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Abstract

In this paper, it is shown that real indeterminacy of stationary equilibria generically arises in
most matching models with perfectly divisible fiat money. In other words, the real indeterminacy
follows from the condition for stationarity of money holdings, and surprisingly it has nothing to
do with the other specifications, e.g., the bargaining procedures, of the models. Thus if we assume
the divisibility of money in money search models, it becomes quite difficult to make accurate
predictions of the effects of some policies.
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1 Introduction

Recently, real indeterminacy of stationary equilibria has been found in matching models
with fiat money. (See, for example, Green and Zhou [5] [6], Matsui and Shimizu
[15], and Zhou [22].}) In this paper, it is shown that real indeterminacy generically
arises in most matching models with perfectly divisible money. In other words, the
real indeterminacy follows from the condition for stationarity of money holdings, and
surprisingly it has nothing to do with the other specifications, e.g., the bargaining
procedures, of the models.

It is well known that some general equilibrium models have intrinsic multiplicity of
equilibria. (See, for example, Gale [3], Geanakoplos and Mas-Colell [4], Herings [8],
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LGreen and Zhou [6] have found real indeterminacy of dynamic equilibria from an initial state as well.




Samuelson [17], and van der Laan [21].) Overlapping generations models, for example,
have such real indeterminacy of equilibria; in the so-called Samuelson’s case, there is a
continuum of equilibria parameterized by the first period consumption. Nevertheless,
stationary equilibria are typically determinate in intertemporal general equilibrium
models; for example, overlapping generations models have generically a finite number
of stationary equilibria.? (See Kehoe and Levine [14].)

However, it is recently shown that even stationary equilibria are indeterminate in
a few matching models with divisible money referred above. Though some authors
intuitively argued that specific bargaining procedures lead to the intrinsic multiplicity
of equilibria, the logic behind the real indeterminacy has not been found so far. In this
paper, it is shown that the real indeterminacy results from the condition for stationarity
of money holdings, independently of the details of the models.

A sketch of our idea is as follows. Suppose the nominal stock of money is given.
When the price level is lower, there is more liquidity in the economy, the trade is more
frequent, and therefore the welfare level is higher. When the price level is higher, there is
less liquidity in the economy, the trade is less frequent, and therefore the welfare level
is lower. If we can find the corresponding equilibrium values of the other variables,
such as the money holdings distribution and the value function, as the price level
continuously varies, then the real indeterminacy follows. More precisely, if the number
of variables is larger than that of equations, then by applying the implicit function
theorem this property holds. In this paper, we show that the stationary condition of
money holdings, common to all random matching models of money, has at least one
more variable than the number of equations. Thus the stationary equilibria in such
models are indeterminate.

More specifically, we consider the case of one fiat money. Suppose it is perfectly
divisible and there is an upper bound of its holdings. We confine our attention to
stationary equilibria in which, for some positive number p, all trades occur with its
integer multiple amounts of money.?> We focus on stationary distributions on {0, ..., N}
expressed by h = (h(0),...,h(N)), where h(n) is the measure of the set of agents with
np amount of money, and N < oo is the upper bound. In the condition for stationarity
of money holdings, there are (N 4 1) variables, h(n), n =0,..., N. On the other hand,
since Y2 0, = SN I, always holds, where O, (I,,) is the outflow (inflow resp.) at

2Recently, Nishimura and Shimomura [16] find a continuum of stationary equilibria in a dynamic trade model.
However, the logic behind the indeterminacy is quite different from ours.

3Any type of trades with integer multiple of p, e.g., equilibrium price dispersion as in Kamiya and Sato [11], is
allowed.




n, then, at first glance, there seem to be (N + 1) independent equations, O, = I,
n=1,...,N,and 3" h(n) = 1. Thus it seems that the numbers of independent
equations and variables, h(n),n = 0,..., N, are the same. However, surprisingly it can
be shown that one more equation is always redundant and that the system of equations
has always at least one degree of freedom; namely, 25:1 nQ0, = 25:1 nl, always holds.
This fact is the key to the real indeterminacy of stationary equilibria.

We present the concept of a stationary quasi-equilibrium which is weaker than a
stationary equilibrium. It enables us to analyze matching models in a general way.
Note that, in most of the specific models, it can easily be shown that a stationary
quasi-equilibrium is indeed a stationary equilibrium. Let V' = (V(0),...,V(N)) and
be a value function and a vector of proportions of agents who take a certain pure strat-
egy, respectively, and (V* h*, 3*) be a stationary quasi-equilibrium. Then, due to the
indeterminacy of stationary distributions, it seems that there exists another station-
ary quasi-equilibrium (V, h, ) in a small neighborhood of (V*, h*, 5*). Indeed, using
differential topology, we can show that the existence of a stationary quasi-equilibrium
generically leads to the existence of a continuum of them. It can also be shown that
real allocations are generically not constant in a connected set of the stationary quasi-
equilibria.

We also present a sufficient condition that the indeterminacy of stationary quasi-
equilibria implies that of stationary equilibria. That is any model satisfying this con-
dition has a continuum of stationary equilibria as well as a continuum of stationary
quasi-equilibria. In some matching models with indivisible money, such as Camera
and Corbae [2], Shi [18], and Trejos and Wright [20], the stationary equilibria are de-
terminate. However, if once they are extended to the models with perfectly divisible
money, then real indeterminacy generically arises. Indeed, these models satisfy the
sufficient condition. Moreover, we directly show that the Camera and Corbae’s model
with divisible money has real indeterminacy of stationary equilibria.

Even if we maintain the assumption of indivisible money, the above arguments
suggest that the greater the divisibility of money, the larger the number of equilibria.
In other words, for a fixed money supply and a fixed upper bound of money holdings,
there are much larger number of equilibria in the case of one unit of money being one
cent than in the case of one hundred dollars.

We believe that the general results found in the present paper are worthy by them-
selves, but they also shed a new light on other aspects of monetary economics. In the



literature, the welfare effect of monetary policy has often been discussed in matching
models with money, and in most of these models money is indivisible and the station-
ary equilibria are determinate. Thus the effects of the policies are determinate as well.
However, if we assume the divisibility of money in these models, the stationary equilib-
ria become indeterminate. Thus it is quite difficult to make accurate predictions of the
effects of simple policies in such models. Instead, in the accompanying paper [12], we
investigate a sophisticated policy which selects a determinate efficient equilibrium. It
is also worthwhile noting that by using the results on indeterminacy we can relatively
easily prove the existence of stationary equilibria in matching models with divisible
money. (See Kamiya and Shimizu [13] and Kamiya et al. [10].)

The plan of this paper is as follows. In Section 2, we first present our basic model
and examples. In Section 3, the key feature of stationary distributions is proved,
and then in Section 4, the real indeterminacy is informally discussed; the rigorous
discussion and the proofs are given in Appendix B. Some models with a continuum of
stationary equilibria are also given. Moreover, we present a sufficient condition that
the indeterminacy of stationary quasi-equilibria implies that of stationary equilibria,
and discuss the case of indivisible money. In Section 5, we relax some assumptions
given in Section 2; such as possibility of multiple money, possibility of the matchings
not being pairwise, possibility of money holdings giving some utility, and possibility of
discarding the upper bound of money holdings.

2 The Basic Model and Examples

In this section, we present the basic model. Since our concern is mainly on the station-
arity of money holdings, the other aspects of the model are described in a quite general
way. For concrete examples of the basic model, see Zhou [22]’s model in Section 2.2
and a divisible money version of Camera and Corbae [2]’s model in Section 2.3.

2.1 The Basic Model

We make the following assumptions in most parts of this paper for simplicity: there is
only one kind of money, the matching is pairwise, money holdings give no utility, and
there is an upper bound of money holdings. All of these assumptions will be relaxed
in Section 5.

Throughout this paper, we assume that there are infinitely lived agents with a



nonatomic mass of measure one. Our model can be considered both as a continuous-
time model and as a discrete-time model depending on the interpretations of the match-
ing technology presented below. There is one fiat money which is perfectly durable and
divisible. Although money is traded for perishable goods, we do not explicitly specify
them; all the results in what follows can be obtained no matter what the specification
is.

We confine our attention to stationary equilibria in which, for some positive number
p, all trades occur with its integer multiple amounts of fiat money.* In what follows,
we focus on stationary distributions on {0,..., N} expressed by h = (h(0),...,h(N)),
where h(n) is a measure of the set of agents with np amount of money, and the upper
bound N < oo can be either exogenous or endogenous. Of course, h(n) > 0 and
SN h(n) =1 hold. Let M > 0 be a given supply of the medium of exchange. Since
p is uniquely determined by 3. pnh(n) = M for a given h (unless h(0) = 1), then,
deleting p from {0,p,2p, ..., Np}, the set {0,..., N} can be considered as the state
space.

An agent with n chooses an action in A,, = {ai,...,ax,}. Note that we restrict
our attention to a finite action space. Let 3,; > 0 be the proportion of the agents
choosing an action a; among the agents with n, and 5 = (Bo1,...,Bnjs-- -, ONkn)-
Thus Z?il B.j = 1 holds. Define h(n,j) as h(n,j) = Bajh(n). Let v € R* be the
parameter of the model.

The technology of pairwise matching is described by random matching process and
the following function f. When an agent with (n,j) meets an agent with (n’, j"), the
former’s and the latter’s states will be n + f((n, ), (n',j")) and n' — f((n,7), (', j')),
respectively.® That is f maps an ordered pair ((n, ), (n,5')) to a non-negative integer
f((n,7),(n,75"). Here “ordered” means, for example, that the former is a seller and
the latter is a buyer. When N is exogenously determined, we assume

N =n+ f((n,j),(n,5")) and n' = f((n,]), (') = 0.

When N is endogenously determined, we assume the latter condition while the former
one should be satisfied on the equilibrium path.

By random matching process, the rate of matching between agents with (n,j) and
(n',j') is written as ah(n, j)h(n', j') for some o > 0. Note that « is a parameter and is

4Note that we do not exclude the case in which one good is traded for multiple prices, i.e., the case of price dispersion.

51n this formulation it is implicitly assumed that the bargaining immediately ends on the equilibrium path. However,
it is not a substantial drawback of our model, because we could analyze a situation in which the bargaining delays by
extending the state space.



included in 7. Needless to say, in discrete time cases, the proportion ah(n, j)h(n’, j') of
agents move from n to n+ f((n, j), (n,7') and n’ ton' — f((n, j), (n,7')) in each period.
In continuous time cases, ah(n,j)h(n', ;') is the time derivative of the proportion of
such movements.

We adopt a Bellman equation approach. Let V(n) be the value of state n, n =
0,...,N. The variables in the model are denoted by = = (V,h, ). Let W,;(z,v) be
the value of action j at state n. Thus, in equilibria, W,,;(x,v) = V(n) holds for j such
that 3,; > 0. Note that W,;(z,v) includes the utility and/or the production cost of
perishable goods.

Remark 1 One may think that our model is too restrictive in two points: confining our
attention to stationary equilibria in which all trades occur with some integer multiple
of p and to a finite action space. Moreover, some might think that such an equilibrium
does not exist in Camera and Corbae [2]’s model or in Trejos and Wright [20]’s model if
money is divisible. However, we will later show that it really exists. Also, as for finite
action space, we will later show that many matching models with divisible money can
be converted into the models with finite action spaces. More specifically, see Section
2.2 and 4.1 for Zhou [22]’s model, and see Section 2.3 and 4.2 for the divisible money
version of Camera and Corbae [2]’s model. For Trejos and Wright [20]’s model and a

general discussion, see Section 4.4.

Remark 2 The rate of matching can be much more general. That is even if it is some
function of (n, j), (0, j'), h, and B, the arguments in what follows do not change. The
general model, for example, includes so-called “directed search” models such as Matsui
and Shimizu [15].

Remark 3 It is worthwhile noting that, in the case of time-additive expected utility

in discrete time, W,,; can be for example written as:
an(l', ’7) = U(ha 67 ja 7) + HE(V(nI) |h7 Ba ja TL),

where k is a discount factor, U is the temporal utility, and E(V(n')|h, 3, j,n) is the
expectation of V(n’) conditional on h,3,j,n. We can also analyze the case that U
depends on the amount of money. For the details, see Section 5.

Remark 4 We can easily extend our model to the case that prices are not neces-
sarily nonnegative integer multiples of p. For example, suppose the state space is



{0,0,V2p, ..., (01 +12V2)p, ..., (Ny + Nov/2)p}, and p and v/2p are the equilibrium
prices. Then we can obtain the same results as in the case of nonnegative integer
multiples of p. In fact, our argument is applicable to any finite state space.

Remark 5 Our model includes the case that both barter and monetary exchange are
possible, such as Shi [18]. It is worthwhile noting that, as far as some monetary
exchange exists in equilibria, our argument in the following sections are applicable.

2.2 Zhou Model

In Zhou [22], time is continuous, and pairwise random matchings take place according
to Poisson process with a parameter u. There are k types of agents with equal fractions
and the same number of types of goods. Only one unit of good 7 can be produced and
held by a type i — 1 (mod k) agent. The production cost is ¢. A type i agent obtains
utility w > 0 only when she consumes one unit of good . Fiat money is divisible and
there is no inventory constraint on fiat money. For every matched pair, the seller posts
a take-it-or-leave-it price offer, ignorant of the buyer’s money holdings.

Zhou shows the existence of “single price equilibria” in which all trades occur with
a price p*. In the equilibria, the support of money holdings distribution is endoge-
nously bounded. Let the support be {0,p*, 2p*, ..., Np*}, where N is endogenously
determined. Note that, as long as symmetric Markov equilibria concerned, the value
function depends only upon current money holdings. It is verified that this type of
equilibria is included in our model as follows:

e 1 (n) is the fraction of agents with np* amount of fiat money.

o A, = ;{aj}jeKn, where K, = {(o,7)]o = 0,1,...,N,r = 0,1,...,n} for some
finite N, i.e., k, = #K,, (here, we have slightly abused the notations; j denotes
an action instead of an integer). An action a; = a(,,) means that an agent offers
op* when she is a seller, and she accepts the partner’s offer if and only if the offer
price is less than or equal to rp* when she is a buyer.

e f((n,j),(n', 7)) is the monetary transfer between a seller (n,j) and a buyer
(n',4"). Thus

0 otherwise.

[ ((n, (0,1)) , (', (0),7")) = { o o<y



e The time derivative of the matching between a seller (n, j) and a buyer (n’,j) is
(1/Ek)h(n, ))R(n, 5').
e V' (n) is the value of np*.

In order to discuss stationary equilibrium, we also need to consider actions excluded
from our action space, and the strategy and the value at n ¢ {0,p*,..., Np*}. In
Section 4.1, we will show that the above specifications are sufficient.

2.3 Divisible Money Version of Camera and Corbae Model

Camera and Corbae [2] (referred to below as CC) analyze a model in which fiat money
is indivisible, there is an exogenously given upper bound of money holdings, and goods
are perfectly divisible. In this subsection, we extend the model to the case of perfectly
divisible fiat money. Later we show that there is a continuum of stationary equilibria
of which strategies are similar to the strategy in CC.

CC’s model is similar to Zhou’s. The differences are the divisibility of goods, the
bargaining procedure, and the specifications of fiat money. By consuming ¢ unit of
goods, an agent obtains utility U (¢) = ¢'=*/ (1 — \), where X € (0, 1) is a parameter.
The cost function is C'(q) = ¢q. After observing the seller’s money holdings, the buyer
posts a take-it-or-leave-it offer (d, ¢), where d and ¢ are quantities of money and goods,
respectively.

In the original version of CC model, one unit is no longer divisible. Agents are under
a money holding constraint; N is the maximum unit they can hold. Let M?® be the
total units of money supply. Note that N and M* are exogenously given in CC.

Let us turn to the case of divisible money. For a given p* > 0, we will later analyze
an equilibrium in which all trades occur with p* amount of fiat money. Agents behave
as if p* were the minimum unit of divisibility. Let N and M be the upper bound of
money holdings and the total quantity of fiat money, respectively. Then let

N = LN/p*J and M°* = M/p*,

where |z| denotes the integer part of z, then the divisible money version looks similar
to the original version. The only difference is that N and M*° are endogenously given
in the divisible version.

One might think that the divisible money version of CC model is not a special case of
our model, since the action space includes the choice of quantity offer in R,. However,



since a buyer can exploit all gains from trade, then the equilibrium quantity is uniquely
determined as the function of the offer price, the partner’s money holdings, and the
value function. Thus we can confine our attention to a simpler action space as in CC.
Now, we can check that our model includes that of the divisible money version of CC
model as follows:

e 1 (n) is the measure of the set of agents with np* amount of fiat money.

o Ay ={a;},cg,, where K, = {(00,01,...,0n) | 0a =0,...,max{n, N — n},n =
0,...,N}, ie, k, = #K,, (here, we have slightly abused the notations; j denotes
an action instead of an integer). An action a; = Q(op,...,0y) Means that the agent
offers o0;p* amount of money when she is a buyer and the partner’s money holdings
are np*. Note that the set of a seller’s actions is a singleton, since all of his gain
from trade is extracted on the equilibrium path.

e f((n,(0g,...,0n)), (0, (0h...,0%))) = Op.

e The time derivative of the matching between a seller (n, j) and a buyer (n’, ;) is
(w/k)h(n, j)h(n’, j").

e V' (n) is the value of np*.

Similarly as in Zhou model, although we also need to consider actions excluded from
our action space, and the strategy and the value at n ¢ {0,p*,..., Np*}, we will show
that the above specifications are sufficient. For the details, see Section 4.2.

3 Stationarity

By the definition of f, the outflow O, and the inflow I, at state n, functions of h, 3,
and «, are defined as follows:

Ou(h, B,0) = > ah(n, j)b(i', j') + > ah(i, j)h(n, j'),
Jsihg' 6,4,3"

Li(h,B.a) = > ah(i, )b, )+ D ah(i, (i),

(i7j7i’7j’)eB" (i7j7i’7j’)eB”In

where

By ={(i,4,i") i+ f((64), (@, 7)) = n},
B, = {4, j") [ = f((i,5), (0, ") = n}.



The condition for stationarity is O,, = I,,n = 0,..., N, and Efj:o h(n) = 1. In fact,
O, (I,) is the “gross” outflow (inflow resp.), since it includes the fraction of agents
who are matched with others but make no trade using the medium of exchange, i.e.,
the case of f((4,7), (7,j")) = 0, where i = n or ' = n. Since such fractions are included
both in O,, and in I,,, then they are clearly canceled out. Thus even if we replace them
with the “net” outflow and inflow, the results in what follows do not change.

Clearly, (0, — I,,) = 0 holds and thus at least one equation is redundant. At
first glance, both the numbers of linearly independent equations and of variables seem
to be N + 1. However, the following theorem shows that one more equation is always

redundant.

Theorem 1

(Note that the terms Oy and [ are multiplied by 0.)

Below, we present a simple proof. A direct proof is also given in Appendix A.5

Proof: Consider a pair of pairs (n,j) and (n',j'). By the matchings between them,
the proportion ah(n, j)h(n',j') of agents move from n to n+ f((n,j), (n',5")), and the
same proportion of agents move from n' to n' — f((n, j), (n’,j')). Corresponding to the
moves, the following terms appear in the RHS and in the LHS of (1):

the LHS the RHS
noh(n, )h(n',5) (0 + £((n.4), (o', 3)))oh(n, )R, )
n'ah(n, jh(n',j') (0" = f((n,5), (0, 5)))ah(n, j)h(r', j')
Clearly, the sum of the terms in the LHS is equal to that in the RHS. Since this holds
for any pair of pairs (n,j) and (n/, '), (1) holds. |

The interpretation of the theorem is simple. The LHS of (1) is the total amount of
money held by the agents involved in trading before the trade, while the RHS of (1) is
the total amount of money held by them after the trade. Clearly, they must coincide.
Note that (1) holds even in non-stationary and/or non-equilibrium situations.

6The direct proof is suggested by Prof. Koji Shimomura.
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By the above theorem,

holds, i.e., O, — I,,n = 1,..., N, are linearly dependent. By erj:o(on -1, =0,
without loss of generality, we can first delete Oy — Iy = 0 and then, by the above
theorem, can delete O; — I; = 0. Thus the distribution is stationary if and only if
On—1I,=0,n=2,...,N,and 3)_ h(n) —1 = 0 hold. That is, for a given 3, the
number of linearly independent equations is less than that of variables. Namely, the
condition for stationarity has at least one degree of freedom. In the next section, it is
shown that this is the main cause of the real indeterminacy.

4 Real Indeterminacy of Stationary Equilibria

In this section, we show that Theorem 1 implies the real indeterminacy of stationary
equilibria. First, without using Theorem 1, we directly show that there exits a con-
tinuum of stationary equilibria in Zhou [22]’s model and the divisible money version
of Camera and Corbae [2]'s model. Next, using Theorem 1, we present a general the-
ory of the real indeterminacy. More precisely, we define a stationary quasi-equilibrium
which is easy to deal with and show its real indeterminacy. Then we present a suf-
ficient condition that a stationary quasi-equilibrium is a stationary equilibrium. The
rigorous discussion about real indeterminacy, based on differential topology, is given in
Appendix B. Moreover, the case of indivisible money is discussed.

4.1 Zhou Model

Zhou [22] shows the existence of “single price equilibria” having the following feature:
the stationary distribution has masses only at 0 and p*, i.e., the endogenously de-
termined upper bound of money holdings N is 1, sellers without money always offer
p*, sellers with p* always offer oo, and thus trades occur only between sellers without
money and buyers with p*.

In order to show that this can happen as an equilibrium phenomenon, we first
convert Zhou model into our framework as in Section 2.2. In this type of the equilibria,
sellers with p* cannot sell their production goods on the equilibrium path, since there
are no agents who afford to accept their offers. Then, even if we modify the equilibrium

11



strategy such that agents with p* offer Np*, where N > 2, the value on the equilibrium
path does not change.

Since N =1 is endogenously determined, we should check incentives at np*,n > 2.
As is the case of agents with p*, we consider equilibrium strategy such that agents
with np* (n > 2) offer Np*, where N > 2. Thus this type of the equilibrium can be
expressed in our model as follows:

56}:{1 if j = (1,0) 5*_{1 ifj=(NV1) o

0 otherwise ni )0 otherwise

Let ¢ = kr/pu, where r is a discount rate. Then the Bellman equation is as follows:

V(0) = 5 (=B (0) (~c+ V(1) + h(O)V (0) +V (0)]

_|_
V(n):ﬁ[v(n)Jr(l—h,(l))(u+V(n—1))+h(1)V(n)], N>l

Let h(0) =1 —m and h (1) = m for some m > 0. Then we obtain

1—m p+1—m
Vin)y=——u—A"—[(1 —m)u+ mc|,
() == Sty 0 mutmd
.
where A = ¢>+1—Tm
If an agent without money offers a price larger than p*, she cannot trade. Thus she

prefers to offer p* if and only if V' (0) > 0. It is verified that this is equivalent to the
condition

>14+—-.
- +1—m

ol

Next, we check an incentive for agents with p* to offer N p*, where N > 2. This is
equivalent to the condition that offering p* makes a loss, i.e., V (2) — ¢ < V (1). This
holds if and only if

w_p(+0)(6+1—m)—dm(1—m)
¢ ¢ (1—m)” '
And thus, if
1+¢><%<(1+¢>)2 (2)

holds, then, for any sufficiently small m, any agent with np* has no incentive to deviate
by an action included in A,,.

12



Based on this result, we extend the distribution, the value, and the strategy to state
space [0,00). More precisely, define the distribution h as a natural extension of h.
Next, define the value function on [0, 00) such that V(n) = V(|n/p*]). Lastly, define
the equilibrium strategy as follows: (i) when a seller’s money holding is less than 2p*,
then she offers p*, (ii) otherwise she offers Np*, where N is defined as the above, (iii)
when a buyer’s money holding is less than p*, then he always rejects the seller’s offer,
and (iv) otherwise he has some reservation price larger than or equal to p*.”

Let us consider a sufficient condition that the profile above indeed forms a stationary
equilibrium. First, it is clear that his a stationary distribution. Of course, p* is
determined by p*h(p*) = p*m = M. Note that p* > M holds. Next, it is easily
verified that V is consistent with the equilibrium strategy. Lastly, we need to consider
a condition that an agent has no incentive to deviate from the equilibrium strategy.
However, we can show that (2) is sufficient. For, since V is a step function with the
steps of length p*, a seller has no strict incentive to offer a price other than an integer
multiple of p*.

In summary, if (2) holds, then, for any sufficiently small m > 0, there is no incentive
to deviate from the actions specified above. It follows that there is a continuum of
stationary equilibria with different m. Note that p* should also be different in equilibria,
since p*m = M.

Remark 6 It may seem strange that our condition is different from that in Corollary
2.1 in Zhou [22]. The difference arises from the fact that we modify the equilibrium
strategy and thus the “weak undominatedness” in Zhou [22] is not necessarily satisfied.
Consider the case that parameters satisfy only our condition. If there were agents who
accept the offer, then there should be some offer prices more profitable than oo; that
is, the offer oo is weakly dominated. However, there do not exist such agents on the
equilibrium path. Therefore the offer price oo can also be an equilibrium offer.

4.2 Divisible Money Version of Camera and Corbae Model

Some might think that the real indeterminacy result in Zhou [22] crucially depends
upon the assumptions held in the model: money holdings of a matched partner are
unobservable and a bargaining proceeds in a way like double auction. We try to refute
this. For this purpose, we show that there is also a continuum of stationary equilibria

TStrictly speaking, the strategy that (iv) specifies at 7 # p* is not a direct extension of 8*. But, this makes no
problem, since no price other than p* is ever offered on the equilibrium path.
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in the divisible money version of CC model. Recall that CC assume that the money
holding of a partner is observable and a bargaining proceeds by buyer’s take-it-or-leave-
it offer. It suggests that the real indeterminacy is independent of the informational
setting and the bargaining procedure assumed in Zhou [22].

Let us start with considering the original version of CC in which fiat money is
indivisible. CC show that there exists a stationary equilibrium in which all trades
occur with one unit of fiat money in some region of parameters. More precisely, they
construct the strategy in which buyers with positive money holdings always offer one
unit of fiat money and the quantity of goods such that the seller is indifferent between
accept and reject. Let ¢ = kr/u.® Then their result (Proposition 2, [2]) is as follows:

Proposition 1 Suppose that fiat money is indivisible. There exists ®(\, N, M*) > 0
such that, for any N > 1, any M®, any A > 1—(1/(N —1)), and any ¢ < ®(\, N, M*),
the strategy stated above, together with some distribution of money holdings, forms a
stationary equilibrium.

Let us turn to the case of divisible money. Recall that N is the upper bound of
money holdings. Then, by Proposition 1, we can construct the stationary equilibrium
in which all agents behave as if p* were the minimum unit for any p* € (0, N].

Consider the discrete distribution with masses only at n = 0, p*, 2p*, ..., LN/p*J p*,
which is a natural extension of the distribution in Proposition 1. Define the equilibrium
strategy as follows: (i) when a seller has an integer multiple of p*, then the partner offers
p* quantity of money and the corresponding quantity of goods if his money holding is
more than or equal to p*, and he does not trade if his money holding is less than p*,
and (ii) the other cases, which happen with probability zero, are given below.

Below, we present conditions for the above profile of distribution and strategy to
form a stationary equilibrium. Clearly, the distribution is stationary. Similarly, the
incentive compatibility conditions for deviating from offering p* to another integer
multiple of p* are equivalent to those of the case of indivisible money. Below, we check
the other conditions, i.e., the incentive compatibility conditions for deviating to offering
non-integer multiple of p*

First of all, by the above distribution and strategy, the (candidate for) value function
defined on [0, N], denoted by V, must be a step function with the steps of length p*.°

8Then ¢ in this paper is the reciprocal of ¢ in CC [2]. }
9In this paper, a value function defined on a certain interval in R is denoted by V whereas the one defined on
{0,1,...,N} is denoted by V.
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Next, check the incentive of buyers. First, consider the case that a seller’s money
holding is an integer multiple of p*. Let n (possibly non-integer multiple of p*) be the
buyer’s money holdings, " be the quantity of money she offers, and np* be the seller’s
money holdings. Let g, be the quantity of goods which the seller is indifferent
between accepting and rejecting, then

Qo oy = V (0" + 1) = V (np*).
Next, let n' = |n’/p*|, then
Vnp" +1) = V((n+n)p"),

since V is a step function with the steps of length p*. Thus Qnp* ) = Q(np=,np=)- That is
offering n'p* is not less profitable than offering n’. Thus it suffices to check the incentive
compatibility conditions only for offering some integer multiple of p*. Next, consider
the case that a seller’s money holding is not an integer multiple of p*. In this case,
choose any buyer’s strategy which exploits all gains from trade. Note that this behavior
does not affect the value of buyers since the above matching occurs with probability
Zero.

Also, given the strategy defined above, the seller’s value after trade is always the
same as the one before trade.

Thus the Bellman equation at 7 is the same as the one at |7/p*|. Thus the Bellman
equation is satisfied for all 5 € [0, NV].

For an intuitive illustration of the arguments, consider a buyer with money holding
of 1.5p*. One might think that she has a strict incentive to offer .5p* instead of p*.
However, the money holdings of her future partners will be some integer multiple of p*
with probability 1, so that she does not appreciate smaller portion of money than p*.
Thus the quantity in compensation for .5p* is the same as for 0, i.e., gy~ 5p<) = Qnp~,0p*)-

Thus we obtain the following result:

Proposition 2 Suppose that fiat money is perfectly divisible. Then for p* € (0, V],
any M, any A > 1 — (1/(|N/p*] — 1)), and any ¢ < ®(\, [N /p*], M/p*) where ®
appears in Proposition 1, the profile of distribution and strategy stated above forms a

stationary equilibrium.

Since p* is an endogenous variable in the divisible money model, there is a continuum

of stationary equilibria with different p*.
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4.3 General Theory of the Real Indeterminacy

In this subsection, we present an informal discussion of the general theory of the real
indeterminacy by using Theorem 1. See Appendix B for the detailed presentation.
First, we present the definition of a stationary quasi-equilibrium.

N
Definition 1 A triple z* = (V* h*,8*) € R¥*! x RV x R%":Ok" is said to be a

stationary quasi-equilibrium for a given v if

On(h*, B*, ) — I (h*, B*, @) = 0, n=2,...,N, (3)
zN:h*(n) —1=0, (4)
V*(n)n—ZOan(fv*,v) = if fh; >0, (5)
iﬁ;j—1:0, n=0,...,N, (6)

V*(n) —J;I;nj(x*, 7) >0 if B, =0. (7)

Recall that « is included in .

Note that we do not require (3) for n = 0,1; it suffices to define a stationary
distribution due to Theorem 1. We call x* a “quasi-equilibrium” because we need
some additional conditions in order for x* to be a real stationary equilibrium: (i) the
existence of p > 0 satisfying ZZLO pnh(n) = M, which is equivalent to the condition
h(0) < 1, (ii) the incentive not to choose an action out of our action space, and (iii) the
existence of strategies at state n ¢ {0,p, ..., Np} consistent with the given stationary

quasi-equilibrium. For the details, see Section 4.4.

Remark 7 In order for V* to optimize the real objective function, the transversality
condition in dynamic programming should be satisfied. In the case of time additive
expected utility with a discount factor x € (0, 1), it is clearly satisfied.

First, we fix the set of equilibrium actions,'® denoted by b, i.e., b is a set of (n, j),
and we confine the domain of 3 to

Q" = {(Buj)mgren | Bug >0 for (n,j) € b}. (8)

10Without fixing equilibrium actions, we can formulate the problem as a kind of nonlinear complementarity problems.
However, the special structure of the problem prevents us to use the standard technique. That is, without fixing it, the
dimension of equilibria may not be determinate. (See Appendix B.)

16



In the previous section, we showed that two of O, (h, 8,a) — I,(h,3,a),n=10,..., N,
are redundant. Thus, for given b and 3, h is determined up to at least one degree of
freedom. Suppose, for a given stationary quasi-equilibrium (V*, h*, 5*), (7) is satisfied
with strict inequality for all (n,j) such that f£,; = 0. Then all stationary quasi-
equilibria in a small neighborhood of (V* h*, 3*) are determined by (3)-(6), and, by
the above argument on stationary distributions, the number of equations and variables
are 2N +#b+1 and 2N +#b+2, respectively. Thus the set of equilibria is generically at
least one-dimensional. This means that the main cause of indeterminacy is the feature
of stationary distributions shown in Theorem 1.

To be more precise, consider a stationary quasi-equilibrium (V*, h*, 5*) and the
corresponding b*. Then

Vi(n) = Waj(2%,7) 20 for (n,j) € b° (9)

holds. Suppose in (9) all of inequalities are strict. Then, besides degenerate cases, it
follows from the implicit function theorem that the dimension of the set of stationary
quasi-equilibria around (V*, h*, 5*) is at least one. Of course, V*(n) = W,;(z*, v) may
hold for some (n, j) ¢ b*. However, under mild conditions, we can show that generically
only one of inequalities in (9) can be equal. If there is just one equality in (9), then it is
on the boundary of a connected set of stationary quasi-equilibria of which dimension is
more than or equal to one. Thus the dimension of the set of stationary quasi-equilibria
is generically more than or equal to one.

The rigorous discussions of the above and several indeterminacy theorems will be
given in Appendix B. Below, we only present the most important theorems. For a
given 7, let Eg be the set of stationary quasi-equilibria such that 3,; can be positive
only if (n,j) € b*. Let ¢" be the function expressed by the LHS of (3)-(6) and (9)
replacing “if 3;; > 07 in (5) by “if 3,; € b*”. Let Ct, OV (i) and CP()M7) he the
subsets in the final set'! corresponding to the set of stationary quasi-equilibria in which
all inequalities in (9) are strict, only the (n, j)th one is equal, and only the (n, j)th and
the (n', j')th ones are equal, respectively. (For the precise definitions, see Appendix B.)

Theorem 2 Let I' C RY be a C? manifold without boundary.!? For a given b*, suppose
that E?" # () holds for all v € T', and that ¢*" is C? and is transversal to C*", C?" ("9,
and C*" (D05 for all (n,j), (n',5') ¢ b°. Then, for almost every v € T, EY is a

HFor a function F: X =Y, X, Y, and {y € Y|3z € X, F(z) = y} are called the domain, the final set, and the range,
respectively.
12T can be considered as the set of v such that some strategies using actions in b* can be a stationary quasi-equilibrium.
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one-dimensional manifold with boundary. Moreover, at any endpoint of the manifold,
only one V*(n) — Wy;(z*,v) > 0, (n,j) ¢ b*, can be binding.

For simplicity, we assume that I is an open set in RY. For example, “¢®" is transversal
to C*"” means if ¢" (2,4) € C* holds for some (Z,7), then, together with the tangent
space of C" at ¢ (&, ), the space {Dg(, 5\ («",7)" | (x,7) is in the domain} spans the

final set,!

where Dgé’;m is the Jacobian matrix at (Z,%) and T' denotes transpose. As
shown in the examples in the following subsection, the conditions in the theorem are
quite mild and can often be easily verified at least locally. Note that, by verifying the
condition locally, we can show that there is a continuum of equilibria. We should verify
the condition globally in order to find some features of the set of equilibria. Using the
features, we can numerically compute a connected component of equilibria. (See [13].)

Although we have shown that there is a kind of indeterminacy, it might not be a
real one. That is, in a connected component of the set of equilibria, the real variables
h and V might be the same. For real indeterminacy, it suffices to show that the welfare
SV h(n)V(n) can be the same only in a set of measure zero in the set of stationary
quasi-equilibria. To see this, for a given b*, we analyze Y. h(n)V(n) = a together
with (3)-(6) and (9) replacing “if B; > 0” in (5) by “if ,; € b*”. Fix a € R. Then the
numbers of equations and variables are the same and thus the dimension of the set of
stationary quasi-equilibria with welfare a is generically one dimension less than that of
the set of stationary quasi-equilibrium. The theorem can be stated as follows. First,
we modify ¢*", denoted by g%, adding one equation 32 h(n)V(n) —a = 0 and one
variable a € R. We should also modify C*", C*" () and C*" (™)) denoted by C?",

V) and ¢ D) pegpectively; for example, C? is the subsets in the final set
corresponding to the cases that all inequalities in (9) are strict and the welfare is a.

Theorem 3 Let I' C RY be a manifold without boundary. For b*, suppose that Eg + ()
holds for all v € T, and that, for any given a, g2 (-,a) is C' and is transversal to C?",
D) and CF D) for all (n,7),(n',7") ¢ b*. Then, for almost every v € T,
EV n{z| SN, h(n)V(n) = a} is a zero-dimensional manifold.

4.4 Stationary Quasi-Equilibrium and Stationary Equilibrium

In the previous subsection, we focused on stationary quasi-equilibria instead of sta-
tionary equilibria, because the former is easier to deal with than the latter. In this

131n general, the tangent space at g®" (2,4) should be spanned.
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subsection, we discuss a sufficient condition that the indeterminacy of stationary quasi-
equilibria implies that of stationary equilibria. In general, the following three condi-
tions are the additional conditions for the definition of stationary equilibria: (i) the
existence of p > 0 such that 32" pnh(n) = M, i.e., h(0) < 1, (i) the incentive not
to choose an action out of our action space, and (iii) the existence of strategies at
state n ¢ {0,p, ..., Np} consistent with the given stationary quasi-equilibrium. (i) can
be easily checked. We need to check (ii) and (iii) carefully. One might think that an
agent, for example, has strict incentive to offer .5p, since she may obtain (pay) .5p later.
However, under some reasonable assumptions, this is not true, because such a trade
cannot occur later on the equilibrium path. Below, we discuss this point rigorously.

We focus on economies in which each matched agents observe the partners’ money
holdings. We consider a model with the state space [0, N] for some positive real number
N, the set of money holdings, and the action space A = I, cpo, N]An, where each element
in A, is represented by a finite dimensional vector of amounts of money r = (r;)
transferred along with trade'* and the other factor ¢ € T related to the bargaining,
where T is a finite set.'® In other words, we focus on the case that the other factors in
trade, e.g., the amount of goods, can be considered to be determined by (r,t) and V.
(See examples below.) We first suppose that

(x) (a) a bargaining game between a matched pair'® has a pure strategy
Markov perfect equilibrium, and (b) the bargaining game immediately ends
on the equilibrium path.

For a matched pair, let Vo = V(1) and Vg = V() be the seller’s and the buyer’s
values of their money holdings, respectively, and F' C R? be the feasible set of values
of their money holdings after trade. We further suppose that

(xx) (a) F does not directly depend on r but on (V' (ns+7r;), V(m—r;)), where
(r,t) = ((ry),t) is in A, or in A, for some ¢ € T, 7 and (b) an outcome of
bargaining game (Vy1, Vi1, y), where (Vy1, Vi) are the values of the seller’s and
buyer’s money holdings after trade, and y is a vector of the other elements of
outcome,'® depends only on (Vq, Vi, F).

MFor example, r = (r1,r2) is the amounts of money offer when an agent is a seller and when she is a buyer.

15For example, T includes “replies” such as “accept” or “reject”.

16Here a bargaining game between a matched pair is defined as a sequential game in which the initial node is an
instant when they are matched and every terminal node is an instant when the pair dissolves.

17 does not necessarily consist of {(V (ns+7:), V(1 —7:))|(r, t) = ((r:),t) is in A, or in A,, for some ¢t € T'} . That
is some element in this set might be rejected in the bargaining. (#*)(a) simply means that F' does not directly depend
on amounts of money but on the values after trades.

18For example, y includes the amount of the commodity goods.
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By (%), the bargaining game has an outcome, and thus (xx)(b) has meaning.

For a given N, we focus on a set of p > 0 such that N = L%J We restrict our
attention to the state space {0,1,..., N} and the action space II)_,A,, where A, is a
finite set such that, for each p > 0, each element a € A, corresponds to (r,t) € flnp
and all elements of r are integer multiples of p. For example, a = (ny, ny) corresponds
to r = (n1p, nap), where nyp and nyp are the amounts of money offer when an agent
is a seller and when she is a buyer, respectively. Then a stationary quasi-equilibrium

(V*, h*,B*) with p* = % is defined. Below, we show that it corresponds to

N
n=0

V() = V* Q#J) , h* is the natural extension of A* to [0, N], and B,*Lp* is naturally
defined from £*. Then it will be shown that (V*, h*, (~7’;p*)N ) satisfies the following

n=0

a stationary equilibrium if 2*(0) < 1. More precisely, define (V*,ﬁ*,(sz*) ) as

two conditions: (ii’) each agent at np* has no strict incentive to choose actions out
of the support of B;‘Lp, and (iii’) for each n € [0, N], which is not an integer multiple
of p*, there exists some (j3;) consistent with V*. Note that (ii’), (iii’) corresponds to
(ii), (iii) stated above, respectively. Thus, (ii’) and (iii’) imply that (V*, h*, 5*) forms
a stationary equilibrium.

First, since V* is a step function with the steps of length p*, we obtain the same
feasible set as V* and thus, by the assumption (xx), (ii’) is satisfied.

Next, we check (iii’). Consider an agent with 7 such that n/p* is not an integer.
Clearly, her partner holds np* for some n with probability one. Since V*(5) = V*( =)
and the feasible set for this pair is the same as that of the pair of agents with L%Jp*
and np*, and thus, by the assumption (xx), the outcome of the bargaining game is the
same as that of the pair of agents with L}%Jp* and np*, and the value of 7 is indeed
V*([;5]), ie., the outcome is consistent with V*. For a pair of agents with 1 and
n' such that both n/p* and n'/p* are not integers, we can choose any Markov perfect
equilibria of the bargaining game. In other words, the choice does not affect the value
function since n’s partner is np* for some n with probability one.

It is verified that the divisible money version of Camera and Corbae’s model satisfies
(x) and (xx) as follows. In Camera and Corbae’s model, if the seller and the buyer
have 7 and 7', respectively, then the buyer’s offer 5" maximizes U(qq, ) + V(7' —1"),
where g, ) is a solution to

V(in+n")—q=Vn). (10)

(x) and (xx) are clearly satisfied. Note that the amount of goods in trade is determined
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by (10), i.e., it is an element of the other outcome stated in (k).

Similarly, we can deal with a divisible money version of Trejos and Wright [20]’s
model. Let us extend their model to the one with divisible fiat money in the same way
as we did in Section 2.3, and consider the distribution and the strategy in which agents
behave as if p* were the minimum unit of divisibility. Then the (candidate for) value
function is a step function with the steps of length p*. Thus, if the seller and the buyer
have n and 7', respectively, and the amount of money d maximizes

max (U(ga) + V(0" = d))(=C(ga) + V(1 + d)), (11)
where ¢, is a solution to

max (U(q) + V(i — d))(~=C(g) + V(1 +d)), (12)

q

(see Trejos and Wright [20], p. 134.), then (%) and (xx) are clearly satisfied. In other
words, some integer multiple of p* is necessarily one maximizer of the above, so, if
such a distribution and a strategy form a stationary quasi-equilibrium, they are also a
stationary equilibrium.!® A similar argument applies to Shi [19].

Although the discussion above depends upon the assumption that each matched
agent observes the partners’ money holdings, this is not a crucial assumption. For
example, Zhou’s model assumes that each matched agents cannot observe the partner’s
money holdings. It follows that a bargaining outcome depends upon a distribution of
(Vio, Vio, F') determined by h and . However, this would not virtually change the

analysis above.

4.5 Indivisible Money

In the case of indivisible money, our results suggest that the greater the divisibility of
money , the larger the number of equilibria. Suppose that p should be in a finite set
P = {p1,pa,...,pr}, where py < ppy1. For example, p, = ¢ dollars. Suppose p* in P
is a solution to M = >N pnh*(n), where h* is an equilibrium distribution. By the
above arguments, all h in a neighborhood of A* can be equilibrium distributions in the
perfectly divisible case. If some p; in P is a solution to ZTJLV:() pnh(n) = M, where h is
in the neighborhood, then A is also an equilibrium distribution in the indivisible case.

9Consider the following equilibrium candidate: Let N be the upper bound of money holdings. Choose any p* such
that N/2 < p* < N, i.e., |[N/p*] = 1. Let the money holdings distribution have masses only at 0 and p*, and the
strategy specify that any agent offers a money quantity p* (if possible). Then, it is easy to show that this profile of the
distribution and the strategy form a stationary equilibrium since p* is necessarily a maximizer of (11).
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Therefore, if py11 — p; is small, then there must be a lot of equilibria. In other words,
for a fixed money supply and a fixed upper bound of money holdings, there are much
larger number of equilibria in the case that one unit of money is one cent compared
with the case which the minimum unit is a hundred dollar.

Formally, for a given b*, we analyze Y.V nh(n) = t together with (3)-(6) and (9)
replacing “if 3;; > 0”7 in (5) by “if B,; € b*”. The theorem can be stated as follows.
First, we modify ¢°", denoted by ¢%", adding one equation ij:o nh(n) —t =0 and one
variable t € R. We should also modify C*", C*" (™7 and C* (")) denoted by CY,
Cs*("’j), and C’z*(n’j)("”jl), respectively; for example, CY" is the subsets in the final set
corresponding to the cases that all inequalities in (9) are strict and 32 nh(n)—t = 0.

Theorem 4 Let M and N be given and I' C R” be a manifold without boundary. For
b*, suppose that Eg # () holds for all v € T, and that ¢4 is C? and is transversal to
cy, Cs*("’j), and C’Z*(”’j)(n,’jl) for all (n, ), (n',j') ¢ b*. Then, for almost every v € T,
and for any positive integer I, there exists a positive integer L such that the number
of stationary quasi-equilibria with

14
peP,={l+ 5_2 | ¢1 is a nonnegative integer, fo = 0,1,... , L, l3=1,2,... L {5 < {3}
3
is larger than I.

Proof: Let z* = (V* h*,5") be a stationary quasi-equilibrium. Let t* =
Zflv:o nh*(n). By the assumptions and implicit function theorem, there exists an € > 0
and a function ¢ : (t* — ¢,t* 4+ ) — E!". Thus for a large enough L, the number of
p € Py, such that % € (t* —e,t" +¢) is larger than I. |

5 Extensions of the Basic Model

In the previous sections, we assumed that there is only one kind of money, the matching
is pairwise, money holdings give no utility, and there is an upper bound of money
holdings. All of these assumptions can be easily relaxed. However, in order to avoid
complicated notations, we mainly show them by examples.

First, we can allow for multiple fiat money. For simplicity, we assume that there are
two money. Let the state space be {0,..., N'} x {0,..., N?}. Suppose that an agent
with (n!,n?), a seller, meets an agent with (2!, n?), a buyer, and that a trade occurs.
The seller pays (m', m?) to the buyer. Suppose, at each period, the proportion of the
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above type of matching is £&. Thus, by the trade, the agents in the match move from
(n',n?) to (n' +m', n? + m?), and (7', 7%) to (n' — m!',n%? — m?), respectively, and
the proportion of each move is of course £&. Thus the same argument as in the proof of
Theorem 1 applies and

Nl N2 Nl N2
Z Z (n1 + n2)0(n17n2) = Z Z(nl + n2)f(n1,n2)
nl=0n2=0 nl=0n2=0

holds, where O 1 ,,2) and I(,,1 ,2) are the outflow and the inflow at (n',n?), respectively.
That is, by the condition for stationarity, the stationary distribution is determined up
to at least one degree of freedom and the dimension of the set of stationary equilibria is
typically more than or equal to one. Of course, this argument can be applied to much
more general cases.

Second, matchings need not be pairwise. We consider the following model. There
are k + 1 goods, where k£ > 4. The first £ goods are indivisible and immediately
perishable, and good i is consumed by type 7 agents. The remaining good is a perfectly
divisible and durable fiat-money object. A type ¢ agent and a type ¢ + 1 agent can
cooperate to produce one unit of good i + 2 (mod. 3). A type i agent consumes only
good 7 and derives instantaneous utility. Each agent is characterized by her type and
the amount of money she holds. Suppose there is a matching technology that always
chooses 3 agents. If their types are 7, i+ 1, and i +2 (mod. 3), then a trade potentially
occurs. Let their money holdings be pni, pny, and pns, respectively. Suppose, by a
bargaining procedure, a trade occurs and the type i + 2 agent pays the type ¢ agent
pm; and the type ¢ + 1 agent pm;.;. Suppose the proportion of the above type of
matching is £. Thus, by the trade, the agents in the match move from n; to n; + m;,
Nijr1 t0 Nj11 + Mz, and n;o to N — my — My, respectively, and the proportion
of each move is of course £&. Thus the same argument as in the proof of Theorem 1
applies and ZTJLV:() nO, = ZTJLV:() nl, holds. That is, by the condition for stationarity,
h is determined up to at least one degree of freedom and the dimension of the set of
stationary equilibria is typically more than or equal to one. Of course, this argument
can be applied to much more general cases.

Third, as we mentioned in Section 2, we can deal with models in which money
holdings give some utility to the holder. In those models, W,,; have the following form:

an(xapa 7) = U(npa haﬁajaf)/) + I{E(V(n,”h’aﬁana]’)a

where £ is the discount factor, U is the temporal utility, and E(V (n')|h, 5,n,j) is the
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expectation of V(n') conditional on h,3,n,j. Here U depends on np, the quantity
of the medium of exchange. In this case, we cannot deal with Y. pnh(n) = M
separately, since W,; depends on p. However, analyzing Eff:o pnh(n) = M and (3)-
(7) in the definition of stationary quasi-equilibrium simultaneously, we can obtain the
same results as in Section 4. Intuitively, even in this case, the number of equations is
less than that of variables. Of course, we should notice that the sufficient conditions
that a stationary quasi-equilibrium is a stationary equilibrium, stated in Section 4.4,
may not be satisfied in some models. However, Zhou [23] shows that there also exists
a continuum of stationary equilibria in Green and Zhou model even if money holdings
give a dividend in the form of utility.

Finally, we discuss the case of N = co. In Appendix C, we show that > > n(O, —
I,) = 0 holds under a mild condition which is satisfied in Green and Zhou [5]. As in
Section 3, Oy — Iy and Oy — I are redundant in the condition of stationary distribution.
Thus, together with Y >°  h(n) = 1, the stationary distribution could be determined
with at least one degree of freedom. Of course, this argument is very rough. For the
rigorous arguments, we should use the implicit function theorem or the transversality
theorem in infinite dimensional spaces. (See, for example, Abraham and Robbin [1].)
However, it seems that the conditions for these theorems are typically satisfied in our
environment. Indeed, in Green and Zhou [5], the conditions are satisfied and the
stationary distribution has (at least) one degree of freedom.

Appendix

A A Direct Proof of the Identity

Since at each time period the total amount of money before the trades is equal the one
after the trades,

S ih (i, (I’ §) + X2, o ah(i, §)R(E, §)

= 3 (G (0, G Nk ) + 3 (= F(G0), (7 )ahG ()

(13)

clearly holds. Below, we show that the LHS of (13) is equal to ) nO, and the RHS
of (13) is equal to Y, nl,.
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N

The LHS of (13) =Y ° ) "iah(i, j)h(i',j') + Y > i'ah(i, j)h(i’, ')

i=0 j,i',5' i'=0 j,i',5'

= Z Z nah(n, ))h(i', j') + Z Z nah(i, j)h(n, j')

n=0 j,i',j' n=0 j,i',j'

N
= Z nO,,.
n=0

nah(i, R, §) + Y nah(i, j)h(i', 5')

0 (i,4,i",5")€Bn n=0 (i,j,i",j')EBy,

The RHS of (13) =

M=

n

Z nah(i, j)h(i', 7") + Z nah(i, j)h(i', j')

(4.4,¢',5')EBn (&4, 3" E€BY,

Il
M=

i
(o=}

Il
M=

nl,.

i
(o=}

B Real Indeterminacy Theorems

We denote O,(h,S,a) — I,(h,5,a) by D,(h,B,a). Let B be the power set of
{(n,7) | j =1,...,kn,n =0,...,N} and B be {b € B |Vn,3j,(n,j) € b}. b e B
can be considered as a set of actions used in an equilibrium. For a given b € B, let

Q" = {(Bnj)mgyes | Brg >0 for (n,j) € b}.

Let 2® = (V, h, ), where 8° € Q. For a given b € B and all (n,j) € b, ng(xb,fy)
is defined from W, ;(z,v) by setting f,/; = 0 for all (n’, j') ¢ b. In parallel with this,
Db (h, 3% «) is defined for n =2,..., N.

Below, we show that the dimension of the set of equilibria is at least one. However,
in fact, there are many types of stationary equilibria depending on which b € B is
used in equilibria. We first consider the simplest case; namely, the case that h(n) >
0,n = 0,...,N, hold and D = 0,n = 2,...,N, can be linearly independent, i.e.,
3(h, B°) such that DP(h,3°,a) = 0,n =2,..., N, are linearly independent for any ~.2°

20The result would not change if this holds only for almost every .
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Let K = Z;V:O k,. Recall that, for a given b € B, the condition for a stationary
quasi-equilibrium is as follows:

Db (h, B’ a) =0, n=2,...,N
N
> h(n)—1=0,
n=0
V(n) = We(a®,7) =0, (n,7) € b°
> By—1=0, n=0,...,N
Jeli| (" myen}
V(n) - Wr?j(xb77) > 07 (71,]) ¢ b*.

Let ¢ : R¥*! x RYT! x Q8 x RE — RV~ x R x R#* x RV+! x RE=#b be the LHS of
the above condition.
Let

Cb:;{O}x---x{O}JXI&LJF><---><]R++J,

IN+#b+1 K—#b

and, for (n,j) ¢ b,

Cb(n,j):\{o}x_,_x{o};xz&JrX...XR++><{0}><]R++><...><]R+JD,

2N +#b+1 K—+#b

where the last {0} corresponds to V(n) — Wp(z",7),(n,j) ¢ b. Moreover, for
(n,7),(n',j') ¢ b such that (n,j) # (n',j'),

CPmDET) = 10} %o X {0} X R X - X RX {0} x Rx -+ x Rx {0} x Rx -+ xR,

IN+#b+1 K—#b

where the last two {0}s correspond to V(n) — W}.(z%v),(n,j) ¢ b, and V(n) —

b b . . b . .
Woa (2%, 7), (n’,j’)A ¢ b, respectively. For v, let EZ be the set of stationary quasi-
equilibria for b € B. Then clearly

E’I; - (gb('a f)/))_l (Cb U (U(n’J)C’b(nJ)) U (U(n,]),(n/,Jl)Cb(n’])(n,’j,))) and
E) D (¢"(,y) " (C"U (U, jy C2000))

hold.
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Theorem 2 Let I' ¢ R: be a C? manifold without boundary. For b € B, suppose
that Efy # () holds for all ¥ € T, and that ¢” is C? and is transversal to C®, C*™J)
and C*"D™0) for all (n, j), (n',j') ¢ b. Then, for almost every v € I', E? is a one-
dimensional manifold with boundary.

Proof: (i) By the parametric transversality theorem (see, for example, Guillemin and
Pollack ([7], Chapter 2) and Hirsch ([9], Chapter 3)), for almost every v € T', ¢°(-,7) is
transversal to all of C%, C™7) and C*™)"3)  (n, 5), (n/,j') ¢ b,. Let I" be the set of
such ~s.

(ii) Let v € T". Suppose (g°(-,7))~"(C*mNE"0) £ () for some (n,j), (', ;') ¢
b. Then it is a submanifold in the domain and the codimension of the manifold is
equal to the codimension of C*™)(7")  Since codim CP™NMJ") = 9N 4+ #b + 3
and the dimension of the domain of ¢°(-,v) is 2N + #b + 2, then the dimension of
(g°(-,~))~H(CY™D("3)) is minus one, i.e., it is empty. This is a contradiction. Thus

B} =(g"(,7) " (C"U (UupC*™ 7)) # 0

holds.

(iii) Suppose (¢°(+,7)) *(C?) # 0. Then it is a submanifold in the domain. Moreover,
the codimension of the manifold is equal to the codimension of C®. (See, for example,
Guillemin and Pollack ([7], Chapter 1).) Since codim C® = 2N + #b + 1 and the
dimension of the domain of g°(-,7) is 2N + #b + 2, then (¢°(-,7)) *(C") is a one-
dimensional manifold; more precisely, each connected component is diffeomorphic either
to an open interval or to a circle.

(iv) Suppose (g°(-,7))"'(C*™)) £ @ for some (n,j) ¢ b Let zb €
(g°(-,7))~H(C*™). Below, we show that x® is an endpoint of some one-dimensional
manifold in (g°(-,7))~'(C?), i.e., the connected component containing z° is homeo-
morphic to an interval. Let ¢ : R2NTE+L _ RZN+#0+2 ho the projection map from
the range of ¢” to the space of elements which correspond to {0}s in C*"™7). Then,
by the assumption, ¢° o ¢°(-,7) is a submersion at z°, i.e., the linear map defined by
the Jacobian matrix at 2, denoted by d(¢” o g°(+,7)), is surjective. Since the do-
main and the range of ¢’ o g°(-,) are the same, the inverse function theorem can be
applied. Thus there exist an open neighborhood of x® denoted by D, and an open
neighborhood of (0,...,0) € R2N+#5+2 denoted by D', such that the restriction of
¢’ 0 ¢°(-,7) to D is a diffeomorphism from D to D'. Since, for sufficiently small £ > 0,
D! ={(0,...,0,t)|—e < t < &} is a subset of D', then (¢’0g’(-,7)) *(D.) is diffeomor-
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phic to an open interval. Note that (¢®og°(-,7)) 1 ({(0,...,0,£)|0 <t < £}) is a subset
of EY and diffeomorphic to [0, 1). Since (¢?0g"(-,7))7'((0,...,0,%)) € (¢°(-, 7)) " (C"),
it belongs to a connected component obtained in (iii). Thus the component should be
diffeomorphic to an open interval in (¢°(-,7))~1(C?). Of course, one of its endpoints is
l. 1

Next, we consider the case that (i) D! = 0,n =2,..., N, are not linearly indepen-
dent for all 3° and h, and/or that (ii) h(n) = 0 for some n in equilibria.

Example 1 For some b € B, suppose f((n,7),(n',7") is equal to 0 or 2 for all (n, j)
and (n',7"). Then if n is even (odd), then n+ f((n,7), (n',j)) and n— f((n, ), (7', "))
are even (odd). Thus the stationary distribution can be divided into two distribution
so that D? = 0,n =0,..., N, has more than one degree of freedom.

Example 2 Under the assumption in Example 1, there exists a stationary distribution
such that h(n) =0, for alln =2m,m=1,2,....

We first consider the case that, for any v, D! = 0,n = 2,..., N, are not linearly
independent for all 3° and h, and that h(n) > 0 for all n. Let M(b) be the maximal
number of (potentially) independent equations in D? = 0,n = 0,..., N. For simplicity,
we assume D° = 0,n =N — M(b) +1,..., N, can be linearly independent. We define
gt RVFL X RV x QF x RE — RM®) x R x R#* x R¥*! x RE-#0 by replacing

Db (h,B% ), m=2,...,N,
in the definition of ¢° in Theorem 2 by
D(h,B a), n=N-—-M(b)+1,...,N.
By the same argument as in Theorem 2, we obtain the following theorem:.

Theorem 5 Let I' C RE be a C2~(W=1=M®) manifold without boundary. For b € B,
suppose that E? # () holds for all v € T', and that ¢” is C*~ (N ~1"M®) and is transversal
to Cb, C*™) and C*™)D™7) for all (n, j), (n', ;') ¢ b, where the definitions of them
should be slightly modified. Then, for almost every v € I', E! is a (N — M(b))-
dimensional manifold with boundary.

We next consider the case that, for some b € B and for any v, h(n) = 0 holds for some
n in equilibria. That is we assume that there exists a set N(b) C {0,1,..., N} such that
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if the players take actions in b and h(n) = 0,n ¢ N(b), and h(n) > 0,n € N(b), hold,
then I, = 0 and O,, = 0 hold for n ¢ N(b). For simplicity, we assume that #N(b) — 2
of D! = 0,n € N(b), can be linearly independent in equilibria. (We will discuss the
general case later.) Let N'(b) be the subset of N(b) such that D’ = 0,n € N'(b), can
be lincarly independent. We define g? : RVt x RFV®) 5 b » [R]E — RV ) x R x
R#0 x RN*! x RE=#b by replacing

DV (h,B" @), m=2,...,N,
in the definition of ¢® in Theorem 2 by
D(h, B a), mn e N'(b).
By the same argument as in Theorem 2, we obtain the following theorem:.

Theorem 6 Let I' ¢ R be a €2 manifold without boundary. For b € B, suppose
that E? # () holds for all 7 € I, and that ¢” is C* and is transversal to C®, C*™7), and
CPmNMT) for all (n,j), (n', ') ¢ b, where the definitions of them should be slightly
modified. Then, for almost every v € T, Efy is a one-dimensional manifold with bound-
ary.

In general, #N'(b) can be less than #N(b) — 2. Applying the same argument as in
Theorems 6 and 5, the dimension of the set of equilibrium for b is more than one.

In order to show real indeterminacy of equilibria, it suffices to prove that the welfare
S h(n)V(n) is not constant on each connected set of equilibria. For a given a € R,
the condition for a stationary quasi-equilibrium with welfare a is as follows:

Db (h, B h,a) =0, n=2...,N
N
> h(n)—1=0,
n=0
V(n) = Wy(2,y) =0, (n,j) € 0"
> By—1=0, n=0,...,N
JE{I'(5",n)Eb}
V(n) = Wy(z’,7) >0, (n,7) ¢ b*
N
> h(n)V(n) —a=0.
n=0
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Let g2 : RV X RV x QP x RM x R — RY7! x R x R*® x RV+! x RE=#5 x R be the
LHS of the above condition, where the last R in the domain is the set of a in the last

equation.
Let

Co={0} x - x {0} x Ryy x -+ x Ryy x{0},

2N+#b+1 K—#b

and, for (n,j) ¢ b,

Cs(n’J):\{O}XX{O}JXIR_F+ X"'XR++ X{O}XR++ X"'XR++IX{O}-

IN+#b+1 K—#b

Moreover, for (n, j), (n',j") ¢ b such that (n,j) # (n', '),

CrDM) = 10} % oo x {0} xR X -+ - x RX {0} x Rx - x Rx {0} x Rx -+ x R x{0}.

2N +#b+1 K—4tb

By the same argument as in the proof of Theorem 2, the following theorem holds.

Theorem 3 Let I' C R* be a C'' manifold without boundary. For b € E, suppose that
Eg # () holds for all v € T, and that, for any given a, ¢° (-, a) is C' and is transversal
to C?, CPmI) and CEII) gor all (n,7),(n',5') ¢ b. Then, for almost every v € T,
Eb N {z®| 30y h(n)V (n) = a} is a zero-dimensional manifold.

Together with Theorem 2, the above theorem implies real indeterminacy of Eg That
is, for any given welfare level a, the dimension of the set of equilibria with welfare level
a is one dimension less than that of the set of equilibria. The same argument applies
to the cases in Theorems 5 and 6; the dimension of the set of equilibria that have the
same welfare level is one dimension less than that of the set of equilibria.

C The Case of N =

Theorem 7 Suppose, for some integer 6 > 0, f((7,7), (i',7')) < J holds for all (7, )
and (i',7'). Then

in(On —1I,)=0.

n=0
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Proof: It suffices to show that >~ ° n (O, — I,) absolutely converges. Let

(Note that we can define O, and I, since 3°° h (i) converges.) Clearly, it suffices to

show that > > (On — fn) absolutely converges.
The presumption implies that

0
O; = Z ah(i, j)h(, ')
k=0 {j.i".5' \f (4,4),(¢',3")) =k}

- Z > ah(i', j')h(i, ),
k=0 {5, ,"1f((¢',5"),(4.5))=k}

and

=¥ > ah(i = k. j)h(i, )

k=0 {j,i".5' \f(( k.g),(i".3"))=k}
+ Z > ah(i', j")h(i + k, 5)
k=0 {jai"j,|f((i,’j,)’(i+k7j)):k}
hold for all 7 > §. Thus

=22 X ek )k )

0, —1,

2> > ah(n — k,j)h(, j)

d=1 k=1 {jai"j,|f((n7k7j)7(i,7j,)):d}

n+d6—1
<a Y hi(i)
i=n—0
holds for all n > §. So, for all N, > N; > 9, we obtain
N> Ny No+6—1
AR > hl
n=1 n=1 i=N1—0+1

Since Y7 h(n) converges, so does Y o
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