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Abstract

Tobit models are extended to allow threshold values which depend on indi-
viduals’ characteristics. In such models, the parameters are subject to as many
inequality constraints as the number of observations, and the maximum likeli-
hood estimation which requires the numerical maximisation of the likelihood is
often difficult to be implemented. Using a Bayesian approach, a Gibbs sampler
algorithm is proposed and, further, the convergence to the posterior distribution
is accelerated by introducing an additional scale transformation step. The pro-
cedure is illustrated using the simulated data, wage data and prime rate changes
data.

Key words: Bayesian analysis, Censored regression model, Markov chain Monte
Carlo, Sample selection model, Tobit model, Unknown censoring threshold.

1 Introduction

A censored regression model has been very popular and well-known as a standard
Tobit (Type I Tobit) model in economics since it was first introduced by Tobin (1958)
to analyze the relationship between household income and household expenditures on
a durable good where there are some households with zero expenditures (see e.g.,
Amemiya 1984 for a survey). The standard Type I Tobit model is given by

yi =

{
y∗i , if y∗i ≥ d,

n.a., otherwise,
i = 1, 2, . . . , n, (1)

y∗i = x′
iα + ϵi, ϵi ∼ i.i.d. N (0, τ2), (2)

where yi is a dependent variable, y∗i is a latent dependent variable, d is a censoring
limit, xi is a K × 1 covariate vector and α is a corresponding K × 1 regression
coefficient vector. We observe a response variable yi when it is greater than or equal
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to a threshold d. The threshold is assumed to be a known constant, and often set
equal to zero for convenience. Bayesian estimation method of such Tobit model was
first proposed by Chib (1992). Chib (1992) developed Gibbs sampling procedure using
the idea of data augmentation, which is widely used in the literature, and compared
the efficacy of the different Monte Carlo methods.

When d is unknown, it will be absorbed into the constant term of the regression,
and other coefficients are estimated properly. However, as discussed in Zuehlke (2003),
the individual threshold values may be of great interest and need to be estimated
separately. It is more natural to extend the standard Tobit model such that the
deterministic thresholds can vary with individuals depending on their characteristics.
In such a model with covariate dependent threshold, the i-th response variable yi is
observed if it is greater than or equal to a threshold di = w′

iδ where wi and δ are a
J × 1 covariate vector and a corresponding coefficient vector respectively.

The alternative extension of the standard Tobit model is known as a sample
selection model or a generalized Tobit (Type II Tobit) model in the literature,

yi =

{
y∗i , if z∗i ≥ 0,

n.a., otherwise,
i = 1, 2, . . . , n, (3)

z∗i = w′
iθ + ξi, (4)

y∗i = x′
iβ + ηi, (5)

where (ξi, ηi)′ ∼ i.i.d. N (0, Σ), (wi, xi) are independent variable vectors, (θ, β) are
corresponding coefficient vectors and the (1, 1) element of Σ is set equal to 1 for the
identification. The sample rule is determined by a latent random variable z∗i , and we
observe the response variable yi when z∗i ≥ 0. The latent variable z∗i is allowed to be
correlated with the response variable y∗i . When the correlation coefficient, ρ, between
(z∗i , y∗i ) is not equal to zero, a sample selection model is considered a Tobit model
with a stochastic threshold model.

However, the correlation coefficient is often estimated to be almost one in empiri-
cal studies (see e.g. Table 7 in Section 5.1). If ρ is equal to one, the generalized Tobit
model reduces to the special case of the Tobit model with covariate dependent thresh-
olds which we just mentioned above. Whether we should use a standard Tobit model,
a sample selection model or a Tobit model with covariate dependent thresholds has
been an important issue in the empirical studies (see Cragg 1971; Lin and Schmidt
1984; Melenberg and Soest 1996). In this paper, we take Bayesian approach to deal
with such a problem using a marginal likelihood (Chib 1995) and DIC (Deviance
Information Criterion, see Spiegelhalter, Best, Carlin, and van der Linde 2002) as a
model selection criterion.

The purpose of this paper is three-fold. First we propose a Markov chain Monte
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Carlo (MCMC) estimation method for a Tobit model with the thresholds which de-
pend on individuals’ characteristics. Since the parameters are subject to as many
inequality constraints as the number of observations, the numerical maximisation of
the likelihood is often difficult to be implemented. Using Bayesian approach, we de-
scribe a Gibbs sampler algorithm to estimate parameters, and, further, show that the
speed of convergence to the posterior distribution can be accelerated by adding one
more step to the simple Gibbs sampler.

Second, we extend our proposed model to a friction model introduced by Rosett
(1959) (see also Maddala 1983) with covariate dependent thresholds, and a two-limit
Tobit model with covariate dependent thresholds.

Third, we illustrate our proposed estimation methods using both simulated data
and real data. The real data examples include the popular example of hourly wage of
married women (discussed in Mroz 1987) and prime rate changes in Japan. For wage
data, the model comparison is conducted using a marginal likelihood and DIC.

The rest of the paper is organised as follows. In Section 2, we propose an efficient
Gibbs sampler for a Tobit model with covariate dependent thresholds and, in Section
3, extensions to friction model and two-limit Tobit model are discussed. Section 4
illustrates our proposed estimation method using simulated data. Empirical studies
are shown in Section 5 using wage data and prime rate changes data. Section 6
concludes the paper.

2 Tobit model with covariate dependent thresholds

2.1 Gibbs sampler

We first describe Gibbs sampler for a Tobit (standard Tobit Type 1) model (see
e.g., Chib 1995). The prior distributions of (α, τ2) are assumed to be distributed
conditionally multivariate normal and inverse gamma respectively,

α|τ2 ∼ N (a0, τ
2A0), τ2 ∼ IG

(
n0

2
,
S0

2

)
, (6)

where a0 is a K × 1 known constant vector, A0 is a K × K known constant matrix,
and n0, S0 are known positive constants. To implement Markov chain Monte Carlo,
we use a data augmentation method by sampling unobserved latent response variable
y∗i . Using y∗, model (1)–(2) reduces to an ordinary linear regression model, y∗ =
Xα+ ϵ, where y∗ = (y∗1, y

∗
2, . . . , y

∗
n)′, X ′ = (x1, x2, . . . , xn) and ϵ = (ϵ1, ϵ2, . . . , ϵn)′ ∼

N (0, τ2In). Given y∗, the conditional posterior distributions of (α, τ2) are

α|τ2, y∗ ∼ N (a1, τ
2A1), τ2|y∗ ∼ IG

(
n1

2
,
S1

2

)
,

3



where A−1
1 = A−1

0 +X ′X, and a1 = A1(A−1
0 a0+X ′y∗), n1 = n0+n, and S1 = y∗′y∗+

a′
0A

−1
0 a0 +S0−a′

1A
−1
1 a1 (see Appendix A1). Let yo = (yo,1, yo,2, . . . , yo,m)′ and y∗

c =
(y∗c,1, y

∗
c,2, . . . , y

∗
c,n−m)′ denote m×1 and (n−m)×1 vectors of observed (uncensored)

and censored dependent variables respectively (see Appendix A1). Then, we can
sample from posterior distribution using Gibbs sampler in two blocks:

1. Initialise α and τ2.

2. Sample y∗
c |α, τ2, yo.

Generate y∗c,i|α, τ2 ∼ T N (−∞,d)(x′
iα, τ2), i = 1, 2, . . . , n−m, for censored obser-

vations, where T N (a,b)(µ, σ2) denotes a normal distribution N (µ, σ2) truncated
on the interval (a, b).

3. Sample (α, τ2)|y∗
c , yo

(a) Sample τ2|y∗
c , yo ∼ IG(n1/2, S1/2),

(b) Sample α|τ2, y∗
c , yo ∼ N (a1, τ

2A1).

4. Go to 2.

Next, we extend it to the model with covariate dependent thresholds model. By
adding another block to the above sampler, we can derive the Gibbs sampler for the
Tobit model with covariate dependent thresholds. In the standard Tobit model (1)–
(2), the threshold d is assumed to be known and constant. However, it is usually
unknown and may vary with the individual characteristics. Thus we extend it to
allow unknown but covariate dependent thresholds as follows.

yi =

{
y∗i , if y∗i ≥ w′

iδ,

n.a., otherwise,
i = 1, 2, . . . , n, (7)

y∗i = x′
iα + ϵi, ϵi ∼ i.i.d. N (0, τ2), (8)

where (wi, xi) are J × 1 and K × 1 covariate vectors and (δ, α) are corresponding
J ×1 and K ×1 regression coefficient vectors. The known constant threshold d in (1)
is replaced by the unknown but covariate dependent threshold, w′

iδ.

To conduct Bayesian analysis of the proposed Tobit model (7)–(8), we assume
that prior distributions of (α, τ2) are given by (6) and that a prior distribution of δ

is δ|τ2 ∼ N (d0, τ
2D0). Then, the conditional posterior distributions of (α, τ2, δ) are

α|δ, τ2, y∗ ∼ N (a1, τ
2A1), τ2|δ, α, y∗ ∼ IG

(
n1

2
,
S1

2

)
,

δ|α, τ2, y∗ ∼ T NRo∩Rc(d0, τ
2D0),

where n1 = n0 +n+J, S1 = y∗′y∗ +a′
0A

−1
0 a0−a′

1A
−1
1 a1 +S0 +(δ−d0)′D−1

0 (δ−d0),
A−1

1 = A−1
0 + X ′X, a1 = A1(A−1

0 a0 + X ′y∗), Ro = {δ| w′
iδ ≤ yi for uncensored i},

4



Rc = {δ| w′
iδ > y∗i for censored i}(see Appendix A2). The Gibbs sampler is imple-

mented in three blocks as follows.

1. Initialise δ, α and τ2 where δ ∈ Ro.

2. Sample y∗
c |α, τ2, δ, yo. Generate y∗c,i|δ, α, τ2 ∼ T N (−∞,w′

i‹)(x′
iα, τ2), i = 1, 2, . . . , n−

m, for censored observations.

3. Sample (α, τ2)|δ,y∗
c , yo

(a) Sample τ2|δ, y∗
c , yo ∼ IG(n1/2, S1/2),

(b) Sample α|τ2, δ, y∗
c ,yo ∼ N (a1, τ

2A1).

4. Sample δ|α, τ2, y∗ ∼ T NRo∩Rc(d0, τ
2D0).

5. Go to 2.

Steps 2 and 3 are similar to those in the simple Tobit model. To sample from the
conditional posterior distribution of δ in Step 4, we generate one component δj of δ =
(δ1, δ2, . . . , δJ)′ at a time given other components δ−j = (δ1, . . . , δj−1, δj+1 . . . , δJ)′.
Since δ should lie in the region Ro∩Rc, the δj is subject to the constraint Lj ≤ δj ≤ Uj

where wi,−j = (wi1, . . . , wi,j−1, wi,j+1, . . . , wiJ)′,

Lj = max
i

Lij , Lij =


w−1

ij (yi − w′
i,−jδ−j) if wij < 0 for uncensored i ,

w−1
ij (y∗i − w′

i,−jδ−j) if wij > 0 for censored i ,

−∞, otherwise,

Uj = min
i

Uij , Uij =


w−1

ij (yi − w′
i,−jδ−j) if wij > 0 for uncensored i ,

w−1
ij (y∗i − w′

i,−jδ−j) if wij < 0 for censored i ,

+∞, otherwise.

Let d0,−j = (d01, . . . , d0,j−1, d0,j+1, . . . , d0J)′ and let D0,j,jD0,j,−j , D0,−j,−j denote a
prior variance of d0j , a prior covariance vector of d0j and d0,−j , and a prior covari-
ance matrix of d0,−j respectively. Then, we sample δj , for j = 1, 2, . . . , J , using the
conditional truncated normal posterior distribution,

δj |δ−j , α, τ2, y∗ ∼ T N (Lj ,Uj)(mj , s
2
jτ

2),

mj = d0j + D0,j,−jD
−1
0,−j,−j(δ−j − d0,−j),

s2
j = D0,j,j − D0,j,−jD

−1
0,−j,−jD

′
0,j,−j .

Note that this reduces to T N (Lj ,Uj)(d0j , τ
2D0,j,j) for a diagonal D0.
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2.2 Acceleration of the Gibbs sampler

The above sampling scheme for δ is to sample one component at a time which is
known to be an inefficient method, and the obtained samples may exhibit high auto-
correlations (see Sections 4.1 and 5.1).

To reduce such high sample autocorrelations, we consider a generalised Gibbs move
via the scale group Γ = {g > 0 : g(δ, α, τ, y∗

c ) = (gδ, gα, gτ, gy∗
c )} (see Appendix B).

Let xo,i denote the independent variable vector of the i-th observed response yo,i and
X ′

o = (xo,1, . . . , xo,m). Noting that λL < g−1 < λU where

λL = max
i

Lλ,i, Lλ,i =

 max
(
0,

w′
o,i‹

yo,i

)
, if yo,i > 0,

0, otherwise,

λU = min
i

Uλ,i, Uλ,i =

{
w′

o,i‹

yo,i
, if yo,i < 0,

∞, otherwise,

the acceleration steps are given as follows. When λU < ∞,

5. (a) Generate g−1 ∼ U(λL, λU ) where U(a, b) denotes a uniform distribution on
the interval (a, b).

(b) Accept g with probability

min
[
1, g−(n0+m−1) exp

{
−−2q(g−1 − 1) + r(g−2 − 1)

2τ2

}]
,

where q = α′X ′
oyo+α′A−1

0 a0+d′
0D

−1
0 δ, r = y′

oyo+a′
0A

−1
0 a0+d′

0D
−1
0 d0+

S0. If rejected, set g = 1.

(c) Let gδ → δ, gα → α, gτ → τ and gy∗
c → y∗

c .

6. Go to 2.

When λU = ∞, we replace Step 5 (a) (b) by

5. (a)′ Generate g−1 ∼ T N (λL,∞)(1, σ2
λ) where σ2

λ is some specified constant (e.g.,
σ2

λ = 0.52).

(b)′ Accept g with probability

min
[
1, g−(n0+m−1) exp

{
−−2q(g−1 − 1) + r(g−2 − 1)

2τ2
+

(g−1 − 1)2)
2σ2

λ

}]
.

If rejected, set g = 1.

We illustrate how effective this acceleration step is to improve the speed of the con-
vergence to the target posterior distribution in Sections 4.1 and 5.1.
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3 Extensions

In this section, we describe two useful econometric models which can be obtained as
extensions of our basic covariate dependent threshold model (7)–(8).

3.1 Friction model

First extension is a friction model introduced by Rosett (1959) (see also Maddala
1983). The model has been used, for example, to analyze the nominal and real wage
rigidity (Christofides and Li 2005), the prime rate change (Forbes and Mayne 1989),
and the price change of a product or brand over time (Desarbo, Rao, Steckel, Wind,
and Colombo 1987). The friction model with covariate dependent thresholds is given
by

yi =


y∗i − w′

iδ, if y∗i − w′
iδ < c,

c, if w′
iδ + c ≤ y∗i ≤ v′

iζ + c,

y∗i − v′
iζ, if y∗i − v′

iζ > c,

i = 1, 2, . . . , n, (9)

y∗i = x′
iα + ϵi, ϵi ∼ i.i.d. N (0, τ2). (10)

where c is a known constant. Since c is set equal to 0 in most applications, we focus
on the friction model with c = 0. Let R‹ and R“ denote truncation regions defined
by

R‹ = R‹,o ∩ R‹,c, R“ = R“,o ∩ R“,c,

R‹,o =
{
δ | w′

iδ ≤ v′
iζ for uncensored i

}
, R“,o =

{
ζ | w′

iδ ≤ v′
iζ for uncensored i

}
,

R‹,c =
{
δ | w′

iδ ≤ y∗i for censored i
}

, R“,c =
{
ζ | y∗i ≤ v′

iζ for censored i
}

.

Assuming that the normal prior distribution for ζ, ζ ∼ N (z0, τ
2Z0) and the same

prior distributions for other parameters as in the previous section (normal for α and
δ, inverse gamma for τ2), we implement Gibbs sampler in six blocks:

1. Initialise δ, ζ, α and τ2 where δ ∈ Rδ,o and ζ ∈ Rζ,o.

2. Sample y∗
c |α, τ2, δ, ζ, yo. Generate y∗c,i|δ, ζ, α, τ2 ∼ T N [w′

i‹,v′
i“](x′

iα, τ2), i =
1, 2, . . . , n − m, for censored observations.

3. Sample (α, τ2)|δ, ζ, y∗
c , yo

(a) Sample τ2|δ, ζ, y∗
c ,yo ∼ IG(n1/2, S1/2) where n1 = n0 + 2J + n and S1 =

y∗′y∗+a′
0A

−1
0 a0−a′

1A
−1
1 a1+S0+(δ−d0)′D−1

0 (δ−d0)+(ζ−z0)′Z−1
0 (ζ−

z0).

(b) Sample α|τ2, δ, ζ, y∗
c ,yo ∼ N (a1, τ

2A1) where A−1
1 = A−1

0 + X ′X and
a1 = A1(A−1

0 a0 + X ′y∗).

7



4. Sample δ|ζ, α, τ2, y∗ ∼ T NRδ
(d1, τ

2D1) where D−1
1 = D−1

0 +
∑

i∈O− wiw
′
i,

d1 = D1

{
D−1

0 d0 +
∑

i∈O−(x′
iα − yi)wi

}
and O− = {i | yi < 0}.

5. Sample ζ|δ, α, τ2, y∗ ∼ T NRζ
(z1, τ

2Z1). where Z−1
1 = Z−1

0 +
∑

i∈O+ viv
′
i, z1 =

Z1

{
Z−1

0 z0 +
∑

i∈O+(x′
iα − yi)vi

}
and O+ = {i | yi > 0}.

6. Go to 2.

3.2 Two-limit Tobit model

The second extension is a two-limit Tobit model in which the dependent variable is
doubly censored with known limits (see e.g., Maddala 1983). The model has been
applied in the various empirical studies, such as the estimation of electric vehicle
demand share equation (Hill 1987), and the stock price exchange movements with
limits (Charemza and Majerowska 2000). The extended two-limit model is given by

yi =

{
y∗i , if w′

iδ ≤ y∗i ≤ v′
iζ,

n.a., otherwise,
i = 1, 2, . . . , n, (11)

y∗i = x′
iα + ϵi, ϵi ∼ i.i.d. N (0, τ2), (12)

where yi is observed only when it falls within the interval, and the upper and lower
limits depend on the individual’s characteristics.

Assuming the same prior distributions as those in the previous friction model
(normal for α, δ, ζ, inverse gamma for τ2), we obtain the Gibbs sampling algorithm
as follows.

1. Initialise δ, ζ, α and τ2 where δ ∈ Rδ,o and ζ ∈ Rζ,o.

2. Sample y∗
c |α, τ2, δ, ζ,yo. Generate y∗c,i|δ, ζ,α, τ2 ∼ T N (−∞,w′

i‹)∪(v′
i“,∞)(x′

iα, τ2),
i = 1, 2, . . . , n − m, for censored observations.

3. Sample (α, τ2)|δ, ζ, y∗
c , yo

(a) Sample τ2|δ, ζ, y∗
c , yo ∼ IG(n1/2, S1/2),

(b) Sample α|τ2, δ, ζ, y∗
c , yo ∼ N (a1, τ

2A1).

4. Sample δ|ζ, α, τ2, y∗ ∼ T NRδ
(d0, τ

2D0).

5. Sample ζ|δ, α, τ2, y∗ ∼ T NRζ
(z0, τ

2Z0).

6. Go to 2.
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where n1, S1, a1, A1 are the same with those for the friction model (see Section 3.1),
and

Rδ = Rδ,o ∩ Rδ,lc ∩ Rδ,rc, Rζ = Rζ,o ∩ Rζ,lc ∩ Rζ,rc,

Rδ,o = {δ| w′
iδ ≤ yi for uncensored i}, Rδ,lc = {δ| w′

iδ > y∗i for left censored i},

Rδ,rc = {δ| w′
iδ < v′

iζ for right censored i}, Rζ,o = {ζ| v′
iζ ≥ yi for uncensored i},

Rζ,lc = {ζ| w′
iδ < v′

iζ for left censored i}, Rζ,rc = {ζ| v′
iζ < y∗i for right censored i}.

4 Illustrative examples

In this section, we consider two examples, (i) Tobit model with covariate dependent
thresholds and (ii) extended friction model, to illustrate our estimation procedure
using simulated data.

4.1 Tobit model with covariate dependent thresholds

First, we consider Tobit model with covariate dependent thresholds given by (7) and
(8). Let true values of the model be δ = (1, 5, 10)′, α = (2, 1, 1)′, and τ2 = 0.6.

All covariates are generated using a standard normal distribution, i.e., xij ∼ i.i.d.
N (0, 1). The number of generated observations is 500, and 53 percent of them were
censored. We assumed the prior distribution for δ, α and τ as follows:

δ|τ2 ∼ N (0, 10τ2I3), α|τ2 ∼ N (0, 10τ2I3), τ2 ∼ IG (0.1, 0.1) .

In the Gibbs sampling from the posterior distribution, the initial 2,000 variates are
discarded as the burn-in period and the subsequent 10, 000 values are retained.

Table 1: Posterior means, standard deviations, 95% credible intervals and inefficiency
factors obtained from simple Gibbs sampler

True Mean Stdev 95% Interval Inef

δ1 1.0 0.968 0.062 (0.868, 1.088) 6.6
δ2 5.0 4.933 0.204 (4.641, 5.448) 219.8
δ3 10.0 9.758 0.448 (9.124, 10.904) 219.5

α1 2.0 2.022 0.049 (1.926, 2.119) 1.6
α2 1.0 0.974 0.051 (0.874, 1.073) 3.3
α3 1.0 1.066 0.048 (0.972, 1.161) 3.5

τ2 0.6 0.624 0.058 (0.520, 0.750) 3.4

Table 1 shows the true parameter values, posterior means, standard deviations, 95
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% credible intervals, and inefficiency factors for the simple Gibbs sampler. The in-
efficiency factor is defined as 1 + 2

∑∞
s=1 ρs where ρs is the sample autocorrelation

at lag s, and are computed to measure how well the MCMC chain mixes (see e.g.
Chib 2001). It is the ratio of the numerical variance of the posterior sample mean to
the variance of the sample mean from uncorrelated draws. The inverse of inefficiency
factor is also known as relative numerical efficiency (Geweke 1992). When the inef-
ficiency factor is equal to m, we need to draw MCMC samples m times as many as
uncorrelated samples.

The posterior means are close to the true values, and all true values are contained
in the 95% credible intervals. The inefficiency factors are 1 ∼ 220 which seem to
increase as the value of δi becomes large. This is probably because the posterior
distribution for large δi’s becomes more sensitive to the linear inequality constraints.

Table 2: Posterior means, standard deviations, 95% credible intervals and inefficiency
factors obtained from accelerated Gibbs sampler

True Mean Stdev 95% Interval Inef

δ1 1.0 0.968 0.063 (0.868, 1.089) 4.9
δ2 5.0 4.928 0.191 (4.619, 5.363) 44.1
δ3 10.0 9.747 0.418 (9.080, 10.699) 46.2

α1 2.0 2.021 0.050 (1.923, 2.118) 2.4
α2 1.0 0.974 0.050 (0.879, 1.073) 1.7
α3 1.0 1.065 0.048 (0.971, 1.160) 1.9

τ2 0.6 0.625 0.058 (0.521, 0.746) 3.9

In Table 2, the corresponding summary statistics for the accelerated Gibbs sam-
pler are shown. The inefficiency factors of δi’s are 4 ∼ 47 suggesting that such an
acceleration step can improve the mixing property of the Markov chain.

Figure 1 shows the sample paths, sample autocorrelations functions, and estimated
marginal posterior distributions from the simple Gibbs sampler. While the sample
autocorrelations vanish quickly for α and τ2, those of δ do not vanish until 1500
lags indicating the slow convergence of the distribution of the MCMC samples to the
posterior distribution.

On the other hand, as shown in Figure 2, the sample paths from accelerated
Gibbs sampler indicate that the Markov chains are mixing very well and all sample
autocorrelations decay very quickly. It also shows that the acceleration step is effective
to improve the speed of the convergence to the target distribution in the MCMC
implementation.
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Figure 1: Tobit model. Simple Gibbs sampler.
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(c) Marginal posterior distributions.

Figure 2: Tobit model. Accelerated Gibbs sampler.
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4.2 Friction model

Next we illustrate our procedure for the friction model defined by (9) and (10). True
values are δ = (−1,−0.4)′, ζ = (0.5, 0.2)′, α = (2, 0.5)′, and τ2 = 0.49. Covariates
are generated using a standard normal distribution except for the second covariates
of wi and vi (i.e., wi2 and vi2) where they are obtained by taking the absolute value
of standard normal random variables. We generated five hundred observations, in
which 34.8 percent were censored. The 37 percent were positive, while 28.2 percent
were negative. Prior distributions are assumed as follows.

δ | τ2 ∼ N
(
0, 10τ2I2

)
, ζ | τ2 ∼ N

(
0, 10τ2I2

)
,

α | τ2 ∼ N
(
0, 10τ2I2

)
, τ2 ∼ IG (0.1, 0.1) .

(13)

The proposed Gibbs sampler is implemented where we discard first 4, 000 samples
and the subsequent 10, 000 samples are recorded to conduct Bayesian inference. Table
3 summarizes MCMC outputs: true parameter values, posterior means, standard
deviations, 95 % credible intervals, and inefficiency factors. The posterior means are
close to the true values, and all true values are contained in the 95% credible intervals.
The inefficiency factors for ζ, α and τ are not so large (7 ∼ 49) while those for δ

are larger (80 ∼ 110), suggesting that we may need a similar acceleration step to the
Gibbs sampler as in Section 4.1.

Table 3: Friction model: posterior means, standard deviations, 95% credible intervals,
and inefficiency factors

True Mean Stdev 95% Interval Inef

δ1 −1.0 −0.990 0.105 (−1.195, −0.788) 106.8
δ2 −0.4 −0.418 0.093 (−0.606, −0.247) 81.9

ζ1 0.5 0.399 0.093 ( 0.222, 0.590) 48.6
ζ2 0.2 0.233 0.077 ( 0.077, 0.381) 36.2

α1 2.0 1.957 0.056 ( 1.851, 2.071) 34.9
α2 0.5 0.499 0.038 ( 0.425, 0.574) 7.2

τ2 0.49 0.519 0.047 ( 0.434, 0.618) 17.8

Figures 3 shows the sample paths, sample autocorrelations functions, and esti-
mated marginal posterior distributions. The sample paths indicate that the Markov
chains are mixing well and all sample autocorrelations seem to decay fairly quickly
to zero. The estimated marginal posterior distributions have true values around their
mode as expected.
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Figure 3: Friction model.
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5 Empirical studies

5.1 Wage function of married women

First we apply the Tobit model with covariate dependent thresholds to the wage
function of married women using a simple and accelerated Gibbs sampler. We consider
the popular labor supply data by Mroz (1987) on 753 married white women in 1975
and compare three candidate models:

Model M1: Type 1 Tobit model with a fixed threshold

Model M2: Type 1 Tobit model with covariate dependent thresholds

Model M3: Sample selection (Type 2 Tobit) model

using marginal likelihoods and Deviance Information Criteria. The ages of those
women in the dataset are between thirty and sixty, and 428 individuals worked during
the year (hence 43.2% of wage data are censored). Table 4 shows variables considered
in the following analysis.

Table 4: Female labour supply data from Mroz (1987)

Variable name Description

wage wife’s average hourly earnings (in 10 dollars)

education years of schooling (standardized)
age wife’s age (standardized)
income family income (standardized)
kids 1 if there are children under 18, else 0
experience actual years of wife’s previous labour

market experience (standardized)
city 1 if live in large urban area, else 0

The dependent variable is wife’s average hourly earnings (in 10 dollars) and in-
dependent variables for the regression equation are education (years of schooling),
experience (actual years of wife’s previous labour), squared experience, and city (1
if live in large urban area, else 0). The education and experience variables are stan-
dardized such that their means and variances are equal to 0 and 1 respectively. The
independent variables for the threshold equation and selection equation are educa-
tion, age (wife’s age), squared age, income (family income) and kids (1 if live in large
urban area, else 0) The age and income variables are also standardized.
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Model M1 (Type 1 Tobit model with a fixed threshold). The initial 10,000 variates are
discarded and the subsequent 50, 000 values are recorded to conduct an inference. The
summary statistics are given in Table 5. The inefficiency factors are very low, which
implies the fast convergence of the distribution of MCMC samples to the posterior
distribution. The 95% credible intervals do not include zero for variables, education,
experience, and experience2. The posterior probability of positive (negative) effects is
greater than 0.95 for education and experience (for experience2).

Table 5: M1: Type 1 Tobit model with a fixed threshold

Posterior means, standard deviations, 95% credible intervals
and inefficiency factors

Variable Mean Stdev 95% Interval Inef

const −6.546 1.045 (−8.601, −4.503) 1.2
education 0.643 0.081 ( 0.484, 0.803) 1.0
experience 2.167 0.240 ( 1.705, 2.647) 2.3
experience2 −0.593 0.138 (−0.866, −0.324) 1.8
city −0.084 0.379 (−0.822, 0.661) 0.8
τ2 20.013 1.483 ( 17.293, 23.108) 4.2

Model M2 (Type 1 Tobit model with covariate dependent thresholds). Using the gen-
eralised Gibbs sampler discussed in Section 2, the initial 20,000 variates are discarded
and the subsequent 100, 000 values are recorded where the acceptance rate of MH al-
gorithm in the acceleration step was 57.6%. The summary statistics are given in Table
6. The inefficiency factors are based on the Gibbs sampler with the acceleration step
(the factors without the acceleration step are given in brackets). The inefficiencies
for regression equations are relatively small, while those for the threshold equation
are still large in the range of 150 ∼ 840 even with the acceleration step.

In the estimated threshold equation, the 95% credible intervals do not include
zero for age2 and income, indicating that the individual threshold of reserved wage
varies with these characteristics. The married women with higher family income
tend to have higher reservation wage, while those with high education seem to have
negative effects on reservation wage. For the regression equation, summary statistics
are similar to those obtained in the standard Tobit model (Table 5).

Model M3 (Type 2 Tobit model). The initial 10,000 variates are discarded and the
subsequent 50, 000 values are recorded. The summary statistics are given in Table 7.
The inefficiency factors are relatively small.
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Table 6: M2: Type 1 Tobit model with covariate dependent thresholds

Posterior means, standard deviations, 95% credible intervals and inefficiency
factors [inefficiency factors obtained from the simple Gibbs sampler]

Threshold equation

Variable Mean Stdev 95% Interval Inef [Inef]

const 0.685 0.408 (−0.203, 1.385) 834.8 [1713.5]
education −0.039 0.028 (−0.090, 0.015) 819.1 [1748.8]
age 0.114 0.056 (−0.003, 0.213) 166.5 [ 504.1]
age2 0.132 0.079 ( 0.015, 0.237) 153.2 [ 180.0]
income 0.205 0.150 ( 0.072, 0.368) 403.0 [1084.5]
kids −0.027 1.008 (−0.295, 0.304) 434.1 [ 727.6]

Regression equation

Variable Mean Stdev 95% Interval Inef [Inef]

const −6.179 0.078 (−8.174, −4.221) 5.9 [7.1]
education 0.623 0.230 ( 0.471, 0.778) 5.6 [7.0]
experience 2.054 0.133 ( 1.610, 2.513) 3.0 [3.5]
experience2 −0.553 0.133 (−0.817, −0.295) 1.9 [2.1]
city −0.030 0.365 (−0.749, 0.686) 0.6 [1.0]
τ2 18.42 1.363 ( 15.927, 21.266) 6.8 [6.1]

In the selection equation, The 95% credible intervals do not include zero for
variables, education and income. The posterior probability that education (family
income) has positive (negative) effect on the participation in the labour market is
greater than 0.95.

For the regression equation, summary statistics are somewhat similar to those
obtained in the standard Tobit model and a Tobit model with covariate dependent
thresholds (Tables 5 & 6). The correlation coefficient ρ is found to be very high,
suggesting that models M1 or M2 may be preferred.

We compared three models using the marginal likelihoods and the DIC. The
marginal likelihoods and their standard errors are computed using the method of
Chib (1995), and the DIC and their standard errors are based on 20 iterations of
5000 samples. The results are shown in Table 8. Using the marginal likelihood as a
criterion of model selection, the model M1 has the largest value and selected as the
best model. On the other hand, using the DIC, the model M2 attains the smallest
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value and selected as the best. This difference might be because the DIC sometimes
tends to choose less parsimonious models as AIC (Akaike Information Criterion) as
discussed in Spiegelhalter et al. (2002). However, we note that our Tobit model with
covariate dependent thresholds is a good alternative model to the standard Tobit and
Type 2 Tobit models.

Table 7: M3: Sample selection (Type 2 Tobit) model

Posterior means, standard deviations, 95% credible intervals
and inefficiency factors

Selection equation

Variable Mean Stdev 95% Interval Inef

const −1.618 0.246 (−2.100, −1.137) 14.8
education 0.145 0.019 ( 0.107, 0.182) 13.9
age −0.014 0.028 (−0.071, 0.038) 61.7
age2 −0.000 0.026 (−0.052, 0.052) 37.2
income −0.067 0.029 (−0.121, −0.008) 53.4
kids −0.077 0.066 (−0.213, 0.048) 48.5

Regression equation

Variable Mean Stdev 95% Interval Inef

const −6.320 0.931 (−8.164, −4.505) 3.8
education 0.619 0.073 ( 0.476, 0.764) 2.4
experience 0.398 0.123 ( 0.159, 0.642) 57.6
experience2 −0.078 0.072 (−0.225, 0.061) 25.1
city 0.040 0.194 (−0.343, 0.422) 41.0
σ2 17.64 1.396 ( 15.035, 20.511) 83.5

ρ 0.991 0.004 ( 0.982, 0.996) 99.6

Table 8: Log marginal likelihood and DIC

Model Log Marginal Likelihood DIC

M1 −1489.5 (0.002) 2937.4 (0.1)
M2 −1516.9 (0.03) 2901.7 (0.8)
M3 −1536.1 (0.88) 2984.8 (0.7)
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5.2 Prime rate changes

The second example is an application of the friction model with covariate dependent
thresholds to the study on prime rate changes in Japan. The prime rate is the bank’s
lending rate for most favorable customers, and, because of its sticky movement, a
friction model is sometimes applied to analyze prime rate changes (see e.g., Forbes
and Mayne 1989). In this example, we use the monthly short-term prime rate data
(principal banks) from July 1985 through June 2006 reported by Bank of Japan (see
Figure 4).
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Prime rate

(%)

Figure 4: Monthly prime rate data in Japan.

Table 9: Variables for the friction model of prime rate changes

Variable name Description

dprimet difference of the prime rates at months t and t − 1

dcallt difference of the average call rates at months t − 1 and t − 2 (standardized)
damountt difference of the outstanding amounts in the call money market

at the end of months t − 1 and t − 2 (standardized)
iipt index of the industrial productions for

durable consumer goods shipment at month t (standardized)
salest commercial sales value ratio of the wholesale at month t:

ratio to the same month of the previous year (standardized)
unemployt number of unemployed persons at month t (standardized)

Table 9 summarizes the variables we considered. The dependent variable is the
difference of the prime rates at times t and t − 1. There are two hundred fifty
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observations in which 9 and 24 observations show positive and negative prime rate
changes, respectively. The sample mean, standard deviation, minimum and maximum
are −0.017, 0.173, −0.750, and 0.875.

The independent variables for the regression equation are differences of the average
call rates and amounts (reported by Bank of Japan) in the call money market at
months t − 1 and t − 2, and independent variables for the threshold equations are
selected from those related to the business cycle: index of industrial production for
durable consumer goods shipment, commercial sales value ratio of the wholesale, and
the number of unemployed persons at month t. First two variables are reported by
Ministry of Economy, Trade and Industry, while the number of unemployed persons
is reported by Ministry of Internal Affairs and Communications.

Table 10: Friction model of prime rate changes:
Posterior means, standard deviations, 95% credible intervals

and inefficiency factors

Threshold equations

Mean Stdev 95% Interval Inef

Lower threshold
δ1 (const) −1.746 0.441 (−2.846, −1.090) 359.9
δ2 (iip) −0.150 0.160 (−0.495, 0.140) 47.3
δ3 (sales) −0.187 0.180 (−0.571, 0.143) 45.0
δ4 (unemploy) −0.511 0.206 (−0.993, −0.183) 148.3

Upper threshold
ζ1 (const) 2.848 0.821 ( 1.659, 4.845) 358.5
ζ2 (iip) −0.537 0.301 (−1.228, −0.052) 158.6
ζ3 (sales) −0.809 0.373 (−1.689, −0.235) 220.1
ζ4 (unemploy) −0.456 0.296 (−1.124, 0.054) 126.3

Regression equation

Mean Stdev 95% Interval Inef

α1 (dcall) 0.327 0.118 ( 0.132, 0.598) 137.8
α2 (damount) 0.180 0.129 (−0.049, 0.462) 57.6

τ2 1.152 0.558 ( 0.484, 2.619) 348.2
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To estimate parameters of the proposed friction model, we generated 100, 000
MCMC samples after discarding 40, 000 samples, The results are found in Table 10.

In the regression equation, the posterior probability that the call rate changes
have a positive effect on prime rate changes is greater than 0.95. This result is quite
natural because the call rate is used as one of instruments for the central bank’s policy
in order to control interest rates.

Among independent variables for the threshold equations, the unemployment rate
has a negative effect on the lower threshold, while other variables (iip and sales) have
negative effects on the upper threshold, because their 95% credible intervals do not
include 0. The lower unemployment rate would increase the lower threshold, while
the higher index of industrial production or the higher commercial sales value ratio
would decrease the upper threshold. Thus, these results indicate that banks would
change the prime rates more often when the economy is expanding than when it is
declining.

6 Conclusion

Bayesian analysis of a Tobit model with covariate dependent thresholds is described
using the MCMC estimation method, and the acceleration step based on Liu and
Sabatti (2000) is introduced to improve the mixing property of the MCMC samples.
Two important extensions of the proposed models are also discussed.

Numerical examples using simulated data are given to illustrate the proposed esti-
mation methods and their efficiencies are investigated. In empirical studies, using the
labor supply data on the married women, the Tobit model with covariate dependent
thresholds is estimated and model comparisons are conducted based on the marginal
likelihood and Deviance Information Criterion. Further, the friction model with co-
variate dependent thresholds is estimated using the prime rate data in Japan.
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Appendix A

A1 Posterior probability densities for a standard Tobit model

Joint posterior probability density of (y∗
c , α, τ2).

π(y∗
c , α, τ2|yo) ∝ (τ2)−

n
2 exp

{
− 1

2τ2
(y∗ − Xα)′(y∗ − Xα)

} ∏
i

I(y∗c,i ≤ d)

× (τ2)−
K
2 exp

{
− 1

2τ2
(α − a0)′A−1

0 (α − a0)
}
× (τ2)−(n0

2
+1) exp

{
− S0

2τ2

}
Conditional posterior probability density of (α, τ2).

π(α, τ2|y∗
c , yo) = π(τ2|y∗

c , yo)π(α|τ2,y∗
c , yo)

∝ (τ2)−(n1
2

+1) exp
{
− S1

2τ2

}
× (τ2)−

K
2 exp

{
− 1

2τ2
(α − a1)′A−1

1 (α − a1)
}

where n1 = n0 + n, S1 = y∗′y∗ + S0 + a′
0A

−1
0 a0 − a′

1A
−1
1 a1, A−1

1 = A−1
0 + X ′X, a1 =

A1(A−1
0 a0 + X ′y∗).

Conditional posterior probability distribution of y∗. y∗i ∼ T N (−∞,d)(x′
iα, τ2) for cen-

sored observation.

A2 Joint posterior density of (y∗
c ,α, τ 2).

π(y∗
c , α, τ2|yo) ∝ (τ2)−

n
2 exp

{
− 1

2τ2
(y∗ − Xα)′(y∗ − Xα)

} ∏
i

I(y∗c,i ≤ w′
iδ)

∏
j

I(y∗o,j ≥ w′
jδ)

× (τ2)−
K
2 exp

{
− 1

2τ2
(α − a0)′A−1

0 (α − a0)
}
× (τ2)−

J
2 exp

{
− 1

2τ2
(δ − d0)′D−1

0 (δ − d0)
}

× (τ2)−(n0
2

+1) exp
{
− S0

2τ2

}
Conditional posterior probability density of (α, τ2).

π(α, τ2|δ,y∗
c , yo) = π(τ2|δ, y∗

c , yo) × π(α|δ, τ2, y∗
c , yo)

∝ (τ2)−(n1
2

+1) exp
{
− S1

2τ2

}
× (τ2)−

K
2 exp

{
− 1

2τ2
(α − a1)′A−1

1 (α − a1)
}

where n1 = n0 +n+J, S1 = y∗′y∗ +S0 +a′
0A

−1
0 a0−a′

1A
−1
1 a1 +(δ−d0)′D−1

0 (δ−d0),
A−1

1 = A−1
0 + X ′X, a1 = A1(A−1

0 a0 + X ′y∗).
Conditional posterior probability distribution of y∗. y∗i |α, τ2 ∼ T N (−∞,w′

i‹)(x′
iα, τ2)

for censored observation.
Conditional posterior probability distribution of δ. δ|y∗

c , yo ∼ T NRo∩Rc(d0, τ
2D0).
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Appendix B Acceleration of the Gibbs sampler

To accelerate the convergence, we use a generalised Gibbs sampler introduced by Liu
and Sabatti (2000). Consider a scale group Γ = {g > 0 : g(φ) = (gδ, gα, gτ, gy∗

c )}
where φ = (δ, α, τ, y∗

c ). The unimodular left-Harr measure L(dg) for this scale
group is L(dg) = g−1dg and the corresponding Jacobian is Jg = gJ+K+1+n−m. Let
(wo,i, xo,i) denote the independent variable vectors of the i-th observed response yo,i

and X ′
o = (xo,1, . . . , xo,m). By Theorem 1 of Liu and Sabatti (2000), the conditional

probability density of g is given by

π(g|φ, yo) ∝ π(gδ, gα, gτ, gy∗
c |yo) × |Jg| × L(dg)

∝ g−(n0+m−1) × g−2 exp
[
−−2qg−1 + rg−2

2τ2

]
I(λL ≤ g−1 ≤ λU ),

where q = α′X ′
oyo + α′A−1

0 a0 + d′
0D

−1
0 δ and r = y′

oyo + a′
0A

−1
0 a0 + d′

0D
−1
0 d0 + S0.

Since this is not a well-known distribution, we conduct Metropolis-Hastings algorithm
to sample from π(g|φ, yo). When λU < ∞, we generate a candidate g′−1 ∼ U(λL, λU )
given the current point g. We accept g′ with probability

min

[
1,

(
g′

g

)−(n0+m−1)

exp
{
−−2q(g′−1 − g−1) + r(g′−2 − g−2)

2τ2

}]
.

We usually need to repeat the algorithm until it converges to π(g|φ, yo). However, by
Theorem 2 of Liu and Sabatti (2000), we only need to conduct Metropolis-Hastings
algorithm once using the initial value g = 1 since the Metropolis-Hastings transition
kernel function satisfies T’(g, g′) = Tg−1

0 (’)(gg0, g
′g0) for all g, g′, g0 ∈ Γ where

T’(g, g′)L(dg′)

=
I(λL < g′−1 < λU )

g′2(λU − λL)
min

[
1,

(
g′

g

)−(n+m−1)

exp
{
−−2q(g′−1 − g−1) + r(g′−2 − g−2)

2τ2

}]
dg′,

where g ̸= g′, and T’(g, g)L(dg) = 1 −
∫

T’(g, g′)L(dg′). Thus, we generate a candi-
date g′ and accept it with probability

min
[
1, g′−(n0+m−1) exp

{
−−2q(g′−1 − 1) + r(g′−2 − 1)

2τ2

}]
.

Similarly, when λU = ∞, we generate a candidate g′−1 ∼ T N (λL,∞)

(
1, σ2

λ

)
, for some

σ2
λ and accept g′ with probability

min
[
1, g′−(n0+m−1) exp

{
−−2q(g′−1 − 1) + r(g′−2 − 1)

2τ2
+

(g′−1 − 1)2

2σ2
λ

}]
.
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