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Abstract

This paper develops Bayesian inference of extreme value models with a flexible time-

dependent latent structure. The generalized extreme value distribution is utilized to

incorporate state variables that follow an autoregressive moving average (ARMA) pro-

cess with Gumbel-distributed innovations. The time-dependent extreme value distri-

bution is combined with heavy-tailed error terms. An efficient Markov chain Monte

Carlo algorithm is proposed using a state space representation with a mixture of normal

distribution approximating the Gumbel distribution. The methodology is illustrated

using extreme data of stock returns and electricity demand. Estimation results show

the usefulness of the proposed model and evidence that the latent autoregressive pro-

cess and heavy-tailed errors plays an important role to describe the monthly series of

minimum stock returns and maximum electricity demand.
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1. Introduction

Extreme value models have been widely studied for analysis of excessively large or

small rare events in application to environmental sciences, engineering and financial

econometrics. Much progress has been made in the general area of extreme value

models, such as generalized extreme value (GEV) distribution and generalized Pareto

distribution, to address extremal behavior of random variables (e.g., Coles (2001)).

Exploring statistical property of the maxima and minima is practically of importance

because an extremely rare event typically leads to huge damage or loss for human life

such as earthquake and financial crisis.

Recently, a number of articles have shed light on time-dependent or clustering

structure of extremes in time series context. One of standard and pragmatic approaches

is to introduce autoregressive (AR) process or local time trend for extreme value model

parameters (e.g., Smith and Miller (1986), Gaetan and Grigoletto (2004), Huerta and

Sansó (2007), Sang and Gelfand (2009), Liu et al. (2012)). Zhao et al. (2011) utilize an

idea of generalized autoregressive conditional heteroscedasticity (GARCH) to a scale

parameter in the GEV model. From another perspective, in the context of max-stable

process (Smith (2003)), the moving maxima process has been extended in a dynamic

manner to the maxima of moving maxima process (e.g., Deheuvels (1983), Smith and

Weissman (1996), Zhang and Smith (2004), Chamú Morales (2005), Kunihama et al.

(2012)).

Among them, Nakajima et al. (2012) extend the GEV distribution to incorporate

the time-dependence using a state space representation where state variables either fol-

low a stationary AR process or moving average (MA) process with innovations arising

from a Gumbel distribution. This dynamic extreme value model is a natural extension

associated with a Box-Cox transformation where a response of observation equation

follows the GEV distribution, apart from the standard normal-distributed error models.

Nakajima et al. (2012) provide an empirical evidence that the time-dependent extreme

value models yield plausible estimation results for financial data and perform better

than the standard GEV model. Following their analysis, the current paper examines

two important extensions for the the Gumbel-type time-dependent GEV model: (i)

the latent variable follows a stationary autoregressive moving average (ARMA) pro-

cess; and (ii) the observational error follows Student’s t-distribution. This considerably

flexible extreme value model is designed in order to more generally and practically ad-

dress a wide variety of time-dependence for time series of extremes. An efficient Markov
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chain Monte Carlo (MCMC) method is developed to compute parameter estimation

and forecasting of the proposed model. The usefulness of the model and methodology

is illustrated in analysis of stock returns as well as of electricity demand with emphasis

on a strong evidence of time-dependence among the observed monthly minimum series

of daily stock returns and monthly maximum series of hourly electricity demand.

The proposed time-dependent extreme value model has a great potential to be ap-

plied in a wide range of practical analysis. From one perspective in analysis of financial

market, there is a pressing need for accurate forecasts of extremes of product prices

in financial market from experience of the recent financial crisis. Risk management is

nowadays at center of discussion both for market participants and monetary authorities

(see e.g., McAleer et al. (2013)). Practically, volatility clustering possibly exists not

only for high-frequency time series of, for example, stock return and foreign exchange

rate return, but also its block maxima and minima. During market turbulent of finan-

cial crisis, it is reasonable to expect higher extremes arising from larger uncertainty

market condition than other time periods. From another perspective in analysis of

electricity industry, understanding of electricity demand is critical to managing suf-

ficient supply capacity. Exceedance of electricity demand over the maximum supply

capacity can severely damage our living life and economy. To avoid it and pursue

an efficient investment strategy of electricity infrastructure, a reasonable time series

model for maximum electricity demand is required, but little has been investigated

for this point (e.g., Engle et al. (1992)). For both analyses, if the time-dependence

structure exists in time series of interest, the proposed dynamic extreme value model

would provide a better approximation to the underlying process and therefore yield

more accurate forecasts than a standard static extreme value model.

The rest of paper is organized as follows. Section 2 develops the proposed time-

dependent GEV model. Section 3 proposes the efficient MCMC algorithm and asso-

ciated particle filter method to compute the likelihood function for model evaluation.

Section 4 illustrates the methodology using simulated data. Section 5 provides the ap-

plication to monthly minimum return series of daily stock data. Section 6 reports the

application to monthly maximum series of hourly electricity demand. Finally, Section

7 concludes.
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2. GEV-ARMAt model

2.1. Preliminary

To introduce the proposed model, we build on a standard GEV distribution given

by

Pr(Yt ≤ yt) = exp

{
−
(
1 + ξ

yt − µ

ψ

)− 1
ξ

}
, (1)

where ψ > 0, and 1+ ξ(yt − µ)/ψ > 0. The Gumbel distribution is defined as a subset

of the GEV distribution with the limit ξ → 0. We here assume µ = 0 and ψ = 1,

which leads to the distribution of the standard Gumbel random variable:

G(x) ≡ Pr(αt ≤ x) = exp {− exp(−x)} . (2)

We note that E(αt) = c0, and Var(αt) = π2/6 (≡ c1), where c0 is the Euler constant.

A key idea to link the GEV distribution and latent process is to consider Yt follows

the GEV distribution of (1), and to define a latent process

αt ≡ log

{(
1 + ξ

Yt − µ

ψ

) 1
ξ

}
,

which implies that αt follows the Gumbel distribution G(·) of eqn. (2). This results in
the following relation:

Yt = µ+ ψ
exp(ξαt)− 1

ξ
, (3)

where αt ∼ G. Nakajima et al. (2012) assume parametric time series process such as

AR and MA models for {αt} where the innovation of the process follows the Gum-

bel distribution, and apply eqn. (3) as a measurement equation with an additional

idiosyncratic shock following a normal distribution. In this paper, we generalize this

dynamic extreme value model by assuming the stationary ARMA process for αt and

the Student’s t-distribution for the idiosyncratic error in the measurement equation.
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2.2. The model

Suppose a time series of extremes, y = {y1, . . . , yn}, follows the model

yt = µ+ ψ
exp(ξαt)− 1

ξ
+
√
λtεt, εt ∼N(0, σ2), t =1, . . . , n, (4)

αt+1 = ϕαt + ηt + θηt−1, ηt ∼G, t =1, . . . , n− 1, (5)

where |ϕ| < 1 and |θ| < 1. The state variable αt is assumed to follow the sta-

tionary and invertible ARMA(1, 1) process driven by the innovations {ηt}nt=0 that

follow the Gumbel distribution defined by eqn. (2), where (ηt, ηs ̸=t) are mutually in-

dependent. We specify the heavy-tail measurement error in eqn. (4);
√
λtεt is as-

sumed to follow the Student’s t-distribution with unknown degrees of freedom ν by

letting λ−1
t ∼ Gamma(ν/2, ν/2). For the initial state α1, we assume a normal dis-

tribution with mean and variance equal to those of the stationary distribution of the

ARMA process (5); namely, α1 ∼ N(a∗0c0 + η0, a
∗
1c1), where a

∗
0 = (θ + ϕ)/(1− ϕ), and

a∗1 = (θ + ϕ)2/(1− ϕ2).

The parameters (ϕ, θ) measure time-dependence of the latent process that plays an

important role to dynamically predict yt on the basis of the GEV distribution. A salient

feature of our model is that the response yt would be a sequence of independently and

identically distributed from the GEV distribution in the limiting case ϕ = θ = σ = 0.

We refer to the model of eqns. (4)-(5) as GEV-ARMAt model. Note that λt ≡ 1

for all t implies a normal-error measurement equation, refereed as GEV-ARMA model.

The GEV-ARMA model reduces to GEV-AR (if θ ≡ 0) or GEV-MA (if ϕ ≡ 0) model

of Nakajima et al. (2012).

3. Estimation

3.1. Bayesian inference

The eqns. (4)-(5) form a non-linear and non-Gaussian state space model, therefore,

implementation of maximum likelihood estimation is computationally intensive. To

overcome it, we employ a Bayesian inference for the GEV-ARMAt model (see e.g.,

MacDonald (2011) for review of Bayesian inference for various extreme value mod-

els). Assuming prior distributions for the model parameters, a posterior distribution

of the model is evaluated based on sample generation via Markov chain Monte Carlo

(MCMC) computations. To exploit traditional, efficient MCMC methods for Gaus-

sian state space models (e.g., Prado and West (2010)) for the GEV-ARMAt model, a
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i pi mi v2i
1 0.00397 5.09 4.5
2 0.0396 3.29 2.02
3 0.168 1.82 1.1
4 0.147 1.24 0.422
5 0.125 0.764 0.198
6 0.101 0.391 0.107
7 0.104 0.0431 0.0778
8 0.116 −0.306 0.0766
9 0.107 −0.673 0.0947
10 0.088 −1.06 0.146

Table 1: Selection of (pi,mi, v
2
i ) by Frühwirth-Schnatter and Frühwirth (2007).

strategy taken here is that we approximate the non-Gaussian innovation by a highly

accurate finite mixture of normal density. Some works on data augmentation approach

with latent variables provide a fast and efficient estimation scheme as described in the

following subsections.

3.2. Mixture sampler

Approximation and auxiliary sampling with a finite normal mixture, so called amix-

ture sampler, have become a standard toolkit to tackle non-Gaussian models (see e.g.,

Frühwirth-Schnatter (2006)). An early and popular example is a stochastic volatility

model where the logχ2
1 density is approximated by a seven- or ten-component normal

mixture (Kim et al. (1998); Omori et al. (2007)). Our estimation method for the GEV-

ARMAt model relies on the mixture sampler for the Gumbel distribution developed by

Frühwirth-Schnatter and Frühwirth (2007), Frühwirth-Schnatter and Wagner (2006),

and Frühwirth-Schnatter et al. (2009).

Let g(·) denote the probability density function of the Gumbel distribution of

eqn. (2); namely, g(ηt) = exp(−ηt − e−ηt). This density is approximated by a nor-

mal mixture of K = 10 components:

g(ηt) ≈
K∑
i=1

pifN(ηt|mi, v
2
i ),

where fN(ηt|mi, v
2
i ) denotes the normal density with mean mi and variance v2i , for i =

1, . . . , K. Frühwirth-Schnatter and Frühwirth (2007) provide the selection of (pi,mi, v
2
i )

for K = 10 (see Table 1).
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We employ a latent mixture indicator variable, st ∈ {1, . . . , K}, for t = 1, . . . , n−1,

which refers to an index of the mixture component at each time point with a prior prob-

ability Pr(st = i) = pi. A typical missing data approach applies to the conditionally

normal density, π(ηt|st = i) = fN(ηt|mi.v
2
i ). Formally, conditional on s ≡ (s1, . . . , sn−1)

and λ = (λ1, . . . , λn), eqns. (4) and (5) lead to the form of a Gaussian state space model:

yt = µ+ ψ
exp(ξαt)− 1

ξ
+
√
λtεt, εt ∼ N(0, σ2), (6)

αt+1 = ϕαt + (mst + vstut) + θ(mst−1 + vst−1ut−1), ut ∼ N(0, 1), (7)

α1 = a∗0c0 + (ms0 + vs0u
∗
0) +

√
a∗1c1δ

∗
0, u∗0, δ

∗
0 ∼ N(0, 1). (8)

An efficient filtering and smoothing sampler on non-linear Gaussian state space mod-

els is now applicable to generate u = (u0, u1, . . . , un−1), where u0 ≡ (δ∗0, u
∗
0)

′; the

MCMC method for simulation of the full joint posterior π(ω, ν, s, u, λ|y), where ω =

(µ, ψ, ξ, σ, ϕ, θ), is constructed in the next subsection.

3.3. MCMC algorithm

We assume traditional priors for the parameters (ω, ν): normal distributions for µ

and ξ, gamma distributions for ψ and ν, an inverse gamma distribution for σ2, and

shifted beta distributions for ϕ and θ; these priors are all mutually independent among

the parameters in (ω, ν). We outline components of the MCMC computations here,

and provide details in Appendix A.

The MCMC algorithm for the GEV-ARMAt model is implemented as follows:

1. Initialize ω, ν, s, u, and λ.

2. Generate (µ, ψ, ξ) |σ, ϕ, θ, s, u, λ, y.
3. Generate σ |µ, ψ, ξ, ϕ, θ, s, u, λ, y.
4. Generate (ϕ, θ) |µ, ψ, ξ, σ, s, u, λ, y.
5. Generate s |ω, u, λ, y.
6. Generate u |ω, s, λ, y.
7. Generate λ |ω, ν, s, u, y.
8. Generate ν |λ.
9. Go to 2.

The generation of the parameters (ω, ν) and λ uses a direct sampling or standard

Metropolis-Hasting (MH) sampling strategy. For sampling u in Step 6, we employ a
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block (multi-move) sampler developed by Omori and Watanabe (2008) for non-linear

Gaussian state space models. This sampler divides a sequence of the state vector

(u0, . . . , un−1) into several blocks and draws sample from the conditional posterior

distribution of each block given its adjacent blocks; the block sampler is known to

produce more efficient draws than a single-move sampler that generates one state ut at

a time given others {us; s ̸= t} (e.g., Shephard and Pitt (1997)). The generation of s

in Step 5 only requires sampling from K-point discrete distribution at each time point.

Our experiences with the MCMC algorithm summarized here are that mixing is good

and no pitfall is observed in practice. Simulation example illustrates performance of

the sampler in Section 4.

3.4. Likelihood evaluation

Following Nakajima et al. (2012), we evaluate the likelihood of the proposed model

using an efficient auxiliary particle filter method (APF, Pitt and Shephard (1999)).

Define f(y|Θ) as the likelihood function for a fixed model parameter Θ ≡ (ω, ν),

and let f(yt|αt,Θ) denote the measurement density implied by (4), and f(αt+1|αt,Θ)

implied by (5) denote the state evolution density from (5). The particle filtering is

basically based on

f(αt+1, αt|Yt+1,Θ) ∝ f(yt+1|αt+1,Θ)f(αt+1|αt,Θ)f(αt|Yt,Θ),

where Yt = {yj}tj=1. The particles are simulated from f(αt|Yt,Θ) to produce a discrete

uniform approximation f̂(αt|Yt,Θ) to f(αt|Yt,Θ). This approach follows a simple and

standard particle filter and may yield almost zero importance weights for the extreme

observations (see e.g., Chamú Morales (2005)). To avoid this issue, the APF employed

in this paper is implemented as follows.

We consider the approximation of yt+1 ≈ µ + ψ{exp(ξαt+1) − 1}/ξ, ignoring the

disturbance. We write

mt+1 ≡ 1

ξ
log

(
1 + ξ

yt+1 − µ

ψ

)
+

≈ αt+1, t = 1, . . . , n− 1, (9)

where y+ = max(y, 0). As pointed out by Nakajima et al. (2012), mt+1 can be consid-

ered as the most likely value of the state αt+1 given yt+1. Then, we use the importance
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function

g(αt+1, α
i
t|Yt+1,Θ) = g(αt+1|yt+1,Θ)f̂(αi

t|Yt,Θ),

g(αt+1|yt+1,Θ) = exp{−(αt+1 −mt+1)} exp{−e−(αt+1−mt+1)},

where this importance density generates αt+1 from the Gumbel distribution with the

mode mt+1. The APF is implemented with the following procedure. We first generate

αi
1 ∼ N(c0/(1 − ϕ), c1/(1 − ϕ2)), for i = 1 : I, where i = 1 : I denotes i = 1, . . . , I.

We then compute wi
1 = f(y1|αi

1) and W
i
1 = F (y1|αi

1), where F denotes the distribution

function of yt given αt, and save w̄1 = 1
I

∑I
i=1w

i
1, and W̄1 = 1

I

∑I
i=1W

i
1. We set

f̂(αi
1|y1,Θ) = wi

1/
∑I

j=1w
j
1, i = 1 : I. For t = 1, . . ., we iterate the following steps:

1. Generate (αi
t+1, α

i
t), i = 1 : I, from the importance function g(αt+1, αt|Yt+1,Θ).

2. Compute

wi
t =

f(yt+1|αi
t+1,Θ)f(αi

t+1|αi
t,Θ)f̂(αi

t|Yt,Θ)

g(αi
t+1, α

i
t|Yt+1,Θ)

=
f(yt+1|αi

t+1,Θ)f(αi
t+1|αi

t,Θ)

g(αi
t+1|yt+1,Θ)

,

W i
t =

F (yt+1|αi
t+1,Θ)f(αi

t+1|αi
t,Θ)

g(αi
t+1|yt+1,Θ)

, i = 1 : I,

and save w̄t =
1
I

∑I
i=1w

i
t, and W̄t =

1
I

∑I
i=1W

i
t .

3. Set f̂(αi
t+1|Yt+1,Θ) = wi

t/
∑I

j=1w
j
t , i = 1 : I.

It can be shown that as I → ∞, w̄t+1
p→ f(yt+1|Yt,Θ) and W̄t+1

p→ F (yt+1|Yt,Θ), then

it follows that
∑n

t=1 log w̄t
p→
∑n

t=1 log f(yt|Yt−1,Θ).

4. Simulation analysis

4.1. Setup

We illustrate the estimation method developed in the previous section using sim-

ulated data. A series of n = 1, 000 observations is generated from the GEV-ARMAt

model with fixed parameter values µ = 0.1, ψ = 0.02, ξ = 0.3, σ = 0.1, ϕ = 0.5,

θ = 0.3, and ν = 15. In the following analyses, we assume the priors: µ ∼ N(0, 10),

ψ ∼ Gamma(2, 2), ξ ∼ N(0, 1), σ2 ∼ IG(2.5, 0.025), (ϕ + 1)/2 ∼ Beta(4, 4), (θ +

1)/2 ∼ Beta(4, 4), ν ∼ Gamma(16, 0.8).

For the estimation of the MCMC algorithm, we draw M = 100,000 samples after

the initial 50, 000 samples are discarded as the burn-in period. To check efficiency of the

sampling algorithm, we compute the inefficiency factor (see e.g., Chib (2001)), defined

9



0 1000

0

1 µ

0 1000

0

1 ψ

0 1000

0

1 ξ

0 1000

0

1 σ

0 1000

0

1 φ

0 1000

0

1 θ

0 1000

0

1 ν

0 100000

0.07

0.10

0.13

0 100000

0.02

0.04

0 100000

0.2

0.4

0 100000

0.09

0.10

0.11

0.12

0 100000

0.25

0.50

0.75

0 100000

0.0

0.5

0 100000

20

30

40

0.0 0.1

10

20

30

0.00 0.05

25

50

75

0.0 0.5

2

4

0.07 0.10 0.13

50

100

0.0 0.5 1.0

2

4

0 1

1

2

0 20 40

0.025

0.050

0.075

Figure 1: Estimation results of the GEV-ARMAt model for simulated data. Sample autocorrelations
(top), sample paths (middle) and posterior densities (bottom).

as 1 + 2
∑∞

s=1 ρs, where ρs is the sample autocorrelation at lag s. It measures how

well the MCMC chain mixes; it is the ratio of the numerical variance of the posterior

sample mean to the variance of the sample mean from uncorrelated draws. The inverse

of inefficiency factor is also known as relative numerical efficiency (e.g., Geweke, 1992).

When the inefficiency factor is equal to m, we need to draw MCMC sample m times as

many as uncorrelated sample. In the following analyses, we compute the inefficiency

factor using a bandwidth bw = 1,000.

Parameter True Mean Stdev. 95% interval Ineff.
µ 0.1 0.1070 0.0124 [0.0818, 0.1304] 70.1
ψ 0.02 0.0107 0.0063 [0.0020, 0.0258] 147.6
ξ 0.3 0.3113 0.0880 [0.1603, 0.5038] 85.8
σ 0.1 0.1059 0.0041 [0.0977, 0.1137] 68.1
ϕ 0.5 0.4997 0.0997 [0.2780, 0.6660] 95.3
θ 0.3 0.2545 0.1628 [-0.0652, 0.5747] 36.4
ν 15 20.730 4.7236 [12.769, 31.119] 50.1

Table 2: Estimation results of the GEV-ARMAt model for simulated data. Ineff refers to the ineffi-
ciency factors.
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4.2. Estimation result

Table 2 reports posterior estimates and the inefficiency factors for the parameters

and a selected state variable, α100. It shows that all posterior means are close to

the true values, and that the true values are contained in the 95% credible intervals.

The inefficiency factors are comparable to those in the previous work (Nakajima et al.

(2012)). Figure 1 shows the sample autocorrelation functions, the sample paths and the

posterior densities for the simulation analysis. The sample paths look stable and the

sample autocorrelations drop smoothly, which confirms that while the proposed model

forms the considerably flexible structure, the proposed estimation scheme provides

plausible posterior estimates with reasonable efficiency.

5. Application to extremes of stock returns

5.1. Data

This section applies the proposed model to extremes of stock returns. We focus

on monthly minima of daily and 5-minute intraday returns. We consider detecting

time-varying behavior of the minima, relative to maxima, is more important from a

viewpoint of risk management that market participants much care about. Specifically,

We use daily and 5-minute intraday returns of the Tokyo Stock Price Index (TOPIX)

and pick up the monthly minima. The minima are multiplied by −1 for estimation.

The data span from January 1980 to December 2009 (n = 360) for the daily return,

and from April 1996 to March 2005 (n = 108) for the intraday return. Figure 2 plots

the time series, which shows the former series includes two large (in absolute value)

minima caused by the Black Monday in October 1987 and by the Lehman shock in

October 2008. To model these stock return extremes we expect the time-dependent

structure and heavy-tail assumption with Student t-distribution incorporated into the

GEV model. Table 3 reports descriptive statistics of the minima data. It is clear that

the (unconditional) skewness is positive and the kurtosis is larger than that of a normal

distribution, which shows the fatter tails with the longer-right tail.

Series Observations Mean Stdev. Skewness Kurtosis Max. Min.

Daily-based 360 2.095 1.527 3.052 22.21 15.81 0.122
Intraday-based 108 1.395 1.153 2.682 11.40 6.751 0.220

Table 3: Summary statistics for the TOPIX minima data (multiplied by −1).
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Figure 2: Time series of TOPIX minimum data (multiplied by −1).

5.2. Model comparisons

We compare models in the class of the GEV-ARMAt based on the marginal like-

lihoods using the TOPIX minima data. The competing models are summarized as

follows:

1. Normal-error models (λt ≡ 1)

• GEV: no time-dependence (ϕ = θ = 0);

• GEV-AR: AR time-dependence (θ = 0);

• GEV-MA: MA time-dependence (ϕ = 0);

• GEV-ARMA: ARMA time-dependence.

2. Student’s t-error models

• GEV-t: no time-dependence (ϕ = θ = 0);

• GEV-ARt: AR time-dependence (θ = 0);

• GEV-MAt: MA time-dependence (ϕ = 0);

• GEV-ARMAt: ARMA time-dependence.
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This analysis covers various time-dependent structures, namely, AR(1), MA(1), and

ARMA(1, 1) processes, in the class of GEV-ARMAt. The estimation method for the

GEV-ARMAt model proposed in this paper is applicable to all the other models listed

above, while the algorithm reduces to the simpler form in the case of the GEV-AR

model (see Nakajima et al. (2012)).

The marginal likelihood is a standard measure to compare models in Bayesian

analysis. It is defined as the integral of the likelihood function with respect to the

prior density of the parameters. With the prior probabilities of the competing models

assumed to be equal, we select the model which yields the largest marginal likelihood.

In our analysis, the marginal likelihood is estimated using the method of Chib (1995).

Specifically, the log of marginal likelihood is given by

logm(y) = log f(y|Θ) + log π(Θ)− log π(Θ|y),

where Θ is the parameters in the model, m(y) is the marginal likelihood, f(y|Θ) is the

likelihood function, π(Θ) is the prior probability density, and π(Θ|y) is the posterior

density. The likelihood function is computed by the particle filter using I = 10, 000

particles. To evaluate the posterior density π(Θ|y), we use the method of Chib (1995)

and Chib and Jeliazkov (2001) with 10, 000 draws obtained through reduced MCMC

runs. Although the above equality holds for any Θ, we use the posterior mean of Θ to

obtain a stable estimate of m(y).

Table 4 reports estimated marginal likelihoods of eight competing models for the

TOPIX minima data. This result shows three main findings. First the marginal likeli-

hood of the GEV/GEV-t model is lower than the other time-dependent GEV models,

which indicates that incorporating the time-dependence contributes to the model fit

of the GEV model. Second, the marginal likelihoods of the GEV-AR/ARt model is

higher than those of the GEV-MA/MAt model, which implies that the autoregressive

process fits to the TOPIX minima data than the moving average process embedded in

the dynamic GEV model. These results are consistent with those of Nakajima et al.

(2012). In the results here, it is interesting that the marginal likelihood of the GEV-

ARMA/ARMAt model is lower than the GEV-AR/ARt and GEV-MA/MAt models.

The TOPIX minima data prefers the simpler autoregressive process than the ARMA,

for the underlying structure of the GEV model.

Third, the marginal likelihoods of the model with the Student’s t-errors are higher

than those with the normal errors, which implies the heavier-tailed distribution is
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(i) Daily-return-based data (1980–2009)

Model Log-ML (S.E.) Model Log-ML (S.E.)
GEV -564.91 (0.73) GEV-t -549.67 (0.80)
GEV-AR -513.55 (0.67) GEV-ARt -498.32 (0.67)
GEV-MA -531.38 (0.69) GEV-MAt -517.62 (0.59)
GEV-ARMA -557.78 (0.78) GEV-ARMAt -543.22 (0.82)

(ii) Intraday-return-based data (1996–2005)

Model Log-ML (S.E.) Model Log-ML (S.E.)
GEV -127.17 (0.62) GEV-t -123.73 (0.40)
GEV-AR -110.67 (0.69) GEV-ARt -107.38 (0.65)
GEV-MA -117.50 (0.51) GEV-MAt -114.06 (0.49)
GEV-ARMA -124.72 (1.34) GEV-ARMAt -115.80 (0.44)

Table 4: Estimated marginal likelihoods (ML) for the TOPIX minima data. All values are in natural
log scale. Standard errors (S.E.) are in parentheses.

better to describe the idiosyncratic errors than the normal in each time-dependent

GEV model for both data series. Estimated posterior means of the state variable αt is

mostly lower than that of the GEV-AR model, because relatively larger observations

are described by the heavy-tailed idiosyncratic error rather than by the state variable,

which is preferred by the TOPIX minima data. As a result, the estimated marginal

likelihoods indicate the GEV-ARt model is the best model for the TOPIX minima data

among the eight candidate models.

We provide an additional model comparison as a robustness check for findings shown

above. Cotter (2007) proposes a use of GARCH filtered returns of financial variables

for adjusting unconditional extreme values in an analysis of conditional tail estimation.

In line with this idea, we fit GARCH(p,q) model to daily-based TOPIX minima data for

p = 1, 2 and q = 1, 2, and select the lags based on the AIC. It results in the GARCH(1,

2) model, and filtered residuals (standardized by estimated volatility) are used for the

model comparison for the time-dependent GEV models. Table 5 reports the estimated

marginal likelihoods for the candidate models, which show the same order of model

performance and still indicate the superiority of the GEV-ARt model.

5.3. Parameter estimates

We discuss posterior estimates of the model parameters, focusing on the time-

dependent GEV models with the Student’s t-errors, because the estimated marginal

likelihoods clearly favors them compared to those with normal errors. Table 6 reports

the posterior estimates of the GEV-ARt, GEV-MAt, and GEV-ARMAt models, which
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GARCH-filtered daily-return-based data (1980–2009)

Model Log-ML (S.E.) Model Log-ML (S.E.)
GEV -426.61 (0.56) GEV-t -411.14 (0.71)
GEV-AR -372.48 (0.59) GEV-ARt -357.15 (0.64)
GEV-MA -392.57 (0.61) GEV-MAt -378.58 (0.41)
GEV-ARMA -416.66 (1.11) GEV-ARMAt -408.46 (1.26)

Table 5: Estimated marginal likelihoods (ML) for the GARCH-filtered TOPIX minima data. All
values are in natural log scale. Standard errors (S.E.) are in parentheses.

Parameter GEV-ARt GEV-MAt GEV-ARMAt

1.0764 (0.0834) 1.2335 (0.0582) 0.2486 (0.1749)
µ [0.9066, 1.2350] [1.1180, 1.3491] [-0.0958, 0.5918]

388.5 224.5 141.7

0.5189 (0.0803) 0.6763 (0.0515) 0.0433 (0.0228)
ψ [0.3478, 0.6589] [0.5695, 0.7694] [0.0105, 0.0959]

475.5 271.0 478.1

0.3758 (0.0565) 0.2688 (0.0436) 0.2862 (0.0361)
ξ [0.2704, 0.4898] [0.1880, 0.3612] [0.2192, 0.3608]

385.4 438.1 264.4

0.1897 (0.0580) 0.1343 (0.0473) 0.3583 (0.0559)
σ [0.0892, 0.3094] [0.0671, 0.2444] [0.2563, 0.4741]

317.8 199.1 123.2

0.5085 (0.0623) 0.9136 (0.0211)
ϕ [0.3924, 0.6340] [0.8669, 0.9485]

333.0 294.5

0.4117 (0.0403) -0.5370 (0.0938)
θ [0.3414, 0.4981] [-0.7009, -0.3370]

232.4 197.2

19.314 (5.0047) 19.974 (4.9811) 18.956 (5.0060)
ν [10.675, 30.200] [11.492, 30.803] [10.442, 30.000]

32.2 26.8 27.2

The first row: posterior mean and standard deviation in parentheses.

The second row: 95% credible interval in square brackets.

The third row: inefficiency factor.

Table 6: Estimation result of the time-dependent GEV models with heavy-tailed errors for the daily-
based TOPIX minima data.
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exhibits several variations among the models depending on their process structure.

First, focusing on the posterior means of time-dependence parameters, ϕ in the GEV-

ARt model is 0.5085, θ in the GEV-MAt model is 0.4117, and (ϕ, θ) in the GEV-ARMAt

model is (0.9136, -0.5370). The first autocorrelation of the underlying state variable

implied by these estimates is roughly 0.5 in the GEV-ARt, 0.3 in the GEV-MAt, and

0.6 in the GEV-ARMAt model. Based on the GEV-ARt, the best model in the model

comparison above, 95% credible intervals do not include zero, which indicates the time-

dependence exists in the state variable of the time-dependent GEV model fit to the

minima series of stock returns.

With the variation in the estimates of the time-dependence parameters, the es-

timates of the GEV parameters (µ, ψ) and error variance σ are different among the

models. The results show that posterior means of µ and ψ in the GEV-ARMAt model

are lower than those in the GEV-ARt and GEV-MAt models. Also, the parameter σ

is estimated to be larger in the GEV-ARMAt model relative to the other models. For

the parameter ξ, the posterior means are positive and the 95% credible intervals do

not contain zero regardless of the model specification. Regarding the degree of free-

dom, ν, associated with the Student’s t-errors, the posterior mean is around 20 for the

time-dependent GEV models. Figure 3 exhibits MCMC results for the GEV-ARMAt

model, the sample autocorrelations, sample paths, and posterior densities. These re-

sults shows that the Markov chains mix well and the proposed estimation scheme is

feasible in practice.

6. Application to extremes of electricity demand

6.1. Data

This section provides empirical finding by applying the proposed method to ex-

tremes of electricity demand. We use data of hourly actual electricity demand, provided

by Tokyo Electric Power Company (TEPCO). The data span from January 2008 to

August 2014. The time series of hourly electricity demand exhibits typical seasonality.

These are extracted by a simply regression with dummy variables of weekends, national

holidays, and each week in a year, as well as a special event dummy for the Tohoku

Region Pacific Coast Earthquake on March 3, 2011. We analyze monthly maxima of

the seasonaly adjusted hourly demand with the sample size n = 80.

Figure 4 plots the time series, which shows large hikes in 2008 and 2010. Table 7

reports descriptive statistics of the maxima. The skewness is positive and the kurtosis

is slightly larger than that of a normal distribution.
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Figure 3: Estimation result of the GEV-ARMAt model for the daily-based TOPIX minima data.
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Figure 4: Time series of maximum electricity demand.

Observations Mean Stdev. Skewness Kurtosis Max. Min.

80 1.6238 0.8402 0.8462 3.2450 4.1142 0.2409

Table 7: Summary statistics for the maximum electricity demand data.
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Model Log-ML (S.E.) Model Log-ML (S.E.)
GEV -102.03 (0.34) GEV-t -98.57 (0.31)
GEV-AR -95.50 (0.45) GEV-ARt -92.61 (0.40)
GEV-MA -95.00 (0.31) GEV-MAt -92.05 (0.49)
GEV-ARMA -95.35 (0.40) GEV-ARMAt -92.41 (0.38)

Table 8: Estimated marginal likelihoods (ML) for the maximum electricity demand data. All values
are in natural log scale. Standard errors (S.E.) are in parentheses.

6.2. Model comparison and parameter estimates

With the maximum electricity demand data, we estimate the competing models of

the GEV-ARMAt class in the same way as the previous section, and compute their

marginal likelihoods for model comparison. Table 8 reports the estimated marginal

likelihoods, which indicates that the marginal likelihoods of the time-dependent GEV

models are higher than the one of the standard GEV model. The heavy-tailed models

uniformly dominates the normal-error models. Among the time-dependent GEV mod-

els, the estimates of the marginal likelihood and standard errors imply the GEV-ARt,

GEV-MAt, and GEV-ARMAt are samely favored.

Table 9 reports the posterior estimates of the time-dependent GEV models with

heavy-tailed errors. The estimates show little difference in the GEV parameters among

the three models. Regarding the posterior means of time-dependence parameters, ϕ

in the GEV-ARt model is 0.3865, θ in the GEV-MAt model is 0.4829, and (ϕ, θ) in

the GEV-ARMAt model is (0.2635, 0.2940). The credible intervals of the former two

parameters does not include zero. These imply that the time-dependence exists in the

underlying structure of the maximum electricity demand based on our proposed model.

The degree of freedom ν in the Student’s t-distribution is estimated around 20, which

indicates moderate heavy-tails in the extreme series.

7. Conclusion

In this paper, we proposed the new elaborated time-dependent extreme value model,

where the state variables follow the ARMA process, innovations follow the Gumbel dis-

tribution, and the idiosyncratic errors follow the Student’s t-distribution. The advan-

tage of this new model is the novel state space representation with the mixture of nor-

mal distribution approximating the Gumbel distribution, which enables us to develop

the efficient MCMC algorithm to estimate the model. Illustration of the algorithm

using simulated and empirical data shows reasonable performance of the estimation
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Parameter GEV-ARt GEV-MAt GEV-ARMAt

1.0390 (0.1345) 1.0967 (0.1053) 1.0266 (0.1356)
µ [0.7525, 1.2853] [0.8882, 1.3024] [0.7608, 1.2840]

311.8 165.7 259.4

0.5372 (0.0773) 0.5322 (0.0738) 0.5228 (0.0791)
ψ [0.3887, 0.6942] [0.3943, 0.6826] [0.3721, 0.6845]

196.4 118.1 179.7

0.1508 (0.1092) 0.1227 (0.0971) 0.1915 (0.1041)
ξ [-0.0418, 0.3848] [-0.0533, 0.3182] [-0.0016, 0.4078]

151.0 148.8 152.9

0.1097 (0.0360) 0.1153 (0.0428) 0.1095 (0.386)
σ [0.0614, 0.2001] [0.0617, 0.2280] [0.0601, 0.2095]

31.3 50.6 42.9

0.3865 (0.0953) 0.2635 (0.1474)
ϕ [0.2027, 0.5746] [-0.0340, 0.5589]

105.5 189.2

0.4829 (0.0779) 0.2940 (0.1485)
θ [0.3359, 0.6412] [-0.0197, 0.5613]

90.7 71.7

20.003 (4.9571) 20.069 (4.9619) 20.012 (5.0176)
ν [11.551, 30.998] [11.538, 30.970] [11.475, 30.958]

9.4 7.8 5.7

The first row: posterior mean and standard deviation in parentheses.

The second row: 95% credible interval in square brackets.

The third row: inefficiency factor.

Table 9: Estimation result of the time-dependent GEV models with heavy-tailed errors for the maxi-
mum electricity demand data.

scheme. The empirical analysis using the TOPIX minima data obtained from daily

and intraday returns indicates that the simple AR(1) process describes underlying dy-

namics in the TOPIX minima data based on the proposed time-dependent extreme

value model better than independent or other processes such as MA(1) and ARMA(1,

1). Also, the estimation result implies that idiosyncratic shocks following the Student’s

t-distribution fits the data better than the normal distribution. The empirical results

using the maximum electricity demand data implies that the time-dependent GEV

models with the heavy-tailed errors outperform the standard and the time-dependent

GEV models with the normal errors.

19



Acknowledgment

The authors would like to thank Sylvia Frühwirth-Schnatter for suggestion which
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A. Appendix: MCMC algorithm

A.1. Generation of model parameters ω and ν

Let λ = (µ, ψ, ξ)′ denote a vector of the GEV parameters. Sampling from the

conditional posterior distribution π(λ|Θ−λ, y), where Θ−λ = (σ, ϕ, θ, s, u, λ), uses a

MH algorithm with a proposal distribution based on a Taylor expansion method. We

find the point λ̂ = (µ̂, ψ̂, ξ̂)′ which (approximately) maximizes the conditional posterior.

We generate a proposal, denoted by λ∗, from the truncated normal distribution, λ∗ ∼
TNR(λ∗,Σ∗), where R = {ψ : ψ ≤ 0},

λ∗ = λ̂+ Σ∗
∂ log π(λ|Θ−λ, y)

∂λ

∣∣∣∣
λ=λ̂

, Σ−1
∗ = − ∂ log π(λ|Θ−λ, y)

∂λ∂λ′

∣∣∣∣
λ=λ̂

.

Note that the mean and covariance are derived from a second-order Taylor expansion

around the (approximate) mode λ∗. The MH algorithm accepts the candidate with

probability

α(λ, λ∗) = min

{
π(λ∗|Θ−λ, y)fN(λ|λ∗,Σ∗)

π(λ|Θ−λ, y)fN(λ∗|λ∗,Σ∗)
, 1

}
,

where λ denotes the current value, and fN(·|µ,Σ) denotes the probability density func-

tion of the multivariate normal distribution with mean µ and covariance matrix Σ.

The same strategy on the MH algorithm is employed to the generation of (ϕ, θ)

and ν. Note that the truncation of the proposal distribution results in the support,

R = {(ϕ, θ) : |ϕ| < 1, |θ| < 1}, and R = {ν : ν > 0}, respectively.
For the generation of σ, we assume a prior σ2 ∼ IG(n0/2, S0), where IG denote

an inverse gamma distribution. The generation of σ reduces to a direct sampling from
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IG(n̂/2, Ŝ/2), where

n̂ = n0 + n, Ŝ = S0 +
n∑

t=1

1√
λt

{
yt − µ− ψ

exp(ξαt)− 1

ξ

}2

.

A.2. Generation of mixture variables s

The conditional posterior distribution of the mixture indicator variable st at time t

involves with several adjacent state variables. Consider a transformation from (ut−2, ut+1)

to (αt, αt+3) in the joint posterior probability density, which leads to the conditional

posterior

π(st|ω, λ, ut−1, ut, ut+2, αt, αt+3, st−1, st+2, yt+1, yt+2)

∝
K∑
j=1

π(st, st+1 = j|ω, λ, ut−1, ut, ut+2, αt, αt+3, st−1, st+2, yt+1, yt+2),

where

π(st, st+1 = j|ω, λ, ut−1, ut, ut+2, αt, αt+3, st−1, st+2, yt+1, yt+2)

∝ pst exp

[
− 1

2λt+1σ2

{
yt+1 − µ− ψ

exp(ξαt+1)− 1

ξ

}2
]

×pj
vj

exp

(
−
ũ2j,t+1

2

)
exp

[
− 1

2λt+2σ2

{
yt+2 − µ− ψ

exp(ξαt+2)− 1

ξ

}2
]
,

with

αt+1 = ϕαt + (mst + vstut) + θ(mst−1 + vst−1ut−1),

αt+2 = ϕαt+1 + (mj + vjũt+1) + θ(mst + vstut),

ũj,t+1 =
1

vj(ϕ+ θ)
[αt+3 − ϕ{ϕαt+1 +mj + θ(mst + vstut)}

−(mst+2 + vst+2ut+2)− θmj

]
.

Note that {αk}nk=t+3 are fixed because the resulting posterior distribution is condi-

tional on (αt+3, {sk}nk=t+2). After the generation of st, we transform (αt, αt+3) back

to (ut−2, ut+1). For sampling s0, sn−2 and sn−1, the conditional posterior densities is

computed without using ũj,t+1 defined above.

21



A.2.1. Generation of disturbance vector u

We implement the block (or multi-move) sampler which divides the vector of dis-

turbance u into several blocks and samples each block given other blocks (Shephard

and Pitt (1997), Watanabe and Omori (2004)). The sampler is built on the non-linear

Gaussian state space form of the GEV-ARMAt model:

yt = µ+ ψ
exp(ξzγt)− 1

ξ
+
√
λtσet, z = (1, 0), t = 1, . . . , n,

γt+1 = wt + Tγt +Htut, γt = (αt, βt)
′, t = 0, . . . , n− 1,

where

wt =

(
1

θ

)
mst , T =

(
ϕ 1

0 0

)
, Ht =

(
vst

θvst

)
, t = 1, . . . , n− 1,

w0 =

(
a∗0c0 +ms0

θms0

)
, H0 =

( √
a∗1c1 vs0

0 θvs0

)
,(

et

ut

)
∼ N(0, I2), t = 1, . . . , n, u0 =

(
δ∗0

u∗0

)
∼ N(0, I2),

with γ0 = 0. To sample a typical block, say, (ur−1, . . . , ur+d−1) from its joint conditional

posterior distribution, we consider a transformation from (ur−3, ur+d) to (αr−1, αr+d+2)

as in the generation of st. Define ϑ = (ω, ur−2, αr−1, ur+d, αr+d+2, {st}r+d
t=r−1, {λt}r+d

t=r−1,

{λt, yt}r+d+1
t=r ). Then the conditional posterior probability density is given by

π(ur−1, . . . , ur+d−1|ϑ)

∝
r+d∏
t=r

exp

[
− 1

2λtσ2

{
yt − µ− ψ

exp(ξαt)− 1

ξ

}2
]

×
r+d−1∏
t=r−1

exp

(
−u

2
t

2

)
× f(yr+d+1|ω, αr+d+1)f(ũr+d), (A.1)

with

f(yr+d+1|ω, αr+d+1)f(ũr+d)

=

 exp

[
− 1

2λtσ2

{
yr+d+1 − µ− ψ

exp(ξαr+d+1)− 1

ξ

}2

−
ũ2r+d

2

]
, if r + d < n,

1, if r + d = n,
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where {αt}r+d+1
t=r and ũr+d are computed from the state equations as follows:

αr+k = ϕαr+k−1 + (msr+k−1
+ vsr+k−1

ur+k−1) + βr+k−1, k = 0, . . . , d,

βr+k = θ(msr+k−1
+ vsr+k−1

ur+k−1), k = 0, . . . , d,

αr+d+1 = ϕαr+d + (msr+d
+ vsr+d

ũr+d) + βr+d,

βr+d+1 = θ(msr+d
+ vsr+d

ũr+d),

ũr+d =
1

vsr+d
(ϕ+ θ)

{
αr+d+2 − ϕ(ϕαr+d +msr+d

+ βr+d)

−(msr+d+1
+ vsr+d+1

ur+d+1)− θmsr+d

}
.

The posterior distribution is conditional on αr+d+2 so that the likelihood computation

involves only with multiplication up to t = r+ d+ 1. We implement MH algorithm to

sample from the conditional posterior (A.1).

A proposal distribution uses the approximation of the conditional posterior proba-

bility density; for t = r, . . . , r + d − 1 and r + d = n, we consider a Taylor expansion

of the logarithm of the likelihood (excluding the constant term):

h(αt) ≡ − 1

2λtσ2

{
yt − µ− ψ

exp(ξαt)− 1

ξ

}2

, (A.2)

around the (approximated) mode, denoted by α̂t. Let h′(α̂t) and h′′(α̂t) denote the

first and the second derivative of h(αt) evaluated at αt = α̂t, respectively. Then,

h(αt) ≈ h(α̂t) + h′(α̂t)(αt − α̂t) +
1

2
h′′(α̂t)(αt − α̂t)

2

=
1

2
h′′(α̂t)

{
αt −

(
α̂t −

h′(α̂t)

h′′(α̂t)

)}2

+ const.

= −(y∗t − αt)
2

2σ∗2
t

+ const., (A.3)

where σ∗2
t = −{h′′(α̂t)}−1 and y∗t = α̂t + σ∗2

t h
′(α̂t), for t = r, . . . , r + d − 1, and

t = r + d = n. For t = r + d < n, we take a Taylor expansion of

h̃(γr+d) ≡ − 1

2λtσ2

{
yr+d − µ− ψ

exp(ξαr+d)− 1

ξ

}2

− 1

2λtσ2

{
yr+d+1 − µ− ψ

exp(ξαr+d+1)− 1

ξ

}2

−
ũ2r+d

2
,
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around the mode, denote by γ̂r+d, which yields

h̃(γr+d) ≈ −1

2
(y∗r+d − γr+d)

′Σ∗−1
r+d (y

∗
r+d − γ∗r+d) + const.,

where Σ∗
r+d = −

{
h̃′′(γ̂r+d)

}−1

and y∗r+d = γ̂r+d+Σ∗
r+dh̃

′(γ̂r+d), with h̃
′(γt) = dh̃(γt)/dγt

and h̃′′(γt) = d2h̃(γt)/dγtdγ
′
t. The proposal distribution given by

q(ur−1, . . . , ur+d−1|ϑ) ∝
r+d−1∏
t=r

exp

{
−(y∗t − αt)

2

2σ∗2
t

}
×

r+d−1∏
t=r−1

exp

(
−u

2
t

2

)
× exp

{
−
(y∗r+d − γr+d)

′Σ∗−1
r+d (y

∗
r+d − γr+d)

2

}
. (A.4)

Note that this is the posterior probability density of (ur−1, . . . , ur+d−1) for the state

space model

y∗t = zγt + σ∗
t ζt, t = r, . . . , r + d− 1,

γt+1 = wt + Tγt +Htut, t = r − 1, . . . , r + d− 1, (A.5)(
ζt

ut

)
∼ N(0, I2), t = r, . . . , r + d− 1,

where

y∗r+d =

{
zγr+d + σ∗

r+dζr+d, ζr+d ∼ N(0, 1), (if r + d = n)

γr+d + Σ
∗1/2
r+d ζr+d, ζr+d ∼ N(0, I2). (if r + d < n)

A key strategy here is to draw a candidate (ur−1, . . . , ur+d−1) by exploiting Kalman

filter and the simulation smoother (e.g. de Jong and Shephard (1995), Durbin and

Koopman (2002)) based on the linear Gaussian state space model (A.5). We compute

the conditional modes (α̂r, . . . , α̂r+d) by repeating the following steps for several times

until the smoothed state variables converge:

1. Initialize (α̂r, . . . , α̂r+d).

2. Compute (y∗r , . . . , y
∗
r+d) and (σ2∗

r , . . . , σ
2∗
r+d).

3. Run Kalman filter and the disturbance smoother (Koopman (1993)) using the

current points (y∗r , . . . , y
∗
r+d), (σ

2∗
r , . . . , σ

2∗
r+d) in (A.5), and obtain α̂∗

t ≡ E(αt|ϑ)
for t = r, . . . , r + d.
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4. Replace (α̂r, . . . , α̂r+d) by (α̂∗
r , . . . , α̂

∗
r+d).

5. Go to 2.

Following Shephard and Pitt (1997), the blocks are stochastically determined every

MCMC iteration to efficiently generate samples. Consider dividing the sequence of the

state variables, (u1, . . . , un−1), into K+1 blocks: (uki−1+1, . . . , αki) for i = 1, . . . , K+1

with k0 = 0 and kK+1 = n. We use a so-called stochastic knots that generates the

edges based on ki = int [n(i+ Ui)/(K + 2)], for i = 1, . . . , K, where Ui is a random

sample from a uniform distribution U [0, 1].

A.3. Generation of scale variable λ

The conditional posterior distribution of λ reduces to a direct sampling of λt|ω, ν, s,
u, y ∼ IG(ν̂/2, Ŝt/2), where

ν̂ = ν + 1, Ŝt = ν +
1

σ2

{
yt − µ− ψ

exp(ξαt)− 1

ξ

}2

,

for t = 1, . . . , n.
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