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Abstract

For estimating the integrated volatility by using high frequency data, Kunitomo and Sato (2008,
2011, 2013) have proposed the Separating Information Maximum Likelihood (SIML) method when
there are micro-market noises. The SIML estimator has reasonable finite sample properties and
asymptotic properties when the sample size is large under reasonable conditions. We show that
the SIML estimator has the robustness properties in the sense that it is consistent and has the
stable convergence (i.e. the asymptotic normality in the deterministic case) when there are round-
off errors and micro-market price adjustments and noises for the underlying (continuous time)
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effects and dominate the existing methods such as the realized kernel method and the pre-averaging
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1. Introduction

Recently a considerable interest has been paid on the estimation problem of the

integrated volatility by using high-frequency data of financial prices. Although the

earlier studies often had ignored the presence of micro-market noises in financial

markets, there have been arguments that the micro-market noises are important

in high-frequency financial data, and then several new statistical estimation meth-

ods have been developed. Among many studies in recent literature on the related

topics three methods have attracted some attention : the linear combination of re-

alised volatilities constructed with subsampling by Zhang, Mykland and Ait-Sahalia

(2005), the realised kernel method with autocovariances and kernels by Bandorff-

Nielsen, Hansen, Lund and Shephard (2008, 2011), and the pre-averaging method by

Jacod, Li, Mykland, Podolskij and Vetter (2009). See Jacod and Protter (2012) and

Ait-Sahalia and Jacod (2014) for the recent developments on the related issues and

their references. As an alternative method Kunitomo and Sato (2008, 2011, 2013)

have proposed an alternative statistical method called the Separating Information

Maximum Likelihood (SIML) method for estimating the integrated volatility and

the integrated covariance by using high frequency data under the presence of micro-

market noises. The SIML estimator has reasonable asymptotic properties as well as

finite sample properties. (There is a related spectral estimation method, which is a

rather recent study, by Bibinger and Reiβ (2014).)

In this paper we shall investigate the robustness property of the SIML estimation

when we have the round-off errors and the micro-market adjustment mechanisms in

the process of forming the observed transaction prices. We investigate the round-off

error model as a non-linear transformation of the underlying financial price process

with micro-market noises. The statistical problem of round-off error model of con-

tinuous stochastic processes has been previously investigated by Delattre and Jacod

(1997), Rosenbaum (2009), Li and Myckland (2012). But our formulation has a new

aspect and our motivation is the empirical observation that we have the tick-size

effects (the minimum price change size and the minimum order size) and we often
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observe bid-ask spreads on securities in actual financial markets.

The micro-market models including the price adjustments have been discussed in

micro-market literatures (Engle and Sun (2007), and Hansbrouck (2007) for in-

stance). Among possible micro-market statistical models, we first take the (linear)

adjustment model proposed by Amihud and Mendelson (1987) as a benchmark case

in our investigation. Then we shall investigate the linear and nonlinear price adjust-

ment models in which a continuous martingale is the hidden intrinsic value on the

underlying security. A new statistical feature of our approach is to utilize the non-

linear (discrete) transformations of continuous time diffusion process with discrete

time noise. Examples of relevant non-linear time series models are the Simultaneous

Switching Autoregressive (SSAR) model developed by Kunitomo and Sato (1999)

and the threshold autoregressive (TAR) type models by Tong (1990).

The main theme of this study is the fact that the observed price can be dif-

ferent from the underlying intrinsic value of the security and we can interpret this

discrepancy as a nonlinear transformation from the intrinsic value to the observed

price. We can represent the present situation as the nonlinear statistical model of

an unobservable (continuous-time) state process and the observed (discrete-time)

stochastic process with measurement error. When the effects of measurement errors

are present, the SIML estimator is robust, that is, it is consistent and asymptoti-

cally normal (or the mixed normal in the stable convergence sense) as the sample

size increases under a set of assumptions. The required condition on the threshold

parameter for the round-off errors in this paper is quite weak, for instance. The

asymptotic robustness of the SIML method on the integrated volatility and covari-

ance has desirable properties over other estimation methods from a large number

of data for the underlying continuous stochastic process with micro-market noise.

Because the SIML estimation is a simple method, it can be practically used for

analyzing the multivariate (high frequency) financial time series. As a companion

paper, Kunitomo, Misaki and Sato (2015) are investigating the multivariate problem

when we need to estimate the covariance and the hedging coefficient.

In Section 2 we introduce the round-off error model and the micro-market adjust-
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ment models. In Section 3 we explain the SIML method and the MSIML (modified

SIML) method to improve the convergence rate. Then we give the asymptotic prop-

erties of the SIML estimator when the integrated volatility is stochastically time de-

pendent there are the round-off errors and/or there are micro-market adjustments.

In Section 4 we shall report the finite sample properties of the SIML estimator based

on a set of simulations. Finally, in Section 5 some brief remarks will be given. Some

mathematical details of the proofs of theorems are given in Appendix A. Tables and

figures based on simulations are given in Appendix B.

2. Round-off error Models and Micro-market adjustment

Models

2.1 A General Formulation

Let y(tni ) be the i−th observation of the (log-) price at tni for 0 = tn0 < tn1 < · · · <
tnn = 1. We consider the situation when the underlying continuous-time stochastic

process X(t) (0 ≤ t ≤ 1) is not necessarily the same as the observed (log-)price at

tni (i = 1, · · · , n) and it is a Brownian semi-martingale as

X(t) = X(0) +
∫ t

0
µx(s)ds+

∫ t

0
σx(s)dB(s) (0 ≤ t ≤ 1),(2.1)

where µx(s) is a predictable locally bounded drift term, σx(s) is an adapted contin-

uous (and bounded) volatility process, and B(s) is the standard Brownian motion.

The solution of stochastic differential equation has often the representation as (2.1)

although we exclude the jumps in the following analysis mainly because we have

many jump-noises. See Ikeda and Watanabe (1989) or Jacod and Protter (2012) for

the details.

The main statistical objective is to estimate the integrated volatility (or the quadratic

variation)

σ2
x =

∫ 1

0
σ2
x(s)ds(2.2)
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of the underlying continuous process X(t) (0 ≤ t ≤ 1) from the set of observations

on y(tni ).

In this paper we consider the situation that the observed (log-)price y(tni ) is not

necessarily Brownian semi-martingale, but it is generated by

y(tni ) = h
(
X(tni ), y(t

n
i−1), u(t

n
i )
)
,(2.3)

where h( · ) is a measurable function, the (unobservable) continuous Brownian semi-

martingale X(t) (0 ≤ t ≤ 1) is defined by (2.1), and u(tni ) is the micro-market noise

process. For the simplicity we assume that u(tni ) are a sequence of independently

and identically distributed random variables with E(u(tni )) = 0 and E(u(tni )
2) = σ2

u

(0 = tn0 < tn1 < · · · < tnn = 1; tni − tni−1 = 1/n, i = 1, · · · , n).

There are special cases of (2.1) and (2.3), which can describe important aspects

on modeling financial markets and the high frequency financial data for practical

market applications. The simple (high-frequency) financial model with micro market

noise can be represented by

y(tni ) = X(tni ) + u(tni ) ,(2.4)

where the underlying process X(t) is given by (2.1) and u(tni ) is a sequence of

(mutually) independent random variables.

The most important statistical aspect of (2.4) is the fact that it is an additive

(signal-plus-noise) measurement error model and the signal is a continuous process.

However, there are economic reasons why the standard situation such as (2.4) is

not enough for applications. The round-off-errors models and the high-frequency

financial models with micro-market price adjustments financial prices cannot be

reduced to (2.4), but they can be represented as special cases of (2.1) and (2.3).

2.2 The basic Round-off-error model

First, we investigate the basic round-off-error model with the micro-market noise.

One motivation for this model has been the fact that in actual financial markets
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transactions occur with the minimum tick size and the observed price data do not

have continuous path over time. For instance, the traded price and quantity usually

have the minimum size and the Nikkei-225-futures, which have been the most im-

portant traded derivatives in Japan (as explained in Kunitomo and Sato (2011)) for

instance, has the minimum 10 yen size while the Nikkei-225-stock index is around

9,000 yen in the year of 2011. (See Hansbrouck (2007) for the details of business

practice of major stock markets in the U.S..) Thus it is quite interesting and impor-

tant to see the effects of round-off-errors on the estimates of the integrated volatility.

Let yi = P (tni ) and

P (tni ) = gη (X(tni ) + u(tni )) ,(2.5)

where the micro-market noise term u(tni ) is a sequence of i.i.d. random variables

with E [u(tni )] = 0, E [u(tni )2] = σ2
u and the nonlinear function

gη(x) = η

[
x

η

]
(2.6)

is the round-off part of x, [x] is the largest integer being equal or less than x, and

the threshold parameter η is a (small) positive constant.

This model corresponds to the micro-market model with the restriction of the min-

imum price change with micro-market noise and η represents the parameter of the

level of minimum price change. In Figure 2-3 typical sample paths in the standard

round-off model are shown by using simulations. (The true process is in black while

the observed process is in red with a pre-determined threshold level.)

2.3 A Micro-market Price Adjustment Model

There have been a large number of micro-market models in the area of financial

economics in the past which have tried to explain the role of noise traders, insiders,

bid-ask spreads, the transaction prices, the effects of tax and fee, and the associ-

ated price adjustment processes. As an illustration we give an underlying typical

argument on the financial market mechanism by Figures 2-1 and 2-2 in Appendix

B. In the underlying financial market we denote that P and Q are the price and the
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quantity (in demand, supply and traded) of a security 1 . When the demand curve

and supply curve for a security do not meet, there is no transaction occurring at the

moment. The minimum (desired) supply price level P̄ is higher than the maximum

(desired) demand price level P , and then there is a (bid-ask) spread. On the one

hand, when there were some information in the supply side indicating that the in-

trinsic value of a security Xt at t is less than the latest observed price Pt−∆t at t−∆t

(i.e. Xt −Pt−∆t < 0, ∆t > 0), the supply schedule would be shifted down-ward. On

the other hand, when there were some information in the demand side indicating

that the intrinsic value of a security at t is higher than the latest observed price (i.e.

Xt−Pt−∆t > 0), the demand schedule would be shifted up-ward. In these situations

while the trade of a security would occur at the price P ∗ and the quantity Q∗ as in

Figure 2.2, the financial market would be under pressure for price changes.

Let y(tni ) = P (tni ) (i = 1, · · · , n) and consider the (linear) micro-market price

adjustment model given by

P (tni )− P (tni−1) = g
(
X(tni )− P (tni−1)

)
+ u(tni ) ,(2.7)

whereX(t) (the intrinsic value of a security at t) and P (tni ) (the observed log-price at

tni ) are measured in logarithm, the adjustment (constant) coefficient g (0 < g < 2),

and u(tni ) is an i.i.d. sequence of noises with E[u(tni )] = 0 and E[u(tni )
2] = σ2

u.

The specific model (2.7), which was originally proposed by Amihud and Mendelson

(1987), is a typical example because it has been one of well-known micro-market

models involving transaction costs and interactions among different type of mar-

ket participants in financial markets. We depart our discussion from the Amihud-

Mendelson model, however, because we focus on the integrated volatility estimation

while their main purpose was to investigate the micro-market mechanisms by using

daily (open-to-open and close-to-close) data. Also while Amihud and Mendelson

(1987) used that X(tni ) follows a (discrete) random walk process in the discrete time

series framework, we consider the case when X(t) is a general continuous-time mar-

1 This is a typical illustration for the expository purpose, which may be analogous to the current

market practice for the periodic call option of Tokyo Stock Exchange (TSE). We thank Wataru

Ohta for pointing out this practice.
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tingale given by (2.1), and the integrated volatility of the intrisic value is defined by

0 <
∫ t
0 σ

2
sds < ∞ (a.s.).

2.4 Round-off Errors and Nonlinear Price Adjustment mod-

els

We can generalize the round-off errors model and the linear price adjustment model

we have introduced. We discuss two variants along this direction for an illustration

although there can be other directions. As a nonlinear model we represent the micro-

market price adjustment models with round-off error effects. One motivation has

been the fact that in actual financial markets transactions occur with the minimum

tick size, the observed price data do not have continuous path over time and we

also have some price adjustment mechanism. Again we can illustrate the underlying

typical argument on the movements of prices in financial markets by using Figure

2-2 in Appendix B. When the demand curve and supply curve do meet at a point

as Figure 2-2, the quantity Q∗ is traded at the price P ∗. Still there would be excess

demand which could not be traded at the particular moment because of the positive

tick-size (η > 0) and the minimum order size effects, i.e. the number of orders

should be an integer above the specified fixed size in financial markets.

Let yi (= y(tni )) = P (tni ) and

P (tni )− P (tni−1) = gη
(
X(tni )− P (tni−1) + u(tni )

)
,(2.8)

where u(tni ) is a sequence of i.i.d. noises with E[u(tni )] = 0, E[u(tni )
2] = σ2

u and

gη(x)is defined by (2.6). Then from (2.8) the difference between the observed price

and the underlying intrisic value can be represented as

P (tni )−X(tni )(2.9)

= gη
(
−(P (tni−1)−X(tni−1)) + ∆X(tni ) + u(tni )

)
+ (P (tni−1)−X(tni−1)−∆X(tni ))

= g∗η
(
P (tni−1)−X(tni−1),∆X(tni ), u(t

n
i )
)
,

where

∆X(tni ) =
∫ tni

tni−1

µx(s)ds+
∫ tni

tni−1

σx(s)dBs(2.10)
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is a sequence of differences of X(tni ) and g∗η is defined by (2.9) implicitly. The round-

off model of (2.8) and (2.9) can be represented as a nonlinear adjustment model with

noise components.

As the price adjustment mechanism, there have been discussions on asymmet-

rical movements of financial price processes, which are related to the financial risk

management problems. It may be natural to consider the situation that there are

different mechanisms in the up-ward phase of financial prices (that is y(t
n
i ) ≥ y(tni−1))

and in the down-ward phase of financial prices (that is, y(tni ) ≤ y(tni−1)). In the con-

text of micro-market models, some economists have tried to find econometric mod-

els involving transaction costs and micro-market structures such as market practices

and regulations on the maximum limits of down-ward price movements within a day.

While one possible approach would be to build statistical models with asymmetrical

movements of the instantaneous volatility function, our approach is slightly differ-

ent from them because we are trying to consider the micro-market price adjustment

process directly. As an example of the discrete time series modeling of the nonlinear

price adjustment model of the security price, we consider a non-linear extension of

(2.7) with

P (tni )− P (tni−1) = g1I(X(tni ) ≥ P (tni−1)) + g2I(X(tni ) < P (tni−1)) + u(tni ),(2.11)

where gi (i = 1, 2) are some constants and I(·) is the indicator function.

This model is the SSAR (simultaneous switching autoregressive) model investigated

by Kunitomo and Sato (1996, 1999), which is similar to the threshold autoregressive

(TAR) models developed by Tong (1990) having the delayed parameters. A set of

sufficient conditions for the geometric ergodicity of the SSAR process is given by

g1 > 0, g2 > 0 and (1 − g1)(1 − g2) < 1 with some moment condition on u(ti).

If we set g1 = g2 = g, then we have the linear adjustment case as (2.7) and the

geometrically ergodicity condition is given by 0 < g < 2. The non-linear time series

models such as the class of TAR models and the exponential AR models have been

known in the non-linear time series analysis whose statistical properties have been

extensively discussed by Tong (1990).

In order to consider the general nonlinar price adjustment models, which are
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different from the round-off error type models, we take yi = P (tni ) and

P (tni )− P (tni−1) = g
(
X(tni )− P (tni−1)

)
+ u(tni ) ,(2.12)

where g( · ) is a non-linear measurable function, and u(tni ) is a sequence of i.i.d.

micro-market noises with E[u(tni )] = 0 and E[u(tni )
2] = σ2

u.

This representation includes the linear and non-linear price adjustment modes as

special cases.

3. The SIML Estimation and Asymptotic Robustness Prop-

erties

3.1 The SIML Method

We summarize the derivation of the separating information maximum likelihood

(SIML) estimation. The method was originally proposed by Kunitomo and Sato

(2008, 2011) based on the basic model of (2.1) and (2.4) with a constant volatility

under the Gaussian noise, but they are not needed to have the asymptotic properties

of the SIML estimator.

Let y(tni ) be the i−th observation of the (log-) price at tni (0 = tn0 < tn1 <

· · · < tnn = 1) and we set yn = (y(tni )) be an n × 1 vector of observations. The

underlying (hidden) continuous-time stochastic process X(t) (0 ≤ t ≤ 1), which is

not necessarily the same as the observed (log-)price at tni (i = 1, · · · , n) and we set

u(tni ) being the micro-market noise at tni . We consider the basic additive model of

(2.1) and (2.4) when we have y(tni ) = X(tni ) + u(tni ), where X(t) (0 ≤ t ≤ 1) and

u(tni ) (i = 1, · · · , n) are independent with σ2
x(s) = σ2

x (time-invariant). Under the

assumption that u(tni ) are independently, identically and normally distributed as

N(0, σ2
u) given the initial condition y0, we have

yn ∼ Nn

(
y(0)1n, σ

2
uIn + hnσ

2
xCnC

′

n

)
,(3.1)
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where

Cn =



1 0 · · · 0 0

1 1 0 · · · 0

1 1 1 · · · 0

1 · · · 1 1 0

1 · · · 1 1 1


=



1 0 · · · 0 0

−1 1 0 · · · 0

0
. . . . . . · · · 0

0 · · · −1 1 0

0 · · · 0 −1 1



−1

,(3.2)

1
′
n = (1, · · · , 1) and hn = 1/n (= tni − tni−1).

By transforming yn to zn (= (zk)) by

zn = h−1/2
n PnC

−1
n (yn − ȳ0)(3.3)

where ȳ0 = y(0)1n, 1n = (1, · · · , 1)′ , Pn = (pjk) and for j, k = 1. · · · , n,

pjk =

√√√√ 2

n+ 1
2

cos
[

2π

2n+ 1
(j − 1

2
)(k − 1

2
)
]
.(3.4)

The transformed variables zk (k = 1, · · · , n) are mutually independent and zk ∼
N(0, σ2

x + aknσ
2
u). Then the log-likelihood function is given by

Ln = −1

2

n∑
k=1

log[σ2
x + aknσ

2
u]−

1

2

n∑
k=1

z2k
σ2
x + aknσ2

u

,(3.5)

where

akn = 4n sin2

[
π

2

(
2k − 1

2n+ 1

)]
(k = 1, · · · , n) .(3.6)

Because the ML estimator of unknown parameters is a complicated function of

all observations and each akn terms depend on k as well as n, one way to have a

simple solution is to approximate the likelihood function because akn are small for

k = 1, · · · ,m while akn dominate each terms for k = n− l + 1, · · · , n when m and l

are in the smaller order than n.

Let m and l be positive integers, which are dependent on n and we write mn and

ln. If we ignore the effects of akn (k = 1, · · · ,mn), then for the basic additive model

we define the SIML estimator of σ̂2
x by

σ̂2
x =

1

mn

mn∑
k=1

z2k .(3.7)
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By the similar reasoning, the SIML estimator of σ̂2
u by

σ̂2
u =

1

ln

n∑
k=n+1−ln

a−1
knz

2
k .(3.8)

In this estimation method we separate the information on σ2
x and σ2

u and the numbers

of terms mn and ln are dependent on n such that mn, ln → ∞ as n → ∞. We impose

the order requirement such that mn = O(nα) (0 < α < 1
2
) and ln = O(nβ) (0 < β <

1) for σ2
x and σ2

u, respectively.

Furthermore, we can modify the SIML method such that the asymptotic bias

can be removed. The modified SIML (MSIML) estimator of σ2
x is given by

σ̂2
x,m =

1

mn

mn∑
k=1

[zk]
2 −

[
1

mn

mn∑
k=1

akn

]
σ̂2
u ,(3.9)

where σ̂2
u is given by (3.8).

This modification may be interpreted as approximation to the one proposed by Cai,

T., A. Munk and J. Schmidt-Hieber (2010), which has an optimal property when

the volatility function is constant and the noise terms follow the simple Gaussian

process.

3.2 On Asymptotic Properties of the SIML estimator under

the basic additive Model

It is important to investigate the asymptotic properties of the SIML estimator when

the instantaneous volatility function σ2
x(s) is not constant over time. When the inte-

grated volatility is a positive (deterministic) constant a.s. (i.e. σ2
x is not stochastic)

while the instantaneous volatility function is time varying, we have the consistency

and the asymptotic normality of the SIML estimator as n → ∞. For the expository

purpose, the asymptotic properties of the SIML estimator deterministic integrated

volatility case, can be summarized as Proposition 3.1 whose proof has been given in

Kunitomo and Sato (2008, 2013).

Proposition 3.1 : We assume that X(tni ) and u(tni ) (i = 1, · · · , n) in (2.1) and

(2.4) are independent, |µs| is bunded, σx(s) is a deterministic and σ2
x =

∫ 1
0 σ2

x(s)ds,
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sup0≤s≤1 σ
4
x(s) < ∞ and E[u(tni )

4] < ∞. Define the SIML estimator σ̂2
x of σ2

x by

(3.7).

(i) For mn = nα and 0 < α < 0.5, as n −→ ∞

σ̂2
x − σ2

x

p−→ 0 .(3.10)

(ii) For mn = nα and 0 < α < 0.4, as n −→ ∞

√
mn

[
σ̂2
x − σ2

x

]
d→ N [0, V ] ,(3.11)

where

V = 2
∫ 1

0
σ4
x(s)ds .(3.12)

When the instantaneous volatility σ2
x(s) (= σ2

x) is constant, then

V = 2σ4
x .(3.13)

When σ2
x is a random variable, it may be convenient to assume that the process

σx(t) is a Brownian semi-martingale. In this case we need to use the concept of

stable convergence in law and the limiting distribution of the SIML estimator follows

the mixed-Gaussian distribution under a set of reasonable assumptions. For the

stochastic volatility case in the continuous time, we assume that σx(t) follows

σx(t) = σx(0) +
∫ t

0
µσ(s)ds+

∫ t

0
γσ(s)dB(s)(3.14)

+
∫ t

0
γ∗
σ(s)dB

∗(s) ,

where the coefficients µσ(s), γσ(s) and γ∗
σ(s) are extensively measurable, continuous

and bounded, and B∗(s) is a Brownian motion which is orthogonal to B(s).

We extend the probability space (Ω,F , P ) to the extended probability space (Ω̃, F̃ , P̃ )

as explained by Chapter VIII of Jacod and Shyiyaev (2003) or Jacod and Protter

(2012). Then we say that a sequence of random variables Zn with an index n stably

converges in law if E[Y f(Zn)] −→ Ẽ[Y f(Z)] for all bounded continuous functions
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f(·) and all bounded random variables Y , and Ẽ[·] is the expectation operator with

respect to the extended probability space. We write this convergence as

Zn
L−s−→ Z .(3.15)

The asymptotic properties of the SIML estimator in the stochastic volatility cases

can be summarized as Theorem 3.2 and the proof will be given in Appendix-A.

Theorem 3.2 : We assume that X(t) and ui (i = 1, · · · , n) in (2.1) and (2.4)

are independent, |µx(s)| is bounded, σ2
x =

∫ 1
0 σ2

x(s)ds > 0 is positive (a.s.) with

sup0≤s≤1E[σ
4
x(s)] < ∞, and E[u(tni )

4] < ∞. Define the SIML estimator σ̂2
x of σ2

x by

(3.7).

(i) For mn = nα and 0 < α < 0.5, as n −→ ∞

σ̂2
x − σ2

x

p−→ 0 .(3.16)

(ii) For mn = nα and 0 < α < 0.4, as n −→ ∞ we have the weak convergence

Zn =
√
mn

[
σ̂2
x − σ2

x

] L−s−→ Z∗ ,(3.17)

where Z∗ is a continuous process defined on a very good filtered extension of

(Ω,F , P ), which conditionally on the σ−field F is a Gaussian proces with inde-

pendent increments satisfying

Vt = Ẽ[(Z∗
t )|F ] = 2

∫ t

0
σ4
x(s)ds(3.18)

for 0 < t ≤ 1.

In the present situation it has been known that the asymptotic bound of the

convergence rate is n0.5. Since the convergence rate of the SIML estimator is n0.4, it

is sub-optimal. However, it is possible to improve the convergence rate and we have

the following result on the MSIML estimation.

Corollary 3.3 : Define the MSIML estimator σ̂2
x,m of σ2

x by (3.9). Under As-

sumptions of Proposition 3.1 or Theorem 3.2, for mn = nα and 0 < α < 0.5, as
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n −→ ∞
√
mn

[
σ̂2
x,m − σ2

x

] L−s−→ Z∗ ,(3.19)

where Z∗ is defined as the same as in Theorem 3.2.

3.3 On Asymptotic Robustness of the SIML estimator for

the round-off error and micro-market price adjustment

models

We investigate the asymptotic properties of the SIML estimation under the round-

off error models and the micro-market adjustment models. First, we investigate the

situation of the basic round-off model in Section 2.2 when we have a sequence of

discrete observations P (tni ) with 0 = tn0 < tn1 < · · · < tnn = 1 and we estimate the

integrated volatility of the underlying security σ2
x =

∫ 1
0 σx(s)

2ds .

Let [x] and {x} be the integer part and the fractional part of a real number x,

respectively. If there were no micro-market noise term in (2.5), we can decompose

X(tni ) = η[
X(tni )

η
] + η{X(tni )

η
}(3.20)

for i = 1, · · · , n. Then we have y(tni ) = η[
X(tni )

η
] and

n∑
i=1

(∆y(tni ))
2 =

n∑
i=1

(∆X(tni ))
2 + η2

n∑
i=1

({X(tni )

η
} − {

X(tni−1)

η
})2(3.21)

−2η
n∑

i=1

(∆X(tni ))({
X(tni )

η
} − {

X(tni−1)

η
}) .

We set the threshold parameter η = ηn, which is dependent on n. If it satisfies the

condition

ηn
√
n = o(1) ,(3.22)

then the first term of (3.23) converges to the integrated volatility σ2
x as n → ∞ since

the realized volatility is a consistent estimator of the integrated volatility when we

do not have micro-market noise. However, if this condition is not satisfied and

also there is a micro-market noise term at the same time, it is not obvious how to

estimate the integrated volatility. Since n is finite in practice, we need to search a
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weak condition on the threshold parameter ηn and in this respect we have the next

result.

Theorem 3.4 : We assume that in (2.1) and (2.2), µx(s) and σx(s) is bounded

and i.e., there exist µ∗, σ∗ and σ∗ such that |µx(s)| < µ∗, 0 < σ∗ < σx(s) < σ∗. Also

we assume that in (2.5) and (2.6) there exists γ (γ > 0) such that the threshold

parameter η = ηn satisfies

ηnn
γ = O(1) .(3.23)

Define the SIML estimator of the integrated volatility of X(t) with mn = nα (0 <

α < 0.4) by (3.7). Then the limiting distribution of the normalized estimator
√
mn [σ̂

2
x − σ2

x] is asymptotically (mn, n → ∞) equivalent to the limiting distribu-

tions given by Proposition 3.1 and Theorem 3.2 under their assumptions.

As the second case we consider the linear price-adjustment model (2.7) and the

observed price at tni (i = 1, · · · , n) can be expressed as

P (tni ) = (1− g)P (tni−1) + gX(tni ) + u(tni )(3.24)

= g
i−1∑
j=0

(1− g)jX(tni−j) +
i−1∑
j=0

(1− g)ju(tni−j) + (1− g)iP (tn0 ) ,

which is a weighted linear combination of past intrsic values and past noise terms.

In this case, however, from (2.7) we notice that

P (tni )− u(tni )−X(tni ) = (1− g)
[
P (tni−1)−X(tni )

]
(3.25)

= (1− g)
[
P (tni−1)−X(tni−1)− u(tni−1)

]
+(1− g)

[
u(tni−1)−

∫ tni

tni−1

σx(s)dBs

]
.

Then if we define a sequence of random variables Ua(t
n
i ) = P (tni ) − u(tni ) − X(tni )

and W ∗(tni ) = (1− g)[u(tni−1)−
∫ tni
tni−1

µx(s)ds−
∫ tni
tni−1

σx(s)dBs], then we can represent

the present model as

Ua(t
n
i ) = (1− g)Ua(t

n
i−1) +W ∗(tni ) .(3.26)
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Although W ∗(tni ) are correlated with Ua(t
n
i−1), the linear price-adjustment model

can be regarded as an extension of the basic model of (2.1) and (2.4). Then we have

the next result on the limiting distribution of the SIML estimator whose the proof

will be given in Appendix A.

Theorem 3.5 : We assume that X(t) and ui (i = 1, · · · , n) in (2.1) and (2.7) are

independent, and g (0 < g < 2) in (2.7) is a constant. Define the SIML estimator

of the integrated volatility of X(t) with mn = nα (0 < α < 0.4) by (3.7). Then the

asymptotic distribution of
√
mn [σ̂

2
x − σ2

x] is asymptotically (mn, n → ∞) equivalent

to the limiting distributions given by Proposition 3.1 and Theorem 3.2 under their

assumptions.

We notice that the present micro-market (linear) adjustment model is quite

similar to the structure of the micro-market model with autocorrelated micro-market

noises, which was discussed in Kunitomo and Sato (2011).

Third, we investigate the situation when we have a sequence of price adjustments

with the round-off error effect introduced in Section 2.4. Define

Ua(t
n
i ) = P (tni )−X(tni )− u(tni ) .(3.27)

When |P (tni−1)−X(tni )−u(tni )| > η , then by using the fact that x+η > x ≥ gη(x) >

x−η, we have |Ua(t
n
i )| ≤ η. On the other hand, when |P (tni−1)−X(tni )−u(tni )| ≤ η ,

then P (tni ) = P (tni−1) and |Ua(t
n
i )| ≤ η.

Define yi = P (tni ) and vi = u(tni ) + Ua(t
n
i ) (i = 1, · · · , n), we have yi = xi + vi and

|Ua(t
n
i )| ≤ η .(3.28)

By using the similar arguments to the results reported as Theorems 3.1 and 3.2

on the limiting distribution of the integrated volatility estimator we have the next

result and the proof will be given in Appendix A.

Theorem 3.6 : We assume that X(t) and ui (i = 1, · · · , n) in (2.1) and (2.8) are
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independent. The threshold parameter η = ηn depends on n satisfying

ηn
√
n = O(1) .(3.29)

Define the SIML estimator of the integrated volatility of X(t) with mn = nα (0 <

α < 0.4) by (3.7). Then the limiting distribution of the normalized estimator
√
mn [σ̂

2
x − σ2

x] is asymptotically (mn, n → ∞) equivalent to the limiting distribu-

tions given by Proposition 3.1 and Theorem 3.2 under their assumptions.

In the above theorem we have imposed the condition (3.30) on η, which is weaker

than (3.22), but stronger than (3.23). This condition could be relaxed because our

simulations have suggested that the asymptotic result does not essentially depend

upon the this condition.

Finally, we shall investigate the situation when we have a sequence of discrete

observations under the non-linear adjustment model given by (2.12). We set y(tni ) =

P (tni ) and use a sequence of differences of X(tni ) as ∆X(tni ) = X(tni ) − X(tni−1) =∫ tni
tni−1

µx(s)ds+
∫ tni
tni−1

σx(s)dBs .

Also we let

Ua(t
n
i ) = P (tni )− [X(tni ) + u(tni )](3.30)

and

w(tni ) = −∆X(tni ) + u(tni−1) .(3.31)

The adjustment process Ua(t
n
i ) is the difference between the observed price and the

true process with noise, which describes the additional price adjustment mechanism

because P (tni )−X(tni ) = u(tni ) + Ua(t
n
i ).

If there is no drift term (i.e. µx(s) = 0), w(tni ) are a sequence of uncorrelated

random variables when ∆X(tni ) and u(tni ) are independent. The difference between

the observed price and the underlying intrisic value plus noise can be represented as

Ua(t
n
i ) = Ua(t

n
i−1) + w(tni ) + g

[
−Ua(t

n
i−1)− w(tni )

]
(3.32)

= g∗
[
Ua(t

n
i−1) + w(tni )

]
,
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where g∗(z) = z + g(−z), E[w(tni )] = 0 and E[w(tni )
2] < ∞.

When we have an (ergodic) stationary solution for Ua(t
n
i ), we can reduce (2.13) and

(2.14) as the signal-plus-noise stationary process such that yi = xi+vi (i = 1, · · · , n),
where we set yi = P (tni ), xi = X(tni ) and vi = Ua(t

n
i )+u(tni ). But by our construction

we have the situation when the signal term xi and the noise term vi are mutually

correlated and vi are autocorrelated over time. Because the discrete time series

Ua(t
n
i ) satisfies the stochastic difference equation, it has a Markovian property. In

order to investigate the limiting behavior of the volatility estimation, we need a set

of sufficient conditions, which are some type of ergodic condition. We summarize

our results under some additional conditions with the nonlinear price adjustments

and the proof will be given in Appendix A.

Theorem 3.7 : We assume that X(t) and ui (i = 1, · · · , n) in (2.1) and (2.12) are

independent. For Ua(t
n
i ) satisfying (3.32) and E[Ua(t

n
i )

4] < ∞, we further assume

that there exist functions ρ1( · ) and ρ2( ·, · ) such that

Cov[Ua(t
n
i ), Ua(t

n
j )] = c1ρ1(|i− j|) ,(3.33)

where c1 is a (positive) constant and
∑∞

s=0 ρ1(s) < ∞ and

Cov
[
Ua(t

n
i )Ua(t

n
i
′ ), Ua(t

n
j )Ua(t

n
j
′ ))
]
= c2ρ2(i− i

′
, j − j

′
) for j > j

′
> i > i

′
,(3.34)

where c2 is a (positive) constant and
∑∞

s,s
′
=0

ρ2(s, s
′
) < ∞.

Define the SIML estimator of the realized volatility of P (tni ) with mn = nα (0 < α <

0.4) by (3.7). Then the asymptotic distribution of
√
mn [σ̂

2
x − σ2

x] is asymptotically

(as mn, n → ∞) equivalent to the limiting distributions given by Proposition 3.1

and Theorem 3.2 under their assumptions.

In the above theorem we impose a set of sufficient conditions for (3.34), which is

a strong-mixing condition. If we can find positive constants ρ (|ρ| < 1) and c3 such

that the conditional expectation

|E[Ua(t
n
j )Ua(t

n
j
′ )|Ua(t

n
i ), Ua(t

n
i
′ )]| < c3ρ

|j−j
′ |(3.35)
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for any j > j
′
> i > i

′
, then we have (3.34) and (3.35).

There are many discrete time series models in statistics satisfying the ergodicity

conditions. A simple example is the linear case when g(x) = c x (c is a constant with

0 < c < 2 and Ua(t
n
i ) are weakly dependent process. It is straightforward to have

the above conditions in this case based on the arguments which are similar to the

derivations in Chapter 8 of Anderson (1971). The second example is the SSAR(1)

model with (2.11). If we impose the strong condition such as 0 < g1, g2 < 1, it

is also straightforward to use the arguments for linear processes. According to our

simulations, however, it is often too strong to have the desired results and it may

be an interesting future topic. There can be a large number of non-linear price

adjustment models and non-linear discrete time series models for X(tni ) and P (tni ).

4. Simulations

We have investigated the robustness properties of the SIML estimator for the

integrated volatility based on a set of simulations and the number of replications is

1,000. We have taken the sample size n = 20, 000, and we have chosen α = 0.4(or

0.45) and β = 0.8 in all cases. The details of the simulation procedure are similar

to the corresponding ones reported by Kunitomo and Sato (2008, 2011).

In our simulations we consider several cases when the observations are generated

by (2.1) and (2.3). For the simplicity, we set µx(s) = 0 and the volatility function

(σ2
x(s)) is given by

σ2
x(s) = σ(0)2

[
a0 + a1s+ a2s

2
]
,(4.1)

where ai (i = 0, 1, 2) are constants and we have some restrictions such that σx(s)
2 >

0 for s ∈ [0, 1]. It is a typical time varying (but deterministic) case and the integrated

volatility σ2
x is given by

σ2
x =

∫ 1

0
σx(s)

2ds = σx(0)
2
[
a0 +

a1
2

+
a2
3

]
.(4.2)

In this example we have taken several intra-day volatility patterns including the flat

(or constant) volatility, the monotone (decreasing or increasing) movements and the
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U-shaped movements. We have omitted the stochastic integrated volatility case in

this paper. But as Kunitomo and Sato (2011) have shown, we have found that the

results reported are essentially not changed even when the instantaneous volatility

is a stochastic process.

Among many Monte-Carlo simulations, we summarize our main results as Tables

in Appendix B. We have used several models in the form of (2.1) and (2.3); each

model corresponds to the typical cases when we take h(·, ·, ·) in (2.3) as

Model 1 h1(x, y, u) = gη(x+ u) (gη(·) is (2.6)) ,

Model 2 h2(x, y, u) = y + g(x− y) + u (g : a constant) ,

Model 3 h3(x, y, u) = y + gη(x− y + u) (gη(·) is (2.6)) ,

Model 4 h4(x, y, u) = y + gη(x− y) + u (gη(·) is (2.6)) ,

Model 5 h5(x, y, u) = y + u+

 g1(x− y) if y ≥ 0 (g1 : a constant)

g2(x− y) if y < 0 (g2 : a constant)
,

Model 6 h6(x, y, u) = y +
[
g1 + g2 exp(−γ|x− y|2)

]
(x− y)

(g1, g2 : constants) ,

Model 7 h7(x, y, u) = y + h2 o h4 o h1(x, y, u) ,

respectively.

Model 1 is the basic round-off error model in Section 2.2. Model 2 corresponds to

the linear price adjustment model with the micro-market noise when the adjustment

coefficient g is a constant. When 0 < g < 2, Model 2 corresponds to the stationary

linear price adjustment model with the micro-market noise. Model 1, Model 3 and

Model 4 are the micro-market models with the round-off errors. Model 1 is the basic

round-off error model while Model 3 and Model 4 are the round-off errors models

with price adjustment mechanisms. Model 5 and Model 6 are the SSAR model

and the exponential AR model, which have been known as nonlinear (discrete) time

series models. Model 7 is a combination of three nonlinear models with micro-market

noise, the round-off errors and the non-linear adjustments at the same time, which

corresponds to the most complicated nonlinear model among our examples. As an

illustration on our simulatons we show two typical simulation (sample) paths by
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using the basic round-off model in Figure 2-3 among many examples.

For a comparison we have calculated and compared the historical integrated

volatility (HI) estimate and the SIML estimate in each table. Overall the estimates

of the SIML method are quite stable and robust against the possible values of the

variance ratio even in the nonlinear transformations we have considered. For Model-

1, the estimates obtained by historical-volatility (H-vol) are badly-biased, which have

been known in the analysis of high frequency financial data. Actually, the values of

H-vol are badly-biased in all cases of our simulations while the SIML method gives

reasonable estimates in all cases of Model-1 to Model 7. (See Tables B-1∼B-12.)

We give some representative cases as Table 3 to Table 12 and in these tables the

estimates of the SIML method are quite stable and robust against the possible values

of the variance ratio even in the nonlinear transformations we considered. The bias

of the SIML estimator is often small and the variance of the SIML estomator is often

stable.

We also have compared the SIML estimates, the Realized Kernel (RK) estimates

and the Pre-Averaging (PA) estimates, which were developed by Bandorff-Nielsen et

al. (2008) and Jacod et al. (2009), respectively. In order to make a fair comparison

we have tried to follow the recommendation by Bandorff-Nielsen et al. (2008) on

the choice of kernel (Tukey-Hanning) and the band width parameter H in the RK

method and we took the triangular function g(x), θ = 1 and K =
√
n in the PA

method. One important issue in the RK method has been to choose H, which

depends on the noise variance and the instantaneous variance (which are actually

unknown) and we can interpret as H = c
√
σ2
u/[σ

2
x/n] because σ2

u and σ2
x should not

be known in advance. In the basic round-off model the biases of the RK method and

the PA method can be relatively large while the SIML method does not have much

bias in some situations. (See Table B-1 and B-2 inthis respect.) Also we have found

that the RK and PA estimation gives reasonable estimates in some basic cases if we

had taken the reasonable value of the key parameters H, θ and K in many cases.

By examining these results reported and other simulations we conclude that we

can estimate the integrated volatility of the hidden martingale part reasonably by the
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SIML estimation method despite of the possible non-linear transformations. It may

be surprising to find that the SIML method gives reasonable estimates even when

we have nonlinear transformations of the original unobservable security (intrinsic)

values even in some cases when the biases of the RK method and the PA method

are not negligible. We also have conducted a large number of further simulations,

but the results are quite similar as we have reported in this section.

5. Conclusions

In this paper, we have shown that the Separating Information Maximum Likeli-

hood (SIML) estimator has the asymptotic robustness in the sense that it is consis-

tent and it has the stable convergence in the stochastic integrated volatility cases and

the asymptotic normality in the sense of stable convergence under a fairly general

conditions even when the standard additive models were not necessarily true and

the underlying conditions are not satisfied. They include not only the cases when

the micro-market noises are possibly autocorrelated and they are endogenously cor-

related with the underlying continuous signal process, but also the cases when the

micro-market structure has the round-off errors and the nonlinear adjustments un-

der a set of reasonable assumptions. The condition on the threshold parameter in

the round-off error models are rather weak for the SIML estimation. The micro-

market factors in actual financial markets are common in the sense that we have the

minimum price change and the minimum order size rules and also we often observe

the bid-ask differences in financial markets. Therefore the robustness of the estima-

tion methods of the integrated volatility is quite important. By conducting a large

number of simulations, we have confirmed that the SIML estimator has reasonable

and robust properties in finite samples even in the non-standard situations.

As a concluding remark, we should stress on the fact that the SIML estimator is

very simple and it can be practically used not only for the integrated volatility but

also the integrated covariance and the hedging coefficients from the multivariate high

frequency financial series. (See Kunitomo, Misaki and Sato (2015).) An applications

on the analysis of stock-index futures market has been reported in Kunitomo and
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Sato (2011).
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APPENDIX A : Mathematical Derivations of Theorems

In Appendix A, we give some details of the proofs of Theorems in Section 3.2. The

methods of proofs are based on the modifications of ones given by Kunitomo and

Sato (2008, 2013). We use the notation Ki (i ≥ 1) as positive constants in the

following analysis.

The proof of Theorem 3.2 : The proof consists of three major steps. Some of

our arguments are based on those developed in Kunitomo and Sato (2008, 2013),

which are referred at the appropriate places but their details are often omitted.

(Step 1) We shall investigate the asymptotic properties of the SIML estimator in

several steps. The first step is to investigate the conditions that the measurement

errors can be stochastically negligible.

We write yi = xi + vi and vi = u(tni ), where yi = P (tni ) and xi = X(tni ) in

the basic additive model for the proof of Theorem 3.2. We write the underlying

(unobservable) returns in the period (ti−1, ti] as

r∗i = xi − xi−1 =
∫ ti

ti−1

µx(s)ds+
∫ ti

ti−1

σx(s)dBs (i = 1, · · · , n)(A.1)

and the martingalepart as

ri =
∫ ti

ti−1

σx(s)dBs (i = 1, · · · , n)(A.2)

with 0 = t0 ≤ t1 < · · · < tn = 1 and ti − ti−1 = 1/n (i = 1, · · · , n). We note that the

(instantaneous) volatility function σx(s) (0 ≤ s ≤ 1) and the integrated volatility

σ2
x =

∫ 1
0 σ2

x(s)ds can be stochastic.

Under the boundedness assumption of the drift term µx(s), there exists a constant

K1 such that

|ri − r∗i | = |
∫ ti

ti−1

µx(s)ds| ≤ K1(
1

n
)(A.3)

because tni − tni−1 = 1/n. Then the rest of our arguments remains the same as if we

use ri instead of r∗i (i = 1, · · · , n).
(Step 2) Let z

(1)
in and z

(2)
in (i = 1, · · · , n) be the i-th elements of n× 1 vectors

z(1)n = h−1/2
n PnC

−1
n (xn − ȳ0) , z

(2)
n = h−1/2

n PnC
−1
n vn,(A.4)
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respectively, where we denote xn = (xi), vn = (vi), zn = (zin) are n× 1 vectors with

zin = z
(1)
in + z

(2)
in and Pn is defined by (3.4).

Then by following the method developed by Kunitomo and Sato (2008, 2013), we

use the arguments for investigating the effects of the (possibly) autocorrelated noise

term on the asymptotic distribution of σ̂2
x − σ2

x and σ2
x =

∫ 1
0 σ2

x(s)ds. We use the

decomposition

√
mn

[
σ̂2
x − σ2

x

]
=

√
mn

[
1

mn

mn∑
k=1

z2kn − σ2
x

]
(A.5)

=
√
mn

[
1

mn

mn∑
k=1

z
(1)2
kn − σ2

x

]
+

1
√
mn

mn∑
k=1

E[z
(2)2
kn ]

+
1

√
mn

mn∑
k=1

[
z
(2)2
kn − E[z

(2)2
kn ]

]
+ 2

1
√
mn

mn∑
k=1

[
z
(1)
kn z

(2)
kn

]
.

Then we shall investigate the conditions that three terms except the first one of

(A.5) are op(1). If they are satisfied, we could estimate the integrated volatility

consistently as if there were no noise terms because other terms can be ignored

asymptotically as n → ∞.

Let bk = e
′
kPnC

−1
n = (bkj) and e

′
k = (0, · · · , 1, 0, · · ·) be an 1 × n vector. We

write z
(2)
kn =

√
n
∑n

j=1 bkjvj and use the relation

(PnC
−1
n C

′−1
n P

′

n)k,k′ = δ(k, k
′
)dk = δ(k, k

′
)4 sin2[

π

2n+ 1
(k − 1

2
)].

Then we have
∑n

j=1 bkjbk′j = δ(k, k
′
)dk and n

∑n
j=1 b

2
kj = akn (k = 1, · · · , n) (see

(3.6)). Also we shall set the notation Ki (i ≥ 2) as positive constants which are

chosen appropriately.

First, it is straightforward to find

E[([z
(2)
kn )

2] = nE[
n∑

i=1

bkivi
n∑

j=1

bkjvj] ≤ K2 × akn ,(A.6)

provided that E(v2i ) are bounded and we use the notation bkj = 0 (j ≤ 0). By using

(3.6) and the trigonometric relation sin x = x− (1/6)x3 + (1/120)x5 + o(x7),

1

mn

mn∑
k=1

akn =
1

mn

2n
mn∑
k=1

[
1− cos(π

2k − 1

2n+ 1
)

]
(A.7)
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=
n

mn

[
2mn −

sinπ 2mn

2n+1

sinπ 1
2n+1

]

∼ n

mn

[
2mn −

(π 2mn

2n+1
)− 1

6
(π 2mn

2n+1
)3

( π
2n+1

)− 1
6
( π
2n+1

)3

]

= O(
m2

n

n
)

Then the second term of (A.5) becomes

1
√
mn

mn∑
k=1

E[z
(2)
kn ]

2 ≤ K2
1

√
mn

mn∑
k=1

akn = O(
m5/2

n

n
)(A.8)

if 0 < α < 0.4.

For the fourth term of (A.5),

E

 1
√
mn

mn∑
j=1

z
(1)
kn z

(2)
kn

2 =
1

mn

mn∑
k,k

′
=1

E
[
z
(1)
kn z

(1)

k′ ,n
z
(2)
kn z

(2)

k′ ,n

]

=
1

mn

mn∑
k,k′=1

E

2 n∑
j,j′=1

sjksj′k′E(rjrj′ |Fn,min(j,j′ ))z
(2)
kn z

(2)

k′n

(A.9)

=
1

mn

mn∑
k,k′=1

E

2 n∑
j=1

sjksj,k′E(r
2
j |Fn,j−1)z

(2)
kn z

(2)

k
′
,n


≤ K3

[
sup
0≤s≤1

E(σ2
x(s))

]
2

n
(
n

2
+

1

4
)
1

mn

mn∑
k=1

akn

= O(
m2

n

n
) ,

where Fn,j−1 is the σ−field generated by the information given at tj−1 for a fixed n

and

sjk = cos[
2π

2n+ 1
(j − 1

2
)(k − 1

2
)]

for j, k = 1, 2, · · · , n. (See Lemma 1.3 of Kunitomo and Sato (2008).) In the above

evaluation we have used the relation

|
n∑

j=1

sjksj,k′ | ≤ [
n∑

j=1

s2jk] = n/2 + 1/4 for any k ≥ 1 .

Hence we need the condition 0 < α < 0.5.

For the third term of (A.5), we need to consider the variance of

z
(2)2
kn − E[z

(2)2
kn ] = n

n∑
j,j′=1

bkjbk,j′
[
vjvj′ − E(vjvj′ )

]
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and we evaluate the expectation of
[
z
(2)2
kn − E[z

(2)2
kn ]

] [
z
(2)2

k
′
,n
− E[z

(2)2

k
′
,n
]
]
.

By using the independence assumption on vi (i = 1, · · · , n), there exists a positive

constant K4 such that

E

[
1

√
mn

mn∑
k=1

(z
(2)2
kn − E[z

(2)2
kn ])

]2
≤ K4

1

mn

mn∑
k=1

a2kn(A.10)

= O(
m4

n

n2
) .

since
∑m

k=1 akn = O(m3
n/n).

Thus the third term of (A.5) is negligible if 0 < α < 0.5.

(Step 3) Let Z∗
t,k =

∑[nt]
j=1 pkjrj for any 0 < t ≤ 1 and 1 ≤ k ≤ n. Then we can

represent

Z∗
t,k =

∫ t

0

 [nt]∑
j=1

pkjI(t
n
j−1 < s ≤ tnj )

 (µsds+ σsdB) .(A.11)

Then by using Ito’s Lemma

Vt,m =
m∑
k=1

(Z∗
t,k)

2(A.12)

=
∫ t

0

 [nt]∑
j=1

pkjI(t
n
j−1 < s ≤ tnj )

2 σ2
sds

+2
∫ t

0

 [nt]∑
j=1

Z∗
s,kpkjI(t

n
j−1 < s ≤ tnj )

 (µsds+ σsdB) .

Hence we have

√
mn

[
1

mn

mn∑
k=1

z
(1)2
kn − σ2

x

]
(A.13)

=
n∑

j=1

√
mn

[
1

mn

mn∑
k=1

(
√
npkj)

2 − 1

] ∫ tnj

tnj−1

σ2
sds

+2
√
mn

n∑
j=1

∫ tnj

tnj−1

[
n

mn

mn∑
k=1

Z∗
s,kpkj

]
(µsds+ σsdB) .

Then we need to evaluate each term of the right-hand side. First, since pkj =√
[4/(2n+ 1)] cos[(2π/(2n+ 1))(k − 1/2)(j − 1/2)], we find that

√
mn

[
n

mn

mn∑
k=1

p2kj − 1

]
= o(1) .(A.14)
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(See Lemma 5 of Kunitomo and Sato (2013).)

Second, because of the boundedness assumption of µs (0 < s ≤ 1), we can show that

the effects of the drift term are negligible. Thus the only term which we need to

evaluate the asymptotic distribution of the SIML estimator is Un =
∑n

j=1 Xnj and

Xnj = 2
√
mn

∫ tnj

tnj−1

[
n

mn

mn∑
k=1

Z∗
s,kpkj

]
σsdB .(A.15)

We notice that Xnj can be rewritten as Xnj = [2
∑j−1

i=1

√
mncijri]rj , where rj =∫ tj

tj−1
σsdBs (1 ≤ j ≤ n) is a sequence of discrete martingales and

cii = (
2n

2n+ 1
)

1 + 1

mn

sin 2πmn(
i−1/2
2n+1

)

sin(π i−1/2
2n+1

)

 ,

cij =
1

2mn

(
2n

2n+ 1
)

sin 2πmn(
i+j−1
2n+1

)

sin(π i+j−1
2n+1

)
+

sin 2πmn(
j−i
2n+1

)

sin(π j−i
2n+1

)

 (i ̸= j) .

Kunitomo and Sato (2008, 2013) have also shown that the variance of the limiting

distribution in the simle case is the limit of

Vn = 2
n∑

i,j=1

mnc
2
ij

∫ ti

ti−1

σ2
x(s)ds

∫ tj

tj−1

σ2
x(s)ds .(A.16)

Because we have assumed the continuous process for σx(t) and the derivations are

not trivial, the expression becomes simple. (See Kunitomo and Sato (2013). A more

general result than Lemma A-1 has been given in the revised version of Kunitomo

and Sato (2013) as Lemma 7.)

Lemma A-1 : Let

Vn = 2
n∑

i,j=1

mnc
2
ij

[∫ ti

ti−1

σ2
x(s)ds

∫ tj

tj−1

σ2
x(s)ds

]
,(A.17)

where cij are defined by (A.11). Then as n → ∞

Vn
p−→ V = 2

∫ 1

0

[
σ4
x(s)

]
ds .(A.18)

(Step 4) Finally, we need to give the proof of the stable convergence in law. Define
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the sequence of σ−fields Fn,i = F(X(r), B(r), B∗(r), U(r) r ≤ tni ). As the proof of

Theorem 3 of Kunitomo and Sato (2013), we shall use a sequence of random variables

Un, which is a discrete martingale difference. We set V ∗
n =

∑n
j=2 E [X2

nj|Fn,j−1]. Then

in order to prove

Un =
n∑

i=1

Xni
L−s−→ MN(0, V )(A.19)

we need to consider the conditions

(Condition A)
n∑

i=1

E[X2
ni|Fn,i−1]

p−→ V

(Condition B)
n∑

i=1

E[X2
niI(|Xni| > ϵ)|Fn,i−1]

p−→ 0 (for any ϵ > 0),

(Condition C)
n∑

i=1

E[Xni(Bi −Bi−1)|Fn,i−1]
p−→ 0 ,

(Condition D)
n∑

i=1

E[Xni(Ni −Ni−1)|Fn,i−1]
p−→ 0

for all bounded martingales N with [N,B] = 0 (quadratic covariation) and we take

the vector of Brownian motions Bi = (B(tni ), B
∗(tni )) (i = 1, · · · , n). (See Theorem

IX 7.28 of Jacod and Shriyaev (2003) and also Section 2 of Jacod and Protter

(2012).)

In the present situation, Condition (A) and Condition (B) are given in the proof

of Theorem 3 in Kunitomo and Sato (2013) already and Condition (D) is satisfied

trivially because ri (i = 1, · · · , n) are martingales associated with the Brownian

motion B(t) on [0, 1].

Then the remaining task is to show Condition (C). We shall investigate Condition

(C) and use the relation

n∑
i=2

E[Xni(Bi −Bi−1)|Fn,i−1] =
n∑

i=2

[2
i−1∑
j=1

√
mncijrj]E[

∫ ti

ti−1

σsdBs

∫ ti

ti−1

dBs|Fn,i−1]

=
n∑

i=2

[2
i−1∑
j=1

√
mncijrj

∫ ti

ti−1

E(σs|Fn,i−1)ds]

and (
n∑

i=2

E[Xni(Bi −Bi−1)|Fn,i−1]

)2
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=
n−1∑
j,j′=1

∫ tj

tj−1

σudB(u)
∫ t

j
′

t
j
′−1

σvdB(v)[2
n∑

i=j+1

√
mcij

∫ ti

ti−1

E(σs|Fn,i−1)ds]

×[2
n∑

i
′
=j

′
+1

√
mci′j′

∫ t
i
′

t
i
′−1

E(σs|Fn,i′−1)ds] .

Then by using the relationE[
∫ tj
tj−1

σudB(u)
∫ t

j
′

t
j
′−1

σvdB(v)|Fn,i−1] = δ(j, j
′
)E[

∫ tj
tj−1

σ2
udu],

we can find a positive constant K5 such that

E

(
n∑

i=2

E[Xni(Bi −Bi−1)|Fn,i−1]

)2

≤ K5E

n−1∑
j=1

n∑
i,i

′
=j+1

mcijci′j

∫ tj

tj−1

E(σ2
s |Fn,j−1)ds

∫ ti

ti−1

E(σu|Fn,i−1)du
∫ t

i
′

t
i
′−1

E(σv|Fn,i
′−1)dv

 .

Then we can use the assumption that σ2
s (0 ≤ s ≤ 1)] is bounded and ti− ti−1 = 1/n

for all i = 1, · · · , n. By applying the proof of Lemma 5 of Kunitomo and Sato (2008,

2013), we devide the summation of 2 ≤ i ≤ n into (i) 2 ≤ i ≤ nδ (0 < δ < 1) and

(ii) nδ + 1 < i ≤ n. Then we can find positive constants K6 and γ (> 0) such that

|
n∑

i=j+1

√
mcij

∫ ti

ti−1

E(σs)ds|(A.20)

= |
n∑

i=j+1

1√
m

2n

2n+ 1

[
sin 2πm

2n+1
(i+ j − 1)

sin 2π
2n+1

(i+ j − 1)
+

sin 2πm
2n+1

(i− j)

sin 2π
2n+1

(i− j)

] ∫ ti

ti−1

E(σs)ds|

≤ K6(
1

n
)γ .

Hence we have Condition (C) and this completes the proof of Theorem 3.2.

Q.E.D.

The proof of Corollary 3.3 : The main reason that we have the convergence

rate in Proposition 3.1 and Theorem 3.2 is the second term of (A.5), which is not

negligible for 0 < α < 0.4 because of (A.8). Thus if we remove the bias term due

to the second term of (A.5), then it is straightforward to show that the convergence

bound is α = 0.5. We have omitted the arguments because we have discussed most

evaluations are in the proof of Theorem 3.2. in the other terms in the as we have

derived.

Q.E.D.
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Next we shall give the proof of Theorem 3.6 and then show the proof of Theorem

3.4. It is because the first parts are similar, but we have some additional arguments

for Theorem 3.4.

The proof of Theorem 3.6 : The most parts of the proof are very similar to

the corresponding ones in the proof of Theorem 3.2. We write yi = xi + vi, vi =

ui + wi (i = 1, · · · , n), where |wi| ≤ ηn. Then we need to check that the effects of

a sequence of random variables wi (i = 1, · · · , n) are negligible under the additional

assumption (3.30) with the threshold parameter ηn (> 0).

We shall illustrate the underlying arguments. From (A.4) and (A.5), we notice

that

[
z
(2)
kn

]2
= n

[
n∑

i=1

bki(ui + wi)

]2
(A.21)

= n

[
n∑

i=1

bkiui

]2
+ 2n

[
n∑

i=1

bkiui

] [
n∑

i=1

bkiwi

]
+ n

[
n∑

i=1

bkiwi

]2
.

By using the Cauchy-Schwarz inequality under (3.30) and n
∑n

j=1 b
2
kj = akn (k =

1, · · · , n), we have [
n∑

i=1

bkiui

]2
≤ η2nakn .(A.22)

Then we can find a positive constant such that

E
[
z
(2)
kn

]2
= nE

[
n∑

i=1

bki(ui + wi)

]2
≤ K7akn

[
1 + ηn

√
n
]2

.(A.23)

Hence under (3.30) the threshold effects in (A.22) and (A.23) are stochastically

negligible.

We use the similar arguments to other terms in the decomposition of (A.5) as (A.11)

and we can apply the same argument as the proof of Theorem 3.2 to the first term

of the decomposition of (A.5) for its limiting distribution. Then we have the desired

result in Theorem 3.6.

Q.E.D.

The proof of Theorem 3.4 : The first part of the proof is to use the similar

arguments as Theorem 3.6, but in the present situation it is possible to evaluate the
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expected value of (A.21) more precisely.

We use the fact that the Fourier series of x for any 0 < x < 1 is given by

x =
1

2
−

∞∑
s=1

sin 2πsx

πs
=

1

2
−

∞∑
s=1

[
ei2πsx − e−i2πsx

2iπs
] .(A.24)

Then except the countable discontinuity points the fractional part {x} of any real

number x (= [x] + {x}) is given by (A.24). For a random variable X, let

{X}∗ =
∞∑
s=1

1

2iπs
[(ei2πsX − E(ei2πsX))− (e−i2πsX − E(e−i2πsX)] .(A.25)

(i) First, we assume that u(tni ) = 0 (i = 1, · · · , n), X(0) = 0, µx(s) = 0 and σx(s) is

a deterministic function such that Xj =
∫ tnj
0 σx(s)dBs is a Gaussian process. Then

by using the Gaussianity, we find

E(ei2πsXj) = E(e−i2πsXj) = e−2π2s2
∫ tn

j
0 σx(s)2ds(A.26)

and for any j, k (j > k; j, k = 1, · · · , n)

Cov[{xj/ηn}, {xk/ηn}](A.27)

=
∞∑

s,s
′
=1

−1

4π2ss′E{[(ei2πsxj/ηn − E(ei2πsxj/ηn))− (e−i2πsxj/ηn − E(e−i2πsxj/ηn))]

×[(ei2πs
′
xk/ηn − E(ei2πs

′
xk/ηn))− (e−i2πs

′
xk/ηn − E(e−i2πs

′
xk/ηn))]} .

Let Gk,n be the σ−field generated by the random variables Xl (= X(tnl ), l =

1, · · · , k). Under the assumption that 0 < σ∗ ≤ σs ≤ σ∗, then the conditional

expected value of each terms of (A.27) for j > k becomes

E[(ei2πsXj/ηn − E(ei2πsXj/ηn))− (e−i2πsXj/ηn − E(e−i2πsXj/ηn))|Gk,n](A.28)

≤ K8 e
−2π2s2σ2

∗(j−k)/[nη2n] ,

where K8 is a positive constant. Since e−x < 1/x (x > 0), the sum of (A.28) with

respect to s converges to a finite value. Actually under the condition (3.23), for any

|j − k| > nδ1 (0 < δ1 < 1) we have 2π2s2σ2
∗(j − k)/[nη2n] = O(nδ1−1+2γ) , which

goes to +∞ as n → ∞ if we can rake 2γ + δ1 > 1. By setting δ2 = δ1 − 1 + 2γ,
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−2π2s2σ2
∗(j − k)/[nη2n] = O(e−nδ2 ) .

Now we can evaluate

Var[ηn
n∑

j=1

bkj{
Xj

ηn
}∗] = η2n

n∑
j,j

′
=1

bkjbk,j′Cov[{Xj

ηn
}∗, {

Xj
′

ηn
}∗] .(A.29)

We decompose the above summation (A.29) into two components as (a)
∑

|j−j
′ |<nδ3 ,

and (b)
∑

|j−j′ |≥nδ3 for 0 < δ3 < 1. Then there are nδ3 terms in (a) and there are

n−nδ3 terms, but which are of order o(1/n) from (A.28). Thus by using the relation

(A.28) and Lemma A-2 below, we can take constants K9, K10 and K11 such that for

wj = ηn{Xj/ηn} (j = 1, · · · , n)

nE[
n∑

j=1

bkjwi]
2 ≤ K9 [n

n∑
j=1

b2kj]η
2
n[n

δ3 + (n− nδ2)
1

n
](A.30)

= K10 akn[n
γηn]

2

≤ K11 akn

by taking γ = δ3/2 (0 < δ3 < 1) and positive constants Ki (i = 9, 10, 11). (We

can take δ1 = δ3 for instance.) Thus for the rest of evaluation, we can apply the

arguments of the standard cases.

(ii) Next, we consider the case when we have the micro-market noise term ui =

u(tnj ) (j = 1, · · · , n). In (i) we replace ηn{(Xj + uj)/ηn} (j = 1, · · · , n) instead of

ηn{Xj/ηn} and apply the same arguments. Because of the assumption on X(tnj ) and

u(tnj ) (j = 1, · · · , n), we can utilize the relation

E[ei2πs(Xj+uj)/ηn ] = E[ei2πsXj/ηn ]E[ei2πsuj/ηn ] .(A.31)

When we have the drift term, which is deterministic by our assumption, the effects

of |
∫ tnj
tn
k
µx(s)ds| ≤ K12|tnj − tnk | and our arguments are valid in this case.

Q.E.D.

By using tedious but straightforward calculations, we can evaluate trigimometric

relations, which are needed for Theorem 3.4.

Lemma A-2 : For j, k = 1, · · · , n, let θjk = [2π/(2n + 1)](j − 1/2)(k − 1/2) and
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θk = [2π/(2n+ 1)](k − 1/2). Then

bkj =
2√

2n+ 1
(cos θkj − cos θk,j+1)(A.32)

and for any positive interger l (l < n)

n∑
j=l+1

bkjbj,j−l = 8 sin2(
θk
2
) cos(lθk) + o(1) .(A.33)

The proof of Lemma A-2 : We use the representation

bkj =
1

2n+ 1

[
(1− eiθk)eiθkj + (1− e−iθk)e−iθkj

]
.(A.34)

Then we have
∑n

j=1 e
i2θkj = 1/(1− eiθk) and

∑n
j=1(1− eiθk)2ei2θkj = 1− eiθk . Then

it is straight-forward to show that for any integer l,

(2n+ 1)
n∑

j=1

bkjbkj−l =
∑
j

{
e−ilθk(1− eiθk)2ei2θkj + eilθk(1− e−iθk)2e−i2θkj

+neilθk(1− eiθk)(1− e−iθk) + ne−ilθk(1− e−iθk)2(1− eiθk)
}

∼ 4n

[
sin2 θk

2

]
[2 cos(lθk)] .

Q.E.D.

The proof of Theorem 3.5 and 3.7 : The most parts of the proof of Theorem

3.5 are quite similar to the corresponding ones in the proof of Theorem 3.2. We

define vi = V (tni ) + u(tni ) (i = 1, · · · , n) by (2.14) and we write yi = xi + vi, where

yi = P (tni ) and xi = X(tni ) for the proof of Theorem 3.5. The essential difference

is the presence of Ua(t
n
i ) terms and then vi (i = 1, · · · , n) are auto-correlated in the

present situation.

In stead of (3.27), by using the conditions (3.31), (3.32) and the Cauchy-Schwartz

inequality, we find a positive constant K13 such that

E[z
(2)
kn ]

2 = nE[
n∑

i=1

bkivi
n∑

j=1

bkjvj](A.35)

≤ n
n∑

s=0

c1ρ1(s)[
n∑

i=1

bkibk,i−s]

≤ K13 × akn ,
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For the third term of (A.5) as in Theorem 3.2, we evaluate the variance of

z
(2)2
kn − E[z

(2)2
kn ] = n

n∑
j,j′=1

bkjbk,j′
[
vjv,j′ − E(vjvj′ )

]

and the expectations of
[
z
(2)2
kn − E[z

(2)2
kn ]

] [
z
(2)2

k
′
,n
− E[z

(2)2

k
′
,n
]
]
.

By using the condition imposed by (3.31) and (3.32), we can find a positive constant

K14 such that

n2
n∑

i,i′=1

n∑
j,j′=1

bkibk,i′ bk′ ,jbk′ ,j′ρ2(|i− i
′|, |j − j

′|) ∼ K14 × aknak′ ,n .(A.36)

Then by collecting each terms, we can find a positive constant K15 such that

E

 1
√
mn

mn∑
j=1

(z
(2)2
kn − E[z

(2)2
kn ])

2 ≤ K15

mn

mn∑
k,k

′
=1

aknak′n(A.37)

= O(
1

mn

× (
m3

n

n
)2)

= O(
m5

n

n2
)

since
∑m

k=1 akn = O(m3
n/n).

Thus the third term of (A.5) as in Theorem 3.2 is negligible if 0 < α < 0.4.

By taking care of these changes in our derivations, it is straightforward to proceed

the proof of Theorem 3.7 as for Theorem 3.2. Hence we omit the details.

Q.E.D.
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APPENDIX B : TABLES and FIGURES

In Tables the estimates of the variances (σ2
x) are calculated by the SIML method while

H-vol are calculated by the historical (or realized) volatility estimation. The true-val

means the true parameter value in simulations and mean, SD and MSE correspond to the

sample mean, the sample standard deviation and the sample mean squared error of each

estimator, respectively.

B-1 : Comparison of alternative estimates (Model-1)

(σ2
u = 5.0E− 05, η = 0.25)

n=20,000 SIML (σ2
x) H-vol RK PA

true-val 1.000 1.00 1.00 1.00

mean 1.104 38.84 2.283 1.719

SD 0.258 9.354 0.514 0.387

MSE 0.092 1519.6 1.910 0.667

B-2 : Comparison of alternative estimates (Model-1)

(u2 = 1.0E− 04; η = 0.1)

n=20,000 SIML (σ2
x) H-vol RK PA

true-val 1.000 1.00 1.00 1.00

mean 0.969 12.14 0.948 0.934

SD 0.150 0.443 0.078 0.095

MSE 0.023 124.3 0.008 0.013

B-3 : Estimation of integrated volatility (Model-2)

(a0 = 1, a1 = 0, a2 = 0;σ2
u = 1.00E− 04, g = 0.2)

n=20,000 σ2
x H-vol

true-val 1.00E+00 1.00E+00

mean 1.01E+00 2.33E+00

SD 1.97E-01 2.32E-02

MSE 3.89E-02 1.78E+00
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B-4 : Estimation of integrated volatility (Model-2)

(a0 = 1, a1 = 0, a2 = 0;σ2
u = 0.00E + 00, g = 0.2)

n=20,000 σ2
x H-vol

true-val 1.00E+00 1.00E+00

mean 9.96E-01 1.11E-01

SD 1.93E-01 2.35E-03

MSE 3.74E-02 7.90E-01

B-5 : Estimation of integrated volatility (Model-2)

(a0 = 1, a1 = 0, a2 = 0;σ2
u = 0.00E + 00, g = 1.5)

n=20,000 σ2
x H-vol

true-val 1.00E+00 1.00E+00

mean 1.00E+00 3.00E+00

SD 1.94E-01 4.03E-02

MSE 3.78E-02 4.00E+00

B-6 : Estimation of integrated volatility (Model-2)

(a0 = 1, a1 = 0, a2 = 0;σ2
u = 1.00E− 05, g = 1.0)

n=20,000 σ2
x H-vol

true-val 1.00E+00 1.00E+00

mean 9.88E-01 1.40E+00

SD 1.99E-01 1.40E-02

MSE 3.97E-02 1.60E-01

B-7 : Estimation of integrated volatility (Model-2)

(a0 = 1, a1 = 0, a2 = 0;σ2
u = 1.00E− 06, g = 0.01)

n=20,000 σ2
x H-vol

true-val 1.00E+00 1.00E+00

mean 8.40E-01 2.51E-02

SD 1.66E-01 5.41E-04

MSE 5.31E-02 9.50E-01
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B-8 : Estimation of integrated volatility (Model-3)

(a0 = 7, a1 = −12, a2 = 6;σ2
u = 2.00E− 02, η = 0.5)

n=20,000 σ2
x H-vol

true-val 4.50E+01 4.50E+01

mean 4.60E+01 1.37E+02

SD 1.05E+01 6.19E+00

MSE 1.11E+02 8.46E+03

B-9 : Estimation of integrated volatility (Model-4)

(a0 = 1, a1 = 0, a2 = 0;σ2
u = 0.00E + 00, η = 0.005)

n=20,000 σ2
x H-vol

true-val 1.00E+00 1.00E+00

mean 1.00E+00 6.85E-01

SD 1.94E-01 8.66E-03

MSE 3.77E-02 9.92E-02

B-10 : Estimation of integrated volatility (Model-5)

(a0 = 1, a1 = 0, a2 = 0;σ2
u = 0.00E + 00, g1 = 0.2, g2 = 5)

n=20,000 σ2
x H-vol

true-val 1.00E+00 1.00E+00

mean 1.01E+00 2.22E+00

SD 1.93E-01 6.46E-02

MSE 3.71E-02 1.49E+00

B-11 : Estimation of integrated volatility (Model-5)

(a0 = 1, a1 = 0, a2 = 0;σ2
u = 1.00E− 03, g1 = 0.2, g2 = 5)

n=20,000 σ2
x H-vol

true-val 1.00E+00 1.00E+00

mean 1.02E+00 6.65E+01

SD 1.94E-01 1.66E+00

MSE 3.79E-02 4.30E+03
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B-12 : Estimation of integrated volatility (Model-6)

(a0 = 1, a1 = 0, a2 = 0;σ2
u = 0.00E + 00, g1 = 1.9, g2 = −1.7, γ = 10, 000)

n=20,000 σ2
x H-vol

true-val 1.00E+00 1.00E+00

mean 9.99E-01 6.39E+00

SD 1.92E-01 3.66E-01

MSE 3.68E-02 2.91E+01

In Figures 2.1 and 2.2 P and Q stand for the price and the quantity, respectively. D

and S are the demand curve and supply curve, respectively. η in Figure 2.2 denotes the

minimum tick size and Q∗ is the quantity traded in Figure 2.2.

In Figure 2.3 typical sample paths in the the standard round-off error model shown by

simulations.
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