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Abstract

This paper provides an econometric analysis on a duopoly game in the Japanese
domestic airline market. We establish a novel Bayesian estimation approach for
the entry game, which allows the incorporation of flexible inference techniques.
We find asymmetric strategic interactions between Japanese firms, which implies
that competition is still influenced by the former regulation regime. Furthermore,
our prediction analysis indicates that the new Shizuoka airport will suffer from
a lack of demand in the future.
Key words: Japanese airline market, Bayesian analysis, Entry game, Markov
chain Monte Carlo, Multiple equilibria, Mixed strategy.

1 Introduction

The Japanese domestic airline market today is characterized by a serious rivalry be-
tween two giant firms, Japan Airlines (JAL) and All Nippon Airways (ANA). This
paper presents an econometric analysis of their duopoly competition in the domes-
tic market. In comparison with the well-studied US airline market, it is difficult to
capture the strategic interactions between firms in Japanese market. In the United
States, consecutive deregulation policies have introduced a severe substitutive com-
petition. However, the Japanese government had once imposed a selective regulation
on the firms: JAL was mainly assigned to operate international flights, while ANA
was assigned to operate domestic flights. Although it has been abandoned since the
1980s, this regulation makes it difficult to arrive at a clear consensus on the current
pattern of the firms’ strategic interaction.

This paper is concerned with the econometric analysis for the duopoly competi-
tion. We describe it as a static, complete information entry game: for each air route,
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the firms decide whether to operate a flight, taking account of the action of the coun-
terpart. For an empirical study, there is an econometric difficulty in the treatment
of multiple Nash equilibria. It induces the multiplicity of underlying data generating
processes, which causes an identification problem for the model parameters.

Following the seminal paper of Bresnahan and Reiss (1991), several estimation
methods have been proposed to deal with this problem. A major approach is to limit
our consideration to a specific equilibrium. For example, Jia (2008), in an analysis of
the competition between Wal-Mart and Kmart, focused on an equilibrium in which
Kmart plays the leader’s role, as their history has shown. Aguirregabiria and Mira
(2002), in the repeated game setting, added an assumption that players stick to their
first choice of an equilibrium. On the other hand, Tamer (2003) and Ciliberto and
Tamer (2009) explicitly modeled the players’ choice among the multiple options using
latent variables. This part of the model structure is called a selection rule.

For the model with the selection rule approach, this paper proposes a novel
Bayesian estimation procedure. The advantage of our methodology is that it al-
lows to employ flexible inference techniques. Specifically, we study two applied issues
that are not captured in the previous papers. First, we adopt mixed-strategy Nash
equilibria in addition to conventional pure Nash equilibria as a data generating pro-
cess. Second, we carry out a statistical prediction for a policy experiment on the
future of the new Shizuoka Airport.

Our estimation result provides a clear perspective on the complicate situation of
the Japanese airline market. It is shown that ANA, which had a monopolistic power
during the former regulation regime, receives a negative impact from the presence of
JAL, while JAL enjoys a positive benefit from the presence of ANA. This conclusion
implies that the former regulation is still influential in this market. Furthermore,
the prediction analysis yields a pessimistic forecast that the most routes from the
Shizuoka airport will be difficulty surviving.

The organization of this paper is as follows. In Section 2, we provide a brief review
of the Japanese airline market. Section 3 describes the economic model and and our
Bayesian estimation method for the entry game model. The proposed method is
applied to the Japanese airline data in Section 4. Section 5 concludes the paper.

2 The Japanese airline market

This section provides a brief review of the Japanese domestic airline market from the
perspectives of an international comparison and a history. There are various statistics
to show the considerable scale of the Japanese civil aviation industry1: in the year

1The country and airport-level statistics come from International Civil Aviation Organization
(2006), and the company-level statistics come from International Air Transport Association (2007)
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2006, Japan was the world’s fifth largest country in terms of passengers and Tokyo
(Haneda) was the world’s fourth-largest airport in terms of passengers. There are two
Japanese airline firms in the world ranking in terms of the passengers times distance:
in 2007, Japan Airlines (JAL) was ranked the 12th largest, and All Nippon Airways
(ANA) was the 21st largest. Focusing on the domestic market, we have more striking
figures for the industry. Although it has only the world’s 61st largest surface area2,
Japan has the world’s third largest number of passengers on domestic flights, just
after the United States and China. In this large industry, only two firms, JAL and
ANA, occupy more than 90% of the market share.

Despite the large scale and the unique duopoly property, to the best of our knowl-
edge, our study is the first game estimation made for this market. Comparatively, for
the US domestic airline market, there have been several empirical studies using the
entry game framework such as Berry (1992) and Ciliberto and Tamer (2009). Based
on these studies, it has been a stylized fact that the US airline companies have been
experiencing severe substitutive competition since airline deregulation, which began
in 1978.

In the same manner as in the United States, competition in the Japanese airline
market was once restricted by the government. Private air transportation in Japan
had been prohibited for six years after the World War II by the General Headquar-
ters/Supreme Commander for the Allied Powers. Although several private companies
entered the market after the prohibition was lifted, the Ministry of Transport issued a
notice, so-called “the aviation constitution” in 1972 to stabilize the immature market.
Under this notice, there were only three companies that were permitted to run flight
operations: JAL, ANA and Japan Air System (JAS, formerly called Toa Domestic
Airlines). JAL was a flag carrier assigned to operate international flights and the
main domestic routes, ANA was assigned the main domestic and local routes and
JAS was assigned the domestic local routes. The airfares and routes were controlled
by the government. This system is also called the 45/47 system, where 45 and 47
represent the years 1970 and 1972 of the Showa era in Japan.

Under the 45/47 system, the Japanese airline industry expanded rapidly and met
a growing demand for airline deregulation like the US open-sky policy. Japanese
deregulation began in 1985 when the 45/47 system was abandoned. In the 1990s,
some new companies entered the market. However, they failed to expand their market
shares because of a long-lasting recession in Japan. Instead, JAL merged with JAS in
2001, and the Japanese airline market has been dominated by only two firms, ANA
and (the new) JAL.

Although their histories have much in common, there are several differences be-
tween the Japanese and US airline markets. In the United States, the hub-and-spoke

2United Nations Statistical Office (2009)
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system provides flights connecting through larger airports to reach their destinations.
In Japan, direct flights are mainly used because of the slender shape of the country.
On the routes between the largest cities, each airline company has many flights, and
there has been fierce competition. However, on the local routes, the former restrictions
have still affected the behavior of companies. Therefore, there is no clear consensus
over whether their strategic interaction is substitutive, compensative or asymmetric.

3 Econometrics

3.1 Econometric models with pure Nash equilibria

We describe the duopoly competition between ANA and JAL as a static, complete
information entry game, in a manner similar to that of Ciliberto and Tamer (2009)
who analyzed the US market. In this paper, our model takes the form of a two-player
and two-strategy (2 × 2) game.

Let yim ∈ {0, 1} denote the strategy of of i-th player in the m-th market. The
indices for players i = 1 and 2 represent JAL and ANA, and those for the markets
m = 1, 2, . . . ,M are routes between two airports, respectively. The strategy yim = 1
implies the entrance or operation of a flight in the m-th route by the i-th player
while the strategy yim = 0 implies no entrance. An important assumption is that
competitions across the markets are independent, which implies that the firms do not
make a network-level decision.

Our main target of estimation is the payoff function of the players. We set the
payoff when a firm does not enter the market to be zero as a reference3. When a firm
enters a market, its payoff is assumed to be a linear function of observed regressors
xim = (x1im, . . . , xKim)′ with K×1 coefficient parameter βi and an unobserved payoff
component uim. Furthermore, we introduce a strategic interaction term denoted by
∆i, which appears only when the counterpart enters the market. The resulting payoff
matrix is given in Table 1.

Player 1

Player 2
1 0

1 x′
1mβ1 + ∆1 + u1m, x′

2mβ2 + ∆2 + u2m x′
1mβ1 + u1m, 0

0 0, x′
2mβ2 + u2m 0, 0

Table 1: Payoff matrix for an entry game

For the information structure of players, we assume complete information, which
implies that (xim, βi, ∆i, uim), i = 1 and i = 2 are all known to both players in
the m-th market. Among the common knowledge of players, only x is observed
by econometricians. Throughout this paper, θ = (β1, β2, ∆1, ∆2) is treated as the

3See Kooreman (1994) for the estimation without such a standardization.
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model parameters and uim as a random error term. For simplicity, we assume that
um = (u1m, u2m) is independent and identically distributed across the market and
the distribution is known by econometricians.

A conventional assumption for the data generating process is that the players
take pure Nash equilibria. In static games, different values of the payoff yield a
variety of pure Nash equilibria, each of which represents a data generating system
in the estimation. Under our functional assumption, we have distinct patterns for
the equilibria according to the signs of (∆1, ∆2). We call (∆1 < 0, ∆2 < 0) and
(∆1 < 0, ∆2 > 0) as Models A and B, respectively. We describe the estimation
procedures only for Models A and B in this paper, since (∆1 > 0, ∆2 > 0) and
(∆1 > 0, ∆2 < 0) induce the similar estimation procedures to Models A and B.

Region 3

(0,1)

Region 1

(0,0)

(−x1β1, −x2β2)

Region 2

(1,0)

Region 4

(1,1)

Region 5
(0,1)
or

(1,0)

(−x1β1 − ∆1, −x2β2 − ∆2)

Model A: ∆1 < 0, ∆2 < 0

Region 3

(0,1)

Region 5

No
Pure Nash

Region 4

(1,1)

Region 1

(0,0)

Region 2

(1,0)

(−x1β1, −x2β2)

(−x1β1 − ∆1, −x2β2 − ∆2)

Model B: ∆1 > 0, ∆2 < 0

Figure 1: Pure Nash Equilibria

Figure 1 illustrates pure Nash equilibria of the entry game on the coordinates of
the unobserved components (u1, u2). In both models, each of Regions 1 to 4 has a
unique pure Nash equilibrium which is derived by the iterated elimination of strictly
dominated strategies. However, Region 5 does not have a unique pure Nash equilibria;
in Model A, there are two pure Nash equilibria (y1, y2) = (1, 0) and (0, 1), while in
Model B, there is no pure Nash equilibrium. This non-uniqueness of Nash equilibria
in Region 5 make it difficult to obtain the well-defined choice probabilities for strategy
profiles.

To overcome the problem, Tamer (2003) and Ciliberto and Tamer (2009) intro-
duced the additional model structure for the players’ choice in Region 5, which is
called a selection rule. Specifically in this context, they assumed that Region 5 is
divided into four strategy profiles in the proportion of a vector parameter pm =
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(p1m, p2m, p3m, p4m) such that

Pr(zm = j|xm,pm) = Pj(θ, xm) + pjmP5(θ,xm), (3.1)
4∑

j=1

pjm = 1, (3.2)

where zm = j indexes the strategy profiles such that ym = (y1m, y2m) = (0, 0), (1, 0), (0, 1)
and (1, 1) when j = 1, 2, 3 and 4, respectively4, and Pj(θ, xm) is the probability that
um falls in Region j.

3.2 Bayesian estimation

3.2.1 Estimation for models with pure Nash equilibria

In this subsection, we construct a novel Bayesian estimation procedure for the entry
games using hierarchical modeling. In our methodology, the sample-specific selection
rule parameters is estimated using information of only one sample. It works because
Bayesian estimators are well-defined even under finite samples, unlike consistent es-
timators. Then although the small, or actually only one, sample size might produces
ambiguity of estimators as flat posterior distributions, we no longer need to employ
a peculiar estimation technique like the set estimation under the Bayesian scheme.

For technical convenience, we make slight changes in the method of formulating
the selection rule. First, in Model A, we can reduce the dimension of pm to two
without a loss of generality, as only two strategy profiles, zm = 2 and 3, are multiple
Nash equilibria in Region 5. We let pm denote a proportion for zm = 2 and 1 − pm

for zm = 3. Second, to construct a comprehensive estimation procedure for pm,
we introduce an additional structure of the selection rule. It is established using a
latent dummy variable λm as follows: for Model A, we assume λm ∼ Bernoulli(pm),
while for Model B, we assume λm = (λ1m, λ2m, λ3m, λ4m) ∼ MN(1, pm), where MN

stands for the multinomial distribution. Because of the hierarchical nature of the
setting, the marginal posterior distribution for the parameter θ remains the same as
the one without λ. We call pm and λm a selection proportion and a selection dummy,
respectively. We assume the beta distribution as the prior distribution for pm. To
express the lack of an economic theory regarding the players’ choice among multiple
equilibria, we use a uniform distribution on a unit interval, which is a special case of

4The general definition of the index system for strategy profiles zm = j, which is also applicable
to games with more than 2 players, is as follows: let nj be a binary number system representation
of j − 1 with the digit number N . Then let yim = 1 if the i-th digit of nj is unity, while yim = 0
otherwise. For N -player games, the sequence of indices j = 1, 2, ..., 2N exactly covers all of the
possible strategy profiles without duplication. For example, in 2-player games, j = 1, 2, 3 and 4
correspond to nj = 00, 10, 01 and 11; therefore, ym = (0, 0), (1, 0), (0, 1) and (1, 1), respectively. For
notational convenience, we have also numbered the unique Nash regions in Figure 1 in the same
manner.
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the beta distribution.
The estimation for the posterior distributions can be implemented by the standard

Markov chain Monte Carlo (MCMC) algorithm: We initialize θ and then repeat the
following algorithm in three blocks.

1. Generate p|θ, λ,z.

2. Generate λ|θ, p,z.

3. Generate θ|p, λ,z.

where p = (p1, p2, ...,pM ), λ = (λ1, λ2, ...,λM ) and z = (z1, z2, ..., zM ). As shown
in Appendix A, we can implement the Gibbs sampler for the sampling of the latent
variables, p and λ and we can use the Metropolis–Hastings algorithm for the model
parameter θ.

Since our estimation scheme is a standard MCMC, we can conduct standard model
selection techniques to decide a suitable sign condition for (∆1, ∆2). In this paper,
we carry out a comparison of the marginal likelihood using the procedure of Chib and
Jeliazkov (2001).

3.2.2 Extension to models with mixed strategy Nash equilibrium

The availability of a standard model selection technique also encourages us to analyze
various data generating processes that have not been analyzed in previous studies. In
this subsection, we consider the mixed-strategy Nash equilibrium in addition to the
pure Nash equilibrium. For convenience, we call the models with only the pure Nash
equilibrium, which we considered in the previous section, as the pure Nash model and
we call the following model which has both pure and mixed-strategy Nash equilibria,
the mixed Nash model.

A mixed strategy is defined as a probability distribution over pure strategies.
The payoff for a mixed strategy is generally assumed to be the expected value of
the corresponding pure strategy payoffs, and the mixed-strategy Nash equilibrium is
defined as a mixed-strategy profile from which no player deviates alone. The players
must be indifferent between all pure strategies on which they put a positive probability
in the Nash mixed strategy; otherwise, they would be better off deviating to a pure
strategy.

In both Models A and B, in Regions 1 through 4, the pure Nash equilibrium strat-
egy yields greater payoffs for both players than those yielded by any mixed strategies,
as it is obtained by the iterated elimination of strictly dominated strategies. Then
only Region 5 might have a mixed-strategy Nash equilibrium. Suppose a probability
σ∗

im(yim), where σ∗
im(0) + σ∗

im(1) = 1, comprises a Nash equilibrium mixed strategy
for the player i in the market m on the pure strategy yim. As mentioned above, we
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required that pure strategies yjm = 0 and yjm = 1 yield equal expected payoffs for
the player j, given σ∗

im(yim):

0 = σ∗
im(0)(x′

jmβj + ujm) + σ∗
im(1)(x′

jmβj + ∆j + ujm), (3.3)

where the left- and right-hand sides represent the expected payoffs for pure strategies
yjm = 0 and 1, respectively. We thus obtain,

σ∗
im(1) = −

x′
jmβj + ujm

∆j
, σ∗

im(0) = 1 +
x′

jmβj + ujm

∆j
. (3.4)

In the whole area of Region 5, (σ∗
1m(y1m), σ∗

2m(y2m)) ∈ [0, 1]2 holds for {y1m, y2m} ∈
{0, 1}2 and σ∗

im(0) + σ∗
im(1) = 1. Therefore, (σ∗

1m(y1m), σ∗
2m(y2m)) is a unique mixed-

strategy Nash equilibrium in Region 5 for both Models A and B. Let ρj(θ,xm, um)
for j = 1, 2, 3 and 4 be the joint probability for each strategy profile (y1m, y2m) =
(0, 0), (1, 0), (0, 1) and (1, 1) under the mixed-strategy Nash equilibrium. We have

ρ1(θ, xm, um) = σ∗
1m(0)σ∗

2m(0), ρ2(θ, xm, um) = σ∗
1m(1)σ∗

2m(0), (3.5)

ρ3(θ, xm, um) = σ∗
1m(0)σ∗

2m(1), ρ4(θ, xm, um) = σ∗
1m(1)σ∗

2m(1). (3.6)

We discuss the remaining estimation procedure separately for the sign conditions
for (∆1, ∆2). First, we consider the Model A. In Figure 1, Region 5 has two pure
Nash equilibria for Model A. To incorporate the mixed-strategy Nash equilibrium
into the data generating process, we model the selection rule as the following two-
step process. In the first step, we select pure or mixed Nash equilibrium. Using
a selection dummy λNash

m ∼ Bernoulli(pNash
m ), we choose a pure Nash equilibrium

if λNash
m = 1; otherwise, we choose a mixed strategy. In the second step, we pick

a specific strategy profile as follows: if λNash
m = 1, one of the pure Nash equilib-

ria, zm = 2 or 3, is chosen as in the pure Nash model in Section 3.1. To avoid a
notational confusion, we replace pm and λm for the pure Nash models with ppure

m

and λpure
m . If λNash

m = 0, one of the strategy profiles is chosen with probability
ρ(θ, xm, um) = {ρ1(θ, xm, um), ρ2(θ, xm, um), ρ3(θ,xm, um), ρ4(θ, xm, um)}, corre-
sponding to the mixed-strategy Nash equilibrium. In the posterior sampling, we
integrate out ρ(θ, xm, um) with respect to um. The MCMC procedure is presented
in the Appendix B.2

Next, we consider Model B. As shown in Figure 1, there is no pure Nash equilib-
rium in Region 5 for Model B. Because only the mixed strategy induces the feasible
Nash equilibrium, we use ρj(θ,xm, um) as a Nash selection proportion pjm in the
choice probabilities (3.1). Then, the selection proportion is an explicit function of
model parameters as in (3.5)-(3.6) instead of being a non-identified nuisance param-
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eter. The MCMC procedure is presented in the Appendix B.1
In the classical estimation, although parameters in the mixed Nash model for

Model B are point-identified, we cannot compare the pure and mixed Nash models
because it is difficult to carry out the model selection between set-identified and point-
identified models. However, our Bayesian approach can apply the model selection, as
both models can be estimated by the standard MCMC method. This is an advantage
of our Bayesian methodology.

3.3 Prediction analysis

In the analysis of the entry game, the prediction of choice probabilities often provides
rich implications for empirical studies. Then we establish a prediction technique as
another example to show flexibility of our Bayesian approach. The predicted posterior
distribution of strategy profiles in the new market can be easily obtained in the MCMC
scheme, as shown in Appendix C.

4 Empirical study of duopoly in Japanese airline market

4.1 Data

We consider Japanese airline competition as an entry game where the two players are
ANA and JAL, including their affiliated companies. We define a market as a route
between two airports. If a firm has at least one flight between the airports 5, we let
yim = 1. The data are constructed from the timetable (Japan Railway Company,
2007) for the period from February 1 to March 31, 2007.

When choosing samples for our empirical study, we eliminated several airports
with very few flights. These are airports that generally suffer from a lack of demand
for transportation and survive because of local or central government subsidies. It is
true that this subsidizing policy helps people living in areas such as isolated islands
where they have difficulty getting the transportation they need. However, because
there is a wide range of obstacles, including the financing deficit for free parking
services, it is difficult to evaluate the exact amount of the subsidy. Therefore, for our
analysis of market behavior, we simply remove these small airports with one or two
routes and also remove airports located on isolated islands except Naha, which is the
major airport serving the southern islands scattered around the Okinawa prefecture.
Overall, we have 39 airports and 741 markets for the combined two airlines.

For the explanatory variables, we first consider two factors used in Berry (1992)
and Ciliberto and Tamer (2009): (1) the direct distance (Distance, measured in
thousands of kilometers) between the airports by which we measure travel cost, and

5The code-sharing flights with the other carrier are also included.

9



(2) the product of the city populations (Population, measured in tens of trillions),
which we use as proxy variables for market size or demand. The direct distances are
calculated by the geodesic distance formula Banerjee et al. (2004, pp.17–18) 6.

For the city population, we use the population of the prefecture based on the
census data collected in the year 20057. The squared population (Sq Population) is
also adopted as an explanatory variable to capture the nonlinear effect of the market
sizes.

To compose a firm-market specific explanatory variable, we include the sums of
the number of flights from the two airports for each firm (Flight ANA and Flight

JAL for ANA and JAL, respectively, measured in groups of 10 flights). We adopt
these variables to measure the marginal cost of operations. They are expected to have
positive coefficients because the marginal cost would decrease as the companies have
more facilities such as ticket offices.

Because the railway service has a larger share of domestic transportation than the
airlines, we also construct a dummy variable for the bullet train called “Shinkansen”
(Train). It takes the value of one if the flight can be replaced by the bullet train
without a transfer and the travel time between the airport and the railway station is
less than one and a half hours8.

Table 2 shows the summary statistics for the independent variables. Furthermore,
we present the entrance status for the different market sizes separated by quartiles of
population in Table 3. A similar table for American airlines is provided by Ciliberto
and Tamer (2009), where the number of entrants is not monotonically related to
the market size. In Japanese airline markets, we can see that the large markets are
especially competitive. However, an interesting finding is that the number of markets
where only ANA is present is not increasing proportionally to the market size. As we
shall show later, this would imply the efficiency of the strategy of ANA.

6Let θ1, θ2 be the latitudes in radian of the two points, and λ1, λ2 be the radian longitudes. The
geodesic distance formula says that the distance of the two points is

R arccos[sin θ1 sin θ2 + cos θ1 cos θ2 cos(λ2 − λ1)], (4.1)

where R denotes the radius of the earth. We adopt R = 6371 km as in Banerjee et al. (2004, p.19).
In this formula, the earth is assumed to be spherical. The actual shape of the earth is ellipsoidal;
however, for our purposes, approximation in the spherical model has enough accuracy. We used the
coordinates data taken from 2005 Annual Statistics of Civil Aviation (Ministry of Land, Infrastructure
and Transport, 2005).

7Because the area of the Hokkaido prefecture is much larger than other prefectures, we use sub-
prefecture populations for those local airports in Hokkaido.

8We also considered other explanatory variables such as the number of business offices and the
amount of industrial production, which are expected to describe the condition of the local economy.
However, these variables were not effective in explaining market entry in the sense that the 95% cred-
ible intervals for their parameters include 0. Therefore, we removed them from our payoff function;
however, the estimates of other parameters are basically unchanged.
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Variable Mean Stdev
Distance 0.742 0.487
Population 0.824 1.395
Sq Population 2.625 10.160
Train 0.108 0.310
Flight ANA 3.887 4.236
Flight JAL 3.969 4.126

Table 2: Summary Statistics

Market size

Large Medium Medium Small Total
large small

No entrant 100 142 163 174 579

1 entrant 36 36 17 10 99
(ANA)∗ (13) (17) (7) (7) (44)
(JAL)∗ (23) (19) (10) (3) (55)

2 entrants 50 7 5 1 63
Total 186 185 185 185 741

(ANA)∗∗ (63) (24) (12) (8) (107)
(JAL)∗∗ (73) (26) (15) (4) (118)

Table 3: Entrance status by market size
∗: The number of markets of each firm for one entrant market.

∗∗: The total number of markets entered for each firm.

4.2 Estimation results

4.2.1 Model Selection

The marginal likelihoods for the model selection are shown in Table 4 (in a logarithmic
scale) 9.

Based on the marginal likelihoods, we select a pure Nash model with ∆ANA < 0
and ∆JAL > 0 as the best model for the Japanese domestic markets. It implies that
the entry of JAL reduces the payoff of ANA, while the entry of ANA increases that
of JAL. This result supports the common belief about Japanese airline companies:
because ANA was allowed to operate in both the main and local routes under the
45/47 system, it was able to accumulate more knowledge of the domestic market
than JAL and JAS, who could contribute only to main and local routes, respectively.
This superiority is of great advantage to ANA by allowing the construction of more

9When we use a very flat prior with the prior variance equal to 1000, the sample paths are often
found to be unstable, which could be a result of the flat likelihood because the paths seem to be more
stable as we increase the number of independent variables.
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beneficial networks after the deregulation. To overcome its disadvantage, JAL has
been challenging the routes dominated by ANA. Therefore, the routes where ANA
has already been operating are favored by JAL (i.e., ∆JAL > 0), while the entry of
JAL reduces ANA’s benefit in profitable routes (∆ANA < 0).

Mixed Nash Pure Nash
Model ∆1 < 0 ∆1 > 0 ∆1 < 0 ∆1 > 0 ∆1 < 0 ∆1 > 0 ∆1 < 0 ∆1 > 0

∆2 < 0 ∆2 > 0 ∆2 > 0 ∆2 < 0 ∆2 < 0 ∆2 > 0 ∆2 > 0 ∆2 < 0
Likelihood -530.29 -533.36 -416.02 -418.11 -432.41 -415.65 -410.68 -428.65
Prior -28.68 -28.75 -28.59 -28.60 -28.68 -28.60 -31.94 -32.31
Posterior 29.19 20.75 24.25 25.05 29.19 24.88 12.16 5.47
ML -588.16 -582.86 -468.96 -471.76 -490.28 -469.13 -454.78 -466.43
(S.E.) (0.06) (1.00) (0.15) (0.10) (0.05) (0.10) (0.24) (0.36)

Table 4: Marginal likelihoods for real data (in logarithm)

This asymmetric property of duopoly competition must be emphasized as a clear
difference from that of the US market, where the airlines are playing a severe substi-
tution competition. Our result may suggest that the Japanese version of “open-sky”
deregulation is still incomplete.

4.2.2 Estimation for model parameters

Table 5 shows the estimation result for the pure Nash model with (∆JAL < 0, ∆ANA >

0). Before analyzing details of the estimators, we check the performance of our MCMC
procedure. The last two columns in Table 5 report statistics for this purpose, ineffi-
ciency factors (IF) and p-values of the convergence diagnostics for the MCMC (CD).
The 20,000 MCMC samples were generated after discarding 10,000 initial samples
as the burn-in period. The inefficiency factors are 13 to 52, which implies that we
would obtain the same variance of the posterior sample means from 400 uncorrelated
draws, even in the worst case. In Appendix D, we also present figures for and paths
of MCMC samples, which clearly show that the chain seems to mix well for all pa-
rameters. All p-values of the convergence diagnostics are greater than 0.05 and there
is no evidence against convergence. The acceptance rates of the Metropolis–Hastings
algorithm are high enough (0.870, 0.997, 0.645 and 0.768 for β1, ∆1, β2 and ∆2) and
the proposal distribution seems to approximate the conditional posterior distribution
well. These results indicate that our MCMC procedure works well.

12



Param. Mean Stdev 95% Interval IF CD
ANA

Constant -2.386∗∗ 0.284 (-2.962,-1.850) 24.8 0.38
Distance -0.516∗ 0.222 (-0.955,-0.096) 5.7 0.79
Population 0.376∗∗ 0.216 (-0.048, 0.793) 8.9 0.92
Sq Population -0.082∗∗ 0.025 (-0.128,-0.030) 7.6 0.72
Train -1.230∗∗ 0.438 (-2.109,-0.383) 2.4 0.55
Flight 0.531∗∗ 0.072 ( 0.400, 0.680) 47.1 0.29
∆ -6.745∗∗ 1.052 (-8.912,-4.820) 46.6 0.17

JAL
Constant -2.045∗∗ 0.579 (-3.506,-1.379) 51.2 0.86
Distance -0.660 0.489 (-1.605, 0.308) 18.7 0.54
Population 0.369 0.292 (-0.205, 0.915) 14.7 0.76
Sq Population -0.050 0.033 (-0.113, 0.011) 13.6 0.76
Train -0.718 0.717 (-2.420, 0.627) 30.8 0.67
Flight JAL 0.035 0.067 (-0.122, 0.141) 22.5 0.82
∆ 6.534∗∗ 2.045 ( 3.154,10.833) 46.3 0.63

Table 5: Estimation results (Pure Nash, ∆ANA < 0, ∆JAL > 0)
∗(∗∗): The 95% (99%) credible interval does not include zero.

Next, we analyze estimation results for the model parameters. The first four
columns of Table 5 report the posterior means, posterior standard deviations and
95% credible intervals, along with the figure of the posterior densities in Appendix
D. In the payoff function for ANA, all independent variables are effective in the sense
that the 95% credible intervals for the corresponding parameters do not include zero.
The coefficient of Distance is estimated to be negative, as expected, implying that
the large distance (or high cost) would decrease the payoff. It is somewhat surprising
that the estimates for Population and Sq Population are found to be positive and
negative, respectively. We suppose that the payoff would initially increase as the
population increases; however, it would decrease when the demand exceeds some
certain size. The negative sign of Train indicates that the existence of substitutive
railway transportation decreases the benefit of the airline company. Flight ANA,
which is the sum of the number of flights from the two airports, has a positive sign.
As the marginal cost of light operations decreases, the payoff will increase, as expected.

However, in the payoff function for JAL, it seems that the independent variables
are ineffective, as opposed to those of ANA, except for the constant term and a
dummy variable for the entry of ANA, although the estimates are similar to those
obtained for the payoff function of ANA. It may imply that the entry decision of JAL
is to follow the market leader, ANA.

The above result is similar to the study of Jia (2008) on US retail chains, where
Kmart is the leader and Wal-Mart is the follower. It would be interesting to study
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the competition as a sequential game where ANA plays the role of the leader and
JAL is the follower. However, this topic is beyond the scope of this paper and will
remain for future work.

4.3 Prediction analysis for a new airport

Next, we consider the prediction of choice probabilities for the airline companies
regarding a new airport (Shizuoka airport), which was established recently in 2009.
ANA and JAL decided to have their flights depart from the new airport toward two
airports (Shin-Chitose and Naha for ANA, and Shin-Chitose and Fukuoka for JAL).
The airport authority is requesting more routes for the airlines and four more airports,
Narita, Komatsu, Matsuyama and Kagoshima, are listed as candidates on the website
10. However, there has been a lot of discussion about whether there was sufficient
demand to build this new airport. This is because Shizuoka city is located between
Tokyo and Nagoya (as shown in Figure 2) where they have large airports that are
accessible from Shizuoka within one hour using the Shinkansen bullet train.

Figure 2: Map of Airports

To evaluate the need for the new airport, we predict the choice probability of no
entry for ANA and JAL, i.e. znew = 1 (yANA,new = 0, yJAL,new = 0), using the pure
Nash Model with ∆ANA < 0 and ∆JAL > 0 selected in the previous subsection. As
discussed in the previous section, we have a region without a pure Nash equilibrium:

Pr(znew = 1|θ, xnew,λnew) = P1(θ, xnew) + λ1,newP5(θ, xnew), (4.2)

10http://www.pref.shizuoka.jp/kuukou/contents/gaiyo/yotei.html
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where λnew = (λ1,new, . . . , λ4,new) ∼ MN(1, pnew), pnew ∼ D(1). Therefore, re-
garding the choice probability for the new airport, we focus on three probabilities:
(1) the predicted probability in (C.6) or the expected value with respect to λnew

(P1(θ, xnew) + P5(θ, xnew)/4), (2) the lower bound (P1(θ, xnew)), and (3) the upper
bound (P1(θ, xnew) + P5(θ, xnew)).

(1) Expected (2) Lower (3) Upper
Airport Mean 95% Interval Mean 95% Interval Mean 95% Interval
Shin-Chitose 0.459 (0.364, 0.556) 0.290 (0.161, 0.420) 0.968 (0.902, 1.000)
Komatsu 0.944 (0.866, 0.987) 0.933 (0.836, 0.984) 0.980 (0.927, 1.000)
Matsuyama 0.950 (0.918, 0.974) 0.942 (0.905, 0.969) 0.976 (0.944, 0.999)
Fukuoka 0.961 (0.939, 0.979) 0.952 (0.924, 0.974) 0.989 (0.973, 1.000)
Kagoshima 0.951 (0.926, 0.971) 0.939 (0.907, 0.964) 0.986 (0.969, 1.000)
Naha 0.934 (0.906, 0.959) 0.917 (0.881, 0.949) 0.985 (0.962, 1.000)
Narita 0.837 (0.761, 0.901) 0.786 (0.684, 0.871) 0.989 (0.950, 1.000)

Table 6: Posterior means and 95% credible intervals for three probabilities of no entry
((yANA,new, yJAL,new) = (0, 0)) in the routes from the new airport.

Table 6 shows the posterior means and 95% credible intervals for three (expected,
lower and upper) probabilities of no entry (znew = 1) in the routes from the new
Shizuoka airport to seven airports where the airlines are planning to operate or the
airport authority is requesting the operation.

Among the seven airports, the three predicted probabilities for Shin-Chitose Air-
port are much smaller than those for the other airports. The probabilities for Narita
Airport are relatively small but exceed 0.7. This result implies that Shin-Chitose is
the only promising airport for airline companies seeking routes from the new airport.
While ANA or JAL might be interested also in the routes to Narita, other airports
may not be very attractive 11.

Because the Nash equilibrium is a long-run concept to which the economy will con-
verge, these prediction results indicate that there is a high probability of withdrawals
from these routes for both airline companies in the future.

5 Conclusion

This paper has analyzed the duopoly competition in the Japanese domestic airline
market. Our estimation result is consistent with a popular perception that ANA plays
the leader’s role in the domestic airline market, while JAL is a follower. Further, our
prediction analysis has indicated that the new Shizuoka airport will suffer from a lack
of demand in the future.

11We also computed these probabilities for Tokyo (Haneda) airport, and found them to be unex-
pectedly low. However, Tokyo is very close to Shizuoka City and does not seem suitable, as suggested
by the fact that there is no flight between Tokyo and Nagoya. This prediction failure is probably
because there are not many airports whose locations are similar to that of Shizuoka in our dataset.
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Methodologically, we have proposed an alternative estimation method for the entry
game models using Bayesian approach. Because of the flexibility in inferences, our
methodology might attract empirical analysis for 2 × 2 games which are commonly
seen in the real world.

Acknowledgment

The authors thank Amit Gandhi, Hidehiko Ichimura and Yasuyuki Sawada for helpful
discussions and comments. This work is partially supported by a Grant-in-Aid for
Scientific Research (No. 18330039) from the Japanese Ministry of Education, Science,
Sports, Culture and Technology. The computational results are obtained by using Ox
version 5.10(See Doornik (2007)).

References

V. Aguirregabiria and P. Mira. Swapping the nested fixed point algorithm: A class
of estimators for discrete markov decision models. Econometrica, 70(4):1519–1543,
2002.

S. Banerjee, B. P. Carlin, and A. E. Gelfand. Hierarchical Modeling and Analysis for
Spatial Data. Chapman and Hall / CRC Press, Bocaraton, Florida, 2004.

S. Berry. Estimation of a model of entry in the airline industry. Econometrica, 60(4):
889–917, 1992.

T.F. Bresnahan and P.C. Reiss. Empirical models of discrete games. Journal of
Econometrics, 48:57–81, 1991.

S. Chib and L. Jeliazkov. Marginal likelihood from the Metropolis-Hastings algorithm.
Journal of American Statistical Association, 96:270–281, 2001.

Federico Ciliberto and Ellie Tamer. Market strucuture and multiple equilibria in
airline markets. Econometrica, 77(6):1791–1828, 2009.

J. A. Doornik. Object-Oriented Matrix Programming Using Ox. Timberlake Consul-
tants Press and Oxford, London, 3rd edition, 2007.

International Air Transport Association. World Air Transport Statistics. International
Air Transport Association, 2007.

International Civil Aviation Organization. Annual Report of the Counsil 2006. Inter-
national Civil Aviation Organization, Montreal, 2006.

Japan Railway Company. JR Time Table, February. Kotsushimbunsha, 2007. (in
Japanese).

16



P Jia. What happens when wal-mart comes to town: An empirical analysis of the
discount retailing industry. Econometrica, 76(6):1263–1316, 2008.

P. Kooreman. Estimation of econometric models of some discrete games. Journal of
Applied Econometrics, 9(3):255–268, 1994.

Ministry of Land, Infrastructure and Transport. Annual Statistics of Civil Aviation.
All Japan Air Transport and Service Association, 2005. (in Japanese).

E. Tamer. Incomplete simultaneous discrete response model with multiple equilibria.
Review of Economic Studies, 70:147–165, 2003.

United Nations Statistical Office. Demographic Yearbook. United Nation, Lake Suc-
cess, NY, 2009.

A Bayesian estimation for pure Nash models

A.1 Prior distributions

We first describe the prior distributions of the parameters. For the parameter θ, we
assume a normal distribution with mean θ0 and covariance matrix Σ0 truncated on
the region R:

θ ∼ T NR(θ0,Σ0).

For example, we take the region R = (−∞, 0)× (−∞, 0)× (−∞,∞)K for the case
where ∆1 < 0 and ∆2 < 0. For pm, we assume a beta distribution with parameters
(a1m, a2m):

pm ∼ B(a1m, a2m),

for the case ∆1 × ∆2 > 0. As mentioned in Section 3.2.1, we use the uniform prior,
which is a special case of the beta distribution with a1m = a2m = 1, for all m.

For the case where ∆1 ×∆2 < 0, The prior distribution of pm = (p1m, . . . , p4m) is
assumed to be a Dirichlet distribution with parameter am = (a1m, . . . , a4m):

pm ∼ D(am).

We use ajm = 1 for any j and m for the hyperparameters in our empirical analysis.

A.2 Posterior distributions

For the unobserved payoff um, we assume a standard bivariate normal distribution,
um ∼ i.i.d. N (0, I), where the variances are set equal to one for identification. How-
ever, other distributions such as a logistic distribution can also be used.
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A.2.1 Model A with pure Nash equilibria

In this subsection, we derive the posterior probability density and MCMC simulation
procedure for the case where ∆1 < 0 and ∆2 < 0. The derivation for the case where
∆1 > 0 and ∆2 > 0 is completely analogous and is omitted. When um ∼ i.i.d. N (0, I),
we have

P1(θ,xm) = Φ(−x′
1mβ1)Φ(−x′

2mβ2), (A.1)

P2(θ,xm) = {Φ(x′
1mβ1) − Φ(x′

1mβ1 + ∆1)}Φ(−x′
2mβ2)

+Φ(x′
1mβ1 + ∆1)Φ(−x′

2mβ2 − ∆2), (A.2)

P3(θ,xm) = {Φ(x′
1mβ1) − Φ(x′

1mβ1 + ∆1)}Φ(x′
2mβ2 + ∆2)

+Φ(−x′
1mβ1)Φ(x′

2mβ2), (A.3)

P4(θ,xm) = Φ(x′
1mβ1 + ∆1)Φ(x′

2mβ2 + ∆2), (A.4)

P5(θ,xm) = {Φ(x′
1mβ1) − Φ(x′

1mβ1 + ∆1)}{Φ(x′
2mβ2) − Φ(x′

2mβ2 + ∆2)},

(A.5)

where Φ(·) denotes a cumulative distribution function of a univariate standard normal
distribution. Then the likelihood function f(z|θ, λ) is given by

f(z|θ, λ) =
M∏

m=1

f(zm|θ, λm),

=
M∏

m=1

P1(θ, xm)I[zm=1]{P2(θ, xm) + λmP5(θ, xm)}I[zm=2]

×{P3(θ, xm) + (1 − λm)P5(θ, xm)}I[zm=3]P4m(θ, xm)I[zm=4].

(A.6)

The posterior probability density is

π(θ, λ, p|z) ∝ f(z|θ, λ)π(θ)
M∏

m=1

p(λm+a1m)−1
m (1 − pm)(1−λm+a2m)−1, (A.7)

where π(θ) denotes a probability density function of the truncated normal distribution
T NR(θ0, Σ0). It is easy to see that the conditional posterior probability distributions
of λm and pm are

λm|θ, pm, zm ∼ Bernoulli(qm), (A.8)

pm|θ, λm, zm ∼ B(a1m + λm, a2m + 1 − λm), (A.9)

18



where

qm =
pa1m

m (1 − pm)a2m−1f(zm|θ, λm = 1)
pa1m

m (1 − pm)a2m−1f(zm|θ, λm = 1) + pa1m−1
m (1 − pm)a2mf(zm|θ, λm = 0)

.

(A.10)
We note that pm = qm when zm = 1 or 4.

A.2.2 Model B with pure Nash equilibria

Next, we describe the MCMC implementation for the case where ∆1 > 0 and ∆2 < 0.
The implementation for the case where ∆1 < 0 and ∆2 > 0 can be obtained by
switching the labels for the two players. The five choice probabilities are

P1(θ,xm) = Φ(−x′
1mβ1)Φ(−x′

2mβ2), (A.11)

P2(θ,xm) = Φ(x′
1mβ1)Φ(−x′

2mβ2 − ∆2), (A.12)

P3(θ,xm) = Φ(−x′
1mβ1 − ∆1)Φ(x′

2mβ2), (A.13)

P4(θ,xm) = Φ(x′
1mβ1 + ∆1)Φ(x′

2mβ2 + ∆2), (A.14)

P5(θ,xm) ≡ {Φ(x′
1mβ1 + ∆1) − Φ(x′

1mβ1)}{Φ(x′
2mβ2) − Φ(x′

2mβ2 + ∆2)},

(A.15)

and the likelihood function f(z|θ, λ) is given by

f(z|θ, λ) =
M∏

m=1

f(zm|θ, λm)

=
M∏

m=1

4∏
j=1

{Pj(θ, xm) + λjmP5(θ,xm)}I[zm=j]. (A.16)

Then the posterior probability density is

π(θ, λ, p|z) ∝ f(z|θ, λ)π(θ)
M∏

m=1

4∏
j=1

p
λjm+ajm−1
jm , (A.17)

where π(θ) denotes a probability density function of the truncated normal distribution
T NR(θ0, Σ0). It is easy to see that the conditional posterior probability distributions
of λm and pm are

λm|θ, pm, zm ∼ MN (1, qm), (A.18)

pm|θ,λm, zm ∼ D(am + λm), (A.19)
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where qm = (q1m, ..., q4m) such that

qjm =
p

ajm

jm

(∏
l 6=j palm−1

lm

)
f(zm|θ, λjm = 1, λm\j = 0)∑4

k=1 pakm
km

(∏
l 6=k palm−1

lm

)
f(zm|θ, λkm = 1,λm\k = 0)

, j = 1, . . . , 4, (A.20)

where λm\j = 0 implies that all elements in λm are equal to zero except λjm. We
implement the Metropolis-Hastings algorithm for the posterior sampling of θ.

B Posterior distribution for mixed Nash models

This appendix provides a detail of the Bayesian estimation for the models with the
mixed-strategy Nash equilibrium, which is summarized in Section 3.2.2. We firstly
describes Model B because it has a simpler structure, then proceeds to Model A.

B.1 Model B

As mentioned in Section 3.2.2, Model B with the mixed-strategy Nash equilibrium
is equivalent to the pure Nash model when we use ρj(θ, xm, um) as the selection
proportion pjm. Thus the conditional likelihood function given ρj(θ, xm, um) is

M∏
m=1

4∏
j=1

[Pj(θ, xm) + ρj(θ,xm, um)P5(θ, xm)]I[zm=j], (B.1)

where Pj(θ, xm), j = 1, 2, 3, 4 and 5 is equivalent to (A.11) - (A.15).
Because the support of um depends on θ, we need to integrate it out to obtain the

likelihood function for this model. Let g(um|θ, xm) be the joint density function for
(u1m, u2m), which is a normal density with a truncation such that they are located in
Region 5. Integrating out um from (B.1), we have

f(z|θ) =
M∏

m=1

4∏
j=1

[Pj(θ, xm) + Rj(θ, xm)P5(θ, xm)]I[zm=j], (B.2)

where
Rj(θ, xm) =

∫
ρj(θ, xm, um)g(um|θ, xm)dum. (B.3)

To obtain the closed form of Rj(θ, xm), it is convenient to switch the notation
from zm = 1, 2, 3 and 4 to (y1m, y2m) = (0, 0), (1, 0), (0, 1) and (1, 1). We define the
function r[(y1m, y2m)|θ,xm] which corresponds to Rj(θ, xm) as
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r[(y1m, y2m)|θ, xm]
def
=

∫
σ∗

1m(y1m)σ∗
2m(y2m)g(um|θ, xm)dum

=
[
1 − y1m +

(−1)y1m [x′
2mβ2 + A2m(θ, xm)]

∆2

][
1 − y2m +

(−1)y2m [x′
1mβ1 + A1m(θ,xm)]

∆1

]
,

(B.4)

where

Aim(θ, xm) =
φ(uim) − φ(uim)
Φ(uim) − Φ(uim)

, (B.5)

uim(θ, xim) = −x′
imβi + min(−∆i, 0), (B.6)

uim(θ, xim) = −x′
imβi + max(−∆i, 0). (B.7)

Thus,

r[(y1m, y2m) = (0, 0)|θ,xm] = R1(θ, xm), r[(y1m, y2m) = (1, 0)|θ, xm] = R2(θ, xm),

r[(y1m, y2m) = (0, 1)|θ,xm] = R3(θ, xm), r[(y1m, y2m) = (1, 1)|θ, xm] = R4(θ, xm).

Given the likelihood function, the posterior density is

π(θ|z) ∝ f(z|θ)π(θ). (B.8)

Because there is no latent variable, the MCMC procedure for Model B is composed
only of the posterior sampling for θ. It is implemented by the Metropolis-Hastings
algorithm as in the pure Nash model.

B.2 Model A

In Model A, we integrate out um as in Model B, while treat λNash and λpure as latent
variables in the manner similar to the pure Nash model. we obtain the likelihood
function as

f(z|θ, λNash, λpure)

=
M∏

m=1

4∏
j=1

[
Pj(θ, xm) + Tj(θ, xm, λNash

m , λpure
m )P5(θ, xm)

]I[zm=j]
, (B.9)
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where

T1(θ, xm, λNash
m , λpure

m ) = (1 − λNash
m )R1(θ, xm), (B.10)

T2(θ, xm, λNash
m , λpure

m ) = λNash
m λpure

m + (1 − λNash
m )R2(θ, xm), (B.11)

T3(θ, xm, λNash
m , λpure

m ) = λNash
m (1 − λpure

m ) + (1 − λNash
m )R3(θ, xm), (B.12)

T4(θ, xm, λNash
m , λpure

m ) = (1 − λNash
m )R4(θ, xm), (B.13)

and the definition of Rj is same as (B.3).
We adopt beta prior distributions for the selection proportions:

pNash
m ∼ B(aNash

1m , aNash
2m ), (B.14)

ppure
m ∼ B(apure

1m , apure
2m ). (B.15)

Then we obtain the joint posterior density as

π(θ, λNash, λpure, pNash, ppure|z)

∝ f(z|θ, λNash, λpure)π(θ)
M∏

m=1

(
pNash

m

)(λNash
m +aNash

1m )−1 (
1 − pNash

m

)(1−λNash
m +aNash

2m )−1

×
∏

m:λNash
m =1

(ppure
m )(λ

pure
m +apure

1m )−1 (1 − ppure
m )(1−λpure

m +apure
2m )−1 . (B.16)

For the latent variables, the conditional posterior distributions are

λNash
m |θ, pNash

m , λpure
m , zm ∼ Bernoulli(qNash

m ), (B.17)

pNash
m |θ, λNash

m , zm ∼ B(aNash
1m + λNash

m , aNash
2m + 1 − λNash

m ), (B.18)

λpure
m |θ, λNash

m , ppure
m , zm ∼ Bernoulli(1, qpure

m ), (B.19)

ppure
m |θ, λpure

m , zm ∼ B(apure
1m + λpure

m , apure
2m + 1 − λpure

m ), (B.20)
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where

qNash
m = (pNash

m )aNash
1m (1 − pNash

m )aNash
2m −1f(zm|θ, λNash

m = 1, λpure
m )

/
[
(pNash

m )aNash
1m (1 − pNash

m )aNash
2m −1f(zm|θ, λNash

m = 1, λpure
m )

+(pNash
m )aNash

1m −1(1 − pNash
m )aNash

2m f(zm|θ, λNash
m = 0, λpure

m )
]
,

(B.21)

qpure
m = (ppure

m )apure
1m (1 − ppure

m )apure
2m −1f(zm|θ, λpure

m , λpure
m = 1)

/
[
(ppure

m )apure
1m (1 − ppure

m )apure
2m −1f(zm|θ, λNash

m , λpure
m = 1)

+(ppure
m )apure

1m −1(1 − ppure
m )apure

2m f(zm|θ, λNash
m , λpure

m = 0)
]
,

(B.22)

f(zm|θ, λNash
m , λpure

m ) =
4∏

j=1

[Pj(θ,xm) + P5(θ, xm)Tj(θ, xm, λNash
m , λpure

m )]I[zm=j].

(B.23)

The model parameters θ is estimated via the Metropolis-Hastings algorithm as in
Model B. In summary, we implement the MCMC procedure for Model A as follows:

• For m = 1, 2, ...,M ,

– Generate pNash
m |θ, λpure

m , zm.

– Generate λNash
m |θ, λNash

m , pNash
m , zm.

– Generate ppure
m |θ, λpure

m , zm.

– Generate λpure
m |θ, λNash

m , ppure
m , zm.

• Generate θ|λNash, λpure, z.

C Posterior predictive probability

In the analysis of the entry game, the prediction of choice probabilities often provides
rich implications for empirical studies. Using the MCMC samples θ(r) (r = 1, . . . , R)
from the posterior distribution, it is easy to find the probability of entries yM+1 for
the new market M +1. In this appendix, we present a methodology of the prediction
analysis associated with our Bayesian estimation for Model A and B with pure Nash
equilibria. We can also conduct the prediction analysis in the similar manner for the
models with the mixed strategy Nash equilibria.

For Model A, the posterior predictive probability mass function is
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f(zM+1|z)

=
1∑

λM+1=0

∫
f(zM+1|θ, λM+1)

p
(λM+1+a1,M+1)−1
M+1 (1 − pM+1)(1−λM+1+a2,M+1)−1

B(a1,M+1, a2,M+1)

×π(θ|z)dθdpM+1,

=
1∑

λM+1=0

∫
f(zM+1|θ, λM+1)

B(λM+1 + a1,M+1, 1 − λM+1 + a2,M+1)
B(a1,M+1, a2,M+1)

π(θ|z)dθ,

= w1

∫
f(zM+1|θ, λM+1 = 1)π(θ|z)dθ + w2

∫
f(zM+1|θ, λM+1 = 0)π(θ|z)dθ,

(C.1)

where B(a1,M+1, a2,M+1) is a beta function which is required as a normalizing constant
for B(a1,M+1, a2,M+1), and

wj =
aj,M+1

a1,M+1 + a2,M+1
. (C.2)

For each θ(r), we compute:

f̂(zM+1|z) =
w1

R

R∑
r=1

f(zM+1|θ(r), λ = 1) +
w2

R

R∑
r=1

f(zM+1|θ(r), λ = 0). (C.3)

For Model B, the posterior predictive probability mass function is:

f(zM+1|z)

=
∑

λM+1

∫
f(zM+1|θ, λM+1)

∏4
j=1 p

λj,M+1+aj,M+1−1
j,M+1

D(aM+1)
π(θ|z)dθdpM+1

=
4∑

j=1

wj

∫
f(zM+1|θ, λj,M+1 = 1, λM+1\j = 0)π(θ|z)dθ, (C.4)

where D(aM+1) is a normalizing constant for D(aM+1) and the summation is taken
over the set λj,M+1 = 1, λM+1\j = 0 for j = 1, . . . , 4., and

wj =
aj,M+1∑4

k=1 aj,M+1

. (C.5)
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For each θ(r), we compute:

f̂(zM+1|z)

=
4∑

j=1

wj

R

R∑
r=1

f(z1,M+1|θ(r), λj,M+1 = 1,λM+1\j = 0). (C.6)

D Estimated posterior densities and sample paths
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Figure 3: Posterior densities of parameters, β and ∆ (Pure Nash, ∆ANA < 0, ∆JAL >

0).
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Figure 4: Sample paths for parameters, β and ∆ (Pure Nash, ∆ANA < 0, ∆JAL > 0)
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