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Abstract

This paper provides the optimal position management strategy for a market maker
who has to face uncertain customer orders in an “illiquid” market, where the market
maker’s continuous trading through a traditional exchange incurs stochastic linear price
impacts. In addition, it is supposed that the market participants can partially infer the
position size held by the market maker and their aggregate reactions affect the security
prices. Although the market maker can ask its OTC counterparties to transact a block
trade without causing a direct price impact in the exchange, its timing is assumed to
be uncertain. Another important way for the market maker to reduce its position is to
match an incoming customer order to the outstanding position being warehoused in its
balance sheet. The solution of the problem is represented by a stochastic Hamilton-Jacobi-
Bellman equation, which can be decomposed into three (one non-linear and two linear)
backward stochastic differential equations (BSDEs). We provide the verification using
the standard BSDE techniques for a single security case. For a multiple-security case,
we use an interesting connection of the non-linear BSDE to a special type of backward
stochastic Riccati differential equation (BSRDE) whose properties have been studied by
Bismut (1976).

Keywords : stochastic control, BSDE, BSPDE, stochastic HJB, portfolio, inventory
illiquidity, transaction costs, liquidation, execution

1 Introduction

The financial market currently being formed in the aftermath of the great financial crisis
looks completely different from the previous one. Mandatory clearing for the standardized
financial products and much higher regulatory costs for the rest of over-the-counter (OTC)
contracts made many investors withdraw from the long-dated exotic derivative business and
pay more attention to the trading of listed products in exchanges or standard contracts with
central counterparties.

∗All the contents expressed in this research are solely those of the author and do not represent any views
or opinions of any institutions. The author is not responsible or liable in any manner for any losses and/or
damages caused by the use of any contents in this research.

†Graduate School of Economics, The University of Tokyo. e-mail: mfujii@e.u-tokyo.ac.jp
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In the new market, it is clear that the exchanges and central counterparties are the most
important trading venues and have started to play a much bigger role than before. However,
these new developments have not completely diminished the importance of the traditional key
players in the market, that is a market maker. A market maker is a firm that quotes buy and
sell prices for financial securities and derivatives, and stands ready to perform these deals
on a regular and/or continuous basis. They are crucially important to maintain liquidity
for equities, (government/corporate) bonds, currencies, commodities, and many structured
products and derivatives. Even for products tradable at an exchange, market makers are
playing an important role for intermediating non-financial corporates and other investors
since it is not always possible for them to satisfy many regulatory conditions required to get
a direct access to the exchange. There exist many other benefits such as those related to
accounting, anonymity and flexibility that may be obtained with the help of market makers.

Especially due to the proposed regulation on the leverage ratio and the higher capital
amount required for the open positions, the market makers have to deal with formidable
tasks. Due to the smaller warehousing capability of their balance sheets, they need more
active position management. At the same time, they have to optimize execution strategies
in order to avoid unnecessarily big market impacts and the associated transaction costs.

In this paper, we consider the optimal position management strategy for a market maker
who is facing uncertain customer orders. We are interested in a good market maker who
accepts every customer order with a predefined bid/offer spread. The spread can be stochastic
but we do not allow the market maker to control its size dynamically based on its proprietary
reasons in order to give a bias to the customer flows. Otherwise the firm will not be considered
as a trustful market maker 1. We suppose that there exists a relatively liquid market for
security borrowing and lending (i.e., so called repo transactions), which can be used by the
market maker to answer the incoming customer orders. In addition to matching an incoming
order directly to the security being warehoused in its balance sheet, the market maker can
access two external trading venues. One is a traditional exchange where the market maker
carries out absolutely continuous trading, which is assumed to incur stochastic linear price
impact. It is also supposed that the participants of the exchange can partially infer the
position size held by the market maker and their aggregate reactions, as a preparation for
the market maker’s future trading, affect the security prices linearly with respect to the
current position size held by the market maker. Another venue is the aggregate of the
market maker’s OTC counterparties with which the firm can execute a block trade without
directly affecting the price in the exchange. In this case, however, the execution timing is
uncertain. The modeling of the latter venue (we call it the dark pool) is closely related to
the one introduced by Kratz & Schöneborn (2013) [26] except that we allow stochasticity in
its execution intensity.

There now exist the vast literature on the optimal execution problems. Our model is
closely related to the line of developments made by Bertsimas & Lo (1998) [8], Almgren
& Chriss (1999, 2000) [3, 4], Schied & Schöneborn (2009) [33] and to more recent works
Ankirchner & Kruse (2013) [6], Ankirchner, Jeanblanc & Kruse (2014) [5] and Kratz &
Schöneborn (2013) [26]. There exist many other interesting approaches, such as models of

1In fact, this was the common pride I observed among the fellow traders I worked together while I was in
the industry.
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supply curves (See, for example, Bank & Baum (2004) [7], Cetin, Jarrow & Protter (2004) [13]
and Roch (2011) [32].) and those directly modeling the dynamics of Limit Order Books (See,
for example, Obizhaeva & Wang (2013) [29], Alfonsi, Fruth & Schied (2008, 2010) [1, 2]
and Fruth & Schöneborn (2014) [15].). We refer to the review articles Gatheral & Schied
(2013) [21] and Gökay, Roch & Soner (2011) [22] for the recent developments, various other
aspects and references.

The main difference of the current work is the focus on the market maker’s position man-
agement problem with uncertain customer orders rather than a very short-term liquidation
problem with a given initial position. For example, in the presence of the customer orders,
the market maker has an incentive to keep an adequate amount of inventory (which can be
short position) of the securities since matching an incoming order directly to its own position
does not cause a market impact. This introduces a term not proportional to the current po-
sition size into the optimal execution strategy. Since many of the literature make use of this
proportionality to find a candidate solution for the corresponding Hamilton-Jacobi-Bellman
(HJB) equation, we need a more general systematic approach. We also use quite general
stochastic processes, which include the price and position impact factors, the compensator of
incoming customer orders, the execution intensity of the dark pool, the repo rates relevant for
the security borrowing/lending, and penalties for the outstanding position size etc. In partic-
ular, we allow the unaffected security price to follow a general stochastic process adapted to
a Brownian filtration and do not assume it is a martingale. This may be important since the
time horizon relevant for our problem, such as Quarter to one year, is longer than the typical
time horizon used for the standard execution problems, which is ranging from a few hours to
a few trading days. The difference of the relevant time horizon is an also important factor for
us to choose a framework of exogenous security price modeling. Although it is a simplified
reduced-form approach and impossible to model market depth and resilience relevant for the
dynamics of Limit Order Books, it allows more flexible modeling of the underlying processes
including multiple securities and also their mutual dependence, which is expected to be more
relevant for our medium-term position management problem.

We follow the technique proposed by Mania & Tevzadze (2003) [28] to derive the relevant
stochastic HJB equation and its decomposition into three (one non-linear and two linear)
backward stochastic differential equations (BSDEs). For a single security case, we use the
standard results on BSDEs (See, for example, Pardoux & Rascanu (2014) [30].) and the
comparison theorem for verifying the solution. For a multiple-security case, however, we
need to handle a matrix-valued non-linear BSDE for which we cannot apply the standard
results. Interestingly, we find that the relevant BSDE is actually a special type of backward
stochastic Riccati differential equation (BSRDE) associated with a stochastic linear quadratic
control (SLQC) problem, which has a seemingly totally different setup from our original one.
Because of this relation, we can guarantee the existence of a uniformly bounded solution by
theorems proved in Bismut (1976) [11].

The organization of the paper is as follows: Section 2 gives some preliminaries and Sec-
tion 3 provides the detailed market description and the market maker’s problem. Section
4 gives the derivation of the candidate solution and its verification. The behavior of the
terminal position size with respect to the penalty size is discussed in Section 5. An extension
to the multiple-security case is given in Section 6 and 7. Section 8 gives a possible approx-
imation technique for the relevant non-linear BSDE and also a simple special case which is
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straightforward to evaluate.

2 Preliminaries

We consider a complete filtered probability space, in which all the stochastic processes are
defined, (Ω,F ,F,P) where F = (Ft)t≥0 is the filtration satisfying the usual conditions. W is
the d-dimensional standard Brownian motion and the P-augmented filtration generated by W
is denoted by FW = (FW

t )t≥0. We assume that FW is a subset of the full filtration; FW ⊂ F.

For the ease of discussion, let us define the following spaces of the stochastic processes (p ≥ 1):
• Spr(t, T ) is the set of progressively measurable process X taking values in Rr and satisfying

E
[
||X||p[t,T ]

]
:= E

[
sup

s∈[t,T ]
|Xs(ω)|p

]
< ∞ (2.1)

where we use the notation
||x||[a,b] := sup{|xt|, t ∈ [a, b]} (2.2)

for x : [0, T ] → Rr. We write ||x||[0,t] = ||x||t. Its norm is defined by

||X||Spr(t,T ) :=
{
E
[
||X||p[t,T ]

]}1/p
. (2.3)

• Hp
r(t, T ) is the set of progressively measurable process X taking values in Rr and satisfying

E

[(∫ T

t
|Xt|2dt

)p/2
]
< ∞, (2.4)

and its norm is defined by

||X||Hp
r(t,T ) :=

{
E
[(∫ T

t
|Xs|2ds

)p/2]}1/p

. (2.5)

In every space, the subscript r may be omitted if the associated dimension is clearly seen
from the context.

3 Setup: Single Security Case

Firstly, let us summarize the standing assumptions. They are obviously not the weakest ones
but allow simple analysis and also do not make the model unrealistic in the practical setup.
The definition of each variable will appear in the following sections.

Assumption A
Firstly, all the stochastic processes which do not jump by N and H are assumed to be FW -
adapted and hence continuous. This FW adaptedness includes all the stochastic processes
defined below.
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(a1) S : Ω× [0, T ] → R is non-negative and S ∈ S4(0, T ).
(a2) b, l : Ω× [0, T ] → R and b, l ∈ S4(0, T ).
(a3) Λ(·, ·) : Ω× [0, T ]×R → R is such that Λ(t, ·)(ω) is a non-negative measurable function
with bounded support K ⊂ R for every t ∈ [0, T ] and ω ∈ Ω, and that Λ(·, z) is a uniformly
bounded FW -adapted process for every z ∈ K.
(a4) γ̃ : Ω× [0, T ] → R are uniformly bounded and non-negative.
(a5) M, η̃, λ : Ω× [0, T ] → R are uniformly bounded and strictly positive.
(a6) ξ̃ : Ω → R is strictly positive, bounded and FW

T -measurable.
(a7) β : Ω× [0, T ] → R is uniformly bounded.
(a8) There is no simultaneous jump between N and H.

Notation : For a bounded variable x, we express its upper bound by x̄.

3.1 The market description

We are interested in a market maker, who has to face uncertain customer orders regarding
the single specified security. An extension to the portfolio management including multiple
securities will be discussed in later sections. As a good market maker, the firm accepts every
customer order with a predefined bid-offer spread. Although the spread can be dynamic
depending on the external market variables such as the security’s volatility, it is supposed
that the firm does not adjust it in order to control the customer flow based on the firm’s
proprietary reasons. Otherwise, the firm will be nothing but an opportunistic investor and
will not be treated as a trustful market maker.

The market maker is assumed to buy and sell the security through two major trading
venues. The first venue is a standard exchange. The market maker adopts absolutely contin-
uous trading strategies to access the exchange but they are assumed to incur linear stochastic
price impacts. In addition, the participants of the exchange (partially) observe the current
position size of the market maker. They expect future buy/sell orders from it and adjust their
positioning accordingly. We assume that the aggregated effects of the participants change the
market price by the amount proportional to the size held by the market maker. Although we
are interested in creating the adverse price impacts, we can allow the stochastic proportional
factor to take the both signs so that it may sometime represent a favorable price change. The
second venue is the aggregate of the OTC block trades with the firm’s customers or the dark
pools. The market maker can buy/sell as a block trade without directly affecting the market
price in the exchange (or the first venue), but its timing is uncertain. The modeling of this
part is basically the same as the one proposed by Kratz & Schöneborn (2013) [26] except that
we allow a general stochastic execution intensity. Although we call this venue the dark pool
as in their work, it actually means the aggregate of OTC block trades with the firm’s coun-
terparties as well as potentially multiple dark pools to which the market maker can access.
It is a simplistic model for which we do not consider order-size dependent intensity process
nor possibility of partial executions. This is necessary for making the problem tractable.

In addition to the above two trading venues, the market maker can match an incoming
customer order to its outstanding position being warehoused in its balance sheet. This is the
most distinguishing feature of the market maker. Because this is the most profitable way to
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reduce the position, the market maker needs to adjust buy/sell orders based on the expected
future customer flow. If the market maker cannot answer the customer order within its
inventory, it needs to borrow the security through the corresponding repo market by paying
the stochastic repo rate. On the other hand, it also earns money by lending the security
through the repo market.

We model the the market-maker’s position at time s > t starting from the position size
x ∈ R at time t as

Xπ,δ
s (t, x) = x+

∫ s

t

∫
K
zN (du, dz) +

∫ s

t
πudu+

∫ s

t
δudHu (3.1)

where the second term describes the customer flow, which is represented by the marked point
process expressed by the counting measure N . K ⊂ R is a bounded support for the mark
z which gives the size and direction (+ or −) of the order. (π, δ) denotes an F-predictable
trading strategy of the market maker through the exchange and the dark pool, respectively.
H is the counting process, whose jump signals the happening of an execution event in the
dark pool. For simplicity, we assume no simultaneous jump between N and H. The negative
position sizeXπ,δ < 0 is always interpreted as a short position taken by the security borrowing
through the repo market. Let us assume the existence of the compensators Λ for N (λ for
H) so that ∫ t

0

∫
K
Ñ (ds, dz) =

∫ t

0

∫
K

(
N (ds, dz)− Λ(s, z)dzds

)
∫ t

0
dH̃s =

∫ t

0

(
dHs − λsds

)
(3.2)

for t ∈ [0, T ] are F-martingales. This also implies that the occurrences of customer orders and
the executions in the dark pool are totally inaccessible. For later convenience, let us define

Φt :=

∫
K
zΛ(t, z)dz, Ψt :=

∫
K
|z|Λ(t, z)dz, Φ2,t :=

∫
K
z2Λ(t, z)dz (3.3)

for t ∈ [0, T ], which are the moments of the size of the customer orders. By Assumption A,
the above processes are uniformly bounded.

The price observed in the exchange S̃π,δ(t, x) i.e., the market price under the impact of
the market maker’s strategy (π, δ) starting from the position size x at time t, is assumed to
be given by

S̃π,δ
s (t, x) = Ss +Msπs − βsX

π,δ
s (t, x) (3.4)

for s ∈ [t, T ]. The second term denotes the stochastic linear price impact, where M is the
FW -adapted impact factor. The last term denotes the aggregate impact from the market
participants’ reactions to the market maker’s position size.

Notice that we are not assuming the perfect observability of the market maker’s position
X to other investors. It is likely that they can only observe X with a big noise and so is their
aggregate reaction. However, this noise part can easily be absorbed into the definition of S, the
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unaffected price of the security. For the market maker’s point of view, X is directly observable
and β is simply its coefficient to be obtained by the linear regression of the security price.
We model β as a uniformly bounded process possibly being correlated with other market
variables, such as volatility of the security. Although we intend to model β as a positive
process to introduce an adverse price impact for the future unwinding of the market maker,
one may allow it to take the both signs. Due to the presence of the customer orders, the last
term is not directly determined by the trading volume in the past and hence different from
the standard model of the permanent price impact. It is more closely related to the works
on the large trader’s problem studied by Jarrow (1992) [24] and Bank & Baum (2004) [7].

We model the cash flow in the interval ]t, T ] to the market maker with strategy (π, δ) in
the following way:

−
∫ T

t
S̃π,δ
s (t, x)πsds−

∫ T

t

∫
K
S̃π,δ
s− (t, x)

(
1− sgn(z)bs

)
zN (ds, dz)

−
∫ T

t

((
Ss − βsX

π,δ
s− (t, x)

)
δs + η̃s|δs|2

)
dHs +

∫ T

t
lsX

π,δ
s (t, x)ds . (3.5)

Let us explain the economic meaning of each term below:
• (1st term) The cash flow from the trades through the exchange.
• (2nd term) The cash flow from accepting the customer orders with a (proportional) bid/offer
spread b.
• (3rd term) The cash flow from the trades through the dark pool.
• (4th term) The cash flow from the security borrowing/lending with a repo rate l.

We need additional comments for the third term describing the trades with the dark pool.
Firstly, the basic transaction price is given by

Ss − βsX
π,δ
s− (t, x) (3.6)

which does not include the price impact from the continuous trading of the market maker.
Inclusion of Msπs to the price could induce price manipulation, and more importantly, the
trading counterparties will not accept expensive price caused by the market maker’s temporal
trading activity. We also add the spread η̃|δ| to the above price 2 as a premium that the
market maker pays to the counterparty who has accepted a block trade.

We consider T<∼1 (year) as a relevant span for the control of the market maker. More
realistically, it can be a Quarter or a half year, and we neglect the net proceeds from a money
market account for this time interval. This can be understood as a zero interest rate, or
equivalently, we can interpret that the cost function (see below) is given in the discounted
basis. We are also interested in relatively liquid market in a sense that the borrowing and
lending of the security is always possible once the stochastic repo rate is being paid, and
continuous trading in the exchange is possible. In a highly illiquid market, neither seamless
execution of market orders in the exchange nor a functioning repo market can be expected.

2Thus the additional cost is given by η̃|δ|2.
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Even if we treat a major equity, bond or index under the normal market condition, it is still
important for a global market maker to handle the adverse price impacts from its own trading
activities as the fate of a large trader.

3.2 The market maker’s problem

Definition 3.1. 3 We define the admissible strategies U by the set of F-predictable processes
(π, δ) that belong to H2(0, T )×H2(0, T ) and also Markovian with respect to the position size,
i.e., they are expressed with some measurable functions (fπ, f δ) by

πs = fπ(s,Xπ,δ
s− (t, x)), δs = f δ(s,Xπ,δ

s− (t, x)) (3.7)

where, for a ∈ {π, δ}, fa : Ω × [0, T ] × R → R and fa(·, x) is an FW -adapted process for all
x ∈ R.

We suppose that the market maker tries to solve the following optimization problem:

Ṽ (t, x) = ess inf
(π,δ)∈U

E

[
ξ̃|Xπ,δ

T (t, x)|2 +
∫ T

t
γ̃s|Xπ,δ

s (t, x)|2ds

+

∫ T

t

(
S̃π,δ
s (t, x)πs − lsX

π,δ
s (t, x)

)
ds+

∫ T

t

∫
K
S̃π,δ
s− (t, x)(1− sgn(z)bs)zN (ds, dz)

+

∫ T

t

([
Ss − βsX

π,δ
s− (t, x)

]
δs + η̃s|δs|2

)
dHs

∣∣∣Ft

]
. (3.8)

The first two terms are introduced to give penalties for the outstanding position size. It
is natural to consider that ξ̃ and γ̃ are proportional to the variance of the price process of
the security. One may also want to take into account the regulatory costs arising from the
outstanding position in the balance sheet. It is possible by an appropriate modification of γ̃
and l as long as the relevant costs can be reasonably approximated by a quadratic function
with respect to the position size X. Note that the coefficients of the quadratic function can
be stochastic.

We can observe that the expectation in (3.8) is finite for all (π, δ) ∈ U . This can be
easily checked by the fact Xπ,δ(t, x) ∈ S2(t, T ) and S̃π,δ(t, x) ∈ H2(t, T ). However, due to the
2nd order terms of (π, δ) arising from (−βXπ,δπ) and (−βXπ,δδ), the cost function could be
made infinitely small, and then the problem would be ill-defined. In order to guarantee the
well-posedness of the problem, we need additional assumptions.

Firstly, let us write the dynamics of the FW -adapted process β as

dβt = µβ
t dt+ σβ

t dWt . (3.9)

3It is not necessary to constrain the admissible strategies as Markovian with respect to X, since we know
a posteriori that the global solution has this form. However, limiting the strategy space at this stage makes
the following analysis much clearer.
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Furthermore, we denote

ξ := ξ̃ − βT
2
, η := η̃ +

β

2
, γ := γ̃ +

µβ

2
. (3.10)

Assumption B
(b1) µ

β : Ω× [0, T ] → R, σβ : Ω× [0, T ] → Rd are uniformly bounded.
(b2) γ is non-negative dP⊗ dt-a.e..
(b3) There exists a constant c > 0 such that ξ ≥ c a.s. and M,η ≥ c dP⊗ dt-a.e..

Definition 3.2. The cost function for the market maker with a given position size x ∈ R at
t is

J t,x(π, δ) = E

[
ξ|Xπ,δ

T (t, x)|2 +
∫ T

t

(
γs|Xπ,δ

s (t, x)|2 +Xπ,δ
s (t, x)(βsbsΨs − ls)

)
ds

+

∫ T

t

(
Msπ

2
s + λsηsδ

2
s +

[
(Ss +MsΘs)πs + Ssλsδs

]
+
(
SsΘs +

βs
2
Φ2,s

))
ds
∣∣∣FW

t

]
(3.11)

where Θ : Ω× [0, T ] → R is defined by Θs := Φs − bsΨs.

Proposition 3.1. Under Assumptions A and B, the market maker’s problem (3.8) is equiv-
alent to

V (t, x) = ess inf
(π,δ)∈U

J t,x(π, δ) (3.12)

and it has a unique optimal solution (π∗, δ∗) ∈ U .

Proof. Applying Itô-formula, one obtains

−
∫ T

t
βsX

π,δ
s− (t, x)dXπ,δ

s (t, x) = −βT
2
|Xπ,δ

T (t, x)|2 + βt
2
x2 +

∫ T

t

βs
2
δ2sdHs

+

∫ T

t

∫
K

βs
2
z2N (ds, dz) +

∫ T

t

1

2
|Xπ,δ

s (t, x)|2(µβ
s ds+ σβ

s dWs) .

Then, replacing the β-proportional terms in (3.8) by the above relation yields

Ṽ (t, x)− βt
2
x2 = ess inf

(π,δ)∈U
E

[
ξ|Xπ,δ

T (t, x)|2 +
∫ T

t

(
γs|Xπ,δ

s (t, x)|2 +Xπ,δ
s (t, x)(βsbsΨs − ls)

)
ds

+

∫ T

t

{
Msπ

2
s + λsηsδ

2
s +

[
(Ss +MsΘs)πs + Ssλsδs

]
+
(
SsΘs +

βs
2
Φ2,s

)}
ds
∣∣∣Ft

]

where one can easily check that the local martingale parts are true martingales under the
assumptions. In particular, one can use the Burkholder-Davis-Gundy (BDG) inequality, the
fact that Xπ,δ ∈ S2(t, T ) and the boundedness of σβ for the dW integration term. For the
jump part, it suffices to check that the integration by the corresponding compensator is in
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L1(Ω) (See, for example, Corollary C4, Chapter VIII in [12].), which can be easily confirmed
by the boundedness of the compensators, λ and Λ.

Because all the processes except (Xπ,δ, π, δ) are FW -adapted and (π, δ) ∈ U satisfies (3.7),

the expectation conditioned on Ft can be replaced by FW
t ∨σ{Xπ,δ

t }. However, Xπ,δ
t (t, x) = x

has been already fixed. Thus, redefining the value function by V (t, x) := Ṽ (t, x)− βt
2
x2, one

obtains the result (3.12).
The remaining claims easily follow from the standard arguments (See, for example, The-

orem 3.1 in Bismut (1976) [11].) since now all the quadratic terms have positive coefficients.
For simplicity, let us consider the case where the initial time is zero, t = 0. The cost function
J0,x is a continuous map from U to R and obviously strictly convex. It is also proper since,
for example, J0,x(0) < ∞. We also have the so-called coerciveness since

J0,x(u) ↗ ∞, when ||u||H2
2(0,T ) ↗ ∞ . (3.13)

Thus, for some large enough α ∈ R, the set {u ∈ U : J0,x(u) ≤ α} is non-empty, convex and
weakly-compact. Thus, there exists an minimizer, which is unique due to the strict convexity
of the cost function.

Remarks on βXπ,δ in (3.4)

The presence of βXπ,δ term in (3.4) is not necessarily appropriate for every type of investors.
For example, suppose that the investor is risk-neutral and β is positive. In this case, the
investor may accumulate an extremely large long position which would make the security
price significantly negative. The investor can receive positive cash flow by further increasing
her long position which makes the system ill-defined. However, as we have seen in the above
discussion, it does not cause any regularity problem under mild conditions regarding the
penalty size on the outstanding position of the market maker. Although one may feel uneasy
by the fact that the well-posedness of the model depends on the risk-averseness of the agent,
we think that this term makes the model more realistic for the market maker. In fact, this
term is expected to arise exactly because the other investors know that the relevant market
maker has to operate with a rather stringent position limit. It is then natural for them to
adjust their positioning so that they can manage a short/long squeeze from the market maker.
From the view point of the market maker, it is being squeezed by the other investors as long
as there exists an information leak about its position size.

4 Solving the Problem

4.1 A candidate solution

Let us prepare the optimality principle for the current problem.

Proposition 4.1. (Optimality Principle) Let Assumptions A and B are satisfied. Then,
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(a) For all x ∈ R, (π, δ) ∈ U and t ∈ [0, T ], the process(
V (s,Xπ,δ

s (t, x)) +

∫ s

t

(
γu|Xπ,δ

u (t, x)|2 +Xπ,δ
u (t, x)

(
βubuΨu − lu

))
du

+

∫ s

t

(
Muπ

2
u + λuηuδ

2
u +

[
(Su +MuΘu)πu + Suλuδu

]
+
(
SuΘu +

βu
2
Φ2,u

))
du

)
s∈[t,T ]

is an F-submartingale.
(b) (π∗, δ∗) is optimal if and only if(

V (s,Xπ∗,δ∗
s (t, x)) +

∫ s

t

(
γu|Xπ∗,δ∗

u (t, x)|2 +Xπ∗,δ∗
u (t, x)

(
βubuΨu − lu

))
du

+

∫ s

t

(
Muπ

∗2
u + λuηuδ

∗2
u +

[
(Su +MuΘu)π

∗
u + Suλuδ

∗
u

]
+
(
SuΘu +

βu
2
Φ2,u

))
du

)
s∈[t,T ]

is an F-martingale.

Proof. One can easily confirm it from the definition of the value function V , the fact that
V (T,Xπ,δ

T ) = ξ|Xπ,δ
T |2 and the form of the cost function J t,x(π, δ). See, for example, Propo-

sition (A.1) of Mania & Tevzadze (2003) [28].

Our strategy is to derive the so-called stochastic HJB equation from the necessary con-
dition so that the above optimality principle is satisfied by following the method proposed
by Mania & Tevzadze [28]. After that, we are going to show that there exists a solution for
the stochastic HJB equation and confirm that it actually satisfies the optimality principle.
Then, we get one optimal solution. But the solution is also unique due to Proposition 3.1.

Let us assume that the FW semimartingale
(
V (t, x)

)
t∈[0,T ]

has the following decomposi-

tion for every x ∈ R:

V (s, x) = V (t, x) +

∫ s

t
a(u, x)du+

∫ s

t
Z(u, x)dWu (4.1)

where a : Ω × [0, T ] × R → R, Z : Ω × [0, T ] × R → Rd and a(·, x) as well as Z(·, x) are
FW -adapted processes for all x ∈ R. Let us suppose V (t, x) are twice differentiable with
respect to x. By applying Itô-Ventzell formula, we obtain

V (s,Xπ,δ
s (t, x)) = V (t, x) +

∫ s

t
a(u,Xπ,δ

u (t, x))du+

∫ s

t
Z(u,Xπ,δ

u (t, x))dWu

+

∫ s

t
Vx(u,X

π,δ
u (t, x))πudu+

∫ s

t

∫
K

(
V (u,Xπ,δ

u− (t, x) + z)− V (u,Xπ,δ
u− (t, x))

)
N (du, dz)

+

∫ s

t

(
V (u,Xπ,δ

u− (t, x) + δu)− V (u,Xπ,δ
u− (t, x))

)
dHu . (4.2)

11



Separating the local martingale parts, a necessary condition for the optimality principle is
given by

a(u, x) +

∫
K

(
V (u, x+ z)− V (u, x)

)
Λ(u, z)dz + γux

2 + x(βubuΨu − lu)

+
(
SuΘu +

βu
2
Φ2,u

)
+ inf

π,δ

{
Vx(u, x)π +

(
V (u, x+ δ)− V (u, x)

)
λu

+Muπ
2 + λuηuδ

2 + (Su +MuΘu)π + Suλuδ

}
= 0 (4.3)

dP⊗ dt-a.e. in Ω× [0, T ] for every x ∈ R.
Exploiting the quadratic nature, let us suppose for every t ∈ [0, T ] and x ∈ R,

V (t, x) = V2(t)x
2 + 2V1(t)x+ V0(t) (4.4)

Z(t, x) = Z2(t)x
2 + 2Z1(t)x+ Z0(t) (4.5)

where V2, V1, V0 : Ω× [0, T ] → R and Z2, Z1, Z0 : Ω× [0, T ] → Rd are FW -adapted processes.
Then, (4.3) can be rewritten as

a(u, x) +
(
2V2(u)Φux+ V2(u)Φ2,u + 2V1(u)Φu

)
+ γux

2 + x
(
βubuΨu − lu

)
+
(
SuΘu +

βu
2
Φ2,u

)
+ inf

π,δ

{
Mu

(
π +

[
V2(u)x+ V1(u) +

1
2(Su +MuΘu)

]
Mu

)2
+λu

[
V2(u) + ηu

](
δ +

[
V2(u)x+ V1(u) +

1
2Su

]
V2(u) + ηu

)2
− 1

Mu

(
V2(u)x+ V1(u) +

1

2
(Su +MuΘu)

)2
− λu

[
V2(u)x+ V1(u) +

1
2Su

]2
V2(u) + ηu

}
= 0 dP⊗ dt− a.e.. (4.6)

For the well-posedness, we must have V2 + η > 0 dP⊗ dt-a.e..

Gathering each of (x2, x1, x0)-proportional terms, one obtains the following result.

Lemma 4.1. A “candidate” of the optimal solution and the corresponding value function for
the market maker’s problem (3.12) are given by

π∗
u = − 1

Mu

(
V2(u)X

π∗,δ∗

u− (t, x) + V1(u) +
1

2
(Su +MuΘu)

)
(4.7)

δ∗u = −

[
V2(u)X

π∗,δ∗

u− (t, x) + V1(u) +
1

2
Su

]
V2(u) + ηu

(4.8)

for u ∈ [t, T ] and V (t, x) = V2(t)x
2 + 2V1(t)x + V0(t), respectively. Here, Xπ∗,δ∗(t, x) is the

12



solution of

Xπ∗,δ∗
s (t, x) = x+

∫ s

t

∫
K
zN (du, dz) +

∫ s

t
π∗
udu+

∫ s

t
δ∗udHu, s ∈ [t, T ] . (4.9)

(V2, Z2), (V1, Z1) and (V0, Z0) must be the well-defined solutions of the following three BSDEs

V2(t) = ξ +

∫ T

t

{
−
( 1

Mu
+

λu

V2(u) + ηu

)
V2(u)

2 + γu

}
du−

∫ T

t
Z2(u)dWu (4.10)

V1(t) = −
∫ T

t

{
V2(u)

( 1

Mu
+

λu

V2(u) + ηu

)
V1(u)−

1

2

(
βubuΨu − lu

)
+V2(u)

([ 1

Mu
+

λu

V2(u) + ηu

]Su

2
− 1

2
Θu − buΨu

) }
du−

∫ T

t
Z1(u)dWu (4.11)

V0(t) = −
∫ T

t

{ ( 1

Mu
+

λu

V2(u) + ηu

)(
V1(u) +

Su

2

)2
− V1(u)

(
Φu + buΨu

)
−V2(u)Φ2,u − 1

2
(SuΘu + βuΦ2,u) +

1

4
MuΘ

2
u

}
du−

∫ T

t
Z0(u)dWu , (4.12)

satisfying
V2 + η > 0 (4.13)

dP⊗ dt-a.e. in Ω× [0, T ].

4.2 Verification

We are now going to study each BSDE and show the existence of the candidate solution, and
also confirm that it actually satisfies the optimality principle.

Proposition 4.2. Under Assumptions A and B, the BSDE (4.10) has a unique solution in
(V2, Z2) ∈ Sp(0, T )×Hp

d(0, T ) for ∀ p > 1, and in particular V2(t) satisfies for every t ∈ [0, T ]
and ϵ > 0 that:

1

E
[
1

ξ
+

∫ T

t

( 1

Ms
+

λs

ηs

)
ds
∣∣∣FW

t

] ≤ V2(t)

≤ 1

(T − t+ ϵ)2
E
[
ϵ2ξ +

∫ T

t

(
Ms + (T − s+ ϵ)2γs

)
ds
∣∣∣FW

t

]
. (4.14)

Proof. Let us define the function as

f(t, y) = −
( 1

Mt
+

λt

y + ηt

)
y2 + γt . (4.15)
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Firstly, let us consider the BSDE

Yt = ξ +

∫ T

t
f(s, Ys ∨ 0)ds−

∫ T

t
ZsdWs (4.16)

Due to Assumptions A, B and the definitions (3.10), ξ and f(t, y ∨ 0) with any fixed y are
bounded. Furthermore, it is clear that f(t, y ∨ 0) is a decreasing function in y. Thus, (4.16)
satisfies the standard monotone conditions for the BSDE. By Theorem 5.27 in [30] 4, there
exists a unique solution (Y, Z) ∈ Sp(0, T ) × Hp

d(0, T ) for all p > 1. On the other hand, it is
clear that we have a trivial solution (Y, Z) = (0, 0) if ξ = 0 and γ = 0. Since the terminal
value and the driver f is increasing in (ξ, γ), we actually have Y ≥ 0 by the comparison
theorem (See, for example, Proposition 5.33 in [30].). As a result, the BSDE (4.10) has a
unique solution (V2, Z2) ∈ Sp(0, T )×Hp

d(0, T ) for all p > 1, and in addition, V2 is non-negative.
The derivation of the upper and lower bounds is an adaptation of Proposition 2.1 in

Ankirchner, Jeanblanc & Kruse (2014) [5] for our problem. Let us start from the derivation
of the upper bound. For all y, k ∈ R,

y2 − 2ky + k2 ≥ 0 (4.17)

is satisfied. For an arbitrary constant ϵ > 0, choosing k =
Mt

T − t+ ϵ
yields

−
( 1

Mt
+

λt

y + ηt

)
y2 ≤ − 1

Mt
y2 ≤ − 2

T − t+ ϵ
y +

Mt

(T − t+ ϵ)2
(4.18)

for all y ≥ 0.
With some abuse of notation, consider the next linear BSDE

Y ϵ
t = ξ +

∫ T

t

{
− 2

T − s+ ϵ
Y ϵ
s +

Ms

(T − s+ ϵ)2
+ γs

}
ds−

∫ T

t
Zϵ
sdWs . (4.19)

This is a linear BSDE with a bounded Lipschitz constant. Due to the boundedness of ξ,M, γ,
there exists a unique solution (Y ϵ, Zϵ) ∈ Sp(0, T )×Hp

d(0, T ) for all p > 1. By the inequality
(4.18) and the comparison theorem, we have

V2(t) ≤ Y ϵ
t (4.20)

for all t ∈ [0, T ] and ϵ > 0. In addition, Y ϵ can be solved as

Y ϵ
t = E

[
ξe−

∫ T
t

2
T−s+ϵ

ds +

∫ T

t
e−

∫ s
t

2
T−u+ϵ

du
( Ms

(T − s+ ϵ)2
+ γs

)
ds
∣∣∣FW

t

]
=

1

(T − t+ ϵ)2
E
[
ϵ2ξ +

∫ T

t

(
Ms + (T − s+ ϵ)2γs

)
ds
∣∣∣FW

t

]
(4.21)

and hence we obtained the desired upper bound.

4One can simply put µ=l=0 in the theorem.
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Now, let us study the lower bound. Put

Ṽt := E
[
1

ξ
+

∫ T

t

( 1

Ms
+

λs

ηs

)
ds
∣∣∣FW

t

]
. (4.22)

Due to the existence of a constant c > 0 such that ξ,M, η ≥ c, it satisfies

1

ξ̄
≤ Ṽ ≤ 1

c

(
1 + T (1 + λ̄)

)
(:= κ) (4.23)

where ξ̄, λ̄ are the upper bounds of ξ, λ, respectively. Therefore, there exists Z̃ ∈ Hp
d(0, T ), ∀p >

0 such that

dṼt = −
( 1

Mt
+

λt

ηt

)
dt+ Z̃tdWt . (4.24)

Then the process Ũt := 1/Ṽt, which has the bounds 1/κ ≤ Ũ ≤ ξ̄, satisfies

Ũt = ξ +

∫ T

t

{
−
( 1

Ms
+

λs

ηs

)
Ũ2
s − |Γs|2

Ũs

}
ds−

∫ T

t
ΓsdWs , (4.25)

where Γ := − Z̃

Ṽ 2
. Here, the terminal value, the first term of the driver and the coefficient of

|Γ|2 are all bounded. Thus the comparison theorem for the quadratic BSDE (See, Theorem
2.6 in [25]), one sees Ũt ≤ V2(t) and hence the desired result is obtained.

Since the BSDEs for (V1, Z1) and (V0, Z0) are linear, one easily obtains the following
results.

Proposition 4.3. Under Assumptions A and B, there exist unique solutions (V1, Z1) ∈
S4(0, T )×H4

d(0, T ) for (4.11), and (V0, Z0) ∈ S2(0, T )×H2
d(0, T ) for (4.12), respectively.

Proof. We denote by C some positive constant, which may change line by line. From Propo-
sition 4.2, V2 is uniformly bounded and hence so is the linear coefficient of V1. In addition,

E

[ (∫ T

0

∣∣∣∣V2(s)
([ 1

Ms
+

λs

V2(s) + ηs

]Ss

2
− Θs

2
− bsΨs

)
− 1

2
(βsbsΨs − ls)

∣∣∣∣ ds)4
]

≤ CE
[
1 +

∫ T

0

(
|Ss|4 + |bs|4 + |ls|4

)
ds
]
< ∞ (4.26)

Thus, by Theorem 5.21 (see also Section 5.3.5) in [30], there exists a unique solution (V1, Z1) ∈
S4(0, T )×H4

d(0, T ).
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As for (4.12), it is easy to see that

E

[ (∫ T

0

∣∣∣∣( 1

Ms
+

λs

V2(s) + ηs

)(
V1(s) +

Ss

2

)2
− V1(s)(Φs + bsΨs)− V2(s)Φ2,s

−1

2
(SsΘs + βsΦ2,s) +

1

4
MsΘ

2
s

∣∣∣∣ ds)2
]

≤ CE
[
1 +

∫ T

0

(
|V1(s)|4 + |Ss|4 + |bs|4

)
ds

]
< ∞, (4.27)

where we have used V1 ∈ S4(0, T ) proved in the previous arguments. By the same reasoning,
there exists a unique solution (V0, Z0) ∈ S2(0, T )×H2

d(0, T ).

In order to check the optimality condition, we also need the following property of Xπ∗,δ∗ .

Proposition 4.4. Under Assumptions A and B, the process of the position size
(
Xπ∗,δ∗

s (t, x)
)
s∈[t,T ]

given by (4.9) belongs to S4(t, T ).

Proof. Let us take the starting time 0 and write Xπ∗,δ∗
s (0, x) as X∗

s for notational simplicity.
We have

Xπ∗,δ∗
s (0, x) = x+

∫ s

0

∫
K
zÑ (du, dz)−

∫ s

0

(
V2(u)X

π∗,δ∗

u− (0, x) + V1(u) +
Su
2

)
V2(u) + ηu

dH̃u

−
∫ s

0

{
V2(u)

( 1

Mu
+

λu

V2(u) + ηu

)
Xπ∗,δ∗

u (0, x) +
( 1

Mu
+

λu

V2(u) + ηu

)(
V1(u) +

Su

2

)
+
Θu

2
− Φu

}
du (4.28)

Under Assumptions A and B, there exists some positive constant C such that

|X∗
t |4 ≤ C

[
1 +

∫ t

0

(
|X∗

u|4 + |V1(u)|4 + |Su|4
)
du

+
(∫ t

0

∫
K
zÑ (du, dz)

)4
+

(∫ t

0

[V2(u)X
∗
u− + V1(u) +

Su
2 ]

V2(u) + ηu
dH̃u

)4
 , (4.29)

for every t ∈ [0, T ]. Let us define a sequence of F-stopping times (τn)n≥0 by

τn := inf {t ≥ 0 : |X∗
t | > n} ∧ T , (4.30)

and denote the τn-stopped process of the position size as
(
X∗τn

s

)
s≥0

. Since we already know

that X∗ ∈ S2(0, T ), it is clear that τn → T a.s. as n → ∞.
The BDG inequality (see, for example, Theorem 10.36 in [23] for general local martingales)
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and positivity of integrand yield

E
[
|X∗τn

t |4
]
≤ CE

[
1 +

∫ t

0

(
|X∗τn

u |4 + |V1(u)|4 + |Su|4
)
du+

(∫ t

0

∫
K
z2N (du, dz)

)2

+

(∫ t

0

∣∣∣V2(u)X
∗τn
u− + V1(u) +

Su
2

V2(u) + ηu

∣∣∣2dHu

)2
 . (4.31)

Using Itô-formula, the definition of the stopping time and the boundedness of λ, we obtain

E
[(∫ t

0
|X∗τn

u− |2dHu

)2]
= E

[∫ t

0
|X∗τn

u− |4dHu + 2

∫ t

0
|X∗τn

u− |2
(∫ u−

0
|X∗τn

v− |2dHv

)
dHu

]
≤ CE

[∫ t

0
|X∗τn

u |4du
]

, (4.32)

which yields

E

(∫ t

0

∣∣∣V2(u)X
∗τn
u− + V1(u) +

Su
2

V2(u) + ηu

∣∣∣2dHu

)2
 ≤ CE

[∫ t

0

(
|V1(u)|4 + |Su|4

)
du+

∫ t

0
|X∗τn

u |4du
]
(4.33)

since V1, S ∈ S4(0, T ). Thus, from (4.31), we have

E
[
|X∗τn

t |4
]
≤ CE

[
1 + ||V1||4T + ||S||4T +

∫ t

0
|X∗τn

u |4du
]

(4.34)

and hence, by the Gronwall lemma, for ∀t ∈ [0, T ],

E
[
|X∗τn

t |4
]
≤ CE

[
1 + ||V1||4T + ||S||4T

]
eCT < ∞ . (4.35)

Passing to the limit n → ∞, we see E
[
|X∗

t |4
]
< C for every t ∈ [0, T ] with some positive

constant C. Using the BDG inequality and the above estimate, we obtain from (4.29) that

E
[
||X∗||4T

]
≤ CE

[
1 + ||V1||4T + ||S||4T +

∫ T

0
|X∗

u|4du
]
< ∞ . (4.36)

Corollary 4.1. Under Assumptions A and B, the candidate solution (π∗, δ∗) in Lemma 4.1
is well-defined, unique and satisfies (π∗, δ∗) ∈ S4(t, T )× S4(t, T ) ⊂ U .

Finally, we arrived the first main result of the paper.

Theorem 4.1. Under Assumptions A and B, the candidate solution (π∗, δ∗) in Lemma 4.1
is, in fact, the unique optimal solution of the market maker’s problem given by (3.12).

Proof. It suffices to confirm that the optimality principle of Proposition 4.1 is indeed satisfied.
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Firstly, we have to see

•
(∫ s

t
Z(u,Xπ∗,δ∗

u (t, x))dWu

)
s∈[t,T ]

•
(∫ s

t

(
V (u,Xπ∗,δ∗

u− (t, x) + δ∗u)− V (u,Xπ∗,δ∗

u− (t, x))
)
dH̃u

)
s∈[t,T ]

•
(∫ s

t

∫
K

(
V (u,Xπ∗,δ∗

u− (t, x) + z)− V (u,Xπ∗,δ∗

u− (t, x))
)
Ñ (du, dz)

)
s∈[t,T ]

are all true F-martingales. For notational simplicity, let us put t = 0 and X∗
s = Xπ∗,δ∗

s (0, x).
By the BDG inequality, Proposition 4.2, 4.3 and 4.4, there exists a positive constant C

such that

E

[
sup

s∈[0,T ]

∣∣∣∣∫ s

0
Z(u,X∗

u)dWu

∣∣∣∣
]
≤ CE

(∫ T

0
|Z(s,X∗

s )|2ds
) 1

2


≤ CE

(∫ T

0
|Z2(s)|2|X∗

s |4ds
) 1

2

+

(∫ T

0
|Z1(s)|2|X∗

s |2ds
) 1

2

+

(∫ T

0
|Z0(s)|2ds

) 1
2


≤ CE

[
1 + ||X∗||4T +

∫ T

0

(
|Z2(s)|2 + |Z1(s)|2 + |Z0(s)|2

)
ds

]
< ∞ (4.37)

where in the second inequality, we have used the fact that

(a+ b+ c)1/2 ≤
√
a+

√
b+

√
c . (4.38)

for every a, b, c ≥ 0. Thus,
(∫ s

0 Z(u,X∗
u)dWu

)
s∈[0,T ]

is a martingale.

For the integrations by the counting and marked point processes, it is suffice to check that
the integration by the corresponding compensator is in L1(Ω) (See, Corollary C4, Chapter
VIII in [12].). Therefore, for the second term, we need to check

E
[∫ T

0

∣∣V (u,X∗
u + δ∗u)− V (u,X∗

u)
∣∣λudu

]
< ∞ (4.39)

In fact,

E
[∫ T

0

∣∣V (u,X∗
u + δ∗u)− V (u,X∗

u)
∣∣λudu

]
= E

[∫ T

0
λu

∣∣V2(u)(2X
∗
uδ

∗
u + (δ∗u)

2) + 2V1(u)δ
∗
u

∣∣du]
≤ CE

[∫ T

0

(
|X∗

u|2 + |δ∗u|2 + |V1(u)|2
)
du

]
< ∞. (4.40)
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Similarly, for the third term,

E
[∫ T

0

∫
K

∣∣V (u,X∗
u + z)− V (u,X∗

u)
∣∣Λ(u, z)dudz]

= E
[∫ T

0

∫
K

∣∣V2(u)(2X
∗
uz + z2) + 2V1(u)z

∣∣Λ(u, z)dudz]
≤ CE

[∫ T

0

(
|X∗

u|2 + |V1(u)|2 + |Φ2,u|
)
du

]
< ∞ (4.41)

where we have used the boundedness of the compensator and the support K. The above
facts combined with the construction of a(t, x), strict positivity of M as well as λ[V2 + η],
guarantee that the optimality principle in Proposition 4.1 is indeed satisfied.

5 The Property of the Terminal Position Size

Let us take a positive constant 1 < L < ∞ and set ξ = L, i.e., ξ̃ = βT /2 + L. We denote
the corresponding solutions of the BSDEs (4.10), (4.11) and (4.12) by (V L

i , ZL
i ){i=1,2,3},

respectively. In this section, we study the behavior of the terminal size Xπ∗,δ∗

T according
to the change of the penalty size L.

Assumption C
In this section, let us take the lower bound c in the assumption (b3) in such a way that
c/(1 + λ̄) < 1 and also c̃ := c/[M̄(1 + λ̄)] < 1/2. Obviously, we can always choose c > 0 (or
equivalently M̄, λ̄) to satisfy these inequalities.

Lemma 5.1. Under Assumptions A, B, C and ξ = L, the following inequalities hold for
every 0 ≤ t ≤ s ≤ T with an L-independent positive constant C;

V L
2 (t) ≤ C

1

T − t+ ϵL

exp
(
−
∫ s

t
r(u, V L

2 (u))du
)
≤
(T − s+ ϵL
T − t+ ϵL

)c̃
(5.1)

where ϵL :=
1

L
, c̃ :=

c

M̄(1 + λ̄)
and r(t, y) :=

( 1

Mt
+

λt

y + ηt

)
y.

Proof. Since the inequality in Proposition 4.2 holds arbitrary ϵ > 0, one can choose ϵ = ϵL =
1/L. Then one obtains

V L
2 (t) ≤ ϵL

(T − t+ ϵL)2
+

T − t

(T − t+ ϵL)2
M̄ +

γ̄

3

(
(T − t+ ϵL)−

ϵ3L
(T − t+ ϵL)2

)
≤ 1

T − t+ ϵL

(
1 + M̄ +

γ̄

3
(T + 1)2

)
≤ C

T − t+ ϵL
. (5.2)
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Similarly,

V L
2 (t) ≥ 1

E
[
1

L
+

∫ T

t

( 1

Ms
+

λs

ηs

)
ds
∣∣∣FW

t

] ≥ 1

ϵL +
(1 + λ̄)

c
(T − t)

(5.3)

where c > 0 is the lower bound given in (b3). Thus,∫ s

t
r(u, V L

2 (u))du ≥
∫ s

t

1

ϵL + 1+λ̄
c (T − u)

1

M̄
du

= − c

M̄(1 + λ̄)
ln
(ϵL + 1+λ̄

c (T − s)

ϵL + 1+λ̄
c (T − t)

)
. (5.4)

It yields

exp
(
−
∫ s

t
r(u, V L

2 (u))du
)
≤

(
c

1+λ̄
ϵL + T − s

c
1+λ̄

ϵL + T − t

)c̃

. (5.5)

Note that for every 0 ≤ t ≤ s ≤ T ,
(
xϵL+T−s
xϵL+T−t

)c̃
is a increasing function for x ≥ 0. Thus, due

to the arrangement of c, one obtains

exp
(
−
∫ s

t
r(u, V L

2 (u))du
)
≤
(T − s+ ϵL
T − t+ ϵL

)c̃
. (5.6)

We also have the following Lemma.

Lemma 5.2. Under Assumptions A, B, C and ξ = L, there exists an L-independent positive
constant C such that

E
[
||V L

1 ||2T + ||Xπ∗,δ∗(0, x)||2T
]
≤ C . (5.7)

Proof. Let us put A : Ω× [0, T ] → R and α : Ω× [0, T ] → R as

Au :=
( 1

Mu
+

λu

V L
2 (u) + ηu

)Su

2
− 1

2
Θu − buΨu (5.8)

αu :=
1

2

(
βubuΨu − lu

)
. (5.9)

Obviously, A,α ∈ S4(0, T ) ⊂ S2(0, T ), and whose S2(0, T )-norms can be dominated by L-
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independent constants. It is straightforward to check that V L
1 can be written as

V L
1 (t) = −E

[∫ T

t
e−

∫ s
t r(u,V L

2 (u))du
(
V L
2 (s)As − αs

)
ds
∣∣∣FW

t

]
. (5.10)

Thus, by Lemma 5.1, it satisfies the following inequality for ∀t ∈ [0, T ]:

|V L
1 (t)| ≤ E

[∣∣∣∫ T

t
e−

∫ s
t r(u,V L

2 (u))du(V L
2 (s)As − αs)ds

∣∣∣∣∣∣FW
t

]
≤ (T − t)E

[
||α||T

∣∣FW
t

]
+ E

[
||A||T

∣∣FW
t

](∫ T

t

(T − s+ ϵL
T − t+ ϵL

)c̃ C

T − s+ ϵL
ds

)
≤ (T − t)E

[
||α||T

∣∣FW
t

]
+ CE

[
||A||T

∣∣FW
t

]1
c̃

(
1−

[ ϵL
T − t+ ϵL

]c̃)
≤ CE

[
||α||T + ||A||T

∣∣FW
t

]
. (5.11)

Notice that
(
mt := E

[
||α||T + ||A||T

∣∣FW
t

])
t∈[0,T ]

is a square integrable martingale. Thus,

from Doob’s maximum inequality, one has

E
[
||V L

1 ||2T
]
≤ CE

[
sup

t∈[0,T ]

∣∣mt

∣∣2] ≤ 4CE
[∣∣mT

∣∣2]
≤ CE

[
||α||2T + ||A||2T

]
(5.12)

where the right-hand side can be dominated by an L-independent constant.
Now, let us define another process G : Ω× [0, T ] → R as

Gu =
( 1

Mu
+

λu

V L
2 (u) + ηu

)(
V L
1 (u) +

Su

2

)
+

Θu

2
− Φu (5.13)

which satisfies G ∈ S4(0, T ) ⊂ S2(0, T ) and its S2(0, T ) norm can be dominated by an L-
independent constant by the first part of the proof. From (4.7), (4.8) and (4.9), it is easy to
see that

X∗
t = e−

∫ t
0 r(u,V L

2 (u))dux−
∫ t

0
e−

∫ t
s r(u,V L

2 (u))duGsds

+

∫ t

0

∫
K
e−

∫ t
s r(u,V L

2 (u))duzÑ (ds, dz) +

∫ t

0
e−

∫ t
s r(u,V L

2 (u))duδ∗sdH̃s (5.14)

holds for every t ∈ [0, T ] with the notation X∗
t := Xπ∗,δ∗

t (0, x). Using the fact that r(·, V L
2 (·))

is a positive process and the BDG inequality, we have, with some L-independent constant C,

E
[
||X∗||2t

]
≤ CE

[
x2 + ||G||2t +

∫ t

0

∫
K
z2N (ds, dz) +

∫ t

0
|δ∗s |2dHs

]
≤ CE

[
x2 + ||G||2T + ||Φ2||T + ||V L

1 ||2T + ||S||2T
]
+ CE

[∫ t

0
||X∗||2sds

]
. (5.15)
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Let denote an L-independent constant dominating the first term by C ′. Since we already
know X∗ ∈ S4(0, T ),

E
[
||X∗||2t

]
≤ C ′ + C

∫ t

0
E
[
||X∗||2s

]
ds (5.16)

and hence by the Gronwall lemma,

E
[
||X∗||2T

]
≤ C ′eCT . (5.17)

Combining the first part, the claims were proved.

Then, we can establish the following result.

Theorem 5.1. Under Assumptions A, B, C and ξ = L, there exists an L-independent positive
constant C satisfying

E
[∣∣Xπ∗,δ∗

T (0, x)
∣∣2] ≤ C

( ϵL
T + ϵL

)2c̃
(5.18)

and hence one can make the terminal position size arbitrarily close to zero by taking a large
L < ∞ as the penalty.

Proof. From (5.14) and Lemma 5.1, we have

E
[∣∣X∗

T

∣∣2] ≤ CE
[
x2
(
e−

∫ T
0 r(u,V L

2 (u))du
)2

+ ||G||2T
(∫ T

0
e−

∫ T
s r(u,V L

2 (u))duds
)2

+

∫ T

0
e−2

∫ T
s r(u,V L

2 (u))du
(
Φ2,s + |δ∗s |2

)
ds

]
≤ Cx2

( ϵL
T + ϵL

)2c̃
+CE

[
||X∗||2T + ||V L

1 ||2T + ||G||2T + ||S||2T + ||Φ2||T
]∫ T

0

( ϵL
T − s+ ϵL

)2c̃
ds . (5.19)

Notice that the expectation in the second term is dominated by an L-independent constant
by Lemma 5.2. Using the assumption 2c̃ < 1, we have

E
[∣∣X∗

T

∣∣2] ≤ C

{( ϵL
T + ϵL

)2c̃
+

1

1− 2c̃
(T + ϵL)

( ϵL
T + ϵL

)2c̃
− ϵL

1− 2c̃

}
≤ C

( ϵL
T + ϵL

)2c̃
(5.20)

with some L-independent positive constant, and hence obtained the desired result.

Remark

Although we can discuss the limit of the singular terminal condition L → ∞ as presented in
[5], we can only apply their results to V L

2 . For V L
1 , there appears a singular drift term which

is expected to create a discontinuity at the terminal point. This makes the detailed analysis
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difficult to carry out. However, as the previous result shows, we can make the terminal
position size arbitrarily small by selecting large enough L < ∞ as the penalty. Therefore, the
proposed strategy can still be used as the effective ( the terminal position size is not exactly
zero but can be arbitrarily small ) liquidation strategy in the presence of incoming customer
orders for a market maker.

6 An Extension to Portfolio Position Management

In the following sections, we are going to extend the previous framework so that we can deal
with the optimal position management for a market maker in the presence of n ∈ N securities.
As before, let us make the following assumptions.

Assumption A′

All the stochastic processes which do not jump by N i, H i for i ∈ {1, · · · , n} are assumed to be
FW -adapted and hence continuous. This FW adaptedness includes all the stochastic processes
defined below.

(a′1) S : Ω× [0, T ] → Rn is non-negative and S ∈ S4n(0, T ).
(a′2) b, l : Ω× [0, T ] → Rn and b, l ∈ S4n(0, T ).
(a′3) Λ

i(·, ·) : Ω× [0, T ]×R → R for i ∈ {1, · · · , n} are such that Λi(t, ·)(ω) is a non-negative
measurable function with bounded support K ⊂ R for every t ∈ [0, T ] and ω ∈ Ω, and that
Λi(·, z) is a uniformly bounded FW -adapted process for every z ∈ K.
(a′4) γ̃ : Ω × [0, T ] → Rn×n is uniformly bounded and takes values in the space of n × n
symmetric positive-semidefinite matrices.
(a′5) M : Ω × [0, T ] → Rn×n is uniformly bounded and takes values in the space of n × n
symmetric positive-definite matrices.
(a′6) ξ̃ : Ω → Rn×n is bounded, FW

T -measurable and takes values in the space of n × n
symmetric positive-semidefinite matrices.
(a′7) λ

i, η̃i : Ω× [0, T ] → R for i ∈ {1, · · · , n} are uniformly bounded and strictly positive.
(a′8) β : Ω × [0, T ] → Rn×n is uniformly bounded and takes values in the space of n × n
symmetric matrices.
(a′9) There is no simultaneous jump among (N i,H i)i∈{1,··· ,n}.

6.1 The market description

We treat basically the same market described in Section 3.1 but now with n securities. The
market maker’s position for the securities starting x ∈ Rn at time t is given by the following
n-dimensional vector process:

Xπ,δ
s (t,x) = x+

n∑
i=1

∫ s

t

∫
K
eizN i(du, dz) +

∫ s

t
πudu+

n∑
i=1

∫ s

t
eiδ

i
udH

i
u (6.1)

where ei, i ∈ {1, · · · , n} is the unit Rn vector whose elements are all zero except the i-
th element given by 1. π = (πi)i∈{1,··· ,n} and δ = (δi)i∈{1,··· ,n} are F-predictable trading
strategies of the market maker in the exchange and in the dark pool, respectively. The
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superscript i is added to distinguish the corresponding security. H i, i ∈ {1, · · · , n} is the
counting process denoting the occurrence of the execution of the i-th security in the dark pool.
N i, i ∈ {1, · · · , n} is the counting measure which describes the occurrence of an incoming
customer order of the i-th security and its size.

We suppose that there exists a common bounded support K ⊂ R for the size of the
incoming orders. We assume as before the existence of the compensators such that∫ t

0

∫
K
Ñ i(ds, dz) =

∫ t

0

∫
K

(
N i(ds, dz)− Λi(s, z)dzds

)
∫ t

0
dH̃ i

s =

∫ t

0

(
dH i

s − λi
sds
)

(6.2)

for t ∈ [0, T ] are F-martingales for every i ∈ {1, · · · , n}. Let us also set the stochastic
processes Φ = (Φi)i∈{1,··· ,n}, Ψ = (Ψi)i∈{1,··· ,n} and Φ2 = (Φi

2)i∈{1,··· ,n} representing the
moments of the order size by

Φi
t :=

∫
K
zΛi(t, z)dz, Ψi

t :=

∫
K
|z|Λi(t, z)dz, Φi

2,t :=

∫
K
z2Λi(t, z)dz , (6.3)

for t ∈ [0, T ] which are all uniformly bounded by Assumption A′.

We assume the price vector S̃
π,δ

(t,x) =
(
Sπ,δ
i (t,x)

)
i∈{1,··· ,n}, which denotes the market

price observed in the exchange under the impact of the market maker’s strategy (π, δ) starting
from the position size x at time t, is given by

S̃
π,δ

s (t,x) = Ss +Msπs − βsX
π,δ
s (t,x) (6.4)

for s ∈ [t, T ]. Here, M and β are not necessarily diagonal and hence they can induce direct as
well as contagious stochastic linear price impacts from the continuous trading and also from
the aggregate reactions of the other investors regarding the position size held by the market
maker. It is natural to imagine that a high speed of trading or a big outstanding position
of a certain security by a market maker can induce similar price actions among its closely
related securities.

6.2 The market maker’s problem

We model the cash flow in the interval ]t, T ] to the market maker with strategy (π, δ) as

−
∫ T

t
S̃

π,δ

s (t,x)⊤πsds−
n∑

i=1

∫ T

t

∫
K
S̃π,δ
i,s−(t,x)(1− sgn(z)bis)zN i(ds, dz)

−
n∑

i=1

∫ T

t

((
Ss − βsX

π,δ
s− (t,x)

)i
δis + η̃is|δis|2

)
dH i

s +

∫ T

t
l⊤s X

π,δ
s (t, x)ds, (6.5)
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where the symbol ⊤ denotes the transposition. We consider the following market maker’s
problem:

Ṽ (t,x) = ess inf
π,δ∈U

E

[
(Xπ,δ

T )⊤ξ̃Xπ,δ
T +

∫ T

t
(Xπ,δ

s )⊤γ̃sX
π,δ
s ds

+

∫ T

t

(
(S̃

π,δ

s )⊤πs − l⊤s X
π,δ
s

)
ds+

n∑
i=1

∫ T

t

∫
K
S̃π,δ
i,s−
(
1− sgn(z)bis

)
zN i(ds, dz)

+
n∑

i=1

∫ T

t

((
Ss − βsX

π,δ
s−
)i
δis + η̃is|δis|2

)
dH i

s

∣∣∣Ft

]
, (6.6)

where we have omitted the argument (t,x) to save the space. By making ξ̃ and γ̃ proportional
to the (stochastic) covariance matrix among the securities, the market maker can include the
portfolio diversification effects for its position management. In the above modeling, the
customer orders and the executions in the dark pool are assumed to occur independently for
each security. However, it does not seem difficult to introduce simultaneous customer orders
or the dark pool executions for an arbitrary subset of the securities by following the idea of
dynamic Markov copula model studied by Bielecki, Cousin, Crépey & Herbertsson (2014a,
2014b) [9, 10]. If there exist strong clusterings among the customer orders or the dark pool
executions, an extension to this direction may become relevant.

The set of admissible strategies U is defined below.

Definition 6.1. We define the admissible strategies U by the set of F-predictable processes
(π, δ) that belong to H2

n(0, T )×H2
n(0, T ) and also Markovian with respect to the position size,

i.e., they are expressed with some measurable functions (fπ, f δ) by

πs = fπ(s,Xπ,δ
s− (t,x)), δs = f δ(s,Xπ,δ

s− (t,x)) (6.7)

where, for a ∈ {π, δ}, fa : Ω × [0, T ] × Rn → Rn and fa(·,x) is an FW -adapted process for
all x ∈ Rn.

Let us give the dynamics of the FW -adapted process β as

dβt = µβ
t dt+

d∑
j=1

(
σβ
t

)
j
dW j

t (6.8)

and define

ξ := ξ̃ − βT
2
, γ := γ̃ +

µβ

2

ηi := η̃i +
(β)i,i
2

, for i ∈ {1, · · · , n} . (6.9)

Assumption B′

(b′1) µβ : Ω × [0, T ] → Rn×n and (σβ)i, i ∈ {1, · · · , d} : Ω × [0, T ] → Rn×n are uniformly
bounded and symmetric.
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(b′2) ξ is positive-semidefinite.
(b′3) γ is positive-semidefinite dP⊗ dt-a.e..
(b′4) There exists a constant c > 0 such that λiηi ≥ c dP ⊗ dt-a.e. for every i ∈ {1, · · · , n}
and also y⊤My ≥ c|y|2 dP⊗ dt-a.e. for every y ∈ Rn.

Definition 6.2. The cost function for the market maker with a given position size x ∈ Rn

at t is

J t,x(π, δ) = E

[
(Xπ,δ

T )⊤ξXπ,δ
T +

∫ T

t

(
(Xπ,δ

s )⊤γsX
π,δ
s + (Xπ,δ

s )⊤
(
βs(bΨ)s − ls

))
ds

+

∫ T

t

{
π⊤
s Msπs +

(
Ss +MsΘs)

⊤πs + S⊤
s Θs +

n∑
i=1

(
λi
s

[
ηis(δ

i
s)

2 + Si
sδ

i
s

]
+

(βs)i,i
2

Φi
2,s

)}
ds
∣∣∣FW

t

]
(6.10)

where Θ, bΨ : Ω × [0, T ] → Rn are defined by (Θs)
i := Φi

s − bisΨ
i
s and (bΨ)is = bisΨ

i
s for

i ∈ {1, · · · , n}. Here, the argument (t,x) of the position size is omitted to save the space.

Proposition 6.1. Under Assumptions A′ and B′, the market maker’s problem (6.6) is equiv-
alent to

V (t,x) = ess inf
(π,δ)∈U

J t,x(π, δ) (6.11)

and it has a unique optimal solution (π∗, δ∗) ∈ U .

Proof. By using

−
∫ T

t
(Xπ,δ

s− )⊤βsdX
π,δ
s = −1

2
(Xπ,δ

T )⊤βTX
π,δ
T +

1

2
x⊤βtx

+

∫ T

t

(
1

2
(Xπ,δ

s )⊤µβ
sX

π,δ
s ds+

1

2
(Xπ,δ

s )⊤σβ
sX

π,δ
s · dWs

)
+

n∑
i=1

(∫ T

t

1

2
(βs)i,i(δ

i
s)

2dH i
s +

∫ T

t

∫
K

1

2
(βs)i,iz

2N i(ds, dz)

)
and redefining the value function

V (t,x) := Ṽ (t,x)− 1

2
x⊤βtx (6.12)

one can prove it in exactly the same way as Proposition 3.1.

7 Solving the Problem with Multiple Securities

7.1 A candidate solution

We derive a candidate solution for the market maker’s problem. Firstly, let us rewrite the
optimality principle for the problem with multiple securities.
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Proposition 7.1. (Optimality Principle) Let Assumptions A′ and B′ are satisfied. Then,
(a) For all x ∈ Rn, (π, δ) ∈ U and t ∈ [0, T ], the process(

V (s,Xπ,δ
s ) +

∫ s

t

(
(Xπ,δ

u )⊤γuX
π,δ
u + (Xπ,δ

u )⊤
(
βu(bΨ)u − lu

))
du+

∫ s

t

{
π⊤
uMuπu

+
(
Su +MuΘu)

⊤πu + S⊤
uΘu +

n∑
i=1

(
λi
u

[
ηiu(δ

i
u)

2 + Si
uδ

i
u

]
+

(βu)i,i
2

Φi
2,u

)}
du

)
s∈[t,T ]

(7.1)

is an F-submartingale.
(b) (π∗, δ∗) is optimal if and only if(
V (s,Xπ∗,δ∗

s ) +

∫ s

t

(
(Xπ∗,δ∗

u )⊤γuX
π∗,δ∗
u + (Xπ∗,δ∗

u )⊤
(
βu(bΨ)u − lu

))
du+

∫ s

t

{
(π∗

u)
⊤Mu(π

∗
u)

+
(
Su +MuΘu)

⊤π∗
u + S⊤

uΘu +

n∑
i=1

(
λi
u

[
ηiu(δ

∗i
u)

2 + Si
uδ

∗i
u

]
+

(βu)i,i
2

Φi
2,u

)}
du

)
s∈[t,T ]

(7.2)

is an F-martingale.

Derivation of a candidate solution and the associated stochastic HJB equation is similar

to the single security case. We assume that the FW semimartingale
(
V (t,x)

)
t∈[0,T ]

has the

following decomposition:

V (s,x) = V (t,x) +

∫ s

t
a(u,x)du+

∫ s

t
Z(u,x)dWu (7.3)

where a : Ω× [0, T ]×Rn → R, Z : Ω× [0, T ]×Rn → Rd and a(·,x) as well as Z(·,x) are FW -
adapted processes for all x ∈ Rn. We suppose that the value function can be decomposed,
for every t ∈ [0, T ] and x ∈ Rn as

V (t,x) = x⊤V2(t)x+ 2x⊤V1(t) + V0(t) (7.4)

Z(t,x) = x⊤Z2(t)x+ 2x⊤Z1(t) + Z0(t) (7.5)

where V2 : Ω × [0, T ] → Rn×n, V1 : Ω × [0, T ] → Rn, V0 : Ω × [0, T ] → R, Z2 : Ω × [0, T ] →
Rn×n×d, Z1 : Ω × [0, T ] → Rn×d and Z0 : Ω × [0, T ] → Rd are all FW -adapted processes. In
addition, V2 and Z2 (with respect to the first two indexes) are symmetric.

A lengthy but straightforward calculation shows that a necessary condition for the opti-
mality principle is

a(u,x) + x⊤γux+ x⊤(βu(bΨ)u − lu) + S⊤
uΘu +

n∑
i=1

(βu)i,i
2

Φi
2,u

+2x⊤V2(u)Φu + 2V1(u)
⊤Φu +

n∑
i=1

[V2(u)]i,iΦ
i
2,u
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+ inf
π,δ

{ (
π +M−1

u

[
V2(u)x+ V1(u) +

1

2
(Su +MuΘu)

])⊤
Mu

×
(
π +M−1

u

[
V2(u)x+ V1(u) +

1

2
(Su +MuΘu)

])
+

n∑
i=1

λi
u

(
[V2(u)]i,i + ηiu

)(
δi +

[
V2(u)x+ V1(u) +

1
2Su

]⊤
ei

[V2(u)]i,i + ηiu

)2

−
[
V2(u)x+ V1(u) +

1

2
(Su +MuΘu)

]⊤
M−1

u

[
V2(u)x+ V1(u) +

1

2
(Su +MuΘu)

]
−

n∑
i=1

λi
u

([
V2(u)x+ V1(u) +

Su

2

]⊤
ei

)2
[V2(u)]i,i + ηiu

 = 0 dP⊗ dt− a.e., (7.6)

where we need [V2]i,i + ηi > 0 dP ⊗ dt-a.e. for every i ∈ {1, · · · , n}. As a result, we obtain
the following.

Lemma 7.1. A “candidate” of the optimal solution and the corresponding value function for
the market maker’s problem (6.11) are given by

π∗
u = −M−1

u

(
V2(u)X

π∗,δ∗

u− (t,x) + V1(u) +
1

2

(
Su +MuΘu

))
(7.7)

(δ∗u)
i = −

[
V2(u)X

π∗,δ∗

u− (t,x) + V1(u) +
1

2
Su

]i
[V2(u)]i,i + ηiu

, for i ∈ {1, · · · , n} (7.8)

for u ∈ [t, T ] and V (t,x) = x⊤V2(t)x+ 2x⊤V1(t) + V0(t), respectively. Here, Xπ∗,δ∗(t,x) is
the solution of

Xπ∗,δ∗
s (t,x) = x+

n∑
i=1

∫ s

t

∫
K
eizN i(du, dz) +

∫ s

t
π∗
udu+

n∑
i=1

∫ s

t
ei(δ

∗
u)

idH i
u, s ∈ [t, T ] (7.9)

(V2, Z2), (V1, Z1) and (V0, Z0) must be the well-defined solutions of the following three BSDEs

V2(t) = ξ +

∫ T

t

{
−V2(u)

[
M−1

u + diag
( λu

V2(u) + ηu

)]
V2(u) + γu

}
du−

∫ T

t
Z2(u)dWu

(7.10)

V1(t) = −
∫ T

t

{
V2(u)

[
M−1

u + diag
( λu

V2(u) + ηu

)]
V1(u)−

1

2

(
βu(bΨ)u − lu

)
+ V2(u)

([
M−1

u + diag
( λu

V2(u) + ηu

)] Su

2
− 1

2
Θu − (bΨ)u

)}
du−

∫ T

t
Z1(u)dWu

(7.11)
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V0(t) = −
∫ T

t

{ (
V1(u) +

Su

2

)⊤ [
M−1

u + diag
( λu

V2(u) + ηu

)](
V1(u) +

Su

2

)
−
(
Φu + (bΨ)u

)⊤
V1(u)−

n∑
i=1

[V2(u)]i,iΦ
i
2,u

− 1

2

(
S⊤

uΘu +

n∑
i=1

[βu]i,iΦ
i
2,u

)
+

1

4
Θ⊤

uMuΘu

}
du−

∫ T

t
Z0(u)dWu (7.12)

satisfying, for every i ∈ {1, · · · , n},

[V2]i,i + ηi > 0 (7.13)

dP⊗dt-a.e. in Ω× [0, T ]. In the above, diag
(

λu
V2(u)+ηu

)
is defined as a diagonal matrix whose

(i, i)-th element i ∈ {1, · · · , n} is given by
λi
u

[V2(u)]i,i + ηiu
.

7.2 Verification

In the multiple-security setup, V2 follows a non-linear matrix valued BSDE. Since there is
no comparison theorem known for a multi-dimensional BSDE in general, we cannot apply
the technique used in the single-security case. Interestingly however, we shall see V2 is the
backward stochastic Riccati differential equation (BSRDE) associated with a special type of
stochastic linear quadratic control (SLQC) problem in a diffusion setup studied by Bismut
(1976) [11].

Theorem 7.1. Under Assumptions A′ and B′, there exists a unique solution of (V2, Z2) for
the BSDE (7.10). In particular, V2 takes values in the space of n × n symmetric positive-
semidefinite matrices and is a.s. uniformly bounded i.e., there exists a positive constant C ′

such that

ess sup

(
sup

t∈[0,T ]

∣∣V2(t)
∣∣(ω)) ≤ C ′ , (7.14)

and Z2 ∈ Hp
n×n×d(0, T ) for any p > 0.

Proof. Let us introduce an n-dimensional Brownian motion w which is orthogonal to W and
consider F ′

t := FW
t ∨Fw

t where Fw
t is the augmented filtration generated by w. We study an

n-dimensional
(
F′ := (F ′

t)t≥0

)
-adapted vector process staring from x ∈ Rn at time t which is

controlled by the 2n-dimensional vector process θ:

Xθ
s(t,x) = x+

∫ s

t
Cuθudu+

n∑
j=1

∫ s

t
Dj

uθudw
j
u , s ∈ [t, T ] . (7.15)

Here, C : Ω× [0, T ] → Rn×2n is defined by

Cu :=
(
In×n diag(λi

u)
)

(7.16)
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for u ∈ [0, T ], where In×n is the n-dimensional identity matrix, and diag(λi) is the n-
dimensional diagonal matrix whose (i, i)-th element i ∈ {1, · · · , n} is given by λi. We use the
same notation for the diagonal matrices below. Di : Ω × [0, T ] → Rn×2n for i ∈ {1, · · · , n}
has zero entry for all the elements except the (i, n+ i)-th which is given by

[Di
u]i,n+i =

√
λi
u (7.17)

for u ∈ [0, T ]. We define the admissible strategies U ′ as the set of 2n-dimensional F′-adapted
processes θ that belong to H2

2n(0, T ).

Now, let us consider the following SLQC problem:

V ′(t,x) = ess inf
θ∈U ′

E

[
(Xθ

t )
⊤ξXθ

T +

∫ T

t

(
(Xθ

s)
⊤γsX

θ
s + θ⊤

s Nsθs

)
ds
∣∣∣F ′

t

]
(7.18)

where the argument (t,x) is omitted from X to save the space, and N : Ω× [0, T ] → R2n×2n

is defined for u ∈ [0, T ] by

Nu =

(
Mu 0n×n

0n×n diag(λi
uη

i
u)

)
. (7.19)

Then, by Proposition 5.1 in [11], the associated BSRDE on P (and its associated integrand
ZP of dW ) such that V ′(t,x) = x⊤P (t)x is given by

P (t) = ξ +

∫ T

t

{
−P (u)Cu

(
Nu +

n∑
i=1

(Di
u)

⊤P (u)Di
u

)−1
C⊤
u P (u) + γu

}
du−

∫ T

t
ZP (u)dWu

(7.20)
where the stochastic integration by dw vanishes because W ⊥ w and that the terminal value
ξ and all the processes included in the driver are FW -adapted. By noticing that

Nu +

n∑
i=1

(Di
u)

⊤P (u)Di
u =

(
Mu 0n×n

0n×n diag
(
λi
u([P (u)]i,i + ηiu)

)) (7.21)

one can confirm that the BSDE of P is equal to that of V2 given by (7.10) 5.
Under Assumptions A′ and B′, ξ is positive-semidefinite and bounded, γ is positive-

semidefinite and uniformly bounded, C, D and N are uniformly bounded. In particular,
there exists a constant c > 0 such that

y⊤Nuy ≥ c|y|2, dP⊗ dt− a.e. (7.22)

for all y ∈ R2n. Thus, by Theorem 6.1 in [11], P (and hence V2) has a unique solution, which
is symmetric, positive-semidefinite and a.s. uniformly bounded. In particular, this implies
[P (u)]i,i ≥ 0, dP⊗ dt-a.e..

5It is not difficult to confirm the same BSRDE arises as the stochastic HJB equation by the same method
we used in Lemma 7.1.
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Since P is positive, one sees from (7.21),

0 < y⊤
(
Nu +

n∑
i=1

(Di
u)

⊤P (u)Di
u

)−1
y ≤ |y|2

c
dP⊗ dt− a.e. (7.23)

for all y ∈ R2n and hence
(
Nu +

∑n
i=1(D

i
u)

⊤P (u)Di
u

)−1

u∈[0,T ]
is a uniformly bounded linear

operator. Using the boundedness of P and the other variables, one sees

mt = P (t)− P (0)−
∫ t

0

{
P (u)Cu

(
Nu +

n∑
i=1

(Di
u)

⊤P (u)Di
u

)−1
C⊤
u P (u)− γu

}
du (7.24)

for t ∈ [0, T ] is a uniformly bounded martingale. Thus, from the BDG inequality, for any
p > 0, there exists a positive constant C such that

E
[(∫ T

0
|ZP (u)|2du

)p/2]
≤ CE

[
||m||pT

]
< ∞ (7.25)

and hence ZP (and so does Z2) belongs to Hp
n×n×d(0, T ) for ∀p > 0.

For more general results on the SLQC problem and the associated BSRDE, we refer to
Peng (1992) [31] and Tang (2003, 2014) [36, 37], where the assumption of the orthogonality
“w ⊥ W” is removed.

The following results are obtained in exactly the same way in Proposition 4.3, 4.4 and
Corollary 4.1.

Proposition 7.2. Under Assumptions A′ and B′, there exist unique solutions (V1, Z1) ∈
S4n(0, T ) ×H4

n×d(0, T ) for (7.11), and (V0, Z0) ∈ S2(0, T ) ×H2
d(0, T ) for (7.12), respectively.

Furthermore, the process for the position size
(
Xπ∗,δ∗

s (t,x)
)
s∈[t,T ]

given by (7.9) belongs to

S4n(t, T ). The candidate solution (π∗, δ∗) in Lemma 7.1 is well-defined and satisfies (π∗, δ∗) ∈
S4n(t, T )× S4n(t, T ) ⊂ U .

The above results establish the main theorem.

Theorem 7.2. Under Assumptions A′ and B′, the candidate solution (π∗, δ∗) in Lemma 7.1
is, in fact, the unique optimal solution of the market maker’s problem given by (6.11).

Proof. The proof is the same as that of Theorem 4.1.

7.3 Remark on the effective liquidation

It is natural to imagine that one can make the terminal position size arbitrarily small by
increasing the size of the eigenvalues of ξ. Although it is intuitively clear, it is difficult to
prove since we do not have an explicit expression for the upper/lower bound of V2 any more.

Let us suppose, in the interval [T − ϵ, T ] with some constant ϵ > 0, that M,γ, ξ, β
can be diagonalized by the common constant orthogonal matrix O. In addition, suppose
the market maker stops accepting the customer orders and using the dark pool. Then, by
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considering the securities in the base O⊤S and the corresponding positions O⊤X, the market
maker’s problem can be decomposed into n single security liquidation problems. In this case,
V̂2 := O⊤V2O becomes diagonal process in [T − ϵ, T ] and V̂1 := O⊤V1 interacts with the only
one corresponding element of V̂2. In this special situation, it is clear that the position can be
made arbitrary small by the corresponding optimal strategy thanks to the arguments made
in the single security case.

8 A Possible Approximation Scheme

In this section, we discuss a possible evaluation technique of V2, which is the biggest obstacle
to make the strategy implementable in actual applications.

8.1 A special case

Firstly, let us consider a special case where ξ, γ,M, η, λ (and hence naturally so is β) are
non-random. In this case, V2 is a solution of the following matrix-valued ordinary differential
equation (ODE):

dV2(s)

ds
= V2(s)

(
M−1

s + diag
( λs

V2(s) + ηs

))
V2(s)− γs, s ∈ [t, T ] (8.1)

V2(T ) = ξ (8.2)

which is the same ODE studied by Kratz & Schöneborn [26]. It is not difficult to numerically
solve this equation by the standard technique for ODEs. In contrast to the model in [26], we
still need to evaluate V1 to implement the optimal strategy.

For notational simplicity, let us put

F (s) := V2(s)

(
M−1

s + diag
( λs

V2(s) + ηs

))
, s ∈ [t, T ], (8.3)

which is a deterministic matrix process. Let us also consider another deterministic matrix
process defined by the ODE

dYt,s
ds

= F (s)Yt,s, s ∈ [t, T ] (8.4)

where Yt,t = In×n. Then, we have

dY −1
t,s

ds
= −Y −1

t,s F (s), s ∈ [t, T ] (8.5)

with Y −1
t,t = In×n and it is straightforward to obtain

V1(s) = −Yt,s

∫ T

s
Y −1
t,u E

[
1

2
F (u)Su − V2(u)

(1
2
Θu + (bΨ)u

)
− 1

2

(
βu(bΨ)u − lu

)∣∣∣FW
s

]
du

(8.6)
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for s ∈ [t, T ], which only requires the expressions of

E
[
Su|FW

s

]
, E
[
Φu|FW

s

]
, E
[
(bΨ)u|FW

s

]
, E
[
lu|FW

s

]
. (8.7)

These quantities can be evaluated analytically for simple models. Otherwise, one can apply
the standard small-diffusion asymptotic expansion technique, which is developed by Yoshida
(1992a) [39], Takahashi (1999) [35], Kunitomo & Takahashi (2003) [27] for the pricing of
European contingent claims, and also Yoshida (1992b) [40] for statistical applications.

8.2 A general case with a Markovian factor process

Although it is impossible to solve V2 analytically in a general setup, getting an explicit ex-
pression of its approximation is very important for successful implementation of the proposed
scheme. A similar BSDE is also relevant for solving a different type of optimal liquidation
problem treated in [5]. Furthermore, considering the wide spread applications of SLQC prob-
lems in various engineering issues, developing a successful approximation scheme for a general
BSRDE should be a very important research topic in its own light.

We consider that a variant of technique proposed by Fujii & Takahashi (2012a) [17] looks
very promising. The method was developed to analytically approximate a non-linear FBSDE
by linearizing the driver in each approximation order, and its justification for a Lipschitz
setup was recently given by Takahashi & Yamada (2013). We refer to Fujii & Takahashi
(2012b) [18] for an example of explicit calculation, and Fujii & Takahashi (2014) [19] as an
efficient Monte Carlo implementation where the analytical calculation is too cumbersome.
See also Shiraya & Takahashi (2014) [34] and Crépey & Song (2014) [14] as an interesting
application of the above perturbation method to the so-called credit valuation adjustment
(CVA).

Although the justification in the current setup and the detailed numerical tests for a
general BSRDE will be left for the future research, let us explain the main idea for the
interested readers below. For simplicity, let us concentrate on the single security case. We
assume that ξ, γ,M, λ : R → R are all smooth functions. We introduce the underlying factor
process X : Ω × [t, T ] → R (do not confuse it with the position size process) which follows
the SDE:

Xs = x+

∫ s

t
µ(Xs)ds+

∫ s

t
σ(Xs)dWs . (8.8)

where µ : R → R and σ : R → Rd are smooth functions satisfying the standard Lipschitz
conditions to guarantee the existence of a strong solution for X. An extension to a multi-
dimensional setup is straightforward. Set a function f : R× R → R by

f(x, v) := −
(

1

M(x)
+

λ(x)

v + η(x)

)
v2 + γ(x) (8.9)
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and consider to solve the BSDE

Vt = ξ(XT ) +

∫ T

t
f(Xs, Vs)ds−

∫ T

t
ZsdWs (8.10)

which corresponds to (4.10).
We assume that the volatility of X is small and express it by introducing a small pertur-

bation constant ϵ > 0 as follows:

dXϵ
s = µ(Xϵ

s)ds+ ϵσ(Xϵ
s)dWs s ∈ [t, T ], Xϵ

t = x (8.11)

which is now a process depending on the parameter ϵ. The associated BSDE is given by

V ϵ
t = ξ(Xϵ

T ) +

∫ T

t
f(Xϵ

s, V
ϵ
s )ds−

∫ T

t
Zϵ
sdWs . (8.12)

We assume that they can be expanded in terms of ϵ as follows:

Xϵ
s = X [0]

s + ϵX [1]
s + ϵ2X [2]

s + · · ·
V ϵ
s = V [0]

s + ϵV [1]
s + ϵ2V [2]

s + · · · (8.13)

for s ∈ [t, T ].
For the zero-th order, X [0] and V [0] are given by the solutions of the ODEs:

dX
[0]
s

ds
= µ(X [0]

s ) s ∈ [t, T ], X
[0]
t = x (8.14)

dV
[0]
s

ds
= −f(X [0]

s , V [0]
s ) s ∈ [t, T ], V

[0]
T = ξ(X

[0]
T ) (8.15)

which corresponds to the special case discussed in the previous subsection. As long as

ξ(X
[0]
T ),M(X [0]), γ(X [0]), η(X [0]), λ(X [0]) satisfy the boundedness and positivity assumptions

we made before, the above Riccati ODE should have a positive bounded solution and obvi-
ously Z [0] = 0.

In the first order, we have the linear FBSDE system:

dX [1]
s = ∂xµ

0(s)X [1]
s ds+ σ0(s)dWs s ∈ [t, T ], X

[1]
t = 0 (8.16)

V
[1]
t = ∂xξ

0(T )X
[1]
T +

∫ T

t

{
∂vf

0(s)V [1]
s + ∂xf

0(s)X [1]
s

}
ds−

∫ T

t
Z [1]
s dWs

(8.17)

where we have used the short hand notation:

µ0(s) := µ(X [0]
s ), σ0(s) := σ(X [0]

s ), ξ0(T ) := ξ(X
[0]
T ), f0(s) := f(X [0]

s , V [0]
s ) . (8.18)

which are all deterministic functions. We have also used ∂x := ∂/∂x, ∂v := ∂/∂v. It is
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straightforward to confirm that

V [1]
s = y(s)X [1]

s , s ∈ [t, T ] (8.19)

where y : [t, T ] → R is the solution of the linear ODE:

dy(s)

ds
= −

(
∂xµ

0(s) + ∂vf
0(s)

)
y(s)− ∂xf

0(s) s ∈ [t, T ]

y(T ) = ∂xξ
0(T ). (8.20)

In particular, we see that V
[1]
t = 0.

In the second order expansion, one can find

dX [2]
s =

(
∂xµ

0(s)X [2]
s +

1

2
∂2
xµ

0(s)(X [1]
s )2

)
ds+X [1]

s ∂xσ
0(s)dWs, s ∈ [t, T ]

X
[2]
t = 0 (8.21)

and

V
[2]
t = ∂xξ

0(T )X
[2]
T +

1

2
∂2
xξ

0(T )(X
[1]
T )2 +

∫ T

t

{
∂vf

0(s)V [2]
s + ∂xf

0(s)X [2]
s

+
1

2
∂2
vf

0(s)(V [1]
s )2 + ∂x,vf

0(s)X [1]
s V [1]

s +
1

2
∂2
xf

0(s)(X [1]
s )2

}
ds−

∫ T

t
Z [2]
s dWs,

(8.22)

which is also a simple linear BSDE. In this case, one has the solution with the following from:

V [2]
s = y2(s)X

[2]
s + y1(s)(X

[1]
s )2 + y0(s), s ∈ [t, T ]. (8.23)

Here, yi, i ∈ {2, 1, 0} : [t, T ] → R are defined as the solution of the next linear ODE system
for s ∈ [t, T ]:

dy2(s)

ds
= −

(
∂xµ

0(s) + ∂vf
0(s)

)
y2(s)− ∂xf

0(s)

dy1(s)

ds
= −

(
2∂xµ

0(s) + ∂vf
0(s)

)
y1(s)

−
{1
2
∂2
xµ

0(s)y2(s) +
1

2
∂2
vf

0(s)(y(s))2 + ∂x,vf
0(s)y(s) +

1

2
∂2
xf

0(s)
}

dy0(s)

ds
= −∂vf

0(s)y0(s)− (σ0(s)σ0(s)⊤)y1(s) (8.24)

with the terminal conditions:

y2(T ) = ∂xξ
0(T ), y1(T ) =

1

2
∂2
xξ

0(T ), y0(T ) = 0 . (8.25)

The above results can be obtained by applying Itô formula to (8.23) and comparing its drift to
that of (8.22). See Fujii (2015) [16] as a related idea of expansion of BSDEs. These procedures,
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at least formally, can be repeated to an arbitrary higher order and provide the analytic
expressions with the coefficients to be fixed by linear ODEs. Justification and numerical
experiments for the current problem as well as for more general BSRDEs will be detailed
elsewhere in the future research.

8.3 A determination of the bid/offer spreads

Before closing the section, let us comment on a possible determination of the bid/offer spreads
b. Although we have assumed that the market maker do not dynamically control the bid/offer
spreads to give a bias to the customer orders, it is important of course to use a sustainable
spread size for its market making business. Suppose, for example, the spread size bi is
proportional to the volatility |σi| of the i-th security as

bis = a|σi
s| (8.26)

for i ∈ {1, · · · , n}. The market maker can obtain the cost function or the distribution of its
revenue by running the simulation based on the optimal strategy (π∗, δ∗) for each choice of
a. Even if the intensity (and/or distribution) of the customer orders is a non-linear function
of (bi)i∈{1,··· ,n}, it is just an optimization on the single parameter a. This information may
be used to set an appropriate size of a.

9 Concluding Remarks

In this paper, we discussed the optimal position management strategy for a maker maker
who faces uncertain in- and out-flow of customer orders. The optimal strategy is represented
by the solution of the stochastic Hamilton-Jacobi-Bellman equation which is decomposed
into three (one non-linear and two linear) BSDEs. We provided the verification of the so-
lution using the standard BSDE techniques for the single-security case and an interesting
connection to a special type of SLQC problem for the multiple-security case. We also gave a
possible approximation technique of the relevant BSRDE by perturbation, which still needs
a justification and numerical experiments in the future.

Removing the assumption of FW -adaptedness of the relevant parameters looks an inter-
esting extension of the proposed framework. This situation will arise when one introduces
simultaneous jumps in the parameters, such as M , and the executions in the dark pool. In
this case, the driver of the resultant BSRDE depends on the martingale coefficient of the
counting process. As long as we know, the existence and uniqueness of the solution for the
corresponding BSRDE have not yet been proved.

It looks also interesting to combine a stochastic filtering for the intensity of customer
orders. An introduction of a hidden Markov process which affects the intensity is likely to
help for modeling possible herding behavior among the customer orders. See a related work
Fujii & Takahashi (2015) [20] on the mean-variance hedging problem for fund and insurance
managers.
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[10] Bielecki, T.R., Cousin, A., Crépey, S. and Herbertsson, A., (2014b), “Dynamic hedging
of portfolio credit risk in a Markov copula model,” Journal of Optimization Theory and
Applications, Vol. 161, Issue 1, 90-102.

[11] Bismut, J., (1976), “Linear Quadratic Optimal Stochastic Control with Random Coeffi-
cients,” SIAM J. Control and Optimization, Vol. 14, No. 3, 419-444.

[12] Bremaud, P., (1981),“Point Processes and Queues,” Springer Series in Statistics, Berlin.

[13] Cetin, U., Jarrow, R. and Protter, P., (2004), “Liquidity Risk and Arbitrage Pricing
Theory,” Finance Stoch. 8, 311-341.
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37
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