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Abstract  

Since the 1970s, electronics and associated electrical equipment (henceforth “electronics”) has been 

one of the most dominant industries in the developed countries, with its geographical centre firmly 

rooted in the USA. The overall presence of electronics patents in the USA is considerable, with the 

share of electronics reaching 31% of all US patents in 1996 and total electronics patents reaching close 

to 170,000 in 1997. For the empirical analysis, the time-varying nature of volatility in the electronics 

patent share, namely the ratio of US electronics patents to total US patents, is examined using monthly 

data from January 1975 to December 1997. As negative and positive movements in the patent share 

may have different impacts on innovative activity, and hence on volatility, both symmetric and 

asymmetric models of volatility are estimated. The estimated models are the symmetric AR(1)-

GARCH(1,1), the asymmetric AR(1)-GJR(1,1), and asymmetric AR(1)-EGARCH(1,1). Of these, the 

asymmetric AR(1)-GJR(1,1) model is found to be suitable for modelling the electronics patent share in 

the USA. 
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1. Introduction 

 

The pervasiveness of electronics is demonstrated not only with the application of electronic and 

electrical devices across all sectors of the economy and human life, but also with its implications for 

the rise of the information age and the knowledge economy. ‘New industries’ (chemicals, motor 

vehicles and electricity) that were established in the late 19th Century gave way to electronics, which 

was partly inspired by the demands of the military and space agencies [44]. Since the early 1970s, with 

the invention of the memory chip and the microprocessor, electronics has been an area of intensive 

research, development and innovation. This has resulted in a constant improvement of performance 

levels, functional qualities and variety of technology, while drastically reducing unit costs. Electronics 

has attracted large amounts of new investments and created the majority of new jobs [16].  

 

In the USA the electronics industry, and consequently the information sector, grew at twice the rate of 

the economy as a whole in the 1980s [39]. The European production of consumer electronics was 

valued at 40 billion ecu in 1991, and directly employed tens of thousands of workers [32]. Japan 

invested heavily in semiconductors, computer hardware and communication equipment, as well as in 

colour televisions, videocassette recorders and compact disc players, and strategically targeted foreign 

markets [41]. The modern telecommunications of the 1990s made up “the nervous system of global 

capitalism” ([43], p. 3). Such a dominance of electronics within the industrialised economies led to 

these technologies being widely recognised within the field of innovation (see, for example, [15], [20] 

and [28]) as the current Kondratieff wave1.  

 

The last century also witnessed a shift in the geography of economic power and innovation from 

Europe to North America ([12], [34]). California’s Silicon Valley, for example, “became the world’s 

number one address in high technology” [42], which was followed by Route 128 in Greater Boston and 

Orange County in Southern California. New centres of production emerged in states such as Colorado, 

Oregon and Utah. The USA not only generated new technologies, including electronics and electrical 

equipment (henceforth “electronics”) at an unprecedented rate, but also became the major market for 

innovations developed elsewhere. Among others, the attractiveness of the US market is demonstrated 
                                                 
1 At the beginning of the 20th Century, the Russian economist Kondratieff stressed the cyclical pattern of development in 
capitalist economies [3], and pioneered the long waves concept. This idea was later endorsed by the Austrian economist 
Schumpeter, who explained the waves with the clustering of particular technological innovation. The technologies 
associated with the first three Kondratieff waves, which finished around the mid-1990s, are cotton, textiles, iron and steam 
power (first wave), railroads (second wave), and electricity, automobiles and chemicals (third wave). For further discussion 
see, for example, [29]. 
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in the large number of foreign patent applications, which is greater by far than in any other country [2]. 

The broadly defined “high technology” industry of electronics attracted inventors and companies 

interested in commercialising their technologies, particularly from Japan [31]. Asian import penetration 

of the North American market was substantial in semiconductors, as well as in consumer electronics. 

Consequently, the protection of intellectual property became crucial in this “war of supremacy” ([11], 

p. 311) in the youngest, but the most far-reaching, technological sector. The overall presence of 

electronics in patents registered in the USA has subsequently become considerable.  

 

In this paper we examine the trends and volatility in patenting in the USA of new technologies related 

to electronics between 1975 and 1997. The following section describes the patent data used in the 

empirical analysis, and outlines the general trends in US patenting in the electronics industry. Section 3 

discusses the economic and finance-related motivation for examining the GARCH, GJR and EGARCH 

volatility models. These models are estimated for the US electronics patent share in Section 4. The 

empirical results are analysed, and concluding comments are presented in Section 5. 

 

2. General Trends in Electronics Patenting in the USA 

 

The US Patent and Trademark Office (PTO) provides reliable information on registered patents, and 

this has been the main source of data for our analysis. Nevertheless, the classification systems used by 

the PTO, namely the Current US Classification and the International Patent Classification, do not 

provide a direct link between patent class and industry application. This issue has been reported by a 

number of previous researchers (see, for example, [18], [19], [30] and [37]). In order to deal with the 

problem, patent classes need to be allocated to certain industries [1]. It was decided to use the Current 

US Classification, in which the electronics industry is broadly covered by 68 classes2. The patent data 

actually used refer to the date of patent application, which is a more accurate measure of patent activity 

than the date of issue as it is not influenced by administrative delays in the US PTO related to the 

processing of the applications3. The time period covered in this analysis is from 1975 to 1997 as the 

                                                 
2 The classes associated with electronic and electrical equipment are as follows: 109, 174, 200, 218, 219, 236, 257, 307, 
310, 313, 314, 315, 318, 320, 322, 323, 324, 326, 327, 329, 330, 331, 332, 333, 344, 335, 336, 337, 338, 341, 345, 346, 349, 
360, 361, 362, 364, 365, 368, 369, 371, 372, 373, 374, 375, 377, 378, 381, 382, 385, 386, 388, 392, 395, 438, 439, 445, 477, 
505, 701, 702, 704, 705, 706, 707, 711, 901 and 902. The PTO has established a concordance between the US and the 
international patent classes, which can be accessed on its web site.  
3 According to the US PTO, it takes an average of two years for a patent application to be approved [45]. However, in some 
cases it can take much longer, and delays of 7-8 years are not unknown. 
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data for the more recent years are still incomplete through lags between the date of application and the 

date of granting the patent.  

 

Figure 1 presents the monthly US electronics patents from 1975 to 1997, while Figure 2 shows the 

annual figures for the same period. Some descriptive statistics are given in Table 1. The trend is clearly 

upward sloping, with the 1990s being a period of intensive patenting of electronics technologies. 

Indeed, the total number of electronics patents in the USA reached 51,898 in 1997. Total monthly 

(Figure 3) and annual (Figure 4) patents registered in the USA from all industries have also been 

increasing steadily, reaching a peak of close to 170,000 approved patents from the applications lodged 

in 1997. The correlation coefficient between US electronics patents and total US patents is very high at 

0.983. 

 

As the monthly patent data show some seasonality, as well as extreme observations, for both US 

electronics patents and total US patents (see Figures 1 and 3, respectively), the use of patent shares (see 

Figure 5) mitigates this problem. The annual total US patents and US electronic patents (see Figures 2 

and 4, respectively) have eliminated the apparent extreme observation in 1995. However, the presence 

of a negative outlier in November 1997 suggests a dramatic decrease in the patent share.  

 

A comparison of the two trends in Figures 1 and 2, on the one hand, and Figures 3 and 4, on the other, 

shows that US electronics patents have been growing at a faster rate than total US patents, which 

confirms the growing importance of this industry. The average monthly electronics patent share for 

1975-1997 was over 26%, as shown in Table 1 (that is, more than 1 in 4 patents registered in the USA 

were related to electronics). Moreover, the monthly patent share fluctuated between the low- to mid- 

20% region in the 1970s, and the low- 30% range in 1997 (see Figures 5), with the highest share of 

33.8% in December 1995. The largest annual electronics patent shares (see Figure 6) have been 

increasing in a general stable manner from 23.8% in 1975 to 30.6% in 1997, with the highest share 

being 31% in 1996. This is indicative of the consistent and growing inventiveness in this area. The 

upward trend of the electronics patent share also confirms the tremendous importance of this 

technology for the economic development of the industrialised world.  

 

The Phillips and Perron (PP) test for non-stationarity [38] strongly suggests that the Electronics Patent 

Share (EPS) is trend stationary. Using the EViews 4 econometric software package with a wide range 

of lags, the choice of the truncated lag order did not seem to affect the test results. The motivation for 
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conducting the PP test over the conventional Augmented Dickey-Fuller (ADF) test is to accommodate 

the possible presence of GARCH errors. While the ADF test accommodates serial correlation by 

specifying explicitly the structure of serial correlation in the errors, the PP test does not assume the type 

of serial correlation or heteroscedasticity in the disturbances [38], and can have higher power than the 

ADF test under a wide range of circumstances.  

 

Due to the noticeable presence of a time trend and the non-zero autocorrelation in EPS, the volatility of 

EPS is estimated using the following model: 

 

ttt tEPSEPS εθφφ +++= −110  

 

from which the estimated volatility can be calculated as 

 
2

110
2 )ˆˆˆ(ˆ tEPSEPS ttt θφφε −−−= − . 

 

The estimated volatility of the monthly EPS is given in Figure 7. There are two interesting features of 

this series, namely the presence of clustering and a single outlier. Clustering seems most noticeable 

during the periods 1980 to 1985 and 1995 to 1997, together with the presence of an outlier in 

November 1997. These features reflect the time-varying nature of the volatility in EPS. As the 

Lagrange Multiplier test of no ARCH effects clearly rejects the null hypothesis, it would seem 

important to accommodate the presence of time-varying volatility with an appropriate model.  

 

3. Models of Volatility  

 

As volatility in electronic patent registrations and patent shares have been analysed only recently (see 

[31] for Japanese electronics patents in the USA), the primary purpose of this section is to model the 

volatility in the electronics patent share (EPS) in the USA. By comparison, there has been far greater 

research on volatility in the areas of finance and financial econometrics, where volatility is perceived as 

an inherent characteristic of financial markets and the main interest is in the pricing of financial 

products. The undeniable impact of electronic technologies on the development of any other 

technologies and sectors in the economy require a better understanding of the nature of their 

development, particularly the market characteristics and the associated property rights. As the 
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dominance of electronic technologies is expected to continue into the future, the analysis of the 

volatilities in the EPS will yield improved estimates and forecasts, and lead to more informed decision 

making in the private and public sectors. For further details regarding the modelling and pricing of the 

risks associated with patents, see [33]. 

 

The purpose of this section is to select the optimal model for the volatility of the EPS in the USA using 

the Autoregressive Conditional Heteroscedasticity (ARCH) model [14], as well as subsequent 

developments (see, for example, [6], [7] and [22]). The most widely used variation in the case of 

symmetric shocks is the generalised ARCH (GARCH) model of [5]. In the presence of asymmetric 

behaviour between negative and positive shocks, the GJR model is also widely used [17]. Further 

theoretical developments have recently been suggested by [25], [26] and [27]. 

 

Consider the stationary AR(1)-GARCH(1,1) model for the electronics patent share, ty :   

 

1, 2121 <++= − φεφφ ttt yy                 (1) 

 

where the shocks (or movements in the patent share) are given by:  
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and 0,0,0 ≥≥> βαω  are sufficient conditions to ensure that the conditional variance 0>th . The 

ARCH (or α ) effect indicates the short run persistence of shocks, while the GARCH (or β ) effect 

indicates the contribution of shocks to long run persistence (namely, βα + ). In equations (1) and (2), 

the parameters are typically estimated by the maximum likelihood method to obtain Quasi-Maximum 

Likelihood Estimators (QMLE) in the absence of normality of tη .  

 

The conditional log-likelihood function is given as follows: 
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 It has been shown that the QMLE for GARCH(p,q) is consistent if the second moment is finite [27], 

that is, ∞<)( 2
tE ε , the local QMLE is asymptotically normal if the fourth moment is finite [23], that is, 

∞<)( 4
tE ε , and the global QMLE is asymptotically normal if the sixth moment is finite [27], that is, 

∞<)( 6
tE ε . The necessary and sufficient condition for the existence of the second moment of tε  for 

GARCH(1,1) is 1<+ βα  and, under normality, the necessary and sufficient condition for the existence 

of the fourth moment is 12)( 22 <++ αβα .   

 

Using a weaker condition, the log-moment condition was shown to be sufficient for consistency of the 

QMLE for the univariate GARCH(p,q) model [13], [21], and also sufficient for asymptotic normality 

[9]. Based on these theoretical developments, the sufficient log-moment condition for the QMLE of 

GARCH(1,1) to be consistent and asymptotically normal is given by  

 

0))(log( 2 <+ βαηtE .     (3) 

 

However, this condition is not straightforward to check in practice as it involves an unknown random 

variable and unknown parameters. Although the sufficient moment conditions for consistency and 

asymptotic normality of the QMLE for the GARCH(p,q) model are stronger than their log-moment 

counterparts (where they exist), the moment conditions are far more straightforward to check in 

practice.  

 

The effects of positive shocks (or upward movements in the EPS) on the conditional variance, th , are 

assumed to be the same as the negative shocks (or downward movements in the EPS) in the symmetric 

GARCH model. Asymmetric behaviour is accommodated in the GJR model, for which GJR(1,1) is 

defined as follows:  

 

    ,))(( 1
2

11 −−− +++= tttt hIh βεηγαω                (4) 

 

where 0,0,0 ≥≥+> βγαω  are sufficient conditions for ,0>th and )( tI η  is an indicator variable defined 

by: 
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as tη  has the same sign as tε . Such an indicator variable differentiates between positive and negative 

shocks, so that asymmetric effects in the data are captured by the coefficient γ , with 0>γ . In the GJR 

model, the asymmetric effect, γ , measures the contribution of shocks to both short run persistence, 

2
γα + , and to long run persistence, 

2
γβα ++ .  

 

The regularity condition for the existence of the second moment of GJR(1,1) under symmetry of η t   

[26] is  

,1
2
1

<++ γβα       (5) 

 

and the condition for the existence of the fourth moment under normality of tη  [26] is  

 

1
2
3332 222 <+++++ γαγβγααββ .    (6)  

 

Using a weak novel condition, the log-moment condition for GJR(1,1), namely  

 

0])))((ln[( 2 <++ βηηγα ttIE ,    (7) 

 

is sufficient for consistency and asymptotic normality of the QMLE [33].  

 

An alternative model to capture asymmetric behaviour in the conditional variance is the Exponential 

GARCH (EGARCH(1,1)) model [35], namely:  

 

111 log||log −−− +++= tttt hh βγηηαω ,  1|| <β .   (8) 

 

There are some distinct differences between EGARCH, on the one hand, and GARCH and GJR, on the 

other, as follows: (i) EGARCH is a model of the logarithm of the conditional variance, which implies 
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that no restrictions on the parameters are required to ensure 0>th ; (ii) 1|| <β  ensures stationarity and 

ergodicity for EGARCH(1,1) [35]; (iii) 1|| <β  is likely to be a sufficient condition for consistency of 

QMLE for EGARCH(1,1) [40]; (iv) as the conditional (or standardized) shocks appear in equation (4), 

1|| <β  is likely to be a sufficient condition for the existence of moments [33]; (v) in addition to being 

a sufficient condition for consistency, 1|| <β  is also likely to be sufficient for asymptotic normality 

of the QMLE of EGARCH(1,1) [33].   

 

As GARCH is nested within GJR, based on the theoretical results in [33], an asymptotic t-test of 

0:0 =γH  can be used to test GARCH against GJR. However, as EGARCH is non-nested with regard to 

both GARCH and GJR, non-nested procedures are required to test EGARCH versus GARCH and 

EGARCH versus GJR. A simple non-nested procedure was proposed to test GARCH versus EGARCH, 

in which the test statistic is asymptotically N(0,1) under the null hypothesis [24]. Following a similar 

approach, a non-nested procedure for testing EGARCH versus GJR was derived, in which the test 

statistic is asymptotically N(0,1) under the null hypothesis [33].  

 

 

4. Empirical Results 

  

This section models the volatility of EPS using GARCH(1,1), GJR(1,1) and EGARCH(1,1), as defined 

in (2), (4), (8), respectively. The sample is from January 1975 to December 1997, with a total of 276 

observations. In order to accommodate the presence of a deterministic time trend, all three volatility 

models have the following specification for the conditional mean:  

 

ttt tyy εθφφ +++= −110 . 

 

Estimates of the parameters of the models are given in Table 2. Descriptive statistics of the rolling 

estimates with window size 200 can be found in Table 4, and their dynamic paths in Figures 8-10.   

 

In order to facilitate the selection of the optimal model, the results of the non-nested tests of GARCH 

versus EGARCH, and of GJR versus EGARCH, are given in Table 3.  
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Unless otherwise stated, the Brendt-Hall-Hall-Hausman [4] (BHHH) algorithm implemented in 

EViews 4 is used to obtained estimates for the parameters of the models. Both the asymptotic t-ratios 

and the Bollerslev-Wooldridge robust t-ratios [8] are computed numerically by EViews 4. 

 

Full Sample Estimates 

 

Estimates of the conditional mean and conditional variance for the three models using the whole 

sample are given in Table 2. It is worth noting that the estimates in the conditional mean for each of the 

three models do not differ substantially. The AR estimates range from 0.189 to 0.205, and are 

significant in all three cases, based on both the asymptotic and robust t-ratios. A similar comment 

applies for the time trend coefficients, which range from 0.000217 to 0.000218 and are highly 

significant in all three cases.  

 

It is also interesting to note that the log-moment conditions are satisfied for both GARCH and GJR, 

suggesting that the QMLE are consistent and asymptotically normal. However, neither the second nor 

the fourth moment condition is satisfied for GARCH, although both conditions are satisfied for GJR. 

The β  estimate for EGARCH is less than one, which implies that all the moments exist and that the 

QMLE are likely to be consistent and asymptotically normal.  

 

An interesting feature of the results in Table 2 is that the γ  estimate for GJR is negative, which implies 

that the lagged negative shocks reduce current volatility. This reflects decreasing intellectual property 

momentum in the electronics patent share (for further details, see [33]). However, the short run effect 

of the positive shocks (α) is clearly larger than the short run effect of the negative shocks (α+γ ).  

 

The estimates of EGARCH suggest that the sign effect (γ ) is more important than the size effect (α), 

as it is not statistically significant. However, since none of the models under consideration is capable of 

accommodating extreme observations and outliers, the effects of these aberrant observations on the 

estimates and their respective standard errors is still an area for further research (see [10], [36] and [46] 

for further details).  

 

Interestingly, given the insignificant estimate of α in EGARCH, the non-nested tests of EGARCH 

versus GARCH clearly reject GARCH in favour of EGARCH, as shown in Table 3. This suggests that, 
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although the size effect is not statistically significant, the inclusion of asymmetric effects is important. 

The non-nested tests of EGARCH versus GJR reject both models, so that the test is unable to 

discriminate between these two models.  

 

Rolling Estimates 

 

In order to examine the impacts of each observation on the estimates of the model, rolling estimates 

with window size 200, and their associated moment conditions for each model, are given in Figures 8-

10. The summary statistics for each of the rolling estimates are reported in Table 4.  

 

In the case of GARCH, the α estimates exhibit an upward trend, with a mean of 0.045. Of particular 

interest is the period between May 1978 and July 1978, when the α estimates increase from 0.010 to 

0.088, and remain high for three months, then decrease dramatically in November 1978. Interestingly, 

this dramatic movement has some equally dramatic counterparts in the β  estimates. In May 1978, the 

β  estimates decrease from 0.797 to -0.732, and remain low for three month, then increase dramatically 

to 0.895, in November 1978. Overall, the mean β  estimate is 0.721, which is lower than its full sample 

counterpart reported in Table 2.  

 

There are 4 rolling windows which fail to satisfy the log-moment condition, but 28 and 39 rolling 

windows fail to satisfy the second and fourth moment conditions, respectively. It is important to note 

that the 28 rolling windows which fail to satisfy the second moment condition include the 4 rolling 

windows that fail to satisfy the log-moment condition. Moreover, almost all the failing rolling windows 

occur after November 1978. The means of the log-, second and the fourth moment conditions are                

-0.190, 0.765 and 0.878, respectively. Interestingly, both second and fourth moment conditions are 

satisfied on average, even though over 30% of the rolling windows fail to satisfy either the second or 

fourth moment conditions.  

 

Although movements in the α estimates in GJR(1,1) are less dramatic, with a mean of 0.056, it would 

appear that there is a structural change in the α estimates. Prior to September 1978, the α estimates are 

relatively low, with a slight upward trend, but between September 1978 and May 1979, they increase 

from 0.030 to 0.122, and remain high thereafter. These movements match those in the γ  and β  

estimates, with means of  -0.095 and 0.887, respectively. Specifically,  the γ  estimates  decrease   from 
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-0.088 to -0.139 between September 1978 and May 1979, and the β  estimates increase from 0.797 to 

0.876 during the same period. Furthermore, there is a substantial decrease in the β  estimates in August 

1977 from 0.890 to 0.737, but an increase to 0.890 in the following month. As shown in the second 

moment condition, the long run persistence is generally quite high, especially towards the end of the 

rolling sample. Movements in the log-, second and fourth moment conditions are very similar, but most 

importantly, all rolling windows satisfy the moment conditions. The mean log-, second and fourth 

moment conditions are -0.111, 0.896 and 0.814, respectively.  

 

The α estimates of EGARCH(1,1) exhibit substantial fluctuations in the early rolling samples, ranging 

from 0.549 to -0.131, with a mean of 0.227, but remains steady from April 1979. Both the γ  and β  

estimates exhibit similar patterns, with means of 0.126 and -0.121, respectively. Of particular interest 

are the movements in the β  estimates, which fluctuate dramatically in the early rolling samples, 

namely from January 1975 to December 1975, then remain low until April 1979, and increase 

dramatically from -0.702 to 0.883. These variations explain the low mean of the β  estimates, and 

reflect the difficulties in estimating the EGARCH model precisely.  

 

In general, the estimates of the parameters in the conditional mean, namely φ1 and δ , do not differ 

substantially, reflecting the block diagonal nature of the associated log-likelihood functions. 

 

5. Concluding Remarks 

 

This paper examined the trends and volatility in the electronics patent share, namely total electronics 

patents in the USA relative to total patents in the USA. Three models of volatility with the same 

conditional mean have been estimated. The estimates based on the full sample suggested weak 

asymmetric effects through GJR, but detected significant asymmetric effect through EGARCH. 

However, non-nested tests of EGARCH versus GARCH clearly rejected GARCH in favour of 

EGARCH, but failed to discriminate between EGARCH and GJR. Moreover, both GARCH and GJR 

satisfied the log-moment conditions for consistency and asymptotic normality of the QMLE.  

 

The dynamic paths of the rolling estimates provided important information about the impacts of 

individual observations on the estimates of the models. In all cases, the estimates seemed to experience 

a structural change during the late 1970’s, specifically during the period May 1978 to April 1979. 
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Overall, both GJR and EGARCH satisfied their respective moment conditions for all rolling windows, 

but 3, 28 and 39 rolling windows failed to satisfy the log-, second and fourth moment conditions, 

respectively, for GARCH.  

 

Based on both the rolling and full sample estimates, non-nested tests and moment conditions, the 

AR(1)-GJR(1,1) model is the most suitable volatility model to capture the dynamics in the electronics 

patent share in the USA.  
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Table 1: Descriptive Statistics for Total Patents, Electronics Patents and Electronics Patent Shares 

 
 Total Electronics EPS 

Mean 8039.261 2154.630 0.261 
Median 6976 1817 0.259 

Maximum 26987 7073 0.338 
Minimum 3133 869 0.209 

Standard Deviation 2846.864 966.211 0.027 
Skewness 1.813 1.458 0.475 
Kurtosis 9.499 5.444 3.003 

 

 

Table 2: Full Sample Estimates of GARCH, GJR and EGARCH 

 
1φ  θ  ω  α  γ  β  Log-

moment 
Second 
Moment 

Fourth 
moment 

GARCH 0.195 2.17E-04 1.94E-06 0.091  0.909 -0.008 1.000 1.016 
 3.040 10.837 0.591 2.282  19.302    
 3.717 14.060 0.317 2.231  14.879    
GJR 0.205 2.17E-04 8.95E-06 0.123 -0.131 0.882 -0.067 0.940 0.903 
 3.276 11.788 1.302 2.226 -1.279 14.478    
 3.549 11.753 1.029 2.029 -1.767 11.277    
EGARCH 0.189 2.18-E04 -0.558 0.151 0.078 0.950    
 2.928 11.678 -2.430 1.820 1.885 38.141    
 1.687 12.238 -2.767 1.006 2.079 13.062    
 

Note: The three entries for each parameter are their respective estimate, the asymptotic t-ratio and the  

Bollerslev-Wooldridge robust t-ratio [8].  

 

 

Table 3: Non-nested Tests 
 

Test Statistics 
EGARCHH
GARCHH

A :
:0  

GARCHH
EGARCHH

A :
:0  

EGARCHH
GJRH

A :
:0  

GJRH
EGARCHH

A :
:0  

)ˆ(θt  4.205 0.008 4.078 4.844 
 

Note: The non-nested tests are given in [24] and [33]. 



  17

Table 4: Descriptive Statistics for the Rolling Estimates 

 

 
GARCH 1φ  θ  α  β  Log-

moment 
Second 
Moment 

Fourth 
moment 

Mean 0.085 2.38E-04 0.045 0.721 -0.190 0.765 0.878 
Median 0.074 2.40E-04 0.032 0.892 -0.054 0.951 0.972 

Maximum 0.209 2.69E-04 0.116 1.017 0.008 1.009 1.228 
Minimum -0.014 2.02E-04 -0.027 -0.749 -2.012 -0.708 0.077 

Standard Deviation 0.053 1.71E-05 0.037 0.460 0.352 0.454 0.276 
Skewness 0.716 -0.154 0.065 -2.536 -3.258 -2.488 -1.267 
Kurtosis 2.735 1.914 1.728 8.132 14.331 7.912 3.941 

 
 
 
 

GJR 1φ  θ  α  γ  β  Log-
moment 

Second 
Moment 

Fourth 
moment 

Mean 0.082 2.40E-04 0.056 -0.095 0.887 -0.111 0.896 0.814 
Median 0.067 2.49E-04 0.042 -0.082 0.897 -0.096 0.909 0.831 

Maximum 0.221 2.73E-04 0.129 -0.051 0.937 -0.041 0.961 0.938 
Minimum 0.024 1.96E-04 0.004 -0.158 0.737 -0.303 0.739 0.552 

Standard Deviation 0.054 2.32E-05 0.038 0.029 0.037 0.055 0.048 0.086 
Skewness 1.055 -0.354 0.461 -0.498 -1.616 -1.134 -1.002 -0.772 
Kurtosis 3.062 1.733 1.775 1.894 5.912 4.013 3.598 3.022 

 
 
 

EGARCH 1φ  θ  α  γ  β  
Mean 0.082 2.39E-04 0.227 0.126 -0.121 

Median 0.062 2.49E-04 0.175 0.132 -0.699 
Maximum 0.206 2.79E-04 0.549 0.199 0.957 
Minimum -0.002 1.76E-04 -0.131 0.032 -0.980 

Standard Deviation 0.056 2.81E-05 0.188 0.032 0.825 
Skewness 0.727 -0.533 0.051 -0.127 0.427 
Kurtosis 2.510 1.950 1.559 3.401 1.225 
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Figure 1: Monthly US Electronics Patents by Date of Application, 1975(1) – 1997(12) 
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Note: The patent data were extracted on 30 May 2001. 

 

 

Figure 2: Annual US Electronics Patents by Date of Application, 1975 – 1997 
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Note: The patent data were extracted on 30 May 2001. 
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Figure 3: Monthly Total US Patents by Date of Application, 1975(1) – 1997(12) 
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Note: The patent data were extracted on 30 May 2001. 

 

 

Figure 4: Annual Total US Patents by Date of Application, 1975 – 1997 
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Note: The patent data were extracted on 30 May 2001. 
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Figure 5: Monthly Electronics Patent Share (%) by Date of Application, 1975 – 1997 
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Note: The patent data were extracted on 30 May 2001. 

 

 

Figure 6: Annual Electronics Patent Share (%) by Date of Application, 1975 – 1997 
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Note: The patent data were extracted on 30 May 2001. 
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Figure 7: Volatility of the Monthly Electronics Patent Share (EPS)  
by Date of Application, 1975 – 1997 
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Note: The patent data were extracted on 30 May 2001. 

 
 
 

Figure 8: Rolling GARCH(1,1) Estimates 
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Figure 9: Rolling GJR(1,1) Estimates 
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Figure 10: Rolling EGARCH(1,1) Estimates 
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