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Abstract

A smoothing spline is considered to propose a novel model for the time-varying quantile of

the univariate time series using a state space approach. A correlation is further incorporated

between the dependent variable and its one-step-ahead quantile. Using a Bayesian approach,

an efficient Markov chain Monte Carlo algorithm is described where we use the multi-move

sampler, which generates simultaneously latent time-varying quantiles. Numerical examples

are provided to show its high sampling efficiency in comparison with the simple algorithm

that generates one latent quantile at a time given other latent quantiles. Furthermore, using

Japanese inflation rate data, an empirical analysis is provided with the model comparison.

Key words: Asymmetric double exponential distribution, Markov chain Monte Carlo,

multi-move sampler, smoothing spline, state space approach, time-varying quantile.



1 Introduction

A time-varying quantile has been receiving attention recently, and various econometric models

have been proposed. Tail quantiles are especially important for financial risk management or

policy evaluation because they are useful to describe the extreme behavior of the dependent

variable in serious events, such as the financial crisis. The Value at Risk (VaR) is an example

of tail quantiles in financial time series, which is one of the well-known risk measures that

are associated with an asset or a portfolio of many assets.

As discussed in the vast literature of financial econometrics, time-varying variances are

found to exist in empirical studies of financial time series (see, e.g., Engle (1995), Shephard

(2005)). As the variances of the dependent variables change over time, the corresponding

quantiles vary over time. When we focus on the tail behavior of financial time series, it is

necessary to describe the time-dependent structure that is appropriate for the tail quantile

or τ -quantile (which is roughly defined as the value that will be exceeded by the dependent

variable with probability τ) with τ close to zero or one. For the i.i.d. observations, the

estimate is given by the 100τ -th percentile of the samples, and in the generalized linear

model, it is given by the minimizer of some loss function (Koenker and Bassett (1978)).

Based on Koenker and Bassett (1978), several models have been proposed for time-varying

quantiles: Conditional Autoregressive Value at Risk (CAViaR) model (Engle and Manganelli

(2004)), Quantile Autoregressive (QAR) model (Koenker and Xiao (2006)) and Dynamic

Additive Quantile (DAQ) model (Gourieroux and Jasiak (2008)).

On the other hand, Koenker and Machado (1999) noted that solving the loss function

of Koenker and Bassett (1978) is equivalent to obtaining the maximal likelihood estimate

of the τ -quantile assuming some distribution for the dependent variable. For a Bayesian

inference in the quantile regression, Yu and Moyeed (2001) took this approach to obtain

the posterior distribution of the quantile and the parameters using the Markov chain Monte

Carlo (MCMC) method. Gerlach, Chen, and Chan (2011) proposed a threshold-CAViaR

model that extends the CAViaR model for the Bayesian analysis of time-varying quantiles.

In modeling time-varying quantiles, it is important to forecast the future tail behavior of

the time series for risk management as well as to describe its past movement. Overfitting the

model to the past dataset could result in a poor future forecasting for practical applications.

Thus, recently, the backtesting procedure has been often implemented to investigate such a
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forecasting performance, e.g., by checking that the proportion of observations that exceed

the estimated one-step-ahead quantiles is equal to its expected value.

One approach to avoid overfitting to the past dataset is to make the time-varying quantile

function so smooth that it produces stable predictions. In this paper, we use the smoothing

spline for that purpose as discussed in De Rossi and Harvey (2009) and propose an efficient

Bayesian estimation using the MCMC method in which we exploit a state space representa-

tion to apply a simulation smoother (de Jong and Shephard (1995), Durbin and Koopman

(2002)) to generate the latent time-varying quantiles from the posterior distributions. The

model is further extended to incorporate a correlation between the dependent variable and

its one-step-ahead quantile.

The rest of this article is organized as follows. In Section 2, we propose the time-varying

quantile model using the smoothing spline. Section 3 describes an efficient Bayesian estima-

tion method for the proposed model using a multi-move sampling method. A single-move

sampling method that is simple but inefficient is also described as a benchmark. We show

that a normal variance-mean mixture representation of the measurement error leads us to

exploit the efficient sampling method for the linear Gaussian state space model. Section 4

illustrates our estimation method using simulated data and shows that our MCMC algorithm

is efficient. Section 5 applies the proposed time-varying quantile model to the inflation rate

based on the domestic Corporate Goods Price Index (CGPI) of Japan. The backtesting pro-

cedure and the model comparison using DIC (Deviance Information Criterion) are conducted

using our models and the CAViaR model. Section 6 concludes this paper.

2 Time-varying quantile model

2.1 Quantile regression model

Let yt denote the dependent variable at time t (t = 1, ..., n) whose distribution function is

given by F (y) = Pr(yt ≤ y). For any fixed 0 < τ < 1, we define a τ -quantile as

ξ(τ) := F−1(τ) = inf{y|F (y) ≥ τ}, (1)

and we define the loss function, called a “check function” as

ρτ (u) = (τ − I(u < 0))(u), (2)
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where I(·) is an indicator function. Then, the expected loss,

E(ρτ (yt − ξ(τ))), (3)

is minimized when ξ(τ) satisfies F (ξ(τ)) = τ . Using this loss function, Koenker and Bassett

(1978) considered a quantile regression for i.i.d. observations assuming that ξ(τ) = x′b,

where x is a vector of explanatory variables and b is a corresponding regression coefficient

vector (see, e.g., Koenker (2005) for the asymptotic property of the minimum loss estimator

and the numerical method using a linear programing).

Yu and Moyeed (2001) assumed an asymmetric double exponential (or asymmetric Laplace)

density that corresponds to the loss function and described an MCMC algorithm for the

quantile regression using a Bayesian approach, where yt is i.i.d. with the probability density

function given ξ(τ),

f(yt|ξ(τ)) =
τ(1− τ)

λ
exp

(
− 1

λ
ρτ (yt − ξ(τ))

)
,

ρτ (εt) =

{
(1− τ)(−εt) (εt < 0),

τεt (εt ≥ 0).

(4)

and the first and second moments of εt = yt − ξ(τ) are (see, e.g., Kotz, Kozubowski, and

Podgórski (2001))

λ
−τ2 + (1− τ)2

(1− τ)τ
, 2λ2 τ

3 + (1− τ)3

(1− τ)2τ2
. (5)

Note that ξ(τ), which maximizes the logarithm of this density function also minimizes the

expected loss function, (3).

This paper extends the static model (4) to describe the time-varying quantiles, and we

let ξt denote the time-varying τ -th quantile, where we suppress τ in a parenthesis and add a

subscript t to emphasize that it depends on time t.

2.2 Time-varying quantile model using a smoothing spline

We assume that ξt = h(t) changes slowly over time t and, hence, that h(t) is a smooth

function of t. That is, h(t) is of a Cm−1-class, and its m-th derivative is square integrable

and is the smoothing spline function, which minimizes

n∑
t=1

ρτ (yt − h(t)) + λm

∫
[h(m)(t′)]2dt′ (6)
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for given m and λm. Furthermore, we assume that (i) h and its first (m − 1) derivatives at

time t = 1 follow the m-variate normal distribution with mean 0m and covariance matrix

κEm, where 0m is an m-dimensional zero vector, Em is an identity matrix of size m, and κ

is some known constant,

(h(1), h′(1), ..., h(m−1)(1))′ ∼ N(0m, κEm), (7)

and that (ii)

h(t) =

m∑
j=1

(t− 1)j−1

(j − 1)!
h(j−1)(1) + ση

∫ t

1

(t− s)m−1

(m− 1)!
dWs, (8)

where W is a Wiener process.

Under these additional assumptions (i)(ii), if λm = λ/(2σ2
η), then the mode of the dis-

tribution of (h(1), h(2), ..., h(n)|y1, ..., yn) converges to the solution of the smoothing spline

problem as κ → ∞ (De Rossi and Harvey (2009)). Noting that equation (8) can be rep-

resented in the following state space form (see, e.g., Wecker and Ansley (1983), Kohn and

Ansley (1987)),

h(t+ 1) = Th(t) + η(t),η(t) ∼ N(0m, σ2
ηQ), (9)

h(t) = (h(t), dh(t)/dt, ..., dm−1h(t)/dtm−1)′, (10)

(T )ij =

{
1/(j − i)! j ≥ i,

0 j < i,
(11)

(Q)ij =
1

(m− i)!(m− j)!(2m− i− j + 1)
, (12)

we propose a time-varying quantile model using the smoothing spline (TQSS model) in the

state space representation with an asymmetric double exponential measurement error:

yt = Zξt + εt, εt ∼ aDEτ (λ), (13)

ξt+1 = Tξt + ηt,ηt ∼ N(0m, σ2
ηQ), (14)

where

ξt = (ξt, ξ̃
′
t)
′, ξ̃t = (dξt/dt, ..., d

m−1ξt/dt
m−1)′, (ξ1, ξ

(1)
1 , ..., ξ

(m−1)
1 )′ ∼ N(0m, κEm),

Z = (1,0′m−1).

Yue and Rue (2011) consider an additive mixed quantile regression model for longitudinal

data with quantile functions including such a smooth function.
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3 Bayesian estimation

3.1 Prior and posterior densities

For prior distributions of σ2
η and λ, we assume

σ2
η ∼ IG(α0/2, β0/2), λ ∼ IG(α∗

0, β
∗
0), (15)

where IG(a, b) denotes an inverted gamma distribution with shape parameter a and scale

parameter b. Let It = I(yt − ξt < 0), t = 1, ..., n. Then, the joint posterior density function

is

f(σ2
η, λ, {ξt}nt=1|{yt}nt=1) ∝

n∏
t=1

f(yt|ξt, λ)× f(ξ1)
n−1∏
t=1

f(ξt+1|ξt, σ2
η)× f(σ2

η)f(λ)

∝ λ−n exp

(
−

∑n
t=1(τ − It)(yt − Zξt)

λ

)
× exp

(
− 1

2κ
ξ′1ξ1

)
× (σ2

η)
−mn−1

2 exp

(
− 1

2

n−1∑
t=1

(ξt+1 − Tξt)
′(σ2

ηQ)−1(ξt+1 − Tξt)

)
× (σ2

η)
−(α0

2
+1) exp

(
− β0

2σ2
η

)
× λ−(α∗

0+1) exp

(
− β∗

0

λ

)
. (16)

We implement the MCMC algorithm in five blocks:

1. Initialize σ2
η, λ, {ξt}nt=1.

2. Generate σ2
η|{yt}nt=1, {ξt}nt=1 ∼ IG(α1/2, β1/2), where

α1 = α0 +m(n− 1), β1 = β0 +

n−1∑
t=1

(ξt+1 − Tξt)
′Q−1(ξt+1 − Tξt). (17)

3. Generate λ|{yt}nt=1, {ξt}nt=1 ∼ IG(α∗
1, β

∗
1), where

α∗
1 = α∗

0 + n, β∗
1 = β∗

0 +

n∑
t=1

(τ − It)(yt − Zξt). (18)

4. For t = 1, ..., n, generate {ξt}nt=1|{yt}nt=1, σ
2
η, λ as in Section 3.2.

5. Go to 2.
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3.2 Generation of latent time-varying quantiles

3.2.1 Single-move sampling method

A simple sampling method for {ξt}nt=1 is a single-move sampler that draws a single latent

variable ξt at a time given the other ξt’s and the parameters. The other method is a multi-

move sampler that draws all of ξt’s simultaneously. A single-move sampler is simpler than a

multi-move sampler, but a multi-move sampler is known to be more efficient (de Jong and

Shephard (1995)). As a benchmark, we describe the single-move sampling method as follows

(see Appendix A.1 for details):

Step4. For t = 1, ..., n,

4.a Generate It|ξ̃t, {ξ−t}, yt, σ2
η, λ.

4.b Generate ξt|It, ξ̃t, {ξ−t}, yt, σ2
η, λ.

4.c Generate ξ̃t|ξt, {ξ−t}, yt, σ2
η, λ.

3.2.2 Efficient multi-move sampling

A simulation smoother, an efficient sampler for the state variables was proposed by de Jong

and Shephard (1995) and by Durbin and Koopman (2002) for the linear Gaussian state space

model. However, in the time-varying quantile model, the measurement error is non-Gaussian,

and such a simulation smoother cannot be applied directly. For non-Gaussian measurement

models, it is usually necessary to approximate the non-Gaussian likelihood by the Gaussian

likelihood in the previous literature for the MCMC implementation (e.g., Shephard and Pitt

(1997), Watanabe and Omori (2004), Kim, Shephard, and Chib (1998), Omori, Chib, Shep-

hard, and Nakajima (2007)) and in our proposed model, the error distribution is asymmetric

double exponential. Noting that it is a normal variance-mean mixture with a generalized in-

verted Gaussian distribution (e.g., Kotz, Kozubowski, and Podgórski (2001), Tsionas (2003),

Kozumi and Kobayashi (2011) and Yue and Rue (2011)), we rewrite

εt = avt + b
√

λvtut, (19)

a =
1− 2τ

τ(1− τ)
, b2 =

2

τ(1− τ)
, (20)
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where ut is a standard normal variable and where vt is an exponential variable with scale

parameter (or mean) λ. Since the error distribution is normal conditionally on vt, we can

apply a simulation smoother for the linear Gaussian state space model.

Thus, to sample {ξt}nt=1 efficiently, we rewrite the state space model (13)-(14) as follows:

yt = Zξt + avt + b
√
λvtut, ut ∼ N(0, 1), vt ∼ Exp(λ), (21)

ξt+1 = Tξt + ηt,ηt ∼ N(0m, σ2
ηQ). (22)

The conditional joint posterior density of {ξt}nt=1 and {vt}nt=1 given {yt}nt=1, σ
2
η, λ is

f({ξt}nt=1, {vt}nt=1|{yt}nt=1, σ
2
η, λ)

∝
n∏

t=1

f(yt|ξt, vt, λ)×
n∏

t=1

f(vt|λ)× f(ξ1)

n−1∏
t=1

f(ξt+1|ξt, σ2
η)

∝
n∏

t=1

v
− 1

2
t exp

{
−

n∑
t=1

(yt − Zξt − avt)
2

2b2λvt

}
× exp

{
−

∑n
t=1 vt
λ

}

× exp

(
− 1

2κ
ξ′1ξ1 −

1

2

n−1∑
t=1

(ξt+1 − Tξt)
′(σ2

ηQ)−1(ξt+1 − Tξt)

)
. (23)

Thus, we generate vt and ξt in two blocks:

Step4.

4.a’ Generate vt|yt, ξt, λ ∼ GIG(1/2, δt, γ)
1 for t = 1, ..., n, where

δ2t =
(yt − Zξt)

2

b2λ
, γ2 =

2

λ
+

a2

b2λ
. (24)

4.b’ Generate {ξt}nt=1|{yt}nt=1, σ
2
η, λ, {vt}nt=1 using a simulation smoother (de Jong and Shep-

hard (1995), Durbin and Koopman (2002))2 .

Note that in Step 3 we generate λ|{yt}nt=1, {ξt}nt=1 and in Step 4.a’ we generate vt|yt, ξt, λ

for t = 1, ..., n using collapsed Gibbs sampler (see, e.g., Chen, Shao, and Ibrahim (2000)).

1An efficient algorithm for random sampling from a generalized inverted Gaussian distribution
(GIG(ν, δ, γ)) is available from Dagpunar (1989), but the method does not work when δ or γ is too small. In
that case, we adopt a rejection method using Gamma(ν, γ2/2) as a sampling method.

2For large m, the determinant of σ2
ηQ becomes so small that the round-off error for calculation is not

negligible and that the covariance matrix of state (ξt) estimation error can be non-positive definite. In such a
case, we should use a square root filter by Morf and Kailath (1975) instead of an ordinary Kalman filter; see
also Durbin and Koopman (2001).
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3.3 Extension to the correlated errors

This subsection extends our model to describe a correlation between the dependent variable

at time t and the latent time-varying quantile at time (t + 1). Based on the literature

that addresses time-varying variances, the asymmetry or the leverage effect, which implies

a decrease in the dependent variable at time t followed by an increase in the latent time-

varying variance, is known to occur frequently in the empirical studies. Similarly, as discussed

in Engle and Manganelli (2004), the time-varying quantile at time (t + 1) is also influenced

by the observation at time t in their analysis of stock returns data. Thus, we incorporate a

correlation between yt and ξt+1 using the state space representation as follows3:

yt = Zξt + avt + b
√
λvtut, ut ∼ N(0, 1), vt ∼ Exp(λ), (25)

ξt+1 = Tξt + ηt,ηt ∼ N(0m, σ2
ηQ), (26)

where (
b
√
λvtut
ηt

)
∼ N(0,Σt), Σt =

 b2λvt ρbση
√
λvtq11 0′m−1

ρbση
√
λvtq11

0m−1
σ2
ηQ

 , (27)

|Σt| = b2λvtσ
2m
η (|Q| − ρ2q11|Q22|), (28)

q11 denotes the (1, 1) element of Q and Q22 denotes the matrix obtained by excluding the first

row and column of Q. Assuming a uniform prior distribution for the correlation parameter,

ρ4,

ρ ∼ U(−cm, cm), cm =
{
|Q|/(q11|Q22|)

} 1
2 , (29)

(e.g., c2 = 1
2 , c3 = 1

6) and assuming the same prior distributions for σ2
η and λ as in the

previous subsection, the joint posterior density is

3Unlike the case without correlation, the mode of the distribution of {ξt}nt=1|{yt}nt=1 may not necessarily
converge to the solution to the smoothing spline problem (6).

4Given ξt, the correlation coefficient between yt and ξt+1 is
√

(1−τ)2+τ2

2τ(1−τ)

√
π
2
ρ. When m = 2, the correlation

coefficient of (yt, ξt+1) is included in (−0.208, 0.208) for τ = 0.1, 0.9 and in (−0.444, 0.444) for τ = 0.5.
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f(ρ, σ2
η, λ, {vt}nt=1, {ξt}nt=1|{yt}nt=1)

∝ f(ξ1)

n∏
t=1

f(yt, ξt+1|ξt, ρ, σ2
η, λ, vt)×

n∏
t=1

f(vt|λ)π(ρ)π(σ2
η)π(λ)

∝ exp

{
− ξ′1ξ1

2κ

}
×

n∏
t=1

|Σt|−
1
2 exp

{
−

n∑
t=1

1

2

(
yt − Zξt − avt
ξt+1 − Tξt

)′
Σ−1
t

(
yt − Zξt − avt
ξt+1 − Tξt

)}
× λ−n exp

{
−

∑n
t=1 vt
λ

}
× (σ2

η)
−(α0

2
+1) exp

{
− β0

2σ2
η

}
× (λ)−(α∗

0+1) exp

{
− β∗

0

λ

}
. (30)

We implement the MCMC algorithm in seven blocks:

1. Initialize ρ, σ2
η, λ, {vt}nt=1, {ξt}nt=1.

2. Generate ρ|{yt}nt=1, σ
2
η, λ, {vt}nt=1, {ξt}nt=1.

3. Generate σ2
η|{yt}nt=1, ρ, λ, {vt}nt=1, {ξt}nt=1.

4. Generate λ|{yt}nt=1, ρ, σ
2
η, {vt}nt=1, {ξt}nt=1.

5. Generate vt|yt, ξt, ρ, σ2
η, λ for t = 1, ..., n.

6. Generate {ξt}nt=1|{yt}nt=1, ρ, σ
2
η, λ, {vt}nt=1 using a simulation smoother as in the previ-

ous subsection.

7. Go to 2.

Generation of ρ. Let

l(ρ) := −n

2
log(|Q| − ρ2q11|Q22|)−

n∑
t=1

1

2

(
yt − Zξt − avt
ξt+1 − Tξt

)′
Σ−1
t

(
yt − Zξt − avt
ξt+1 − Tξt

)
, (31)

which is the logarithm of the posterior density of ρ excluding the constant. To approximate

the conditional posterior density by the truncated normal distribution, we use a Taylor

expansion of the log posterior density of ρ to the second order around its mode ρ̂ and let

mρ = ρ̂+ s2ρl
′(ρ̂), s2ρ = −1/l′′(ρ̂), (32)

where l′(ρ) = dl(ρ)/dρ and l′′(ρ) = d2l(ρ)/dρ2. Then, we propose a candidate ρ† from the

truncated normal distribution over the interval (−cm, cm), TN(−cm,cm)(mρ, s
2
ρ) and accept it

with probability

min

[
1,

exp{l(ρ†)− (ρ−mρ)
2/(2s2ρ)}

exp{l(ρ)− (ρ† −mρ)2/(2s2ρ)}

]
.
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Generation of σ2
η. Propose a candidate σ2†

η ∼ IG(α1/2, β1/2), where

α1 = α0 +mn, β1 = β0 +

n∑
t=1

(ξt+1 − Tξt)
′Q−1(ξt+1 − Tξt), (33)

and accept it with probability min
[
1, exp

(
g(σ2†

η )− g(σ2
η)
)]
, where

g(σ2
η) = −1

2

n∑
t=1

(
yt − Zξt − avt
ξt+1 − Tξt

)′
Σ−1
t

(
yt − Zξt − avt
ξt+1 − Tξt

)
+

β1
2σ2

η

. (34)

Generation of λ. Propose a candidate λ† ∼ IG(α∗
1, β

∗
1), where

α∗
1 = α∗

0 +
3

2
n, β∗

1 = β∗
0 +

n∑
t=1

(yt − Zξt − avt)
2

2b2vt
+

n∑
t=1

vt, (35)

and accept it with probability min
[
1, exp

(
g(λ†)− g(λ)

)]
, where

g(λ) = −1

2

n∑
t=1

(
yt − Zξt − avt
ξt+1 − Tξt

)′
Σ−1
t

(
yt − Zξt − avt
ξt+1 − Tξt

)
+

β∗
1

λ
. (36)

Generation of vt. Propose a candidate v†t ∼ GIG(1/2, δt, γ), where

δ2t =
(yt − Zξt)

2

b2λ
, γ2 =

2

λ
+

a2

b2λ
, (37)

and accept it with probability min
[
1, exp

(
g(v†t )− g(vt)

)]
, where

g(vt) = −1

2

(
yt − Zξt − avt
ξt+1 − Tξt

)′
Σ−1
t

(
yt − Zξt − avt
ξt+1 − Tξt

)
+

1

2
(v−1

t δ2t + vtγ
2). (38)

4 Illustrative examples using simulated data

This section illustrates our proposed time-varying quantile models using simulated data. We

consider the case m = 2 and assume that the variance parameter for the initial state κ is

100. The sensitivity analysis for the selection of κ is also investigated.

First, we show the high efficiency of our multi-move sampling method in comparison

with the single-move sampling method using the TQSS model given by (13)-(14). Using the

following parameters based on our empirical studies in Section 5,

σ2
η = 4.0× 10−3, λ = 3.5× 10−2, for τ = 0.1,

σ2
η = 1.0× 10−4, λ = 4.0× 10−2, for τ = 0.9,
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we generate three hundred observations (n = 300) for each τ . For prior distributions, we

assume

σ2
η ∼ IG(0.1, 0.00005), λ ∼ IG(0.1, 0.1).

Using the single-move sampler (Section 3.2.1), we generate 600,000 (450,000) MCMC

samples after discarding the first 1,000 (1,000) samples as the burn-in period for τ = 0.1

(τ = 0.9). Also, the multi-move sampler (Section 3.2.2) is used to generate 30,000 (15,000)

MCMC samples after discarding the first 1,000 (1,000) samples as the burn-in period for

τ = 0.1 (τ = 0.9).

Table 1: TQSS model (τ = 0.1).
Posterior means, standard deviations, 95% credible intervals and inefficiency factors (IF).

True Mean Stdev 95% interval IF

single-move σ2
η × 103 4 3.398 0.743 [2.206, 5.091] 133

λ× 102 3.5 3.296 0.215 [2.900, 3.741] 46

multi-move σ2
η × 103 4 3.374 0.766 [2.175, 5.169] 31

λ× 102 3.5 3.302 0.214 [2.908, 3.748] 2

Table 2: TQSS model (τ = 0.9).
Posterior means, standard deviations, 95% credible intervals and inefficiency factors (IF).

True Mean Stdev 95% interval IF

single-move σ2
η × 104 1 0.976 0.343 [0.499, 1.817] 530

λ× 102 4 4.018 0.241 [3.572, 4.517] 51

multi-move σ2
η × 104 1 0.939 0.317 [0.495, 1.700] 44

λ× 102 4 4.025 0.242 [3.578, 4.537] 2

Tables 1 and 2 report the true values, posterior means, posterior standard deviations, 95%

credible intervals and estimates of inefficiency factors (IF). The inefficiency factor is defined

as 1 + 2
∑∞

g=1 ρ(g), where ρ(g) is the sample autocorrelation at lag g. This is interpreted as

the ratio of the numerical variance of the posterior mean from the chain to the variance of

the posterior mean from hypothetical uncorrelated draws. The smaller the inefficiency factor

becomes, the closer the MCMC sampling is to the uncorrelated sampling.

The posterior means are all close to the true values, which suggests that our proposed

algorithms work well.

The inefficiency factors for the single-move sampler are much larger than those for the
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Figure 1: TQSS model. Sample autocorrelation functions of MCMC samples for the single-
move sampler (top) and the multi-move sampler (bottom).

multi-move sampler, which suggests that our multi-move sampling method is highly efficient

compared with the single-move sampling method. Figure 1 shows the sample autocorrelation

functions where autocorrelations decay slowly for the single-move sampler and vanish quickly

for the multi-move sampler, which also implies the efficiency of our multi-move sampler.

Next, we illustrate our estimation method for the TQSS model with correlations and in-

vestigate the sensitivity analysis with respect to the selection of the initial variance parameter

κ.

Setting the parameters,

ρ = −0.35, σ2
η = 4.0× 10−3, λ = 3.0× 10−2, for τ = 0.1,

ρ = −0.33, σ2
η = 1.5× 10−4, λ = 4.0× 10−2, for τ = 0.9,

we generate three hundred observations (n = 300) for each τ = 0.1, 0.9. For prior distribu-

tions, we assume a uniform distribution for ρ, ρ ∼ U(−1/2, 1/2), and the same distributions

for σ2
η and λ. We generate 1,200,000 (600,000) MCMC samples after discarding 1,000 (1,000)

samples as the burn-in period for τ = 0.1 (τ = 0.9) using the multi-move sampler (Section

3.3) with κ = 10, 100 and 1000.

The estimation results are summarized in Table 3. For all κ, the posterior means of the

parameters are close to the true values, which suggests that our sampler works well. The

inefficiency factors are larger overall than those for the model without correlations due to

the inefficiency of sampling the new parameter ρ. The sampling method for ρ needs to be

improved but will be left for future work.

12



Taking into account the posterior standard deviations, the estimation results are robust

with respect to the selection of κ. Figure 2 shows the estimated posterior densities of the

parameters for κ = 10, 100 and 1000. They also show the robustness of the estimation results

with respect to the selection of κ.

Table 3: TQSS model with correlations (τ = 0.1, 0.9). Posterior means, standard deviations,
95% credible intervals and inefficiency factors for κ = 10, 100 and 1000.

True Mean Stdev 95% interval IF

τ = 0.1 ρ -0.35 -0.128 0.266 [-0.488, 0.431] 475
(κ = 100) σ2

η × 103 4 3.362 0.761 [2.167, 5.125] 73

λ× 102 3 3.006 0.204 [2.629, 3.429] 42
ρ -0.35 -0.127 0.264 [-0.484, 0.434] 487

(κ = 10) σ2
η × 103 4 3.364 0.756 [2.166, 5.106] 66

λ× 102 3 3.006 0.202 [2.633, 3.424] 40
ρ -0.35 -0.111 0.271 [-0.484, 0.443] 496

(κ = 1000) σ2
η × 103 4 3.354 0.758 [2.160, 5.103] 63

λ× 102 3 3.011 0.203 [2.636, 3.430] 41

τ = 0.9 ρ -0.33 -0.047 0.283 [-0.484, 0.459] 461
(κ = 100) σ2

η × 104 1.5 1.875 0.617 [0.995, 3.363] 109

λ× 102 4 3.768 0.228 [3.346, 4.241] 17
ρ -0.33 -0.038 0.279 [-0.473, 0.456] 464

(κ = 10) σ2
η × 104 1.5 1.892 0.626 [1.009, 3.433] 105

λ× 102 4 3.768 0.228 [3.347, 4.241] 13
ρ -0.33 -0.052 0.290 [-0.485, 0.470] 509

(κ = 1000) σ2
η × 104 1.5 1.877 0.621 [0.991, 3.378] 122

λ× 102 4 3.766 0.228 [3.345, 4.237] 14

5 Empirical study

5.1 Data

Economic agents are known to consider not only the mean of the response distribution but

also many aspects of the distribution in their decision making processes. In macroeconomics,

for example, the upper tail of the distribution of inflation rate is usually one of the greatest

concerns to the central bank because monetary policy measures are deployed that focus on

(violent) inflation in an attempt to keep the price movement stable. On the other hand,

the lower tail of the distribution of inflation rate would attract increasing attention of those

advanced countries who face the risk of deflation, which may cause a serious recession.

13
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Figure 2: Time-varying quantile model with correlations (τ = 0.1, 0.9). Estimated posterior
densities for κ = 10 (thin dotted line), κ = 100 (solid line with histogram), κ = 1000 (thick
dotted line).

Thus, this section applies our proposed model to the upper and the lower tails of the

distribution of the inflation rate of Japan, using the rate of change for the domestic Corporate

Goods Price Index (CGPI) excluding the consumption tax for all commodities of Japan

(reported by Bank of Japan). The rate of change is calculated as yt = 100×(log pt−log pt−1),

where pt is the CGPI at time t. We consider the following two sample periods:

Period (I) : February, 1985 – June, 2008 (281 months) and

Period (II) : February, 1985 – January, 2010 (300 months).

Period (I) is set before Lehman Brothers filed for Chapter 11 bankruptcy protection (Septem-

ber 15, 2008) to eliminate the event’s significant negative impact on the economy. We consider

two time-varying quantiles with τ = 0.1, 0.9 as mentioned above. Table 4 shows the summary

statistics for the inflation rate based on the CGPI of Japan (yt). The sample mean of the

inflation rate for Period (II) is slightly lower than that for Period (I), while the maximum

and the absolute value of the minimum for Period (II) are much larger than those for Period

(I). This suggests the existence of the greater uncertainty in the inflation rate during Period

(II).

5.2 Estimation results

Using the same prior distributions for the parameters as in Section 4, m = 2 and κ = 100, we

implement the MCMC algorithm to conduct a Bayesian inference on parameters of interest.
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Table 4: Summary statistics for the inflation rate based on CGPI of Japan (yt).

Nob Mean Stdev Max Min

Period (I) [1985.2-2008.6] 281 -0.038 0.279 1.201 -0.975
Period (II) [1985.2-2010.1] 300 -0.059 0.361 2.160 -1.989

We generate 60,000 (30,000, 30,000) MCMC samples from the posterior distributions of the

parameters in the model without correlations and generate 60,000 (240,000, 240,000) MCMC

samples from the posterior distributions of the parameters in the model with correlations,

after discarding the first 1,000 (1,000, 1,000) samples as the burn-in period for τ = 0.1

(τ = 0.5, τ = 0.9).

Table 5: Period (I). TQSS model.

Mean Stdev 95% interval IF

τ = 0.1 σ2
η × 104 3.469 3.355 [0.523, 12.66] 210

λ× 102 3.402 0.261 [2.902, 3.931] 77

τ = 0.5 σ2
η × 105 5.338 3.143 [1.703, 13.77] 119

λ× 102 7.626 0.487 [6.723, 8.638] 6

τ = 0.9 σ2
η × 104 1.424 0.695 [0.570, 3.214] 87

λ× 102 3.159 0.204 [2.783, 3.579] 5

Table 6: Period (I). TQSS model with correlations.

Mean Stdev 95% interval IF

τ = 0.1 ρ -0.253 0.211 [-0.492, 0.293] 228
σ2
η × 104 4.299 3.268 [0.629, 13.19] 259

λ× 102 3.316 0.263 [2.825, 3.855] 115

τ = 0.5 ρ 0.0192 0.294 [-0.473, 0.476] 391
σ2
η × 105 4.970 2.876 [1.444, 12.26] 223

λ× 102 7.640 0.485 [6.745, 8.642] 18

τ = 0.9 ρ -0.114 0.278 [-0.485, 0.455] 389
σ2
η × 104 1.473 0.759 [0.562, 3.435] 196

λ× 102 3.150 0.205 [2.770, 3.576] 26

The estimation results for Period (I) are given in Tables 5 and 6 for the two models

(τ = 0.1, 0.5, 0.9). The parameter estimates are quite similar for both models taking into

account the posterior standard deviations. The estimate of the variance parameter of the

15



−0.5 0.0 0.5

1

3
ρτ=0.1

τ=0.5

τ=0.9

0 10 20 30

0.1
0.2 σ2

η×104

3 4

0.5

1.5 λ×102

−0.5 0.0 0.5

0.5

1.5 ρ

0 2 4

1
2

σ2
η×105

6 8 10

0.25

0.75
λ×102

−0.5 0.0 0.5

1
2 ρ

0 5 10 15

0.25

0.75
σ2

η×104

3 4

1
2 λ×102

Figure 3: Period (I). TQSS model with correlations.

state equation σ2
η for τ = 0.1 is much larger than that for τ = 0.9, indicating that the lower

tail quantile is more uncertain than the upper tail quantile. The posterior means of the

correlations are negative for τ = 0.1, 0.9, but they are not credible since their 95% credible

intervals include zeros. The estimated posterior densities are shown in Figure 3 in which ρ

seems to have a large posterior probability on negative values especially for τ = 0.15.

Furthermore, Figure 4 shows the time series plot of the posterior means of ξt and yt for

τ = 0.1, 0.5, 0.9. The estimated quantile posterior means vary smoothly and capture the

changes in the level and the magnitude of the inflation rate over the sample period. The

estimates for the two TQSS models with and without correlations are found to be quite

similar (solid and thick dotted lines, respectively).

Table 7: Period (II). TQSS model.

Mean Stdev 95% interval IF

τ = 0.1 σ2
η × 103 5.418 2.255 [1.570, 10.48] 114

λ× 102 3.274 0.294 [2.758, 3.913] 67

τ = 0.5 σ2
η × 105 4.226 3.480 [0.996, 14.03] 153

λ× 102 9.717 0.600 [8.607, 10.94] 12

τ = 0.9 σ2
η × 104 1.425 0.813 [0.525, 3.288] 103

λ× 102 4.084 0.254 [3.619, 4.612] 7

Tables 7 and 8 show the estimation results for Period (II), and the estimated posterior

densities are shown in Figure 5. The results between the two models are quite similar, and

5Period (I). The posterior mean of corr(yt, ξt+1) given ξt is -0.105 (0.0170, -0.0473) for τ = 0.1 (0.5, 0.9).
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Figure 4: Period (I). Time series plot of the inflation rate (gray line), posterior means of
time-varying quantiles using TQSS models without correlations (thick dotted line), with
correlations (solid line) and CAViaR model (thin dotted line).

Table 8: Period (II). TQSS model with correlations.

Mean Stdev 95% interval IF

τ = 0.1 ρ -0.351 0.143 [-0.496, 0.031] 219
σ2
η × 103 5.679 2.114 [2.157, 10.21] 192

λ× 102 3.159 0.289 [2.631, 3.771] 133

τ = 0.5 ρ 0.0410 0.293 [-0.474, 0.485] 389
σ2
η × 105 4.397 4.312 [1.005, 16.21] 374

λ× 102 9.722 0.602 [8.605, 10.96] 39

τ = 0.9 ρ -0.092 0.276 [-0.486, 0.448] 391
σ2
η × 104 1.436 0.683 [0.528, 3.166] 215

λ× 102 4.077 0.255 [3.606, 4.604] 25

the posterior means of σ2
η for τ = 0.1 are found to be much larger than those for τ = 0.9 as

for Period (I). We note that the estimate of σ2
η for τ = 0.1 for Period (II) is ten times as large

as the corresponding estimate for Period (I). This is because the inflation rate fluctuated
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Figure 5: Period (II). TQSS model with correlations.

largely around September 2008 for Period (II). It suggests that the deflationary impact in

Japan was more serious than the inflation during this period6.
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Figure 6: Period (II). Time series plot of the inflation rate (gray line), posterior means
of time-varying quantiles using TQSS models without correlations (thick dotted line), with
correlations (solid line) and CAViaR model (thin dotted line).

6Period (II). The posterior mean of corr(yt, ξt+1) given ξt is -0.146 (0.0363, -0.0382) for τ = 0.1 (0.5, 0.9).
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Figure 6 shows the time series plot of the posterior means of ξt and yt for τ = 0.1, 0.5, 0.9.

The estimated quantile posterior means are similar for the two models, analogous to Figure

4 for Period (I). However, in contrast to the plot for Period (I), there is a sharp downward

spike around the end of Period (II) for τ = 0.1, corresponding to the large estimate of the

state variance parameter σ2
η.

As a benchmark model for the time-varying quantiles, we also estimate the CAViaR

(Conditional Autoregressive Value at Risk) model by Engle and Manganelli (2004). The

asymmetric slope type model is chosen among models in the CAViaR class because it is able

to capture the effect of asymmetry in time-varying quantiles (see Appendix A.2 for more

details). The posterior means of ξt based on the CAViaR (asymmetric slope) model are also

shown in Figures 4 and 6 (thin dotted lines). The plots seem to be rough and sensitive to the

change in the inflation rate compared with those estimates from our proposed models based

on the smoothing spline.

5.3 Model Comparison

This subsection conducts a model comparison of our proposed models and the CAViaR

model based on the backtesting (Kupiec (1995)) and the DIC (Spiegelhalter, Best, Carlin,

and van der Linde (2002)).

Backtesting. Whether the future observation exceeds the τ -quantile ((1 − τ)-VaR) is

an important issue in terms of decision making for economic policy and for financial risk

management. To evaluate such a forecasting performance, we conduct the likelihood test

by Kupiec (1995), which is often used for backtesting for VaR in finance. First, we fix

n0(< n) and set s = 0. Then, we (i) estimate the parameters and the latent quantiles using

observations {yt}s+n0
t=s+1 and (ii) compute the posterior mean of the predictive distribution

of the one-step-ahead quantile, ξs+n0+1. We repeat (i) and (ii) for s = 0, 1, ..., n − n0 and

compute the number of times N when the posterior mean ξ̂s+n0+1 exceeds the observed data

ys+n0+1 for s = 0, 1, ..., n − n0. If the null hypothesis that Pr(yt < ξt) = τ is true (and the

probability is independent for each t),

2

{
log

(( N

n− n0

)N(
1− N

n− n0

)n−n0−N
)
− log(τN (1− τ)n−n0−N )

}
(39)

is asymptotically distributed as χ2(1)7 .
7Since the time-varying quantiles are not independent of one another, the asymptotic result may not hold.
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Table 9: p-values of the likelihood test.

Model Period (I) Period (II)

τ = 0.1 TQSS 0.021 0.000
TQSSC 0.021 0.000
CAViaR 0.417 0.743

τ=0.9 TQSS 0.045 0.032
TQSSC 0.045 0.032
CAViaR 0.009 0.001

TQSSC: TQSS model with correlations.

Table 9 shows the p-values of the one-sided likelihood ratio tests using n0 = 200 obser-

vations for both Periods (I) and (II) (n = 281 for Period (I) and n = 300 for Period (II)).

The number of the MCMC iterations and the prior distributions for each estimation are the

same as those of the previous subsection. For Period (I), the null hypothesis is rejected for

the CAViaR model (τ = 0.9) since its p-value is smaller than 0.01. For Period (II), we reject

the null hypotheses for the TQSS models (τ = 0.1) and for the CAViaR model (τ = 0.9).

Thus, for the upper tail quantile (τ = 0.9), our proposed models show good forecasting

performances with respect to VaR, while the CAViaR model fails for both periods. On the

other hand, for the lower tail quantile (τ = 0.1), the CAViaR model performs well for both

periods, while the performance of our proposed models depends on the sample period.

Model selection based on DIC. The Deviance Information Criterion (DIC) is used as a

Bayesian measure of fit or adequacy and is defined as

DIC = Eθ|Yn
[D(θ)] + pD, (40)

where D(θ) = −2 log f(Yn|θ), pD = Eθ|Yn
[D(θ)]−D(Eθ|Yn

[θ]) represents model complexity

as a penalty, Yn = {yt}nt=1 and θ denotes the parameters. We estimate Eθ|Yn
[D(θ)] using the

sample analogue D(θ(d)) = 1
d∗

∑d∗

d=1D(θ(d)), where θ(d)s are resampled from the posterior

distribution. We set d∗ equal to 600 (τ = 0.1) and 300 (τ = 0.9) for the TQSS model,

600 (τ = 0.1) and 2,400 (τ = 0.9) for the TQSS model with correlations and 240 for the

CAViaR model. Because we need to computeD(θ) numerically, we use the particle filter (e.g.,

Doucet, de Freitas, and Gordon (2001)), where we set the number of particles M = 10, 000

The implications of the likelihood test should be used with caution.
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(see Appendix A.3 for details). The numerical standard error of the estimate is obtained by

repeating the particle filter forty times.

Table 10: DIC (standard errors in parentheses).

Model Period (I) Period (II)

τ = 0.1 TQSS 141.16 (0.19) 329.86 (2.34)
TQSSC 138.31 (0.25) 249.42 (0.68)
CAViaR 141.69 (0.14) 283.44 (0.10)

τ = 0.9 TQSS 92.93 (0.24) 259.29 (1.52)
TQSSC 91.51 (0.19) 240.72 (2.26)
CAViaR 102.84 (0.09) 190.11 (0.10)

TQSSC: TQSS model with correlations

Table 10 shows the sample means of forty DICs for each model with the standard errors in

parentheses. The DICs of the TQSS model with correlations are the smallest and outperform

the other competing models for τ = 0.1, 0.9 for Period (I) and for τ = 0.1 for Period (II).

However, for τ = 0.9 for Period (II), the CAViaR model outperforms the two TQSS models.

This is partly because the quantile estimates of the CAViaR model follow the fluctuations of

the inflation rate more quickly than those of the TQSS models as seen in Figure 6.

In summary, for Period (I), as illustrated in Figure 4, the trajectories of the estimated

quantiles of the two TQSS models are smooth to obtain good forecasting performances for

the VaR. In addition, the TQSS model with correlation attains the smallest DIC. However,

with respect to Period (II), there is no model for which the null hypothesis of the backtesting

is accepted using both τ = 0.1 and 0.9. The DIC suggests that the different model should

be used depending on τ .

6 Conclusion

This article proposed the novel smoothing spline model for time-varying quantiles. Taking a

Bayesian approach, the efficient MCMC algorithm is described using a normal variance-mean

mixture representation of the measurement error term where we exploit a simulation smoother

for the linear Gaussian state space model. Its high efficiency is illustrated using simulated

data in comparison with the single-move sampler. The model is extended to incorporate a

correlation between the dependent variable and its one-step-ahead quantile. Furthermore, in
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comparison with the CAViaR model, our method is shown to perform well regarding both

one-ahead predictions and goodness-of-fit in the analysis of Japanese inflation rate.
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Appendix

A.1 Generation of {ξt} using a single-move sampler

In Section 3.2.1, the joint posterior density of ξt, It|{yt}nt=1, {ξ−t}, σ2
η, λ is given by

f(ξt, It|{ξ−t}, {yt}nt=1, σ
2
η, λ) ∝ exp

(
−1

2

{
ξ′tS

−1ξt−2ξ′tm̃tIt

})
×exp

(
−(τ − It)yt

λ

)
, t = 2, ..., n−1,

(41)

where

S = (T ′(σ2
ηQ)−1T + (σ2

ηQ)−1)−1, (42)

m̃tIt =

(
T ′(σ2

ηQ)−1ξt+1 + (σ2
ηQ)−1Tξt−1 +

(τ − It)

λ
Z ′

)
. (43)

Let

m̃tIt =

(
mtIt

m̃t

)
, S−1 =

(
S11 S12

S21 S22

)
,

wheremtIt , S
11 are scalars, m̃t, (S

12)′, S21 are (m−1)×1 vectors and S22 is an (m−1)×(m−1)

matrix. We generate (ξt, It) as follows:

a. It|ξ̃t, {ξ−t}, {yt}nt=1, σ
2
η, λ.

b. ξt|It, ξ̃t, {ξ−t}, {yt}nt=1, σ
2
η, λ.

c. ξ̃t|ξt, {ξ−t}, {yt}nt=1, σ
2
η, λ.
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Noting that

f(ξt, It|ξ̃t, {ξ−t}, {yt}nt=1, σ
2
η, λ) ∝ exp

(
− S11

2

{
ξt − (S11)−1(−S12ξ̃t +mtIt)

}2
)

× exp

(
1

2
(S11)−1(−S12ξ̃t +mtIt)

2

)
× exp

(
− (τ − It)yt

λ

)
,

(44)

define

g(0) := Φ
(yt − (S11)−1(−S12ξ̃t +mt0)

(S11)−
1
2

)
× exp

(
1

2
(S11)−1(−S12ξ̃t +mt0)

2 − τyt
λ

)
, (45)

g(1) :=

(
1−Φ

(yt − (S11)−1(−S12ξ̃t +mt1)

(S11)−
1
2

))
×exp

(
1

2
(S11)−1(−S12ξ̃t+mt1)

2−(τ − 1)yt
λ

)
,

(46)

where Φ is a cumulative normal distribution function.

Generation of It. Generate It|· ∼ Bernoulli(p) with p = g(1)/(g(0) + g(1))8 .

Generation of ξt. Given It, generate

ξt|· ∼
{

TN(−∞,yt]((S
11)−1(−S12ξ̃t +mt0), (S

11)−1) if It = 0,

TN(yt,∞)((S
11)−1(−S12ξ̃t +mt1), (S

11)−1) if It = 1.
(49)

Generation of ξ̃t. Generate

ξ̃t|ξt, {ξ−t}, {yt}nt=1, σ
2
η, λ ∼ N((S22)−1(−S21ξt + m̃t), (S

22)−1). (50)

8When ζ0 = [yt − (S11)−1(−S12ξ̃t + mt0)]/(S
11)−

1
2 � 0, Φ(ζ0) may be almost 0 and

exp
(

1
2
(S11)−1(−S12ξ̃t + mt0)

2 − τyt
λ

)
becomes huge. In this case, the computed value of g is inaccurate

and we need to approximate the values of g using a partial fractional expansion (Stuart and Ord (1994)),

Φ(ζ0) =
1√
2π

(−ζ−1
0 + ζ−3

0 − 3ζ−5
0 + 15ζ−7

0 − ...) exp
(
− ζ20

2

)
, (47)

and obtain

gt(0) ≈
1√
2π

exp
(
log(−ζ−1

0 + ζ−3
0 − 3ζ−5

0 + 15ζ−7
0 )− ζ20

2
+

1

2
(S11)−1(−S12ξ̃t +mt0)

2 − τ

λ
yt
)
. (48)

The approximation error is

error <
105√
2π

ζ−9
0 exp

(
− ζ20

2

)
< 6.34× 10−14

when ζ0 ≤ −6.
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A.2 CAViaR model

As a benchmark for the model comparison, we consider the following asymmetric slope

CAViaR model discussed in Engle and Manganelli (2004):

ξt+1 = β1 + β2ξt + β3y
+
t + β4y

−
t , (51)

where y+t = max(yt, 0) and y−t = −min(yt, 0) to model asymmetry of the dynamics of the

quantile. We assume the following prior distributions:

λ ∼ IG(0.1, 0.1), β ∼ TN(0≤β2<1)(04, 100E4), ξ1 ∼ N(0, 100). (52)

For τ = 0.1 and for τ = 0.9, respectively, we generate 240,000 MCMC draws after

discarding 10,000 draws as the burn-in period.

A.3 Particle filter

Let f(ξt|Yt,θ) denote the density function of ξt given (Yt,θ) where Yt = {y1, ..., yt}, and let

f̂(ξt|Yt,θ) denote the discrete approximation to f(ξt|Yt,θ).

We draw M samples from the conditional joint distribution of (ξt+1, ξt, vt) given (Yt+1,θ)

with the density

f(ξt+1, ξt, vt|Yt+1,θ) ∝ f(yt+1|ξt+1,θ)f(ξt+1|yt, ξt, vt,θ)f(vt|θ)f(ξt|Yt,θ), (53)

where

f(yt|ξt,θ) =
∫

f(yt|ξt, vt,θ)f(vt|θ)dvt, f(ξt+1|yt, ξt, vt,θ) = f(yt, ξt+1|ξt, vt,θ)/f(yt|ξt, vt,θ).

(54)

We implement the particle filter:

1. (a) Generate

ξ
(i)
1 ∼ N(m1, V1), i = 1, ...,M,

where m1, V1 are some constant vector and some constant positive-definite matrix

(we adopt the posterior mean and the covariance matrix of ξ1), respectively.

(b) We calculate

w
(i)
1 :=

f(y1|ξ(i)1 ,θ)f(ξ
(i)
1 )

g(ξ
(i)
1 )

,
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where g(·) is a normal density with mean m1 and covariance matrix V1 and set

w̄1 =
1
M

∑M
i=1w

(i), π
(i)
1 := f̂(ξ

(i)
1 |y1,θ∗) = w(i)/

∑M
j=1w

(j).

2. For t = 1, ..., n− 1, we generate (ξ
(i)
t+1, ξ

(i)
t ), i = 1, ...,M :

(a) Generate ξ
(i)
t ∼ f̂(ξ

(i)
t |Yt,θ) and v

(i)
t ∼ f(v

(i)
t |θ).

(b) Generate ξ
(i)
t+1 ∼ f(ξ

(i)
t+1|yt, ξ

(i)
t , v

(i)
t ,θ).

(c) Compute

w
(i)
t+1 :=

f(yt+1|ξ(i)t+1,θ)f(ξ
(i)
t+1|yt, ξ

(i)
t , v

(i)
t ,θ)f(v

(i)
t |θ)f̂(ξ(i)t |Yt,θ)

f(ξ
(i)
t+1|yt, ξ

(i)
t , v

(i)
t ,θ)f(v

(i)
t |θ)f̂(ξ(i)t |Yt,θ)

= f(yt+1|ξ(i)t+1,θ),

and set w̄t+1 =
1
M

∑M
i=1w

(i) → f(yt+1|Yt,θ∗), f̂(ξ
(i)
t+1|Yt+1,θ

∗) = w(i)/
∑M

j=1w
(j) :=

π
(i)
t+1.

3. We obtain

n−1∑
t=0

log w̄t+1 →
n−1∑
t=0

log f(yt+1|Yt,θ∗) = log f(Yn|θ∗) as M → ∞.
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