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Customer Lifetime Value and RFM Data: 

ACCOUNTING YOUR CUSTOMERS: ONE BY ONE 

ABSTRACT 

A customer behavior model that permits the estimation of customer lifetime value (CLV) 

from standard RFM data in “non-contractual” setting is developed by extending the 

hierarchical Bayes (HB) framework of the Pareto/NBD model (Abe 2008). The model relates 

customer characteristics to frequency, dropout and spending behavior, which, in turn, is linked 

to CLV to provide useful insight into acquisition. The proposed model (1) relaxes the 

assumption of independently distributed parameters for frequency, dropout and spending 

processes across customers, (2) accommodates the inclusion of covariates through 

hierarchical modeling, (3) allows easy estimation of latent variables at the individual level, 

which could be useful for CRM, and (4) provides the correct measure of errors. Using FSP 

data from a department store and a CD chain, the HB model is shown to perform well on 

calibration and holdout samples both at the aggregate and disaggregate levels in comparison 

with the benchmark Pareto/NBD-based model. 

Several substantive issues are uncovered. First, both of our datasets exhibit correlation 

between frequency and spending parameters, violating the assumption of the existing 

Pareto/NBD-based CLV models. Direction of the correlation is found to be data dependent. 

Second, useful insight into acquisition is gained by decomposing the effect of change in 

covariates on CLV into three components: frequency, dropout and spending. The three 

components can exert influences in opposite directions, thereby canceling each other to 

produce less effect as the total on CLV. Third, not accounting for uncertainty in parameter 

estimate can cause large bias in measures, such as CLV and elasticity. Its ignorance can 

potentially have a serious consequence on managerial decision making. 

Keywords: CRM, Acquisition, hierarchical Bayes, Pareto/NBD, MCMC 
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1. INTRODUCTION 

Customer lifetime value (CLV) is one of the most important concepts in customer 

relationship management (CRM). To compute CLV, a customer retention rate, often denoted 

as r (Berger and Nasr 1998; Hughes 2000; Jain and Singh 2002), is required. Under 

“contractual” setting, customer dropout is clear, and therefore, the retention rate can be 

computed easily. Under “non-contractual” setting, however, the timing of customer dropout is 

not obvious. Customers do not declare the fact that they become inactive, but simply stop 

conducting business with the firm. This situation is also referred to as “unobserved customer 

attrition” by Blattberg, Kim and Neslin (2008). So, without knowing customer dropout (and 

hence the retention rate) in “non-contractual” setting, how do we compute CLV? 

While scoring models work well in practice, Colombo and Jiang (1999) point out the 

weakness of scoring models as (1) falling short on generating explanatory insight and (2) 

treating customer heterogeneity as noise. Fader, Hardie and Lee (2005) (hereafter referred to 

as FHL) describe the problems associated with scoring models when estimating CLV: (1) they 

ignore periods 3, 4, 5, failing to capture the dynamics of buyer behavior well into the future, 

(2) data must be split into two or more periods in order to calibrate the model, and (3) they 

fail to recognize that different “slices” of the data will yield different values of the behavior 

variables, resulting in different parameter estimate. Malthouse and Blattberg (2005) report the 

difficulty of predicting CLV with scoring models by asserting the 20-55 and 80-15 rules: (1) 

of the future top 20% customers, approximately 55% will be misclassified, and (2) of the 

future bottom 80%, approximately 15% will be misclassified. The disappointing predictive 

accuracy is exacerbated by the fact that their scoring models include a highly flexible (in the 

sense of nonlinearity) neural network. These studies seem to imply that a fruitful direction for 

estimating CLV in “non-contractual” setting is to construct a probability model based on a 

sound behavior theory. 
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A popular approach along this direction is to use a Pareto/NBD model (Schimittlein, 

Morrison and Colombo 1978, hereafter referred to as SMC), whereby a customer being 

“alive” or “dead” is inferred from recency-frequency data through simple assumptions on 

purchase behavior. Some of the CLV research that utilize a Pareto/NBD model include FHL, 

Reinartz and Kumar (2003), and Smittlein and Peterson (1994). 

The objectives of this research are two folds. First, in light of the previous argument, we 

attempt to estimate CLV in “non-contractual” setting with a Pareto/NBD-based behavior 

model using only standard recency, frequency, and monetary-value (RFM) data. We limit our 

focus on standard RFM data, because RFM analysis is used extensively in industry, implying 

that rather rich information on a customer is condensed into these three simple statistics. Even 

if firms may not keep the entire purchase history of each customer, most firms in CRM collect, 

at least, their customers’ RFM data. The second objective is to obtain useful implications for 

prospective customers, as CLV often includes the notion of not only retention but also 

acquisition (Berger and Nasr 1998; Blattberg and Deighton 1995, Blattberg, Getz and Thomas 

2001). To seek insight into acquisition from the analysis of existing customers, some customer 

characteristics (e.g., demographics) are used to relate to RFM data (behavior), and hence CLV. 

1.1. Conceptualization of the Model 

While the detail will be discussed in the next section, Table 1 highlights our methodology 

in comparison with that of SP and FHL. For recency-frequency data, both SP and FHL adopt a 

Pareto/NBD model that presumes Poisson purchase and random dropout (a constant hazard 

rate) processes whose parameters are independently distributed as gamma. For 

monetary-value data, SP posit a normal-normal model, whereby purchase amounts on 

different occasions within a customer is normally distributed with the mean following a 

normal distribution in order to capture customer heterogeneity. FHL use a gamma-gamma 

model, whereby the normal distributions within and across customers in SP are replaced by 
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gamma distributions. Both methodologies can be characterized as an individual-level behavior 

model whose parameters are compounded with a mixture distribution to capture customer 

heterogeneity, which, in turn, is estimated by an empirical Bayes method. An empirical Bayes 

method, in general, utilizes MLE for population-level parameters of the mixture distribution, 

which specifies the prior for individual-level parameters that are updated in a Bayesian 

manner. 

-------------------------------- 
Insert Table 1 about here. 

-------------------------------- 

The proposed methodology posits the same behavioral assumptions as SP and FHL, yet 

customer heterogeneity is captured through a more general mixture distribution to account for 

dependence among the three behavior processes: purchase, dropout, and spending. Our 

approach extends the Hierarchical Bayes framework of the Pareto/NBD model on customer 

transaction (Abe 2008) to purchase amount, whereby (1) the analytical part of the 

heterogeneity mixture distribution is replaced by a simulation method, and (2) unobservable 

measures, such as a customer lifetime (survival) and an active/inactive indicator, are 

incorporated into the model as latent variables. By avoiding analytical aggregation, the 

approach leads to a simpler and cleaner model that offers various advantages. 

First, the proposed model relaxes the assumption of independently distributed parameters,  

λ, μ, and η, respectively, for purchase, dropout, and spending processes across customers, 

which is made in the Pareto/NBD with normal-normal (SP) or gamma-gamma (FHL) 

spending model. Managerially, this assumption restricts that shopping frequency, lifetime, and 

spending per trip are not related. One might speculate certain relationship, for instance, 

frequent shoppers tend to live longer and/or spend higher amounts (Reinartz, Thomas and 

Kumar 2005; Thomas, Reinartz and Kumar 2003). The proposed HB model accommodates a 

more general correlated mixture distribution with ease, because aggregation of heterogeneous 
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customers is carried out by a simulation method. In the empirical section, we will indeed find 

that models by SP and FHL should not be applied to both of our datasets since the 

independence assumption does not hold. Our method not only accommodates correlation 

among parameters, but also allows the performing of statistical inference on the independence 

assumption. 

Second, hierarchical models, whereby customer-specific parameters, λ, μ, and η, are a 

function of covariates, can be constructed and estimated with ease. 

(a) This implies that, even in the absence of RFM data, customer characteristics can be used to 

predict purchase, dropout, and spending behavior, and thus CLV to certain extent. 

Operationally, such models can be quite useful when seeking prospective customers with 

high CLV for acquisition. 

(b) Substantively, such hierarchical models can shed light on interesting yet conflicting 

findings in CRM. For example, what are characteristics of loyal (long lifetime) customers, 

and whether loyal customers spend more? Previous research investigated such issues with 

a two-step approach: lifetime duration is first estimated to identify loyal customers, and 

then customer characteristics (explanatory variables) are related to the lifetime duration 

(dependent variable). A hierarchical model, whose dropout parameter is a function of 

customer characteristics, can be estimated in one step, providing the correct measure of 

error for statistical inference. 

Third, in the HB model, posterior distributions of purchase rate λ, dropout rate μ,  and 

spending parameter η are constructed at the individual level by MCMC draws as a byproduct 

of the estimation. Thus, any of their statistics, such as mean and variance, can be computed by 

simple algebra, as discussed in Abe (2008).1 It is also straightforward to obtain a distribution 

                                                 
1 In a Pareto/NBD model, the expressions for the posterior density of an individual level λ, μ, 
and η involve complicated integration that cannot be reduced. Furthermore, as a new statistic 
based on λ, μ, and η is required (such as a mean, a variance, a survival probability, the 
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of any individual statistic that is a function of λ, μ, and η, such as a survival probability and 

CLV, by evaluating the function for each MCMC draw of λ, μ, and η. For this reason, the 

model provides useful individual level information for CRM, such as ranking customers 

according to frequency, lifetime, spending, CLV, etc. 

Forth, a Bayesian framework using MCMC simulation provides a posterior distribution 

of parameters being estimated rather than point estimate, thereby providing a correct measure 

of error necessary for statistical inference, even with a small sample. It also has advantage 

over the Pareto/NBD-based model estimated by empirical Bayes, which overestimates the 

precision because the same data is used twice, once for constructing the likelihood function 

describing customer specific behavior and the other for estimating the prior (mixture 

distribution). It will be shown that ignoring uncertainty can lead to biased statistics such as 

CLV, and therefore, resulting in incorrect managerial decisions. 

In the next section, the proposed HB model is described and compared against the 

Pareto/NBD-based model, followed by an explanation of the model estimation using an 

MCMC method in conjunction with a data augmentation technique. Then, empirical analyses 

using data from frequent shopper program of a department store and a music CD chain is 

presented. Finally, conclusions and future directions are discussed. 

 

2. PROPOSED MODEL OF CLV 

2.1. Model Assumptions 

This section describes the assumptions of the HB model. 

Individual Customer 

                                                                                                                                                         
expected number of transaction and CLV), an analytical expression must be derived each time 
from the posterior distributions of λ, μ, and η. In actual computation, numerical evaluation of 
this integration (i.e., non-standard hypergeometric function of various kinds) must be repeated 
for each statistic and for each customer. This makes the computation of the individual level 
statistics difficult in Pareto/NBD models. 
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Assumption 1: Poisson purchases. While active, each customer makes purchases according to 

a Poisson process with rate λ. 

Assumption 2: Exponential lifetime. Each customer remains active for a lifetime, which has 

an exponentially distributed duration with dropout rate μ. 

Assumption 3: Lognormal spending. Within each customer, amounts of spending on purchase 

occasions are distributed as lognormal with location parameter η. 

 

Assumptions 1 and 2 are identical to the behavioral assumptions of a Pareto/NBD model. 

Because their validity has been studied by other researchers (FHL 2005; Reinartz and Kumar 

2000, 2003; SMC 1987; SP 1994), justification is not provided here for brevity. Assumption 3 

is specified because (1) the domain of spending is positive, and (2) inspection of the 

distributions of spending amounts within customers reveals a skewed shape resembling 

lognormal. As described previously, SP and FHL assume normal and gamma, respectively, to 

characterize the distribution of spending amounts within a customer. 

Heterogeneity across Customers 

Assumption 4: Individuals’ purchase rates λ, dropout rates μ, and spending parameters η 

follow a multivariate lognormal distribution. 

 

Assumption 4 permits correlation among purchase, dropout, and spending parameters. 

Because Assumption 4 implies that log(λ), log(μ), and log(η) follow a multivariate normal, 

estimation of the variance-covariance matrix is tractable using a standard Bayesian method. A 

Pareto/NBD combined with either normal-normal (SP) or gamma-gamma (FHL) spending 

model posits independence among the three behavioral processes. Both SP and FHL 

acknowledge the restriction on their models and perform an extensive assumption check on 

their data to validate their application. 
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2.2. Mathematical Notations 

For recency and frequency data, we will follow the standard notations {x, tx, T}, used by 

SMC, FHL, and Abe (2008). τ is an unobserved customer lifetime. For spending, s denotes 

the amount of spending on a purchase occasion. Using these mathematical notations, the 

previous assumptions can be expressed as follows. 
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where N and MVN denote univariate and multivariate normal distributions, respectively. ω2 is 

the variance of spending amounts within a customer.  

2.3. Expressions for Transactions, Sales, and CLV 

Given the individual level parameters for (λ, μ), the expected number of transactions in 

the time period of u, E[X(u)|λ, μ], becomes 

(5) ( ) ),min( here         w1][],|)([ ueEuXE u τψ
μ
λψλμλ μ =−== − . 

The expected sales during this period u is simply the product of the expected number of 

transactions shown in Equation (5) and the expected spending E[s] as 

(6) ( )ueeuXEsEusalesE μω

μ
λημλωηωημλ −−== 1],|)([],|[],,,|)([ 2/2

 . 
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For CLV, we define “value” to be synonymous with “revenue” because margin and cost 

information is unknown in this study. The general formula of CLV for an individual customer 

under a continuous time framework, as appropriate for a Pareto/NBD model, is expressed as 

∫
∞

=
0

)()()( dttDtRtVCLV , 

where V(t) is the customer’s value (revenue) at time t, R(t) is the survival function (the 

probability that a customer remains active until at least t), and D(t) is a discount factor 

reflecting the present value of money received at time t (FHL, Rosset et al. 2003). Translating 

to our Assumptions 1~3, they imply V(t)= λΕ[s] where E[s]=η exp(ω2/2) from the definition 

of lognormal, and R(t)=exp(-μt). With continuously compounded discounting of an annual 

interest rate d, D(t)=exp(-δt), where δ=log(1+d) with the time unit being a year. Therefore, 

our CLV reduces to the following simple expression. 
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Hence, if we could somehow estimate λ, μ, η, ω for each customer from RFM data, we can 

compute CLV as in Equation (7). 

2.4. Incorporating Customer Characteristics 

To gain insight into acquisition, we would like to relate customer characteristic variables 

for customer i, di (a K×1 vector) to customer specific parameters λi, μi, and ηi. A 

straightforward extension of Assumption 4 expressed in equation (4) results in a multivariate 

regression specification as follows. 
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where B is a 3×K matrix of coefficients. When di contains a single element of 1 (i.e., no 
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characteristic variables), the common mean, θ0=θi for all customers i, is estimated. 

2.5. Elasticities 

Useful implications can be obtained from computing elasticities of CLV with respect to 

(a) λ, μ, and η, and (b) characteristic variables di. From equation (7), 

(9) 1
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implying that one percent increase in the purchase rate or spending parameter causes one 

percent increase in CLV, whereas one percent decrease in the dropout rate leads to less than 

one percent increase in CLV with the magnitude depending on the discount rate δ. Under a 

high interest rate, the impact of prolonging lifetime on CLV is not as rewarding since future 

customer value would be discounted heavily. 

The effect of customer characteristics on CLV can be decomposed into frequency, 

dropout, and spending processes to provide further insight. Defining dik as the k-th 

(continuous) characteristic of customer i, the elasticity becomes 
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where  blk (l∈{λ,μ,η}, k=1,..,K) denotes (l, k)th element of matrix B. 

 

3. ESTIMATION 

In the previous section, analytical expressions for the customer process of frequency, 

dropout, and spending, are derived from the basic behavioral Assumptions 1, 2, and 3. To 

account for customer heterogeneity, the HB approach does not require the aggregate analytical 

expressions compounded by the mixture distribution. 

3.1. Estimation of the Transaction (RF) Component 
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The transaction component is identical to the HB extension of the Pareto/NBD model 

proposed by Abe (2008). It is estimated by MCMC simulation through a data augmentation 

method. Because information about customer i being active (zi=1) or not at time T, and if not, 

the dropout time ( yi<Ti ) is unknown, zi and yi are considered as latent variables, which are 

randomly drawn from their posterior distributions. The detail is described in Abe. 

3.2. Estimation of the Spending (M) Component 

As explained at the beginning of this paper, we limit our behavior data to recency, 

frequency, and monetary-value (RFM), so that the model can be implemented even if a firm 

does not keep the complete purchase history of each customer. The RFM data for customer i 

are denoted as (xi, txi, Ti, asi), where xi, txi and Ti are defined as in SMC and asi stands for 

average spending per purchase occasion. Without the knowledge of spending variation within 

a customer from one purchase to another, however, there is no means to infer the variance of 

logarithmic spending ω2, specified in equation (3), from RFM data alone. Here, we assume 

that ω2 is known (for example, from past data) and common across customers.2 

Assumption 3 allows adoption of standard normal conjugate updating in Bayesian 

estimation, whereby the posterior mean is a precision weighted average of the sample and the 

prior means. For this method to work, however, we need the mean of log(spending)s (or 

equivalently, the logarithm of the geometric mean of spending amounts) from each customer, 

whereas the M part of RFM data provides only the arithmetic mean of spendings asi. The 

appendix shows that the sample mean of log(spending)s, can be approximated by the average 

spending asi and ω2, as in Equation (11). 

                                                 
2 To characterize variation in spending, we could have assumed that either ω2, the variance in 
logarithmic spending, or the variance in the natural scale of spending is known. We posited 
the former because it seemed more reasonable to think that the magnitude of spending 
variation grows as the spending level increases, and inspection of the data supported our 
speculation. 
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3.3. Prior Specification 

Let us denote the customer specific parameters as ϕi = [ log(λi), log(μi) log(ηi) ]’, which 

is normally distributed with mean θi=Bdi and variance-covariance matrix Γ0 as in Equation (8). 

Our objective is to estimate parameters { ϕi, yi, zi, ∀i; Β, Γ0} from observed RFM data {xi, txi, 

Ti, asi; ∀i}. In the HB framework, the prior of individual-level parameter ϕi corresponds to 

the population distribution MVN(Bdi, Γ0). The priors for the hyperparameters B and Γ0 are 

chosen to be multivariate normal and inverse Wishart, respectively. 

 ( )0000 ,~)( ΣbMVNBvec , ( )00000 ,~ ΓΓ νIW  

These distributions are standard conjugate priors for multivariate regression models. 

Constants (b00, Σ00, ν00, Γ00) are chosen to provide very diffuse priors for the hyperparameters. 

3.4. MCMC Procedure 

We are now in a position to estimate parameters { ϕi, yi, zi, ∀i; Β, Γ0} using an MCMC 

method. To estimate the joint density, we sequentially generate each parameter, given the 

remaining parameters, from its conditional distribution until convergence is achieved. The 

algorithm can be found in Abe (2008). 

 

4. EMPIRICAL ANALYSIS 

4.1. FSP data for a department store 

We now apply the proposed model to real data. The first dataset contains shopping 

records for 400 members of a frequent shopper program (FSP) at a department store in Japan. 

The first and the second 26 weeks of the data are used for model calibration and validation, 

respectively. They are the same data used by Abe (2008), and their detail can be found in his 
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paper. As discussed in Section 3.1, the variance of log(spending)s within customers, ω2, is 

assumed to be known. It was estimated to be 0.895 from the calibration data. 

4.1.1. Model Validation 

The MCMC steps were put through 15,000 iterations, of which the last 5,000 were used 

to construct the posterior distribution of parameters. The convergence was monitored visually 

and checked with the Geweke test (Geweke 1992). The dispersion of the proposal distribution 

in the Metropolis-Hastings algorithm was chosen such that the acceptance rate stayed at about 

40% to allow even drawing from the probability space (Gelman et al. 1995). 

-------------------------------- 
Insert Table 2 about here. 

-------------------------------- 

Table 2 shows the result of various models that include different covariates. Before 

attempting to interpret the result, let us first discuss the model validation focusing on Model 3, 

which has the best marginal loglikelihood, as shown in the last row. The performance of 

Model 3 was evaluated with respect to the number of transactions and spending, obtained 

from Equations (5) and (6), respectively, in comparison with the benchmark 

Pareto/NBD-based model. The expected number of transactions, predicted by the Pareto/NBD, 

was multiplied by his/her average spending asi to come up with customer i’s spending. 

-------------------------------- 
Insert Figure 1 about here. 
-------------------------------- 

Figure 1 shows the time-series tracking for the cumulative number of repeat purchases. 

Both models provide good fit in calibration and forecast in validation, which are separated by 

the vertical dashed line. With respect to the mean absolute percent errors (MAPE) between 

predicted and observed weekly cumulative purchases, the HB model performed better for 

validation (1.3% vs. 1.9%) and comparable for calibration (2.5% vs. 2.5%). 

-------------------------------- 
Insert Table 3 about here. 
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-------------------------------- 

Fit statistics at the disaggregate level provide more stringent performance measures. 

Table 3 compares the correlation and mean squared error (MSE) between prediction and 

observation with respect to the number of transactions and total spending at the individual 

customer level during calibration and validation periods. While both models offer similar 

performance, the HB is slightly superior in predicting spending.  

-------------------------------- 
Insert Figures 2 and 3 about here. 

-------------------------------- 

Figure 2 shows the predicted number of transactions during the validation period, 

averaged across individuals, conditional on the number of purchases made during the 

calibration period. Figure 3 compares the predicted total spending during the validation period 

in the similar manner. Both figures demonstrate the superiority of the HB model over the 

Pareto/NBD-based model visually. 

In sum, the HB model seems to fit and predict well in comparison with the 

Pareto/NBD-based model, in terms of the number of transactions and spending both at the 

aggregate and disaggregate levels. However, the difference of the two models is minor. 

4.1.2. Interpretation of the Model Estimation 

Having established the validity of the HB model, let us now examine Table 2 to interpret 

the estimation result. FOOD, the fraction of store visits on which food items were purchased 

and a proxy for store accessibility, is the most important covariate with the significant positive 

and negative coefficients for log(λ) and log(η), respectively, at the 5% level. The result is also 

supported by the Pareto/NBD model of Abe (2008), whereby “average spending” covariate 

was found to be significantly negative for log(λ). Managerially, food buyers tend to shop 

more often and spend a smaller amount on each shopping trip. This finding is consistent with 

the story told by a store manager in that, although food buyers spend a smaller amount on 
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each shopping trip, they visit the store often enough to be considered as vital. Another 

significant covariate is AGE for log(η), implying that older customers tend to spend more at 

each shopping trip. This is hardly surprising either. Older people with lower income would 

shop in discount stores close to where they live rather than venture out or bother to visit a 

department store located in a busy shopping district, like this retailer. 

Let us now turn our attention to the relationship among purchase rate λ, dropout rate μ, 

and spending parameter η. To check whether the independence assumption of Pareto/NBD is 

satisfied, correlation of Γ0 must be tested on the intercept-only model (Model 0) but not the 

covariate model. This is because, if covariates explain the correlation among λ, μ and 

η completely, then no correlation remains in the error term as captured by Γ0. First, we see 

that the correlation between log(λ) and log(μ) is not significantly different from 0, implying 

that the assumption of Pareto/NBD holds here. Second, correlation between log(λ) and 

log(η) is significantly negative (-0.28), the fact that is consistent with the FOOD variable 

having opposite signs on log(λ) and log(η) in Model 3. Figure 4 presents the scatter plot of 

the mean values of the individual λi and ηi (i=1,..,400). One can visually observe the 

correlation. 

-------------------------------- 
Insert Figure 4 about here. 
-------------------------------- 

Hence, the assumption of the independence between transaction (RF) and spending (M) 

components in the Pareto/NBD based model (SP and FHL) is violated in this dataset. For 

researchers using the SP and FHL models, the finding emphasizes the importance of verifying 

the independent assumption (as was done in SP and FHL). Managerially, this negative 

correlation implies that a frequent shopper tends to spend a smaller amount on each trip. No 

correlation is found between shopping frequency and his/her lifetime or between lifetime and 

per-trip spending. 
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4.1.3. Customer Lifetime Value 

Table 4 presents nine customer-specific statistics for the top and bottom 10 customers in 

terms of CLV, along with the average, minimum, and maximum for the entire sample of 400 

customers: posterior means of λi, μi and ηi, expected lifetime, survival rate after one year, the 

probability of being active at the end of the calibration period, an expected number of 

transactions (using equation (5)) and expected total spending during the validation period 

(using equation (6)), and CLV (using equation (7)). In computing CLV, an annual interest rate 

of 15% (δ = 0.0027 per week) was assumed. 

-------------------------------- 
Insert Table 4 about here. 

-------------------------------- 

There exists much heterogeneity across customers despite the use of the Bayesian 

shrinkage estimation. The mean expected lifetime, after incorporating discounting, is 8.6 

years with the maximum and minimum of 20.0 and 1.4 years, respectively. The probability of 

being active at the end of the calibration period ranges from 0.19 to 1.00 with the average 

being 0.93. Over the validation period of 26 weeks, the expected number of transactions is 

15.9 times with the total amount of 67,000 yen on average (divide by 100 to convert to the 

approximate US dollars). CLV ranges from 30,000 yen to 8.5 million yen with the average 

being about 0.59 million yen.3 

-------------------------------- 
Insert Figure 5 about here. 
-------------------------------- 

                                                 
3 Let us emphasize that the posterior means of λi and μi, and hence, an expected lifetime 
cannot be obtained easily from the Pareto/NBD model. Furthermore, the remaining statistics 
are claimed by SMC and FHL as their main results, with complicated expressions (equations 
(11)-(13) and (22) of SMC and equation (2) of FHL) requiring multiple evaluations of various 
hypergeometric functions. With the HB model, these statistics can be computed from the 
MCMC draws of λ, μ, and η, using simple algebraic expressions of (5)~(7), and by taking 
their means over the draws. 
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Figure 5 shows a gain chart (solid line), in which customers are sorted according to the 

decreasing order of CLV and the cumulative CLV (y-axis, where the total CLV is normalized 

to 1) is plotted against the number of customers (x-axis). In addition, two gain charts are 

plotted. The dash-dotted line is based solely on recency criterion, whereby customers are 

sorted in the order of increasing recency (from most recent to least recent). The dotted line is 

a gain chart based on customers being ordered according to the sum of the three rankings of 

recency, frequency and monetary value. The 45 degree dashed line corresponds to the 

cumulative CLV for randomly ordered customers. This figure implies that recency criterion 

alone is not sufficient to identify good customers, despite many companies use this criterion. 

On the other hand, combined use of the three criteria (recency, frequency and monetary-value), 

even with the naïve equal weighting scheme, seems to provide rather accurate ordering of 

CLV. This finding strongly supports the wide use of RFM analysis and regression-type 

scoring models among practioners for identifying good customers. 

4.1.4. Elasticity of Covariates on CLV 

Another advantage of our Bayesian approach is that these statistics reflect the uncertainty 

in parameter estimates. Ignoring their uncertainty and computing various statistics from their 

point-estimates, say MLE, as if parameters are deterministic, could produce biased result, 

leading to incorrect managerial decisions. The point is illustrated in Table 5, which shows the 

decomposition of the elasticity of CLV with respect to each covariate into frequency, dropout, 

and spending components. To account for parameter uncertainty, elasticity is computed for 

each set of the 5000 MCMC draws of blk and μi according to Equation (10), which is then 

averaged over the 5000 draws and 400 customers. When the posterior mean of blk and μi is 

directly substituted into Equation (10) (bottom table) instead of averaging over MCMC draws 

(top table), elasticity with respect to the dropout component is overestimated (because of 

nonlinearity in μi), even if customer heterogeneity is accounted for. 
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-------------------------------- 
Insert Table 5 about here. 

-------------------------------- 

To visualize the impact of covariates, the solid line in Figure 6 plots the value of 

log(CLV) for different values of a covariate when the other two covariates are fixed at their 

mean values. These graphs are computed using the mean estimate of the coefficients of Model 

3 shown in Table 2, assuming that all covariates are continuous. For the FEMALE covariate, 

therefore, it should be interpreted as how log(CLV) varies when the gender mixture is 

changed from the current level of 93.3% female, while keeping the other two covariates 

unchanged. The dotted vertical line indicates the mean value of the covariate under 

consideration. Both FOOD and AGE have strong influences on log(CLV), whereas FEMALE 

exerts a very weak influence. 

-------------------------------- 
Insert Figure 6 about here. 
-------------------------------- 

Figure 6 also attempts to decompose the influence of covariates on log(CLV) into three 

components: frequency, dropout and spending. Taking logarithm of the basic formula of CLV 

in Equation (7) results in the following summation expression. 

[ ] [ ] [ ]
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The graph can be interpreted as stacking these three components, dropout, frequency, and 

spending, from top to bottom, to constitute the overall log(CLV). To account for the scale 

differences among these components, cd, cf, and cs are chosen such that each component is 

normalized to 1 at the mean value of the covariate. Therefore, log(CLV)=3 at the dotted 

vertical line. 

The direction and magnitude of the effect of each covariate on the three components are 
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consistent with the signs of the posterior means blk (l∈{λ,μ,η}, k=1,..,K). Increasing the 

fraction of food buyers improves dropout (lengthen lifetime) and frequency, but decreases 

spending per trip with net increase in the overall CLV. Increasing the fraction of elderly 

people increases the spending without much influence on dropout and frequency, thereby 

resulting in net increase in the overall CLV. Increasing the fraction of female leads to little 

improvement in all three components and, hence, a negligible increase in the overall CLV. 

Elasticity decomposition, shown in Figure 6 and Table 5, provides managers with useful 

insight into acquisition. An effort to manipulate certain customer characteristics might impact 

dropout, frequency, and spending components in opposite directions, thereby canceling each 

other to produce less effect as the total on CLV. For example, much of the improvement in 

frequency, from increasing the fraction of food buyers, is negated by the decline in spending, 

and only the dropout improvement provides the net contribution to CLV, as can be seen from 

Table 5 and the near flat dashed line of Figure 6. On the other hand, an effort to increase the 

proportion of elderly people is met with the boost in CLV, due to increased spending per trip 

with only a small negative influence on frequency. 

To build effective acquisition strategy from these results, managers must make a fine 

balance between desired customer characteristics (i.e., demographics), desired behavioral 

profiles (i.e., dropout, frequency, and spending), responsiveness (elasticity) of the 

characteristic covariates on CLV, and acquisition cost of the desired target customers. 

4.2. Retail FSP data for a Music CD chain 

The second dataset is obtained from a FSP of a large chain for music CD. These data are 

also identical to the one used by Abe (2008). As for the first dataset, the MCMC steps were 

repeated 15,000 iterations and the last 5,000 were used to construct posterior distributions. 

Table 6 compares the performance of HB against Pareto/NBD for the number of transactions 

and spending at the customer level. The HB model is slightly superior to the Pareto/NBD in 
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all criteria, and the visual plots, like Figures 2 and 3 shown for the department store, also 

confirm the fact. 

-------------------------------- 
Insert Tables 6 and 7 about here. 

-------------------------------- 

Table 7 reports the model estimation. Let us first examine Model 3, which results in the 

highest marginal loglikelihood, for significant explanatory variables. First, the amount of an 

initial purchase is positively significant on log(λ) and log(η), implying that customers with a 

larger trial purchase tend to buy more frequently and spend more per trip in the subsequent 

repeat purchases. Second, older customers appear to spend more per shopping trip. 

Next, we turn our attention to the intercept model Model 0 for the relationship among λ, 

μ, and η. First, we see that the correlation between log(λ) and log(μ) is not significantly 

different from 0, implying that the assumption of Pareto/NBD holds here. Second, correlation 

between log(λ) and log(η) is significantly positive (0.14), the fact that is consistent with the 

initial purchase variable having the same significant signs on log(λ) and log(η). Once again, 

the independence assumption of the transaction and spending components in the Pareto/NBD 

based model (SP and FHL) is violated. This time, however, the sign is in the opposite 

direction, implying that the correlation between purchase frequency and spending per 

occasion is context dependent. While not the “average spending”, it is consistent with the 

Pareto/NBD model of Abe (2008) whereby “initial purchase amount” covariate has a 

significant positive sign for log(λ). Managerially, the correlation implies that frequent buyers 

spend more per shopping occasion. 

-------------------------------- 
Insert Table 8 and Figure 7 about here. 

-------------------------------- 

Table 8 shows the elasticity decomposition of CLV into frequency, dropout, and spending 

components. When parameter uncertainty is not accounted for, the dropout component is 
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overestimated, as was the case for the department store data, by about 20%. Elasticity 

decomposition of CLV into the three components for varying levels of the three covariates is 

presented in Figure 7. A higher initial purchase amount is related to higher CLV by increasing 

frequency and increasing spending with almost no change in dropout. Older customers are 

associated with less frequency, reduced dropout, and higher spending per trip with the positive 

net contribution to CLV. Female customers are associated with less frequency, less dropout, 

less spending with the negative net contribution to CLV. 

-------------------------------- 
Insert Table 9 about here. 

-------------------------------- 

Finally, Table 9 presents nine customer-specific statistics for the top and bottom 10 customers 

in terms of CLV, along with the average, minimum, and maximum for the entire sample of 

500 customers. 

 

CONCLUSIONS 

An individual behavior model that permits the estimation of CLV from standard RFM 

data in “non-contractual” setting was developed based on the HB framework. The model also 

related customer characteristics to frequency, dropout and spending behavior, which, in turn, 

were linked to CLV to provide useful insight into acquisition. The HB model posited three 

sound behavioral assumptions from previous research: (1) a Poisson purchase process, (2) a 

random dropout process (i.e., exponentially distributed lifetime), and (3) a lognormally 

distributed spending process, while accounting for customer heterogeneity in all three 

processes. Because, in the HB framework, heterogeneity was captured as a prior rather than 

through a mixture distribution, the entire modeling effort could bypass all the complications 

associated with aggregation, which was left to MCMC simulation. Using FSP data from a 

Japanese department store and a CD chain, the HB model was shown to perform well on 
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calibration and holdout samples both at the aggregate and disaggregate levels in comparison 

with the benchmark Pareto/NBD-based model.  

Methodological contributions of this research are [1] a development of the 

individual-level behavioral model for RFM data in the HB framework, in which an empirical 

Bayes approach was used previously, and [2] the MCMC method that combines a data 

augmentation technique to permit the estimation of individual level latent variables, such as 

an active/inactive indicator and dropout time in our study. The approach offers: (1) 

accommodation of correlated parameters, (2) ease of estimating latent variables at the 

individual level, (3) extension to hierarchical models incorporating covariates, and (4) 

estimation of the correct measure of errors. The proposed methodology has made it possible 

to address many issues suggested as future extensions by previous research (Blattberg et al. 

2008, p.129; FHL 2005; Jain and Singh 2002; SMC 1987). 

In addition, several substantive issues were uncovered. 

- The independence between transaction (RF) and spending (M) components could be 

violated. Our datasets exhibited weak yet significant correlation between frequency and 

spending. Furthermore, the direction of the correlation is data dependent. Researchers must 

always check this assumption with their data before applying a Pareto/NBD-based model. 

- Effect of the change in covariates on CLV is decomposed into three components: frequency, 

dropout and spending. They could have opposite signs, thereby canceling each other to 

produce less effect as the total on CLV. In our department store data, much of the 

improvement in frequency, from increasing the fraction of food buyers, was negated by the 

decline in spending, and only the dropout improvement contributed to the net increase in 

CLV. 

- Not accounting for uncertainty in parameter estimate can cause bias in statistics, such as 

CLV and elasticity in our study, if the expression involving parameters is nonlinear. While 
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marketing has paid the universal attention to accommodating heterogeneity, that is not the 

case for parameter uncertainty. When computing elasticity, for example, some researchers 

simply substitute point-estimate, such as MLE, into the formula without bothering to 

account for their standard errors. Bayesian methods, in conjunction with sampling 

estimation techniques, are powerful means to address this uncertainty issue even under small 

samples because they do not rely on the asymptotic theories. 

Finally, the model provides the following managerial implications when implemented on 

a CRM system that collects RFM data. 

- The model outputs, besides a customer-specific survival rate, include individual level λi, μi 

and ηi, expected lifetime, the probability of being active, expected number of future 

transactions, expected total spending, and CLV, some of which would be difficult, if not 

impossible, to obtain from the Pareto/NBD-based model. These statistics fully recognize the 

difference among customers and can be useful in implementing effective customized 

marketing. 

- Useful insight into acquisition can be gained from a simple formula of CLV (Equation (7)) 

and its elasticity decomposition into dropout, frequency, and spending components that are 

linked to customer characteristics (Equation (10)). 

- When planning managerial actions based on a model, for example, by adding an 

optimization module, uncertainty in parameter estimation can easily be incorporated with 

the simulation-based MCMC method. Ignoring uncertainty could potentially have a serious 

consequence on decision making. 

The current study is only the beginning for the stream of research toward understanding 

customer behavior in “non-contractual” setting. Possible extensions are synonymous to the 

limitations of the current model. First, while our assumption of Poisson purchase (i.e., 

exponentially distributed interpurchase time) and lognormal spending might to be suitable for 
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simple RFM data, the model can be refined if further information on customers beyond RFM 

data is available. With customer’s complete transaction history that includes interpurchase 

times and the amount of each transaction, one immediate refinement is to formulate 

customer-specific spending variance ωi
2, updated in a Bayesian manner just like the mean ηi, 

from the data. Such a model can differentiate customers with different spending patterns, for 

example, food-only shoppers from food-and-occasional-large-ticket-item shoppers. Another 

refinement is to relax the assumption of the Poisson purchase process so that interpurchase 

time can take a more general form in distribution. 

Second extension is to formulate a model in the structural modeling framework. If one 

wishes to incorporate the effect of marketing activities as the covariates for frequency, 

dropout, and spending, the endogeneity issue must be addressed. 
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APPENDIX 
 

Derivation of Equation (11) 

 

We approximate the desired quantity as follows. Expanding log(si) around the arithmetic 

mean μs gives, 

 2

2

2
)()()log()log(

s

si

s

si
si

sss
μ

μ
μ

μμ −
−

−
+≅ . 

Taking its expectation,  

 [ ] 2

2

2
)log()log(

s

s
sisE

μ
σμ −=  

where σs
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Replacing E[s] with its sample mean asi and substituting in equation (12) leads to equation 

(11). 
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Table 1. Comparison with the Existing Methods 
 
Empirical Bayes Model 
 
Data Model Individual Behavior Heterogeneity 

Distribution 
RF 
(recency-frequency) 

Pareto/NBD 
   (SMC 1987) 

Poisson purchase (λ) 
Random dropout (μ) 

λ ~ Gamma 
μ ~ Gamma 
λ and μ independent 

normal-normal 
   (SP 1994) 

Normal spending (mean θ) θ ~ Normal 
θ, λ, μ independent 

M 
(monetary-value) 

gamma-gamma 
   (FHL 2005) 

Gamma spending (scale ν) ν ~ Gamma 
ν, λ, μ independent 

 
 
Proposed Hierarchical Bayes Model 
 
Data Model Individual Behavior Heterogeneity 

Distribution 
RF 
(recency-frequency) 

poisson/exponential 
 

Poisson purchase (λ) 
Random dropout (μ) 

M 
(monetary-value) 

lognormal-lognormal
 

Lognormal spending 
(location η) 

λ, μ, η ~ MVL 
λ, μ, η correlated 
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Table 2. Estimation Results of Various Models 
 

(Figures in parentheses indicate the 2.5 and 97.5 percentiles) 
 

  Model 0 
 

Model 1 
 

Model 2 
 

Model 3 
 

Intercept -0.81 
(-0.92, -0.71) 

-1.96      
(-2.28, -1.64) 

-1.89      
(-2.28, -1.52) 

-2.03      
(-2.52, -1.51) 

Food --- 1.45*      
(1.08, 1.82) 

1.49*      
(1.09, 1.88) 

1.50*      
(1.11, 1.89) 

Age --- --- -0.19      
(-0.83, 0.42) 

-0.21      
(-0.84, 0.40) 

Purchase 
rate 

 
λ 

Female 
(male=0) 

--- --- --- 0.15       
(-0.20, 0.48) 

Intercept -6.13      
(-7.10, -5.56) 

-5.21      
(-6.79, -4.14) 

-4.94      
(-6.19, -3.74) 

-5.03      
(-6.49, -3.57) 

Food --- -1.54 
(-3.42, 0.33) 

-1.14      
(-2.59, 0.43) 

-1.09 
(-2.66, 0.26) 

Age --- --- -0.48      
(-2.38, 1.38) 

-0.34      
(-2.35, 1.49) 

Dropout 
Rate 

 
μ 

Female 
(male=0) 

--- --- --- 0.01       
(-1.20, 1.38) 

Intercept -3.66      
(-3.74, -3.59) 

-2.77      
(-3.01, -2.54) 

-3.23      
(-3.51, -2.94) 

-3.32 
(-3.69, -2.94) 

Food --- -1.13*     
(-1.40, -0.86) 

-1.35*      
(-1.63, -1.06) 

-1.35* 
(-1.63, -1.06) 

Age --- --- 1.19*      
(0.72, 1.65) 

1.18* 
(0.73, 1.63) 

Spending 
Parameter 

η 

Female 
(male=0) 

--- --- --- 0.11 
(-0.17, 0.38) 

correlation( log(λ), log(μ) ) -0.33 
(-0.59, 0.01) 

-0.27 
(-0.52, 0.02) 

-0.28 
(-0.54, 0.05) 

-0.24 
(-0.51, 0.09) 

correlation( log(λ), log(η) ) -0.28* 
(-0.39, -0.17) 

-0.14* 
(-0.26, -0.02) 

-0.14* 
(-0.26, -0.01) 

-0.14* 
(-0.26, -0.01) 

correlation( log(μ), log(η) ) -0.02 
(-0.31, 0.26) 

-0.10    
(-0.37, 0.19) 

-0.09 
(-0.37, 0.17) 

-0.05 
(-0.33, 0.23) 

marginal loglikelihood -2105 -2088 -2084 -2078 
 

* indicates significance at the 5% level 
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Table 3. Disaggregate Fit of Pareto/NBD and HB Models 
 

 Pareto/NBD HB 
 

Spending  
Correlation validation 0.80 0.83 

 calibration 0.99 0.99 
MSE validation 0.39 0.35 

 calibration 0.02 0.06 
 

Transactions  
Correlation validation 0.90 0.90 

 calibration 1.00 1.00 
MSE validation 57.7 56.5 

 calibration 1.22 3.92 
 

Table 4. Customer-Specific Statistics for Top and Bottom 10 Customers 
 

ID  mean(λ) mean(μ) mean(η) Mean 
Expected 
lifetime 
(years) 

1 year 
Survival 

rate 

Probability 
of being 
active at 

the end of 
calibration

Expected 
number of 

transactions 
in 

validation 
period 

Expected 
total 

spending 
in val. 
period 
(x105 
yen) 

CLV 
(x105 
yen) 

1 3.14 0.00213 0.068 20.0 0.908 1.000 79.4 8.48 85.3 
2 1.94 0.00216 0.051 17.7 0.904 1.000 49.2 3.89 38.5 
3 1.15 0.00250 0.088 15.4 0.893 0.999 28.9 3.97 38.1 
4 2.54 0.00216 0.032 17.3 0.904 1.000 64.4 3.25 31.9 
5 1.08 0.00379 0.079 8.9 0.844 0.997 26.7 3.31 27.7 
6 2.27 0.00222 0.031 16.3 0.903 1.000 57.5 2.76 27.0 
7 2.84 0.00233 0.024 15.0 0.897 0.999 71.7 2.69 25.7 
8 3.88 0.00201 0.017 18.4 0.911 1.000 98.3 2.54 25.4 
9 1.11 0.00231 0.061 14.5 0.897 0.996 27.8 2.64 25.3 

10 0.87 0.00283 0.082 11.5 0.878 0.999 21.9 2.80 25.3 
… … … … … … … … … … 
391 0.16 0.00750 0.014 5.4 0.749 0.791 2.9 0.06 0.6 
392 0.12 0.00837 0.019 4.5 0.725 0.941 2.7 0.08 0.6 
393 0.10 0.03670 0.045 1.4 0.466 0.435 0.7 0.05 0.6 
394 0.15 0.00747 0.015 4.8 0.737 0.966 3.5 0.08 0.6 
395 0.29 0.01245 0.010 3.2 0.652 0.371 1.6 0.02 0.5 
396 0.10 0.03999 0.040 1.6 0.494 0.457 0.7 0.05 0.5 
397 0.24 0.00550 0.007 6.2 0.790 0.953 5.6 0.06 0.5 
398 0.20 0.00676 0.008 5.5 0.766 0.869 4.2 0.05 0.4 
399 0.11 0.04342 0.031 1.5 0.472 0.432 0.7 0.04 0.4 
400 0.14 0.01659 0.014 2.4 0.587 0.604 1.7 0.04 0.3 

 
ave 0.66 0.00571 0.034 8.6 0.813 0.928 15.9 0.67 5.9 
min 0.07 0.00196 0.006 1.4 0.466 0.187 0.5 0.01 0.3 
max 3.88 0.04342 0.188 20.0 0.912 1.000 98.3 8.48 85.3 
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Table 5. Decomposition of CLV Elasticity into Three Components 
 

Accounting for Parameter Uncertainty 

 

 FOOD AGE FEMALE

Total 0.514  0.596  0.234  

frequency: ΕfCLV 1.180  -0.112  0.136  

dropout:  ΕdCLV 0.396  0.086  -0.001  

spending: ΕsCLV -1.062  0.622  0.099  
 

Ignoring Parameter Uncertainty 

 

 FOOD AGE FEMALE

Total 0.702  0.630  0.227  

frequency: ΕfCLV 1.180  -0.112  0.136  

dropout:  ΕdCLV 0.584  0.120  -0.007  

spending: ΕsCLV -1.062  0.622  0.099  
 

* Note that elasticity for only dropout but neither frequency nor spending is different when 
uncertainty is ignored. This is because, as shown in equation (10), only μ enters the elasticity 
formula in a nonlinear fashion. 
 
 
 

Table 6. Disaggregate Fit of Pareto/NBD and HB Models 
 
 

 Pareto/NBD HB 
 

Spending  
Correlation validation 0.47 0.62 

 calibration 0.88 0.92 
MSE validation 2.81 2.28 

 calibration 0.40 0.28 
 

Transactions  
Correlation validation 0.59 0.61 

 calibration 0.95 0.95 
MSE validation 6.43 4.99 

 calibration 2.14 1.66 
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Table 7. Estimation Result for the Music CD Chain Data 
 
 

  Model 0 
 

Model 2 Model 3  

Intercept -2.11 
(-2.19, -2.03) 

-2.16 
(-2.39, -1.95) 

-2.10 
(-2.34, -1.85) 

Initial 
amount 

--- 0.38* 
(0.12, 0.63) 

0.37* 
(0.11, 0.63) 

Age --- -0.24 
(-0.84, 0.37) 

-0.26 
(-0.87, 0.34) 

Purchase 
rate 

 
λ 

Female 
(male=0) 

--- --- -0.13 
(-0.29, 0.03) 

Intercept -5.14 
(-5.64, -4.72) 

-5.10 
(-5.88, -4.36) 

-5.06 
(-5.89, -4.34) 

Initial 
amount 

--- 0.14 
(-0.82, 1.10) 

0.02 
(-1.09, 0.94) 

Age --- -0.39 
(-2.32, 1.40) 

-0.15 
(-1.84, 1.39) 

Dropout 
Rate 

 
μ 

Female 
(male=0) 

--- ---  0.05 
(-0.60, 0.64) 

Intercept -1.18 
(-1.22, -1.13) 

-1.51 
(-1.63, -1.38) 

-1.49 
(-1.63, -1.36) 

Initial 
amount 

--- 0.50* 
(0.36, 0.65) 

0.50* 
(0.36, 0.64) 

Age --- 0.49* 
(0.13, 0.85) 

0.48* 
(0.12, 0.84) 

Spending 
Parameter

η 

Female 
(male=0) 

--- --- -0.03 
(-0.10, 0.05) 

correlation 
( log(λ), log(μ) ) 

0.20 
(-0.05, 0.44) 

0.21 
(-0.02, 0.43) 

0.19 
(-0.04, 0.42) 

correlation 
( log(λ), log(η) ) 

0.14* 
(0.01, 0.28) 

0.10 
(-0.04, 0.24) 

0.10 
(-0.05, 0.23) 

correlation 
( log(μ), log(η) ) 

0.01 
(-0.21, 0.22) 

-0.01 
(-0.23, 0.20) 

-0.01 
(-0.21, 0.21) 

marginal 
loglikelihood 

-2906 -2898 -2889 

 
* indicates significance at the 5% level 
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Table 8. Decomposition of CLV Elasticity into Three Components 
 

 

 Initial 
Amount 

AGE FEMALE

Total 0.302  0.102  -0.094  

frequency: ΕfCLV 0.130  -0.081  -0.064  

dropout:  ΕdCLV -0.005  0.032  -0.017  

spending: ΕsCLV 0.178  0.152  -0.013  
 

 
 
 

Table 9. Decomposition of CLV Elasticity into Three Components (Music CD) 
 
 

ID  mean(λ) mean(μ) mean(η) Mean 
Expected 
lifetime 
(years) 

1 year 
Survival 

rate 

Probability 
of being 
active at 

the end of 
calibration

Expected 
number of 

transactions 
in 

validation 
period 

Expected 
total 

spending 
in val. 
period 
(x104 
yen) 

CLV   
(x104 
yen) 

1 0.43 0.01104 0.777 7.1 0.649 0.993 9.7 7.87 43.0 
2 0.28 0.01218 1.014 6.5 0.641 0.864 5.5 5.81 35.1 
3 0.27 0.01073 0.875 6.8 0.654 0.979 6.1 5.55 30.5 
4 0.41 0.01211 0.561 4.5 0.613 0.964 9.0 5.28 26.0 
5 0.13 0.01136 1.409 6.1 0.660 0.824 2.4 3.51 22.7 
6 0.65 0.01439 0.349 3.5 0.574 0.837 12.0 4.36 22.6 
7 0.24 0.01204 0.784 4.2 0.622 0.753 3.9 3.23 20.5 
8 0.17 0.00910 0.834 6.1 0.687 0.990 3.9 3.40 18.9 
9 0.41 0.01129 0.399 4.3 0.629 0.995 9.2 3.85 18.6 

10 0.16 0.01020 0.855 5.9 0.668 0.953 3.6 3.23 18.1 
… … … … … … … … … … 

491 0.12 0.01454 0.123 4.6 0.612 0.743 1.9 0.25 1.6 
492 0.11 0.01037 0.120 5.3 0.662 0.756 1.7 0.22 1.5 
493 0.09 0.01172 0.134 5.5 0.649 0.725 1.5 0.21 1.5 
494 0.09 0.01207 0.138 5.2 0.640 0.709 1.4 0.20 1.5 
495 0.09 0.00887 0.118 5.9 0.689 0.960 2.1 0.26 1.5 
496 0.10 0.00995 0.117 5.8 0.674 0.982 2.2 0.27 1.4 
497 0.10 0.01250 0.120 5.4 0.641 0.792 1.8 0.22 1.4 
498 0.10 0.00947 0.115 5.3 0.679 0.919 2.0 0.24 1.4 
499 0.10 0.01158 0.118 4.8 0.644 0.824 1.8 0.23 1.4 
500 0.11 0.01485 0.119 4.5 0.597 0.598 1.3 0.16 1.3 

 
ave 0.14 0.01044 0.339 5.4 0.664 0.864 2.7 1.00 6.0 
min 0.08 0.00751 0.115 3.3 0.525 0.352 0.8 0.16 1.3 
max 0.65 0.02139 1.409 8.4 0.723 0.999 12.0 7.87 43.0 
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Figure 1. Weekly Cumulative Repeat Transaction Plot 

 
 
 

Figure 2. Conditional Expectation of Future Transactions 
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Figure 3. Conditional Expectation of Future Spending 

 
 
 

Figure 4. Scatter Plots of Posterior Means λ and η 
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Figure 5. Gain Chart of CLV based on HB model and Simple Recency 
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Figure 6. Impact of Covariates on CLV Decomposed into Three Components 
(Department store) 
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Figure 7. Impact of Covariates on CLV Decomposed into Three Components (Music CD) 
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