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Abstract 

 

This paper investigates a finitely repeated game at the beginning of which players agree to 

write an explicit contract with full commitment. This contract conditions the budget-balancing 

vector of side payments on the complete history of their action choices. However, this history is 

not always verifiable to the court, and each player’s liability is severely limited. We show, in 

the general case, that even if the probability of the complete history being verifiable is small 

and the amount of possible fines is negligible compared with the differences in long-run 

payoffs, every efficient payoff vector induced by an action profile, which Pareto-dominates a 

Nash equilibrium action profile, is uniquely and exactly implementable either in terms of 

perfect equilibrium or in terms of perfect iterative undominance. Moreover, we show, in a wide 

class of component games, that even if this probability is close to zero and the amount of fines 

is negligible compared with the differences not only in long-run payoffs but also in 

instantaneous payoffs, every efficient payoff vector induced by an action profile, which 

Pareto-dominates a Nash equilibrium action profile, is uniquely and virtually implementable 

either in terms of perfect equilibrium or in terms of perfect iterative undominance. 

 

Key Words: Finitely Repeated Games with Side Payments, Small Verifiability, Limited 

Liability, Unique Implementation, Efficiency 

                                                 
+ I am very grateful to Stefan Worrall for his careful reading. All errors are mine. 
* Faculty of Economics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan. Fax: 

+81-3-3818-7082. e-mail: hitoshi@e.u-tokyo.ac.jp 

 



 2 

1. Introduction 
 

This paper investigates a T  times finitely repeated game with perfect monitoring 

and no discounting, in which, at the beginning of period 1, players agree to write an 

explicit long-term contract that assigns a budget-balancing vector of side payments to 

each complete history of players’ action choices. This contract has full commitment 
power in that in every period players cannot breach and renegotiate it multilaterally. 

However, the complete history is not always verifiable to the court. According to the 

contract, at the end of period T, players pay or receive side payments if and only if the 

complete history can be verified to the court, while they pay or receive no side payments 

if this history cannot be verified. We assume that each player’s liability is limited to an 

upper bound of fines that she can afford to pay. We also assume that the number of 

repetitions T  is large enough. 

Our objective, in this paper, is to clarify whether, in the game just described, 

efficiency is uniquely implementable either in terms of perfect equilibrium or in terms 

of perfect iterative undominance. Perfect iterative undominance is a solution concept 

that is defined by the backward induction technique. Unique implementation in terms of 

this solution concept is more restrictive than that in terms of perfect equilibrium. This 

paper provides sufficient conditions under which there exists a side payment contract 

such that in a finitely repeated game there exists either a unique perfect equilibrium or a 

unique perfect iteratively undominated strategy profile, and this strategy profile induces, 

exactly or virtually, a fully collusive, i.e., an efficient, payoff vector. 

The paper is in two parts. In the first part, we consider a trigger strategy profile. 

According to this profile, players will continually choose an efficient action profile, 

which Pareto-dominates a Nash equilibrium action profile, as long as no one has 

deviated, while they will continually choose the Nash equilibrium action profile after 

someone has deviated. The payoff vector induced by the trigger strategy profile is 

exactly the same as the payoff vector induced by the efficient action profile. Based on 

this trigger strategy profile, we specify a side payment contract in which a player will be 

fined if and only if she is the last deviant from the trigger strategy profile. We show, in 

the general case, that under this fairly simple form of contract, even if the probability of 
the complete history being verifiable is small and each player’s liability is limited, 
efficiency is uniquely and exactly implementable either in terms of perfect equilibrium 
or in terms of perfect iterative undominance. When the amount of possible fines 

multiplied by the probability of the complete history being verifiable is larger than the 

maximum difference in instantaneous payoffs, the trigger strategy profile will become, 
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in a finitely repeated game with this side payment contract, the unique perfect iteratively 

undominated strategy profile. This result is permissive, because we need no restrictions 

on the component game other than the assumption that there exists a strict and less 

preferable Nash equilibrium action profile, and also because the amount of possible 

fines can be negligible compared with the differences in long-run payoffs. 

In the second part of the paper, we introduce a modified version of the trigger 

strategy profile, according to which, during the first T t− $  periods, players will 

continually choose the efficient action profile as long as no one has deviated, while they 

will continually choose the Nash equilibrium action profile after someone has deviated. 

During the last $t  periods, players will continually choose an action profile, which is 

contingent on the number of the first deviants during the first T t− $  periods, and 

which is Pareto-dominated by the efficient action profile, as long as no one has deviated, 

while they will continually choose the Nash equilibrium action profile after someone 

has deviated. The payoff vector induced by this modified trigger strategy profile is 

virtually the same as the payoff vector induced by the efficient action profile. Based on 

this profile, we specify an alternative side payment contract, where by a player will be 

fined if and only if she is the last deviant from the modified trigger strategy profile 

during the last $t  periods. 

From this, we are able to prove that, in a finitely repeated game with this side 

payment contract, the modified trigger strategy profile is the unique perfect iteratively 

undominated strategy profile (the unique perfect equilibrium) provided that the 

component game satisfies minor restrictions and there exists a unique iteratively 

undominated action profile (a unique Nash equilibrium action profile, respectively) in 

the component game. This result is again permissive, because we need no restrictions on 

the probability of the complete history being verifiable or on the upper bound of fines. 

Hence, we can conclude, in a wide class of component games, that even if the 
probability of the complete history being verifiable is close to zero and the amount of 
fines is negligible compared with the differences not only in long-run payoffs but also in 
instantaneous payoffs, efficiency is uniquely and virtually implementable either in terms 
of perfect equilibrium or in terms of perfect iterative undominance. 

There exists a huge volume of previous works on repeated games that provide a 

theoretical foundation to the widely accepted view that in real economic situations, 

long-term relationships facilitate collusion more than do short-term relationships. These 

works commonly assume that Anti-Trust Law prohibits players from writing an explicit 

contract, or that it is impossible for players to enforce any history-contingent explicit 

contract because their action choices are unverifiable to the court. Fudenberg and 
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Maskin (1986) investigated infinitely repeated games and provided the Folk Theorem in 

terms of perfect equilibrium, in that every individually rational payoff vector, whether it 

is collusive or not, can be approximated by a perfect equilibrium payoff vector, when 

the discount factor is close to zero. Benoit and Krishna (1985) and Friedman (1985) 

investigated finitely repeated games and provided sufficient conditions under which the 

Folk Theorem or the efficiency result holds in terms of perfect equilibrium.1 The reason 

why players can collude without the use of explicit contracts is put as follows. In every 

period players are confronted with the same subgame, and this subgame has multiple 

perfect equilibria. The logic behind collusive behavior depends crucially on this 

multiplicity. If a player deviates unilaterally from collusive behavior, her opponents will 

retaliate from the next period by playing an unfavorable equilibrium. Because of this 

future penalty induced by the move to the unfavorable equilibrium, each player hesitates 

to deviate and earn the instantaneous gain. 

In sharp contrast to this orthodoxy, the present paper adopts an alternative basis for 

collusion to occur. Subgames of a finitely repeated game with side payments differ 

across past histories because the history-contingent contract influences the payoff 

structures of these subgames. Moreover, these subgames each have their own respective 

unique perfect equilibria. If a player deviates unilaterally from collusive behavior, all 

players will be confronted in the next period with the subgame whose unique perfect 

equilibrium is unfavorable to the deviant. Because of this future penalty induced by the 

move to the unfavorable subgame, each player hesitates to deviate and earn the 

instantaneous gain. 

Because, in a finitely repeated game with side payments, collusive behavior can be 

described as a unique perfect equilibrium, the predictive power of the results in this 

paper is much stronger than that of the Folk Theorem. More precisely, the fact that not 

only the whole game but also every subgame satisfies this uniqueness, implies that, in 

every period, players have no room to renegotiate the terms of implicit agreement 

multilaterally and improve their welfare. This point contrasts with the fact that 

renegotiation-proofness on the terms of implicit agreement has long been a controversial 

issue in the literature of implicit collusion.2 

                                                 
1 For further references, see Pearce (1992). Radner (1980), Chu and Geanapoplos (1988), and 

Conlon (1996) investigated finitely repeated games, and provided their respective efficiency 

results, on the assumption that players are slightly irrational. 
2 See, for example, Bernheim and Rey (1989), Farrell and Maskin (1989) and Pearce (1987) on 

infinitely repeated games, and Benoit and Krishna (1988) on finitely repeated games. 
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The present paper is also in contrast with the literature of the reputational theory of 

finitely repeated games, which assumes incomplete information on players’ types.3 

Several works such as Kreps and Wilson (1982) and Milgrom and Roberts (1982) 

provided their respective examples of a chain-store game in which there exists a unique 

perfect Bayesian equilibrium and it virtually induces an efficient allocation. However, 

these results depend crucially on their own specifications of the incomplete information 

structure, while it is hard to tell about how players can determine the well-behaved 

incomplete information structure in advance of their repeated play. The present paper, 

however, assumes complete information and is based on a more plausible scenario of a 

contracting process, in which players will collectively agree to a side payment contract 

that guarantees both uniqueness and, exact or virtual, efficiency.4 

There also exists a sizeable literature dealing with the agency problem with moral 

hazard that specifically seeks to clarify whether a single-period relationship attains the 

first-best or second-best allocation through the writing of explicit contracts.5 This 

literature commonly makes the assumption that it is difficult for the court to verify 

players’ action choices, but that there exists a public signal that is randomly determined 

according to a probability distribution conditional on player’s action choices, and this 

signal is verifiable. Hence, players can agree to write an arbitrary explicit contract that 

conditions the budget-balancing vector of side payments not on their action choices but 

on the realization of this signal. A large proportion of this literature is devoted to 

investigating the single-agent problem, while several works such as Holmstrom (1982), 

Williams and Radner (1989), and Legros and Matsushima (1991) investigate 

multi-agent relationships. Legros and Matsushima provided a necessary and sufficient 

condition under which there exists a side payment contract that induces players to 

choose a collusive action profile as a Nash equilibrium on the assumption that utilities 

                                                 
3 For the survey of this literature, see Fudenberg (1992). 
4 For example, one of the partners, called the principal, decides a side payment contract, which 

maximizes her own payoff given the constraint that there exists a unique perfect equilibrium 

and that this perfect equilibrium induces a payoff vector that is no worse than the payoff vector 

that partners can receive outside if they fail to establish their partnership. Another scenario is 

that all players agree to a side payment contract according to the Nash bargaining solution at 

the beginning of period 1 given the constraint that there exists a unique perfect equilibrium and 

that the payoff vector that partners can receive outside is regarded as the threat point. 
5 For the references, see the surveys by Hart and Holmstrom (1987), Dutta and Radner (1994), 

and Salanie (1997). 
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are quasi-linear.6 This side payment contract, however, requires that players pay a large 

fine as penalty for deviation. 

In contrast, the present paper assumes that players establish a long-term relationship, 

but that only small fines, which may be close to zero, exist in totality. The paper shows 

that the establishment of a long-term relationship, together with the use of a contract 

that fines only the last deviants, dramatically economizes on monetary fines without 

harming players’ incentive to collude. 

As such, this paper may offer an important economic implication within the field of 

law and economics. In real situations of labor contracting with moral hazard, it is 

practically difficult to establish measures of performance that are always verifiable to 

the court. It is also unrealistic to expect that a limitedly liable worker will be able to pay 

a large fine when the fact that she has neglected her duty could be disclosed to the 

public. From this, it is widely believed that in real situations the legal enforcement of 

explicit contracts plays only a limited role in resolving issues of moral hazard. Many 

economists, such as MacLeod and Malcomson (1989), have emphasized that the 

self-enforcement of implicit contracts instead plays a more crucial role than legal 

enforcement, which are thought of formally as a perfect equilibrium in an infinitely 

repeated game. In contrast, the present paper shows that even if workers’ performances 

are hardly verifiable and their liability is severely limited, the role of legal enforcement 

is very crucial and even indispensable for workers’ incentives. 

A technical aspect of this paper is related to Abreu and Matsushima (1992) and 

Glazer and Perry (1996), which investigated the implementation of social choice 

functions in complete information environments and showed that every social choice 

function is virtually implementable either in terms of iterative undominance or in terms 

of perfect equilibrium. Both works construct mechanisms in which only small fines are 

used. Abreu and Matsushima constructed a simultaneous-move mechanism, while 

Glazer and Perry constructed, as a modification of the Abreu-Matsushima mechanism, 

an alternating-move mechanism in which only the last deviants will be fined. Without 

the use of fines, there exist multiple perfect equilibria, one of which is the socially 

optimal strategy profile. Hence, both works suggest that the use of small fines can 

eliminate all unwanted equilibria, whether players’ messages are hidden or not. 

In contrast, the present paper depends heavily on the assumption that players’ action 

choices are not hidden, because the strategy profile that players want to enforce depends 

                                                 
6 These works did not consider the uniqueness of equilibrium. Ma (1988), and Ma, Moore and 

Turnbull (1988) investigated unique implementation in multi-agent relationships. 
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on the histories of their action choices. Moreover, without the use of fines this strategy 

profile may not satisfy the perfect equilibrium property. Hence, the use of small fines in 

this paper is regarded as playing the crucial role not only of eliminating the unwanted 

equilibria but also of describing the wanted strategy profile as an equilibrium. 

The organization of this paper is as follows. Section 2 presents the model. Section 3 

corresponds to the first part of this paper, which investigates exact implementation. 

Section 4 corresponds to the second part, which investigates virtual implementation. 

Section 5 investigates side payment contracts other than those constructed in Sections 3 

and 4. Section 6 concludes. 
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2. Finitely Repeated Games with Side Payments 

 
A finitely repeated game with side payments ),,,),(,,( εmMuANT Niii ∈Γ=Γ  is 

defined as follows. The component game is given by G N A ui i i N≡ ∈( , ( , ) ) , where 

N n= { ,..., }1  is the finite set of players, Ai  is the set of actions for player i N∈ , 
A Ai

i N
≡

∈
∏ , and u A Ri : →  is the instantaneous payoff function for player i . We 

assume that there exists a strict Nash equilibrium action profile in G , which is denoted 

by a Ae ∈ . 
Let Qi  denote an arbitrary nonempty subset of Ai , and let Q Qi

i N
≡

∈
∏ . An action 

a Ai i∈  for player i  is said to be dominated w. r. t. Q  if a Qi i∈  and there exists 

′ ∈a Q ai i i/ { }  such that v a a u ai i i( / ) ( )′ >  for all a Qi i− −∈ . Let 
~

( )Q Qi  denote the set 

of all undominated actions for player i  w. r. t. Q . Let Q Ai i
0 ≡ , Q Qk

i
k

i N
≡

∈
∏ , 

Q Q Qi
k

i
k≡ −~

( )1 , and Q Qk

k

* ≡
=

∞

0
I . An action profile a A∈  is said to be iteratively 

undominated in G  if a Q∈ * . Note that the strict Nash equilibrium action profile ae  

is iteratively undominated in G . 

We denote by a positive integer T > 0  the number of periods in which players 

repeatedly play G . A history up to period t T=1,...,  is denoted by 

h t a a t( ) ( ( ),..., ( ))≡ 1 , where a a a An( ) ( ( ),..., ( ))τ τ τ≡ ∈1  is the action profile chosen 

in period τ . A history up to period T  is called a complete history. Let h( )0  denote 

the null history. The set of histories up to period t  is denoted by H t( ) . We assume 

that monitoring is perfect, i.e., players can observe the other players’ action choices at 

the end of every period. Hence, in every period t T=1,..., , the realized history 

h t H t( ) ( )− ∈ −1 1  is always common knowledge among players. 

We, however, assume that monitoring is hardly verifiable to the court. The complete 
history h T H T( ) ( )∈  can (cannot) be verified to the court with probability ε  

(probability 1−ε , respectively) at the end of period T. We assume that ε  is positive 

but close to zero.  

We assume that side payments among players are possible. At the beginning of 

period 1, players agree to write a side payment contract, which is contingent on the 

complete history. The side payment contract has full commitment power in that in every 

period players cannot breach and renegotiate it multilaterally. We assume that there 

exists an upper bound to the amount of fines, 0>M , such that each player is able to 
pay up to this amount in totality. A side payment contract is defined by m m mn= ( ,..., )1 , 

where for every i N∈ , 
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),[)(: ∞−→ MTHmi , 

and m  is budget-balancing, i.e., 
m h Ti

i N
( ( )) =

∈
∑ 0  for all h T H T( ) ( )∈ . 

According to the side payment contract m , each player i N∈  receives side payment 
m h Ti ( ( ))  at the end of period T if h T( )  can be verified to the court, whereas she pays 

or receives no side payment if h T( )  cannot be verified. Hence, the expected long-run 

payoff for player i , given that the complete history h T a a T H T( ) ( ( ),..., ( )) ( )= ∈1  

occurs, is defined by 

v h T v h T u a t m h Ti i i
t

T

i( ( )) ( ( ); ) ( ( )) ( ( ))= ≡ +
=
∑Γ

1

ε , 

where we assume no discounting. 7  Let v h T v h T v h Tn( ( )) ( ( ( )),..., ( ( )))≡ 1 . For 

simplicity, we will denote Γ  or Γ( , )T m  instead of ),,,),(,,( εmMuANT Niii ∈Γ=Γ  

whenever there exists no confusion. 

Given the number of repetitions T , a strategy for player i  is defined by 

s H t Ai
t

T

i: ( )U
=

−
→

0

1

. Let Si  denote the set of strategies for player i . Let S Si
i N

≡
∈
∏  and 

s h t s h t s h t An( ( )) ( ( ( )),..., ( ( )))≡ ∈1 . For every t T= −0 1,..., , every h t H t( ) ( )∈ , and 

every strategy profile s s s Sn= ∈( ,..., )1 , the complete history induced by ))(,( ths  is 

defined by h s h t h t a t a T H T( , ( )) ( ( ), ( ),..., ( )) ( )= + ∈1 , where 

a t s h t( ) ( ( ))+ =1 , 

h t h t a t( ) ( ( ), ( ))+ = +1 1 , 

and for every τ = +t T2,..., , 

a s h( ) ( ( ))τ τ= −1 , 

and 
h h a( ) ( ( ), ( ))τ τ τ= −1 . 

A strategy profile s S∈  is said to be a perfect equilibrium in Γ  if for every 
t T= −0 1,..., , every h t H t( ) ( )∈ , and every i N∈ , 

v h s h t v h s s h ti i i( ( , ( ))) ( ( / , ( )))≥ ′  for all ′ ∈s Si i .          (1) 

Let v s v h s hi i( ) ( ( , ( ))≡ 0  and v s v s v sn( ) ( ( ),..., ( ))≡ 1 . 

We introduce another solution concept referred to as perfect iterative undominance, 
which is defined by the backward induction technique as follows. Let Wi  denote an 

                                                 
7 We can extend this model to the case where players discount their future payoffs but the 

discount factor is close to unity. This paper assumes that players’ instantaneous payoff 

functions are quasi-linear. We can also extend this model to the case where these instantaneous 

payoff functions are increasing w. r. t. players’ own side payments but are not quasi-linear. 
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arbitrary subset of Si , and let W Wi
i N

≡
∈
∏ . A strategy s Si i∈  for player i  is said to 

be dominated w. r. t. W  given h t( )−1 , if s Wi i∈  and there exists ′ ∈s Wi i  such that 

v h s s h t v h s h ti i i( ( / , ( ))) ( ( , ( )))′ − > −1 1  for all s Wi i− −∈ . 

Let 
~

( , ( ))W W h ti −1  denote the set of all undominated strategies for player i  w. r. t. 

W  given h t( )−1 . Let 

W h T Si i
0 1( ( ))− ≡ , 

W h T W h Tk
i
k

i N
( ( )) ( ( ))− ≡ −

∈
∏1 1 , 

W h T W W h T h Ti
k

i
k( ( ))

~
( ( ( )), ( ))− ≡ − −−1 1 11 , 

W h Ti
∞ −( ( ))1 ≡ −

=

∞
W h Ti

k

k
( ( ))1

0
I , 

and 
W Ti

*( )−1 ≡ −∞

− ∈ −
W h Ti

h T H T
( ( ))

( ) ( )

1
1 1
I . 

Recursively, for every t T∈ −{ ,..., }0 2 , let 

W h t W ti i
0 1( ( )) ( )*≡ + , 

W h t W h tk
i
k

i N
( ( )) ( ( ))≡

∈
∏ , 

W h t W W h t h ti
k

i
k( ( ))

~
( ( ( )), ( ))≡ −1 , 

W h ti
∞ ( ( )) ≡

=

∞
W h ti

k

k
( ( ))

0
I , 

W h t W h ti
i N

∞ ∞

∈
≡ ∏( ( )) ( ( )) , 

W ti
*( ) ≡ ∞

∈
W h ti

h t H t
( ( ))

( ) ( )
I , 

and 
W t W ti

i N

* *( ) ( )≡
∈
∏ . 

A strategy profile s S∈  is said to be perfect iteratively undominated in Γ  if 
s W∈ *( )0 . Note that if a strategy profile s S∈  is perfect iteratively undominated in Γ , 

then it satisfies the perfect iterative undominance property in every subgame. Note that a 

strategy profile is a perfect equilibrium in Γ  if it is perfect iteratively undominated in 

Γ , but that the reverse is not true. 

Throughout this paper, we shall fix an action profile a A* ∈ , which may induce an 

efficient payoff vector. We assume that this action profile a*  Pareto-dominates the 

Nash equilibrium action profile ae  in G , i.e., 
u a u ae( ) ( )* > . 

For every s S∈ , and every h T H T h s h( ) ( ) / { ( , ( ))}∈ 0 , we define a period 

},...,1{))(,(~~ TThstt ∈=  by 

))1~(()~( −≠ thsta , 
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and 
))1(()( −= thsta  for all },...,1~{ Ttt +∈ . 

Period ~( , ( ))t s h T  is regarded as the last period in which the chosen action profile was 

not the same as that suggested by strategy profile s . 
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3. Exact Implementation 

 

Given an arbitrary number of repetitions T ≥ 1, we specify a trigger strategy profile 
s S+ ∈  as follows. For every t T∈ { ,..., }1 , and every )1()1( −∈− tHth , 

s h t a+ − =( ( )) *1  if a a( ) *τ =  for all τ < t , 

and 
s h t ae+ − =( ( ))1  if *)( aa ≠τ  for some τ < t . 

According to the trigger strategy profile s+ , in each period, players choose a*  if they 

have chosen a*  in all previous periods, while they choose ae  otherwise. 
We denote by n a a n( , ) { ,..., }′ ∈ 0  the number of players i N∈  satisfying that 

′ ≠a ai i . Based on the trigger strategy profile s+ , we specify a side payment contract 

m+  as follows. For every i N∈ , 
m h s hi

+ + =( ( , ( )))0 0 , 

for every ))}0(,(/{)()( hshTHTh +∈ , and for ))(,(~~ Thstt += , 

M
n

tstanThmi )1
1

1))1~(),~((
())(( −

−
−−=

+
+  if 

))1~(()~( −≠ + thsta ii , 

and 

M
n

tstanThmi 1

))1~(),~((
))((

−
−=

+
+  if ))1~(()~( −= + thsta ii . 

Here, ))1~(),~(( −+ tstan  implies the number of the last deviants from +s  in 

)()( THTh ∈ . According to the side payment contract m+ , a player will be fined if and 

only if she is the last deviant from the trigger strategy profile s+ . Note that m+  is 

budget-balancing. Note that 

)()))0(,((
1 *auhshv
T

=+ , 

and, therefore, the strategy profile s+  induces exactly the same payoff vector as u a( )*  

in Γ( , )T m+ , irrespective of T ≥ 1. 

The following theorem provides sufficient conditions under which s+  is either the 

unique perfect equilibrium or the unique perfect iteratively undominated strategy profile 
in Γ( , )T m+ , and therefore, the payoff vector )( *au  is uniquely and exactly 

implementable either in terms of perfect equilibrium or in terms of perfect iterative 
undominance, irrespective of T ≥ 1. For every a A∈ , we define the component game 
G N A ua

i i
a

i N
[ ] [ ]( ,( , ) )= ∈  by 

Mauau i
a

i ε−′=′ )()(][  if ′ ≠a ai i , 

and 
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u a u ai
a

i
[ ]( ) ( )′ = ′  if ii aa =′ . 

In the component game ][aG , each player receives the same instantaneous payoff as that 

in G , but she will be fined by the amount of M  with probability ε  if and only if she 

deviates from action profile a . 

 

Theorem 1: If ea  is the unique Nash equilibrium action profile (the unique iteratively 
undominated action profile) in ][ eaG  and *a  is the unique Nash equilibrium action 
profile (the unique iteratively undominated action profile) in ][ *aG , then s+  is the 
unique perfect equilibrium (the unique perfect iteratively undominated strategy profile, 
respectively) in Γ( , )T m+ . 

 

Proof: See the Appendix. 

 

Note that ea  is the unique iteratively undominated action profile in ][ eaG  if 

ε
)/()( e

iii aauauM −>  for all a A∈  and all i N∈ ,      (2) 

and that *a  is the unique iteratively undominated action profile in ][ *aG  if 

ε
)/()( *

iii aauauM −>  for all a A∈  and all i N∈ .      (3) 

Hence, it follows that if the upper bound M  is large enough to satisfy inequalities (2) 

and (3), then s+  is the unique perfect iteratively undominated strategy profile in 
Γ( , )T m+ , and therefore, the payoff vector )( *au  is uniquely and exactly 

implementable in terms of perfect iterative undominance. 
More specifically, note that inequalities (2) and (3) hold and, therefore, )( *au  is 

uniquely and exactly implementable in terms of perfect iterative undominance, if the 

amount of possible fines multiplied by the probability of the complete history being 

verifiable is larger than the maximum difference in instantaneous payoffs, i.e., 
)]()([max

,,
auauM iiAaAaNi
′−>

∈′∈∈
ε . 

Note also that the sufficient conditions in Theorem 1, or inequalities (2) and (3), do 

not depend on T , and therefore, given that M  satisfies these conditions, 
T
M

 tends 

towards zero as T  increases. Hence, we can regard the upper bound M  as a 

negligible amount compared with the differences in long-run payoffs, provided that the 

number of repetitions T  is large enough. 

The following example is useful for capturing the logical essence of Theorem 1. 
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Example 1: Consider an example of the component game G  with two players, which 

is described by Figure 1. 

 

[Figure 1: Component Game G ] 

 
Note that there exist two strict Nash equilibrium action profiles in G , i.e., ),( dd  and 

),( dd ′′ , and that the action profile ),( cc  is efficient. Let ),(* cca =  and ),( ddae = , 

where 
)()0,0()1,1()( * eauau =>= . 

Moreover, let 

6=Mε . 

The component games )],[( ccG  and )],[( ddG  are described by Figures 2 and 3, 

respectively. 

 

[Figure 2: Component Game )],[( ccG ] 

 

[Figure 3: Component Game )],[( ddG ] 

 
Note that ),( cc  and ),( dd  are the strictly dominant action profiles in )],[( ccG  and 

)],[( ddG , respectively. Note also that action profile ),( dd ′′ , which is a strict Nash 

equilibrium action profile in G , and which is not Pareto-dominated by ),( cc , is not a 

Nash equilibrium action profile either in )],[( ccG  or in )],[( ddG . 
Consider an arbitrary period Tt ,...,1=  and an arbitrary history )1()1( −∈− tHth . 

Suppose that players will behave according to the trigger strategy profile +s  after 

period 1+t . We show below that in period t , players will choose a strictly dominant 

action profile, which is the same as the one suggested by the trigger strategy profile +s . 

First, suppose that there exists a player who has deviated in previous periods. Then, 
the strategy profile +s  suggests to players to choose ),( dd  in period t , and, 

according to the side payment contract +m , any player who does not choose action d  

in period t , will be fined, because players will behave according to +s  after period 
1+t . Since players will continually choose the same action profile ),( dd  after period 

1+t  irrespective of their action choices in period t , it follows that the difference in 

long-run payoffs for each player 2,1=i  between the choice of action d  and the 
choice of any action )(tai  other than action d  is equal to 

Mtatautadu jiiji ε+− ))(),(())(,(  if either dta j ≠)(  or both 

players are the last players who have deviated in 
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previous periods,8 
Mtatautadu jiiji ε2))(),(())(,( +−  if dta j =)(  and player i  is 

not the last player who has deviated in previous 
periods, i.e., the other player j  is the single last 

player who has deviated in previous periods, 

and 
))(),(())(,( tatautadu jiiji −  if dta j =)(  and player i  is the 

single last player who has deviated in previous 

periods, 
where ij ≠ . In the first and second cases, player i  will not be fined as long as she 

chooses action d  in period t , because the other player j  will be the last deviant. 

Hence, in the first and second cases, player i  is confronted with her own payoff 

structure that is essentially the same as the one of the component game )],[( ddG , and, in 

the second case, player i , by choosing action d  in period t , additionally receives an 
expected transfer 6=Mε  from player j . In the third case, player i  will be fined 

irrespective of her own choice in period t , because she will be the single last deviant 

irrespective of her own choice in period t . Hence, in the third case, player i  is 

confronted with her own payoff structure that is essentially the same as the one of the 
component game G . Since ),( dd  is a strict Nash equilibrium action profile in G  

and is strictly dominant in )],[( ddG , these differences in long-run payoffs for player i  

are all larger than zero. Hence, the choice of action d , which is the same as the one 

suggested by +s , is strictly dominant in period t . 

Next, suppose that there exists no player who has deviated in previous periods. Then, 
the strategy profile +s  suggests to players to choose ),( cc , and, according to the side 

payment contract +m , any player who does not choose action c  in period t , will be 

fined, because players will behave according to +s  after period 1+t . Players will 
continually choose ),( dd  after period 1+t , if some player does not choose action c  

in period t , while players will continually choose ),( cc  after period 1+t  if they 

choose ),( cc  in period t . Hence, the difference in long-run payoffs for each player 

2,1=i  between the choice of action c  and the choice of any action )(tai  other than 

action c  is equal to 
Mtatautacu jiiji ε+− ))(),(())(,(  if cta j ≠)( , 

and 

                                                 
8 Here, ),( jii aau  denotes the payoff for player i  when player i  chooses action ia  and 

the other player ij ≠  chooses action ja . 
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)},(),(){())(),(())(,( dduccutTMtatautacu iijiiji −−++− ε  if 

cta j =)( , 

where ij ≠ . In both cases, player i  is confronted with her own payoff structure that is 

the essentially same as the one of the component game )],[( ccG , and, in the latter case, by 
choosing action ctai ≠)( , player si'  payoff in every future period decreases from 

1),( =ccui  to 0),( =ddui . Since ),( cc  is strictly dominant in )],[( ccG , these 

differences in long-run payoffs for player i  are all larger than zero. Hence, the choice 

of action c , which is the same as the one suggested by +s , is strictly dominant in 

period t . 

By applying the above arguments recursively from period Tt =  to period 1=t , we 

have concluded, from the definition of perfect iterative undominance, that +s  is the 
unique perfect iterative undominated strategy profile in Γ( , )T m+  and, therefore, the 

efficient payoff vector )1,1(),( =ccu  is uniquely and exactly implementable in terms of 

perfect iterative undominance. 
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4. Virtual Implementation 

 

We now investigate the situation in which the upper bound M  is so close to zero 

that it is a negligible amount compared with the differences not only in long-run payoffs 

but also in instantaneous payoffs. 
Choose n +1 action profiles n

r
ra 0

)( )( =  arbitrarily, where we assume that 

u a u a u a u a u an n e( ) ( ) ( ) ( ) ( )* ( ) ( ) ( )> > ⋅ ⋅ ⋅ > > =−0 1 .         (4) 

Let $t ≥ 1 denote an arbitrary positive integer satisfying that for every i N∈ , every 

r n=1,..., , and every a A∈ , 

u a a u a t u a u ai i i i
r

i
r( / ) ( ) ${ ( ) ( )}* ( ) ( )> − −−1 .              (5) 

For every t ≥ 1, we denote by H t( , )0  the set of all histories h t H t( ) ( )∈  up to period 

t  satisfying that 
a t a( ) *′ =  for all ′ ≤ −t t T tmin[ , $]. 

For every t ≥ 1, and every r n∈ { ,..., }1 , we denote by H t r( , )  the set of all histories 

h t H t( ) ( )∈  up to period t  satisfying that there exists τ ≤ −min[ , $]t T t  such that 

a t a( ) *′ =  for all ′ <t τ , 
*)( aa ≠τ , 

and 
n a a r( ( ), )*τ = . 

Here, τ  is the first period in which the chosen action profile is not the same as a* , 
and raan =)),(( *τ  implies the number of the first deviants from a* . Hence, H t r( , )  

is regarded as the set of all histories up to period t  such that the number of the first 
deviants from a*  during the first min[ , $]t T t−  periods is equal to r . Let 

H H( , ) ( )0 0 0≡ . 

Given ( )( )a r
r
n
=0 , we specify a modified trigger strategy profile s S* ∈  as follows. 

For every t T t∈ −{ ,..., $}1 , 

s h t ai
* *( ( ))− =1  if h t H t( ) ( , )− ∈ −1 1 0 , 

and 
s h t ai

e*( ( ))− =1  if h t H t( ) ( , )− ∉ −1 1 0 . 

For every t T t T∈ − +{ $ , ..., }1 , every r n∈ { ,..., }0 , and every h t H t r( ) ( , )− ∈ −1 1 , 

s h t ai
e*( ( ))− =1  if a a r( ) ( )τ ≠  for some 

τ ∈ − + −{ $ ,..., }T t t1 1 , 

and 
s h t ai

r* ( )( ( ))− =1  if a a r( ) ( )τ =  for all τ ∈ − + −{ $ , ..., }T t t1 1 . 

According to the modified trigger strategy profile s* , in every period t T t≤ − $ , players 

choose a*  if they have chosen a*  in all previous periods, while they choose ae  
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otherwise. In every period t T t≥ − +$ 1, given that r n∈ { ,..., }0  is the number of the 

first deviants from a*  during the first T t− $  periods, players choose a r( )  if they have 

chosen a r( )  in all previous periods after period T t− +$ 1 , while they choose ae  
otherwise. Since )()( )1()( +> rr auau  for every }1,...,0{ −∈ nr , it follows that as the 

number of the first deviants from a*  during the first tT ˆ−  periods increases, the play 

during the last t̂  periods suggested by s*  becomes less favorable for all players. 

Figures 4 and 5 describe the modified trigger strategy profile *s . 

 

[Figure 4: Modified Trigger Strategy Profile *s : 

From Period 1 to Period T t− $ ] 

 

[Figure 5: Modified Trigger Strategy Profile *s : 

From Period T t− +$ 1  to Period T ] 

 

Based on the modified trigger strategy profile s* , we specify a side payment 

contract m*  as follows. For every i N∈ , 
m h s hi

* *( ( , ( )))0 0= , 

and, for every ))}0(,(/{)()( * hshTHTh ∈ , and for ))(,(~~ * Thstt = , 

m h Ti
*( ( )) = 0  if tTt ˆ~ −≤ , 

M
n

thstanThmi )1
1

1)))1~((),~((
())((

*
* −

−
−−=  if tTt ˆ~ −>  and 

))1~(()~( * −≠ thsta ii , 

and 

M
n

thstanThmi 1

)))1~((),~((
))((

*
*

−
−=  if tTt ˆ~ −>  and 

))1~(()~( * −= thsta ii . 

According to the side payment contract m* , a player i  will be fined if and only if she 

is the last deviant from the modified trigger strategy profile s*  during the last $t  
periods. Note that 

v h s h T t u a tu ai i i( ( , ( ))) ( $) ( ) $ ( )* * ( )0 0= − + , 

and, therefore, the strategy profile *s  virtually induces the payoff vector u a( )* , 

provided that the number of repetitions T  is large enough. 

The following theorem provides sufficient conditions under which the modified 

trigger strategy profile s*  is either the unique perfect equilibrium or the unique perfect 
iteratively undominated strategy profile in Γ( , )*T m . 
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Theorem 2: If for every },...,0{ nr ∈  the action profile )(ra  is the unique Nash 

equilibrium action profile (the unique iteratively undominated action profile) in ][ )( raG , 
then s*  is the unique perfect equilibrium (the unique perfect iteratively undominated 
strategy profile, respectively) in Γ( , )*T m . 

 
Proof: See the Appendix. 

 

The following proposition provides sufficient conditions under which there exist 
n +1  action profiles n

r
ra 0

)( )( =  such that inequalities (4) and the suppositions in 

Theorem 2 hold. 

 
Proposition 3: Suppose that Ai = [0, ]1  and ui  is differentiable w. r. t. a A∈  for 
every i N∈ , and that there exists n

n R∈∆∆=∆ ),...,( 1  such that 

0)
)(

,...,
)(

( 1 >∆∑
∈

i
i

e
n

Ni i

e

a
au

a
au

∂
∂

∂
∂ ,           (6) 

and for every i N∈ , 
either ai

e <1  and 0>∆i , or 0>e
ia  and 0<∆i . 

Then, there will exist n +1  action profiles n
r

ra 0
)( )( =  such that inequalities (4) hold and 

)(ra  is the unique Nash equilibrium action profile (the unique iteratively undominated 
action profile) in ][ )( raG  for every },...,0{ nr ∈ , if ea  is the unique Nash equilibrium 

action profile (the unique iteratively undominated action profile, respectively) in G . 
 
Proof: See the Appendix. 

 

Note that the supposition of Proposition 3 is irrelevant to 0>ε  and 0>M . Hence, 

we can conclude, from Theorem 2 and Proposition 3, that the supposition of Proposition 

3 is sufficient to show that for every 0>ε , every 0>M , every a A* ∈ , and every 
large enough T , u a( )*  is uniquely and virtually implementable in terms of perfect 
equilibrium (in terms of perfect iterative undominance), if u a u ae( ) ( )* >  and ae  is 

the unique Nash equilibrium action profile (the unique iteratively undominated action 
profile, respectively) in G . 

Note that it is sufficient for the supposition of Proposition 3 that for every Ni ∈ , 

Ai = [0, ]1 , 1<e
ia , 0

)( =
∂

∂

i

e
i

a
au

, 

and 
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0
)(

>
∂

∂

i

j

a
au

 for all Aa ∈  and all ij ≠ . 

The following example is useful for capturing the logical essence of Theorem 2. 

 

Example 2: Consider an example of the component game G  with two players 

satisfying that for each 2,1=i , 

Ai = [0, ]1 , 

and 

iji aaau −= 2)(  for all Aa ∈ , 

where ij ≠ . Note that the action profile )0,0(  is strictly dominant in G  and the 

action profile )1,1(  is efficient in G . Let )1,1(* =a  and )0,0(=ea . Fix 0>ε  and 

0>M  arbitrarily, which are both close enough to zero to satisfy that 

1<Mε . 

Let 

)
2

,
2

()0( MMa εε= , )
4

,
4

()1( MMa εε= , and )0,0()2( =a . 

Note that inequalities (4) hold, i.e., 

)
4

,
4

()()
2

,
2

()()1,1()( )1()0(* MMauMMauau εεεε =>=>=  

)0,0()( )2( => au , 

and that )(ra  is strictly dominant in ][ )( raG  for every }2,1,0{∈r . Choose an arbitrary 

positive integer t̂ , which is large enough to satisfy that 

M
t

ε
4ˆ > .                                         (7) 

Choose the number of repetitions T  arbitrarily, which is large enough to satisfy that 

tT ˆ> . 
First, consider period 1ˆ +− tT  and an arbitrary history )ˆ()ˆ( tTHtTh −∈− . Note 

that there exists }2,1,0{∈r  such that ),ˆ()ˆ( rtTHtTh −∈− . The strategy profile *s  

suggests to players to choose action profile )(ra  in every period after period 1ˆ +− tT  

as long as players have continually chosen )(ra  from period t  to this period, while it 

suggests to them to choose action profile ea  otherwise. Since ea  is strictly dominant 

in G  and )(ra  is strictly dominant in ][ )( raG , it follows, from Theorem 1, that only 

the play according to *s  after period 1ˆ +− tT  satisfies the perfect iterative 

undominance property in every subgame after period 1ˆ +− tT . 

Next, consider an arbitrary period tTt ˆ−≤  and an arbitrary history 
)1()1( −∈− tHth . Suppose that players will behave according to the strategy profile *s  

after period 1+t . We show below that in period t  players will choose a strictly 
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dominant action profile, which is the same as the one suggested by *s . 

Suppose that there exists no player who has deviated in previous periods. Then, the 
strategy profile *s  suggests to players to choose the efficient action profile )1,1(  in 

period t . Note, from the definition of the side payment contract *m , that no players 
will be fined, whether or not they choose action profile )1,1(  in period t , which is the 

same as the one suggested by *s . If a player does not choose action 1 and the other 

player chooses (does not choose) action 1  in period t , then players’ choices during the 

last t̂  periods will be changed from the repeated choices of action profile )0(a  to the 

repeated choices of action profile )1(a , which is less preferable than action profile )0(a , 

(from the repeated choices of action profile )1(a  to the repeated choices of action 

profile )2(a , which is less preferable than action profile )1(a , respectively). Moreover, 

if a player does not choose action 1 in period t , then players’ choices from period 1+t  

to period tT ˆ−  will be either unchanged, or changed from the repeated choices of 
action profile )1,1(  to the repeated choices of action profile )0,0( , which is less 

preferable than action profile )1,1( . Precisely, the difference in long-run payoffs for 

each player 2,1=i  between the choice of action 1 and the choice of any action )(tai  

other than action 1 is equal to 
)}0,0()1,1(){ˆ())(),(())(,1( iijiiji uuttTtatautau −−−+−  

)}()({ˆ )1()0( auaut ii −+  if 1)( =ta j , 

and 
))(),(())(,1( tatautau jiiji − )}()({ˆ )2()1( auaut ii −+  if 1)( ≠ta j , 

where ij ≠ . Note from inequality (7) that this value is more than or equal to 

0
4

ˆ
1]

4
,

2
1min[ˆ1 >+−≥−⋅++− tMMMtai

εεε
. 

Hence, the choice of action 1, which is the same as the action suggested by *
is , is 

strictly dominant in period t . 

Finally, suppose that a player has deviated in previous periods. Then, the strategy 
profile *s  suggests to players to choose action profile )0,0(  in period t . Note, from 

the definition of *m , that no players will be fined, whether or not they choose action 
profile )0,0(  in period t , which is the same as the one suggested by *s . Note also, 

from the definition of *s , that players’ choices in period t  never influence their play 

after period 1+t  that is suggested by *s . Hence, one gets from the fact that action 
profile )0,0(  is strictly dominant in G , that the choice of action 0, which is the same 

as the action suggested by *
is , is strictly dominant in period t . 

By applying the above arguments recursively from period tTt ˆ−=  to period 1=t , 

we have concluded, from the definition of perfect iterative undominance, that *s  is the 
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unique perfect iterative undominated strategy profile in ),( *mTΓ , and therefore, the 

efficient payoff vector )1,1()1,1( =u  is uniquely and virtually implementable in terms of 

perfect iterative undominance, provided that the number of repetitions T  is large 

enough. 

 

Remark 1: The supposition that ea  is the unique strict Nash equilibrium action profile 
in G , is necessary to show that *s  is the unique perfect equilibrium in Γ( , )*T m  

provided that Mε  is so close to zero. Suppose that there exists another strict Nash 
equilibrium eaa ≠  in G . Then, for every },...,0{ nr ∈ , and every 0>Mε  

sufficiently close to zero, not only )(ra  but also a  is a Nash equilibrium action 

profile in ][ )( raG . This implies that the strategy profile that always suggests to players to 
choose a  in every period, is a perfect equilibrium in Γ( , )*T m  as well as *s . 

 

Remark 2: Note that we cannot obtain the same result as Theorem 2 when we replace 

the side payment contract *m  with the side payment contract that will fine a player if 

and only if she is the last deviant from *s , whether or not she was the last deviant in the 
period before period 1ˆ +− tT . Suppose that, given a history )ˆ()ˆ( tTHtTh −∈− , 

player 1 is the single last deviant from *s  before period 1ˆ +− tT , and suppose also 

that the other players behave according to *s  after period 1ˆ +− tT . Then, the strategy 

profile *s  suggests to players to continually choose action profile )1(a  after period 

1ˆ +− tT . Since player 1 will be (randomly) fined, whether or not she deviates from )1(a , 

and since )1(a  is not a Nash equilibrium in G , player 1 has an incentive to choose an 
action other than action )1(

1a  in the final period T . This implies that *s  is not a 

perfect equilibrium in a finitely repeated game with this side payment contract. 

 



 23 

5. Other Side Payment Contracts 
 

In the previous sections, we have constructed the side payment contracts such that a 

player will be fined only if she is the last deviant from a target strategy profile. The 

device of stipulating that only the last deviants will be fined plays a crucial role in 

eliminating unwanted equilibria in the subgames with which players are confronted after 

someone has deviated.9 

However, we do not need to use this device when ea  is either the unique Nash 

equilibrium action profile or the unique iteratively undominated action profile in G . 

For example, let a side payment contract ++m  be specified, such that a player will be 

fined if and only if she is the first deviant from +s . We can confirm, in the same way as 

in Theorem 1, that s+  is the unique perfect equilibrium (the unique perfect iteratively 
undominated strategy profile) in ),( ++Γ mT , if ea  is the unique Nash equilibrium 

action profile (the unique iteratively undominated action profile) in G  and *a  is the 

unique Nash equilibrium action profile (the unique iteratively undominated action 

profile, respectively) in ][ *aG . 

In addition, let a side payment contract **m  be specified, such that a player will be 

fined if and only if she is the first deviant from the strategy profile *s  during the last 
t̂  periods. We can confirm, in the same way as in Theorem 2, that s*  is the unique 

perfect equilibrium (the unique perfect iteratively undominated strategy profile) in 
),( **mTΓ , if ea  is the unique Nash equilibrium action profile (the unique iteratively 

undominated action profile) in G  and )(ra  is the unique Nash equilibrium action 

profile (the unique iteratively undominated action profile, respectively) in ][ )( raG  for 
every }1,...,0{ −∈ nr . 

 

                                                 
9 This point was firstly raised by Glazer and Perry (1996) in their study of the implementation 

of social choice functions. 
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6. Conclusion 

 

This paper investigated a finitely repeated game in which side payments among 

players are possible but the complete history of their action choices is hardly verifiable 

to the court. We showed that every payoff vector induced by an action profile that 

Pareto-dominates a Nash equilibrium action profile is uniquely and exactly 

implementable even if the probability of the complete history being verifiable is small 

and the amount of fines is negligible compared with the differences in long-run payoffs. 

Moreover, we showed, with minor restrictions on the component game, that this payoff 

vector is also uniquely and virtually implementable even if this probability is close to 

zero and the amount of fines is negligible compared with the differences not only in 

long-run payoffs but also in instantaneous payoffs. 

We have the following problems to be solved in future research. 

The present paper assumed that monitoring is perfect. In reality, however, players 

may only imperfectly monitor their opponents’ action choices. In such cases, players 

observe random signals that are determined according to probability functions 

conditional on players’ action choices, but these signals may be hardly verifiable to the 

court.10 It is important, as a next step, to investigate finitely repeated games with side 

payments in which players can write a side payment contract which is contingent not on 

the complete history of their action choices but on the complete history of observed 

signals, on the assumption that the complete history of observed signals is not 

unverifiable but hardly verifiable to the court. 

The present paper assumed that the side payment contract has full commitment 

power. In real situations, however, players may multilaterally breach and renegotiate on 

the terms of their explicit agreement in every period. Moreover, many real economic 

relationships are governed by a sequence of short-term contracts.11 It is also important, 

                                                 
10 Several works such as Fudenberg, Levine and Maskin (1990) have considered infinitely 

repeated games with imperfect monitoring and provided the Folk Theorem or the efficiency 

result on the assumption that the signals are publicly observable among players but never 

verified to the court. Recent works such as Kandori and Matsushima (1998) and Matsushima 

(2000) investigated infinitely repeated games in which these signals are only privately observed 

by players, providing also their own respective Folk Theorems. 
11  Several works such as Fudenberg and Tirole (1990) and Hermalin and Katz (1991) 

investigated the renegotiation-proofness on the terms of an explicit agreement in the 

single-period single-agent problem. Fudenberg, Holmstrom and Milgrom (1990) and Rey and 
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as another next step, to investigate finitely repeated games with side payments in which 

players renegotiate not only on the terms of their implicit agreement but also on the 

terms of the explicit agreement, and in which explicit contracts that players agree to 

write are restricted to cover only a fraction of the whole duration of their relationship. 

It is unquestionably important to also extend the present paper to finitely repeated 

games without strict Nash equilibrium action profiles, infinitely repeated games, 

repeated games with incomplete information, and general stochastic games. However, 

such unsolved problems exceed the purpose of this paper. 

 

                                                                                                                                               

Salanie (1990) investigated the case of short-term commitment with renegotiation in the 

multi-period single-agent problem. 
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Appendix 
 

Proof of Theorem 1: The first part of this proof will consider the situation in which ea  

and *a  are the unique Nash equilibrium action profiles in ][ eaG  and in ][ *aG , 
respectively. Fix Tt ,...,1=  arbitrarily. Suppose that +s  satisfies the perfect 

equilibrium property in every subgame after period 1+t , i.e., +s  satisfies inequalities 

(1) for all 1,..., −=′ Ttt , and that for every perfect equilibrium Ss ∈  in ),( +Γ mT , 

s h t s h t( ( )) ( ( ))′ = ′+  for all 1,..., −=′ Ttt  and 

all h t H t( ) ( )′ ∈ ′ .                     (A-1) 

Consider an arbitrary perfect equilibrium Ss ∈  in ),( +Γ mT  and an arbitrary history 

)1()1( −∈− tHth . 

Suppose that a a( ) *τ =  for all 1−≤ tτ . The definition of +m  implies that for 

every a A∈ , and every i N∈ , if a ai i≠ * , then 

)))/),1((,(( *
ii aathshm −+ Mathshmi =−− + )))),1((,(( , 

which, together with the definition of s+  and inequality )()( * eauau > , implies that 

)))/),1((,(()))/),1((,(( **
iiii aathshmaathshv −+− +ε  

)))),1((,(()))),1((,(( athshmathshv ii −−−− +ε  

Mauaau iii ε+−≥ )()/( * .                          (A-2) 

Since *a  is the unique Nash equilibrium action profile in ][ *aG , it follows, from 

inequalities (A-2), that only the play of a*  in period t  followed by the choices 

according to s+  from period 1+t  satisfies the perfect equilibrium property in the 

subgame started from period t , and therefore, it must hold that *))1(( aths =− . Note 

that s+  satisfies inequalities (1) for )1( −th , because players choose a*  in period t  

according to s+ . 

Next, suppose that a a( ) *τ ≠  for some }1,...,1{ −∈ tτ . The definition of m+  

implies that for every a A∈ , and every i N∈ , if a ai i
e≠ , and a aj j

e≠  for some 

ij ≠ , then 

)))/),1((,(( e
ii aathshm −+ Mathshmi =−− + )))),1((,(( , 

which, together with the definition of s+ , implies that 

)))/),1((,(()))/),1((,(( e
ii

e
ii aathshmaathshv −+− +ε  
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)))),1((,(()))),1((,(( athshmathshv ii −−−− +ε  

Mauaau i
e
ii ε+−= )()/( .                         (A-3) 

The definition of m+  again implies that for every a A∈ , and every i N∈ , if a ai i
e≠ , 

and a aj j
e=  for all j i≠ , then 

)))/),1((,(( e
ii aathshm −+ 0)))),1((,(( ≥−− + athshmi , 

which, together with the definition of s+ , implies that 

)))/),1((,(()))/),1((,(( e
ii

e
ii aathshmaathshv −+− +ε  

)))),1((,(()))),1((,(( athshmathshv ii −−−− +ε  

≥ −u a u a ai
e

i
e

i( ) ( / ) .                            (A-4) 

Since ea  is the unique Nash equilibrium action profile in ][ eaG , it follows, from 

equalities (A-3) and inequalities (A-4), that only the play of ea  in period t  followed 

by the choices according to s+  from period 1+t  satisfies the perfect equilibrium 

property in the subgame started from period t  and, therefore, it must hold that 
eaths =− ))1(( . Note that s+  satisfies inequalities (1) for )1( −th , because players 

choose ea  in period t  according to s+ . 

Hence, we have proved that +s  satisfies inequalities (1) for all 1,...,1 −−=′ Ttt  

and all h t H t( ) ( )′ ∈ ′ , and that for every perfect equilibrium Ss ∈  in ),( +Γ mT , 

s h t s h t( ( )) ( ( ))′ = ′+  for all 1,...,1 −−=′ Ttt  and 

all h t H t( ) ( )′ ∈ ′ .                     (A-5) 

Since the above supposition trivially holds for Tt = , it follows, by backward induction, 

that +s  is the unique perfect equilibrium in ),( +Γ mT . 

The latter part of this proof will consider the situation in which ea  and *a  are the 

unique iteratively undominated action profiles in ][ eaG  and in ][ *aG , respectively. Let 
W T S* ( ) ≡ . Fix Tt ,...,1=  arbitrarily. Suppose that +s  satisfies the perfect iterative 

undominance property in every subgame after period 1+t , i.e., )(* tWs ∈+ , and that 

equalities (A-1) hold for every )(* tWs ∈ . We consider an arbitrary history 

)1()1( −∈− tHth  and an arbitrary strategy profile ))1(( −∈ ∞ thWs . 

Suppose that a a( ) *τ =  for all 1−≤ tτ . Since *a  is the unique iteratively 

undominated action profile in ][ *aG , it follows, from inequalities (A-2), that only the 

play of a*  in period t  followed by the choices according to s+  from period 1+t  
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satisfies the perfect iterative undominance property in the subgame started from period 

t  and, therefore, it must hold that *))1(( aths =− . Note ))1(( −∈ ∞+ thWs , because 

players choose a*  in period t  according to s+ . 

Next, suppose that a a( ) *τ ≠  for some }1,...,1{ −∈ tτ . Since ea  is the unique 

iteratively undominated action profile in ][ eaG , it follows, from equalities (A-3) and 

inequalities (A-4), that only the play of ea  in period t  followed by the choices 

according to s+  from period 1+t  satisfies the perfect iterative undominance property 

in the subgame started from period t  and, therefore, it must hold that eaths =− ))1(( . 

Note ))1(( −∈ ∞+ thWs , because players choose ea  in period t  according to s+ . 

Hence, we have proved that )1(* −∈+ tWs , and that equalities (A-5) hold for every 

)1(* −∈ tWs . Since the above supposition trivially holds for Tt = , it follows, by 

backward induction, that s+  is the unique perfect iteratively undominated strategy 

profile in Γ( , )T m+ . 

Q.E.D. 

 

Proof of Theorem 2: The first part of this proof will consider the situation in which 

)(ra  is the unique Nash equilibrium action profile in ][ )( raG  for every },...,0{ nr ∈ . Fix 

r n∈ { ,..., }0  arbitrarily. Consider an arbitrary history ),ˆ()ˆ( rtTHtTh −∈− . Since 
)(ra  and )0(a  are the unique Nash equilibrium action profiles in ][ )( raG  and in ][ )0(aG , 

respectively, it follows, in the same way as in Theorem 1, that only the play according 

to *s  satisfies the perfect equilibrium property in the subgame started from period 

1ˆ +− tT  with )ˆ( tTh − . 

Next, consider an arbitrary period tTt ˆ−≤ . Suppose that s*  satisfies the perfect 

equilibrium property in every subgame after period 1+t , i.e., s*  satisfies inequalities 
(1) for all 1,..., −=′ Ttt  and all h t H t( ) ( )′ ∈ ′ , and that for every perfect equilibrium 

s S∈  in Γ( , )*T m , 

s h t s h t( ( )) ( ( ))*′ = ′  for all 1,..., −=′ Ttt  and 

all h t H t( ) ( )′ ∈ ′ .                      (A-6) 

Consider an arbitrary perfect equilibrium s S∈  in Γ  and an arbitrary history 

)1()1( −∈− tHth . Note from the definition of *m  that for every a A∈ , and every 

i N∈ , 

0)))),1((,((* =− athshmi . 

Suppose that a a( ) *τ =  for all 1−≤ tτ . The definitions of s*  and m*  imply that 

for every a A∈  and every i N∈ , if a ai i≠ * , then 
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)))/),1((,(()))/),1((,(( ***
iiii aathshmaathshv −+− ε  

)))),1((,(()))),1((,(( * athshmathshv ii −−−− ε  

)}()({ˆ)()/( )1),(()),((* ** −−−−≥ aan
i

aan
iiii auautauaau .      (A-7) 

Inequalities (A-7), together with inequalities (5), imply that only the play of a*  in 

period t  followed by the choices according to s*  from period 1+t  satisfies the 

perfect equilibrium property in the subgame from period t . Hence, it must hold that 
*))1(( aths =− . Note that s*  satisfies inequalities (1) for )1( −th , because players 

choose a*  in period t  according to s* . 

Next, suppose that a a( ) *τ ≠  for some }1,...,1{ −∈ tτ . The definitions of s*  and 

m*  imply that for every a A∈ , and every i N∈ , if e
ii aa ≠ , then 

)))/),1((,(()))/),1((,(( * e
ii

e
ii aathshmaathshv −+− ε  

)))),1((,(()))),1((,(( * athshmathshv ii −−−− ε  

)()/( auaau i
e
ii −= .                              (A-8) 

Since a e  is the unique Nash equilibrium action profile in G , it follows, from 

equalities (A-8), that only the play of a e  in period t  followed by the choices 

according to s*  from period 1+t  satisfies the perfect equilibrium property in the 

subgame started from period t . Hence, it must hold that eaths =− ))1(( . Note that s*  

satisfies inequalities (1) for )1( −th , because players choose a e  in period t  

according to s* . 

Hence, we have proved that s*  satisfies inequalities (1) for all 1,...,1 −−=′ Ttt  

and all h t H t( ) ( )′ ∈ ′ , and that for every perfect equilibrium s S∈  in Γ ( , )*T m , 

s h t s h t( ( )) ( ( ))*′ = ′  for all 1,...,1 −−=′ Ttt  and 

all h t H t( ) ( )′ ∈ ′ .                     (A-9) 

Since the above supposition trivially holds for Tt = , it follows, by backward induction, 

that s*  is the unique perfect equilibrium in Γ( , )*T m . 

The latter part of this proof will consider the situation in which )(ra  is the unique 

iteratively undominated action profile in ][ )( raG  for every },...,0{ nr ∈ . Fix 

r n∈ { ,..., }0  arbitrarily. Consider an arbitrary history ),ˆ()ˆ( rtTHtTh −∈− . Since 
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)(ra  and )0(a  are the unique iteratively undominated action profiles in ][ )( raG  and in 
][ )0(aG , respectively, it follows, in the same way as in Theorem 1, that only the play 

according to the strategy profile *s  satisfies the perfect iterative undominance property 

in the subgame started from period 1ˆ +− tT  with )ˆ( tTh − . 

Next, consider an arbitrary period tTt ˆ−≤ . Suppose that s*  satisfies the perfect 

iterative undominance property in every subgame after period 1+t , i.e., )(** tWs ∈ , 

and that equalities (A-8) hold for every )(* tWs ∈ . Consider an arbitrary history 

)1()1( −∈− tHth  and an arbitrary strategy profile ))1(( −∈ ∞ thWs . 

Suppose that a a( ) *τ =  for all 1−≤ tτ . Inequalities (5) and (A-7) imply that only 

the play of a*  in period t  followed by the choices according to s*  from period 

1+t  satisfies the perfect iterative undominance property in the subgame from period t . 

Hence, it must hold that *))1(( aths =− . Note that ))1(( −∈ ∞ thWs , because players 

choose a*  in period t  according to s* . 

Next, suppose that a a( ) *τ ≠  for some }1,...,1{ −∈ tτ . Inequalities (A-8), together 

with the fact that a e  is the unique iteratively undominated action profile in G , imply 

that only the play of a e  in period t  followed by the choices according to s*  from 

period 1+t  satisfies the perfect iterative undominance property in the subgame started 

from period t . Hence, it must hold that eaths =− ))1(( . Note that ))1(( −∈ ∞ thWs , 

because players choose a e  in period t  according to s* . 

Hence, we have proved that )1(** −∈ tWs , and that equalities (A-6) hold for every 

)1(* −∈ tWs . Since the above supposition trivially holds for Tt = , it follows, by 

backward induction, that s*  is the unique perfect iteratively undominated strategy 

profile in Γ( , )*T m . 

Q.E.D. 

 

Proof of Proposition 3: Note from the definition of ∆  that we can choose a positive 

real number 0>η  close enough to zero to satisfy that ∆+ηea  belongs to A . The 

instantaneous payoff vector induced by the action profile ∆+ηea , i.e., )( ∆+ηeau , is 

approximated by 

i
i

e
n

Ni i

e
e

a
au

a
auau ∆+ ∑

∈

)
)(

,...,
)(

()( 1

∂
∂

∂
∂η , 

which is larger than u ae( )  because of inequality (6). Hence, there exists an infinite 

sequence of action profiles ( )am
m=
∞

1  satisfying that lim
m

m ea a
→∞

=  and u a u am m( ) ( )> +1  

for all m ≥1. The continuity of ui  implies that for every large enough m , a m  is the 

unique Nash equilibrium action profile (the unique iteratively undominated action 
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profile) in G am[ ]  if a e  is a strict Nash equilibrium action profile and the unique Nash 
equilibrium action profile (the unique perfect iteratively undominated action profile, 

respectively) in G . Hence, we can choose n
r

ra 0
)( )( =  satisfying inequalities (4) and 

satisfying that for every r n∈ { ,..., }0 , a r( )  is the unique Nash equilibrium action 

profile (the unique iteratively undominated action profile) in G a r[ ]( )

 if a e  is the 
unique Nash equilibrium action profile (the unique iteratively undominated action 

profile, respectively) in G . 

Q.E.D. 
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