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1 Introduction

We propose a new framework for style analysis based on a general state space model and
Monte Carlo filter. To our knowledge, this work is the first application of a general state space
model and Monte Carlo filter to the estimation of mutual funds’ styles while the application
to finance was successfully implemented in the term structure models by Takahashi and
Sato(2001).

The state space model consists of the system model describing the processes of state vari-
ables and the observation model representing the functional relation between state variables
and the observational data in the real world. It is also possible to introduce measurement
errors in the general way without any bias. In style analysis, we assume that a mutual
fund can be approximatedly regarded as a portfolio of given style indices with their long
positions; the coefficients of style indices represent the weights of the indices in the portfolio.
Moreover, the coefficients are often varying over time. Hence, we need a model capturing
dynamic change in non-negative weights of style indices.

We propose an approach based on the general state space model and Monte Carlo filter to
satisfy those features. Once we regard the coefficients of styles as state variables and regard
a fund’s return and style indices as observations, our approach can be naturally applied to
style analysis.

The paper is organized as follows. In the next section, we will briefly explain the exsisting
methods of style analysis. In section three, first we will summarize the outline of the state
space model. Then, we will explain style analysis in the framework of state space model.
Third, we show several concrete examples. In section four, we will test the validity of our
method by using actual data of Japanese mutuals fund and style indices. In section five, we
will make concluding remarks. Appendix shows an algorithm of Monte Carlo filter.

2 Style Analysis by Exsisting Methods

We assume that there are n style indices and a return rt of a portfolio is expressed as

rt =
n∑

i=1

βitIit + ut. (1)

In the equation, βit represents the coefficient of style index i, Iit denotes a return of a style
index i and ut is a residual. Estimaitng the coefficients βit, i = 1, · · · , n by using observational
data is main objective for style analysis. If each βit is supposed to be invariant over time
that is βit = βi, the problem is reduced to a regression analysis under constraints that all
βi are non-negative and the sum of βi i = 1, · · · , n is equal to one; that is βi ≥ 0 for all
i = 1, · · · , n and

∑n
i=1 βi = 1. These constraints correspond to the assumption that the

fund can be regarded as a portfolio of n style indices with their long positions. Then, the
coefficients can be estimated by a least square method with constraints. This approach was
initiated by Sharpe(1992). His framework is widely used in the practical world as well as in
academic research; for instance, see Busse(1999), Fung and Hsieh(1997) and Chan, Chen and
Lakonishok(2002). From a different point of view, Brown and Goetzmann(1997) proposed a
new clustering method for style analysis.

1



It is difficult to apply these models with time-invariant weights to actual funds’ data
because a portfolio manager dynamically change the portfolio weights as argued by Grinblatt,
Titman and Wermers(1995) and Ferson and Schadt(1996). Although Sharp(1992) tried to
estimate the coefficients by using a window regression in order to capture dynamic variation
of the weights of indices it is hard task to determine a optimal width of the window. Swinkels
and van der Sluis (2002) presented an application of Kalman filter for the estimation of time-
varing weights. However, they neglect non-negative constraint of weights. Moreover, it is
almost impossible to trace sudden changes in the weights by those existing methods.

In order to overcome these problems, we propose a new framework for style analysis
based on a general state space model and present an original estimation method by utilizing
Monte Calo filter.

3 Style Analysis Based on a General State Space Model

In this section, we first introduce a general state space model and Monte Carlo filter as an
estimation method. Then, we explain style analysis in the framework of the general state
space model and present several examples.

3.1 State Space Modeling

First, we give the general form of state space models. (See Kitagawa and Gersh(1996) for
the detail.) A state space model consists of the following system model and the observation
model. That is, {

Xt = F (Xt−∆t, vt) system model
Zt = H(Xt, ut) observation model

(2)

where Xt, Zt and ∆t denote a N dimensional state vector, a M dimensional observation
vector at time t and the time interval of observational data respectively while vt and ut denote
the system noise and the observational noise whose density functions are given respectively
by q(v) and ψ(u). F and H are in general non-linear functions of RN × RN �→ RN and
RN × RM �→ RM , and the initial state vector X0 is assumed to be a random variable
whose density function is given by p0(X). We asuume that there exists the inverse function
H−1 : RM × RN → RM such that ut = H−1(Zt, Xt).

Further, in order to handle the cases that explicit functional relations such as F and
H are not obtained, we can introduce a general state space model based on conditional
distributions: {

Xt ∼ F|Xt−∆t system model
Zt ∼ H|Xt observation model

(3)

where F|Xt−∆t and H|Xt denote conditional distributions given Xt−∆t and given Xt respec-
tively. Examples in this class will appear in subsections 3.2 and 3.3 below. Next, we consider
the estimation of unobservable state variables X through observable variables Z. We note
that the standard Kalman filter can not be applied to the estimation as both the system
model and the observation model described above are generally non-linear, and hence we
should utilize Monte Carlo filter. While several approaches are proposed for Monte Carlo fil-
ter (see Doucet, Barat, and Duvaut(1995), Durbin, and Koopman(1997), Gordon, Salmond,
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and Smith(1993), Tanizaki(1993) for instance.), we take the approach developed by Kita-
gawa(1996). In Monte Carlo filter, we approximate the conditional distribution of Xt by
many particles which can be considered to be realizations from the distribution F|Xt−∆t.

Given m particles of a state vector {ξ[1]
t−∆, · · · , ξ[m]

t−∆}, we can obtain one step ahead predictor
from the system model as a set of particles;

{p[1]
t , · · · , p[m]

t } ∼ F|{ξ[1]
t−∆, · · · , ξ[m]

t−∆}

Then we have a filter distribution of Xt through resampling from prediction distribution
{p[1]

t , · · · , p[m]
t }; higher weight is assigned on p

[k]
t which with higher probability, generates a

given observation Zt. The resulting particles denoted by {ξ[1]
t , · · · , ξ[m]

t } are regard as the
filtered estimation of Xt. We repeat these steps up to T . In Appendix, we will provide a
typical algorithm of the Monte Carlo filter.

3.2 Style Analysis in the State Space Model

In this subsection, we consider an application of state space modeling to style analysis. First,
we consider a system model. Essentially, we regard the coefficients of style indices denoted
by βit, i = 1, · · · , n as state variables which follow stochastic processes with constraints.
Moreover, we do not model β directly, but introduce more fundamental state variables Y
behind β which determines the dynamics of β. First, we define Rn+k-valued state variables
Xt = (Yt, βt)

′. The Rk-valued state variables Yt follow

Yt = f(Yt−∆t, βt−∆t, t) + vt

where

Yt = (Y1t, · · · , Ykt)

βt = (β1t, · · · , βnt),

and the system noise vt follows a distribution of which denstiy function is given by q(v). The
state variables βit, i = 1, · · · , n are determined based on Yt so that βit satisfy the constraints:

βit ≥ 0 for all i = 1, · · · , n
n∑

i=1

βit = 1.

For instance, βit, i = 1, · · · , n are given by

βit = hi(Yt, t), i = 1, · · · , n

where hi(Yt, t), i = 1, · · · , n are R-valued some functions of Yt and t so that the constraints
are satisfied. A logit transformation is an example: βit, i = 1, · · · , n are determined by

βit = hi(Yt, t) =
eYit∑n

i=1 e
Yit
.
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Hence, in this case the system equation is given by

Yt = f(Yt−∆t, βt−∆t, t) + vt (4)

βit = hi(Yt, t), i = 1, · · · , n
where hi, i = 1, · · · , n are chosen so that

βit ≥ 0 for all i = 1, · · · , n
n∑

i=1

βit = 1

the system noise vt with the density function q(v).

We note that the equation (4) corresponds to F (·) in the equations (2) of the state space
model. This system model includes the model such that the current Yt depends not only on
Yt−∆t in the previous period, but also on βt−∆t. The constraints in the equation (4) reflect
the assumption stated in the previous section that the fund is a portfolio of style indices
with long positions. Those constraints can be captured in the functions hi(·), i = 1, · · · , n
such as logit transformations. We also note that βt and Yt are estimated by using Monte
Carlo filter since they are not observable, the functions f and h are non-linear in general,
and the system noise vt may follow a non-normal distribution.

Moreover, when we try to apply models such that it is difficult to capture the required
constraints as explicit functions, we can utilize a general state space framework introduced in
the equations (3). Note first that the condition

∑n
i=1 βit = 1 allow us to reduce the dimension

of β = (β1, · · · , βn) from n to n − 1. Next we fix some j ∈ {1, 2, · · · , n} and introduce the
notation x(j) as a vector of which the j-th element is removed from a vector x. For example,
β

(j)
t is defined as

β
(j)
t ≡ (β1t, · · · , βj−1t, βj+1t, · · · , βnt).

Given information at t−∆t that is, Yt−∆t, βt−∆t, Yt is generated according to the equation;

Yt = f(Yt−∆t, βt−∆t, t) + vt

where Y0 and β0 are given. Define a set A
(j)
t as

A
(j)
t = {0 ≤ ĥ1(Yt, t), · · · , 0 ≤ ĥj−1(Yt, t), 0 ≤ ĥj+1(Yt, t), · · · , 0 ≤ ĥn(Yt, t),

∑
i�=j

ĥi(Yt, t) ≤ 1}

where ĥi(Yt, t) is some R-valued function of Yt and t. Then, β
(j)
t is generated according to

the distribution function G(y(j)) which is defined by

G(y(j)) = Pr({ĥ(j)(Yt, t) ≤ y(j)}|A(j)
t ) =

Pr({ĥ(j)(Yt, t) ≤ y(j)} ∩ A(j)
t )

Pr(A
(j)
t )

where y(j) ∈ Rn−1 and

ĥ(j)(Yt, t) = (ĥ1(Yt, t), · · · , ĥj−1(Yt, t), ĥj+1(Yt, t), · · · , ĥn(Yt, t)).

Finally, βj is determined by
βjt = 1 −∑

i�=j

βit.
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Thus, βit, i = 1, · · · , n are modeled satisfying the constraints; βit ≥ 0 and
∑n

i=1 βit = 1.
Further, in order to avoid any bias caused by some particular j being fixed we can introduce
a model so that j ∈ {1, · · · , n} are randomly chosen with prbability 1

n
at each time point t.

In this way, we can express various types of the system model, some of which are shown in
the following subsection.

Next, consider the observation equation. A fund return rt is determined by

rt =
n∑

i=1

βitIit + ut

where Iit, i = 1, · · · , n represent style indices and the observation noise (ut)t follows of which
density function is given by ψ(u). Here, we note that the fund return rt and style indices
Xit, i = 1, · · · , n are obtained as observations. Hence, the observation equation is given by

rt =
n∑

i=1

βitIit + ut (5)

the observation noise (ut)t with the density function ψ(u).

Note that the equation (5) corresponds to H(·) in the equations (2) of the state space model.

3.3 Examples

In this subsection, we show several concrete examples of the system model.

1. (i) Let k = n, and hence Yt = (Y1t, · · · , Ynt). Let some j ∈ {1, · · · , n} fixed. For each
i = 1, · · · , n, i 
= j, Yit is generated by the equation;

Yit = fi(Yt−∆t, βt−∆t, t) + vit = βi,t−∆t + vit (6)

where each system noise vit follows

N(0, σ2
i ) with probability αi ∈ (0, 1)

N(0, ciσ
2
i ) with probability 1 − αi

where ci is a positive constant. That is, each Yi, i 
= j is generated around βi in the
previous period by adding the system niose. We also note that this formulation of
the system noise capture sudden changes in the weights of style indices. We specify
ĥi(Yt, t), i = 1, · · · , n, i 
= j as

ĥi(Yt, t) = Yit.

Then, β
(j)
t is generated according to the distribution function G(y(j)) which is defined

by

G(y(j)) = Pr({Y (j)
t ≤ y(j)}|A(j)

t ) =
Pr({Y (j)

t ≤ y(j)} ∩ A(j)
t )

Pr(A
(j)
t )

(7)

5



where

A
(j)
t = {0 ≤ Y1t, · · · , 0 ≤ Yj−1t, 0 ≤ Yj+1t, · · · , 0 ≤ Ynt,

∑
i�=j

Yit ≤ 1}. (8)

Finally, βjt is determined by
βjt = 1 −∑

i�=j

βit.

In sum, βit, i 
= j is modeled as a random walk with constraints in this example.

(ii) In above example, in order to avoid any bias caused by j being fixed we randomly
choose j ∈ {1, · · · , n} with prbability 1

n
at each time point t. The other scheme is the

same as above.

2. (i) k = n, and hence Yt = (Y1t, · · · , Ynt). Let some j ∈ {1, · · · , n} fixed. For each i 
= j,
Yit is generated by the equation;

Yit = fi(Yt−∆t, βt−∆t, t) + vit = log βi,t−∆t + vit

where each system noise vit follows

N(0, σ2
i ) with probability αi ∈ (0, 1)

N(0, ciσ
2
i ) with probability 1 − αi

where ci is a positive constant. That is, each Yi, i 
= j is generated around log βi in the
previous period by adding the system niose. Next, we set ĥi(Yt, t), i = 1, · · · , n, i 
= j
as

ĥi(Yt, t) = ĥ(Yit) = eYit .

Then, β
(j)
t is generated according to the distribution function G(y(j)) which is defined

by

G(y(j)) = Pr({ĥ(j)(Yt, t) ≤ y(j)}|A(j)
t ) =

Pr({ĥ(j)(Yt, t) ≤ y(j)} ∩ A(j)
t )

Pr(A
(j)
t )

where
ĥ(j)(Yt, t) = (eY1t , · · · , eYj−1t, eYj+1t , · · · , eYnt).

Note also that in this case A
(j)
t is simplified to

A
(j)
t = {∑

i�=j

eYit ≤ 1}

because non-negative constrains are automatically satisfied. Finally, βjt is determined
by

βjt = 1 −∑
i�=j

βit.
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(ii) In example 2(i) above, we randomly choose j ∈ {1, · · · , n} with prbability 1
n

at
each time point t in stead of some j being fixed. The other scheme is the same as
above.

3. k = n, and hence Yt = (Y1t, · · · , Ynt). For each i = 1, · · · , n, Yit is generated by the
equation;

Yit = fi(Yt−∆t, βt−∆t, t) + vit = Yi,t−∆t + vit.

Then, βit, i = 1, · · · , n are determined by a logit trasformation:

βit = hi(Yt, t) =
eYit∑n

i=1 e
Yit
.

4 An Empirical Analysis

In this section, we explain the results of an empirical analysis using actual data of Japanese
mutual funds and style indices. We select data of three funds and six style indices from
Dec. 26, 1997 to Dec. 10, 2003. Figures 1 and 2 show these data and the correlation matrix
respectively. We note that there exist high correlations among the style indices. A significant
feature in this analysis is that we have monthly true weights of the style indices for each
fund that cannot be available in most cases, and hence we are able to evaluate our method
precisely.

We apply the model introduced in Example 1(ii) of 3.3 in the anaylsis; we generate β
(j)
t

which follows a conditional distribution expressed as the equation (7) by selecting samples
that satisfy the condition (8). We also assume that the observation noise follows a i.i.d.
normal distribution in the equation (5), and estimate state variables as well as parameters
by Monte Carlo filter.

One of the reason to take this model is that it is a natural extension of a random walk
which is neutral in model selection in a sense that it has no bias for the changes in the
weights from the current period to the next period as long as the constraints are satisfied;
the weights in the next period is modeled around those in the current period by adding the
noise which is able to caputure sudden changes in the weights. We also apply a more specific
model such as in Example 3 of 3.3, which shows similar performance to that of Example
1(ii). Hence, in the following we concentrate on explaining the results for the estimation of
βit based on the model in Example 1(ii) and leave detailed discussions on the model selection
as the subsequent research.

Figures 3-12 show the results. For comparative purpose, we also implement a window
regression with moving average to smooth the estimated coefficients. Figures 3,4 and 5 show
the result for actual monthly returns. Comparing the estimated weights with true ones, we
can conlude that the estimates by the Monte Carlo fiter are better than those by the window
regression though the estimates are not satisfactory especially for Fund B. Figures 6,7 and 8
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show the result for the daily returns by using Monte Carlo filter. We notice that the results
are better than those in the monthly case.

However, in Fund B there is still significant difference between actual weights and esti-
mated weights. Therefore, in order to examine the difference further we create the returns by
using true weights and style indices and compare them with those of Fund B. Figure 9 shows
that there exists explicit difference between them. Judging from this, we should conclude
that the assumption that the fund can be approximated by a portfolio of style indices is not
appropriate for this fund.

Finally, we generate the time series of returns by using the true weights and the monthly
stye indices and estimate the styles’ weights based on those series. Figures 10,11 and 12
show the results. We see that the Monte Calro filter is able to trace the dynamics of the
true weights quite well and that the result by the method is better than that by the window
regression. In particular, we notice that the sudden shifts of the weights can be captured
by the Monte Carlo filter while those can not by the window regression. Hence, we can
conclude that our method is valid for estimating time-varing coefficients of style indices
under non-negative constraints.

Although we introduce only a few examples, we can handle a broad class of models with
various types of functional forms of hi(·) in this framework and can estimate state variables
as well as parameters in a unified way by Monte Carlo filter. These generarity is not easily
achieved by the other methods and hence is the biggest advantage of the proposed approach.

5 Concluding Remarks

We develop a new framework for style analysis based on the general state space model
and Monte Carlo filter. As an example, we apply the method to the time series of actual
Japanese mutual funds’ returns and style indices, and confirm the validity of our method.
Further researches include how to utilize available information such as periodical(for instance,
yearly) report of true weights, the estimation of the hedge funds’ styles as well as detailed
investigation of model selection.

Appendix: An Algorithm of Monte Carlo Filter

In this appendix, we describe the outline of a standard algorithm of the Monte Carlo
filter. See Kitagawa(1996) for more detail of an algorithm.

First, we summarize the notation following Kitagawa(1996). p(Xt|Zt−∆t), called “one step
ahead prediction” denotes the conditional density function of Xt given Zt−∆t where ∆t is the
interval of time series. p(Xt|Zt), called “filter” denotes the conditional density function of Xt

given Zt. {p[1]
t , · · · , p[m]

t } and {ξ[1]
t , · · · , ξ[m]

t } represent the vectors of the realization of m trials

of Monte Carlo from p(Xt|Zt−∆t) and p(Xt|Zt), respectively. Then, if we set {ξ[1]
0 , · · · , ξ[m]

0 }
as the realization of Monte Carlo from p0(X), the density function of the initial state vector
X0, an algorithm of Monte Carlo filter is as follows.

8



[The summary of an algorithm of Monte Carlo filter]

1. Generate the initial state vector {ξ[1]
0 , · · · , ξ[m]

0 }.
2. Apply the following steps (a)∼(d) to each time t = 0,∆t, 2∆t, · · · , (T∗ −∆t), T∗ where
T∗ denotes the final time point of the data.

• (a) Generate the system noise v
[k]
t , k = 1, · · · , m according to the density function

q(v).

• (b) Compute for each k = 1, · · · , m

p
[k]
t = F (ξ

[k]
t−∆t, v

[k]
t )

or
p

[k]
t ∼ F|ξ[k]

t−∆t.

• (c) Evaluate the density function of ψ(u) at u = H−1(Zt, p
[k]
t ), k = 1, · · · , m and

define those as α
[k]
t , k = 1, · · · , m.

• (d) Resample {ξ[1]
t , · · · , ξ[m]

t } from {p[1]
t , · · · , p[m]

t }. More precisely, resample each

ξ
[k]
t , k = 1, · · · , m from {p[1]

t , · · · , p[m]
t } with the probability

Prob.(ξ
[k]
t = p

[i]
t |Zt) =

α
[i]
t∑m

k=1 α
[k]
t

, k = 1, · · · , m, i = 1, · · · , m.

The estimation of unknown parameters is based on the maximum likelihood method. If µ
denotes the vector representing whole unknown parameters, the likelihood L(µ) is given by

L(µ) = g(Z∆t, · · · , ZT∗|µ) = Π
T∗
∆t
i=1gi(Zi∆t|Z∆t, · · · , Z(i−1)∆t, µ);

g1(Z∆t|Z0) = p0(Z∆t)

where g(Z∆t, · · · , ZT∗|µ) and gi(Zi∆t|Z∆t, · · · , Z(i−1)∆t, µ) denote the joint density function
of Z∆t, · · · , ZT∗ with parameter vector µ and the condtional density fuction of Zi∆t given
Z∆t, · · · , Z(i−1)∆t with µ, respectively. The log-likelihood l(µ) is computed approximately
within the framework of the Monte Carlo filter by

l(µ) =

T∗
∆t∑
i=1

(
log

m∑
k=1

α
[k]
i∆t

)
− T∗

∆t
logm.

Then, maximize l(µ) with respect to µ to obtain the maximum likelihood estimator µ̂. For
optimization, grid search and a self-organizing method are applied. (See Kitagawa(1998) for
details of a self-organizing state-space model.) Finally, we utilize AIC(Akaike’s Information
Criterion) as a criterion to select a model if there are several candidates. That is, the model
with the smaller AIC can be regarded as the better model.

AIC = −2l(µ̂) + 2(the number of parameters)
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In the empirical analysis of section 4, we first select j ∈ {1, · · · , n} with probability 1
n

for

each sample k = 1, · · · , m in 2.(b) above. Next, we generate p
[k]
t correponding to Yit, i 
= j

from the equation (6) and generate p
[k]
t correponding to β(j) from the conditional distribution

(7), G(y(j)) by selecting samples that satisfy the condition (8):

A
(j)
t = {0 ≤ Y1t, · · · , 0 ≤ Yj−1t, 0 ≤ Yj+1t, · · · , 0 ≤ Ynt,

∑
i�=j

Yit ≤ 1}.

Then, ξ
[k]
t corresponding to Yit, i 
= j and β(j) are determined by 2.(c) and (d) above. Finally,

ξ
[k]
t corresponding to βj is determined by the constraint;

βj = 1 −∑
i�=j

βi.
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Figure 1 : Observation Data
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Figure 2: Correlation matrix for fund returns and style index

SV SG MV MG TV TG A B C

SV 1 0.82 0.89 0.78 0.77 0.68 0.74 0.48 0.81 

SG 0.82 1 0.71 0.89 0.71 0.77 0.84 0.76 0.77 

MV 0.89 0.71 1 0.77 0.87 0.71 0.77 0.39 0.88 

MG 0.78 0.89 0.77 1 0.81 0.89 0.94 0.74 0.87 

TV 0.77 0.71 0.87 0.81 1 0.84 0.87 0.48 0.90 

TG 0.68 0.77 0.71 0.89 0.84 1 0.95 0.64 0.89 

A 0.74 0.84 0.77 0.94 0.87 0.95 1 0.69 0.91 

B 0.48 0.76 0.39 0.74 0.48 0.64 0.69 1 0.55 

C 0.81 0.77 0.88 0.87 0.90 0.89 0.91 0.55 1 



of fund A
Figure3: Estimating results for real monthly returns

Result by window regression
+moving average

Result by Monte Carlo filter

True weight



of fund B
Figure 4: Estimating results for real monthly returns

Result by window regression
+moving average

Result by Monte Carlo filter 

True weight



Figure 5: Estimating results for real monthly returns
of fund C

Result by window regression
+moving average

Result by Monte Carlo filter

True weight



Figure 6: Result for real daily returns
of fund A

True weight Result by Monte
Carlo filter



Figure 7: Result for real daily returns
of fund B

Result by Monte
Carlo filter

True weight



Figure 8: Result for real daily returns
of fund C

True weight Result by Monte
Carlo filter



Figure 9: comparison between real return and style index
for Fund B

Scatter plot of real monthly returns (Xt) of Fund B vs. 
returns (Yt) of portfolio of style indices by actual weights

Xt

Y
t



True weight

Figure 10: Results for simulation data based on 
monthly true weights of Fund A

Result by WR+MA

Result by MCF



True weight Result by WR+MA

Figure 11: Results for simulation data based on 
monthly true weights of Fund B

Result by MCF



True weight Result by WR+MA

Figure 12: Results for simulation data based on 
monthly true weights of Fund C

Result by MCF
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