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Abstract 

 
This paper investigates general two-player infinitely repeated games where the discount 

factor is less than but close to unity. We assume that monitoring is imperfect and private, 
and players’ private signals are correlated through the unobservable macro shock. We show 
that a sequential equilibrium payoff vector approximates efficiency in a wide class of 
environments when the size of the set of private signals for each player is sufficiently large 
in comparison with the size of the set of possible macro shocks as well as the size of the set 
of actions for the opponent. We require almost no condition on the accuracy of players’ 
monitoring technology. We argue that the use of review strategy works very well in the 
private monitoring case, although it does not work well in the public monitoring case. We 
apply our efficiency result to a model of price-setting duopoly a la Stigler (1964), where 
each firm’s price choice is unobservable to its rival firm and the sales level for each firm is 
regarded as its private signal. Contrarily to Stigler’s conjecture, the full cartel collusion can 
be self-enforcing even if firms cannot communicate and have the option of making secret 
price cuts. 
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1. Introduction 
 

We investigate general two-player infinitely repeated games, where the common 
discount factor is less than, but close to, unity. We assume that monitoring is imperfect and 
private. At the end of each period, each player observes her private signal, which is 
randomly drawn according to the probability function conditional on players’ action 
choices. Each player cannot observe the opponent’s action choice as well as the opponent’s 
private signal. The present paper provides a sufficient condition under which efficiency is 
sustainable in the sense that there exists a nearly efficient sequential equilibrium payoff 
vector whenever the discount factor is close to unity. Based on this sufficiency, we show 
that efficiency can be sustained in a wide class of environments with private monitoring. Of 
particular importance, players’ private signals can be correlated each other, and almost no 
conditions on the accuracy of players’ monitoring technology are required. 

The study of sequential equilibria in the private monitoring case has the severe 
difficulty, because each player’s anticipation on which strategies the other players will play 
may depend on her private history in a complicated way. 1  Ely and Valimaki (2002) 
overcame this difficulty by investigating only a restricted class of equilibria that satisfy the 
interchangeability in the sense that all combinations of players’ possible sub-strategies are 
Nash equilibria.2  This restriction makes the equilibrium analysis drastically simplified. 
Hence, Ely and Valimaki could show that the folk theorem might hold in repeated prisoner-
dilemma games even if monitoring is private.3 

Ely and Valimaki, however, assumed that monitoring is almost perfect.4 Following their 
paper, Matsushima (2002) investigated the case in which private monitoring is far from 
perfect. Matsushima constructed review strategies that are originated in Radner (1985) and 
cultivated by Matsushima (2001).5 A review strategy is constructed as follows. The infinite 
time horizon is divided into finite period intervals named review phases. In each review 
phase, each player counts the number of periods in which a particular event occurs. If the 
resultant number of the event occurring during the review phase is larger than a threshold 
level, the player will be likely to punish the opponent in the next review phase. Here, the 

                                                 
1 Radner (1986) firstly investigated repeated games with private monitoring where no discounting 
was assumed. The two papers by Matsushima (1990a, 1990b) firstly investigated discounted 
repeated games with private monitoring. See also Kandori (2001) for the brief survey on this field. 
2 A related idea is found in Piccione (2002). See also Obara (1999) and Kandori and Obara (2000). 
3 Sekiguchi (1997), Bhaskar (1999), and Bhaskar and Obara (2002) showed the efficiency results in 
a repeated prisoner-dilemma game without using this interchangeability. 
4 Matsushima (2000) showed that the result in Ely and Valimaki could be extended to the case with 
the zero likelihood ratio condition. 
5 Kandori and Matsushima (1998) used similar review strategies in the study of two-player repeated 
games with communication. 
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player chooses the event as being ‘bad’ in that the probability of its occurrence is the 
smallest when the opponent plays collusive. According to the law of large numbers, a 
review strategy profile approximately induces the efficient payoff vector. 

Matsushima (2002) weakened the interchangeability a la Ely and Valimaki by requiring 
only that all combinations of players’ sub-strategies starting from the first period of a 
review phase be Nash equilibria. By combining the idea of review strategy with this 
weakened interchangeability, Matsushima (2002) could show that the folk theorem might 
hold in repeated prisoner-dilemma games even if almost no conditions on the accuracy of 
players’ monitoring technology are required.6 

Matsushima (2002) assumed that players’ private signals are conditionally independent, 
i.e., never correlated each other. Conditional independence in fact played the crucial role in 
the use of review strategies. Consider the case that players’ private signals are correlated. 
The probability of a bad event occurring may depend on the opponent’s private signal. 
Suppose that a player played collusive, but observed a private signal according to which 
she updates the probability of the opponent’s counting the bad event very high. Then, she 
expects to fail the opponent’s review with very high probability, and therefore, she may 
stop playing collusive from the next period. 

Conditional independence is a restrictive condition, and might be even inappropriate to 
require in many economic situations. For example, consider a price-setting duopoly where 
each firm’s price choice is not observable to the rival firm. Each firm has to monitor the 
rival firm’s price choice through the observation of its sales level, which is not observable 
to the rival firm. The market demand conditions are likely to fluctuate between ‘boom’ and 
‘recession’ according to an exogenous random macro shock that is unobservable to the 
firms. Hence, firms’ sales levels as their private signals are random variables and are 
correlated through this shock. This means that it should be appropriate not to assume 
conditional independence. 

In the repeated game literature it has long been conjectured that the use of review 
strategy does not work very well when monitoring is imperfect and players’ private signals 
are correlated. When monitoring is public in that players’ private signals are perfectly 
correlated, each player can perfectly know which private signal the opponent has observed. 
This implies that for each player there exists no bad event such that the opponent’s private 
signal has no information on whether the player has counted this event. This interferes with 
any review strategy profile being an equilibrium. 

In contrast to the negative conjecture from the public monitoring case, the present paper 
shows that the use of review strategy does work even in the correlated private monitoring 
case. We assume that the size of the set of possible private signals for each player is 
sufficiently large in comparison with the size of the set of possible macro shocks as well as 
the size of the set of actions for the opponent. This assumption guarantees that there almost 
always exists a bad event for each player such that the probability of its occurrence does not 
depend on the macro shock. Hence, the opponent’s private signal has no information about 

                                                 
6 See also Piccione (2002) and Ely and Valimaki (2000) for the discussion on the case that private 
monitoring is not almost perfect. 
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whether the player has counted this event. Based on this, it follows that efficiency can be 
sustained by review strategy equilibria almost everywhere in the set of possible signal 
structures with the assumption above. 

The paper will prove this efficiency not only in prisoner-dilemma games but also in 
more general two-player games. Especially, we allow each players to have three or more 
possible actions.7 

The efficiency result of the paper would provide the study of cartel oligopoly with the 
following substantial impact. The classical work by Stigler (1964) has pointed out that each 
firm may have the option of making the secret price cuts in that it offers to consumers a 
sales price that is lower than the cartel price in secret from the other firms. Stigler then 
emphasized that secret price cuts would be the main course of preventing the firms’ cartel 
agreement from being self-enforcing. Since Stigler did not provide a systematic analysis, 
we should carefully check to what extent his arguments was correct by making an 
appropriate model, which would be a discounted repeated game with correlated private 
monitoring such as what the present paper will investigate. In contrast to Stigler’s argument, 
the efficiency result of the paper implies that the full cartel agreement can be self-enforcing 
even if firms have the option of making the secret price cuts. 

Kandori and Matsushima (1998) and Compte (1998) have assumed that players could 
communicate in repeated games with private monitoring.8  These works provided their 
respective folk theorem, and then concluded that communication enhances the possibility of 
self-enforcing cartel agreement. In real economic situations, however, the Anti-Trust Law 
prohibits communication among the firms’ executives. The present paper does not allow 
firms to communicate. Hence, contrary to these works, we will conclude that firms can 
make a self-enforcing cartel agreement even if their communication is severely regulated. 

The earlier work by Green and Porter (1994) has investigated repeated games of cartel 
oligopoly in different ways from Stigler and the present paper. In their model, not price but 
quantity is the only choice variable for each firm, which is not observable to the other firms. 
Each firm has to monitor the other firms’ quantity choices through the market-clearing 
price. This price is observable to all firms, and fluctuates according to the exogenous macro 
shock, which the firms cannot observe. Hence, unlike what might be Stigler’s primary 
concern, Green and Porter did consider the public monitoring case. By using the trigger 
strategy construction, Green and Porter showed that business cycle takes place on the 
equilibrium path, and that the partial cartel collusion can be self-enforcing. Subsequently, 
Fudenberg, Levine and Maskin (1994) could prove that in the general public monitoring 
case the folk theorem holds, and therefore, the full cartel collusion can be self-enforcing. 

The basic logic behind the present paper has the following substantial difference from 
Green and Porter, and Fudenberg, Levine and Maskin. In the public monitoring case, it is 
inevitable that the macro shock influences players’ future behaviors, because each player 
cannot distinguish the impact of the opponent’s deviation from that of the macro shock. 
                                                 
7 Ely and Valimaki (2002) investigated games with three or more actions in the almost perfect 
monitoring case. 
8 See also Aoyagi (2002). 
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Because of this, Fudenberg, Levine, and Maskin couldn’t use the idea of review strategy, 
and instead used the device of punishment and reward on the hyperplanes originated in 
Matsushima (1989), combined with the self-generation originated in Abreu, Pearce and 
Stacchetti (1986). In the private monitoring case studied by the present paper, however, 
players’ future behaviors never depend on the macro shock, because we choose a bad event 
so as not to have the probability of its occurrence depend on this shock. 

The above point is also in contrast to Rotemberg and Saloner (1984), which has 
investigated repeated games with perfect monitoring where the market demand condition 
fluctuates according to the exogenous macro shock that is observable to the firms. In their 
paper the market price fluctuates counter-cyclically to the macro shock fluctuation between 
boom and recession, whereas in the present paper firms’ pricing behaviors are never 
influenced by the macro shock fluctuation. 

The organization of the paper is as follows. Section 2 provides the model of repeated 
games. As a generalization of Matsushima (2002), Section 3 provides a sufficient condition 
under which the collusive payoff vector is sustainable. Section 4 provides the main theorem 
that the collusive payoff vector is sustainable almost everywhere. Section 5 considers the 
symmetric case and provides a condition under which efficiency is sustainable. Section 6 
considers price-setting duopoly with product differentiation, and shows that the full cartel 
agreement can be self-enforcing even if firms have the option of making the secret price 
cuts and communication is prohibited. Section 7 concludes. 
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2. The Model 
 
A two-player infinitely repeated game with discounting and with imperfect private 

monitoring is denoted by Γ , and defined as follows. In every 
period , players 1 and 2 play the component game defined by , where  is 
the finite set of actions for player i , , and player i s  payoff function is 
given by u A . A mixed action for player i  is denoted by , where 

. We denote by ∆  the set of all mixed actions for player i . We denote  

( ) when i , respectively). The common discount factor is denoted by 
. 

( )δ =

i

1

),,),,(( }2,1{ puA iiii δ∈Ω

}2,1{∈ A A A≡ ×1

t ≥1

i

1) =ia

)

}2,1{),( ∈iii uA
'

[: →ii Aα

iA

j =

2

2 ∈

Ai

                                                

R: →

=

]1,0
(∑

∈ ii Aa
iα

j = 2
δ ∈[ ,0 1

1

2  ( i =

At the end of every period, player i  observes her private signal . The opponent 
 cannot observe player i  private signal . The finite set of possible private signals 

for player i  is denoted by Ω .

ωi

ω ω≡ ( ,

)

ij ≠ s'

i

p ≡

ωi

Ω9 Let . A signal profile  occurs 
with probability  when players choose the action profile . We denote a signal 
structure by ( , where . A signal structure associated with the set of 
private signal profiles Ω  will be simply denoted by  instead of ( . We assume that 
the signal structure  has the full support in that 

Ω Ω

a∈

≡ ×1

Aa⋅ ))|

ω )1 2 Ω
A∈

, pΩ

p a( | )ω
), p

p

a
Ω p((

p

0)|( >ap ω  for all ( .Ω×∈ Aa ),ω 10 
Let . We may regard u a  as the expected value defined as ∑

Ω∈
≡

jj

apap ii
ω

ωω )|()|( i ( )

∑
Ω∈

=
ii

apaau iiiiii
ω

ωωπ )|(),()( , 

where  is the realized payoff for player i  in the component game when player i  
chooses a  and observes . We denote by P  the set of possible signal structures 
associated with . 
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9 Because of the finiteness, we use strategies that induce players to choose mixed actions. The 
purification is possible when the sets of private signals are the continuum sets. See Matsushima 
(2002). 
10 We require the full support assumption for simplicity of arguments. We can derive the same 
results of the paper without it, but at the expense of complexity. 
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Since the signal structure has the full support, it follows that the set of Nash equilibrium 
payoff vectors equals the set of sequential equilibrium payoff vectors. 
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3. Sustainability 
 

A payoff vector v v  is said to be sustainable if for every , and every 
infinite sequence of discount factors ( )  satisfying , there exists an infinite 

sequence of strategy profiles (  such that for every large enough m ,  is a sequential 
equilibrium in  and 
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Hence,  is sustainable if a sequential equilibrium payoff vector approximates it whenever 
players are patient enough. Since the set of Nash equilibrium payoff vectors equals the set of 
sequential equilibrium payoff vectors, it follows that v  is sustainable if a Nash equilibrium payoff 
vector approximates it whenever players are patient enough. 
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We will call c  and  the collusive action and the defective action respectively. Inequalities 

(1) imply that each player prefers the defective action d  to the collusive action c  in the 
component game irrespective of which the opponent  will choose between the collusive action 
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but also a real number  that is drawn according to the uniform distribution on the interval [0,1]. 
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11 Ely and Valimaki (2002) provided a related condition in the almost perfect monitoring case. 
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that satisfy property (i) whenever the signal structure p  satisfies minimal information 
requirement in that for every i  }2,1{∈
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A special case of 2  component games is so-called a prisoner-dilemma game, where for 
every , , ) , and u  for all . The 
inequalities above imply that Condition 1 automatically holds. Matsushima (2002) showed that 
the collusive payoff vector u  is sustainable when the component game is a prisoner-dilemma 
game and the signal structure p  satisfies minimal information requirement and conditional 
independence. The following proposition generalizes this result. 
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Proof: See the Appendix. 
 

Proposition 1 states that we can replace both minimal information requirement and 
conditional independence with Condition 2. Proposition 1 states also that the sustainability result 
holds even in general two-player games where each player has two or more actions. The first 
statement is particularly important because players’ private signals can be correlated. In order to 
understand it, we will provide the outline of its proof as follows. 
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12 Minimal information requirement is the terminology in Matsushima (2002). 



 11 

),|(),,|( **
jiiijjiii acpacp ψωψ =  and . (4) ),|(),,|( ****

jiiijjiii adpadp ψωψ =
Here, the inequalities (3) and the equalities (4) correspond to property (i) and property (ii), 
respectively. Let the discount factor  be close to 1. Fix a sufficiently large integer 
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Similarly to Matsushima (2002), consider the following strategy is , named the collusive 
review strategy, for each player i . We will divide the infinite time horizon into infinitely many  
period intervals. Each interval is called a review phase. According to 

T
is , player i  continues 

choosing the collusive action c , i.e., playing collusive, during the first review phase, i.e., from 
period 1 to period T . When the number of periods in which the random event  occurs is less 
than or equals M , the opponent  will pass player i  review, and player i  will certainly 
continue choosing c  during the next review phase. When this number is more than M , the 
opponent  will fail player i  review, and player i  will continue choosing the defective action 

, i.e., playing defective (choosing c , i.e., playing collusive) during the next review phase with 
probability  (probability 1 , respectively). 
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player i  will continue choosing c  (choosing ) during the review phase after the next with 
probability 1  (probability , respectively). When such a period exists, the opponent 

 will fail player i  review, and player i  will certainly continue choosing d . Similarly, we 
specify the remainder of 

id
**

iψ

i

( ii dξ

j s'

i

id
)(iξ−
s

id
'

)
j

is . 
We specify another strategy is , named the defective review strategy, for player i , in the same 

way as is , except for the first review phase. In contrast to is , during the first review phase, player 
 continues choosing  instead of choosing . Note that all sub-strategies of i id ic is  and is  that 

start from period T  are mixtures of 1+ is  and is .13 

                                                 
13 Here, we did not explicitly mention the random events  and . In the three or more action 

case, we need to construct more complicated review strategies where we will carefully check  and 

 as well as  and . By using additional devices of reviewing on the basis of  and , 
each player i  can make a very severe punishment on the opponent  when she continues choosing 
other actions than c  and . The reason why we require the inequality (2) in Condition 1 is that by 

+
iψ ++

iψ

j

+
iψ
ψ++

iψ *
iψ **

iψ

jd

+
iψ ++

i

j
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According to the following four steps, we will show that ),( sδv  and ),( sδv  approximate 
 and u , respectively, and that )(cu )(d s  and s  are both Nash equilibria. These steps are alike 

the proof in Matsushima (2002), except for the final step. 
 
Step 1: We will show that ),( sδv  and ),( sδv  approximate  and , respectively. The 
law of large numbers implies that when players play 

)(cu )(du
), 21 s(s=

T
s , it is almost certain that the 

number of periods in which  occurs, divided by , is close to . Since *
iψ )|( * cp ii ψ

T
Mi )|( * cp ii ψ> , it is almost certain that the opponent  will pass player i  review. Hence, j s′

), s(v δ  approximates u . The law of large numbers implies that when players play )(c ),( 21 sss =

)

, 
it is almost certain that the number of periods in which  occurs, divided by T , is close to 

. Since the threshold for this review equals zero and  is positive, it is 
almost certain that the opponent  will fail the review. Hence, 

**
iψ

)| d( **p ii ψ |** diψ(pi

j )s,(δv  approximates u . )(d
 
Step 2: We will show that a weaker version of interchangeability a la Ely and Valimaki holds in 
that the opponent  is indifferent to the choice between j js  and js  whenever player  plays 
either 

i

is  or is , i.e., 
),( sv j δ ),,( jij ssv δ=  and ),( sj δv ),,( jij ssv δ= .14 

Suppose that player  plays i is , while the opponent  plays j js . Then, it is almost certain that the 

number of periods in which  occurs, divided by T , is close to p . Since *
iψ ),|( *

jiii dcψ

T
Mi ),|( *

jiii dcp ψ<

j

, it is almost certain that the opponent  will fail player i  review. Hence, 

the opponent  might not prefer 

j s′

js  to js  even if she can earn the short-term benefit from 
playing js  instead of js . By choosing  appropriately, we can make the opponent  
indifferent to the choice between 

)( ii cξ j

js  and js , i.e., ), s(δv j )j,,( ij ssv δ= . Next, suppose that 

player i  plays is , while the opponent  plays j js . Then, the probability that  occurs in all 

periods is p . On the other hand, when players play 

**
iψ

T
ji c )|( id ,i

**ψ s  instead of )j,( i ss , this 

                                                                                                                                                     
j

),(max jijAa
adu

jj∈

continuing choosing the action maximizing her instantaneous payoff, the opponent  is guaranteed 
to obtain about  as her long-run payoff. See the Appendix. 
14 In the study of the almost perfect monitoring case, Ely and Valimaki (2002) required as the restriction of 
interchangeability that the opponent is indifferent to the choice among all possible sub-strategies. Kandori 
and Obara (2000) required a similar restriction in the study of private strategies in the perfect monitoring 
case. The requirement of interchangeability makes the equilibrium analysis drastically simplified. We then 
do not need to calculate the updated probability of each player i  playing s' is . 
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probability equals . Since  and T  is sufficiently large, 

it follows that the ratio in probabilities 

T
ii dp )|( **ψ )|(),|( **** dpcdp iijiii ψψ <

T

iii

jiii

dp
cdp

)
)|(

),|(
**

**

ψ
ψ

(  is close to zero. Hence, the opponent 

 might not prefer j js  to js  even if she can earn the short-term benefit from playing js  instead 
of js . By choosing  appropriately, we can make the opponent  indifferent to the choice 
between 

)(iξ id j

js  and js , i.e., ), sδ(v j ),, ji ssδ(jv= . 

i 1+

}, is

ia (
(a

{ is

),...,
=

T
i
∈

1(
)1ht

i
−

T
i

T
i Hh ∈

TA∈

Tt ,...,1=
s′

i 2,1{∈i
), js(iv, sδ ,(i sv δ

T
i )|( * cp ii ψ

js

ˆ

 
From Step 2, we can easily check that each player i  is indifferent to the choice among all 

strategies that induce her to make either the repeated choices of the collusive action or the 
repeated choices of the defective action in every review phase. We denote by S  the set of all 
strategies  for player  satisfying that the sub-strategy after period T  is either the collusive 
review strategy or the defective review strategy, i.e., 

i
ˆ

is

|his  for all , 

and there exists  such that i Ta ))(
)( tsi  for all  and all . 11 −− ∈ t

i
t
i Hh

Here, the latter equalities imply that player i  action choice is history-independent in every 
period during the first review phase. 
 
Step 3: We will show that each player i  has no strict incentive to choose any strategy that 
belongs to S  instead of i

ˆ s , i.e., for every , and every , } ii Ss ˆ∈
,)( ii sv δ≥  and ),,() jii ssv δ≥ . 

The basic idea of Step 3 is originated in Matsushima (2002). Suppose that player  plays i is . 

Then, by letting M  as close to  as possible, we can make the increase in the 

probability of the opponent  being punished when she plays any strategy in  other than j jŜ
, sufficiently large. Next, suppose that player  plays i is . Since the threshold for player  

review equals zero, it follows that the increase in the probability of the opponent  being 
punished when she plays any strategy in S  other than 

si′
j

j js , is sufficiently large. These 
increases in probabilities are the driving forces to prevent the opponent  from playing any 
strategy in  other than 

j

jŜ js . 
 

In the final step below, we will have the substantial difference between Matsushima 
(2002) and the present paper. 
 
Step 4: All we have to check for the rest is that each player i  has no strict incentive to play any 



 14 

strategy  whenever the sub-strategy after period T  is either the collusive review 
strategy or the defective review strategy, i.e., 

ii Ss ˆ∉ 1+

(
1− ∈ t

iH

,,( ii sδ

s

},{| iihi sss T
i
∈  for all , T

i
T
i Hh ∈

but her action choice is history-dependent in every period during the first review phase, in that 
there exists no  such that ))(),...,1( Taa ii

)()( 1 tahs t
ii =−  for all  and all . Tt ,...,1= 1−t

ih
Matsushima (2002) proved this step by using conditional independence, whereas the present 
paper will prove it by using a weaker condition such as property (ii). Property (ii) implies that 
when each player i  plays is  (plays is

*
iψ

), the opponent  private signal  has no information 

about whether the random event  ( , respectively) occurs, and therefore, it has no 
information about which strategy the opponent will play from the next period. Hence, in every 
period during the first review phase, the best response for a player can be chosen independently of 
which private signals she has ever observed. This implies that if there exists  such that 

sj′ jω

s

**
iψ

ii S∈
either ),,(),( jiii ssvsv δδ ≥  or )),( ji svsv δ ≥ , 

then we can always find such a  in the set . Since we have proved that no such  exists in , 
it follows that 

is iŜ is iŜ
 and s  are both Nash equilibria. 

 
The role of the signal-independence implied by property (ii) is crucial in the use of review 

strategies. Suppose that there exists  such that jj Ω∈ω̂

),|()ˆ,|( **
jiiijii dcpcp ψωψ > . 

When the opponent  chooses the collusive action c  and observes , she will update the 

probability of the event  occurring so that it is higher than that when she chooses the defective 
action . This implies that the opponent  will expect to fail player i  review with very high 
probability, so that she will have strict incentive to stop choosing c  from the next period. This 
contradicts the Nash equilibrium property. The observation above is the essence of the reason 
why previous researchers could not use review strategies in the ‘both-side’ imperfect public 
monitoring cases, with which the signal-independence is always inconsistent.

j j jω̂

s′

*
iψ

jd j

j

15 
In the next section, we will provide a sufficient condition for Condition 2, which does not 

imply conditional independence and includes a wide class of signal structures that allow players’ 
private signals to be correlated. 
 

                                                 
15 Radner (1985) used review strategies in the study of repeated principal-agent games with imperfect 
public monitoring under one-side uncertainty. Radner, Myerson and Maskin (1986) could not use 
review strategies in the study of repeated partnership games under both-side uncertainty, and derived 
the negative result of perfect public strategy equilibria. Radner (1986) could use review strategies in 
repeated partnership games but assumed no discounting. 
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4. Condition 2 and Generic Sustainability 
 
The following condition is sufficient for Condition 2. 

 
Condition 3: For every i , and every a , there exists no function 

 such that 
}2,1{∈ },{ iii dc∈

RAe jj →Ω×:
0),|(),(

,
=⋅∑

Ω∈∈ jjjj Aa
jijj apae

ω
ωω , 

and 
either  or . 0),,|(),( ≠⋅∑

Ω∈ jj

jjiijj capce
ω

ωω 0),,|(),( ≠⋅∑
Ω∈ jj

jjiijj dapde
ω

ωω

 
Proposition 2: Condition 3 implies Condition 2. 
 
Proof: Fix  arbitrarily. From Condition 3 it follows that there exist three positive integers 

, , , and k  linearly independent 
}2,1{∈i

11k 2k 3k 32 kk ++ −Ωi

1+

dimensional vectors ,…,  
such that for every ,  is a linear combination of ,…, and , 

 is a linear combination of ,…, and , and for every a , 
 is a linear combination of ,…, and . Hence, for every 

, there exists a random event 

1ρ

1ρ
321 kkk ++ρ

1kρ
},{ jj dc

jj Ω∈ω ),,|( jjii cap ω⋅

1 +kρ

1kρ

i ∈

), jω
)

3R

, jd

jω

)∈′′

| ia⋅
,| a⋅

,bb′

(
(

ip

ip

,(b

1

+k

Ψ

21 kk +ρ
ρ

j ∉

2

i

321 kkk ++

ψ  such that for every , jjω Ω∈

bcap jjiii =),,|( ωψ , 
bdap jjiii ′=),,|( ωψ , 

and  
bap jii ′′=),|( ωψ  for all . },{ jjj dca ∉

This means that there exist  and  that satisfy the properties of Condition 2. Similarly, we 
can check also that there exist  and  that satisfy the properties of Condition 2. 

*
iψ
ψ

+
iψ

**
i

++
iψ

                                                                                                                             Q.E.D. 
 

We must note that Condition 3 does not hold in a non-negligible subset of , i.e., the 
set of possible signal structures associated with Ω . Since it always holds that 

)(Ω= PP

jji A Ω×<Ω  for some , }2,1{∈i

the collection {  is never linearly independent for such a player 
. This means that in a non-negligible subset of P , there exist  and 

 such that  is a convex combination of 
 that puts a positive weight on p . This 

contradicts Condition 3. 

}),(|),|( jjjjji Aaap Ω×∈⋅ ωω

),|( ji cp ω⋅

}),(|) jjjjj Aa Ω×∈ωω

}2,1{∈i

jj Aa ∈′

,|({ ii cp ⋅

jj Ω∈ω

), jja ω′
}/{ jc
,ja ,|( ii c⋅
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However, as we will show below, with some reasonable restriction on the set of possible 
signal structures, Condition 3 almost everywhere holds. We will decompose a signal structure  
into two functions denoted by q  and  as follows. In every period, after players’ choosing the 
action profile, a macro shock  is randomly drawn according to the conditional probability 
function , where Ξ  denote the finite set of possible macro shocks. Players 
cannot observe the realization of this shock. After player’s choosing the action profile  and 
the macro shock  occurring, the private signal profile  is randomly drawn 
according to the conditional probability function q . Hence, the probability of 
the private signal profile  occurring when players chooses the action profile a , i.e., 

, is described by 

p

0f

0

0θ

Ω

]1,0[:)|( 00 →Ξ⋅ af

00 Ξ∈θ

∈ω

Aa∈

A∈

Ω∈ω
]1,0[:),|( 0 →Ω⋅ θa

)|( ap ω
∑
Ξ∈

=
00

)|(),|()|( 000
θ

θθωω afaqap . 

Let q  and . We assume that 

players’ private signals are correlated only through this unobservable macro shock. This 
assumption implies that for every ( ,  be conditionally independent in 
that 

∑
Ω∈

≡
jj

aqaii
ω

θωθω ),|(),|( 00 ∑
Ω∈

≡
ii

aqaq iiiiii
ω

θωωψθψ ),|()(),|( 00

00) Ξ×∈ Aθ ),|( 0θaq ⋅,a

),|(),|(),|( 0220110 θωθωθω aqaqaq =  for all . Ω∈ω
Based on the argument above, a signal structure will be denoted by (  instead of 

. The following condition is sufficient for Condition 2. 
),,, 00 qfΩΞ

),( pΩ
 
Condition 4: For every i , and every a , the collection of the probability 
functions {  is linearly independent in that there exists no function 

 such that 

}2,1{∈
), 0 ∈ jAθ

},{ iii dc∈
}(|),|( 00 Ξ×⋅ ji aaq θ

R→0Ae j Ξ×:
0)),((

00 ),(0 ≠Ξ×∈ jj Aajae θθ  and . 0),|(),(
00 ),(

00 =⋅∑
Ξ×∈ jj Aa

ij aqae
θ

θθ

 
Proposition 3: Condition 4 implies Condition 2. 
 
Proof: Fix i  arbitrarily. Since {  is linearly independent 

for all a , it follows that there exist , ,  and  such that for every 
, 

}2,1{∈

},{ ii dc
}

}),(|),|( 000 Ξ×∈⋅ jji Aaaq θθ
*
iψ +

iψ **
iψ ψi ∈

, jj d

++
i

{j ca ∉

),|(),|()|( ***
jiiijiiiii acpdcpcp ψψψ ≤< , 

),|(),|()|( jiiijiiiii acpdcpcp +++ <= ψψψ
******

, 

),|()|(),|( jiiiiijiii adpdpcdp ψψψ ≤<
++++++

, 

),|()|(),|( jiiiiijiii adpdpcdp <= ψψψ , 
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for every ( , 00 ), Ξ×∈ jj Aa θ

),|(),,|( *
0

*
jiiijiii acpacp ψθψ =

++

, 

),|(),,|( 0 jiiijiii acpacp = ψθψ
****

, 

),|(),,|( 0 jiiijiii adpadp ψθψ = , 
and 

),|(),,|( 0 jiiijiii adpadp ++++ = ψθψ . 
Since  is conditionally independent, it follows that ),|( 0θaq ⋅

∑

∑

Ξ∈

Ξ∈=

00

00

)|(),|(

)|(),|(),|(
),|(

00

0022011

θ

θ

θθω

θθωθω
ωω

afaq

afaqaq
ap

jj
jii , 

and therefore, for every ii Ψ∈ψ , 
),|( jii ap ωψ  

∑
∑

∑

Ω∈
Ξ∈

Ξ∈=
ii jijijj

jijijiii

cafcaq

cafcaqcaq

ω
θ

θ

θθω

θθωθωωψ

00

00

),|(),,|(

),|(),,|(),,|()(

00

0022011

 

∑

∑

Ξ∈

Ξ∈=

00

00

),|(),,|(

),|(),,|(),|(

00

000

θ

θ

θθω

θθωθψ

jijijj

jijijjii

cafcaq

cafcaqap
. 

Since , it follows that  ),|(),,|( *
0

*
jiiijiii acpacp ψθψ =

),|(),,|( **
jiiijjiii acpacp ψωψ = . 

Similarly, we can derive 
),|(),,|( jiiijjiii acpacp ++ = ψωψ

****

, 

),|(),,|( jiiijjiii adpadp ψωψ = , 
and 

),|(),,|( jiiijjiii adpadp ++++ = ψωψ . 
Hence, Conditions 3 implies Condition 1.                                                                         Q.E.D. 

 
We denote by  the set of possible signal structures associated with  and Ξ . 

We must note that if 
),( 0

** ΩΞ= PP Ω

0Ξ×≥Ω ji A  for all ,                                                                      (5) }2,1{∈i

then Condition 4 holds almost everywhere in the set P . From this, together with Propositions 1 
and 3, we have proved the generic sustainability result as follows. 

*

 
Theorem 4: If Condition 1 and inequalities (5) hold, then  is sustainable almost everywhere )(cu
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in  *P .

), pΩ

Ξ

 
Theorem 4 states that with Condition 1 the collusive payoff vector u  is generically 

sustainable whenever the size of the set of possible private signals for each player is sufficiently 
large in comparison with the size of the set of possible macro shocks as well as the size of the set 
of the opponent’s actions. 

)(c

Of particular importance, we can check below that every signal structure, irrespective of 
whether it has full support or not, can be approximated by other signal structures that satisfy 
Condition 4. For every , a signal structure (  is said to be close to another signal 
structure  if 

0>ε ), pΩ −ε
)ˆ,ˆ( pΩ

Ω⊂Ω ˆ , 
and for every , and every , Ω∈ω Aa∈

εωω ≤− )|(ˆ)|( apap . 
Fix a signal structure (  arbitrarily where it may not have the full support. We can rewrite 

 as ( , where 
), pΩ

)q( ,,ˆ, 00 fΩΞ
Ω=Ξ0 , 

Ω⊂Ω ˆ , 
)|()|(0 apaf ωω =  and q  for all  and all , 1),|( =ωω a Ω∈ω Aa∈

and (  satisfies inequalities (5), i.e., ),,ˆ, 00 qfΩ

0
ˆ Ξ×≥Ω ji A  for all . }2,1{∈i

Note that for every ( ,  is conditionally independent. Hence, it follows 
from the argument above that for every , there exists a signal structure in the set  

satisfying Condition 4 such that (  is close to this signal structure. From this 
observation, we have shown that for every two-player component game, every signal structure, 
every  satisfying Condition 1, and every , there exists a close signal 
structure such that by replacing the former signal structure with the latter, the collusive payoff 
vector u  is sustainable. 

00), Ξ×∈ Aa θ

Ξ

),|( 0θaq ⋅

0>ε

),,ˆ, 00 qfΩ

),( 0
* ΩΞP

−ε

2),( Adc ∈

)(c

0>ε −ε

For example, consider the public monitoring case as follows, where a signal structure  is 
said to be public if for every i , there exists a function 

p
}2,1{∈ ii Ω→Ξ0:η  such that 

)()( 0101 θηθη ′≠  if and only if )()( 0202 θηθη ′≠ , 
and 

1),|)(( 00 =θθη aq ii  for all  and all . }2,1{∈i 00 Ξ∈θ
Whenever the signal structure is public then Condition 2 does not hold as follows. Note that for 
every i , and every }2,1{∈ ii Ψ∈ψ , 

))(())(,|( 00 θηψθηψ iijii ap =  for all  and all . Aa∈ 00 Ξ∈θ
This contradicts Condition 2, because  is independent of a  and depends on . ),|( jii ap ωψ jω
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Hence, it follows that in the perfect monitoring case, there exists no random event that satisfies 
Condition 2, and therefore,  is unlikely to be sustainable via review strategy equilibria. )(cu

)( 0θ ′

θ ), 0a
,, 0Ξε

)

 

In contrast, we can show that u  is sustainable when monitoring is private but almost 
public.

)(c
>ε16 Fix a positive real number  arbitrarily, which is close to zero. A signal structure 

 is said to be public if for every i , there exists 
0

Pp∈ −ε }2,1{∈ ii Ω→Ξ0:η  such that 
)( 101 ηθη ≠  if and only if )()( 0202 θηθη ′≠ , 

and 
εθη −≥1|)(( 0q ii , and  for all . εθω ≤),|( 0aq ii )}(/{ 0θηω iii Ω∈

We denote by  the set of possible public signal structures 
associated with Ξ  and .  In the same way as in P , we can check that if Ξ  and  satisfy 
inequalities (5), then Condition 4 holds almost everywhere in the set P . Hence, it follows 
from Propositions 1 and 3 that if Condition 1 and inequalities (5) hold, then u  is sustainable 
almost everywhere in . 

),()()( 0
*** ΩΞ⊂Ω= PPP ε

0 Ω

(* εP

−ε

*

*
0

)(c

Ω

)(ε

 

                                                
16 Mailath and Morris (2002) studied the almost public monitoring case. 
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5. Condition 1 and Efficient Sustainability 
 
This section investigates a component game that has ordered action sets and is 

symmetric in that 
},...,1,0{ ii aA =  for all i , }2,1{∈

21 aa = , 
and for every a , and every a , A∈ A∈′

)()( 21 auau ′=  if  and , 21 aa ′= 12 aa ′=
where ia  is a positive integer. We assume that for every i , the opponent  action 
makes player i  soft in that u  is increasing with respect to a . Let 

}2,1{∈ sj′

j)(ai

},...,1,},...,1,0{: 12 aar → 0{  denote the best response function defined by 
)()),(( 1221 auaaru ≥  for all . Aa∈

Since the component game is symmetric, r  is the best response function not only for player 
1 but also for player 2, i.e., 

)())(,( 2112 auarau ≥  for all . Aa∈
We assume that players’ actions are strategic complements in the sense that r  is a non-
decreasing function. Moreover, we assume that  is single-peaked in the sense that it is 
increasing with respect to a  when , whereas it is decreasing when 

)(1 au
(1 ra <11 A∈ )0 2a≤

112 )( aaar ≤< . 
Based on the assumptions above, we choose the collusive action profile c  as a 

symmetric action profile that is efficient among all symmetric action profiles in that c , 
and for every a , 

2c=1

A∈
)()( aucu ≥  if a . 21 a=

We choose the defective action profile d  as a symmetric action profile satisfying that 
, 21 dd =

)),(()( 2211 ddrucu > ,                                                                                (6) 
and there exists no symmetric action profile a  such that , , and 

. Hence, d  is specified as the maximal symmetric action profile a  
satisfying the inequality u . Since u  is increasing with respect to a , it 
follows that 

A∈

1

21 aa = da >
)),(()( 2211 aarucu >

)),(()( 2211 aaruc > 2

dc > . 
We assume that u  is close to, and therefore, approximates, u . Since u  is 
increasing with respect to a  and , it follows that 

)),(( 221 ddr

2

)(1 c 1

dc >
)),(()),(( 221221 ddrucdru > . 

Since  approximates u , it would be plausible to assume that )),(( 221 ddru )(1 c
)()),(( 1221 cucdru > .                                                                                  (7) 
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Proposition 5: In the case of symmetric component game with the assumptions above, the 
action profiles  and  specified above satisfy Condition 1. c d
 
Proof: Inequality (6) and the symmetry imply inequalities (2). We can check  in 
the following way. If , then it must hold that 

)( 12 drd ≥
)( 12 drd <

)),(())(),(( 221121 ddrudrdru > , 
because u  is increasing with respect to a . Since u  is approximated by u , 
it follows that 

1 2 )),(( 221 ddr )(1 c

)())(),(( 1121 cudrdru > . 
This contradicts the fact that c  is efficient among all symmetric action profiles, because 

 is symmetric and dominates . Hence, we have proved ))(),(( 12 drdr c
)( 211 drdc ≥> .                                                                                          (8) 

Inequalities (8), the single-peakedness, and the symmetry imply that 
),()( 2111 dcudu >  and u . ),()( 2112 cdud >

Inequalities (7) and (8), the single-peakedness, and the symmetry imply that 
)(),( 1211 cucdu >  and u . )(),( 2212 cudc >

These inequalities imply inequalities (1). Hence, we have proved that Condition 1 holds. 
Q.E.D. 

 
In many price-setting duopoly games it is quite plausible to require the assumptions 

such as the strategic complements, the single-peakedness, and the increasingness of firms’ 
profit functions with respect to their rivals’ prices.17 Hence, it is natural to assume the 
existence of the cartel price vector c  and the defective price vector d  that are consistent 
with Condition 1. In the next section, we will provide a detailed model of price-setting 
duopoly that satisfies Condition 2 also. 

The same result as Proposition 5 holds even when we replace the strategic 
complements and the increasingness with the strategic substitutes and the decreasingness, 
respectively. In many quantity-setting duopoly games it is plausible to require the 
assumptions such as the strategic substitutes, the single-peakedness, and the decreasingness 
of firms’ profit functions with respect to their rivals’ quantities. Hence, even in models of 
quality-setting duopoly, it is natural to assume the existence of the cartel agreement with 
Condition 1. 

 

                                                 
17 There exist exceptions. See Tirole (1988). 
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6. Secret Price Cuts 
 

This section considers the following price-setting dynamic duopoly with product 
differentiation. For every i , let }2,1{∈

},...,2,1,0{ ii aA = , 
and 

}...,2,1,0{ ii ω=Ω , 
where 0>ia  and 0>iω  are positive integers. In every period t , each firm i  
chooses the unit price level a  for its own commodities. The rival firm  cannot 
observe firm i  price choice . Here, 

}2,1{∈
iii At ∈)(

)(tai

j ≠
s' ia  is the price level such that firm i  will never 

set the price bigger than ia , because if so, then no consumer will buy from it. At the end of 
the period, firm i  receives its sales level , which is the only available 
information that firm i  can observe about the rival firm  price choice . The rival 
firm  cannot observe firm i  sales level . Firm i  production capacity is limited 
so that 

ii t Ω∈)(ω

)(t '
sj′

s
)t(a j

j s' iω

iω  is the maximal amount up to which firm i  can produce and supply at one time. 
Hence, iω  is also the upper bound of firm  sales level. s'i

When firm i  chooses the price level a  and receives the sales level , its 
instantaneous profit is given by 

ii A∈ ii Ω∈ω

)(),( iiiiiii zaa ωωωπ −= , 
where  is the cost for firm i  production. We assume that z  is increasing 
and . Hence, the expected instantaneous profit for firm i  is given by 

)( iiz ω
0)0( =

s′ Ri →Ω:

iz

∑
Ω∈

−=
ii

apzaau iiiiiii
ω

ωωω )|()}({)(  for all a . A∈

How each firm i  sales level to be determined is modeled as follows. There exist n  
consumers. For every t , and every h , all the macro shock , her 
private shock , and the price vector a  influence consumer  buying 
behavior in period t . When firms choose the price vector a  and the macro shock  and 
the private shock θ  occur, consumer  demand level for firm i  is given by a non-
negative integer l . Hence, the total demand level for firm  is defined by 

s'

(thθ

h

,, ah

1≥
)

,0 hθθ

},...,1{ n∈
t(

sh'

)(00 tθθ =
sh'

0θ
hθ =

(i

A∈)

) i

∑
=

≡
n

h
hii ahlaD

1
0 ),,,(),( θθθ , 

where  denote a shock profile. Since ),...,( 0 nθθθ ≡ iω  is the upper bound of firm i
production, the sales level for firm i  is given by 

s'  

iiii aDa Ω∈≡ ]),,(min[),( ωθθω . 
Let . Ω∈≡ )),(),,((),( 21 θωθωθω aaa
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We assume that each consumer will never buy commodities from both firms. We 
assume that which firm she will buy from does not depend on her private shock. Hence, for 
every , and every h , there exists a firm  such that 
consumer  buys either nothing or only from the firm , i.e., for every , 

00 ),( Ξ×∈ Aa θ
h

},...,1{ n∈ }2,1{),,( 0 ∈θι ah

hθ),,( 0θι ah hΞ∈
0),,,( 0 =hi ahl θθ  if i .),,( 0θι ah≠ 18 19 

For every h , we denote by Ξ  the finite set of possible private shocks . 

Let  denote the set of possible shock profiles. The shock profile θ  is 

randomly drawn according to the conditional probability function  where 
 and in every period the realization of the shock profile  is not 

observable to the firms. The expected instantaneous profit for each firm i  equals 

},...,0{ n∈

h

h hθ

∏
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18 Note that the private signal may or may not influence the amount that consumer h  will buy 
from the firm . 

hθ
),,( 0θι ah

19 Consider the following example. When consumer h  buys l  units of firm 1’s commodity and l  
units of firm 2’s commodity, her utility equals 

1 2

),,,,(}),({}),({ 0212022101 hi llhwahvlahvl θθθθ +−+− , 
where  satisfies the concavity in that for every , ),,,,( 021 hllhw θθ ),( 21 ll

),,,0,(),,0,,(),,,,( 021021021 hhh llhwllhwllhw θθθθθθ +=+≤ . 
Consumer h  maximizes her utility on the assumption that she expects to buy as many as she wants. 
Consumer h demand vector  must be the solution to the maximization problem given by s' ),( 21 ll

)],,,,(}),({}),({[max 02120221011, 21
hll

llhwahvlahvl θθθθ +−+− . 

We specify  by ),,( 0θι ah
1),,( 0 =θι ah  if and only if , 202101 ),(),( ahvahv −≥− θθ
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l
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i

θθθθθ +−∈  if i , ),,( 0θι ah=

and 
0),,,( 0 =hi ahl θθ  if i . ),,( 0θι ah≠

The demand vector  is the solution to the maximization problem. )),,,(),,,,(( 0201 hh ahlahl θθθθ



 24 

and 
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We assume that the consumers’ demands are correlated only through the macro shock , 
so that for every ( ,  is conditionally independent in that 
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We can write the signal structure , or ( , as p ),0 qf
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The following proposition states that firms’ sales levels are correlated only through the 
macro shock . 0θ
 
Proposition 6: In the price-setting dynamic duopoly above, q  is conditionally 
independent for every . 

),|( 0θa⋅
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Proof: For each i , we denote by N  the set of all consumers h  satisfying 
that . Since  does not depend on θ  for every , we can 
write  instead of . Note 
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which implies that  is conditionally independent.                                     Q.E.D. ),|( 0θaq ⋅
 

Fix the cartel price vector  and the defective price vector  arbitrarily, which 
satisfy Condition 1. From Propositions 1 and 6, it follows that the cartel profit vector u  
is sustainable if Condition 2 holds. Note that the inequalities (5) equals 

Ac∈ Ad ∈
)(c

0)1(1 Ξ+≥+ ji aω  for all .                                                         (9) }2,1{∈i
The inequalities (9) imply that each firm i  production capacity s′ iω  is sufficiently large in 
comparison with the size of the set of possible macro shocks as well as the size of the set of 
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possible price levels for the rival firm’s product.20 From Theorem 4, it follows that the 
cartel profit vector u  is sustainable almost everywhere when each firm i  production 
capacity is large so as to satisfy the inequalities (9). Hence, we can conclude that the full 
cartel collusion can be self-enforcing in a wide class of price-setting duopoly even if the 
firms cannot communicate and have the option of making the secret price cuts. 

)(c s′

))∈
Note that all of the probabilities of firms’ choosing the price vectors c , , , 

and (  in every period t  are independent of the history (  of the 
macro shocks up to period t . This implies that the price fluctuation, or the occurrence of 
price wars, does not depend on exogenous factors on business conditions between boom 
and recession. This is in contrast to the studies of public monitoring such as Green and 
Porter (1984) Abreu, Pearce and Stacchetti (1986), and Rotemberg and Saloner (1986), 
because these papers showed that the occurrence of price wars crucially depends on such 
exogenous factors. 

d
Ξt

),( 21 dc
1−), 21 cd 000 1(),...,1( −tθθ

1−

Note that we may not be able to make the defective price vector  very low because of 
Condition 1. Suppose that we have d  equaled the one-shot Nash equilibrium action profile, 
and choose c  so as to satisfy u . Such a pair of c  and  does not necessarily 
satisfy the first inequality of (1), which is necessary for weakened interchangeability. 
Hence, we have to make d  higher than the one-shot Nash equilibrium action profile. This 
implies that although a price war surely occurs on the equilibrium path, the fall in prices 
during the price war is not so drastic and this war goes on for a long time. This is in 
contrast to the previous works such as Abreu, Pearce and Stacchetti (1986), which showed 
that in repeated quantity-setting oligopoly with imperfect public monitoring, a price war on 
the optimal symmetric equilibrium path goes on only one period, and induces firms to make 
very severe competitive prices. 

d

d)(( duc) >

 

                                                 
20 Note that the inequalities (9) hold when the product capacity for each firm is restrictive but its 
product can be divided into small sales units. Moreover, we assume that each firm can change its 
price level only in the discrete way. 
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7. Concluding Remarks 
 

This paper investigated general two player infinitely repeated games where the discount 
factor is less than but close to unity. Monitoring was assumed to be imperfect and private. We 
allowed players’ private signals to be correlated through the unobservable macro shock. We 
showed that efficiency is sustainable in a wide class of environments when the size of the set of 
private signals for each player is sufficiently large in comparison with the size of the set of 
possible macro shocks as well as the size of the set of the opponent’s actions. We applied our 
efficiency result to a price-setting duopoly, and showed that the full cartel collusion can be 
self-enforcing even if firms cannot communicate and have the option of making the secret price 
cuts. 

In order to derive our results, we constructed review strategy equilibria. A modification of the 
law of large numbers implied that players could almost perfectly monitor whether the opponent 
has continued playing collusive or playing defective, and have no incentive to deviate from the 
repeated collusive choices. Moreover, the linear independency of the conditional probabilities 
implied that we could find a bad event for each player such that the probability of its occurrence is 
the lowest when the opponent playing collusive, and does not depend on the opponent’s private 
signal. By combining the idea of review strategy above with weakened interchangeability a la Ely 
and Valimaki (2002), we could show that efficiency is sustainable. 

It would be important to extend our results to the three or more player case. We may expect to 
be able to prove the efficiency result according to the following two steps. 
(1) When private monitoring is far from perfect, can we apply the idea of review strategy above 

to the three or more player case? 
(2) When private monitoring is almost perfect, can we derive the efficiency result in the three or 

more player case by using the device of interchangeability a la Ely and Valimaki or its 
variants? 
Step (1) is closely related to the main concern of the present paper. My answer to Step (1) is 

optimistic. Similarly to the two player case, it would follow that whenever the size of private 
signals for a player is sufficiently large in comparison with the size of the set of possible macro 
shocks, then we can find a bad event for each opponent such that the probability of its occurrence 
is the lowest when this opponent playing collusive, and it does not depend on the opponent’s 
private signal as well as the other opponents’ action choices. Because of this, we may expect each 
player to have incentive to play a review strategy during each review phase. 

Step (2) is much more problematic than Step (1). Although Ely and Valimaki (2002) and 
Bhaskar and Obara (2002) have provided a partial answer to this step, we still have many unclear 
points such as how wide is the class of three or more player games to which we can apply the 
interchangeability or its variant. However, these points are beyond the purpose of the paper 
because Step (2) is not much related to our main concern. As a result, the three or more player 
cases should be intensively studied in future researches.21 
                                                 
21 This paper did not provide the full folk theorem, whereas the previous papers such as Ely and Valimaki 
(2002) and Matsushima (2002) did. I do not have checked carefully, but it would not be difficult to extend 
our result to the sustainability of payoff vectors that are not necessarily efficient. We may need to use the 
idea of Steps 2 and 3 in the proof of the folk theorem in Matsushima (2002). 
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Appendix: The Proof of Proposition 1 
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iψ  ( +

iψ , and ++
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t
ii

t
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0
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Based on the specifications above, we specify an infinite sequence of two strategy 
profiles ( , )s sm m

m=
∞

1  as follows. For every , and every , 1≥t h Hi
t

i
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t
i

m
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i
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m
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According to m
is , player  continues choosing  from period 1 to period . When 

the number of periods in which  occurs is more than the threshold , she will play 
i ic

mT
*
iψ

m
iM
*

m
is  from period T  with probability 1+m m

iξ . When the number of periods in which +
iψ  

occurs is more than the threshold , she will play m
iM
+ m

is  with probability 
m
iς . When 

both numbers are more than their respective thresholds, she will play m
is  with probability 

m
i

m
i ςξ + . Otherwise she will play m

is . Hence, )(
m

i ωρ
mT

i  is regarded as the probability that 

she will play m
is  from period T  when she observes . 1+m mT

iω

According to m
is , player  continues choosing  from period 1 to period T . 

When the number of periods in which 
i id

m

**
iψ  occurs equals the threshold zero, she will play 

m
is  from period T  with probability 1+m m

iξ . When the number of periods in which ++
iψ  

occurs is less than or equals the threshold , she will play m++
iM

m
is  with probability m

i
ς . 

When both numbers are less than or equal their respective thresholds, she will play m
is  
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with probability m
i

m
i ςξ + . Otherwise she will play m

is . Hence, )(
mT

i
m
i
ωρ  is regarded as 

the probability that she will play m
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(i r++
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],|)[),,( 1** t
j

t
i

t
ii

t
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],|),[),,( 1
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it follows that for every large enough , m

v s v s sj
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j
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j
m

j
m( , ) ( , / )δ δ= = v , and 

v s v s sj
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j
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j
m

j
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The device of interchangeability above was originated in Ely and Valimaki (2002). Note 
that 
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j
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=
∞→∞→

δδ , and 
m
j
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ssvsv =
∞→∞→

)/,(lim),(lim δδ . 

By using the same logic as Step 1 in the proof of the folk theorem in Matsushima 
(2002), we can show that s m  and sm  are Nash equilibria for every large enough , in 
the following way. Because of the interchangeability above, we can show as its byproduct 
that 

m

s sm
j
m/  and s sm

j
m/  are Nash equilibria for every large enough . m

Matsushima (2002) assumed conditional independence, but its proof depended only on 
the property that the probabilities of the events occurring are independent of the opponent’s 
private signal. Condition 2 of the present paper implies this property, i.e., implies that the 
probabilities of *

iψ , **
iψ , +

iψ  and ++
iψ  occurring are independent of the opponent’s 

private signal . From this property, all we have to do is to prove that each player has no 

incentive to deviate during the first  periods by making history-independent action 
choices, i.e., to prove that for every , whenever there exists  

such that 
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From Condition 2, it follows that 
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Since the payoff differences above do not depend on +
jψ  and ++

jψ ,  is 

specified according to Lemma A1 in Matsushima (2002), and the threshold for 

∞
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* )( m
m
iM
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jψ  is set 

equal zero, we can directly apply Matsushima (2002) to our problem, and therefore, it 
follows that )/,( i
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m
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m
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The following arguments are basically the same as above. 
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From Condition 2 and the equality (A3), 
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T
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Hence, the payoff difference m

m
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i

m
i
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δ
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−
−

1
)ˆ/,()~/,(  is approximated by, or even 

larger than, the value given by 
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diverges to infinity as  increases, and therefore, exceeds the maximal short-run gain, 
which is represented by 
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From the equalities (A1) and (A14), it follows that the difference in probability 
 is near unity. Hence, from the equality (A7), the 
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From the equalities (A10) and (A15), it follows that this value is approximated by, or even 
larger than 0),(max >− jiia

m
i dauv

i
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The above arguments imply that for every , whenever there exists 
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that s m , sm , s sm
j
m/  and s sm

j
m/  are all Nash equilibria for every large enough . 

Since 

m

)(cu j=),(lim sv mm
jm ∞→
δ , we have completed the proof of Proposition 1. 

Q.E.D. 
 

  


	June 8, 2002
	This Version: June 12, 2002
	Abstract

	secretpdf6.pdf
	Step (1) is closely related to the main concern of the present paper. My answer to Step (1) is optimistic. Similarly to the two player case, it would follow that whenever the size of private signals for a player is sufficiently large in comparison wi
	Step (2) is much more problematic than Step (1). Although Ely and Valimaki (2002) and Bhaskar and Obara (2002) have provided a partial answer to this step, we still have many unclear points such as how wide is the class of three or more player ga
	References

	Hitoshi.pdf
	June 8, 2002
	This Version: June 12, 2002
	Abstract



