

this is not the case. The policy implication of the above results is that only a slight
difference in the tax rate, i.e., 0.00% vs. 5.77%, can result in completely differ-
ent welfare consequences. If the government wants the laissez-faire economy to
achieve greater utility, it suffices to employ any non-zero tax rate. In contrast, if we
live in an economy that already features an income redistribution policy rule, we
need to be careful about the policy in order to achieve greater utility. Importantly,
the quantitative analysis validates the necessity of such a careful management of the
policy because if we measure the welfare in terms of the lifetime utility, the utility
level under the optimal tax rate is 32.0% and 38.3% larger than those under autarky
and laissez-faire, respectively.22

22 Here, the lifetime utility is computed as the utility of an infinitely-lived agent with discounted
factor of 0.96. The resulting substantial change in welfare is contrasting with the result reported
by Desmet and Rossi-Hansberg (2013), who use a neo-classical model and argue that the welfare
impact of a change in the spatial distribution of economic activity is small for the United States.
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6 Conclusion

What are the implications of task trade across cities for the size distribution of
cities? In order to answer this question, this paper develops a spatial equilibrium
model of a system of cities with task trade in which ex ante identical locations
specialize in different sets of tasks in a symmetry-breaking manner. The city size
is determined as a balance between agglomeration and dispersion forces, the for-
mer and latter of which arise from market interactions between varieties and from
scarce land, respectively. The specialization of cities then results in disparities be-
tween cities, and the higher the skill intensity of a city is, the larger the city size,
which favors urban diversity and thus agglomeration. We have shown that a sorting
equilibrium exists and is unique, exhibiting comovement between income, popu-
lation, the wage rate, the land rate, urban diversity, and the average establishment
size in the skill-intensive sector. The necessary and sufficient condition for the size
distribution to obey a power law including Zipf’s law as a special case is also de-
rived, and a quantitative analysis confirms that the model is consistent with the size
distribution of U.S. cities. A welfare analysis is also conducted, suggesting that al-
though the laissez-faire is characterized by excess agglomeration with a substantial
welfare loss.
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Figure 5: Lorenz Curve Φ(t) and Profiles of N(t), W (t), R(t), D(t), ζ(t)
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