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The multivariate mixed linear model or multivariate components of variance model
with equal replications is considered. The paper addresses the problem of predicting the
sum of the regression mean and the random effects. When the feasible best linear unbiased
predictors or empirical Bayes predictors are used, this prediction problem reduces to the
estimation of the ratio of two covariance matrices. We propose scale invariant Stein type
shrinkage estimators for the ratio of the two covariance matrices. Their dominance prop-
erties over the usual estimators including the unbiased one are established, and further
domination results are shown by using information of order restriction between the two
covariance matrices. It is also demonstrated that the empirical Bayes predictors that em-
ploys these improved estimators of the ratio of the two covariance matrices have uniformly
smaller risks than the crude Efron-Morris type estimator in the context of estimation of a
matrix mean in a fixed effects linear regression model where the components are unknown
parameters.
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1 Introduction

Mixed linear models or variance components models have been effectively and extensively
employed in practical data-analysis when the response is univariate. For example, in
estimation of small area means, they have been used as a method of pooling or smoothing
data to strengthen the accuracy of the estimators of small area means. Mixed linear
models are related to empirical Bayes models. Practical applications and theoretical
studies of these models have been given by Fay and Herriot (1979), Battese, Harter and
Fuller (1988), Prasad and Rao (1990), Ghosh and Rao (1994) and references therein.

In contrast to these activities in the univariate mixed linear models, the multivariate
mixed linear models have received little attention except in the multiple regression model

1



with replicates considered by Rao (1975) in which the vector of p response variables yi

follow the model

yi = Xγi + εi, γi = γ + ηi, (1.1)

i = 1, . . . , k where X is a p×m matrix of known constants, γ is an m-vector of unknown
parameters and, ηi and εi are independently distributed with ηi i.i.d. as Nm(0,F ) and
εi i.i.d. as Np(0, σ

2I). Reinsel (1985) extended this model in which

γi = βbi + ηi (1.2)

where β is an m×q matrix of unknown parameters and bi are vectors of known constants.
Battese et al . (1988)’s model is a variation of the model given in (1.1).

In both models (1.1) and (1.2), yi are independently distributed random vectors with
covariance matrix given by

Cov (yi) = XFX ′ + σ2Ip.

Thus, when m < p, both σ2 and F can be unbiasedly estimated. However, when

Cov (εi) = Σ,

a completely unknown matrix, no optimality results are available in predicting, say, βbi +
ηi when ηi are random or when ηi are fixed (with some constraints). Thus, in this paper,
we consider the following multivariate mixed linear models

yij = βbij + αi + εij , (1.3)

i = 1, . . . , k, j = 1, . . . , r, where β is a p× q matrix of unknown parameters and bij are
q × 1 known vectors. It is assumed that αi and εij are independently distributed where
αi are i.i.d. Np(0,ΣA) and εij are i.i.d. Np(0,Σ). Let

θi = βbi.+ αi, bi. = r−1
∑

j

bij

and
Θ = (θ1, . . . , θk).

Our objective is to predict Θ under the squared loss function where Θ̂ is chosen to
minimize the risk

R(Θ̂, ω) = Eω

[
tr (Θ̂ − Θ)′Σ−1(Θ̂ − Θ)

]
,

where ω = (β,Σ,ΣA) denotes the set of unknown parameters.

When the parameters of the model is known, the best linear unbiased predictor
(BLUP) would be employed. The BLUP is interpreted as a Bayes rule. Since the pa-
rameters are unknown in the model, their estimators are substituted in the BLUP, and
the substituted predictor is called the feasible BLUP or empirical Bayes predictor. The
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empirical Bayes predictor lies in between the predictor associated with each small area
and the estimator pooling whole data.

In Section 2, we consider the case when bij = bi, j = 1, . . . , r. It is shown that the
problem of predicting small area means is reduced to that of estimating the ratio ∆ of
covariance matrices. The estimator of the ratio matrix ∆ is important in the empirical
Bayes predictor as it determines the extent to which the estimator associated with each
small area should be shrunken towards the pooled estimator.

In the estimation of a covariance matrix and a ratio of two covariance matrices, several
types of estimators improving upon usual estimators such as unbiased ones are available.
One of them is the James-Stein type estimator based on the Bartlett’s lower triangular
decomposition. It is known that the James-Stein type estimator depends on the coor-
dinate system. We therefore consider scale invariant Stein-type shrinkage estimator for
∆ in Section 3. By taking into account the order restriction between the two covariance
matrices, another improved predictor is obtained in Section 3. It may be mentioned that
an estimator of ∆ can also be obtained by considering multivariate beta distribution as
in Bilodeau and Srivastava (1992) and Konno (1992b).

In Section 4, numerical comparisons of several improved predictors are given based
on Monte Carlo simulation. The Monte Carlo studies show that the Efron-Morris type
truncated predictor proposed in Section 3 has very nice risk-performances with much
smaller risks than the sample mean vector. An example treating data derived by Monte
Carlo simulation is given there.

The problem of estimating a matrix mean in a fixed effect linear regression model is
addressed in Section 5. In Section 6, we consider the general model (1.3) and give an
example analyzing the posted land price data in Kanagawa prefecture in Japan.

2 A Mixed Linear Model

In this section, we deal with the following multivariate mixed linear model with equal
replications:

yij = βbi + αi + εij, i = 1, . . . , k, j = 1, . . . , r, (2.1)

where yij’s are p-variate observation vectors, β is a p × q common unknown regression
coefficient, bi’s are q × 1 covariates, αi’s are p × 1 random effects having a p-variate
normal distribution Np(0,ΣA), and εij’s are p× 1 random error terms having Np(0,Σ).
It is supposed that αi’s and εij ’s are mutually independent and that ΣA and Σ are
unknown positive-definite dispersion matrices.

Let θi = βbi + αi and Θ = (θ1, . . . , θk). Then the problem we consider in this paper

is to predict the p× k matrix Θ where estimator Θ̂ of Θ is evaluated in terms of the risk
function

Rm(Θ̂, ω) = Eω

[
tr (Θ̂ −Θ)′Σ−1(Θ̂ − Θ)

]
(2.2)
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for unknown parameters ω = (β,Σ,ΣA).

The multivariate mixed linear model is also interpreted as an empirical Bayes model:
yij ∼ Np(θi,Σ) and θi having prior distribution Np(βbi,ΣA). In this situation, the Bayes
estimator of θi is given by

θ̂
B

i = θ̂
B

i (β,Σ,ΣA) = yi.−ΣΣ−1
2 (yi.− βbi),

for yi. = r−1
∑r

j=1 yij and Σ2 = Σ + rΣA. This is the best linear unbiased predictor
(BLUP) in our setup.

Since the Bayes estimator θ̂
B

i depends on the unknown parameters β, Σ and ΣA. they
should be estimated from the marginal distributions. Let

S =

k∑
i=1

r∑
j=1

(yij − yi.)(yij − yi.)
′, W = r

k∑
i=1

(yi.− β̂bi)(yi.− β̂bi)
′,

β̂ =

k∑
i=1

yi.b
′
i(

k∑
i=1

bib
′
i)

−,

where A− denotes the generalized inverse of the matrix A. Assume that the rank of∑k
i=1 bib

′
i is q1 with q1 ≤ q < p. Then it is seen that

S ∼ Wp(Σ, n), n = k(r − 1),

W ∼ Wp(Σ2, m), m = k − q1

and that S, W and β̂ are mutually independent. The parameters β, Σ and ΣA (or Σ2)

are respectively estimated by β̂, Σ̂ and Σ̂A (or Σ̂2) which are functions of β̂, S and W .
This results in an empirical Bayes estimator (or feasible BLUP) of θi of the form

θ̂
EB

i = θ̂
B

i (β̂, Σ̂, Σ̂A) = yi.− Σ̂Σ̂
−1

2 (yi.− β̂bi), (2.3)

which means that the sample mean of the i-th small area is shrunk towards the common
value that uses all the data. It is known that yi. has an unstable variance because of
small data in the i-th small area. But this undesirable property can be avoided by using

the estimator θ̂
EB

i which borrows the data from the surrounding small area. The ratio

Σ̂Σ̂
−1

2 of the estimators of covariance matrices determines the extent to which yi. should
be shrunk. Since the parameter space is restricted as

Σ1/2(Σ + rΣA)−1Σ1/2 = Σ1/2Σ−1
2 Σ1/2 ≤ Ip, (2.4)

the ratio should be in 0 ≤ Σ̂
1/2

Σ̂
−1

2 Σ̂
1/2 ≤ Ip, where A1/2 denotes the positive definite

factorization of the symmetric matrix A and A ≤ B means that B − A is non-negative
definite. Two extreme cases of taking Σ1/2Σ−1

2 Σ1/2 = 0 and = Ip yield yi. and β̂bi,

respectively, both of which are inappropriate. It is reasonable to choose Σ̂Σ̂
−1

2 such that

θ̂
EB

i has a uniformly smaller risk than the existing estimators including yi..
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Let Θ̂
EB

= (θ̂
EB

1 , . . . , θ̂
EB

k ). Noting that Eω[tr (Θ̂
B − Θ)′Σ−1(Θ̂

B − Θ)] = pk/r −
(k/r)trΣΣ−1

2 , we see that the risk function of Θ̂
EB

is written by

Rm(Θ̂
EB
, ω) (2.5)

= Eω

[
tr (Θ̂

EB − Θ̂
B
)′Σ−1(Θ̂

EB − Θ̂
B
)
]

+ Eω

[
tr (Θ̂

B −Θ)′Σ−1(Θ̂
B − Θ)

]
= r−1Eω

[
tr
{

(Σ̂Σ̂
−1

2 − ΣΣ−1
2 )′Σ−1(Σ̂Σ̂

−1

2 − ΣΣ−1
2 )W

}]
+ kr−1

(
p− trΣΣ−1

2

)
,

so that the risk of Θ̂
EB

depends on the risk of the estimators of the ratio of covariance
matrices defined by

R(∆̂, ω) = Eω

[
tr (∆̂− ∆)′Σ−1(∆̂− ∆)W

]
(2.6)

for ∆ = ΣΣ−1
2 and its estimator ∆̂. We shall look for an estimator ∆ that has a smaller

risk R(∆̂, ω).

The usual unbiased estimator of ∆ is ∆̂
UB

= n−1(m− p− 1)SW−1 with risk

R(∆̂
UB
, ω) =

{−n−1(n− p− 1)(m− p− 1) +m
}

tr∆.

Since the crude estimator (y1., . . . ,yk.) of Θ corresponds to the the estimator ∆̂ = 0, its

risk has R(0, ω) = mtr∆ and this shows that ∆̂
UB

is better than the crude estimator ∆̂ =

0 for m > p+1 and n > p+1. More generally the estimator ∆̂(a) = aSW−1, a multiple of

SW−1, has the risk R(∆̂(a), ω) = {n(n + p+ 1)(m− p− 1)−1a2 − 2na+m} tr∆, which
can be minimized at a = (m− p− 1)/(n+ p+ 1) with risk

R(∆̂0, ω) =
{−n(n+ p + 1)−1(m− p− 1) +m

}
tr∆,

where

∆̂0 = (n+ p+ 1)−1(m− p− 1)SW−1. (2.7)

3 Improved Estimators

In this section, we shall provide several types of estimators of ∆ improving upon ∆̂0

relative to the risk R(∆̂, ω).

We first consider two types of James-Stein type estimators based on Bartlett’s decom-
position. Let G+

L denote the group of lower triangular matrices with positive diagonal
elements. Let T and U be matrices in G+

L such that S = TT ′ and W = UU ′. Then we
can consider two types of James-Stein estimators:

∆̂
JS

1 = (n + p+ 1)−1SU ′−1CU−1 and ∆̂
JS

2 = (m− p− 1)TDT ′W−1,
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where C = diag (c1, . . . , cp) and D = diag (d1, . . . , dp) for

ci = m− i− 1, i = 1, . . . , p, (3.1)

di =
1

n + p+ 3 − 2i

i−1∏
j=1

(
1 − 1

n+ p+ 3 − 2j

)
, i = 2, . . . , p, (3.2)

and d1 = (n + p + 1)−1. It has been shown in Kubokawa and Srivastava (1999) that

these estimators have smaller risk than the estimator ∆̂0. However, these estimators
depend on the coordinate systems and therefore no further consideration will be given to
these estimators in this paper. Instead, we shall consider scale equivariant estimators as
described below.

Let A be a p × p nonsingular matrix such that S = AA′ and W = AFA′ for
F = diag (f1, . . . , fp), f1 ≥ f2 ≥ . . . ≥ fp. Then we consider estimators of the form

∆̂(Ψ) = AΨ(f)A−1, Ψ(f) = diag (ψ1(f), . . . , ψp(f )) (3.3)

for positive functions ψi(f )’s of f = (f1, . . . , fp). This estimator is equivariant under the
group of scale transformations (S,W ) → (BSB′,BWB′) for p× p nonsingular matrix
B. Using the same arguments as in Konno (1991, 92a), we can write the risk function of

∆̂(Ψ).

Proposition 1. The risk function of ∆̂(Ψ) is given by

R(∆̂(Ψ), ω) = Eω

[
r(∆̂(Ψ))

]
+mtrΛ, (3.4)

where

r(∆̂(Ψ)) =

p∑
i=1

{
(n+ p− 3)fiψ

2
i − 4f 2

i ψi
∂ψi

∂fi
− 2
∑
j>i

f 2
i ψ

2
i − f 2

j ψ
2
j

fi − fj
(3.5)

−2(m− p+ 1)ψi − 4fi
∂ψi

∂fi
− 4
∑
j>i

fiψi − fjψj

fi − fj

}
.

Proof. The method of proof is similar to Konno (1992a), using the Wishart identity
obtained by Stein (1977) and Haff (1979). Let G(S) be a p × p matrix such that the
(i, j) element gij(S) is a function of S = (sij) and define the differential operator DS by
{DSG(S)}ij =

∑p
a=1 diagaj(S), where dia = 2−1 (1 + δia) ∂/∂sia with δia = 1 for i = a

and δia = 0 for i �= a. When S is distributed as Wp(Σ, n), the Stein-Haff identity is
expressed by EΣ[tr {G(S)Σ−1}] = EΣ[(n − p − 1)tr {G(S)S−1} + 2tr {DSG(S)}]. Also
note that a similar identity is given for W having W(Σ2, m). Applying the Stein-Haff
identity, we observe that

R∗(∆̂, ω) =Eω

[
tr
(
∆̂W ∆̂

′
Σ−1

)
− 2tr

(
∆̂WΣ−1

2

)]
=Eω

[
(n− p− 1)tr ∆̂W ∆̂

′
S−1 + 2tr DS(∆̂W ∆̂

′
)

−2(m− p− 1)tr ∆̂ − 4tr DW (∆̂W )
]
.
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Since ∆̂ = AΨ(f )A−1 with S = AA′ and W = AF A′, R∗(∆̂(Ψ), ω) is rewritten by

R∗(∆̂(Ψ), ω) =Eω [(n− p− 1)trΨFΨ + 2tr DS(AΨFΨA′)

−2(m− p− 1)trΨ − 4trDW (AΨF A′)] . (3.6)

Here the following calculations due to Loh (1988) and Konno (1992a) are useful:

tr DS(AΦ(F )A′) =

p∑
i=1

{
pφi − fi

∂φi

∂fi
−
∑
j>i

fiφi − fjφj

fi − fj

}
, (3.7)

tr DW (AΦ(F )A′) =

p∑
i=1

{
∂φi

∂fi

+
∑
j>i

φi − φj

fi − fj

}
, (3.8)

where Φ(�) = diag (φ1(�), . . . , φp(�)). Combining (3.6), (3.7) and (3.8) provides that

R∗(∆̂(Ψ), ω) =

p∑
i=1

Eω

[
(n− p− 1)fiψ

2
i + 2pfiψ

2
i − 2fi

(
ψ2

i + 2fiψi
∂ψi

∂fi

)

−2
∑
j>i

f 2
i ψ

2
i − f 2

j ψ
2
j

fi − fj
− 2(m− p− 1)ψi − 4

(
ψi + fi

∂ψi

∂fi

)
− 4
∑
j>i

fiψi − fjψj

fi − fj

]
,

which leads to the expression (3.5) of Proposition 1.

In the next two subsections, we consider two scale invariant estimators which we call
Stein type and Efron-Morris type of estimators.

3.1 Stein type scale-equivariant estimator

In this subsection, we consider the Stein type scale-equivariant estimator of the form

∆̂
ST

= Adiag (b1/f1, . . . , bp/fp) A−1, (3.9)

for bi = (m+p−2i−1)/(n−p+2i+1). These constants bi’s were given by Konno (1991)
in estimation of a matrix mean, and have the order relation that b1 > b2 > . . . > bp. It
has been shown by Srivastava and Solankey (2002) that this estimator has a very good
risk performance as compared to many of its competitors including the ones proposed by
Breiman and Friedman (1997). Using (3.4) and (3.5), we shall show that the estimator

∆̂
ST

dominates ∆̂0 relative to the risk (2.6).

From (3.4) and (3.5), the risk function of the estimator ∆̂
ST

is given by

R(∆̂
ST
, ω) −mtrΛ (3.10)

=

p∑
i=1

Eω

[
(n+ p+ 1)

b2i
fi

− 2
∑
j>i

b2i − b2j
fi − fj

− 2(m− p− 1)
bi
fi

− 4
∑
j>i

bi − bj
fi − fj

]
.

7



Following Konno (1991), we have that for k = 1, 2 and bi > bj for i < j,

p∑
i=1

p∑
j=i+1

bki − bkj
fi − fj

=

p∑
i=1

1

fi

p∑
j=i+1

fi

fi − fj

(
bki − bkj

)
(3.11)

≥
p∑

i=1

1

fi

p∑
j=i+1

(
bki − bkj

)
=

p∑
i=1

1

fi

{
(p− i)bki −

p∑
j=i+1

bkj

}
,

since fi/(fi − fj) > 1. On the other hand, the risk of the estimator ∆̂0 is derived by
putting b1 = · · · = bp = (m− p− 1)/(n+ p+ 1) in (3.10), and we observe that

R(∆̂0, ω) −mtrΛ = −(m− p− 1)2

n + p+ 1

p∑
i=1

Eω

[
1

fi

]
. (3.12)

Combining (3.10), (3.11) and (3.12), we see that the risk difference of ∆̂
ST

and ∆̂0 is

evaluated as R(∆̂
ST
, ω) − R(∆̂0, ω) =

∑p
i=1Eω

[
f−1

i h(i)
]
, where

h(i) = (n− p+ 2i + 1)b2i − 2(m+ p− 2i− 1)bi + 2

p∑
j=i+1

bj(bj + 2) +
(m− p− 1)2

n + p+ 1
,

so that it is sufficient to show that

h(i) ≤ 0 (3.13)

for i = 1, . . . , p−1, since it is easy to verify that h(p) ≤ 0. Although this proof was given
by Konno (1991), a simple proof is given below. Note that h(i− 1) is rewritten as

h(i− 1) = −(m + p− 2i+ 1)2

n− p+ 2i− 1
+ 2

p∑
j=i

bj(bj + 2) +
(m− p− 1)2

n+ p+ 1

= h(i) − (a′i + 2)2

ai − 2
+ 2

a′2i
a2

i

+ 4
a′i
ai

+
a′2i
ai

=

p∑
k=i

{
−(a′k + 2)2

ak − 2
+ 2

a′2k
a2

k

+ 4
a′k
ak

+
a′2k
ak

}
, (3.14)

where a′i = m+ p− 2i and ai = n− p + 2i+ 1. It can be easily checked that for each k,

−(a′k + 2)2

ak − 2
+ 2

a′2k
a2

k

+ 4
a′k
ak

+
a′2k
ak

≤ 0,

which shows the inequality (3.13).

Proposition 2. The scale-equivariant Stein type estimator ∆̂
ST

dominates ∆̂0 rela-
tive to the risk (2.6).
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3.2 Efron-Morris type scale-equivariant estimator

Another scale-equivariant estimator we call Efron-Morris type is given by

∆̂
EM

= αSW−1 + β
1

tr S−1W
Ip, (3.15)

where

α =
m− p− 1

n+ p+ 1
, β =

(p− 1)(p+ 2)(1 + α)

n− p+ 3
=

(p− 1)(p+ 2)(m+ n)

(n+ p+ 1)(n− p+ 3)
.

That is, ∆̂
EM

= AΨ(f )A−1 where Ψ(f) = diag (ψ1, . . . , ψp) and ψi = α/fi+β/
∑p

j=1 fj.

Thus, from (3.5), it follows that the function r(·) for ∆̂
EM

is given by

r(∆̂
EM

) =
∑

i

f−1
i

{
(n+ p + 1)α2 − 2(m− p− 1)α

}
+ 4β2

∑
i f

2
i

(
∑

i fi)3

+
1∑
i fi

{
(n− p− 1)β2 − 2 [(p− 1)(p+ 2) + p(m− p− 1) − (np + 2)α]

}
≤
∑

i

f−1
i

{
(n+ p + 1)α2 − 2(m− p− 1)α

}
+

1∑
i fi

{
(n− p+ 3)β2 − 2 [(p− 1)(p+ 2) + p(m− p− 1) − (np+ 2)α]

}
= −

∑
i

f−1
i

(m− p− 1)2

n + p+ 1
+

1∑
i fi

{
(n− p+ 3)β2 − 2(p− 1)(p+ 2)(1 + α)

}
,

where the last equality is derived by substituting α = (m − p − 1)/(n + p + 1). Since
β = (p− 1)(p+ 2)(1 + α3)/(n− p+ 3), we get that

r(∆̂
EM

) ≤ −
∑

i

f−1
i

(m− p− 1)2

n + p+ 1
− 1∑

i fi

1

n− p+ 3

{
(p− 1)(p+ 2)(n+m)

n+ p+ 1

}2

,

which is smaller than r(∆̂0) = −∑i f
−1
i (m− p− 1)2/(n+ p+ 1). Hence we get

Proposition 3. The Efron-Morris type scale equivariant estimator ∆̂
EM

dominates
∆̂0 relative to the risk (2.6).

Konno (1992a) proposed the constant β∗ = (p − 1)(p + 2)/(n − p + 3) instead of β

and we denote the Efron-Morris type estimator for the constant β∗ by ∆̂(β∗). Noting

that β∗ < β and that
∑

i f
2
i ≤ (trF )2, we can see that ∆̂

EM
given by (3.15) improves on

∆EM (β∗), which is better than ∆̂0.
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3.3 Improvement by use of order restriction

Recalling that Σ2 = Σ + rΣA, we notice that there is the order restriction Σ2 > Σ
between Σ and Σ2. The estimators treated in the previous sections can be shown to be
further improved upon by using this knowledge. The resulting estimators of Θ correspond
to the positive-part Stein estimator for m = 1.

For the scale-equivariant estimator ∆̂(Ψ) = AΨ(f)A−1 with

Ψ(f) = diag (ψ1(f ), . . . , ψp(f )),

given by (3.3), consider the truncated estimator of the form

∆̂(Ψ∗) = AΨ∗(f )A−1, Ψ∗(f) = diag (min{ψ1(f), 1}, . . . ,min{ψp(f ), 1}) .
Then we can get

Proposition 4. The truncated estimator ∆̂(Ψ∗) dominates ∆̂(Ψ) relative to the risk
(2.6).

Proof. The risk difference of the estimators ∆̂(Ψ) and ∆̂(Ψ∗) with Ψ = diag (ψ1, . . . , ψp)
and Ψ∗ = diag (ψ∗

1 , . . . , ψ
∗
p) is written by

R(∆̂(Ψ), ω) − R(∆̂(Ψ∗), ω)

= E

[
tr
(
∆̂(Ψ) − ∆̂(Ψ∗)

)′
Σ−1

(
∆̂(Ψ) + ∆̂(Ψ∗) − 2∆

)
W

]
= E

[
tr
(
Ψ + Ψ∗ − 2A−1∆A

)
F (Ψ − Ψ∗) A′WA′−1

]
. (3.16)

Since ∆ ≤ I and Ψ ≥ Ψ∗, it can be seen that the r.h.s. of the last equation in (3.16) is
greater than or equal to E[2tr (Ψ∗ − I)F (Ψ−Ψ∗)A′Σ−1A], which is equal to zero since
ψ∗

i = min(ψ, 1). This proves Proposition 4.

Applying the truncation rule to the Stein and Efron-Morris type scale-equivariant

estimators ∆̂
ST

and ∆̂
EM

, we obtain the truncated estimators

∆̂
ST∗

= ∆̂(ΨST∗), ΨST∗ = diag

(
min

{
bi
fi
, 1

}
, i = 1, . . . , p

)
, (3.17)

∆̂
EM∗

= ∆̂(ΨEM∗), ΨEM∗ = diag

(
min

{
α

fi
+

β∑p
j=1 1/fj

, 1

}
, i = 1, . . . , p

)
, (3.18)

which improve on ∆̂
ST

and ∆̂
EM

.

4 Numerical Risk Compariasons and Empirical Stud-

ies

We shall investigate the risk-performances of estimators of Θ numerically. From (2.3) and

(2.5), the risk function of the estimator Θ̂
EB

given by (2.3) is expressed by the risk given

10



by (2.6), that is, the problem is reduced to that of estimating the ratio of the covariance
matrices ∆ = ΣΣ−1

2 . Since the estimator (y1., . . . ,yk.) of Θ is minimax in terms of the

risk (2.2) and it corresponds to the estimator ∆̂ = 0 in the reduced problem with the risk
R(0, ω) = mtr∆, we use the relative risk efficiency

Eff(∆̂, ω) = Eω

[
tr (∆̂ −∆)′Σ−1(∆̂ −∆)W

]
/(mtr∆) (4.1)

to investigate the performances of the estimators estimators ∆̂ of ∆. When the efficiency

Eff(∆̂, ω) is less than or equal to 1, it means that the estimator θ̂
EB

i = yi.−∆̂(yi.−β̂bi),

i = 1, . . . , k, with the ∆̂ is minimax, namely, it improves on (y1., . . . ,yk.) in terms of
the risk (2.2).

The estimators we want to compare are the unbiased estimator ∆̂
UB

= n−1(m −
p − 1)SW−1, the James-Stein type estimators ∆̂

JS

1 = (n + p + 1)−1SU ′−1CU−1 and

∆̂
JS

2 = (m− p− 1)TDT ′W−1 given in the begining of Section 3, the best scale multiple

estimator ∆̂0 = (n+ p + 1)−1(m− p− 1)SW−1, the Stein type estimator

∆̂
ST

= Adiag (b1/f1, . . . , bp/fp) A−1

given by (3.9), the Efron-Morris type estimator

∆̂
EM

= αSW−1 + β
1

tr S−1W
Ip

given by (3.15), the other Efron-Morris type estimator

∆̂
EMK

= αSW−1 + β∗ 1

tr S−1W
Ip

for the constant β∗ given by Konno (1992a), the truncated estimator ∆̂
BE∗

= ∆̂(ΨBE∗)
for

ΨBE∗ = diag
(
min

{
(n+ p+ 1)−1(m− p− 1)/fi, 1

}
, i = 1, . . . , p

)
,

the Stein type truncated estimator ∆̂
ST∗

= ∆̂(ΨST∗) for

ΨST∗ = diag (min {bi/fi, 1} , i = 1, . . . , p)

given by (3.17) and the Efron-Morris type truncated estimator ∆̂
EM∗

= ∆̂(ΨEM∗) for

ΨEM∗ = diag

(
min

{
α

fi

+
β∑p

j=1 1/fj

, 1

}
, i = 1, . . . , p

)

given by (3.18). These estimators are, respectively, abbreviated by the notations

UB, JS1, JS2, BE, ST,EM,EMK,BE∗, ST ∗, EM∗.

11



Table 1: Relative Risk Efficiencies of the Estimators in the Case that p = 3, q = 2,
k = 20, r = 2, n = 20, m = 18, Σ = I3 and ΣA = Hdiag (γ/10, 2γ/10, 3γ/10)H ′ for
γ = 0, . . . , 9

γ UB JS1 JS2 BE ST EM EMK BE∗ ST ∗ EM∗

0 0.377 0.348 0.352 0.351 0.247 0.267 0.282 0.268 0.159 0.117
1 0.377 0.348 0.352 0.351 0.251 0.268 0.284 0.274 0.170 0.131
2 0.377 0.348 0.352 0.351 0.259 0.272 0.286 0.282 0.187 0.153
3 0.377 0.349 0.352 0.351 0.267 0.275 0.289 0.289 0.203 0.172
4 0.377 0.349 0.352 0.351 0.275 0.279 0.292 0.294 0.216 0.187
5 0.377 0.349 0.352 0.351 0.282 0.282 0.294 0.297 0.227 0.200
6 0.377 0.349 0.352 0.351 0.288 0.285 0.297 0.299 0.236 0.209
7 0.377 0.349 0.352 0.351 0.293 0.288 0.299 0.301 0.243 0.217
8 0.377 0.349 0.352 0.351 0.298 0.291 0.301 0.302 0.249 0.224
9 0.377 0.349 0.352 0.351 0.302 0.293 0.303 0.303 0.254 0.229

Table 2: Relative Risk Efficiencies of the Estimators in the case that p = 10, q = 2,
k = 20, r = 2, n = 20, m = 18, Σ = I10 and ΣA = Hdiag (i × γ/10, i = 1, . . . , 10)H ′

for γ = 0, . . . , 9

γ UB JS1 JS2 BE ST EM EMK BE∗ ST ∗ EM∗

0 0.824 0.732 0.749 0.747 0.345 0.255 0.299 0.676 0.239 0.122
1 0.824 0.735 0.750 0.747 0.382 0.303 0.343 0.689 0.308 0.208
2 0.824 0.736 0.750 0.747 0.421 0.352 0.387 0.700 0.367 0.283
3 0.824 0.737 0.751 0.747 0.452 0.389 0.421 0.708 0.408 0.334
4 0.824 0.738 0.751 0.747 0.476 0.418 0.447 0.713 0.439 0.372
5 0.824 0.739 0.751 0.747 0.496 0.441 0.468 0.716 0.464 0.402
6 0.824 0.739 0.751 0.747 0.514 0.460 0.486 0.719 0.484 0.425
7 0.824 0.739 0.751 0.747 0.528 0.477 0.501 0.720 0.501 0.445
8 0.824 0.740 0.751 0.747 0.541 0.492 0.514 0.721 0.515 0.461
9 0.824 0.740 0.751 0.747 0.553 0.504 0.526 0.722 0.527 0.476
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Table 3: Relative Risk Efficiencies of the Estimators in the case that p = 10, q = 8,
k = 20, r = 3, n = 40, m = 12, Σ = I10 and ΣA = Hdiag (i × γ/10, i = 1, . . . , 10)H ′

for γ = 1, . . . , 10

γ UB JS1 JS2 BE ST EM EMK BE∗ ST ∗ EM∗

0 0.941 0.856 0.935 0.935 0.287 0.098 0.101 0.895 0.173 0.038
1 0.941 0.872 0.936 0.935 0.361 0.224 0.227 0.898 0.289 0.179
2 0.941 0.880 0.937 0.936 0.426 0.326 0.328 0.900 0.371 0.285
3 0.942 0.886 0.937 0.936 0.474 0.396 0.398 0.902 0.427 0.358
4 0.942 0.890 0.937 0.936 0.512 0.448 0.450 0.903 0.469 0.412
5 0.942 0.894 0.938 0.936 0.543 0.489 0.491 0.904 0.503 0.455
6 0.943 0.896 0.938 0.937 0.570 0.523 0.525 0.905 0.532 0.490
7 0.943 0.899 0.938 0.937 0.593 0.552 0.553 0.905 0.556 0.519
8 0.943 0.901 0.938 0.937 0.613 0.576 0.577 0.906 0.578 0.544
9 0.943 0.903 0.938 0.937 0.631 0.597 0.598 0.906 0.596 0.565

The risk functions or the relative risk efficiencies of the above estimators are computed
through simulation experiments based on 50,000 replications. The simulation experiments
are done in the following three cases:

Case 1: p = 3, q = 2, k = 20, r = 2, n = 20, m = 18, Σ = I3 and

ΣA = Hdiag (γ/10, 2γ/10, 3γ/10)H ′, Σ2 = I3 + rΣA

for γ = 0, . . . , 9 and an orthogonal matrix H ,

Case 2: p = 10, q = 2, k = 20, r = 2, n = 20, m = 18, Σ = I10 and

ΣA = Hdiag (i× γ/10, i = 1, . . . , 10)H ′, Σ2 = I10 + rΣA

for γ = 0, . . . , 9.

Case 3: p = 10, q = 8, k = 20, r = 3, n = 40, m = 12, Σ = I10 and

ΣA = Hdiag (i× γ/10, i = 1, . . . , 10)H ′, Σ2 = I10 + rΣA

for γ = 0, . . . , 9.

The relative risk efficiencies Eff(∆̂, ω) of the above estimators for the three cases are
given in Tables 1, 2 and 3, respectively. Form these tables, the following conclusions can
be drawn.

(1) The Efron-Morris type truncated estimator EM∗ has very nice risk behaviours
and it is the best among all the estimators so that it is highly recommended.

(2) The comparison between the Stein-type and Efron-Morris type estimators ST and
EM depend on the cases. Table 1 reveals that ST is better than EM while Tables 2 and
3 show EM is superior. Anyway, EM∗ is better than both of them.
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(3) The estimator EM is better than EMK, but the differences in the risks are quite
small.

(4) The estimators UB, JS1, JS2, BE and BE∗ are minimax, but much worse than
EM∗ through the three tables.

We now give an example for data derived by Monte Carlo simulation.

Example 1. (Simulated Data) We first treat a data set yij , i = 1, . . . , k, j = 1, . . . , r,
derived by Monte Carlo simulation under the model (2.1) in the case that k = 20, r = 3,
q = 2, p = 5, n = k(r − 1), m = k − q, Σ = I5, ΣA = Hdiag (i/10, i = 1, . . . , 5)H ′ and
βij = (β)ij = i + j − 2. The covariates b1, . . . , b20 are derived as independent random
variables from a 2-variate normal distribution with

E[bi] =
i− 1

2

(
1
1

)
, Cov (bi) =

(
1 ρ
ρ 1

)
,

for ρ = 0.4. Then (y1., . . . ,y20.), β̂, S and W are computed as the followings:

β̂ =


−0.0343 1.0667

0.8944 2.0810
1.9547 3.0670
2.9659 4.0867
3.9309 5.0445

 ,

(y1., . . . ,y20.)
′ =



0.251 0.117 −1.170 −1.532 −1.471
−1.289 −0.259 −1.098 0.903 −0.639

2.022 3.771 4.620 7.731 7.409
2.280 9.107 13.457 17.784 24.354
1.465 6.646 10.798 14.410 19.976
1.982 6.993 11.499 16.937 21.567
5.674 13.799 21.814 30.496 39.932
2.055 7.280 14.994 19.060 22.942
5.436 10.756 20.050 30.312 35.811
4.825 13.262 21.981 29.531 38.479
6.975 19.493 30.814 42.024 53.244
5.159 15.304 27.075 37.801 47.510
3.978 13.889 23.322 31.381 42.676
5.160 17.225 29.040 42.796 53.938
6.515 21.040 33.741 49.448 62.569

11.707 29.466 49.589 68.192 87.503
6.078 22.272 37.262 52.430 65.752

10.216 26.370 46.310 64.047 80.195
9.751 29.300 46.661 66.522 84.010

10.239 24.600 43.285 60.447 77.882



,
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S =


41.921 3.293 0.951 0.720 3.357
3.293 45.926 −9.940 11.328 7.114
0.951 −9.940 46.946 10.198 −0.629
0.720 11.328 10.198 46.175 −8.015
3.357 7.114 −0.629 −8.015 58.362

 ,

W =


43.722 −5.520 7.103 1.167 −3.000
−5.520 29.700 −2.892 −10.936 −2.106

7.103 −2.892 34.376 6.710 −0.493
1.167 −10.936 6.710 58.105 −3.625

−3.000 −2.106 −0.493 −3.625 13.327

 .

Based on these statistics, θi = βbi + αi can be predicted by

θ̂i = yi.− ∆̂(yi.− β̂bi),

for an estimator ∆̂ of ∆ = Σ(Σ+rΣA)−1. We denote the predictors θ̂i for the estimators

∆̂
UB

, ∆̂
ST

, ∆̂
EM

, ∆̂
EM∗

by

pUB, pST, pEM, pEM∗, respectively.

The sample mean vector (y1., . . . ,y20.) corresponding to ∆̂ = 0 is also treated as a
predictor.

The predicted values by pST , pEM and pEM∗ for θ1, θ11 and θ20 are reported in Table
4 where θi = (θi1, θi2, θi3, θi4, θi5)

′. For each i, the values of θi, yi and β̂bi are also given
there. It is revealed in Table 4 that the predicted values for pST , pEM and pEM∗ are
between yi and β̂bi because of shrinking yi towards β̂bi. It is also seen that the predicted
values by pEM∗ are, in most cases, closer to the true values of θi than those by yi. Since
we know the true values of θi in this example, we can compute the prediction errors such
as
∑k

i=1(θ̂i − θi)
′(θ̂i − θi), which are given by {(y1., . . . ,y20.), 35.984}, {pUB, 27.232},

{pST, 23.032}, {pEM, 23.973} and {pEM∗, 20.364}. The predictor pEM∗ with the Efron-

Morris type truncated estimator ∆̂
EM∗

has the smallest prediction error.

5 Estimation of Mean Matrix in a Fixed Effects Model

In this section we consider the model (2.1)

yij = βbi + αi + εij, i = 1, . . . , k, j = 1, . . . , r,

in which αi are unknown parameters representing the fixed effects of the ith group. We
shall assume that

k∑
i=1

αib
′
i = 0,

and εij are i.i.d. Np(0,Σ). Thus, Cov (yij) = Σ. Our aim is to estimate Θ =
(θ1, . . . , θk), where

θi = βbi + αi, i = 1, . . . , k,
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Table 4: Predicted values of the Predictors for i = 2, 11, 20

θi1 θi2 θi3 θi4 θi5

θi -1.3065 -1.1717 -0.4064 -0.1669 -1.1618
yi -1.2899 -0.2590 -1.0989 0.9033 -0.6391

β̂bi -0.2721 -0.4260 -0.5585 -0.7047 -0.8405
i = 2 UB -1.1024 -0.6585 -0.9092 0.4891 -0.9594

pST -0.9390 -0.6180 -0.8582 0.3247 -0.9145
pEM -0.9166 -0.6409 -0.8223 0.2111 -0.9592
pEM∗ -0.8906 -0.5870 -0.8319 0.2125 -0.8174

θi 6.389 19.253 29.775 41.484 53.350
yi 6.975 19.493 30.814 42.024 53.244

β̂bi 6.805 18.282 30.256 42.196 53.491
i = 11 UB 6.862 18.946 30.679 41.762 53.310

pST 6.855 18.865 30.592 41.812 53.343
pEM 6.841 18.767 30.581 41.832 53.352
pEM∗ 6.849 18.783 30.578 41.832 53.394

θi 9.291 26.246 43.522 59.932 77.322
yi 10.239 24.600 43.285 60.447 77.882

β̂bi 9.046 25.732 43.274 60.700 77.196
i = 20 UB 9.874 24.921 43.297 60.792 77.023

pST 9.729 25.054 43.301 60.790 77.109
pEM 9.675 25.113 43.293 60.799 76.993
pEM∗ 9.719 25.204 43.277 60.801 77.232
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under the loss function
tr (Θ̂ − Θ)′Σ−1(Θ̂ − Θ),

where Θ̂ is an estimator of Θ. In previous sections, several estimators dominating ∆̂0

have been proposed, and from (2.3) and (2.5), it is seen that the resulting estimators of
Θ in the random effects model are better than the estimator

Θ̂0 = (y1., . . . ,yk.) − ∆̂0Ỹ ,

where Ỹ =
(
y1.− β̂b1, . . . ,yk.− β̂bk

)
and ∆̂0 = (m− p− 1)(n+ p+ 1)−1SW−1. In

this section, we demonstrates that these dominance results still hold in the fixed effects
models.

Consider the fixed effects model (2.1) where α1, . . . ,αk are p×1 unknown fixed effects
such that

∑k
i=1 αib

′
i = 0. Let B = (b1, . . . , bk) and assume that rank (B) = q1 ≤ q < k.

Letting P = B′(BB ′)−B, we observe that

(y1.− θ1, . . . ,yk.− θk)P =
(
β̂ − β

)
B,

(y1.− θ1, . . . ,yk.− θk) (Ip − P ) = Ỹ − α̃,

where α̃ = (α1, . . . ,αk). When we look into estimators of the general form

Θ̂(∆̂) = (y1., . . . ,yk.) − ∆̂Ỹ (5.1)

for p× p matrix ∆̂ = ∆̂(S,W ), the difference Θ(∆̂) −Θ is written by

Θ̂(∆̂) −Θ = (y1.− θ1, . . . ,yk.− θk) (P + Ip − P ) − ∆̂Ỹ

= (β̂ − β)B +
{
Ỹ − α̃ − ∆̂Ỹ

}
.

Note that β̂, S and Ỹ (or W ) are mutually independent and that

β̂B ∼ Np×k

(
βB, r−1Σ,P

)
,

Ỹ ∼ Np×k

(
α̃, r−1Σ, Ip − P

)
,

S ∼ Wp(Σ, n),

where rank BB′ = q1 ≤ q and rank (Ip − P ) = m = k − q1. Then the risk function of Θ̂
in terms of (2.2) is

Rm(Θ̂(∆̂), ω) =Eω

[
trΣ−1(β̂ − β)BB′(β̂ − β)′

]
+ Eω

[
trΣ−1(Ỹ − α̃ − ∆̂Ỹ )(Ỹ − α̃ − ∆̂Ỹ )′

]
.

Since Ip − P is idempotent, there exists a k ×m matrix Q1 such that Q′
1Q1 = Im and

Ip − P = Q1Q
′
1. Define p × m matrices Z and µ by Z =

√
rỸ Q1 and µ =

√
rα̃Q1.

Then Z ∼ Np×m(µ,Σ, Im) and W = ZZ ′, so that Rm(Θ̂(∆̂), ω) is expressed as

Rm(Θ̂(∆̂), ω) = pq1/r

+(1/r)Eω

[
tr
(
Z − µ − ∆̂(S,ZZ ′)Z

)′
Σ−1

(
Z − µ − ∆̂(S,ZZ ′)Z

)]
.
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When the prior distribution of µ is supposed as π : µ ∼ Np×m(0, rΣA), the Bayes risk of

Θ̂(∆̂) is

Eπ
[
Rm(Θ̂(∆̂), ω)

]
=(pq1 + pm)/r − (m/r)trΣ(Σ + rΣA)−1

+ (1/r)Eω

[
tr
(
∆̂− ∆

)′
Σ−1

(
∆̂ −∆

)
W

]
=pk/r + (1/r)Eπ

[
Eω

[
tr ∆̂

′
Σ−1∆̂W − 2tr ∆̂

′
Σ−1∆W

]]
.

If there exists an unbiased estimator R̂∗(S,ZZ ′) such that

Eπ
[
Eω

[
R̂∗(S,ZZ ′)

]]
= Eπ

[
Eω

[
tr ∆̂

′
Σ−1∆̂W − 2tr ∆̂

′
Σ−1∆W

]]
,

the Bayes risk can be represented by

Eπ
[
Rm(Θ̂(∆̂), ω)

]
= Eπ

[
EΣ,µµ′

[
pk/r + (1/r)R̂∗(S,ZZ ′)

]]
.

It is here noted that EΣ,µµ′ [R̂∗(S,ZZ ′)] is a function of Σ and µµ′, and that µµ′ has
Wp(rΣA, m). Since the Wishart distribution is complete, the same arguments as used in
Efron and Morris (1996) shows that

Rm(Θ̂(∆̂), ω) = EΣ,µµ′
[
pk/r + (1/r)R̂∗(S,ZZ ′)

]
.

Hence the risk function of Θ̂(∆̂) in the fixed effects model can be derived automatically

from the risk of ∆̂ in the mixed linear model.

Proposition 5. In the fixed effects model, consider the problem of estimating the
unknown matrix of parameters Θ = β(b1, . . . , bk) + (α1, . . . ,αk) by the estimator Θ̂(∆̂)

given by (5.1) relative to the risk (2.2). For the scale-equivariant estimator ∆̂(Ψ) given

by (3.3), the unbiased estimator of the risk of Θ̂(∆̂(Ψ)) is pk/r + (1/r)r(∆̂(Ψ)), where

r(∆̂(Ψ)) is given by (3.5).

Corollary 1. In the fixed effects model, the estimators Θ̂(∆̂
ST

) and Θ̂(∆̂
EM

) for

i = 1, 2, 3 dominate the estimator Θ̂0 = Θ̂(∆̂0) for the risk (2.2).

For the case of b1 = · · · = bk = 0, Proposition 5 was given by Konno(1991). However,
by using the arguments of Efron and Morris (1976), we obtain simpler proofs even in the
general case.

6 An Extension of the Model and Remarks

We here consider the model given in (1.3) which is an extension of the model (2.1), and
investigate whether the series of dominance results in the previous sections hold in the
extended model.
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A simple extension of the model is given by

yij = βbij + αi + εij , i = 1, . . . , k, j = 1, . . . , r, (6.1)

where bij ’s are q× 1 known vectors and the other parameters and constants are the same
as defined in (2.1). Then the exponent in the joint distribution of yij’s is written by∑

i,j

(yij − βbij − αi)
′Σ−1(yij − βbij − αi) +

∑
i

α′
iΣ

−1
A αi

=
∑
i,j

(
yij − yi.− β(bij − bi.)

)′
Σ−1

(
yij − yi.− β(bij − bi.)

)
+
∑

i

(θi − θ̂
B

i )′(rΣ−1 + Σ−1
A )(θi − θ̂

B

i ) + r
∑

i

(yi.− βbi.)
′Σ−1

2 (yi.− βbi.),

where θi = βbi.+ αi for bi. = r−1
∑

j bij and

θ̂
B

i = yi.−ΣΣ−1
2

(
yi.− βbi.

)
. (6.2)

Let U = (u11, . . . ,u1r; · · · ; uk1, . . . ,ukr) and C = (c11, . . . , c1r; · · · ; ck1, . . . , ckr) for

uij = yij − yi. and cij = bij − bi.. Also, let P 2 = B
′
(B B

′
)− B and P 1 = C ′(CC ′)−C

for B = (b1., . . . , bk.). Then,∑
i,j

(
yij − yi.− β(bij − bi.)

)′
Σ−1

∑
i,j

(
yij − yi.− β(bij − bi.)

)
= trΣ−1(U − βC)(U − βC)′

= trΣ−1S + trΣ−1(β̂1 − β)CC ′(β̂1 − β)′,

where β̂1 = UC ′(CC ′)− and S = (U − β̂1C)(U − β̂1C)′. Letting Y = (y1., . . . ,yk.),
we see that

r
∑

i

(yi.− βbi.)
′Σ−1

2 (yi.− βbi.)

= rtrΣ−1
2 (Y − βB)(Y − βB)′

= trΣ−1
2 W + rtrΣ−1

2 (β̂2 − β)B B
′
(β̂2 − β)′,

where β̂2 = Y B
′
(B B

′
)− and W = r(Y −β̂2B)(Y −β̂2B)′. Assuming that rank (CC ′) =

q1 ≤ q and rank (B B
′
) = q2 ≤ q, we observe that S, W , β̂1 and β̂2 are mutually inde-

pendent and that

S ∼ Wp(Σ, n), n = k(r − 1) − q1,

W ∼ Wp(Σ2, m), m = k − q2,

β̂1C ∼ Np×kr(βC,Σ,P 1),

β̂2B ∼ Np×k(βB, r−1Σ2,P 2),
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where β̂i has the degenerated normal distribution in the case that qi < q for i = 1, 2.

As an empirical Bayes procedure suggested from (6.2), we consider the estimator

θ̂
EB

i (β̂2) = yi.− ∆̂(yi.− β̂2bi.), (6.3)

where the estimator ∆̂ = Σ̂Σ̂
−1

2 based on S and W is constructed. The risk of the

estimator Θ̂
EB

(β̂2) = (θ̂
EB

1 (β̂2), . . . , θ̂
EB

1 (β̂2)) is given by

Rm(Θ̂
EB

(β̂2), ω) = r−1Eω

[
tr (∆̂− ∆)′Σ−1(∆̂− ∆)W

]
+ r−1(pk −mtr∆),

so that all the dominance results in the previous sections can be applied to the model
(6.1).

It is noted that the regression coefficients β has two independent estimators β̂1 and

β̂2 with different covariance matrices. Hence it is natural to consider random weighted

combined estimator β̂ of the form

vec (β̂) =
[
{(CC ′)− ⊗ Σ̂}− + {(B B

′
)− ⊗ r−1Σ̂2}−

]−
×
[
{(CC ′)− ⊗ Σ̂}−vec (β̂1) + {(B B

′
)− ⊗ r−1Σ̂2}−vec (β̂2)

]
,

where vec (U) = (u′
1, . . . ,u

′
q)

′ for U = (u1, . . . ,uq) and ⊗ denotes the Kronecker prod-
uct. However it is difficult to study any exact dominance property for the combined
estimator β̂.

A practically appealing model may be the case with unequal replications:

yij = βbij + αi + εij, i = 1, . . . , k, j = 1, . . . , ni, (6.4)

which was discussed by Fuller and Harter (1987) for estimation of small area. It seems,
however, intractable to establish any exact dominance results in the model (6.4). The
work of deriving efficient estimators by using approximation (asymptotic) theories rests
in the future.

Example 2. (Posted Land Price Data) We here treat the posted land price data in
Japan which are disclosed as the Digital National Information and also obtained from the
web page of the Ministry of Land, Infrastructure and Transport. 45 small areas are chosen
from Kanagawa prefecture next to Tokyo, and 5 spots are taken from each area. For the
j-th spot in the i-th small area, the posted land prices (Yen) per m2 of the spot in 2001
and 1996, denoted by yij1 and yij2 respectively, are observed with two covariates bij2 and
bij3 where bij2 is the distance from the spot to the nearby railway station and bij3 is the
nearby distance from the station to the Tokyo station. All the data are transformed by
logarithm before carrying out the analysis. Many people living in Kanagawa use railways
to commute to Tokyo, so that the distances to the nearby station and to Tokyo affect the
land prices. In fact, the multiple correlation coefficient between yij1’s and (bij2, bij3)’s is
0.7932.
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Since the land price depends on the region such as city and town, we need to consider
regional effect in the model building. We thus employ the mixed linear model (6.1) to
analyze the data, namely,

yij = βbij + αi + εij, i = 1, . . . , 45, j = 1, . . . , 5,

where p = 2, q = 3, k = 45, r = 5, yij = (yij1, yij2)
t and bij = (bij1, bij2bij3)

t for bij1 = 1.

Then, n = k(r − 1) − q + 1 = 178 and m = k − q = 42. Also β̂2, S and W are given by

β̂2 =

(
15.204 −0.390 −0.196
15.569 −0.400 −0.212

)
,

S =

(
3.488 4.885
4.885 7.560

)
, W =

(
3.018 3.510
3.510 4.685

)
,

which yeild the unbiased estimates of Σ and ΣA, given by

Σ̂ =

(
0.01959 0.02744
0.02744 0.04247

)
, Σ̂A =

(
0.01045 0.01122
0.01122 0.01381

)
.

Calculating the modified likelihood ratio test for the hypothesis H0 : ΣA = 0 (see page
490 in Srivastava (2002)), we see that the null hypothesis is rejected, which implies that
the regional effects exist in the data.

Based on these statistics, the average land price θi = βbi. + αi in the i-th area can
be estimated by (6.3)

θ̂
EB

i (β̂2) = yi.− ∆̂(yi.− β̂2bi.),

for an estimator ∆̂ of ∆ = Σ(Σ + rΣA)−1. Using the same notations as in Example

1, we denote the estimators θ̂i for the estimators ∆̂
UB

, ∆̂
ST

and ∆̂
EM

by pUB, pST
and pEM . The sample mean vector yi., the regression synthetic estimate β̂2bi. and the
estimates by pUB, pST and pEM are reported in Table 5 for the nine choosed small areas,
i = 3, 8, 14, 17, 20, 25, 35, 36, 45, where the estimates given in Table 5 are transformed by
exponential, namely, they give estimates of average price (Yen) per m2. It is revealed in

Table 5 that the estimates pUB, pST and pEM are between yi. and β̂2bi. because of

shrinking yi. towards β̂2bi.. However, the shrinkage factors ∆̂
UB

, ∆̂
ST

and ∆̂
EM

are not
so large as their values are given by

∆̂
UB

=

( −0.09717 0.30125
−0.43998 0.68319

)
, ∆̂

ST
=

( −0.07767 0.28610
−0.41786 0.66345

)
,

∆̂
EM

=

( −0.08156 0.29625
−0.43269 0.68586

)
.

It is also noted that the truncated rules (3.17) and (3.18) do not change the estimates for

the data treated in this example, namely, ∆̂
ST∗

= ∆̂
ST

and ∆̂
EM∗

= ∆̂
EM

.
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Table 5: Estimates of Average Land Prices

Area Year yi. pUB pST pEM β̂2bi.
i = 3 2001 163,780 171,400 171,420 171,670 192,850

1996 192,830 206,240 206,160 206,600 236,380
i = 8 2001 228,900 230,240 230,130 230,180 226,250

1996 276,150 280,530 280,370 280,520 280,470
i = 14 2001 356,480 333,230 333,470 332,750 297,320

1996 494,000 441,170 441,860 440,250 372,460
i = 17 2001 334,830 318,560 318,310 317,820 267,080

1996 422,060 396,170 396,060 395,270 332,590
i = 20 2001 293,340 277,730 278,160 277,670 270,070

1996 414,270 372,660 373,510 372,220 336,410
i = 25 2001 278,510 264,090 263,740 263,310 211,900

1996 340,330 320,320 320,050 319,450 261,170
i = 35 2001 330,290 310,460 310,520 309,910 270,140

1996 438,920 398,650 399,000 397,780 334,950
i = 36 2001 262,970 278,630 278,850 279,350 339,050

1996 325,300 350,780 350,850 351,680 427,850
i = 45 2001 225,090 207,150 207,300 206,750 177,650

1996 307,290 268,120 268,580 267,410 216,110
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