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Abstract

Inspired by non-linear pricing in finance, this paper presents a mathematical validity of an
asymptotic expansion scheme for a system of forward-backward stochastic differential equations
(FBSDEs) in terms of a perturbed driver in the BSDE and a small diffusion in the FSDE. In
particular, we represent the coefficients of the expansion of the FBSDE up to an arbitrary order,
and obtain the error estimate of the expansion with respect to the driver and the small noise
perturbation.

Keywords Forward-Backward SDEs, Asymptotic expansion, Non-linear pricing, Malliavin cal-
culus

1 Introduction

This paper investigates the mathematical foundation of an asymptotic expansion scheme for
a multiscale system of forward-backward SDEs (FBSDEs). In particular, we concentrate on to
provide a mathematical validity for the decoupled case of the scheme, which is mainly addressed
in their paper.

The FBSDEs has become quite popular in finance community since El Karoui et al. [8],
especially after the recent financial crises and the subsequent quite volatile markets, which leads
us to recognize the importance of counter party risk management, particularly the credit value
adjustments (CVA).

However, an explicit solution for a FBSDE has been known only for a simple linear or quadratic
example. Although several techniques have been proposed in the last decade, they seem very
limited in practical applications since they rely on numerical methods for non-linear PDEs or
regression based Monte Carlo simulations, which are generally very difficult to implement or quite
time-consuming especially for high-dimensional and long-horizon problems.

Recently, Fujii and Takahashi [11] has developed a simple analytical approximation scheme for
the nonlinear FBSDEs. They have introduced a perturbation parameter to the driver of a BSDE
to expand recursively the non-linear terms around a relevant linear FBSDE. In the computation
of each order, we explicitly represent the backward elements as the functions of the forward
components and take those expectations. Hence, except the cases that the distributions of the
forward process are explicitly known, we apply some approximations of the distributions such as
an asymptotic expansion technique, which is widely applied to the analytical approximations for
pricing European contingent claims and computing optimal portfolios. (For example, see Fujii
and Takahashi [11] [12], Takahashi and Yamada [24] [26] and references therein for the details.)

∗forthcoming in International Journal of Financial Engineering
†University of Tokyo,
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They also provided two numerical examples, where the second-order analytic approximations
work quite well compared to numerical techniques such as the finite difference method and the
regression-based Monte Carlo simulation.

Moreover, their subsequent work [12] has applied this scheme to the optimal portfolio problem
in an incomplete market with stochastic volatility, and demonstrated the accurate approximations
even for long maturities such as 10 years, as opposed to the regression based Monte Carlo simula-
tion that works well only up to short maturities such as one year. We also note that the method
has the great advantage of deriving explicit expressions of the optimal portfolios and hedging
strategies, that is very important in practice. Further, we can use the method for the general
multi-dimensional cases, which is not true of the well-known Cole-Hopf transformation. As for
the recent development of this scheme with interacting particle method, see Fujii and Takahashi
[13] and Fujii, Sato and Takahashi [10].

In a different stream, Takahashi and Yamada [25] has proposed a new closed-form approxima-
tion for the solutions of FBSDEs. In particular, applying Malliavin calculus approach of Kusuoka
[16] and [24] [26] to the forward SDEs with the Picard-iteration scheme for the BSDEs, they
have obtained an error estimate for the approximation. Moreover, they have demonstrated the
effectiveness of the method through numerical examples for pricing options with counter party
risk under the local and stochastic volatility models, where the credit value adjustment (CVA) is
taken into account.

This paper provides a mathematical foundation for the original scheme for a multiscale FBSDE.
(The justification for the coupled case will be one of our next research topics.) It mainly consists
of two parts. That is, for the BSDE expansion with a perturbed driver we obtain the coefficients
up to an arbitrary order as the solution to a system of the associated BSDEs with the base FSDE,
and present the error estimate of the expansion. Accordingly, we show a concrete representation
for each expansion coefficient of the volatility component, that is the martingale integrand in the
BSDE. For the FSDE expansion, we derive an expansion formula with its sharp error estimate for
the expectation of the solution to the base FSDE in terms of a small diffusion. Then, we combine
the both results, particularly applying our FSDE expansion formula to the BSDE expansion
coefficients to obtain our main result, that is an asymptotic expansion of FBSDEs with a perturbed
driver. In the proofs, we effectively apply the representation results in Ma and Zhang [19] for
the BSDE expansion and the properties of the Kusuoka-Stroock functions in [16] for the FSDE
expansion.

The organization of the paper is as follows: after the next section describes the basic setup,
Section 3 provides the result for the expansion of the BSDE with respect to a perturbation
parameter in the driver. Section 4 shows an expansion for the FSDE in terms of a small diffusion,
which is combined with the asymptotic expansion for the BSDE in Section 3 to present our main
result in Section 5.

2 Multiscale FBSDE

Let (Ω,F , P ) be a complete probability space on which a d-dimensional Brownian motion W
is defined. Let F = {Ft} be the natural filtration generated by W , augmented by the P -null sets
of F . We first consider the following d-dimensional forward stochastic differential equation with
parameter ε, (Xε

t )t with X
ε
t = (Xε,1

t , · · · , Xε,d
t ):

dXε,i
t = bi(t,Xε

t )dt+ ε
d∑

j=1

σi
j(t,X

ε
t )dW

j
t , i = 1, · · · , d, (2.1)

Xε,i
0 = xi0 ∈ R, i = 1, · · · , d,

where b : [0, T ]×Rd 7→ Rd, σ : [0, T ]×Rd 7→ Rd×d and ε ∈ (0, 1].
Next, given FSDE (2.1), we introduce (Y α,ε, Zα,ε) with a perturbation parameter α ∈ [0, 1],
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which is the solution of the following BSDE:

Y α,ε
t = g(Xε

T ) + α

∫ T

t

f(s,Xε
s , Y

α,ε
s , Zα,ε

s )ds

−
∫ T

t

Zα,ε
s · dWs, (2.2)

or equivalently, as the differential form:

dY α,ε
t = −α f(t,Xε

t , Y
α,ε
t , Zα,ε

t )dt+ Zα,ε
t · dWt, (2.3)

Y α,ε
T = g(Xε

T ),

where x · y denotes the inner product of x, y ∈ Rd, that is x · y =
d∑

i=1

xiyi for (x1, · · · , xd) and

y = (y1, · · · , yd).
In the following we state the assumptions for the forward-backward SDE in this paper.

Assumption 2.1.

1. The coefficients of the forward process, b, σ are bounded Borel functions. Moreover, b(t, x)
and σ(t, x) are continuous in (t, x) and smooth in x with bounded derivatives of all orders.

2. There exist constants ai > 0, i = 1, 2 such that for any vector ξ in Rd and any (t, x) ∈
[0, T ]×Rd,

a1|ξ|2 ≤
d∑

i,j=1

[σσT ]i,j(t, x)ξiξj ≤ a2|ξ|2.

3. The driver f : [0, T ]×Rd ×R×Rd 7→ R is continuous and bounded. Moreover, f(t, x, y, z)
is smooth in x, y, z with bounded derivatives of all orders.

4. g : Rd 7→ R is smooth with bounded derivatives of all orders, and |g(0)| ≤ K for a positive
constant K.

Under the assumption above, there exists the unique solution (Y α,ε, Zα,ε) such that for any

p > 1, E

[
sup

0≤s≤T
|Y α,ε

s |p
]
+ E

(∫ T

0

|Zα,ε
s |2ds

)p/2
 <∞. (e.g. See Theorem 5.1 in [8].)

Then, it also holds that

Y α,ε
t = E [Y α,ε

t |Ft] = E [g(Xε
T )|Ft] + αE

[∫ T

t

f(s,Xε
s , Y

α,ε
s , Zα,ε

s )ds|Ft

]
.

We note that when α = 0, Y 0,ε
t is the solution to the linear BSDE with α = 0 in (2.2):

Y 0,ε
t = E [g(Xε

T )|Ft] .

We consider the FBSDEs (2.1) and (2.3) on the subinterval [t, T ] ⊆ [0, T ] as follows: for
s ∈ [t, T ],

Xt,x,ε,i
s = xi +

∫ s

t

bi(r,Xt,x,ε
r )dr + ε

d∑
j=1

∫ s

t

σi
j(r,X

t,x,ε
r )dW j

r (2.4)

Y t,x,α,ε
s = g(Xt,x,ε

T ) + α

∫ T

s

f(r,Xt,x,ε
r , Y t,x,α,ε

r , Zt,x,α,ε
r )dr

−
∫ T

s

Zt,x,α,ε
r · dWr, (2.5)
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where the subscript ·t,x shows the dependence on the initial data (t, x), and Xt,x,ε,i
t = xi. Here-

after, we use the notation ∂α =
∂

∂α
and ∂x = (

∂

∂x1
, · · · , ∂

∂xd
).

Then, we recall the following well-known result (for instance, see Corollary 4.1 in [8] or Theorem
3.1 in [19] ): Define uα,ε(t, x) as

uα,ε(t, x) := Y t,x,α,ε
t = E

[
g(Xt,x,ε

T ) + α

∫ T

t

f(r,Xt,x,ε
r , Y t,x,α,ε

r , Zt,x,α,ε
r )dr

]
.

Then, we have

∂xu
α,ε(t, x)σ(t, x) = Zt,x,α,ε

t . (2.6)

We also define ∂xu
α,εσ : [0, T ]×Rd ∋ (t, x) 7→ ∂xu

α,ε(t, x)σ(t, x).

3 Expansion of BSDE

This section shows our main result for the expansion of (Y α,ε, Zα,ε) around α = 0. Generally
speaking, as above BSDE is nonlinear, solving it analytically seems not possible. In fact, for
computation of uα,ε(t, x) and ∂xu

α,ε(t, x)σ(t, x), there is an unavoidable complexity mainly due
to the ”non-linearity” of the driver f in the BSDE. To overcome the difficulty, we expand the
BSDE with respect to a driver parameter α around a linear BSDE with α = 0, which is able to
take the ”non-linearity” effects into account as the expansion coefficients. Hence, we pursue to
obtain an approximate solution by an asymptotic expansion around a linear BSDE.

Firstly, in the case of α = 0 with s = t in (2.5), (Y t,x,0,ε, Zt,x,0,ε) becomes the solution to the
following linear BSDE:

Y t,x,0,ε
t = g(Xt,x,ε

T )−
∫ T

t

Zt,x,0,ε
s · dWs.

Then, we also have

u0,ε(t, x) = Y t,x,0,ε
t = E[g(Xt,x,ε

T )],

and

∂xu
0,ε(t, x)σ(t, x) = Zt,x,0,ε

t = {∂xE[g(Xt,x,ε
T )]}σ(t, x).

In the mathematical finance, u0,ε(t, x) may be regarded as a value of a European derivative with
the payoff g(Xt,x,ε

T ) and ∂xu
0,ε(t, x) as its Delta, that is the sensitivity of the value with respect to

the change in the initial value of the underlying variable x. Then, it is well known that u0,ε(t, x)
and ∂xu

0,ε(t, x)σ(t, x) can not be obtained as closed forms, due to a generally unknown density
function of Xt,x,ε

T .
Although the Monte Carlo simulation may be applied to computing those quantities, applying

the simulation method becomes infeasible for computation of the higher order expansions around
the linear BSDE with reasonable accuracy and computational time. Hence, it is a key element for
analytical approximations of BSDE to obtain a closed form approximation of the density function
of Xt,x,ε

s , s ∈ (t, T ].
One tractable and powerful approach is an asymptotic expansion by Watanabe [28] because

the density of Xt,x,ε
s is expanded with respect to the small volatility parameter ε in a unified

manner and its concrete and automatic computational scheme has been developed. (e.g. Li [18],
Takahashi et al. [23])

Consequently, this paper considers an expansion of the FBSDE with respect to both parameters
α and ε and provides a concrete approximation method of the FBSDE and its error estimate.
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3.1 Notations and Basic Result

For the preparation, we list up the notations and a lemma following [19], which will be fre-
quently used in the next subsection. Firstly, let E (or E1) be a generic Euclidean space.

• C(F, [0, T ]×E;E1): the space of all E1-valued, continuous random fields, φ : Ω× [0, T ]×E 7→
E1, such that for fixed e ∈ E, φ(·, ·, e) is an F-adapted process.

• W 1,∞(E; E1): the space of all measurable functions ψ : E 7→ E1, such that for some constant
K > 0 it holds that

∥ψ(x)− ψ(y)∥E1
≤ K∥x− y∥E, ∀x, y ∈ E . (3.1)

• L0([t, T ];W 1,∞(E; E1)) : for t ∈ [0, T ], the space of all measurable functions φ : [t, T ] 7→
W 1,∞(E; E1).

• Lp(G; E): for any sub-σ-field G ⊆ FT and 1 ≤ p <∞, the space of all E-valued, G- measurable
random variables ξ such that E [|ξ|p] <∞.

L∞(G; E): for any sub-σ-field G ⊆ FT , the space of all E-valued, G- measurable and bounded
random variables.

• C∞
b (E; E1): the space of all infinitely differentiable functions φ : E 7→ E1 such that the all

of its derivatives are bounded. We write C∞
b (E) for C

∞
b (E;R).

We also prepare the basic notations and definitions of Malliavin calculus.

• H: the Cameron-Martin space of all absolutely continuous functions h : [0, T ] → Rd with a

square integrable derivative, i.e., h′ ∈ L2([0, T ];Rd), h′(t) =
d

dt
h(t). Here, L2([0, T ];Rd) is

the space of all Rd-measurable functions φ on [0, T ] such that

(∫ T

0

|φ(s)|2ds

)1/2

<∞.

• L2(Ω;H): the space of all random variables F : Ω → H such that ∥F∥22 := E[|F |2] <∞.

• S: the set of random variables F of the form

F = φ

(∫ T

0

h′1(s) · dWs, · · · ,
∫ T

0

h′d(s) · dWs

)

where φ ∈ C∞
b (Rd), h1, · · · , hd ∈ H.

• Malliavin derivative D: If F ∈ S is of the above form, we define its derivative as follows

DF =
d∑

i=1

∂φ

∂xi

(∫ T

0

h′1(s) · dWs, · · · ,
∫ T

0

h′d(s) · dWs

)
hi,

The derivative DF will be a stochastic process (DτF )τ∈[0,T ] as follows;

DτF =

d∑
i=1

∂φ

∂xi

(∫ T

0

h′1(s) · dWs, · · · ,
∫ T

0

h′d(s) · dWs

)
h′i(τ), τ ∈ [0, T ].

• Dk,p: the closure of S with respect to the norm

∥F∥k,p =

E[|F |p] +
k∑

j=1

E[∥DjF∥pH⊗j ]

1/p

, 1 ≤ p, k ∈ N.

• D∞: D∞ = ∩p≥1 ∩k≥1 D
k,p.

5



• Skorohod integral δ: We define δ as the adjoint operator of the derivative operator D,
that is an unbounded operator from L2(Ω;H) into L2(Ω) such that the domain of δ, de-
noted by Dom(δ), is the set of H-valued square integrable random variables u such that∣∣∣∣∣E
[∫ T

0

DτFuτdτ

]∣∣∣∣∣ ≤ C∥F∥2, for all F ∈ D1,2, where C is some constant depending on u.

For u ∈ Dom(δ), δ(u) is characterized by the duality relationship:

E[Fδ(u)] = E

[∫ T

0

DτFuτdτ

]
, for any F ∈ D1,2.

δ(u) is called Skorohod integral of the process u.

The next lemma is taken from Lemma 2.2. in [19] and a slight modification of Proposition 5.1 in
[8], which is frequently used in the proof of Theorem 3.1.

Lemma 3.1. 1. Suppose that b̃ ∈ C(F, [0, T ]×Rd;Rd)∩L0([0, T ];W 1,∞(Rd;Rd)), σ̃ ∈ C(F, [0, T ]×
Rd;×Rd×d) ∩ L0([0, T ];W 1,∞(Rd;Rd×d)), with a common Lipschitz constant K > 0. Sup-
pose also that b̃(t, 0) = 0 and σ̃(t, 0) = 0 P -a.s. For any h0 ∈ L2(F, [0, T ];Rd) and
h1 ∈ L2(F, [0, T ];Rd×d), let X be the solution of the following SDE:

Xt = x+

∫ t

0

[
b̃(s,Xs) + h0s

]
ds+

∫ t

0

[
σ̃(s,Xs) + h1s

]
dWs.

Then, for any p ≥ 2, there exists a constant C > 0 depending only on p, T and K, such that

E
[
|X|∗,pt,T

]
≤ C

{
|x|p + E

[∫ T

0

[
||h0t |p + |h1t |p

]
dt

]}
,

where |X|∗,pt,T := sup
t≤s≤T

∥Xs∥p.

2. Assume that f̃ ∈ C(F, [0, T ]×R×Rd;R)∩L0([0, T ];W 1,∞(R×Rd)) with a uniform Lipschitz
constant K > 0, and f̃(ω, s, 0, 0) = 0 P -a.e. ω ∈ Ω. For any ξ ∈ Lp(FT ;R), p > 1 and a

R-valued, F-adapted process h such that E

(∫ T

0

|ht|2dt

)p/2
 <∞ for p > 1. let (Y,Z) be

the adapted solution to the BSDE:

Yt = ξ +

∫ T

t

[f̃(s, Ys, Zs) + hs]ds−
∫ T

t

Zs · dWs.

Then there exists a constant C > 0 depending only on T , p and the Lipschitz constant of f̃ ,
such that

E
[
|Y |∗,pt,T

]
+ E

(∫ T

0

|Zt|2dt

)p/2
 ≤ CE

|ξ|p +(∫ T

0

|ht|2dt

)p/2
 ,

where |Y |∗,pt,T := sup
t≤s≤T

∥Ys∥p.

Also, in order to estimate the expansion error we define a space as in [25]. For any β, µ > 0,
let Hβ,µ,T be the space of functions v : [0, T ]×Rd → Rn such that

∥v∥2Hβ,µ,T
=

∫ T

0

∫
Rd

eβs|v(s, x)|2e−µ|x|dxds <∞.
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3.2 Asymptotic Expansion for BSDE and its Representation

Hereafter, we often suppress the subscript ε for the notational simplicity. Also we frequently
use abbreviated notations such as Y α

t , Zα
t , u

α and ∂xu
ασ in stead of Y t,x,α,ε

t , Zt,x,α,ε
t , uα,ε and

∂xu
α,εσ, respectively.
Moreover, we use the following notations and the abbreviations especially in the next theorem:

(n)∑
nβ ,d(β)

:=
n∑

β=1

∑
nβ∈Ln,β

∑
d(β)∈{1,··· ,d+1}β

1

β!
,

(n)∑
nβ ,d(β),β=2

:=
n∑

β=2

∑
nβ∈Ln,β

∑
d(β)∈{1,··· ,d+1}β

1

β!
,

Ln,β :=

{
nβ = (n1, · · · , nβ);

β∑
k=1

nk = n; (n, nk, β ∈ N)

}
,

Zt,x,α,ε =
(
Zt,x,α,ε,1, · · · , Zt,x,α,ε,d

)
,

∂αZ
α ≡ ∂αZ

t,x,α,ε =
(
∂αZ

t,x,α,ε,1, · · · , ∂αZt,x,α,ε,d
)
,

Ξα ≡ Ξt,x,α,ε :=
(
Y t,x,α,ε, Zt,x,α,ε

)
∈ R×Rd,

Ξα,i ≡ Ξt,x,α,ε,i, i ∈ {1, · · · , d+ 1},
Θα

r ≡ Θt,x,α,ε
r :=

(
r,Xt,x,ε

r ,Ξt,x,α,ε
r

)
=
(
r,Xt,x,ε

r , Y t,x,α,ε
r , Zt,x,α,ε

)
∈ [0, T ]×Rd ×R×Rd,

∂d(β)f(Θα
r ) :=

∂β

∂ξd1 · · · ∂ξdβ

f
(
·, ·,Ξt,x,α,ε

r

)
=

∂β

∂ξd1 · · · ∂ξdβ

f
(
·, ·, Y t,x,α,ε

r , Zt,x,α,ε
)
,(

d(β) := (d1, · · · , dβ) ∈ {1, · · · , d+ 1}β , β ≥ 1
)
,

∂yf(Θ
α
r ) :=

∂

∂y
f
(
·, ·, Y t,x,α,ε

r , ·
)
,

∇zf(Θ
α
r ) :=

(
∂f(·, ·, ·, Zt,x,α,ε

r )

∂z1
, · · · , ∂f(·, ·, ·, Z

t,x,α,ε
r )

∂zd

)
.

Section 2.4 of [8] discuss the first-order differentiation of the function α 7→ (Y α, Zα). In the fol-

lowing theorem, we provide a representation of ∂nαY
t,x,α
s :=

∂n

∂αn
Y t,x,α
s and ∂nαZ

t,x,α
s :=

∂n

∂αn
Zt,x,α
s

for any n ∈ N and derive an asymptotic expansion of (Y α, Zα) with respect to the parameter α
around α = 0.

Theorem 3.1. Given the forward SDE (2.4) and Y t,x,0 in (3.1), for s ∈ [t, T ], the derivatives

∂nαY
t,x,α
s =

∂n

∂αn
Y t,x,α
s and ∂nαZ

t,x,α
s =

∂n

∂αn
Zt,x,α
s satisfy:

when n = 1,

∂αY
t,x,α
s =

∫ T

s

[f(Θα
r ) + α∂yf(Θ

α
r )(∂αY

α
r ) + α∇zf(Θ

α
r ) · (∂αZα

r )] dr

−
∫ T

s

(∂αZ
α
r ) · dWr, (3.2)

when n ≥ 2,

∂nαY
t,x,α
s =

∫ T

s

[Hn(r, t, x, α) + α {∂yf(Θα
r )∂

n
αY

α
r +∇zf(Θ

α
r ) · ∂nαZα

r }] dr

−
∫ T

s

∂nαZ
α
r · dWr, (3.3)
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where

Hn(r, t, x, α) := n!

(n−1)∑
nβ ,d(β)

∂d(β)f(Θα
r )

β∏
k=1

1

nk!
∂nk
α Ξα,dk

+α n!

(n)∑
nβ ,d(β),β=2

∂d(β)f(Θα
r )

β∏
k=1

1

nk!
∂nk
α Ξα,dk .

Moreover, for any M ∈ N, there exists a constant C(M,T ) > 0 such that∥∥∥∥∥uα,ε −
{
u0,ε +

M∑
i=1

αi u0,εi

}∥∥∥∥∥
2

Hβ,µ,T

+

∥∥∥∥∥∂xuα,εσ −

{
∂xu

0,εσ +

M∑
i=1

αi ∂xu
0,ε
i σ

}∥∥∥∥∥
2

Hβ,µ,T

≤ α2(M+1)C(M,T ), (3.4)

where

u0,ε(t, x) = Y t,x,0,ε
t = E

[
g(Xt,x,ε

T )
]
, (3.5)

∂xu
0,εσ(t, x) = Zt,x,0,ε

t = E
[
g(Xt,x,ε

T )N t,x,ε
T

]
σ(t, x), (3.6)

and

u0,εn+1(t, x) =
1

(n+ 1)!
∂n+1
α Y t,x,α,ε

t |α=0

= E

[∫ T

t

Fn+1(r,Xt,x,ε
r )dr

]
, for n = 0, 1, · · · ,

∂xu
0,ε
n+1σ(t, x) =

1

(n+ 1)!
∂n+1
α Zt,x,α,ε

t |α=0

= E

[∫ T

t

[Fn+1(r,Xt,x,ε
r )]N t,x,ε

r dr

]
σ(t, x),

for n = 0, 1, · · · ,

where N t,x,ε
r stands for the Malliavin Delta weight:

N t,x,ε
r =

1

(r − t)

∫ r

t

σ(Xt,x,ε
τ )−1∇Xt,x,ε

τ dWτ . (3.7)

Here, Fn+1, n ≥ 0, is recursively given by

F 1(t, x) = f
(
t, x, u0,ε(t, x), ∂xu

0,εσ(t, x)
)
, for n = 0, (3.8)

Fn+1(t, x)

=

(n)∑
nβ ,d(β)

∂d(β)f
(
t, x, u0,ε(t, x), ∂xu

0,εσ(t, x)
) β∏
k=1

1

nk!
∂nk
α Ξ̂0,dk , (3.9)

for n ≥ 1,

where

∂xu
0,εσ(t, x) =

(
∂xu

0,εσ(t, x))1, · · · , (∂xu0,εσ(t, x))d
)
,

Ξ̂0 ≡ Ξ̂t,x,0,ε :=
(
u0,ε(t, x), ∂xu

0,εσ(t, x)
)

=
(
u0,ε(t, x), (∂xu

0,εσ(t, x))1, · · · , (∂xu0,εσ(t, x))d
)
,

Ξ̂0,dk ≡ Ξ̂t,x,0,ε,dk .
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Remark 3.1. In the case of d = 1, (3.2) and (3.3) is reduced to the following equations:

d(∂αY
α
r ) = − [f(Θα

r ) + α∂yf(Θ
α
r )(∂αY

α
r ) + α∂zf(Θ

α
r )(∂αZ

α
r )] dr

+∂αZ
α
r dWr, for n = 1,

d (∂nαY
α
r ) = − [Hn(r, t, x, α) + α {∂yf(Θα

r )∂
n
αY

α
r + ∂zf(Θ

α
r )∂

n
αZ

α
r }] dr

+∂nαZ
α
r dWr, for n ≥ 2,

∂nαY
α
T = 0,

where

Hn(r, t, x, α) = n!
n−1∑
k=1

∑
β1+···+βk=n−1,βi≥1

k∑
i=0

1

i!(k − i)!

∂k−i
y ∂izf(Θ

α
r )

k−i∏
j=1

1

βj !
∂βj
α Y α

r

k∏
j=k−i+1

1

βj !
∂βj
α Zα

r

+α n!

n∑
k=2

∑
β1+···+βk=n,βi≥1

k∑
i=0

1

i!(k − i)!

∂k−i
y ∂izf(Θ

α
r )

k−i∏
j=1

1

βj !
∂βj
α Y α

r

k∏
j=k−i+1

1

βj !
∂βj
α Zα

r ,

and
i∏
j

≡ 1 when i < j.

In addition, Fn+1, n ≥ 1, is recursively given by

F 1(t, x) = f
(
t, x, u0,ε(t, x), ∂xu

0,εσ(t, x)
)
, for n = 0, (3.10)

Fn+1(t, x) =
n∑

k=1

∑
β1+···+βk=n,βi≥1

k∑
i=0

1

i!(k − i)!

∂k−i
y ∂izf

(
t, x, u0,ε(t, x), ∂xu

0,εσ(t, x)
)

k−i∏
j=1

1

βj !
u0,εβj

(t, x)

k∏
j=k−i+1

1

βj !
∂xu

0,ε
βj
σ(t, x), for n ≥ 1. (3.11)

Proof.
We only prove the case of d = 1 for the notational simplicity.

Firstly, as in the beginning of this section, (Y 0, Z0) is the solution to linear BSDE:

Y 0
t = g(Xε

T )−
∫ T

t

Z0
sdWs.

We have

u0(t, x) = Y t,x,0
t

and by Theorem 4.2 of [19] with null driver,

∂xu
0(t, x)σ(t, x) = Zt,x,0

t

has the representation (3.6).
Next, we will apply an induction argument to the number of the times of the differentiation of

(Y α, Zα) with respect to α, and then will prove the expansion (3.4). We also remark that we will
use a generic constant C > 0, which is allowed to vary, depending on some constants associated
with Assumption 2.1, Lemma 3.1, the time horizon, the number of the times of the differentiation
and so on.

9



• n = 1 ( ∂αY
α
t )

In the first place, let us show the case of the first order differentiation with respect to α. For
an arbitrary initial condition (t, x) ∈ [0, T ]×Rd, let (Y t,x,α

1,s , Zt,x,α
1,s )t≤s≤T be the solution to

the BSDE, which is obtained by the formal differentiation of (2.5) with respect to α:

Y t,x,α
1,s =

∫ T

s

[f(Θt,x,α
r ) + α∂yf(Θ

t,x,α
r )Y t,x,α

1,r + α∂zf(Θ
t,x,α
r )Zt,x,α

1,r ]dr

−
∫ T

s

Zt,x,α
1,r dWr. (3.12)

Applying Proposition 2.4 with its remark in p.29 of [8] or the similar argument as in the
proof of Theorem 3.1 in [19], we can see (Y t,x,α

1,s , Zt,x,α
1,s )t≤s≤T satisfies:

lim
h→0

E

[
sup

t≤s≤T

∣∣∣∣Y t,x,α+h
s − Y t,x,α

s

h
− Y t,x,α

1,s

∣∣∣∣2 + sup
t≤s≤T

∣∣Y t,x,α+h
s − Y t,x,α

s

∣∣2] = 0,

and

lim
h→0

E

[∫ T

t

∣∣∣∣Zt,x,α+h
s − Zt,x,α

s

h
− Zt,x,α

1,s

∣∣∣∣2 ds+ ∫ T

t

∣∣Zt,x,α+h
s − Zt,x,α

s

∣∣2 ds] = 0.

Hence, hereafter we often write Y t,x,α
1,s for ∂αY

t,x,α
s and Zt,x,α

1,s for ∂αZ
t,x,α
s .

Next, define

uα1 (t, x) := E

[∫ T

t

[f(Θt,x,α
r ) + α∂yf(Θ

t,x
r )Y t,x,α

1,r + α∂zf(Θ
t,x,α
r )Zt,x,α

1,r ]dr

]
, (3.13)

and

vα1 (t, x)

:=
1

ε
E

[∫ T

t

[f(Θt,x,α
r ) + α∂yf(Θ

t,x
r )Y t,x,α

1,r + α∂zf(Θ
t,x,α
r )Zt,x,α

1,r ]N t,x
r dr

]
,

(3.14)

where (N t,x
r )t≤r≤T is the Malliavin delta weight given by (3.7). First, it holds that uα1 (t, x) =

∂αY
t,x,α
t .

Second, since f , ∂yf and ∂zf are bounded by Assumption 2-1-3, and Lemma 3.1-2 is applied
to (3.12), there exists C1 such that for all p > 1,

E

∣∣Y t,x,α
1

∣∣∗,p
t,T

+

(∫ T

t

|Zt,x,α
1,r |2dr

)p/2
 ≤ C1, (3.15)

which is applied to (3.13) to obtain |uα1 (t, x)| ≤ C for some constant C for all (t, x).

Next we consider the solution to the variational equation of the BSDE (3.12):

∇Y t,x,α
1,s

=

∫ T

s

[
B1(r, t, x, α) + α∂yf(Θ

t,x,α
r )∇Y t,x,α

1,r + α∂zf(Θ
t,x,α
r )∇Zt,x,α

1,r

]
dr

−
∫ T

s

∇Zt,x,α
1,r dWr, (3.16)
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where

B1(r, t, x, α)

= ∂xf(Θ
t,x,α
r )∇Xt,x

r + ∂yf(Θ
t,x,α
r )∇Y t,x,α

r + ∂zf(Θ
t,x,α
r )∇Zt,x,α

r

+α∂xyf(Θ
t,x
r )∇Xt,x

r Y t,x,α
1,r + α∂y2f(Θt,x

r )∇Y t,x,α
r Y t,x,α

1,r

+α∂yzf(Θ
t,x
r )∇Zt,x

r Y t,x,α
1,r + α∂xzf(Θ

t,x
r )∇Xt,x

r Zt,x,α
1,r

+α∂yzf(Θ
t,x
r )∇Y t,x,α

r Zt,x,α
1,r + α∂z2f(Θt,x

r )∇Zt,x
r Zt,x,α

1,r . (3.17)

First, note that due to Lemma 3.1, we have for all p > 0,

E
[∣∣∇Xt,x

∣∣∗,p
t,T

+
∣∣∇Y t,x,α

∣∣∗,p
t,T

]
≤ C2 for some constant C2. (3.18)

By Theorem 3.1-(iii) in [19] we also know that:

Zt,x
s = ∂xu(s,X

s,x
s )σ(s,Xs,x

s ), ∀s ∈ [t, T ], P − a.s.

Thus, we have

∇xZ
t,x
s = ∂2xu(s,X

s,x
s )∇Xt,x

s σ(s,Xs,x
s )

+∂xu(s,X
s,x
s )∂xσ(s,X

s,x
s )∇Xt,x

s ,

∀s ∈ [t, T ], P − a.s.

Moreover, by Lemma 3.4 of Crisan and Delarue [5], ∂xu and ∂2xu are bounded. Hence with
Assumption 2.1.1 and (3.18) we obtain for all p > 0,

E
[∣∣∇Zt,x

∣∣∗,p
t,T

]
≤ C3 for some constant C3. (3.19)

Then, applying Assumption 2.1-.3, (3.15), (3.18) and (3.19), we obtain

E

[∫ T

t

∣∣B1(r, t, x, α)
∣∣2 dr] ≤ C4. for some constant C4 (3.20)

Here, for instance, we use the following estimate: as for the last term in B1(r, t, x, α) in
(3.17), by the boundedness of ∂z2f(Θt,x

r ) and the Hölder inequality with (3.15) and (3.19),
we have for some constants Ĉ and C̄:

E

[∫ T

t

|α∂z2f(Θt,x
r )∇Zt,x

r Zt,x,α
1,r )|2

]
≤ ĈE

[∫ T

t

|∇Zt,x
r Zt,x,α

1,r )|2dr

]

≤ ĈE

[
|∇Zt,x|∗,2t,T

∫ T

t

|Zt,x,α
1,r )|2dr

]

≤ ĈE

[(
|∇Zt,x|∗,2t,T

)2]1/2
E

(∫ T

t

|Zt,x,α
1,r )|2dr

)2
1/2

≤ C̄.

Thus, applying Lemma 3.1 and the similar argument as in the proof of Theorem 3.1 in Ma
and Zhang [19] to (3.16), we have

lim
h→0

E

 sup
t≤s≤T

∣∣∣∣∣Y
t,x+h,α
1,s − Y t,x,α

1,s

h
−∇Y t,x,α

1,s

∣∣∣∣∣
2

+ sup
t≤s≤T

∣∣∣Y t,x+h,α
1,s − Y t,x,α

1,s

∣∣∣2
 = 0,

lim
h→0

E

∫ T

t

∣∣∣∣∣Z
t,x+h,α
1,s − Zt,x,α

1,s

h
−∇Zt,x,α

1,s

∣∣∣∣∣
2

ds+

∫ T

t

∣∣∣Zt,x+h,α
1,s − Zt,x,α

1,s

∣∣∣2 ds
 = 0,
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and

E

[∣∣∇Y t,x,α
1

∣∣∗,2
t,T

+

∫ T

t

|∇Zt,x,α
1,r |2dr

]
≤
∫ T

t

∣∣B1(r, t, x, α)
∣∣2 dr ≤ C4. (3.21)

Next, let

v̄α1 (t, x)

:= E

[∫ T

t

[B1(r, t, x, α) + α∂yf(Θ
t,x,α
r )∇Y t,x,α

1,r + α∂zf(Θ
t,x,α
r )∇Zt,x,α

1,r ]dr

]
.

(3.22)

Then, by Assumption 2-1-3, (3.20) and (3.21), we obtain |v̄α1 (t, x)| ≤ C.

Moreover, let us show vα1 = v̄α1 = ∂xu
α
1 in the following way.

Firstly, using basic results of Malliavin calculus, we calculate the Malliavin derivatives of
f(r,Θr), {∂yf(Θt,x

r )Y t,x,α
1,r } and {∂zf(Θt,x

r )Zt,x,α
1,r }:

Dτ{f(r,Θr)} = {∂xf(Θt,x,α
r )∇Xt,x

r

+∂yf(Θ
t,x,α
r )∇Y t,x,α

r

+∂zf(Θ
t,x,α
r )∇Zt,x,α

r }(∇Xt,x
τ )−1εσ(τ,Xt,x

τ ),

Dτ{∂yf(Θt,x
r )Y t,x,α

1,r }

= {Dτ∂yf(Θ
t,x
r )}Y t,x,α

1,r + ∂yf(Θ
t,x
r ){DτY

t,x,α
1,r }

= [∂xyf(Θ
t,x
r )∇Xt,x

r Y t,x,α
1,r + ∂y2f(Θt,x

r )∇Y t,x,α
r Y t,x,α

1,r

+∂yzf(Θ
t,x
r )∇Zt,x

r Y t,x,α
1,r + ∂yf(Θ

t,x
r )∇Y t,x,α

1,r ](∇Xt,x
τ )−1εσ(τ,Xt,x

τ ),

Dτ{∂zf(Θt,x
r )Zt,x,α

1,r }

= {Dτ∂zf(Θ
t,x
r )}Zt,x,α

1,r + ∂zf(Θ
t,x
r ){DτZ

t,x,α
1,r }

= [∂xzf(Θ
t,x
r )∇Xt,x

r Zt,x,α
1,r + ∂yzf(Θ

t,x
r )∇Y t,x,α

r Zt,x,α
1,r

+∂z2f(Θt,x
r )∇Zt,x

r Zt,x,α
1,r + ∂zf(Θ

t,x
r )∇Zt,x,α

1,r ](∇Xt,x
τ )−1εσ(τ,Xt,x

τ ).

Then, by applying the integration by parts on the Wiener space, we have

E[B1(r, t, x, α) + α∂yf(Θ
t,x,α
r )∇Y t,x,α

1,r + α∂zf(Θ
t,x,α
r )∇Zt,x,α

1,r ]

= E

[
1

ε(r − t)

∫ r

t

Dτ{f(Θt,x,α
r ) + α∂yf(Θ

t,x
r )Y t,x,α

1,r

+α∂zf(Θ
t,x,α
r )Zt,x,α

1,r }σ(τ,Xt,x
τ )−1(∇Xt,x

τ )dτ

]

=
1

ε
E
[
{f(Θt,x,α

r ) + α∂yf(Θ
t,x
r )Y t,x,α

1,r + α∂zf(Θ
t,x,α
r )Zt,x,α

1,r }N t,x,ε
r

]
,

where N t,x,ε
r is given by (3.7). Thus, we have vα1 = v̄α1 , that is (3.14) = (3.22).

Further, as ∂xu
α
1 (t, x) = ∇Y t,x,α

1,t = v̄α1 (t, x), we obtain that vα1 = v̄α1 = ∂xu
α
1 . Therefore, we

conclude that for all (t, x) ∈ [0, T ]×Rd,

|∂xuα1 (t, x)| ≤ C. (3.23)

Moreover, following the similar argument of Theorem 3.1-(iii) of [19], we know that

Zt,x
1,s = ∂xu1(s,X

t,x
s )σ(s,Xt,x

s ) ∀s ∈ [t, T ], P − a.s.
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Thus, with (3.23) and Assumption 2.1-1., we also have for all p > 0,

E
[∣∣Zt,x

1

∣∣∗,p
t,T

]
≤ C.

• Induction
Based on the inductive argument, for an arbitrary fixed n ∈ N we assume that (Y t,x,α

n,s , Zt,x,α
n,s )t≤s≤T

is the solution to the following BSDE:

Y t,x,α
n,s =

∫ T

s

[Hn(r, t, x, α) + α∂yf(Θ
t,x,α
r )Y t,x,α

n,r + α∂zf(Θ
t,x,α
r )Zt,x,α

n,r ]dr

−
∫ T

s

Zt,x,α
n,r dWr, (3.24)

where

Hn(r, t, x, α)

= n!
n−1∑
k=1

∑
β1+···+βk=n−1,βl≥1

k∑
i=0

1

i!(k − i)!

∂k−i
y ∂izf(Θ

t,x,α
r )

k−i∏
j=1

1

βj !
Y t,x,α
βj ,r

k∏
j=k−i+1

1

βj !
Zt,x,α
βj ,r

+α n!

n∑
k=2

∑
β1+···+βk=n,βl≥1

k∑
i=0

1

i!(k − i)!

∂k−i
y ∂izf(Θ

t,x,α
r )

k−i∏
j=1

1

βj !
Y t,x,α
βj ,r

k∏
j=k−i+1

1

βj !
Zt,x,α
βj ,r

Here, for some constants C̄n and Cn,

E

[∫ T

t

|Hn(r, t, x, α, ω)|2 dr

]
≤ C̄n, E

∣∣Y t,x,α
n

∣∣∗,p
t,T

+

(∫ T

t

∣∣Zt,x,α
n,r

∣∣2 dr)p/2
 ≤ Cn, (3.25)

and we also suppose that for all p > 0,

E
[∣∣∇Y t,x,α

n−1

∣∣∗,p
t,T

+
∣∣∇Zt,x,α

n−1

∣∣∗,p
t,T

]
≤ Ĉn, for some constant Ĉn. (3.26)

Consequently, we assume that uαn(t, x) =
1

n!
∂nαY

t,x
t and Zt,x,α

n satisfy

|uαn(t, x)| ≤ C, |∂xuαn(t, x)| ≤ C, E
[∣∣Zt,x,α

n

∣∣∗,p
t,T

]
≤ C, ∀p > 0. (3.27)

Let (Y t,x,α
(n+1),s, Z

t,x,α
(n+1),s)t≤s≤T be the solution to the following BSDE which corresponds to

the formal differentiation of the BSDE (3.24) with respect to α:

Y t,x,α
(n+1),s =

∫ T

s

[
Hn+1(r, t, x, α) + α∂yf(Θ

t,x,α
r )Y t,x,α

(n+1),r + f(Θt,x,α
r )∂n+1

α Zt,x,α
(n+1),r

]
dr

−
∫ T

s

Zt,x,α
(n+1),rdWr, (3.28)
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where

Hn+1(r, t, x, α)

= ∂αH
n(r, t, x, α) + ∂yf(Θ

t,x,α
r )Y t,x,α

n,r + ∂zf(Θ
t,x,α
r )Zt,x,α

n,r

+α{∂α∂yf(Θt,x,α
r )}Y t,x,α

n,r + α{∂α∂zf(Θt,x,α
r )}Zt,x,α

n,r

= (n+ 1)!
n∑

k=1

∑
β1+···+βk=n,βi≥1

k∑
i=0

1

i!(k − i)!

∂k−i
y ∂izf(Θ

t,x,α
r )

k−i∏
j=1

1

βj !
Y t,x,α
βj ,r

k∏
j=k−i+1

1

βj !
Zt,x,α
βj ,r

+α (n+ 1)!
n+1∑
k=2

∑
β1+···+βk=n+1,βi≥1

k∑
i=0

1

i!(k − i)!

∂k−i
y ∂izf(Θ

t,x,α
r )

k−i∏
j=1

1

βj !
Y t,x,α
βj ,r

k∏
j=k−i+1

1

βj !
Zt,x,α
βj ,r

.

Then, as in the case of n = 1, following the similar argument as in the proof of Proposition
2.4 with its remark in p.29 of [8] or in the proof of Theorem 3.1 of [19], we are able to show

lim
h→0

E

 sup
t≤s≤T

∣∣∣∣∣Y t,x,α+h
n,s − Y t,x,α

n,s

h
− Y t,x,α

(n+1),s

∣∣∣∣∣
2

+ sup
t≤s≤T

∣∣Y t,x,α+h
n,s − Y t,x,α

n,s

∣∣2 = 0,

and

lim
h→0

E

∫ T

t

∣∣∣∣∣Zt,x,α+h
n,s − Zt,x,α

n,s

h
− Zt,x,α

(n+1),s

∣∣∣∣∣
2

ds+

∫ T

t

∣∣Zt,x,α+h
n,s − Zt,x,α

n,s

∣∣2 ds
 = 0.

Next, let

uαn+1(t, x) =
1

(n+ 1)!
E

[∫ T

t

[
Hn+1(r, t, x, α, ω) + α∂yf(Θ

t,x
r )Y t,x,α

(n+1),r

+α∂zf(Θ
t,x,α
r )Zt,x,α

(n+1),r

]
dr

]
.

Then, by using Assumption 2.1-3, (3.25) and (3.27) to apply Lemma 3-2 to (3.28), we have
for some constants C̄n+1 and Cn+1,

E

[∫ T

t

∣∣Hn+1(r, t, x, α, ω)
∣∣2 dr] ≤ C̄n+1,

E

[∣∣∣Y t,x,α
(n+1)

∣∣∣∗,p
t,T

+

∫ T

t

(∣∣∣Zt,x,α
(n+1),r

∣∣∣2) dr] ≤ Cn+1, for all p > 1, (3.29)

and hence |uαn+1(t, x)| ≤ C.

Moreover, let

vαn+1(t, x) =
1

(n+ 1)!

1

ε
E

[∫ T

t

[
Hn+1(r, t, x, α) + α∂yf(Θ

t,x
r )Y t,x,α

(n+1),r

+α∂zf(Θ
t,x,α
r )Zt,x,α

(n+1),r

]
N t,x

r dr

]
,
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where (N t,x
r )t≤r≤T is the Malliavin Delta weight given by (3.7), again.

Then, as in the case n = 1, ∂xu
α
n+1(t, x) = ∇Y t,x,α

(n+1),t, and applying integration by parts on

the Wiener space, we have vαn+1(t, x) = ∂xu
α
n+1(t, x) and |∂xuαn+1(t, x)| ≤ C.

• Asymptotic expansion (3.4):

By the Taylor expansion, we have the following formulas:

Y t,x,α
t = Y t,x,0

t +
M∑
i=1

αi

i!

∂i

∂αi
Y t,x,α
t |α=0

+αM+1

∫ 1

0

(1− u)M

M !

∂M+1

∂νM+1
Y t,x,ν
t |ν=αudu

= u0(t, x) +
M∑
i=1

αiu0i (t, x) + αM+1

∫ 1

0

(1− u)M ũαuM+1(t, x)du,

Zt,x,α
t = Z,t,x,0

t +
M∑
i=1

αi

i!

∂i

∂αi
Zt,x,α
t |α=0

+αM+1

∫ 1

0

(1− u)M

M !

∂M+1

∂νM+1
Zt,x,ν
t |ν=αudu

= ∂xu
ασ(t, x) = ∂xu

0σ(t, x) +

M∑
i=1

αi∂xu
0
iσ(t, x)

+αM+1

∫ 1

0

(1− u)M∂xũ
αu
M+1σ(t, x)du,

where ũαM+1(t, x) := (M + 1)uαM+1(t, x) and ∂xũ
α
M+1σ(t, x) := (M + 1)∂xu

α
M+1σ(t, x).

On the other hand, by the previous result, we have |ũαM+1(t, x)| ≤ C and |∂xũαM+1(t, x)| ≤ C

for all (t, x) ∈ [0, T ]×Rd. Therefore, we finally obtain:∥∥∥∥∥uα −

{
u0 +

M∑
i=1

αiu0i

}∥∥∥∥∥
2

Hβ,µ,T

+

∥∥∥∥∥∂xuασ −

{
∂xu

0σ +
M∑
i=1

αi∂xu
0
iσ

}∥∥∥∥∥
2

Hβ,µ,T

≤ α2(M+1)C(M,T ).

Then, we have the assertion. □

4 Expansion of FSDE

Before providing our main result, we state an asymptotic expansion of E[φ(Xt,x,ε
T )] in terms

of a small diffusion parameter ε, which is a slight modification of [25] [26]. Here, φ ∈ C∞
b (Rd),

Xt,x,ε
T = (Xt,x,ε,1

T , · · · , Xt,x,ε,d
T ), and Xt,x,ε,i

T , i = 1, · · · , d is the solution to the forward SDE
(2.4) with s = T . We remark that there exist related or other works on expansions in theoretical
and practical aspects such as Baudoin [1], Bayer and Laurence [2], Ben Arous and Laurence [3],
Bismut [4], Fouque et. al. [9], Gatheral et al. [15], Li [18], Siopacha and Teichmann [22], Violante
[27].

Firstly, let us present the Kusuoka-Stroock Functions, which is useful to clarify the order of a
Wiener functional with respect to the time parameter t in a unified manner, and thus to evaluate
the error terms in asymptotic expansions.

4.1 The Kusuoka-Stroock Functions

This subsection introduces the space of Wiener functionals KT
r developed by [16] and its

properties. The element of KT
r is called the Kusuoka-Stroock function. See Nee [21], [5] and

Crisan et al. [6] for more details of the notations and the proofs.
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Let E be a separable Hilbert space and Dn,∞(E) = ∩1≤p<∞Dn,p(E) be the space of E-valued
functionals that admit the Malliavin derivatives up to the n-th order. The following definition
and lemma correspond to Definition 2.1 and Lemma 2.2 of [5].

Definition 4.1. Given r ∈ R and n ∈ N, we denote by KT
r (E, n) the set of functions G :

(0, T ]×Rd 7→ Dn,∞(E) satisfying the following:

1. G(t, ·) is n-times continuously differentiable and [∂αG/∂xα] is continuous in (t, x) ∈ (0, T ]×
Rd a.s. for any multi-index α of the elements of {1, · · · , d} with length |α| ≤ n.

2. For all k ≤ n− |α|, p ∈ [1,∞),

sup
t∈(0,T ],x∈Rd

t−r/2

∥∥∥∥∂αG∂xα
(t, x)

∥∥∥∥
Dk,p

<∞.

We write KT
r (n) for KT

r (R, n) and KT
r for KT

r (R,∞).

The properties of the Kusuoka-Stroock functions are the following. (See Lemma 75 of [6] for
the proof.)

Lemma 4.1. [Properties of Kusuoka-Stroock functions]

1. The function (s, x) ∈ (0, T ]×Rd 7→ Xt,x,ε
s belongs to KT

0 .

2. Suppose G ∈ KT
r (n) where r ≥ 0. Then, for i = 1, · · · , d,

(a)

∫ ·

0

G(s, x)dW i
s ∈ KT

r+1(n), and (b)

∫ ·

0

G(s, x)ds ∈ KT
r+2(n). (4.1)

3. If Gi ∈ KT
ri(ni), i = 1, · · · , N , then

(a)
N∏
i

Gi ∈ KT
r1+···+rN (min

i
ni), and (b)

N∑
i=1

Gi ∈ KT
mini ri(min

i
ni). (4.2)

Next, we summarize the Malliavin’s integration by parts formula using Kusuoka-Stroock func-
tions. For any multi-index α(k) := (α1, · · · , αk) ∈ {1, · · · , d}k, k ≥ 1, we denote by ∂α(k) the

partial derivative
∂k

∂xα1 · · · ∂xαk

.

Proposition 4.1. Let G : (0, T ] ×Rd → D∞ = D∞,∞(R) be an element of KT
r and let f be a

function that belongs to the space C∞
b (Rd). Then for any multi-index α(k) ∈ {1, · · · , d}k, k ≥ 1,

there exists Hα(k)(Xt,x,ε
s , G(s, x)) ∈ KT

r−|α(k)| = KT
r−k such that

E
[
∂α(k)f(Xt,x,ε

s )G(s, x)
]
= E

[
f(Xt,x,ε

s )Hα(k)(Xt,x,ε
s , G(s, x))

]
,

with

sup
x∈Rd

∥Hα(k)(Xt,x,ε
s , G(s, x))∥Lp ≤ C(s− t)(r−k)/2,

where Hα(k)(Xt,x,ε
s , G(s, x)) is recursively given by

H(i)(X
t,x,ε
s , G(s, x)) = δ

 d∑
j=1

Gγ
Xt,x,ε

s
ij DXt,x,ε,j

s

 ,

Hα(k)(Xt,x,ε
s , G(s, x)) = H(αk)(X

t,x,ε
s , Hα(k−1)(Xt,x,ε

s , G(s, x))),

and a positive constant C. Here, δ is the Skorohod integral and (γ
Xt,x,ε

s
ij )1≤i,j≤d is the inverse

matrix of the Malliavin covariance of Xt,x,ε
s .

Proof. Apply Corollary 3.7 of Kusuoka and Stroock [17] and Lemma 8-(3) of [16] with
Proposition 2.1.4 of Nualart [20]. □
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4.2 Asymptotic Expansions for the Expectation of the Solution to FSDE

This subsection derives the asymptotic expansions for the expectations of the composite func-
tionals of smooth test functions φ ∈ C∞

b (Rd) and the solution to the forward SDE (2.1). Hereafter,

let us define Xt,x,ε
i,T as

1

i!

∂i

∂εi
Xt,x,ε

T , i ∈ N. In the first place, we characterize the expansion of the

solution to the SDE (2.1) as a Kusuoka-Stroock function.

Lemma 4.2. For s ∈ (t, T ],

Xt,x,ε
i,s ∈ KT

i , i ∈ N.

Proof. See Lemma 5.1 of [25]. □

We denote

(i)∑
lk,α(k)

by

(i)∑
lk,α(k)

=

i∑
k=1

∑
lk∈Li,k

∑
α(k)∈{1,··· ,d}k

1

k!
,

with

Li,k :=

lk = (l1, · · · , lk);
k∑

j=1

lj = j; (i, lj , k ∈ N)

 .

The next proposition presents precise evaluation of the asymptotic expansions for the expectations
of E

[
φ(Xt,x,ε

T )
]
and E

[
φ(Xt,x,ε

T )N t,x,ε
T

]
σ(t, x) for a given smooth function φ.

Proposition 4.2.

1. For φ ∈ C∞
b (Rd), there exists a constant C(N) depending on N such that∣∣∣∣∣E[φ(Xt,x,ε

T )]−

{
E[φ(X̄t,x,0

T )] +

N∑
i=1

εiE[φ(X̄t,x,0
T )πt,x

i,T ]

}∣∣∣∣∣
≤ εN+1C(N)

N+1∑
i=1

(T − t)(N+1+i)/2,

where X̄t,x,0
T = Xt,x,0

T + εXt,x,0
1,T and

πt,x
i,T =

(i)∑
lk,α(k)

Hα(k)(X
t,x,0
1,T ,

k∏
j=1

X
t,x,0,αj

lj+1,T ), i = 1, · · · , N

Here, we use the following notations:

Xt,x,0
1,T :=

∂

∂ε
Xt,x,ε

T |ε=0

=
d∑

j=1

∫ T

t

∇Xt,x,0
T (∇Xt,x,0

u )−1σj(u,X
t,x,0
u )dW j

u ,

X
t,x,0,αj

i,T :=
1

i!

∂i

∂εi
X

t,x,ε,αj

T |ε=0.
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2. For φ ∈ C∞
b (Rd), there exists C depending on N , T and x such that∣∣∣∣∣E[φ(Xt,x,ε

T )N t,x,ε
T ]σ(t, x)

−

{
E[φ(X̄t,x,0

T )N t,x
0,T ]σ(t, x) +

N∑
i=1

εiE[φ(X̄t,x,0
T )N t,x

i,T ]σ(t, x)

}∣∣∣∣∣
≤ εN+1C(N)

N+1∑
i=1

(T − t)(N+1+i)/2,

where X̄t,x,0
T = Xt,x,0

T +εXt,x,0
1,T ; N t,x

0,T = (N t,x,1
0,T , · · · , N t,x,d

0,T ) and N t,x
i,T = (N t,x,1

i,T , · · · , N t,x,d
i,T ),

i = 1, · · · , N are given respectively by

N t,x,k
0,T =

d∑
j=1

H(j)(X̄
t,x,0
T , ∂kX̄

t,x,0,j
T ), 1 ≤ k ≤ d,

and

N t,x,k
i,T =

d∑
j=1

H(j)(X̄
t,x,0
T , ∂kX̄

t,x,0,j
T πt,x

i,T ) + ∂kπ
t,x
i,T , 1 ≤ k ≤ d.

Remark 4.1. The result 1 has some similarity as in Lipschitz case. That is, for a Lipschitz
function φ on Rd, there exists a constant C(N) depending on N such that∣∣∣∣∣E[φ(Xt,x,ε

T )]−

{
E[φ(X̄t,x,0

T )] +
N∑
i=1

εiE[φ(X̄t,x,0
T )πt,x

i,T ]

}∣∣∣∣∣
≤ εN+1C(N)(T − t)(N+2)/2.

However, in Lipschitz case, the expansion error for E[φ(Xt,x,ε
T )N t,x,ε

T ]σ(t, x) is given by∣∣∣∣∣E[φ(Xt,x,ε
T )N t,x,ε

T ]σ(t, x)

−

{
E[φ(X̄t,x,0

T )N t,x
0,T ]σ(t, x) +

N∑
i=1

εiE[φ(X̄t,x,0
T )N t,x

i,T ]σ(t, x)

}∣∣∣∣∣
≤ εN+1C(N)(T − t)(N+1)/2.

(4.3)

We also remark that when φ is a bounded Borel function (even if it is non-smooth), we have∣∣∣∣∣E[φ(Xt,x,ε
T )]−

{
E[φ(X̄t,x,0

T )] +

N∑
i=1

εiE[φ(X̄t,x,0
T )πt,x

i,T ]

}∣∣∣∣∣
≤ εN+1C(N)(T − t)(N+1)/2,

∣∣∣∣∣E[φ(Xt,x,ε
T )N t,x,ε

T ]σ(t, x)

−

{
E[φ(X̄t,x,0

T )N t,x
0,T ]σ(t, x) +

N∑
i=1

εiE[φ(X̄t,x,0
T )N t,x

i,T ]σ(t, x)

}∣∣∣∣∣
≤ εN+1C(N)(T − t)N/2.

See [25] for the details.
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Proof. We use the similar argument as in the proof of Proposition 5.1 and 5.2 in [25].

1. Xt,x,ε
T degenerates when ε ↓ 0. Then, we define F t,x,ε

T as follows:

F t,x,ε
T :=

Xt,x,ε
T −Xt,x,0

T

ε
.

F t,x,ε
T ∈ D∞ is a non-degenerate Wiener functional under Assumption 2.1. Then, the

expectation E[φ(F t,x,ε
T )] is calculated by the integration by parts;

E[φ(F t,x,ε
T )] = E[φ(F t,x,0

T )] +

N∑
i=1

εiE[φ(F t,x,0
T )πt,x

i,T ]

+εN+1

∫ 1

0

(1− u)N (N + 1)

(N+1)∑
lk,α(k)

E[∂α(k)φ(F
t,x,εu
T )

k∏
j=1

X
t,x,ε,αj

lj+1,T )]du,

Then, by the transform Xt,x,ε
T = Xt,x,0

T + εF t,x,ε
T , we have

E[φ(Xt,x,ε
T )] = E[φ(X̄t,x,0

T )] +

N∑
i=1

εiE[φ(X̄t,x,0)πt,x
i,T ]

+εN+1

∫ 1

0

(1− u)N (N + 1)

(N+1)∑
lk,α(k)

E[∂α(k)φ(X̃
t,x,εu
T )

k∏
j=1

X
t,x,ε,αj

lj+1,T )]du,

where X̃t,x,εu
T = Xt,x,0

T + εF t,x,εu
T for u ∈ [0, 1]. Therefore, by using Lemma 4.1 and 4.2, we

are able to see∣∣∣∣∣∣
(N+1)∑
lk,α(k)

E[∂α(k)φ(F
t,x,εu
T )

k∏
j=1

X
t,x,ε,αj

lj+1,T )]

∣∣∣∣∣∣ ≤ C
N+1∑
i=1

∥∇iφ∥∞(T − t)N+1+i. (4.4)

Then, we obtain the assertion.

2. Differentiating E[φ(Xt,x,ε
T )] with respect to x, we have

E[φ(Xt,x,ε
T )N t,x,ε

T ]

= E[φ(X̄t,x,0
T )N t,x

0,T ] +
N∑
i=1

εiE[φ(X̄t,x,0
T )N t,x

i,T ]

+εN+1

∫ 1

0

(1− u)N
N+2∑
k=2

∑
α(k)∈{1,··· ,d}k

E
[
∂α(k)φ(X̃

t,x,εu
T )ξt,x,εuk,T

]
du

where ξt,x,εuk,T ∈ KT
N+k, 2 ≤ k ≤ N + 2. Then, we obtain the assertion. □

5 Main result: Asymptotic Expansion of Multiscale FB-
SDE

This section finally derives our main result which is asymptotic expansions of uα,ε(t, x) in (2.6)
and ∂xu

α,ε(t, x)σ(t, x) in (2.6).
First, applying the Malliavin weights πt,x

i,s and N t,x
i,s , s ∈ (t, T ], 1 ≤ i ≤ N in Proposition 4.2,

we define an approximation sequence for (u0,ε, ∂xu
0,εσ). Let p0(t, s, x, y) be the density of X̄t,x,0

s

given by

p0(t, s, x, y)

=
1

(2πε2)d/2 det(Σ(t, s))1/2
e−

(y−X
t,x,0
s )⊤Σ−1(t,s)(y−X

t,x,0
s )

2ε2 , (5.1)
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with the covariance matrix Σ(t, s) = (Σ(t, s)i,j)1≤i,j≤d.

Σ(t, s)i,j

=
d∑

k=1

∫ s

t

(∇Xt,x,0
s (∇Xt,x,0

u )−1σk(u,X
t,x,0
u ))i(∇Xt,x,0

s (∇Xt,x,0
u )−1σk(u,X

t,x,0
u ))jdu,

1 ≤ i, j ≤ d. (5.2)

and (u0,ε,N , ∂xu
0,ε,Nσ), N ∈ N be

u0,ε,N (t, x) :=

∫
Rd

g(y)

{
1 +

N∑
i=1

εiE
[
πt,x
i,T |X̄

t,x,0
T = y

]}
p0(t, T, x, y)dy,

(∂xu
0,ε,Nσ)(t, x) := (∂xu

0,ε,N (t, x))σ(t, x)

=

∫
Rd

g(y)E
[
N t,x

0,T |X̄
t,x,0
T = y

]
p0(t, T, x, y)dyσ(t, x)

+
N∑
i=1

εi
∫
Rd

g(y)E
[
N t,x

i,T |X̄
t,x,0
T = y

]
p0(t, T, x, y)dyσ(t, x).

Also, for n ∈ N we define (u0,ε,Nn , ∂xu
0,ε,N
n σ), N ∈ N as

u0,ε,Nn (t, x)

:= E

[∫ T

t

Fn(r, t, x, 0, Xt,x,0
r )dr

]
+

N∑
i=1

εiE

[∫ T

t

Fn(r, t, x, 0, Xt,x,0
r )πt,x

i,r dr

]

=

∫ T

t

∫
Rd

Fn(r, t, x, 0, y)

{
1 +

N∑
i=1

εiE
[
πt,x
i,r |X̄

t,x,0
r = y

]}
p0(t, r, x, y)dyds,

and

∂xu
0,ε,N
n σ(t, x)

= E

[∫ T

t

[Fn(r, t, x, 0, Xt,x,0
r )]N t,x

0,rdr

]
σ(t, x)

+
N∑
i=1

εiE

[∫ T

t

[Fn(r, t, x, 0, Xt,x,0
r )]N t,x

i,r dr

]
σ(t, x)

=

∫ T

t

∫
Rd

Fn(r, t, x, 0, y){
E
[
N t,x

0,r |X̄t,x,0
r = y

]
+

N∑
i=1

εiE
[
N t,x

i,r |X̄
t,x,0
r = y

]}
p0(t, r, x, y)dydsσ(t, x),

where Fn is defined as (3.8) and (3.9) in Theorem 3.1.
Then, setting each g and Fn as φ in Proposition 4.2 , we obtain the following result.

Corollary 5.1. It holds that:∥∥u0,ε − u0,ε,N
∥∥2
Hβ,µ,T

≤ ε2(N+1)C(N,T ),∥∥∂xu0,εσ − ∂xu
0,ε,Nσ

∥∥2
Hβ,µ,T

≤ ε2(N+1)C(N,T ),

and that for each n,N ∈ N, ∥∥u0,εn − u0,ε,Nn

∥∥2
Hβ,µ,T

≤ ε2(N+1)C(N,T ),∥∥∂xu0,εn σ − ∂xu
0,ε,N
n σ

∥∥2
Hβ,µ,T

≤ ε2(N+1)C(N,T ),
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where C(N,T ) stands for a generic constant depending on N , T .

Finally, combining Theorem 3.1. and Corollary 5.1 above, we state our main theorem, which
shows expansions of uα,ε(t, x) and ∂xu

α,ε(t, x)σ(t, x) in terms of the perturbation parameters of
the driver α and the forward SDE ε.

Theorem 5.1. For any M,N ∈ N, there exist generic constants C(M,T ) depending on M , T
and C(M,N, T ) depending on M , N , T such that∥∥∥∥∥uα,ε −

{
u0,ε,N +

M∑
i=1

αiu0,ε,Ni

}∥∥∥∥∥
2

Hβ,µ,T

+

∥∥∥∥∥∂xuα,εσ −

{
∂xu

0,ε,Nσ +

M∑
i=1

αi∂xu
0,ε,N
i σ

}∥∥∥∥∥
2

Hβ,µ,T

≤ α2(M+1)C(M,T ) + ε2(N+1)C(M,N, T ).

Proof. We have the following inequality:∥∥∥∥∥uα,ε −
{
u0,ε,N +

M∑
i=1

αiu0,ε,Ni

}∥∥∥∥∥
2

Hβ,µ,T

+

∥∥∥∥∥∂xuα,εσ −

{
∂xu

0,ε,Nσ +
M∑
i=1

αi∂xu
0,ε,N
i σ

}∥∥∥∥∥
2

Hβ,µ,T

≤ 2

∥∥∥∥∥uα,ε −
{
u0,ε +

M∑
i=1

αiu0,εi

}∥∥∥∥∥
2

Hβ,µ,T

+2

∥∥∥∥∥
{
u0,ε +

M∑
i=1

αiu0,εi

}
−

{
u0,ε,N +

M∑
i=1

αiu0,ε,Ni

}∥∥∥∥∥
2

Hβ,µ,T

+2

∥∥∥∥∥∂xuα,εσ −

{
∂xu

0,εσ +
M∑
i=1

αi∂xu
0,ε
i σ

}∥∥∥∥∥
2

Hβ,µ,T

+2

∥∥∥∥∥
{
∂xu

0,εσ +

M∑
i=1

αi∂xu
0,ε
i σ

}
−

{
∂xu

0,ε,Nσ +

M∑
i=1

αi∂xu
0,ε,N
i σ

}∥∥∥∥∥
2

Hβ,µ,T

.

By Theorem 3.1 and Corollary 5.1 we have the statement. □
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