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1. Introduction

Recently a considerable interest has been paid on the estimation problem of the in-
tegrated volatility and covariance by using high-frequency financial data. Although
the earlier studies often had ignored the presence of micro-market noises in financial
markets, there have been arguments that the micro-market noises have important
roles in high-frequency financial data, and then several new statistical estimation
procedures have been proposed. Among many studies in recent literature on the
related topics three methods have attracted some attention : the linear combina-
tion of realised volatilities constructed with subsampling by Zhang, Mykland and
Ait-Sahalia (2005), the realised kernel method with autocovariances and kernels by
Bandorff-Nielsen, Hansen, Lund and Shephard (2008, 2011), and the pre-averaging
method by Jacod, Li, Mykland, Podolskij and Vetter (2009), Christensen, K., Podol-
skij, M. and M. Vetter (2013). See Jacod and Protter (2012) and Ait-Sahalia and
Jacod (2014) for the recent developments on the related issues and their references.

As an alternative estimation method Kunitomo and Sato (2008, 2011, 2013) have
proposed a simple statistical method called the Separating Information Maximum
Likelihood (SIML) method for estimating the integrated volatility and the inte-
grated covariance by using high frequency data under the presence of micro-market
noises. The SIML estimator has reasonable asymptotic properties as well as finite
sample properties ; it is consistent, asymptotically normal in the the stable conver-
gence sense under a set of regularity conditions and it has reasonable finite sample
properties. The SIML estimator has the asymptotic robustness properties, that is,
it is consistent and asymptotically normal even when there are round-off errors and
(non-linear) price adjustments with the hidden efficient market price process.

In this paper we shall further investigate some properties of the SIML estima-
tion of integrated volatility, covariance and the hedging coefficient when we have the
round-off errors, the micro-market noises and randomly sampled data. For actual
high frequency financial data, they are recorded at random times and the effects of

randomness could be significant when we have the round-off errors and micro-market



noises. The statistical problem on the round-off error models has been previously
investigated by Delattre and Jacod (1997), Rosenbaum (2009), and Li and Myckland
(2012). in the univariate case and our formulation is more general than the previous
works. Empirically we have the tick-size effects (the minimum price change size
and the minimum order size) and we observe bid-ask spreads in financial markets.
Also the non-synchronous sampling on the covariance estimation in high frequency
financial data is common, which was investigated by Hayashi and Yoshida (2005,
2008) and they proposed the so-called Hayashi-Yoshida (H-Y) method under the sit-
uation that there is no micro-market noise. There can be several schemes of random
sampling for the covariance estimation and we shall adopt the refreshing scheme
developed by Bandorff-Nielsen, Hansen, Lund and Shephard (2011) although other
methods could be applied. By synchronizing financial data, we shall consider the
estimation problem of hedging coefficient and correlation coefficient when we have
micro-market noises, which have important roles in hedging and risk managements.
Since we need the volatility estimation as well as the covariance estimation for this
purpose, it may be difficult to use the H-Y method directly when we have micro-
market noises. We show that the SIML estimator is asymptotically robust; that is,
it is consistent and asymptotically normal in the stable convergence sense as the
sample size increases under a reasonable set of assumptions. The asymptotic prop-
erty of the SIML method on the integrated volatility and covariance has desirable
properties over other estimation methods for the underlying continuous stochastic
process with micro-market noise. Because the SIML estimation is a simple method,
it can be practically used for analyzing the multivariate (high frequency) financial
time series. In this paper we shall focus on the estimation of covariance with two di-
mension and the hedging coefficient while as companion papers Sato and Kunitomo
(2015) and Misaki and Kunitomo (2013) have investigated the estimation problem
of the integrated volatility.

In Section 2 we introduce the round-off error model and micro-market price
adjustment models with micro-market noise, and then discuss the Separating In-

formation Maximum Likelihood (SIML) method. Then in Section 3 we give some



numerical results of the SIML estimation in the basic simulation framework with
randomly sample data. In Section 4 we shall give some asymptotic properties of
the SIML estimator under a set of assumptions. Then in Section 5 we shall report
further simulation results in a variety of round-off models and micro-market price
adjustment models. Finally, in Section 6 some brief remarks will be given. Some

mathematical details shall be given in Appendix.

2. Micro-market noise models and the estimation of covari-

ance

2.1 A General Formulation

Let ys(t7) be the i—th observation of the (log-) price of the first asset at ¢ for
0=15 <t] <--- <t <land yf(tf) be the j—th observation of the (log-) price
of the second asset at t; for 0 =t <t/ <-.- < t{b? < 1, where ;. = max;<1{;},
tfl; = maxtfgl{tzf} and we denote n, (a = s, f) as constant indexes and n’ (a = s, f)
as (bounded) stochastic indexes.

We consider the situation when the two observed (log-)prices are different from
the corresponding underlying continuous process X,(t) and X,(t) (0 < ¢t < 1),
respectively. The two dimension continuos stochastic process X (t) = (X,(t), X;(t))’

is a Brownian semi-martingale with
t t

(2.1) X(#) :X(O)+/ ,um(s)ds—i-/ oo(s)dB(s) (0<t<1),
0 0

where p(s) and o,(s) are the 2 x 1 drift terms and the 2 x 2 volatility matrix,
which are progressively measurable with respect to the o—field F; and B(s) is the
two-dimensional Brownian motion. The first statistical objective is to estimate the

quadratic variation or the integrated volatility matrix

1 o®) 0(5’3)
(2.2) ¥, = / So(syds= | 7T
° osf g



(X.(s) = 04(s)0.(s)) of the underlying continuous process X(t) (0 < t < 1)
from the set of discrete observations on (ys(tf),yf(tf )) with ¢ = 1,---,n’ and
J=1,---,n}. In this paper we make a set of assumptions on the underlying process

given by (2.1).

Assumption I : The Brownian semi-martingale (2.1) satisfies the condition on
drift and volatility terms such that pu(s) and o,(s) are continuous and bounded in

s €0,1].

The basic high-frequency financial market model with micro-market noises can

be represented by
(2.3) ys(1)) = Xo(t]) + vs(8]) 5 yp(t]) = Xp(t)) + 0s(t])

where the underlying process X (t) = (X,(t), X;(t))" is the Brownian semi-martingale
given by (2.1). In the basic model we assume that v,(t]) and vf(tj-c ) are a sequence
of independently and identically distributed random variables with E(vg(t7)) =
0,E(vs(t])) = 0, E(vs(£5)?) = o2, B(vy(t])?) = of), Blus(8)vs(t) = 6(t5, )0y,
where 0(+, ) is the indicator function with 6(a,a) =1 and d(a,b) =0 (a # b).

It is possible to extend the following discussions with some notational complications
to the cases when v,(t7) and vf(tf ) are the discrete stationary time series process

satisfying
(2.4) vs(t7) = 2)95%(?5?7]-) L op(t]) = 2]9fwf(tfj) :
j= j=

where there exist p, (0 < pa < 1; a = s, f) such that 87 = O(p}) and w(t}) (a =
s, f) are a sequence of independent random variables with E(w;(tf)) = 0, E(w f(t:;c ) =
0, E(w,(£)?) < oo, and E(w;(t])?) < co. We define the sequence of random vari-
ables w,(t§) = 0 and 0§ = 0 for t{ < 0 and t§ < 0 (a = s, f) and we maintain
the (weak) stationarity conditions of v,(t?) in the MA representation (2.4) for the
resulting simplicity of our arguments.

The important statistical aspect of (2.3) is the fact that it is an additive (signal-plus-

noise) measurement error model. However, there are some reasons why the basic



model as (2.3) is not enough for applications. For instance, the high frequency finan-
cial models with the round-off-errors models and micro-market price adjustments for
financial prices are not in the form of (2.3). Then we shall further consider several
examples of the more general situation when the observed (log-)prices y,(t¢) are the

sequence of discrete stochastic processes generated by

(2.5) Ya(t9) = ha (X(t0), va(t_1), ua(t?)) (a = s, f),

where h,( - ) are measurable functions, the (unobservable) continuous martingale
process X(t) (0 <t < 1) is defined by (2.3) and the micro-market noises u,(t?) are

the discrete stochastic processes.

There are special cases of our interest in the form of (2.1) and (2.5), which reflect the
important aspects on modeling financial markets and the high frequency financial

data.

As the first example of non-linear models, we consider the round-off-error model
with the micro-market noise. One motivation for this model has been the fact that
in actual financial markets transactions occur with the minimum tick size and the
observed price data do not have continuous paths over time. The traded price and
quantity usually have the minimum size and the Nikkei-225-futures, which have been
the most important traded derivatives in Japan (as explained in Kunitomo and Sato
(2011)) for instance, has the minimum 10 yen (about 0.1 U.S. dollar) size while the
Nikkei-225-stocks are traded with the minimum 1 yen. It is important to see the

effects of round-off-errors in different markets. We assume that y,(t7") = P,(t) and
(2.6) Po(t}) = Gag [Xa(t]) + ua(t])]

where the micro-market noise term wu,(t¢) are sequences of i.i.d. random variables

with Blu,(t¢)] = 0, Efue(t)*] = 0, and the nonlinear function

(2.7 Gon(2) = H



is the round-off part of x and [z] is the largest integer being equal or less than z,
and the threshold parameter 7, are (small) positive constants.
This model corresponds to the micro-market model with the restriction of the mini-
mum price change with micro-market noises and 7, represents the parameter of the
level for the minimum price change. As an illustration we set the same value for two
threshold parameters (although they can be different in practice) and give typical
simulation paths in the basic (two-dimensional) round-off error model as Figure 2-1
in Appendix.

Second, the (linear) micro-market price adjustment model is written as y,(t7) =

P,(tY) (i=1,---,n'a=s, f) and
(2.8) Patg) = Pa(ti 1) = ga [ Xa(t?) = Pa(tiy)| + ua(t2) ,

where X, (t) (the intrinsic value of a security at t) and P,(t%) are the observed log-
price at t¢, the adjustment (constant) coefficients g, (0 < g, < 2), and u,(t7) is an
i.i.d. sequence of noises with E[u(t¢)] = 0 and E[u(t)?] = ¢2,. Sato and Kunitomo
(2015) have considered nonlinear micro-market price adjustments models, which are
the extensions of (2.8).

Third, if we set y,(t) = P,(t) and
(2.9) Po(t8) = Pa(ti)) = Gna | Xa(t]) = Pa(tiy) +ua(t?)]

where the round-ff error function g, ,(x) is defined by (2.7), and u,(t}) is a sequence
of i.i.d. noises with E[u,(t?)] = 0 and E[u,(t$)*] = o2,.
This model corresponds to the micro-market model with the restriction of the min-
imum price change and 7, are the parameters of minimum price changes. It has
been common that the market maker usually set the minimum price change such
as a dollar, yen or other currencies and the minimum quantity traded in actual
financial markets.

The basic (high-frequency) financial model with micro market noises is the spe-
cial case when the underlying process X (t) = (X,(t), X;(t))" is given by (2.1).

The synchronous sampling means t; = t{ and the fixed grid observation means



t% —t% ; = n~'. There can be special cases of (2.5) such as (2.6),(2.8) and (2.9)
when we have micro-market adjustment models and the non-synchronous observa-
tions as well as the random sampling. Sato and Kunitomo (2015) have discussed
several examples of the micro-market models with round-off errors, pice adjustments
and noises, but all of them one dimensional cases. There have been micro-market
models in economics, which may be related the micro-market price adjustment mod-

els. (See Hansbrouck (2007) for instance.)

In this paper we also consider the situation that the high-frequency data are
observed at random times t¢ (¢ = s or f) under some conditions on random sam-
pling. For non-synchronously observed data for covariance estimation, there have
been several ways to handle the problem and we adopt the refreshing time method
developed by Harris, Mcinish, Shoesmith and Wood (1995), and used by Bandorff-
Nielsen, Hansen, Lund and Shepard (2011). Define ¢ty = 0,; = max{t{, ¢/} and
thy, = max{t?V;Jrl,thH}, where tNag are random times for y,(t7), and Nf is
the corresponding counting process. We denote the resulting random times as
0=ty <ty < --+ < t,» and the random number of observations as n*. Then
the resulting counting process NJ* and n* are finite-valued random variables in [0, 1]
for any finite n and we denote ¢, (< 1) is the last transaction time before the
market closing time in a day. We sometimes abuse the notations n and n* for n,
and n} (a = s, f) for the resulting notational simplicity in the following analysis and

statements whenever we do not have any confusion.

Assumption II : The sampling process {t?} is independent of the underlying pro-
cess {X(t)} and n* is a finite-valued random variable in [0, 1] for any n. There exist

positive constants cs, ¢, ¢ and an increasing sequence of fixed n such that as n — oo

* *

(2.10) tn*Ll,&Lca(a:sorf),n—i)c.
n n

Let ATt} =t} — ¢} 4 = (1/n)Dj be a sequence of Fy»  —adapted random variables.
The (bounded) increasing continuous process 7(t) with 7(0) = 0,7(1) = 1 and

the continuous process d(t) (0 < ¢ < 1) are well-defined such that ¢} = 7(t) +

8



Op(n™) (11 > 0) and D} = d(t) + Op(n™72) (72 > 0) uniformly in ¢ (¢ € (0,1]) as

j(n)/n —t and n — oc.

These conditions imply that ¢} B or(t), D? 2 d(t) and [Dj(t)]? % d(t)? uniformly
(as j(n)/n — t and n — o0), where E [|t? — t?_lu = O(n™1) is proportional to the
average duration on intervals in [0, 1] for any fixed n. For the standard normalization
we often take ¢, = ¢y = 1 or ¢ = 1 in the following analysis. A typical example of
random sampling is the Poisson Process Sampling on ¢ with the intensity functions
M2 = nec, (a = s, f). In this case the (mutually) independent random durations
D¢ (a = s, f) are exponentially distributed with E(D{¢) = 1, nD¢ = t¢ —¢¢_; and
7(t) =1t (0 <t < 1) if we take the normalization ¢ = 1.

Integrated Hedging Ratio and Correlation

For the financial risk management problems, the use of hedging coefficients and
correlation coefficients has been often discussed in the literatures on financial futures.
(See Duffie (1989) for instance.) Then it is important to estimate the hedging
ratio and the correlation coefficient from a set of dicrete sampled price data. The

(integrated) hedging ratio based on high-frequency financial data can be defined by

(z)

g
(2.11) ==L
Trf

The (integrated) correlation coefficient between two prices can be defined by

O‘S
(2.12) pry = k.

2.2 The SIML Method

When the two dimensional financial data are synchronously observed and equally
spaced, the derivation of the separating information maximum likelihood (SIML)
estimation has been given by Kunitomo and Sato (2008, 2011). For non-synchronous
observed data, there have been several ways to handle the problem and we shall
adopt the refreshing time method as explained in the previous sub-section in the

following discussions.



We consider the standard situation when 3,(s) = ¥, and X (¢) (0 <t < 1) are
independent of u4(t{) and uf(tf). Let y&. = (ya(t})) (a = s, f) be n* x 1 vectors of
the re-arranged (synchronous data) observations, where n* is a finite valued random

variable. We transform y?. and y. to z° (= (z})) and 2/ (= (z})) by
(213) 2 =VaP'C(yl ~ya) . & = VaP'C (yh —yp0)

where C be an n* X n* matrix such that

1 0 0 0 1 0 0 0
—1 1 0 0 1 1 0 0
(214) C'=| 0 -1 1 0 =11 1 1 0 ,
0 0o -1 1 1 - 1 1 0
0 0 0 -1 1 1 - 1 1 1
2 2k — 1 1
2.15 P = (p. e S
( ) (pix) » Pix n + % cos lﬂ(Qn* I 1)(.7 2) )
and 1,« = (1,---,1)" (n* x 1 vector),
(216) S’aO = ]-n* : (ys(o)a yf(o)) .

Under the assumption of the Gaussian distributions both on the signal terms
and noise terms with equally spaced observation case, Kunitomo and Sato (2008)
have introduced the SIML estimator. By using the similar argument, we define the

SIML estimator of ¢(*) and o{") by

| e

(2.17) 680 = p— ;[22]2 7

and .

(2.18) W= Y aklal,
O

where

(2.19) Qg+ = A sin? B (22:;11” .

10



Similarly, we define the SIML estimator of UJ(C? and a?}) as &](f? and &J(f}). Then the

SIML covariance estimator with the refreshing time scheme can be defined by

M 1 mn* .
(2.20) 5\ = IEEAR
Mp* .2

For both 6@, &;‘?, and ¢V, 6;1}), the number of terms m and [ are dependent
on n* and we require the order requirements that m,- = O(n®) (0 < a < 3) and

- =0(MP) (0 < B <1). If we set

. 5@ )

g

(2.21) 5= (0 0
Osf  Off
~(v)  A(v)
~ o o

(2.22) S, = (% sy,
&i"}) 5.(1})

then we have one important aspect of the SIML estimator such that it is positive
definite by construction.

There are several remarks on the SIML estimation. First, we can modify the
SIML method such that the asymptotic bias can be removed. The modified SIML
(MSIML) estimator of X(*) is given by

- 1 p’y ’ 1 Mn* A
2.23 Yam = ZZ, — [ ak,n*] Y,
(2.23) o kZ::l ol kZ::l

where z;, = (2§, z{)" are 2 x 1 vectors. Sato and Kunitomo (2015) have discussed this
modification (the MSIML estimation) in the integrated volatility case. (See their
Corollary 3.3.)

Secondly, it has been a common ptactice to use the hedging ratio in the statistical
risk management. (See Duffie (1989) for instance.) Then by using the estimators
for the integrated volatility and the integrated covariance, the SIML estimator of

the hedging ratio H = agﬁ)/ aj(ﬁjc) can be defined by

~ ()
Ot
(@)
Orf

(2.24) H=

11



Thirdly, when the two dimensional financial data (spot price and future price)
are non-synchronously observed, there are several different ways to use the SIML
estimation. (i) The refreshing time method we have adopted. (ii) We set the trans-
action time of the second asset is to synchronize the transaction time of the first
asset. The first method can be geberalized to the multidimensional cases with loos-
ing some information. The second method is to use the Hayashi-Yoshida method
of covariance estimation and then we can apply the SIML method. Since there can
be several estimation methods and different combinations of using the integrated
volatility and covariance, Misaki (2013) have compared the performance of alterna-
tive methods. In our simulations we are comparing several alternative estimation

methods.

3. Basic Simulation

We have investigated the robust properties of the SIML estimator for the inte-
grated volatility based on a set of simulations with the number of replications being
1,000. We have taken the (fixed) sample size n = 1,800 and n = 18,000 (the real-
ized n* depends on each simulation) and we have chosen o = 0.4 and 5 = 0.8. The
details of the simulation procedure are similar to the corresponding ones reported
by Sato and Kunitomo (2014), and Misaki and Kunitomo (2013).

In our basic simulations we consider two cases when the observations are the sum
of signal and micro-market noise. We use two Poisson Random Sampling as the basic
stochastic sampling with the parameter )\S{Z) =n (a =s, f). In the first example the

signal is the Brownian motion with no drift coefficients and the volatility function
(3.1) e (s) = 2(0) ag + a1s + a5’

where a; (1 = 0,1,2) are constants and we have some restrictions such that ¥,(s) is

positive definite for s € [0, 1]. In this case the integrated volatility is given by

(3.2) 5= [ Suls)ds = 5400) [ag + 5+ 2]

12



In this example we have taken several intra-day instantaneous volatility patterns
including the flat (or constant) volatility, the monotone (decreasing or increasing)
movements and the U-shaped movements.

In the second example let n; = max;>;.<i1{t{} (a = s, f) and the instantaneous

volatility function follows the stochastic volatility model that

*
g

1

(33) o) = o)
ng =1
where ¢(@(t5) = @ (0)eE) (0 <3 < --- < the), U(? (t;) = aff;)(())eH(tJf‘) 0 <t} <
e < tZ}) and

(3'4) haa@?) =7 haa(t?fl) +0 uZ(t?)

for a = s or f. In our experiments we have set v = 0.9, = 0.2 and each of (u$(t)
and u;(t{ )) are the white noise process followed by N (0,0()) and N (0, aj(f}) as the

typical case.

We summarize our estimation results of the first example in Tables 3.1-3.3 and
the second example in Table 3.4, respectively. In each table we have also calculated
the historical volatility (the realized volatility, RV), the historical covariance (RCV)
and the HY (Hayashi-Yoshida) estimator, and the SIML estimator, in order to make
comparisons. In Tables Raw means the estimates based on all simulated data and
10 sec, for instance, means the estimates based on the simulated data at each grids
of 10 second. We have used the refreshing scheme in order to calculate the SIML
covariance estimator because of the non-synchronization of random times observa-
tions. There can be several possibilities to estimate the hedging coefficient since
there are several ways to combine the variance and covariance, that is, RCV-RV,

HY-RV, HY-SIML and SIML-SIML. In tables 02 , 02 , 0,12 denote for the volatility

Ty 9

2

vy Ovl2 de-

of the spot data and future data, and covariance, respectively while 031, o
note for the variances of the noises and their covariance. We have computed several
combinations of the true integrated volatilities, covariance, and noise variances, and

then compared their performances.
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In Table 3.1 we take the case when n = 1,800 while in Table 3.2 we take the
case when n = 18,000. We find that the general features of the performance of the
SIML including its bias in Table 3-1 are very similar to those in Table 3-2 except the
variances of the estimators. (It is obvious that they are quite different.) Then we
have omitted this comparison in other tables. Table 3.3 gives the simulation results
for the case when the volatility function has a U-shape while Table 3.4 gives the
ones for the case of the volatility is generated by (3.3) and (3.4). They correspond
to the typical situations in the basic case.

When there are micro-market noise components with the martingale signal part,
the value of RCV often differs substantially from the true integrated covariance of
the signal part. However, we have found that it is possible to estimate the integrated
variances, the integrated covariance and the noise variances when we have the signal-
noise ratio as 1072 ~ 107% by the SIML estimation method. Although we have
omitted the details of the second example, the estimation results are similar in the
stochastic volatility model.

For the estimation of the hedging coefficients, We have confirmed that by using
the H-Y method we can improve the historical covariance method as was pointed
out by Hayashi and Yoshida (2005). However, when we have micro-market noise
terms, the SIML-SIML combination of the integrated variance and the integrated
covariance dominate the H-Y method and others. This point is vivid and important
on the hedging coefficient estimation as Tables 3.1-3.4 have shown.

By our basic simulations we can conclude that we can estimate both the in-
tegrated covariance of the hidden martingale part and the (integrated) hedging

coefficients reasonably in all cases we have examined by the SIML estimation.

14



Table 3.1 : Estimation of covariance and hedging coefficient :

Case 1 (ap = 1,a1 = a2 = 0; A = 1800)

1800 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
O‘gl 2.00E-04 | 2.01E-04 2.21E-04 2.03E-04 2.00E-04 2.05E-04
6.60E-05 4.58E-05 6.51E-05 9.53E-05 1.30E-04
a%l 2.00E-06 | 2.03E-06 1.05E-07 9.88E-07 2.17E-06 3.01E-06
1.49E-07 6.07E-09  8.64E-08 3.19E-07 8.34E-07
RV1 2.00E-04 | 7.40E-03 7.06E-03  4.75E-03 1.39E-03 4.39E-04
3.53E-04 3.40E-04 2.54E-04 1.38E-04 8.70E-05
‘73252 2.00E-04 | 2.07E-04 2.22E-04 2.09E-04 2.07E-04 2.07E-04
6.74E-05 4.49E-05 6.63E-05 1.01E-04 1.37E-04
032 2.00E-06 | 2.03E-06 1.05E-07 9.84E-07 2.17E-06 3.00E-06
1.43E-07 6.02E-09 8.51E-08 3.06E-07 8.14E-07
RV2 2.00E-04 | 7.41E-03 7.06E-03  4.75E-03 1.39E-03 4.41E-04
3.42E-04 3.28E-04  2.54E-04 1.33E-04 8.43E-05
0212 1.00E-04 | 9.93E-05 9.98E-05 9.99E-05 1.01E-04 1.02E-04
5.59E-05 3.43E-05 5.04E-05 7.66E-05 1.04E-04
0312 0.00E+400 | 5.46E-09 -4.10E-11  2.09E-09 5.86E-08 4.52E-07
1.21E-07 2.11E-09 4.97E-08 2.20E-07 5.82E-07
RCV 1.00E-04 | 6.75E-05 7.33E-06  4.30E-05 8.03E-05 9.53E-05
1.78E-04 5.34E-05 1.24E-04 9.33E-05 6.15E-05
HY 1.00E-04 | 1.05E-04
1.25E-04
RCV-RV 5.00E-01 | 9.08E-03 1.04E-03  8.98E-03 5.77TE-02 2.20E-01
2.41E-02 7.57E-03  2.60E-02 6.68E-02 1.39E-01
HY-RV 5.00E-01 | 1.42E-02 1.49E-02 2.21E-02 7.59E-02 2.49E-01
1.70E-02 1.78E-02  2.64E-02 9.11E-02 3.04E-01
HY-SIML 5.00E-01 | 5.81E-01 4.87E-01 5.71E-01 6.86E-01 8.72E-01
7.54E-01 5.98E-01 7.42E-01 1.06E+00 1.75E+00
SIML-SIML 5.00E-01 | 4.97E-01 4.51E-01 4.91E-01 5.17E-01 5.05E-01
2.42E-01 1.29E-01 2.05E-01 3.30E-01 5.11E-01
1800 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
ail 2.00E-04 | 1.96E-04 2.00E-04 1.97E-04 1.95E-04 1.98E-04
6.46E-05 4.14E-05 6.36E-05 9.26E-05 1.27E-04
012)1 2.00E-08 | 4.92E-08 3.84E-09  3.85E-08 2.01E-07 1.02E-06
3.73E-09 1.83E-10 2.81E-09 3.00E-08 2.84E-07
RV1 2.00E-04 | 2.72E-04 2.69E-04 2.45E-04 2.11E-04 2.02E-04
1.19E-05 1.18E-05 1.22E-05 1.85E-05 3.86E-05
022 2.00E-04 | 2.02E-04 2.00E-04 2.02E-04 2.02E-04 2.02E-04
6.47E-05 4.03E-05 6.38E-05 9.75E-05 1.33E-04
032 2.00E-08 | 4.90E-08 3.85E-09  3.85E-08 2.02E-07 1.03E-06
3.65E-09 1.86E-10 2.84E-09 2.98E-08 2.77TE-07
RV2 2.00E-04 | 2.72E-04 2.69E-04 2.46E-04 2.12E-04 2.04E-04
1.18E-05 1.18E-05 1.21E-05 1.82E-05 3.63E-05
0312 1.00E-04 | 9.95E-05 9.98E-05 1.00E-04 1.02E-04 1.03E-04
5.45E-05 3.14E-05 4.87E-05 7.51E-05 1.02E-04
0312 0.00E+400 | 7.94E-09 -2.45E-13 1.31E-09 6.34E-08 4.70E-07
3.97E-09 7.85E-11  2.00E-09 2.22E-08 2.30E-07
RCV 1.00E-04 | 6.67E-05 4.92E-06 3.73E-05 8.35E-05 9.76E-05
8.61E-06 2.17E-06  6.10E-06 1.37E-05 3.01E-05
HY 1.00E-04 | 1.00E-04
1.11E-05
RCV-RV 5.00E-01 | 2.45E-01 1.83E-02 1.52E-01 3.96E-01 4.82E-01
2.96E-02 8.08E-03  2.40E-02 5.52E-02 1.16E-01
HY-RV 5.00E-01 | 3.68E-01 3.73E-01  4.09E-01 4.77E-01 5.12E-01
3.76E-02 3.81E-02 4.17E-02 5.22E-02 1.06E-01
HY-SIML 5.00E-01 | 5.69E-01 5.22E-01  5.65E-01 6.65E-01 9.02E-01
2.10E-01 1.18E-01 2.01E-01 4.31E-01 1.21E400
SIML-SIML 5.00E-01 | 5.10E-01 5.01E-01 5.11E-01 5.29E-01 5.24E-01
2.39E-01 1.23E-01 2.03E-01 3.36E-01 5.02E-01
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Table 3.2 : Estimation of covariance and hedging coefficient :

Case 1 (ap = 1,a1 = a2 = 0; A = 18000)

18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
‘79201 2.00E-04 2.04E-04 2.05E-04 2.05E-04 2.08E-04 2.11E-04
4.18E-05 4.17E-05 6.74E-05 1.00E-04 1.33E-04
Ugl 2.00E-06 2.00E-06 9.37E-07 2.02E-06 2.19E-06 3.01E-06
5.68E-08 3.03E-08 1.39E-07 3.10E-07 8.43E-07
RV1 2.00E-04 7.22E-02 4.57E-02 7.39E-03 1.41E-03 4.42E-04
1.08E-03 8.07E-04 2.78E-04 1.29E-04 8.66E-05
022 2.00E-04 2.05E-04 2.06E-04 2.06E-04 2.09E-04 2.10E-04
4.25E-05 4.26E-05 6.68E-05 1.01E-04 1.31E-04
012)2 2.00E-06 2.00E-06 9.40E-07 2.04E-06 2.20E-06 3.00E-06
5.53E-08 3.06E-08 1.46E-07 3.13E-07 8.41E-07
RV2 2.00E-04 7.22E-02 4.57E-02 7.41E-03 1.41E-03 4.41E-04
1.08E-03 7.74E-04 2.89E-04 1.33E-04 8.64E-05
0512 1.00E-04 1.00E-04 9.99E-05 1.02E-04 1.07E-04 1.07E-04
3.59E-05 3.35E-05 5.10E-05 7.90E-05 1.05E-04
012)12 0.00E+00 | -2.30E-10 -9.84E-10 1.40E-08 9.76E-08 5.14E-07
4.64E-08 1.89E-08 1.02E-07 2.22E-07 5.85E-07
RCV 1.00E-04 8.27E-05 4.15E-05 1.02E-04 1.03E-04 1.02E-04
5.44E-04 3.83E-04 2.10E-04 9.32E-05 6.32E-05
HY 1.00E-04 9.94E-05
3.86E-04
RCV-RV 5.00E-01 1.14E-03 9.13E-04 1.38E-02 7.36E-02 2.31E-01
7.53E-03 8.39E-03 2.83E-02 6.60E-02 1.37E-01
HY-RV 5.00E-01 1.38E-03 2.18E-03 1.35E-02 7.09E-02 2.32E-01
5.35E-03 8.45E-03 5.23E-02 2.78E-01 9.25E-01
HY-SIML 5.00E-01 5.11E-01 5.07E-01 5.20E-01 5.70E-01 9.00E-01
2.00E4+00 1.99E+00 2.24E+00 2.89E+00 5.28E+00
SIML-SIML 5.00E-01 4.91E-01 4.86E-01 4.99E-01 5.18E-01 5.19E-01
1.44E-01 1.30E-01 2.02E-01 3.17E-01 5.16E-01
18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
0'21 2.00E-04 1.99E-04 1.99E-04 2.02E-04 2.02E-04 2.04E-04
4.08E-05 4.06E-05 6.58E-05 9.89E-05 1.30E-04
012,1 2.00E-08 2.28E-08 1.22E-08 4.88E-08 2.02E-07 1.01E-06
6.51E-10 3.76E-10 3.40E-09 2.96E-08 2.92E-07
RV1 2.00E-04 9.20E-04 6.55E-04 2.72E-04 2.12E-04 2.02E-04
1.24E-05 1.03E-05 8.98E-06 1.75E-05 3.76E-05
052 2.00E-04 2.00E-04 2.00E-04 2.01E-04 2.03E-04 2.03E-04
4.14E-05 4.13E-05 6.55E-05 9.74E-05 1.26E-04
012)2 2.00E-08 2.28E-08 1.22E-08 4.93E-08 2.01E-07 1.02E-06
6.31E-10 3.68E-10 3.46E-09 2.92E-08 2.92E-07
RV2 2.00E-04 9.20E-04 6.55E-04 2.73E-04 2.11E-04 2.03E-04
1.27E-05 1.01E-05 9.09E-06 1.76E-05 3.83E-05
0312 1.00E-04 1.01E-04 1.00E-04 1.03E-04 1.07E-04 1.08E-04
3.49E-05 3.21E-05 5.00E-05 7.73E-05 1.03E-04
0312 0.00E+00 7.25E-10 9.42E-11 1.18E-08 8.79E-08 4.92E-07
5.54E-10 2.41E-10 2.47E-09 2.28E-08 2.24E-07
RCV 1.00E-04 6.67E-05 3.68E-05 9.00E-05 9.82E-05 1.00E-04
6.77TE-06 5.28E-06 6.86E-06 1.37E-05 2.98E-05
HY 1.00E-04 9.99E-05
6.36E-06
RCV-RV 5.00E-01 7.25E-02 5.62E-02 3.31E-01 4.63E-01 4.95E-01
7.34E-03 8.04E-03 2.27E-02 5.18E-02 1.18E-01
HY-RV 5.00E-01 1.09E-01 1.53E-01 3.68E-01 4.74E-01 5.11E-01
6.90E-03 9.59E-03 2.45E-02 4.67E-02 1.00E-01
HY-SIML 5.00E-01 5.22E-01 5.23E-01 5.57E-01 6.39E-01 8.14E-01
1.13E-01 1.13E-01 1.98E-01 4.04E-01 9.23E-01
SIML-SIML 5.00E-01 5.05E-01 5.02E-01 5.15E-01 5.33E-01 5.40E-01
1.40E-01 1.25E-01 1.99E-01 3.12E-01 4.85E-01
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Table 3.3 : Estimation of covariance and hedging coefficient :

Case 2 (ap = 1,a1 = —1,a2 = 1; A = 18000)

18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
‘79201 1.66E-04 1.71E-04 1.72E-04 1.72E-04 1.74E-04 1.76 E-04
3.54E-05 3.53E-05 5.69E-05 8.41E-05 1.12E-04
Ugl 2.00E-06 2.00E-06 9.37E-07 2.02E-06 2.16E-06 2.84E-06
5.68E-08 3.02E-08 1.39E-07 3.06E-07 7.94E-07
RV1 1.66E-04 7.21E-02 4.56E-02 7.36E-03 1.37E-03 4.08E-04
1.08E-03 8.07E-04 2.78E-04 1.26E-04 8.08E-05
022 1.66E-04 1.72E-04 1.73E-04 1.73E-04 1.75E-04 1.76E-04
3.60E-05 3.61E-05 5.61E-05 8.49E-05 1.10E-04
012)2 2.00E-06 2.00E-06 9.39E-07 2.03E-06 2.17E-06 2.83E-06
5.52E-08 3.06E-08 1.46E-07 3.08E-07 7.94E-07
RV2 1.66E-04 7.22E-02 4.57E-02 7.38E-03 1.37E-03 4.08E-04
1.08E-03 7.73E-04 2.89E-04 1.31E-04 8.06E-05
0512 8.36E-05 8.31E-05 8.50E-05 8.85E-05 8.91E-05
3.04E-05 2.84E-05 4.30E-05 6.65E-05 8.77E-05
012)12 0.00E+00 | -3.52E-10 -9.98E-10 1.20E-08 8.31E-08 4.31E-07
4.64E-08 1.89E-08 1.02E-07 2.19E-07 5.51E-07
RCV 8.33E-04 7.16E-05 3.55E-05 8.70E-05 8.71E-05 8.51E-05
5.44E-04 3.83E-04 2.09E-04 9.14E-05 5.88E-05
HY 8.33E-04 8.28E-05
3.86E-04
RCV-RV 5.00E-01 9.90E-04 7.81E-04 1.18E-02 6.35E-02 2.09E-01
7.53E-03 8.39E-03 2.84E-02 6.64E-02 1.39E-01
HY-RV 5.00E-01 1.15E-03 1.81E-03 1.13E-02 6.04E-02 2.09E-01
5.35E-03 8.45E-03 5.26E-02 2.85E-01  1.00E+00
HY-SIML 5.00E-01 5.09E-01 5.04E-01 5.13E-01 5.60E-01 9.17E-01

2.39E400 2.37E400 2.69E+00 3.47E400 6.06E4-00
SIML-SIML 5.00E-01 4.89E-01 4.83E-01 4.96E-01 5.15E-01 5.18E-01
1.47E-01 1.32E-01 2.05E-01 3.21E-01 5.20E-01

18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
0'21 1.66E-04 1.66E-04 1.66E-04 1.66E-04 1.69E-04 1.70E-04
3.42E-05 3.39E-05 5.51E-05 8.26E-05 1.09E-04
012,1 2.00E-08 2.24E-08 1.17E-08 4.40E-08 1.72E-07 8.47E-07
6.38E-10 3.63E-10 3.05E-09 2.54E-08 2.46E-07
RV1 1.66E-04 8.86E-04 6.21E-04 2.38E-04 1.79E-04 1.69E-04
1.21E-05 9.87E-06 7.91E-06 1.49E-05 3.15E-05
052 1.66E-04 1.67E-04 1.67E-04 1.68E-04 1.69E-04 1.69E-04
3.47E-05 3.46E-05 5.45E-05 8.10E-05 1.04E-04
012)2 2.00E-08 2.24E-08 1.17E-08 4.44E-08 1.71E-07 8.52E-07
6.16E-10 3.57E-10 3.13E-09 2.48E-08 2.44E-07
RV2 1.66E-04 8.86E-04 6.22E-04 2.39E-04 1.78E-04 1.70E-04
1.23E-05 9.71E-06 8.00E-06 1.49E-05 3.22E-05
0312 8.40E-05 8.34E-05 8.54E-05 8.87E-05 8.94E-05
2.93E-05 2.69E-05 4.18E-05 6.46E-05 8.52E-05
0312 0.00E+00 6.03E-10 7.63E-11 9.82E-09 7.33E-08 4.09E-07
5.38E-10 2.32E-10 2.23E-09 1.94E-08 1.88E-07
RCV 8.33E-04 5.56E-05 3.06E-05 7.50E-05 8.19E-05 8.34E-05
6.50E-06 5.03E-06 6.02E-06 1.16E-05 2.51E-05
HY 8.33E-04 8.32E-05
5.90E-06
RCV-RV 5.00E-01 6.27E-02 4.93E-02 3.15E-01 4.58E-01 4.94E-01
7.32E-03 8.08E-03 2.29E-02 5.20E-02 1.19E-01
HY-RV 5.00E-01 9.39E-02 1.34E-01 3.50E-01 4.68E-01 5.10E-01
6.65E-03 9.40E-03 2.56E-02 4.84E-02 1.02E-01
HY-SIML 5.00E-01 5.23E-01 5.23E-01 5.58E-01 6.40E-01 8.17E-01

1.14E-01 1.14E-01 2.00E-01 4.04E-01 9.37E-01
SIML-SIML 5.00E-01 5.05E-01 5.02E-01 5.15E-01 5.32E-01 5.40E-01
1.42E-01 1.26E-01 2.01E-01 3.15E-01 4.87E-01
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Table 3.4 : Estimation of covariance and hedging coefficient :

Case 3 (Stochastic volatility; A = 18000)

18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
‘79201 2.05E-04 2.06E-04 2.07E-04 2.07E-04 2.08E-04
4.11E-05 4.11E-05 6.70E-05 9.43E-05 1.29E-04
Ugl 2.00E-06 2.00E-06 9.40E-07 2.03E-06 2.18E-06 3.03E-06
5.48E-08 3.02E-08 1.45E-07 3.31E-07 8.33E-07
RV1 7.22E-02 4.57E-02 7.41E-03 1.40E-03 4.42E-04
1.05E-03 7.70E-04 3.01E-04 1.38E-04 8.47E-05
022 2.07E-04 2.07E-04 2.09E-04 2.07E-04 2.07E-04
4.24E-05 4.22E-05 6.71E-05 9.72E-05 1.35E-04
012)2 2.00E-06 2.00E-06 9.40E-07 2.03E-06 2.19E-06 3.01E-06
5.65E-08 3.03E-08 1.45E-07 3.26E-07 8.68E-07
RV2 7.22E-02 4.57E-02 7.40E-03 1.40E-03 4.41E-04
1.10E-03 8.16E-04 3.01E-04 1.38E-04 8.86E-05
0512 1.01E-04 1.00E-04 1.02E-04 1.02E-04 1.03E-04
3.43E-05 3.14E-05 4.93E-05 7.31E-05 1.05E-04
012)12 0.00E+00 1.54E-09 -1.12E-09 6.37E-09 8.62E-08 4.70E-07
4.61E-08 1.86E-08 1.02E-07 2.25E-07 5.98E-07
RCV 8.23E-05 4.50E-05 7.87E-05 9.35E-05 9.86E-05
5.36E-04 3.80E-04 2.10E-04 9.46 E-05 6.15E-05
HY 1.31E-04
3.86E-04
RCV-RV 5.00E-01 1.14E-03 9.88E-04 1.07E-02 6.71E-02 2.25E-01
7.42E-03 8.31E-03 2.84E-02 6.79E-02 1.37E-01
HY-RV 5.00E-01 1.81E-03 2.86E-03 1.76E-02 9.24E-02 3.11E-01
5.34E-03 8.43E-03 5.20E-02 2.78E-01 9.22E-01
HY-SIML 5.00E-01 6.79E-01 6.76E-01 7.17E-01 8.27E-01  1.04E400
2.01E+00 2.01E400 2.18E400 2.83E+00 4.02E+00
SIML-SIML 5.00E-01 4.93E-01 4.89E-01 4.98E-01 4.95E-01 4.78E-01
1.40E-01 1.26E-01 1.97E-01 3.21E-01 4.85E-01
18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
0'21 2.00E-04 2.00E-04 2.02E-04 2.01E-04 2.01E-04
3.95E-05 3.94E-05 6.48E-05 9.17E-05 1.27E-04
012,1 2.00E-08 2.28E-08 1.22E-08 4.92E-08 2.02E-07 1.03E-06
6.36E-10 3.80E-10 3.46E-09 2.87E-08 2.90E-07
RV1 9.20E-04 6.55E-04 2.72E-04 2.12E-04 2.04E-04
1.26 E-05 1.04E-05 9.28E-06 1.76E-05 3.71E-05
052 2.01E-04 2.01E-04 2.03E-04 2.02E-04 2.02E-04
4.07E-05 4.04E-05 6.51E-05 9.46E-05 1.31E-04
012)2 2.00E-08 2.28E-08 1.22E-08 4.89E-08 2.03E-07 1.01E-06
6.50E-10 3.83E-10 3.53E-09 2.91E-08 2.88E-07
RV2 9.20E-04 6.55E-04 2.72E-04 2.13E-04 2.03E-04
1.26E-05 1.06E-05 8.92E-06 1.75E-05 3.74E-05
0312 1.01E-04 1.01E-04 1.03E-04 1.02E-04 1.03E-04
3.34E-05 3.03E-05 4.79E-05 7.17E-05 1.02E-04
0312 0.00E+00 7.50E-10 9.85E-11 1.17E-08 8.82E-08 4.95E-07
5.77E-10 2.38E-10 2.48E-09 2.24E-08 2.29E-07
RCV 6.68E-05 3.70E-05 8.99E-05 9.84E-05 1.01E-04
7.08E-06 5.24E-06 6.89E-06 1.34E-05 2.86E-05
HY 1.00E-04
6.32E-06
RCV-RV 5.00E-01 7.26E-02 5.65E-02 3.31E-01 4.65E-01 4.94E-01
7.74E-03 8.00E-03 2.29E-02 5.14E-02 1.11E-01
HY-RV 5.00E-01 1.09E-01 1.53E-01 3.70E-01 4.77E-01 5.09E-01
6.89E-03 9.63E-03 2.45E-02 4.75E-02 9.81E-02
HY-SIML 5.00E-01 5.21E-01 5.21E-01 5.51E-01 6.28E-01 8.22E-01
1.11E-01 1.10E-01 1.90E-01 3.66E-01 7.92E-01
SIML-SIML 5.00E-01 5.05E-01 5.03E-01 5.12E-01 5.11E-01 5.04E-01
1.38E-01 1.22E-01 1.92E-01 3.19E-01 4.99E-01
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4. Asymptotic Properties of the SIML Estimation

It is important to investigate the asymptotic properties of the SIML estimator
when the volatility function ¥2(s) is not constant over time. When the integrated
variance-covariance matrix is a positive (deterministic) constant (i.e. X, is not
stochastic) while the instantaneous covariance function is time varying, we have the
consistency and the asymptotic normality of the SIML estimator as n — oo. For the
case of non-stochastic sampling, the asymptotic properties of the SIML estimator
have been given by Kunitomo and Sato (2015). We give a slightly general result
as the next proposition when the observations are ramdomly sampled. For the
stochastic volatility and covariamce case in the continuous time, we assume that

2,(t) = (69 follows

(1.1 oD = o)+ [ wils)ds + [ 22s)aB()
+ [ ),

where the coefficient pg,, and the 2 x 1 vectors 77,(s), 7oy (s) are extensively measur-
able, continuous and bounded, and B*(s) is a 2 x 1 Brownian motion vector which
is orthogonal to B(s).

We extend the probability space (2, F, P) and denote the extended probability space
(Q, F, P) as explained by Chapter VIII of Jacod and Shiryaev (2003) or Jacod and
Protter (2012). Then we say that a sequence of random variables Z,, with an index
n stably converges in law if E[Y f(Z,)] — E[Y f(Z)] for all bounded continuous
functions f(-) and all bounded random variables Y, and E[-] is the expectation op-
erator with respect to the extended probability space. We denote this convergence
as Z, £7% 7 and write

(4.2) 2, 55Nz [ o (s)ds)

if Z is a continuous process defined on a very good filtered extension of (2, F, P),

which conditionally on the o—field F is a Gaussian proces with independent incre-
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ments satisfying
. t
(43) Vi=El(Z)F) =2 [ o
0

for 0 < t < 1. The asymptotic properties of the SIML estimator in the stochastic
volatility and covariance case can be summarized as Theorem 4.1 and the proof will
be given in Appendix-A. We often use the notations n and n* for n, and n} (a = s, f)

whenever we do not make any confusion.

Theorem 4.1 : We assume that X () and v,(t¢) (a = s, f, 4,7 > 1) in (2.1) and
(2.3) are independent with (2.4), o, = [y 0.(s)ds is positive definite, Assumptions
[ and IT with ¢ = 1 as the normalization. We further assume that E[w,(t$)*] <
oo, Elwy(t])] < cc.

(i) For my« and 0 < a < 0.5, as n — 00, My /My, 2 1,

(4.4) 50 — 0@ Ty0, 6% ol 250
and
(4.5) 5% — 0¥ 20,

(ii) For m,- and 0 < @ < 0.4, as n — 00, My /My, = 1,

(4.6) /m, [(}gﬁ) —Ugi)] £ N[0, Vi , V/mn [Uﬁff —crff} ESN N[0, Vs |

and
~(x z)] L—s
(4.7) Vi 68 = o] £ N[0, V]
where Z, £78 7 is the stable convergence in law with
1 2
(18)  Vi=2 [ [0 s)] dds , Vig =2 [ [ r(s)] s
0
and
1
(4.9) Vi = [ [0 )0 (7(s) + (015 (r(s)))?] d(s)%ds

(ili) Assume v, (t¢) (= wa(t?); a = s, f) in (2.4) are (mutually) independent randomv
ariables. For the modified SIML estimator, we take 0 < o < 0.5. Then as n — o0,

My [y 2> 1,
(4.10) v/ (652, — 08| Z5 N0, Vil /M [ gy — 045] =3 N[0, V]
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and
(4.11) Vit [0 = o] £ N[0, Viy]

m.sf s

where Vg, V¢ and Vip are the same when 0 < a < 0.5.

There are some remarks on the conditions we have used in Theorem 4.1 and
some possibilities of their extensions.
First, we have the condition 0 < a < 0.4 for the asymptotic normality of the SIML
estimator. When we use the modified SIML (MSIML) estimation we can improve
the convergence rate as 0 < a < 0.5. Due to the asymptotic bias in the SIML
estimation, it is slightly smaller than the optimal rate but the SIML estimotor can
be esasily implemented. There have been several discussions on the convergence
rates since Gloter and Jacod (2001). It seems that there is a trade-off between the
asymptotic efficiency and robustness of alternative estimators.
Second, when v,(tf), vy (t; ) (1,7 > 1) are autocorrelated and have the representation
(2.4) with the fourth-order moment conditions that E[w,(t)?] < oo ,E[wf(tg)‘l] <
0o, we can strengthen the same result in Theorem 4.1 with 0 < o < 0.4.
Third, when the variance-covariance matrix is constant, the number of observations
are constant n* = n, then t{f — t5 | = 1/n,t§c - tf,l =1/n (i,j = 1,---,n) and
T(t) = t,d(t) = 1,7(t) —7(s) =t —sfor 0 < s <t <1, c@(s) = ag),a;?(s) =
o 0D (s) = o', 7(t) = t,d(t) = 1,7(t) —7(s) =t —sfor 0 < s <t < 1. The

asymptotic variance and covariance are given by

(4.12) Vi =208, Viy = ol00f7) + 071

S

Fourth, there are several cases when we have the representation of (2.5) and (2.6)
instead of (2.3). Sato and Kunitomo (2015) have given several conditions when the
similar asymptotic results for the SIML estimation of the integrated volatility as

Theorem 4.1 holds in the univariate case.

By using the estimators of the integrated volatility and the integrated covariance,

the SIML estimator of the hedging ratio H = agfe)/aj(ff) has been defined by (2.8).
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From Theorem 4.1, we use the standard delta method and the resulting asymptotic

variance can be expressed as

(z) (z)
3 1 Os Us 1 T x
(GIB)VIH] = [V + (25 — 4= [0 (w(5)afy (r(s))d(s)7ds .
Off Off Off

Although the above formula looks complicated, when the volatility and covari-

ance functions are constant we have the next result.

Corollary 4.2 : Assume that the instantaneous volatility matrix 3, is constant
and X, (s) is a deterministic function of time. Then the asymptotic variance of the

limiting distribution of ,/m,, [lf[ —H } is given by

(z) (z) ()

() o\2)2
(4.14) L. o L S
Off Oss Off

As the final remark on the asymptotic properties of the SIML estimator and the
MSIML estimator, it would be possible to derive the corresponding results on the
asymptotic distribution of the SIML and MSIML estimators when we have the non-
linear transformations of (2.5) and (2.6). Some of the results have been reported
in Sato and Kunitomo (2015) for the case of fixed observation intervals with one
dimension. Since it is natural to consider the case when the integrated volatility is

random, the extensions of our arguments have been currently under investigation.

5. Further Simulations

By extending the basic additive noise model (Model 1) reported in Section 3, we
have conducted a large number of simulations. In each table we have calculated the
historical volatility (the realized volatility, RV), the historical covariance (RCV), the
HY (Hayashi-Yoshida) estimator and the SIML estimator. In Tables Raw means the
estimates based on all simulated data and 10 sec means the estimates based on the

simulated data at each grids of 10 second.
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We have adopted the round-off error models and the micro-market adjustment
models, which have been investigated by Sato and Kunitomo (2015) for the corre-
sponding one dimensional cases. Among many Monte-Carlo simulations, we sum-
marize our main results as Tables 5.1-5.7.

In Table 5.3 we use the EACD(1,1) model, which was originally proposed by
Engle and Russell (1998). Financial econometricians have been interested in the
(exponential) autoregressive conditional duration (EACD) models because the as-
sumption of Poisson random sampling leads to the sequence of i.i.d. random vari-
ables for durations while we may have the dependent structure on the observed
durations. Although there can be many types of duration dependence models, we
shall use the EACD(1,1) model as a representative one. Let 7 = t¢ — t? | and
T8 = fe! | where
(5.1) Vi = w A+ 06 + iy
and € are a sequence of i.i.d. exponential random variables with 6 > 0,7 > 0,w > 0
E¢f] = 0 and V[e!] = 1 for a = s or f. We have set 6 = 0.06, v = 0.9 and
w = 0.04 because w = (average duration)x[1 — (§ + )] when n = 18,000 with the
standardization of 1 second.

In our simulations we use several non-linear transformation models in the form
of (2.5). (Sato and Kunitomo (2015) have discussed the economic meaning of some
of these models in details.) We take X(t7) and Xy (tf ) individually and each model

in our simulation corresponds to

Model 1 hop(z,y,u) =z +u,

Model 2 hao(x,y,u) = gy, al® +u) (Where g,q(2) = n4[2/14) (2.7)) ,

Model 3 has(z,y,u) =y + ga(x — y) + u (g : constants) ,

Model 4 haa(,y,u) = Y + gnoa(r —y +u) (Where goy(2) = nalz/1a] (2.7)) ,
Model 5 has(z,y,u) =y + gpalx —y) +u (where g, ,(2) = n.2/n4] (2.7)) ,
Model 6 huo(ryu) =y-ut { BT e omtant)
respectively.
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Model 1 is the basic (signal-plus-noise) additive model and Model 2 is the basic
round-off error model. Model 3 corresponds to the linear price adjustment with the
micro-market noise and when the adjustment coefficient 0 < g, < 2, which is a suffi-
cient condition that the corresponding adjustment mechanism has an ergodic prop-
erty. Model 4 and Model 5 are the micro-market models with the round-off errors
and price adjustments, Model 4 is the basic round-off model with price adjustment
and Model 5 has a more complicated structure. Model 6 is the micro-market noise
model with asymmetric non-linear price adjustment mechanism.

When there are micro-market noise components with the martingale signal part,
the value of RCV often differs substantially from the true integrated covariance of the
signal part. However, we have found that it is possible to estimate the integrated
volatilities, the integrated covariance and the noise variances when we have the
signal-noise ratio as 1072 ~ 1075 by the SIML estimation method. Although we
have omitted the details of the second example, the estimation results are similar in
the stochastic volatility model.

For the estimation of the covariance, we have confirmed that by using the H-Y
method we can improve the historical covariance method as was pointed out by
Hayashi and Yoshida (2005) when there are no micro-market noises. However, when
we have micro-market noise terms, the bias of the H-Y method can be large in the
volatility estimation while the SIML estimation gives reasonable estimates of the
hedging coefficient. There can be alternative ways to use the integrated volatility
and the integrated covariance for estimating the hedging coefficient, and the SIML-
SIML combination gives reasonable estimates in all cases we have investigated. This
point is vivid and important on the practical risk management purposes as Tables
5.1-5.7 have shown.

Table 5.1 and Table 5.2 give the simulation results in the basic roud-off error
modes when the sampling scheme is a Poisson process with a constant intensity
A. As we have shown in Sato and Kunitomo (2015), the SIML estimator may
dominate the existing methods including the realized kernel method and the pre-

average method in some round-off-error cases. The selected simulation results in
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other linear and non-linear price adjustments models have been shown in Tables
5.4-Table 5.7. By examining these results of our simulations in addition to the
basic cases in Section 3 we conclude that we can estimate the integrated volatility
and integrated covariance of the hidden continuous part reasonably well by the
SIML estimation method. It may be surprising to find that the SIML method gives
reasonable estimates even when we have nonlinear transformations of the original
unobservable security (intrinsic) values. We have conducted a number of further

simulations, but the results are quite similar as we have reported in this section.
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Table 5.1 : Estimation of covariance and hedging coefficient :

Model 2 (ap = 1,a1 = a2 = 0; A = 18000; 7 = 0.001)

18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
09261 2.00E-04 2.04E-04 2.05E-04 2.06E-04 2.08E-04 2.10E-04
4.20E-05 4.20E-05 6.76 E-05 1.00E-04 1.33E-04
012}1 2.00E-06 2.09E-06 9.77TE-07 2.10E-06 2.27E-06 3.09E-06
5.94E-08 3.14E-08 1.43E-07 3.25E-07 8.60E-07
RV1 2.00E-04 7.52E-02 4.76E-02 7.69E-03 1.46E-03 4.52E-04
1.14E-03 8.33E-04 2.90E-04 1.34E-04 8.81E-05
03,2 2.00E-04 2.05E-04 2.06E-04 2.07E-04 2.09E-04 2.10E-04
4.26E-05 4.27E-05 6.70E-05 1.01E-04 1.31E-04
032 2.00E-06 2.09E-06 9.78E-07 2.12E-06 2.28E-06 3.09E-06
5.75E-08 3.20E-08 1.51E-07 3.25E-07 8.75E-07
RV2 2.00E-04 7.52E-02 4.76E-02 7.71E-03 1.46E-03 4.52E-04
1.13E-03 8.11E-04 2.99E-04 1.40E-04 8.90E-05
0312 1.00E-04 1.00E-04 9.99E-05 1.02E-04 1.07E-04 1.07E-04
3.60E-05 3.36E-05 5.11E-05 7.90E-05 1.05E-04
0312 5.68E-10 -8.17E-10 1.48E-08 9.77E-08 5.24E-07
4.81E-08 1.98E-08 1.05E-07 2.31E-07 6.01E-07
RCV 1.00E-04 8.59E-05 4.57E-05 1.02E-04 1.04E-04 1.03E-04
5.66E-04 3.99E-04 2.18E-04 9.60E-05 6.46E-05
HY 1.00E-04 1.00E-04
4.03E-04
RCV-RV 5.00E-01 1.14E-03 9.64E-04 1.32E-02 7.12E-02 2.28E-01
7.52E-03 8.40E-03 2.83E-02 6.57E-02 1.37E-01
HY-RV 5.00E-01 1.34E-03 2.11E-03 1.31E-02 6.97E-02 2.29E-01
5.36E-03 8.46E-03 5.25E-02 2.81E-01 9.48E-01
HY-SIML 5.00E-01 5.20E-01 5.16E-01 5.21E-01 5.71E-01 9.34E-01
2.08E+00 2.07TE4+00 2.35E4+00 3.08E4+00 6.42E+400
SIML-SIML | 5.00E-01 4.91E-01 4.85E-01 4.99E-01 5.18E-01 5.17E-01
1.45E-01 1.30E-01 2.02E-01 3.17E-01 5.21E-01
18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
092:1 2.00E-04 2.00E-04 1.99E-04 2.00E-04 2.03E-04 2.05E-04
4.08E-05 4.05E-05 6.58E-05 9.93E-05 1.31E-04
012)1 2.00E-08 8.52E-08 4.24FE-08 1.27E-07 2.85E-07 1.10E-06
3.70E-09 2.00E-09 9.21E-09 4.15E-08 3.13E-07
RV1 2.00E-04 3.23E-03 2.17E-03 5.62E-04 2.62E-04 2.12E-04
9.54E-05 6.66E-05 2.11E-05 2.13E-05 4.01E-05
03202 2.00E-04 2.01E-04 2.01E-04 2.01E-04 2.04E-04 2.03E-04
4.15E-05 4.14E-05 6.55E-05 9.77E-05 1.26E-04
052 2.00E-08 8.49E-08 4.23E-08 1.28E-07 2.85E-07 1.10E-06
3.74E-09 1.94E-09 9.87E-09 4.03E-08 3.14E-07
RV2 2.00E-04 3.23E-03 2.17E-03 5.64E-04 2.62E-04 2.13E-04
9.65E-05 6.66E-05 2.30E-05 2.22E-05 4.04E-05
0312 1.00E-04 1.01E-04 1.00E-04 1.03E-04 1.07E-04 1.08E-04
3.49E-05 3.21E-05 5.01E-05 7.74E-05 1.03E-04
0312 7.22E-10 9.18E-11 1.22E-08 8.85E-08 4.93E-07
2.09E-09 8.81E-10 6.21E-09 3.08E-08 2.40E-07
RCV 1.00E-04 6.70E-05 3.68E-05 9.05E-05 9.85E-05 1.00E-04
2.52E-05 1.77E-05 1.46E-05 1.65E-05 3.09E-05
HY 1.00E-04 1.01E-04
1.97E-05
RCV-RV 5.00E-01 2.08E-02 1.70E-02 1.61E-01 3.76E-01 4.74E-01
7.80E-03 8.17E-03 2.55E-02 5.54E-02 1.19E-01
HY-RV 5.00E-01 3.12E-02 4.64E-02 1.79E-01 3.86E-01 4.92E-01
6.09E-03 9.08E-03 3.52E-02 7.93E-02 1.36E-01
HY-SIML 5.00E-01 5.26E-01 5.27E-01 5.60E-01 6.41E-01 8.15E-01
1.53E-01 1.53E-01 2.22E-01 4.00E-01 9.01E-01
SIML-SIML | 5.00E-01 5.05E-01 5.01E-01 5.15E-01 5.33E-01 5.40E-01
1.40E-01 1.25E-01 1.99E-01 3.12E-01 4.86E-01
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Table 5.2 : Estimation of covariance and hedging coefficient :

Model 2 (ap = 1,a1 = a2 = 0; A = 18000; 7 = 0.002)

18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
09261 2.00E-04 2.05E-04 2.06E-04 2.06E-04 2.08E-04 2.11E-04
4.23E-05 4.24E-05 6.80E-05 1.01E-04 1.34E-04
012}1 2.00E-06 2.34E-06 1.09E-06 2.35E-06 2.51E-06 3.36E-06
6.47E-08 3.49E-08 1.59E-07 3.62E-07 9.36E-07
RV1 2.00E-04 8.42E-02 5.33E-02 8.59E-03 1.60E-03 4.84E-04
1.27E-03 9.40E-04 3.24E-04 1.48E-04 9.52E-05
03,2 2.00E-04 2.06E-04 2.07E-04 2.07E-04 2.10E-04 2.11E-04
4.27E-05 4.28E-05 6.73E-05 1.01E-04 1.32E-04
032 2.00E-06 2.33E-06 1.09E-06 2.37E-06 2.53E-06 3.34E-06
6.57E-08 3.61E-08 1.64E-07 3.62E-07 9.42E-07
RV2 2.00E-04 8.41E-02 5.33E-02 8.61E-03 1.61E-03 4.82E-04
1.27E-03 9.07E-04 3.28E-04 1.55E-04 9.63E-05
0312 1.00E-04 1.00E-04 9.98E-05 1.02E-04 1.07E-04 1.07E-04
3.61E-05 3.37E-05 5.12E-05 7.91E-05 1.05E-04
0312 5.01E-10 -2.92E-10 1.60E-08 8.71E-08 5.22E-07
5.40E-08 2.23E-08 1.21E-07 2.60E-07 6.58E-07
RCV 1.00E-04 9.36E-05 5.91E-05 1.05E-04 1.00E-04 1.03E-04
6.25E-04 4.50E-04 2.48E-04 1.08E-04 6.94E-05
HY 1.00E-04 1.04E-04
4.47E-04
RCV-RV 5.00E-01 1.11E-03 1.11E-03 1.21E-02 6.26E-02 2.12E-01
7.42E-03 8.46E-03 2.88E-02 6.75E-02 1.38E-01
HY-RV 5.00E-01 1.24E-03 1.96E-03 1.22E-02 6.47E-02 2.19E-01
5.31E-03 8.39E-03 5.21E-02 2.83E-01 9.85E-01
HY-SIML 5.00E-01 5.40E-01 5.36E-01 5.34E-01 5.77E-01 9.24E-01
2.32E+00 2.30E4+00 2.61E4+00 3.43E4+00 6.27E400
SIML-SIML | 5.00E-01 4.88E-01 4.83E-01 4.97E-01 5.17E-01 5.17E-01
1.45E-01 1.30E-01 2.02E-01 3.21E-01 4.92E-01
18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
092:1 2.00E-04 2.03E-04 2.03E-04 2.02E-04 2.04E-04 2.06E-04
4.14E-05 4.11E-05 6.63E-05 1.00E-04 1.33E-04
012)1 2.00E-08 1.70E-07 8.49E-08 2.56E-07 5.26E-07 1.34E-06
1.39E-08 7.42E-09 2.87E-08 7.85E-08 3.72E-07
RV1 2.00E-04 6.46E-03 4.34E-03 1.11E-03 4.08E-04 2.42E-04
4.48E-04 3.07E-04 8.28E-05 3.67E-05 4.47E-05
03202 2.00E-04 2.05E-04 2.05E-04 2.03E-04 2.05E-04 2.05E-04
4.21E-05 4.20E-05 6.62E-05 9.86E-05 1.27E-04
052 2.00E-08 1.70E-07 8.48E-08 2.58E-07 5.28E-07 1.36E-06
1.39E-08 7.15E-09 2.96E-08 7.67E-08 3.83E-07
RV2 2.00E-04 6.47E-03 4.34E-03 1.12E-03 4.09E-04 2.43E-04
4.44E-04 2.95E-04 8.35E-05 3.74E-05 4.54E-05
0312 1.00E-04 1.02E-04 1.01E-04 1.04E-04 1.08E-04 1.08E-04
3.54E-05 3.27E-05 5.08E-05 7.82E-05 1.03E-04
0312 8.00E-10 1.42E-10 1.13E-08 8.61E-08 4.97E-07
4.23E-09 1.70E-09 1.25E-08 5.51E-08 2.87E-07
RCV 1.00E-04 6.77TE-05 3.77TE-05 8.98E-05 9.74E-05 1.01E-04
4.92E-05 3.49E-05 2.96E-05 2.52E-05 3.46E-05
HY 1.00E-04 9.97E-05
3.92E-05
RCV-RV 5.00E-01 1.05E-02 8.68E-03 8.08E-02 2.39E-01 4.17E-01
7.67E-03 7.99E-03 2.63E-02 5.88E-02 1.24E-01
HY-RV 5.00E-01 1.55E-02 2.30E-02 8.97E-02 2.45E-01 4.25E-01
6.04E-03 9.02E-03 3.51E-02 9.63E-02 1.83E-01
HY-SIML 5.00E-01 5.10E-01 5.10E-01 5.51E-01 6.38E-01 8.19E-01
2.24E-01 2.24E-01 2.98E-01 4.87E-01 1.01E4-00
SIML-SIML | 5.00E-01 5.01E-01 4.97E-01 5.15E-01 5.32E-01 5.44E-01
1.40E-01 1.26E-01 2.01E-01 3.12E-01 4.91E-01
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Table 5.3 : Estimation of covariance and hedging coefficient :

Model 1 (ACD ; A = 18000)

18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
‘79201 2.00E-04 2.05E-04 2.06E-04 2.05E-04 2.02E-04 2.03E-04
4.30E-05 4.27E-05 6.64E-05 9.33E-05 1.27E-04
Ugl 2.00E-06 2.00E-06 9.32E-07 2.03E-06 2.18E-06 2.98E-06
5.55E-08 3.36E-08 1.41E-07 3.16E-07 8.14E-07
RV1 2.00E-04 7.22E-02 4.51E-02 7.40E-03 1.40E-03 4.38E-04
1.62E-03 9.34E-04 3.01E-04 1.37E-04 8.63E-05
022 2.00E-04 2.05E-04 2.06E-04 2.07E-04 2.12E-04 2.12E-04
4.25E-05 4.27E-05 6.85E-05 1.03E-04 1.42E-04
012)2 2.00E-06 2.01E-06 9.31E-07 2.03E-06 2.20E-06 3.04E-06
5.58E-08 3.34E-08 1.46E-07 3.07E-07 8.41E-07
RV2 2.00E-04 7.22E-02 4.52E-02 7.41E-03 1.41E-03 4.45E-04
1.78E-03 9.57E-04 3.02E-04 1.32E-04 8.89E-05
0512 1.00E-04 1.01E-04 1.00E-04 1.02E-04 1.04E-04 1.03E-04
3.70E-05 3.37E-05 5.13E-05 7.66E-05 1.03E-04
012)12 0.00E+00 | -9.58E-10 -3.15E-10 6.07E-09 1.05E-07 4.83E-07
4.56E-08 1.83E-08 1.03E-07 2.17E-07 5.84E-07
RCV 1.00E-04 7.51E-05 3.09E-05 8.39E-05 1.04E-04 1.00E-04
5.01E-04 3.78E-04 2.16E-04 9.30E-05 6.06E-05
HY 1.00E-04 1.31E-04
3.80E-04
RCV-RV 5.00E-01 1.04E-03 6.88E-04 1.13E-02 7.38E-02 2.32E-01
6.94E-03 8.36E-03 2.91E-02 6.60E-02 1.39E-01
HY-RV 5.00E-01 1.81E-03 2.90E-03 1.78E-02 9.60E-02 3.10E-01
5.26E-03 8.41E-03 5.14E-02 2.72E-01 9.22E-01
HY-SIML 5.00E-01 6.77E-01 6.76E-01 7.16E-01 8.07E-01  1.03E+00
2.00E+00 1.98E4+00 2.14E400 2.68E+00 4.58E+00
SIML-SIML 5.00E-01 4.90E-01 4.85E-01 4.98E-01 5.21E-01 5.24E-01
1.46E-01 1.28E-01 2.06E-01 3.46E-01 5.14E-01
18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
0'21 2.00E-04 2.00E-04 2.00E-04 1.99E-04 1.96E-04 1.96E-04
4.15E-05 4.13E-05 6.40E-05 9.08E-05 1.24E-04
012,1 2.00E-08 2.28E-08 1.21E-08 4.89E-08 2.04E-07 1.02E-06
6.36E-10 4.01E-10 3.47E-09 3.01E-08 2.83E-07
RV1 2.00E-04 9.20E-04 6.49E-04 2.72E-04 2.13E-04 2.01E-04
1.73E-05 1.09E-05 9.35E-06 1.79E-05 3.72E-05
052 2.00E-04 2.00E-04 2.00E-04 2.02E-04 2.06E-04 2.06E-04
4.10E-05 4.11E-05 6.63E-05 1.02E-04 1.38E-04
012)2 2.00E-08 2.29E-08 1.21E-08 4.91E-08 2.03E-07 1.02E-06
6.27E-10 4.11E-10 3.38E-09 3.09E-08 2.87E-07
RV2 2.00E-04 9.20E-04 6.50E-04 2.72E-04 2.12E-04 2.04E-04
1.90E-05 1.17E-05 9.09E-06 1.73E-05 3.78E-05
0312 1.00E-04 1.01E-04 1.00E-04 1.02E-04 1.03E-04 1.03E-04
3.54E-05 3.22E-05 4.98E-05 7.47E-05 9.97E-05
0312 0.00E+00 8.14E-10 1.11E-10 1.14E-08 9.04E-08 5.00E-07
5.59E-10 2.40E-10 2.53E-09 2.37E-08 2.23E-07
RCV 1.00E-04 6.84E-05 3.59E-05 8.92E-05 9.93E-05 1.01E-04
6.91E-06 5.18E-06 6.92E-06 1.34E-05 2.88E-05
HY 1.00E-04 1.00E-04
6.34E-06
RCV-RV 5.00E-01 7.44E-02 5.53E-02 3.28E-01 4.67E-01 5.01E-01
7.53E-03 7.97E-03 2.32E-02 5.14E-02 1.14E-01
HY-RV 5.00E-01 1.09E-01 1.55E-01 3.70E-01 4.76E-01 5.16E-01
7.11E-03 9.88E-03 2.53E-02 4.97E-02 1.02E-01
HY-SIML 5.00E-01 5.25E-01 5.26E-01 5.60E-01 6.58E-01 8.42E-01
1.16E-01 1.16E-01 1.93E-01 4.24E-01 8.77E-01
SIML-SIML 5.00E-01 5.03E-01 5.02E-01 5.13E-01 5.30E-01 5.35E-01
1.42E-01 1.25E-01 1.99E-01 3.29E-01 4.94E-01
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Table 5.4 : Estimation of covariance and hedging coefficient :

Model 3 (g = 0.2; A = 18000)

18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
‘79201 2.00E-04 2.25E-04 2.28E-04 2.09E-04 2.10E-04 2.15E-04
4.53E-05 4.53E-05 6.83E-05 1.02E-04 1.38E-04
Ugl 2.00E-06 6.27E-07 5.63E-07 4.31E-06 5.73E-06 6.53E-06
1.78E-08 1.67E-08 3.12E-07 8.19E-07 1.80E-06
RV1 2.00E-04 4.00E-02 3.63E-02 1.74E-02 3.52E-03 8.59E-04
5.26E-04 5.97E-04 7.05E-04 3.38E-04 1.81E-04
022 2.00E-04 2.27TE-04 2.29E-04 2.10E-04 2.12E-04 2.13E-04
4.74E-05 4.78E-05 6.83E-05 1.02E-04 1.34E-04
012)2 2.00E-06 6.27E-07 5.63E-07 4.30E-06 5.72E-06 6.45E-06
1.73E-08 1.71E-08 2.99E-07 8.15E-07 1.81E-06
RV2 2.00E-04 4.00E-02 3.63E-02 1.74E-02 3.51E-03 8.55E-04
5.37E-04 5.98E-04 6.80E-04 3.36E-04 1.74E-04
0512 1.00E-04 9.98E-05 9.96E-05 1.02E-04 1.06E-04 1.06E-04
3.80E-05 3.66E-05 5.16E-05 7.95E-05 1.07E-04
012)12 0.00E+00 5.23E-11  -3.47E-10 5.64E-09 8.30E-08 5.67E-07
2.06E-08 1.14E-08 2.12E-07 5.76E-07 1.30E-06
RCV 1.00E-04 2.40E-05 1.16E-05 6.91E-05 9.35E-05 1.05E-04
3.42E-04 2.87TE-04 4.83E-04 2.31E-04 1.30E-04
HY 1.00E-04 2.74E-05
3.75E-04
RCV-RV 5.00E-01 5.94E-04 3.18E-04 3.96E-03 2.70E-02 1.23E-01
8.55E-03 7.91E-03 2.77E-02 6.58E-02 1.50E-01
HY-RV 5.00E-01 6.83E-04 7.46E-04 1.57E-03 7.87TE-03 2.98E-02
9.39E-03 1.04E-02 2.16E-02 1.08E-01 4.63E-01
HY-SIML 5.00E-01 1.23E-01 1.23E-01 8.24E-02 6.97E-02 1.51E-01

1L.77TE400 1.75E+00 2.13E400 2.80E4-00 4.26E-+00
SIML-SIML 5.00E-01 4.43E-01 4.36E-01 4.89E-01 5.11E-01 5.08E-01
1.45E-01 1.36E-01 2.05E-01 3.20E-01 4.93E-01

18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
0'21 2.00E-04 1.99E-04 1.99E-04 2.00E-04 2.02E-04 2.04E-04
4.07E-05 4.05E-05 6.57E-05 9.89E-05 1.30E-04
012,1 2.00E-08 6.31E-09 5.95E-09 5.29E-08 2.14E-07 1.02E-06
1.79E-10 1.77E-10 3.87E-09 3.08E-08 2.95E-07
RV1 2.00E-04 4.22E-04 4.01E-04 2.96E-04 2.19E-04 2.03E-04
5.35E-06 6.44E-06 1.05E-05 1.78E-05 3.82E-05
052 2.00E-04 2.00E-04 2.00E-04 2.01E-04 2.03E-04 2.03E-04
4.14E-05 4.13E-05 6.55E-05 9.74E-05 1.25E-04
012)2 2.00E-08 6.31E-09 5.95E-09 5.29E-08 2.13E-07 1.03E-06
1.74E-10 1.78E-10 3.69E-09 3.10E-08 2.94E-07
RV2 2.00E-04 4.22E-04 4.01E-04 2.96E-04 2.18E-04 2.04E-04
5.50E-06 6.37E-06 1.01E-05 1.78E-05 3.82E-05
0312 1.00E-04 1.01E-04 1.00E-04 1.03E-04 1.07E-04 1.07E-04
3.49E-05 3.21E-05 5.00E-05 7.72E-05 1.03E-04
0312 0.00E+00 | -6.54E-13 1.29E-12 3.78E-09 7.83E-08 4.82E-07
2.13E-10 1.20E-10 2.65E-09 2.34E-08 2.24E-07
RCV 1.00E-04 1.34E-05 9.35E-06 5.67E-05 9.20E-05 9.88E-05
3.58E-06 3.14E-06 7.35E-06 1.37E-05 2.97E-05
HY 1.00E-04 2.00E-05
4.21E-06
RCV-RV 5.00E-01 3.17E-02 2.33E-02 1.92E-01 4.20E-01 4.87E-01
8.45E-03 7.83E-03 2.40E-02 5.27E-02 1.17E-01
HY-RV 5.00E-01 4.74E-02 4.98E-02 6.76E-02 9.18E-02 1.02E-01
9.96E-03 1.05E-02 1.42E-02 2.03E-02 2.81E-02
HY-SIML 5.00E-01 1.04E-01 1.04E-01 1.11E-01 1.27E-01 1.61E-01

3.01E-02 3.01E-02 4.34E-02 8.28E-02 1.80E-01
SIML-SIML 5.00E-01 5.04E-01 5.01E-01 5.15E-01 5.33E-01 5.40E-01
1.40E-01 1.25E-01 2.00E-01 3.12E-01 4.84E-01
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Table 5.5 : Estimation of covariance and hedging coefficient :

Model 4 (n = 0.001; A = 18000)

18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
‘79201 2.00E-04 2.04E-04 2.05E-04 2.06E-04 2.08E-04 2.11E-04
4.20E-05 4.19E-05 6.76E-05 1.01E-04 1.34E-04
Ugl 2.00E-06 2.09E-06 9.76 E-07 2.11E-06 2.27E-06 3.09E-06
5.82E-08 3.12E-08 1.45E-07 3.25E-07 8.68E-07
RV1 2.00E-04 7.52E-02 4.76E-02 7.69E-03 1.46E-03 4.51E-04
1.12E-03 8.45E-04 2.90E-04 1.35E-04 8.90E-05
022 2.00E-04 2.05E-04 2.06E-04 2.06E-04 2.09E-04 2.10E-04
4.26E-05 4.26E-05 6.68E-05 1.01E-04 1.31E-04
012)2 2.00E-06 2.09E-06 9.79E-07 2.12E-06 2.28E-06 3.07E-06
5.75E-08 3.22E-08 1.56E-07 3.25E-07 8.75E-07
RV2 2.00E-04 7.52E-02 4.76E-02 7.71E-03 1.46E-03 4.51E-04
1.13E-03 8.21E-04 3.05E-04 1.39E-04 8.98E-05
0512 1.00E-04 1.00E-04 9.99E-05 1.02E-04 1.07E-04 1.07E-04
3.59E-05 3.35E-05 5.11E-05 7.90E-05 1.05E-04
012)12 0.00E+00 | -3.00E-10 -1.33E-09 1.39E-08 9.67E-08 5.15E-07
4.74E-08 1.97E-08 1.04E-07 2.31E-07 6.03E-07
RCV 1.00E-04 7.50E-05 4.12E-05 1.02E-04 1.04E-04 1.02E-04
5.60E-04 3.98E-04 2.17E-04 9.66E-05 6.47E-05
HY 1.00E-04 9.48E-05
3.99E-04
RCV-RV 5.00E-01 9.95E-04 8.70E-04 1.32E-02 7.16E-02 2.27TE-01
7.45E-03 8.37E-03 2.82E-02 6.62E-02 1.38E-01
HY-RV 5.00E-01 1.26E-03 2.00E-03 1.23E-02 6.51E-02 2.12E-01
5.30E-03 8.38E-03 5.19E-02 2.76E-01 9.31E-01
HY-SIML 5.00E-01 4.84E-01 4.81E-01 4.97E-01 5.49E-01 8.87E-01

2.08E4-00 2.06E400 2.33E+00 3.10E400 5.53E4-00
SIML-SIML 5.00E-01 4.91E-01 4.86E-01 4.99E-01 5.18E-01 5.19E-01
1.44E-01 1.30E-01 2.02E-01 3.19E-01 5.17E-01

18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
0'21 2.00E-04 2.00E-04 2.00E-04 2.00E-04 2.03E-04 2.05E-04
4.10E-05 4.08E-05 6.61E-05 9.92E-05 1.30E-04
012,1 2.00E-08 8.51E-08 4.24F-08 1.27E-07 2.84E-07 1.10E-06
3.63E-09 1.94E-09 9.69E-09 4.06E-08 3.08E-07
RV1 2.00E-04 3.23E-03 2.17E-03 5.61E-04 2.62E-04 2.13E-04
9.51E-05 6.61E-05 2.26E-05 2.18E-05 3.93E-05
09202 2.00E-04 2.01E-04 2.01E-04 2.01E-04 2.03E-04 2.03E-04
4.15E-05 4.14E-05 6.56E-05 9.75E-05 1.26E-04
012)2 2.00E-08 8.50E-08 4.25E-08 1.28E-07 2.84E-07 1.11E-06
3.78E-09 2.00E-09 9.50E-09 4.06E-08 3.07E-07
RV2 2.00E-04 3.23E-03 2.17E-03 5.63E-04 2.62E-04 2.14E-04
9.94E-05 6.91E-05 2.27E-05 2.14E-05 3.97E-05
0312 1.00E-04 1.01E-04 1.00E-04 1.02E-04 1.06E-04 1.08E-04
3.50E-05 3.22E-05 5.02E-05 7.73E-05 1.03E-04
0312 0.00E+00 6.72E-10 1.12E-10 1.17E-08 8.75E-08 4.96E-07
2.03E-09 8.42E-10 6.40E-09 3.07E-08 2.34E-07
RCV 1.00E-04 6.67E-05 3.68E-05 8.95E-05 9.85E-05 1.01E-04
2.34E-05 1.75E-05 1.48E-05 1.64E-05 3.10E-05
HY 1.00E-04 9.94E-05
1.97E-05
RCV-RV 5.00E-01 2.07E-02 1.70E-02 1.60E-01 3.75E-01 4.73E-01
7.24E-03 8.02E-03 2.56E-02 5.47E-02 1.20E-01
HY-RV 5.00E-01 3.08E-02 4.59E-02 1.77E-01 3.81E-01 4.83E-01
6.11E-03 9.13E-03 3.57E-02 8.03E-02 1.35E-01
HY-SIML 5.00E-01 5.18E-01 5.18E-01 5.52E-01 6.32E-01 8.05E-01

1.50E-01 1.50E-01 2.24E-01 4.11E-01 9.52E-01
SIML-SIML 5.00E-01 5.03E-01 5.00E-01 5.13E-01 5.30E-01 5.39E-01
1.40E-01 1.25E-01 2.00E-01 3.13E-01 4.83E-01
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Table 5.5 : Estimation of covariance and hedging coefficient :

Model 5 (g = 0.001; X = 18000)

18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
‘79201 2.00E-04 2.04E-04 2.06E-04 2.06E-04 2.08E-04 2.11E-04
4.20E-05 4.20E-05 6.77E-05 1.00E-04 1.34E-04
Ugl 2.00E-06 2.09E-06 9.76 E-07 2.11E-06 2.27E-06 3.09E-06
5.89E-08 3.18E-08 1.45E-07 3.25E-07 8.57TE-07
RV1 2.00E-04 7.52E-02 4.76E-02 7.70E-03 1.46E-03 4.51E-04
1.12E-03 8.46E-04 2.91E-04 1.34E-04 8.82E-05
022 2.00E-04 2.06E-04 2.07E-04 2.07E-04 2.10E-04 2.11E-04
4.27E-05 4.27E-05 6.71E-05 1.01E-04 1.32E-04
012)2 2.00E-06 2.09E-06 9.79E-07 2.12E-06 2.28E-06 3.08E-06
5.74E-08 3.16E-08 1.50E-07 3.31E-07 8.68E-07
RV2 2.00E-04 7.52E-02 4.76E-02 7.72E-03 1.46E-03 4.51E-04
1.13E-03 8.02E-04 3.02E-04 1.40E-04 8.91E-05
0512 1.00E-04 1.01E-04 1.00E-04 1.03E-04 1.07E-04 1.08E-04
3.60E-05 3.36E-05 5.13E-05 7.89E-05 1.06E-04
012)12 0.00E+00 | -2.79E-10 -1.04E-09 1.41E-08 9.49E-08 5.12E-07
4.82E-08 1.97E-08 1.05E-07 2.30E-07 6.01E-07
RCV 1.00E-04 8.49E-05 3.92E-05 1.02E-04 1.03E-04 1.02E-04
5.70E-04 3.98E-04 2.16E-04 9.63E-05 6.48E-05
HY 1.00E-04 1.03E-04
4.01E-04
RCV-RV 5.00E-01 1.13E-03 8.25E-04 1.32E-02 7.08E-02 2.26E-01
7.58E-03 8.37E-03 2.80E-02 6.60E-02 1.37E-01
HY-RV 5.00E-01 1.37E-03 2.17E-03 1.34E-02 7.11E-02 2.41E-01
5.34E-03 8.43E-03 5.22E-02 2.79E-01 9.39E-01
HY-SIML 5.00E-01 5.26E-01 5.23E-01 5.36E-01 5.74E-01 8.80E-01
2.09E+00 2.07TE4+00 2.36E4+00 2.97E+00 4.96E+400
SIML-SIML 5.00E-01 4.93E-01 4.87E-01 5.01E-01 5.20E-01 5.18E-01
1.44E-01 1.30E-01 2.02E-01 3.17E-01 5.14E-01
18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
0'21 2.00E-04 2.00E-04 2.00E-04 2.01E-04 2.03E-04 2.05E-04
4.09E-05 4.06E-05 6.60E-05 9.91E-05 1.31E-04
012,1 2.00E-08 6.77E-08 3.85E-08 1.32E-07 2.85E-07 1.10E-06
2.74E-09 1.62E-09 9.24E-09 4.18E-08 3.16E-07
RV1 2.00E-04 2.86E-03 2.07E-03 5.71E-04 2.62E-04 2.13E-04
6.90E-05 5.09E-05 1.96E-05 2.18E-05 3.94E-05
09202 2.00E-04 2.01E-04 2.01E-04 2.02E-04 2.04E-04 2.04E-04
4.15E-05 4.13E-05 6.58E-05 9.76E-05 1.26E-04
012)2 2.00E-08 6.79E-08 3.86E-08 1.32E-07 2.84E-07 1.11E-06
2.78E-09 1.60E-09 9.02E-09 4.02E-08 3.09E-07
RV2 2.00E-04 2.86E-03 2.07E-03 5.71E-04 2.62E-04 2.14E-04
6.81E-05 4.99E-05 2.03E-05 2.15E-05 3.95E-05
0312 1.00E-04 1.01E-04 1.01E-04 1.03E-04 1.07E-04 1.08E-04
3.50E-05 3.21E-05 5.02E-05 7.74E-05 1.03E-04
0312 0.00E+00 7.58E-10 1.56E-10 1.19E-08 8.67E-08 4.93E-07
1.74E-09 7.47E-10 6.63E-09 3.21E-08 2.35E-07
RCV 1.00E-04 6.76E-05 3.77TE-05 8.97E-05 9.78E-05 1.01E-04
2.26E-05 1.63E-05 1.46E-05 1.66E-05 3.05E-05
HY 1.00E-04 1.00E-04
1.91E-05
RCV-RV 5.00E-01 2.36E-02 1.83E-02 1.57E-01 3.73E-01 4.74E-01
7.92E-03 7.86E-03 2.51E-02 5.52E-02 1.18E-01
HY-RV 5.00E-01 3.50E-02 4.85E-02 1.76E-01 3.85E-01 4.88E-01
6.64E-03 9.20E-03 3.37E-02 8.09E-02 1.33E-01
HY-SIML 5.00E-01 5.23E-01 5.24E-01 5.59E-01 6.41E-01 8.17E-01
1.48E-01 1.48E-01 2.31E-01 4.28E-01 1.01E4-00
SIML-SIML 5.00E-01 5.06E-01 5.03E-01 5.16E-01 5.34E-01 5.39E-01
1.40E-01 1.24E-01 2.00E-01 3.13E-01 4.87E-01
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Table 5.7 : Estimation of covariance and hedging coefficient :

Model 6 (g1 = 0.2, g2 = 5; A = 18000)

18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
‘79201 2.00E-04 2.15E-04 2.17E-04 2.08E-04 2.10E-04 2.15E-04
4.36E-05 4.35E-05 6.83E-05 1.01E-04 1.36E-04
Ugl 2.00E-06 7.24E-07 6.00E-07 3.59E-06 4.17E-06 4.98E-06
2.07E-08 1.81E-08 2.59E-07 5.99E-07 1.37E-06
RV1 2.00E-04 4.29E-02 3.69E-02 1.37E-02 2.59E-03 6.75E-04
5.75E-04 6.15E-04 5.55E-04 2.44E-04 1.40E-04
022 2.00E-04 2.16E-04 2.18E-04 2.09E-04 2.11E-04 2.13E-04
4.51E-05 4.53E-05 6.79E-05 1.02E-04 1.33E-04
012)2 2.00E-06 7.23E-07 6.01E-07 3.59E-06 4.17E-06 4.94E-06
2.00E-08 1.86E-08 2.47E-07 5.98E-07 1.39E-06
RV2 2.00E-04 4.29E-02 3.69E-02 1.37E-02 2.59E-03 6.74E-04
5.91E-04 6.10E-04 5.44E-04 2.50E-04 1.37E-04
0512 1.00E-04 1.01E-04 1.01E-04 1.03E-04 1.07E-04 1.08E-04
3.71E-05 3.51E-05 5.17E-05 7.92E-05 1.07E-04
012)12 0.00E+00 6.82E-11  -4.05E-10 9.73E-09 9.09E-08 5.53E-07
2.26E-08 1.22E-08 1.81E-07 4.22E-07 9.86E-07
RCV 1.00E-04 3.27E-05 1.98E-05 8.14E-05 9.79E-05 1.05E-04
3.54E-04 2.95E-04 3.88E-04 1.72E-04 1.01E-04
HY 1.00E-04 3.81E-05 0.00E4+00 0.00E4+00 0.00E+00 0.00E400
3.70E-04 0.00E+4+00 0.00E4+00 0.00E+00 0.00E400
RCV-RV 5.00E-01 7.58E-04 5.39E-04 5.92E-03 3.83E-02 1.56E-01
8.26E-03 8.00E-03 2.84E-02 6.65E-02 1.48E-01
HY-RV 5.00E-01 8.89E-04 1.03E-03 2.80E-03 1.48E-02 5.56E-02
8.63E-03 1.01E-02 2.71E-02 1.44E-01 5.80E-01
HY-SIML 5.00E-01 1.79E-01 1.79E-01 1.52E-01 1.50E-01 2.65E-01
1.83E400 1.81E+00 2.11E400 2.74E400 4.27E+00
SIML-SIML 5.00E-01 4.69E-01 4.63E-01 4.96E-01 5.18E-01 5.14E-01
1.44E-01 1.33E-01 2.04E-01 3.18E-01 4.95E-01

18000 True Raw 1 sec. 10 sec. 60 sec. 300 sec.
0'21 2.00E-04 1.99E-04 1.99E-04 2.00E-04 2.02E-04 2.04E-04
4.07E-05 4.05E-05 6.58E-05 9.89E-05 1.30E-04
012,1 2.00E-08 7.37TE-09 6.56E-09 5.10E-08 2.07E-07 1.02E-06
2.12E-10 1.95E-10 3.69E-09 2.99E-08 2.93E-07
RV1 2.00E-04 4.67E-04 4.29E-04 2.83E-04 2.15E-04 2.03E-04
6.05E-06 6.90E-06 9.72E-06 1.75E-05 3.80E-05
052 2.00E-04 2.00E-04 2.00E-04 2.01E-04 2.03E-04 2.03E-04
4.14E-05 4.13E-05 6.55E-05 9.74E-05 1.25E-04
012)2 2.00E-08 7.37TE-09 6.56E-09 5.10E-08 2.07E-07 1.02E-06
2.04E-10 1.98E-10 3.56E-09 3.02E-08 2.91E-07
RV2 2.00E-04 4.68E-04 4.29E-04 2.83E-04 2.14E-04 2.03E-04
6.20E-06 6.79E-06 9.66E-06 1.77E-05 3.80E-05
0312 1.00E-04 1.01E-04 1.00E-04 1.06E-04 1.07E-04 1.08E-04
3.49E-05 3.21E-05 5.00E-05 7.72E-05 1.03E-04
0312 0.00E+00 3.63E-11 7.22E-12 6.01E-09 8.22E-08 4.87E-07
2.39E-10 1.33E-10 2.65E-09 2.30E-08 2.23E-07
RCV 1.00E-04 2.03E-05 1.37E-05 6.76E-05 9.44E-05 9.94E-05
3.84E-06 3.38E-06 7.13E-06 1.36E-05 2.97E-05
HY 1.00E-04 3.06E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00
4.43E-06 0.00E400 0.00E400 0.00E400 0.00E4-00
RCV-RV 5.00E-01 4.35E-02 3.19E-02 2.39E-01 4.39E-01 4.91E-01
8.18E-03 7.90E-03 2.40E-02 5.23E-02 1.17E-01
HY-RV 5.00E-01 6.54E-02 7.14E-02 1.08E-01 1.43E-01 1.56E-01
9.46E-03 1.03E-02 1.56E-02 2.30E-02 3.62E-02
HY-SIML 5.00E-01 1.60E-01 1.60E-01 1.70E-01 1.95E-01 2.48E-01
3.90E-02 3.90E-02 6.22E-02 1.26E-01 2.84E-01
SIML-SIML 5.00E-01 5.05E-01 5.01E-01 5.15E-01 5.33E-01 5.39E-01
1.40E-01 1.25E-01 2.00E-01 3.12E-01 4.85E-01
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6. Conclusions

In this paper, we have shown that the Separating Information Maximum Likeli-
hood (SIML) estimator is useful and it has the asymptotic robustness in the sense
that it is consistent and it has the asymptotic normality in the stable convergence
sense under a fairly general conditions when there are non-linear micro-market ad-
justments and errors, and the high frequency financial data are randomly sampled.
They include not only the cases when we have the micro-market noises but also the
cases when the micro-market structure has the round-off errors and the nonlinear
price adjustments under a set of reasonable assumptions. This paper has focused
on the estimation of the integrated covariance and the hedging coefficients and we
have shown that the SIML estimator has reasonable asymptotic as well as finite
sample properties. Micro-market factors in financial markets are common in the
sense that we have the minimum price change and the minimum order size rules
and also we often observe the bid-ask differences in stock markets. Sato and Kunit-
omo (2015) have shown that the SIML estimator dominates the existing methods
including the realized kernel method and the pre-average method in some situations.
Therefore the robustness of the estimation methods of the integrated covariance and
the integrated hedging coefficient is quite important.

Also we should stress on the fact that the SIML estimator is very simple and it
can be practically used not only for the integrated volatility but also the integrated
covariance and the hedging coefficients from the multivariate high frequency finan-
cial series. An application on the analysis of stock-index futures market has been
reported in Misaki (2013) for instance.

As a concluding remark there are several theoretical and practical problems
arisen in our discussions mentioned in this paper. It is an obvious direction to
weaken the underlying assumptions including Assumptions I and II. Also it may
be interesting to see what to the extent our results would be valid when we have
different threshold parameters in different assets in the round-off error models, which

may be reasonable in actual financial markets such as the spot and futures Nikkei-
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225 in Japan. Also it should be important to generalize our method to the cases

with many dimensions. They are currently under investigation.
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APPENDIX : On Mathematical Derivations

In this Appendix, we give some details of the proof of Theorem 4.1. The method of
our derivations is based on the results reported by Kunitomo and Sato (2013) and
Sato and Kunitomo (2015), but we need some extra arguments. We shall use the

notations K; (i > 1) as positive constants. Our proof consists of several steps.

(Step-1) The first step is to argue that the effects of the randomness of sampling
and the effects of drift terms in the underlying stochastic processes are stochastically
negligible under our assumptions.

Although ¢ and n* are random variables, which are finite-valued and bounded
in [0, 1] for any n. We write y¢ = xf + v for a = s or f, where yf = y,(t}') and
18 = X,(t7) in the basic case. We set yI' = (y*(t7), v/ (t?)), aP = (x°(t}), o/ (7))’

3 (3

and also we write the underlying (unobservable) returns in the period (¢ ,,t"] as
o i
(Al =2l — a2 | = (s, X (s))ds + 0:(s,X(8))dBs (i=1,---,n")
. o
and the martingale part as
t7
(A.2) r;:/ ou(s, X (s))dB, (i=1,---,n%)
by
with 0 = ¢ <t} < --- < tI. < 1. By using Assumptions I and II, we have
n*/n =14 o0,(1),
£ Con
E[[l75]17 II/ pa (s, X (s))ds| ]+2E[(/w pa(s, X (s))ds) 7] + E[[lr]I”] |
and
& n 1 2
El| $)dB, ~ / o () ABS [F] = O(()?)
o, n
Then we can evaluate as
|2 H L3/
(A.3) Bllr]? — [ (Sa()ds] = O((5)")

1—1
Hence we find that the effects of drift terms are negligible for the estimation of

integrated volatility function under Assumptions I and II.
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Similarly, we can use that n*/n % 1 and

(A.4) Z/t 5, (s)ds — /01 S.(s)ds B O,

and then
(A.5) E[/ﬂj %,(s)ds] = O(

i—1

).

We note that the volatility function ¥,(s) (0 < s < 1) and the integrated volatility
Y, = fy L.(s)ds can be stochastic.

1
n

By above arguments we can proceed the present proof as if n* were fixed and was
replaced by the corresponding fixed n. For instance we can use the standard method
for the random sums (martingales) to the following proof of CLT (central limit
theorem). (See Section 35 of Billingsley (1995) for instance.)

Then we shall use the fixed n (and m,«) as if it were n* (and m,,) in the following
developments of this Appendix for the sake of the resulting simplicities. (Basically
we need to replace n by n* in each step, and then we need to many tedious arguments

because n* is stochastic.)
(Step-2) Let Zi(nl) and Zi(s) (t=1,---,n) be the i-th elements of n x 2 matrices

(A.6) ZW = p-12p, CY(X, - Y,) , Z® = n 2P, CV,,

n

respectively, where we denote X,, = () = (2%, z]), V,, = (v]) = (v%,0)), X, = (2,

are n x 2 matrices with zy, = z,(;) + z,gi) and P is defined by (2.15).

We write 2§, and z/ as the first and second components of z,, and also we use the
notations 27 and z//; (j = 1,2) for the j-th components of z,i{l) By following the
proof developed by Kunitomo and Sato (2013) for the case of fixed n, we use the
arguments for investigating on the asymptotic distribution of \/m,, [6®) — @] and
0@ = [F 5@ (s)ds. (We can use the similar arguments for 053}) = Jy aj(f;)(s)ds and

O'SC) =y agji)(s)ds, but we omit the details.) We use the decomposition

1 In
i o) = o] = i | St o)

Mn 21

L &8 sy 1 & 5,212
(A7) = i | S - o+ Bl(=42))
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1 1

m;[un)—E[( v +2 NdD

Because under Assumption II the effects of differences due to n* and n are small,

_|_

[EslC]E

we notice that we can ignore the effects of 37, (2;,)* and [m,- — m,]/m, in the
following evaluations.

Then we shall investigate the conditions that three terms except the first one of
(A.7) are o,(1). If they are satisfied, we could estimate the integrated volatility
consistently as if there were no noise terms because other terms can be ignored

asymptotically as n — oo.

Let by = (by;) = €,P,C;;' = (by;) and ), = (0,---,1,0,---) be an n x 1 vector. We

write z,ii) =3 bkjvj and use the relation

1~ =11 . ’ . 92 T 4
(P,C, C, Pn),{’,~C =6(k,k )4sin [2n+1(k 2)]

Then because we have n 3%, byjby; = d(k, K )agn, E(v) are bounded and (2.4),
it is straightforward to find K such that

(AS) E[ Zk:n me Zbk] < K x Ak

where v? is the first element of v; and we use the notation 04(t5) (a = s, f), by; =
0 (5 <0). (We take p = max{ps, ps} and apply (32) of Kunitomo and Sato (2011).)
Also Kunitomo and Sato (2013) have shown that

1 2 1 2k —1 m?
A9 —_ n=—2 1— o(—=2
(A.9) mnl;ak my, nz [ cos(m 2n+1)1 ( n )

and the second term of (A.7) becomes

m3/2

(A.10) <Ky

Fnkzl”“‘“”‘() )

This term is o(1) if 0 < @ < 0.4. (When we use the MSIML estimation, the effect of
this term can be removed from /m,, [aﬁ,%,)ss — o] and we can improve the condition
such that 0 < o < 0.5 in Theorem 4.1.)

For the fourth term of (A.7),

2
1 Mn 1 Mn
s,1_s,2 - E s,1_s,1 _s,2 5,2
E :anzkn - z : Zk:nzk/ anzk n
Vi =1 "k =1
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S $,2 8,2
= E |2 Z Sjksj/k/E(roj/| Hlln(jj))zk’nzkn
3.3’ =1
2
m
— o(!"
()
where
27 1 1
o Yk — =
S]k COS[2n+ 1(j 2)( 2)]

for j,k=1,2,--- n. (See Lemma 1.3 of Kunitomo and Sato (2008a).) In the above

evaluation we have used the relation
| zn:sjksj,m < [En: s =n/2+1/4 forany k> 1.
=1 j=1
For the third term of (A.7), we need to consider the variance of
(222 —E[(z2)?]) =n Z brjby, v {UJS o — BE(v] j/)}

and then itis enough to evaluate the expectation of [(225)2 — E[(zznz)Q]} [(ZZ}Qn)Q — E[(ZZ/%I)QH :
When v} are correlated and satisty (2.4), becuse of the independence assumption on
w; (i =1,---,n), it is possible to evaluate that there exists a positive constant K3

such that

2

(AT | o S ~ Bl | < 23 o) = O - x ().

Thus the third term of (A.7) is negligible if 0 < av < 0.4. (see Section 5 of Kunitomo
and Sato (2011). When {v$} have the moving average (MA) representation as (2.4),
the term is O(m®/n?) because of (A.9) and then it can be negligible if 0 < « < 0.4.)

When {v]s} are mutually independent, it is possible to evaluate that the left-hand
side of (A.11) is less that (K3/m,) 7" a3, , which is O(m?/n?). Then the third
term of (A.7) is negligible if 0 < a < 0.5. (See (A.13) of Kunitomo and Sato
(2013). This point the important step for the proof of Part (iii) because then the

only concern is on (A.10).)

(Step-3) The third step is to give the asymptotic variance of the first term of (A.7),
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that is,
1 &,
(A.12) Vi | =3 (5 = o)
M =1
because it is of the order O,(1). We write

s(1) n ST —if;
(A.13) 2 = 2n+1j§:1rj(e ko4 ek

where 7% is the first component of r; in (A.2) and 0y; = [27/(2n+1)](k—1/2)(j—1/2).

By using the relation that (e + e¢=ki)2 = 2 + %% 4 =2 e represent

2n+ 1 ]_ o 8(1) 2 1
A.14 — Dy — / D (s)d
ar) P R - [ s
1 &)1 2 b | —ifein2 1 /1 (z)
= - )2 (gi0k; Wri)2 — 2(1 + — 2 (s)d
mnkzl{z[;m) (% o) =21+ o) [ 0% (s)ds]
DML GRS G >1}
#i' =1
n 1 2n ; i 0 —i0
= 2 3 mr = Y (¢ e ) (e e )
4., Ty,
j>i'=1 n k=1
n tn
30002 = [ o s)ds]
j=1 b
1 & t L ity 2,
F3 20097 = [ oD (sl (e + )
j=1 tj—1 k=1
1 & 4
—5- 20 o s)ds]
2n =y

— (4) 1 (B)+(C)+ (D) . (say).

Then by using the derivations in Kunitomo and Sato (2013) (also Sato and Kunit-
omo (2015)), it is possible to show that except the first term (A), \/mn,(B) 2 0,
VM (C) 20, and \/m,(D) 2 0 as m,, — oo (n — o). Also by using the simple

relation

(eiekj_i_e_iekj)(eiekj/+€7i9kjl) _ (ei(ekj+9kjl)+67i(9kj+9kj/))+(ei(ekjigkj/)—i—eii(ekjiekj/))

)

the random quantity /m,, [min 2”:”1(22’(1))2 — O'(i)} is asymptotically equivalent to

n S

(A.15) (A) =2 > rrihm( ),

i>j'=1
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where for j,7 =1,---,n

1 sin2m(6; —I—@r)/? 1 sin2m(6; —0;)/2
2y/my, sin(0; +6,)/2 2«/ My, sin(0; —0,)/2
and 0; = [2n/(2n+1)](j — 1/2).

By extending the evaluation method on Féje-kernel (see Chapter 8 of Anderson

hin(4,5) =

(1971)), we can derive the variance of the asymptotic distribution of (A)’, which is
asymptotically equivalent to (A.12).

Lemma A-1: Under Assumption II, as n — oo the asymptotic variance of (A) is
given by
1
(A.16) V=2 / [0(r(s))] d(s)ds .
0

Proof of Lemma A-1: From the representation of (A.15), given the sampling

process t7 (j =1,---,n*) we have the conditional expectation

E[((A)’)ﬂ{t?}]
- 2 Y ol 4;J[Si“2mf<j+j —1)/@" +1) | sin2ma(j—§ —1)/@2" +1)

I

et sin(j+5)/(2" +1) sinm(j —j')/(2" + 1)
where we use the notation
tn
(A7) ol =Bl ol (s)dslt]1.t;].

j—1
Under Assumption I by using the standard approximation argument on integrals we

find that
t? t? 1
(A18) E[/ os)ds - [* 0Bt >d]:o<>
o )

and

n

(A.19) ] o mds = (t = )0l (t) = Oy

j—1

Also for any continuous functions a(s) and b(t) in [0, 1]

C BT A e e O
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B sinmm(s —t) sinmm(s+1)
B / / 4m{ sin( 7T/2)(8—t)] +[sin(7r/2)(s+t)]

o sinmm(s —t) ,, sinmn(s+1)
sin(m/2)(s —t) sin(n/2)(s + t
= (B)+ (F)+(G), (say).

)]} a(s)b(t)dsdt

By changing the order of integrations, as m — oo we can evaluate the first term as

(A.21) 2/ 2m S;I; g:] U ua(u+t)b(t)dt} du

/2)
e 27}&% ; a(u+t)b(t)dt

1
_ Z/atbtdt
0

(See Lemma 8.3.3 of Anderson (1971).) Also by changing the order of integrations,
we have found that the second term is negligible as

(A.22) —9 / - Ssl;‘l = /2)2“][ /0 " a(s)b(u — s)ds]du —s 0

as m — oo. By applying the similar argument to the third term and we can find
that the third term (G) is also negligible when m is large. Under Assumption I and
Assumption II, as (i(n) — 1)/n — s and (j(n) — 1)/n — t for n being large while a
fixed m, we have t7 2 7(s), th = 7(t), n(t} —t7,) % d(s), and n(ty —t7_,) Bod(t).

Then the only non-negligible term in (A.17) corresponds to

(A23) V' = / / o silln:;g ?s _tz)]Zag?(T(s))agi) (7(t))d(s)d(t)dsdt .

Then by letting m — oo, we have the desired result as (A.14).
(Q.E.D.)

(Step-4) As the next step we need to show the stable convergence in law of (A.12),
but the arguments are quite similar to (Step 4) of the proof of Theorem 3.2 in Sato
and Kunitomo (2015), which is based on the method explained by Chapter VIII of
Jacod and Shiryaev (2003) or Jacod and Protter (2012). Thus we have omitted the

details of our arguments in this version.
(Step-5) Finally we need to deal with the integrated covariance. By modifying
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the derivations for the proof of the integrated covariance, we use (%), &}(fjc) and &g?.
(It is straightforward to develp the similar arguments as for 6 but they are te-
dious. Thenwe have omittted the details.) Then we can evaluate the variance of
the asymptotic distributions of the integrated covariance SIML estimator. Then the

resulting variance formula becomes

(A.24) Vir = [ [ (51087 (r(s) + (015 ()] (s

(Q.E.D.)
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