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1 Introduction

Consider the canonical form of the multivariate normal linear model in which the p x m
random matrix X and the pxp random symmetric matrix S are independently distributed
as Npm(ZE, X, I,,) and W, (X, n), respectively, where we follow the notation of Srivastava
and Khatri (1979, p.54, 76). We shall assume that the covariance matrix X' is positive
definite (p.d.) and that the sample size n > p, and thus S is positive definite with
probability one, see Stein (1969). In this paper, we consider the problem of estimating
the covariance matrix X and the generalized variance | X|, the determinant of the matrix
Y under the Stein loss function

LE X=Xy —|Zx - (1.1)

where X is the estimator of X' and every estimator is evaluated in terms of the risk
functions R(w, X¥) = E,[L(X, ¥Y)],w = (X, E).

Beginning with the work of James and Stein (1961), where they showed that the
estimator s
X =TDT', (1.2)
where § = TT', T is a lower triangular matrix with positive diagonal elements (and
hence unique), and

D =diag (dy,...,d,), di=n+p+1-2))"" i=1,...,p, (1.3)

. . .. . . . SUB _
dominates the uniformly minimum variance unbiased estimator X =~ = n~!'S, many

estimators have been proposed in the literature dominating EUB, see Stein (1977) and
Haff (1980) among others.

The estimators mentioned above did not use the information available in the observa-
tion matrix X while Stein (1964) has shown in the univariate case, p = 1, that a truncated
estimator that utilizes the information in the sample mean dominates the uniformly min-
imum variance unbiased estimator of the variance o2. Attempts in this direction utilizing
the information contained in the sample mean were first made by Shorrock and Zidek
(1976) and Sinha (1976) who provided minimax estimators for the generalized variance
using the information available in the observation matrix X.

Sinha and Ghosh (1987) provided a truncated estimator of the covariance matrix X
utilizing the information contained in the observation matrix X. Hara (1999) recently
showed that Sinha and Ghosh’s estimator is dominated by

=" 2 8V2Qdiag (61, .. ., 6,) Q'S (1.4)

for

- -1

5 min{n=t, (n +m)1(1+~)} ify >0
' n if ;= 0,



where @ is an orthogonal matrix such that Q'S™'2X X'S~2Q = diag (v1,...,7p).
Dominance results for m = 1 were earlier given by Perron (1990) and Kubokawa et al.
(1992). However, none of these estimators were shown to dominate the initial James-Stein

.. . =JS
minimax estimator X' .

Thus, our aim is to obtain an estimator that dominates EJS when we utilize both S
and X in estimation of 3. For this purpose, we introduce a new method. This method is
applied in Section 3 not only to construct a new form of an improved estimator of | 32| but
also to give another proof of the result of Shorrock and Zidek (1976) and Sinha (1976).
When the rank of X, p(X) = m > p, another type of minimax improved estimators
motivated by Srivastava and Kubokawa (1999) is provided in Subsection 2.2. Monte
Carlo simulations are carried out in Section 4 to compare risk behaviors of the proposed
estimators.

2 Estimation of the Covariance Matrix

2.1 Improvements on the James-Stein minimax estimator

Consider the problem of estimating the covariance matrix X based on (S, X)) relative
to the Stein loss function. Every estimator is evaluated in terms of the risk function
R(w, ¥) = E,[L(X, )], where w = (X, 5).

Let G+ be the triangular group consisting of p x p lower triangular matrices with
positive diagonal elements. Let T' = (¢;;) € G4 such that S = TT". For constructing an
estimator improving on the James-Stein minimax estimator (1.2), define an m x p matrix
Y and an m X (p — j + 1) matrix Y; by

_ t
Y = (T IX) = (yla"wyp) = (yla"'>yj—17Yj>7 Yj = (yja"wyp):

for j =2,...,p. Also for j =1,...,p, define inductively an m x m matrix C ; based on
(y17 s >yj—1) by
Cj=Cjo1 — (1+4;1Cj1y; 1) Cimry; 195105 (2.1)

where C; = I,,. Then it can be shown that

p
I, +Y'Y|=][[(1+y.Cy,). (2.2)

i=1
Using the statistics y:C,y,’s, we propose a new estimator given by

=" -~ raert, (2.3)

where G = G(y,,...,y,) = diag (g1,...,g,) for

1 1 +y;Ciy;
n+p+1—-2i" n+m+p+1-2i]

9 = gi(Y1,---,Y;) = min{



—~TR
Theggem 1. The truncated estimator X dominates the James-Stein minimaz es-
timator X relative to the Stein loss (1.1).

Proof. For the sake of convenience, let

ti1 = (i1, tpjio1)’

tjj 0
tiv1y i1+
T, = . . . )

tpj tp,j+1 tpp

for j =2,...,p. T corresponds to T'. For calculating the risk for the Stein loss function
given in (1.1), we may assume that X = I, without any loss of generality. The risk
difference of the two estimators is expressed as

—~ —~ p
Rw;2"”) - Rw;2"") = E [ (D~ O)T'T ~1og DG || = Y A,
i=1
where

for a =1+ y!Cy, and & = (n+m+p+1—2i)" "
For the proof of Theorem 1, it is sufficient to show that A; >0 fori=1,...,p. We

shall first show that A; > 0. For this purpose, we write the joint density function of
(T,Y) as

p .
co(Z) [Tt etr |27 {T(L, + Y'YV)T' - 2TY'Z'}], (2.5)
i=1
which is obtained by making the transformations § — TT" and X — Y’ = T7' X with

—
=

the Jacobians 2° [T?_, t% "' and |T|™ respectively, where ¢o(Z) is a normalizing function.
Let us decompose I, + Y'Y and Y'E" as

t _ yﬁ o a1 a§1
Ip"‘YY = Ip+<Yg>(y1aY2)—< A22>7

tmt _ [ Y = _ [ 0 61
Y'E = (Y;>(£1’H2>_<021 @22>7

where ann = 1+ yly;, an = Yoy, An = I, + Y3Y,, 61 = yi&;, 612 = yi 5y,
05 = Y5¢, and @y = Y5, Then we can write the exponent in (2.5) as

tr {T(I, + Y'Y)T' - 2TY' 5"}

— tr t11 0 aiq a,t21 t11 tﬁ
ti T, ar Ao 0 Tg



_9 t11 0 011 012
t, T, 01 Oy
= (ant%l — 2911t11) + (antﬁh + 2t} (Toas; — 052))

+ (tl" T2A22Tt — 2tr T2@22)

= (antn - 2911t11) + ay1]|t: + agy (T2a21 - 12)”2 — aj; 61205,
“+tr TQ(AQQ — an CL216L21)T3 — 2tr TQ(@QQ — all CL21012) (26)
= (ant%l - 2911t11) + aq1||t + Z1H2 + hi(y,, Y2, T9),

where ||u||? = u'u for a column vector u, z1 = a;; (T2Ys — EY)y,,
hl(yla YQ, Tg) =tr TQ(Ip_l + YECQYQ)TE — 2tr TQYECQEQ — al_lly'iE'gE'gyl,

and C5 is defined in (2.1).
We are now ready to prove that A; > 0. Combining (2.4), (2.5) and (2.6) gives that

= [ [{ — don) @ + i) — logdr /(dian)} 1(ds > dian)

XCO(E)(HtTH—m Z) O11t11— a11t%1/2 a11|\t1+Z1H /2 _hl(yl Yg Tg)/
i=1

thndtldedyldYQ. (27)

From the middle expression in the last line of the equation (2.6), and the joint density in
(2.5), it follows from that given y,, Yo and Ty, w1 = a1t} t; is distributed as noncentral
chisquare with (p — 1) degrees of freedom and noncentrality parameter aq;2%2z;. We shall
denote this conditional density of wy by f,—1(w1;a112{21). Hence Ay is rewriten as

Al = / ce / {(dl — dTCLH)(t%l -+ wl) — 10g dl/(d’{an)}l(dl 2 dTCLH)

p
X 01(57 0111) (H t;’;—l—m—i)€911t11—a11t§1/2€—h1 (yl,Yg,Tg)/2

=1

xfp_l(wl; anz’izl)dtndwldngyldYg (28)

for a positive function ¢;(Z,a11). Note that a1, 2{z1 and hi(y;, Y2, T9) do not change
under the transformation y, — —y,, while 6;; changes to —6;; under the same transfor-
mation since 617 = yt&,. Using this argument, we can rewrite A; as

Al = / . / (d1 — dTCLH)(t%l + wl) — 10g dl/(d’{an)} I(dl 2 dTCLH)

1 ( O11t11 +€—911t11) e—aut%l/Qe—hl(ylez,Tz)ﬂ
2

xfp_l(wl, anzlzl)dtndwldngyldYg (29)

XCl(._a,GH th-I—m z



We shall evaluate (2.9) in two stages, first as a conditional expectation given y;,
Y, and T5. In what follows, we shall only write as conditional expectation without
mentioning the above random vector and matrices. Let conditionally v; be distributed as
X2 +m and is independently distributed of w; defined above. Then A; can be expressed as

Ay = (E)E[E [k (vi, wi)g1(01) |y, Y2, T] (2.10)

where ¢} (Z) is a constant,

1411
gi(n) = eXp{en\/Ul/Gn}+6Xp{—911\/?)1/@11}-

Since Elwi|y,, Y2, T2] =p—1+4annztz; > p—1, the conditional expectation in (2.10) is
greater than or equal to

d
ki(v,wy) = {(d1/a11 —dj) (v1 +wy) — log T ! }I(d1 > djary),

E [k1(vi,p — Dgi(v1)|yy, Yo, T - (2.11)

Noting that both functions ki(v1,p — 1) and ¢;(vy) are increasing in v, we see from
Theorem 1.10.5 of Srivastava and Khatri (1979) that

Elki(v1,p = 1)g1(01) |y, Y2, T
> Elki(vi,p— Dy, Yo, To] X Egi(v1)|y1, Y2, To] . (2.12)

Since v3 ~ x2.,, conditionally, we have on the set {dy > dfa},

Elki(v,p =1y, Y2, Ty] = (di/an —dj)(n+m+p—1)—log ™
1011
dy dy
= —lo —1>0. 2.13
diai s 1a11 - (2.13)

Combining (2.10), (2.11), (2.12) and (2.13) shows that A; > 0. For an alternative proof,
see Kubokawa and Srivastava (1999).

Next we shall prove that A; > 0 for ¢+ = 2,...,p. To employ the same arguments as
in the above proof, we need to verify that for i =2,...,p — 1,

tr {T(I, + Y'Y)T' - 2TY' 5"} (2.14)

= Y {aits — 205C &t + ajillt; + zl]° — a3 ¥iC B0 B Chy,
j=1

—|—t1" Ti—l—l (Ip—i + Y§+1Ci+lYi+l) Tﬁ—l—l — 2tr Ti+1Y§+1Ci+IEi+17



where a; = 1 +y!Cy,, zi = aj; (THlYfH - E’fH) Cuy, and =" = (&,,...,€,,5:41)
for column vectors €,’s. The same arguments as in (2.6) are used to check the expression
(2.14). In fact, we observe that

— i tiy 0 A ai Lii ttf
ti Tin aiy1; Aipiin 0 T,
_of i O Osi 01
t; T 0iv1, Oit1i11

= (aiit?i — 29iitii) + aiil[t; + a;;' (Tiy1ai415 — 6] z+1>H2 - ai_ilaivi+10§,i+l
Ftr i1 (Ai i — ai @0l )Ty
2t Ti41(Oi141 — ;' @i1,i0i041)
= (aiit2 2y:C ¢, t”) + ayl|ti + zi||* — aj;'ylC EnE,Cy;
+tr Ty q (Ip i+ Y, (Ci — ai_ilCiyiini) Yi—i—l) T,
—2tr Ty Y, (Ci — a;' Ciyy'Ci) iy,
where a;11, = Y, ,Ciy;, Aiyriv1 = Li + Y 1 CiY i1, 05 = y'Ci&,, 0ii1 = yICiE iy

and @;11,41 = Y, ,C;5,41. Hence, the left side of the equation (2.14) is equal to the
right side of that equation.

Using the expression (2.14), we can write A; given by (2.4) as

/ /k azz uaazztt )

X co(5) Ht”+m 7 eXp{ Z{a” = 205555 + agllt; + 2]} /2

Xe_hi/Q(H dtjjdtjdyj)dyi+1dTi+1, (215)

j=1

where

k(o) = {(di/aii ) (@ +y)—log }f(di > diaw)

d;k Qi
hi = h‘(yla Yy, Yi+17Ti+1>
- - Z{ ¥ yJC ‘—‘J+1‘—’J+IC yj} (2.16)

+tr Ti+1 (Ip i+ YZ_HCH—IYH—I) T — 2tr Tz—l—lYH_lCz—i—l‘—'H—l

The same arguments as in the proof of A; > 0 can be used to evaluate A;. Note
that given Y and T'j,1, t; has N,_;(z;,aj;'). Integrating out the integrals in (2.15) with

7



respect to t; and t;; inductively for j =1,...,¢2 — 1, we see that

/ /k azz uaazztt )

= ntm-— J G'it'i—a-it% 2—ay || ti+2]12/2
Xci(‘—’7y17"'7yz 1 Ht ] ? zz/ 1”1 1”/

xe‘hi/thiidti(H dyj)in+1dTi+1, (217)
j=1
for a function ¢ (&, yy,...,y;_1). It is noted that given Y and Tiy1, w; = a;tlit; is
distributed as noncentral chisquare with (p — i) degrees of freedom and noncentrality
parameter a;z'z;. Also note that a;, ziz; and hi(yy,...,y;, Yit1,Tit1) do not change
under the transformation y, — —y,, while 6;; changes to —0;; under the same transfor-
mation. Hence A; is rewriten as

/ / k a’L’L zz?

= itii | o —Ouitis) p—aiit?;
Xci(‘:'?yl?"'?yz 1 th+m -7 (eeutu +€ aut“)e a“t“/Q

l\’)l»—t

xe M2 f w2tz dtdw H dy;)dY i11dT; 4 (2.18)

where f,_;(w;;a;;2tz;) is a conditional density of w;. Finally, A; can be expressed as
A; = Cj(E)E [E [ki(viawi) % (eeim/vi/au + e-@iz’\/’l}i/aii>‘Y,Ti+1:|:| , (2.19)

where ¢f(Z) is a constant and v; is a random variable such that given Y and T'41, v; is
condltlonally independent of w; and conditionally v; ~ x2 tm—it1- Lhe same arguments
as in (2.11), (2.12) and (2.13) are used to establish that A; > 0. Therefore the proof of
Theorem 1 is complete. 0O

2.2 Improvements on scale equivariant minimax estimators

It is known that the James-Stein minimax estimator treated in the previous subsection
has a drawback that it depends on the coordinate system. When the rank of the p x m
matrix X, p(X) = m > p, then we show in this subsection that it is possible to construct
truncated equivariant minimax estimators of . In this subsection, we shall assume that
m > p.

We consider the following equivariant estimators under a scale transformation:

Y(H'ASAH H'AXO) = H'AX(S,X)AH, (2.20)

for any H € O(p), any O € O(m) and any p x p nonsingular symmetric matrix A,
where O(p) is the group of p x p orthogonal matrices. Then it can be seen that (2.20) is
equivalent to

(S8, X)=(XX"YHeH'FH)H'(XX""?, (2.21)

8



for any H € O(p), where F = (XX")71/28(X X")71/2 and (X X")'/2 is a symmetric
matrix such that (X X"') = ((X X")¥/2)2. Let P be an orthogonal p x p matrix such that

PI(XXH) 128X XHT12P = A =diag(\i,..., )\p)
with Ay > A2 > ... > A,. Then the estimator (2.21) can be expressed by
Y(W) = (XXH)'2Pw(A)P(XXH'/? (2.22)
for

¥(A) = diag (1(A), ..., 1p(4)),

where 1;(A)’s are non-negative functions of A. The diagonalization of ¥(A) follows
from the requirement that the value of ¥(A) = e¥(eAe€)e remains unchanged for any
€ = diag (£1,...,£1). This type of estimators is motivated by Srivastava and Kubokawa,
(1999). We call them scale equivariant in this paper.

For given estimator X (%), we define a truncation rule [#(A)]7% by

@A) = diag (Y] H(A),..., 0. (A)), (2.23)
STR(A) = mm{qpi(A),ifni}, i=1....p

which gives the corresponding truncated estimator of the form
S([@]"F) = (X X')2Pdiag (WT7(A), ... ,vTHANPUX X2 (224)
Then we get the following general dominance result which will be proved later.

Theorem 2. The truncated estimator X([W]TE) dominates the scale equivariant es-
timator X () relative to the Stein loss (1.1) if P [[SP(A)]TR # !I/(A)} > 0 at some w.

It is interesting to show that Z‘(Q/) is minimax under the same conditions on ¥ as for
the minimaxity of an orthogonally equivariant estimators based on S only, given by

X (W) = R¥(L")R!, (2.25)

where R is an orthogonal matrix such that § = RL*R' and L* = diag (£, ... ,03) for
eigenvalues (7 > ... > é;.

Proposition 1.

(1) If the orthogonally equivariant estimator Z‘(Q/) is minimaz, then for the same
function ¥, f(!’l) 1s minimaz and scale equivariant one improving on EJS relative to the
Stein loss (1.1). N N

(2) If Pi(A) < ¢;(A)] > 0 for some i < j, then X(¥°) dominates X(¥), where

PO(A) = diag (WP (A),..., S (A)) majorizes (1(A), ... 1hy(A)), that is, i, P >
St for1<j<p—1and S ¢f = Y1 ¢

9



Proof. Recall that F = (X X")"Y/28(X X")"/2 = PAP' and that S ~ W,(n, I )
Then it is seen that the conditional distribution of F' given X has W,(n, X) for X,
(X X*)~L. Then the risk function of X(¥) is represented by

—

R(w, X(®)) = EX [E"X[tr PE(A)P' X" —log|PE(A)P'E]' |~ p| X]],  (2:26)

so that given X, conditionally P P! corresponds to the orthogonally invariant estimator
X(@) of X, with § ~ W(n, X*). Hence the minimaxity of X (W) implies the minimaxity
of X(¥), which proves the part (1). The part (2) follows from (2.26) and the results of
Sheena and Takemura (1992). oo

Combining Theorem 2 and Proposition 1 gives the following.

Proposition 2. If an orthogonally equivariant estimator Z‘(!’/) is manimaz, then
the truncated estimator X([®]TH) is scale-equivariant, minimax and improving on X (¥)
relative to the Stein loss (1.1).

It should be noted that Proposition 2 does not imply the dominance of 3 ([W]™R) over
(@), but states the dominance of 3 ([@]7R) over E(!’l) Although X(%) is not identical
to X(¥), if 3X(¥) is a superior minimax estimator, X (%) inherits the same good risk
properties with minimaxity and improvement. Proposition 2 states that the minimax
estimator can be further improved on by X([®]7%) by employing the information in X.

From Proposition 1, we can obtain some scale equivariant and minimax estima-
tors by using the results derived previously for the estimation of 3. Of these, the

Stein type scale equivariant minimax estimator is given by 3 = f(!l'ls ) for 9 (A) =
diag (diA1, . .., dpAp). The minimaxity of 3° follows from the result of Dey and Srinivasan
(1985). Applying the truncation rule (2.23) to ¥*(A) yields the minimax estimator

_ i N+ 1

([PoTRY woTE — (5 i ’ ’ =1....

(25" for (@71 = diag (min § T S i =T )
(2.27)

which improves on the Stein type scale equivariant minimax estimator fs. The scale
equivariant minimax estimators based on estimators of Takemura (1984), Perron (1992)
and Sheena and Takemura (1992) and their improved truncated estimators can also be
derived, but the details are omitted from this paper; the reader is referred to Kubokawa
and Srivastava (1999) for details.
The Haff type scale equivariant estimator is given by
—H 1

5>, :—(s+
n

agp

7XXt> 2.98
trST'X X! (2.28)

From the result of Haff (1980), it can be verified that =" dominates the unbiased esti-
mator 3 when 0 < ap < 2(p —1)/n. =" s expressed as - (@) by letting

10



U = n7 1A + ao(tr A71)~' 1. Applying the truncation rule to ¥* yields the estimator

— A Ai+1] .
S(@HTR for [@H])TF = diag (min {E + tr(j;)_l’ - —:_m} =1, ,p) . (2.29)

—~H
which improves on the Haff type scale equivariant estimator X' .

Proof of Theorem 2. Without any loss of generality, let X' = I',. We first consider
the expectation of the general function h(F, X X") of F and X X"'. The expectation is
evaluated as

E[h(F, X X")]
= (E) / / WF, XX")[S|" P2 exp {—tr (S + X X'~ 2X B')/2} dXdS
= (E) / / h(F, X X")|§| P12 (2.30)

x exp { —tr (§ + X X')/2} / exp {tr XHE'/2} u(dH)dX dS,

where p(dH) denotes an invariant probability measure on the group of orthogonal ma-
trices. Here the second equality in (2.30) follows from the fact that F and X X" are
invariant under the transformation X — X H for m x m orthogonal matrix H. One of
the essential properties of zonal polynomials gives

/exp {tr XHE't/2} p(dH) =" o™, (E'EtXXt) ;

K

where o™ is given in James (1964) and C,(Z) denotes the normalized zonal polynomials
of the positive definite matrix Z of order p corresponding to partitions kK = {k1,...,kp}
so that for all k =0,1,2,.. .,

(tr Z)F = > C.(2Z).

{k:k14-+kp=k}
Let W = X X', and the r.h.s. of (2.30) is written by
a(Z) [ [ nE w|s|ore s
x exp {—tr (S + W)/2} 3" o™ C (EE'W)dSIW,

for the normalizing function ¢, (Z). Making the transformation F = W~/2SW /2 with
J(S — F) = |W|P*tD/2 gives that

E[MF,XX")] = a(&) / / hW(F, W)|F|=p=0/2|py |(ntm=p=1)/2 (2.31)
x exp {—tr (F + )W /2} Y o™ C (EE'W)dFdW .

11



Again making the transformations F = PAP' and W = PV P' in order, we see that
(2.31) is represented as

E[nF, X X")]
= o(5) [ [ [HPAP W)g(a)w(emr-brz
xexp {—tr (A+ I)P'WP/2} > o™ C(ZE'W)u(dP)dAdW

= &(E) / / / W(PAP', PV P')g(A)|V|mtm—p-1/2 (2.32)
x exp{—tr (A+I)V/2} 3 o™ C(EE'PV P u(dP)dAdV,

where g(A) is a function of A (see Srivastava and Khatri (1979)).

Based on the expression (2.32), we can evaluate the risk difference of the two estima-
tors, which is given by

A = R(wa §<W)) - R(w7 E([Q]TR»
= E |t {PE(A)P' - PW(A)]""P'} W —log [@(A){[@(A)]""}7"]| (2.33)
= o(@) [ [ [ [ {#(4) - @)}V ~log [(A)[# ()7}

xg(A)| V|
x exp{—tr (A+I)V/2} 3 o™ C(EE'PV P u(dP)dAdV,

where V' = P'W P. By the basic property of zonal polynomials,
/CR(E'E'tPVPt),u(dP) = C(EE"C(V)/CW(I}). (2.34)

For simplicity, let us put A = {¥(A) — [@(A)]"F}(A+ 1) and B = (A+ I)~'. Then
from (2.34), it can be seen that
A = &) [ [ [ AVB —log|@(A){[@(A) )| g(A) V|t

| C(BEYCL(V)
Cu(Ip)

xexp {—tr VB™'/2} 3" al" AV dA. (2.35)

K

Hence, we can see that A > 0 if the following inequality is shown:
S (Vb [ tr (AV BT Cy(V)|V[tmr D2 exp {—tr VBT /2} dV

S by [ Cu(V)|V|0tm=p=D/2 exp { —tr VB~ J2} dV
> log [T (A{[&(A)]" )7, (2.36)
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where b, = C.(EE")/C.(I,). That is, we need to show that

S, ab Eltr (AVB )CL(V)|A]

m > log (@ (A){[@ ()]}, (2.37)
e b B[C(V)] A]
where conditionally, V|A ~ W,(n +m, B).
Here, we shall show that
Eltr (AVB)C.(V)|A] > Ejtr (AVB™)|A] - E[C.(V)|A]. (2.38)

Let H be an orthogonal matrix such that V.= HDH' for a diagonal matrix D. Then
the Lh.s. of (2.38) is written as
E[tr (AVB C.(V)|A] = Eltr(H'B"'AHD)C,(D)|A]
= E" |[E"M[tr (H'B™' AHD)C,(D)|A]|, (2.39)
where EPIH[.] denotes the conditional expectation with respect to D given H. Since
coefficients of eigenvalues in C (D) are nonnegative, C,(D) is a monotone increasing
function in D. Also tr (H'B ' AHD) is a monotone increasing function in D since

diagonal elements of H'B~'AH are nonnegative. Hence Theorem 1.10.5 of Srivastava
and Khatri (1979) is applied to get that

E" [EPH[tr (H'B™' AHD)C,(D)|A]]
> E" |[EPM[tr (H'B™ AHD)|A] - EMV[C,(D)|A]]
= EY |[EPM[tr (H'B~ AHD)|A]| - E[C\(D)|A]

= Eltr (BT AV)|A] - E[Ck(V)|4], (2.40)

since EPH[C,(D)|A] does not depend on H. We thus obtain the inequality in (2.38); for
an alternative method of proving this inequality, see Kubokawa and Srivastava (1999).

Noting that E[tr (AV B™')|A] = (n + m)tr A and using the inequality (2.38), we see
that the Lh.s. of (2.37) is evaluated as

E[tr (AV B 1)C.(V)|A]
E[C.(V)[A]

> (n+m)trA

Since the r.h.s. of (2.37) is written by

Zlogﬁ*ffwz( i1 (e =),

the inequality (2.37) is satisfied. Therefore the proof of Theorem 2 is complete. ag
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3 Estimation of the Generalized Variance

In this section, we treat the problem of estimating the generalized variance | X'| which has
been studied as one of the multivariate extensions of the Stein result. The method used in
Section 2.1 will be applied in Section 3 not only to construct a new improved estimator of
| X| but also to give another proof of the conventional result given by Shorrock and Zidek
(1976) and Sinha (1976). It is supposed that every estimator § = §(S, X) is evaluated
in terms of the risk function R(w,d) = E, [L(6,|X])] for w = (X, &) relative to the Stein
(or entropy) loss function

L(5,|Z]) = 6/|%| —logd/|Z| — 1. (3.1)

Shorrock and Zidek (1976) and Sinha and Ghosh (1987) showed that the best affine
equivariant estimator of | X is given by 09 = {(n — p)!/n!}|S| and that it is improved
upon by the truncated estimator

§5Z = min { (n ;!p)! S|, (n(ZTn:)]fﬂ S + XXt]} . (3.2)

Shorrock and Zidek (1976) established this result by expressing the risk function in zonal
polynomials. Since their approach was somewhat complicated, Sinha (1976) gave another
method based on the distribution of a nonsymmetric square root matrix of S with respect
to the Lebesgue measure. Using (2.2) and T = (t;;) € GF such that S = TT", we see
that the estimator §°Z is rewritten by

p p
657 = T[(n —i+1)"'t} x min {1, 11 Gz} , (3.3)
=1

=1

where "
n—i
n+m—i+1(+y’ y’) (34)

Also we can consider another type of estimators which are sequentially defined by

P

k
(SZR = H(TL —14 1>_1tz21 X min {1, Gl, GlGQ, Ceey H Gj} s (35)
j=1

i=1
for k =1,...,p. Then the method used in Subsection 2.1 can be applied to establish that
657 dominates dy and that 6 beats 6F% for k =1,...,p. The two improved estimators

5% and (5pT R are possible choices though the preference between them cannot be compared
analytically.

Theorem 3.
(1) The estimators 6°4 dominates the &y relative to the loss (5.1).
2) Fork =1,...,p, the truncated estimator 5} * dominates 61 % relative to the loss
k k-1
(3.1), where 5T denotes 4.

14



Proof. We first prove the part (1). The risk difference of the estimators §, and §°%
is given by

A = R(w,d) — R(w,s%?)
p p p p
El{Heit?i(l—HGi)+logHGi} 16 < 1)
=1 =1 =1 =1

where ¢; = (n —i+ 1) fori = 1,...,p. Using the expression (2.14) gives that

tr {T(I, + Y'Y)T' - 2TY' 5"} (3.6)
P p—1
Z{azzt2 zz _kz(yla>yz)}+zallHtl+le27
i=1 i=1

where a;; = 14y Ciy,, 05 = y!Ci&;, zi = a;; (T Y 1 —E0,)Ciy; and ki(yy, ..., y,) =
a; ' y!CiEi11 B, Ciy;. Note that given Y and T';41, t; has conditionally NV,_;(—z;, a;;").
Integrating out the density with respect to ¢1,...,¢,_1 in turn, we write the risk differnce

A as
p p p
= [ /{Het HGi)JrlogHGi}I(HGi <1) (3.7)
i=1 i=1 i=1
. P
X H tZer_ZeXP{ > {aiit?i — 205t — ki(yy, - - - 7.%)} /2}
i=1 i=1
p
XC(E, a1, .- ,app H dt”dY,
for a function ¢(=, a11,...,a,,). Note that fori =1,...,pand j =1,....14,
eii(yla"'>yj7"'>yi) = (_1)6ij0ii(y17"'>_yj7'-'>yi>7
ki(yla"wyja'-wyi) = ki(yla"'>_yj7"'>yi>7

where d;; is the Kronecker’s delta. Then, similarly to (2.9), the risk difference A can be
rewritten as

P P P P
/.../{Hez‘t?i(l_HGi)+10gHGi}I(HGi< 1) (3.8)
=1 i=1 i=1 i=1
p
% H {% (eeiitii + e_aiitii) tZ+m_i€_aiit?i/2dtii}

i=1
p

Xc(E a, ..., a)exp {Z ki(yy,. .y, /2} dy .
=1

Letting v; be a random variable such that given Y, v; is conditionally distributed as
X2 +m—i+1>» We can express the risk difference A as

P P P
A = E [{Hezvz 1—HG1)+logHGz}I(HGz<1)
J i=1 i=1 i=1

’L
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p
% H(eeii\/vi/au + 6—91'1'\/ vi/‘h’i)] ’ (39)

=1

for a constant ¢*(Z). The same argument as in (2.12) shows that

p
[ Uz H zz\/vi/aii+€_0ii\/vi/aii) Y]
=1

Y]]

{E[UZ’Y] % E[eeii\/ vi /i + et/ vi/ag

s
I :*a
_

I
e

I
_

{E [vi(eeii\/vi/aii + 6—91'1'\/ 'Ui/aii)

1

IN
—~

I
_

Y]} . (3.10)

1

Also it is seen that

E []2[1 i/ i Y] = (f[1 Gt (3.11)

Combining (3.9), (3.10) and (3.11), we can verify that A > 0, which completes the proof
of the first part of Theorem 3.

For the proof of the part (2), the risk difference can be written by

R(w,ék_l)—R(w,ék)ZEH(Fk—l ];[1 Het long}I(szl) ,

where
k-1 k
Fk = min (1,G1,..., HGz> /HGz
i=1 i=1

By using the same arguments as in the proof of (1), the risk difference can be expressed
as

p
c(E)E l{(Fk—l H Hel long} (Fp, > 1) H “Vvi/aii+€_9ii\/vi/aii> ’

i=1 a”

which can be shown to be nonnegative from (3.10) and (3.11). Therefore, the part (2) is
proved and the proof of Theorem 3 is complete. 0o

4 Simulation Studies

It is of interest to investigate the risk behaviors of several estimators given in the previous
sections. We provide results for p = 2 of a Monte Carlo simulation for the risks of the
estimators where the values of the risks are given by average values of the loss functions
based on 50,000 replications. These are done in the cases where n = 4, m = 1,10,
X =diag (1,1), & =a/3 and &; = a for & = (§;) and 0 < a < 8.
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Table 1. Risks of the Estimators UB, HR, JS and TR in Estimation of X
form=1and p =2

a 0 0.5 1 2 3 4 ) 6 7 8
UB 925 925 .925 925 .925 .925 .925 .925 .925 .925
HR 922 922 923 .924 925 .925 .925 .925 .925 .925
JS 861 .861 .861 .861 .861 .861 .861 .861 .861 .861
TR 839 .839 .840 .844 850 .853 .855 .856 .857 .858

The risk performances of estimators of X' are first investigated. For the sake of sim-
plicity, the estimators 3, 5", 5, Z([°])7R) and Z(@")7R) with ag = (p — 1)/n,
given by (1.4), (1.2), (2.3), (2.27) and (2.29), are denoted by HR, JS, TR, STR and HTR,
respectively. Also denote the unbiased estimator EUB by UB.

Table 1 reports the values of the risks of the estimators UB, HR, JS and TR for
m=1,p=2and a=0,0.5,1,2,3,4,5,6,7,8. In this case, HR, JS and TR are possible
candidates where EHR is identical to Sinha and Ghosh’s estimator.

For m = 10 and p = 2, the scale equivariant minimax estimators proposed in Section

2.2 are added to candidates, and the risk behaviors of the estimators JS, TR, STR and
HTR are given in Figure 1 for 0 < a < 8.

Table 1 and Figure 1 reveal that

(1) in the case that m = 1 < p = 2, the estimator TR is slightly better than UB, HR
and JS,

(2) in the case that m = 10 > p = 2, the estimator HTR is the best of the five,

(3) the risk gain of TR is not as much as the scale equivariant minimax estimators
STR and HTR for m = 10, p = 2.

The truncated minimax estimator TR is thus recommended when m < p. When
m > p, the estimators HTR and STR are recommended for practical use.

The risk performances in estimation of the generalized variance |X| are investigated
in Figure 2, where 6%, 6% and 7% are denoted by UB, SZ and TR, respectively. Figure
2 reveals that TR has a smaller risk on a large parameter space while the risk gain of SZ
is significant at = = 0.
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