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ABSTRACT

Why do growth and net exit rates of establishments decline with size? What determines the size
distribution of establishments? This paper presents a theory of establishment dynamics that si-
multaneously rationalizes the basic facts on economy-wide establishment growth, net exit, and size
distributions. The theory emphasizes the accumulation of industry-speci�c human capital in re-
sponse to industry-speci�c productivity shocks. It predicts that establishment growth and net exit
rates should decline faster with size and that the establishment size distribution should have thin-
ner tails in sectors that use human capital less intensively or physical capital more intensively. In
line with the theory, the data show substantial sectoral heterogeneity in U.S. establishment size
dynamics and distributions, which is well explained by variation in physical capital intensity.
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1. 1. Introduction
Establishment size dynamics are scale dependent : small establishments grow faster

than large establishments conditional on survival, and net exit rates decline with size. Scale

dependence in growth and net exit rates is also systematically re�ected in the size distribution

of establishments. In this paper we propose an explanation for this scale dependence which

relies on the response of production decisions to the accumulation and allocation of industry-

speci�c human capital. Our theory implies that di¤erences in the importance of industry-

speci�c human capital, and therefore also physical capital, across sectors should lead to cross-

sectoral variation in the degree of scale dependence within a sector. We present evidence from

a new data set to document these facts for the U.S. economy. We �nd that, as predicted by

our theory, U.S. sectors with larger physical capital shares exhibit signi�cantly more scale

dependence in establishment size dynamics and distributions.

Our basic approach is simple and starts by noting that all of the above facts are man-

ifestations of mean reversion in the economy; indeed, the fact that, conditional on survival,

small establishments grow faster than large establishments is an explicit statement of mean

reversion. Moreover, mean reversion in factor accumulation is a general result in macroeco-

nomic models. We focus on the accumulation of industry-speci�c human capital, because

this type of capital is, as a result of on-the-job training and learning-by-doing, more closely

tied to production conditions in an industry than is any other factor. In our theory, under

standard conditions, an abundance of human capital leads to low rates of return and slower

accumulation. Conversely, a relatively small stock of human capital leads to high rates of

return and faster accumulation. This process, which is at the heart of the resource allocation

mechanism in the economy, leads to mean reversion in the stock of industry-speci�c human

capital. As long as establishment sizes respond monotonically to �uctuations in factor prices,

which are driven by the stock of human capital, mean reversion in these stocks leads to mean

reversion in establishment sizes. Hence, conditional on survival small establishments grow

faster than large establishments.

The same process generates net exit rates that decline with size. To see this, note

that given the level of employment in an industry, increases in average establishment size

imply that some establishments have exited, while decreases imply that some establishments



entered. This logic is preserved as long as employment in the industry does not increase with

a positive productivity shock by more than average establishment sizes, which will be the

case as long as the elasticity of substitution between goods in consumption is not too large.

If so, since small establishments grow faster than large establishments, the net exit rate is

largest for small establishments and we have scale dependence in net exit rates. We can then

combine the implications of the model for growth and net exit to show that in the long run

the distribution of establishment sizes in a sector converges to an invariant distribution that

displays scale dependence in the sense that it has thinner tails than the Pareto distribution

with coe¢ cient one.

Our emphasis on the accumulation and allocation of speci�c human capital implies

that establishment growth and exit rates should decline faster with size in sectors that use

human capital less intensively. This is intuitive: the less intensively human capital is used,

the faster diminishing returns to scale set in and the faster the rate of mean reversion. In

turn, this implies that the tails of the size distribution of establishments should be thinner

the smaller the human capital share. Hence, the degree of mean reversion decreases with

human capital intensity, just as in the neoclassical growth model the speed of convergence

decreases with the physical capital share. We show that the process of entry and exit of

establishments ensures that industry production will display constant returns to scale, so

physical capital intensities are negatively related to human capital intensities. This implies

that the intensity of physical capital in production is positively related to the degree of mean

reversion in human capital and, hence, to the degree of mean reversion in establishment sizes.

We assess the actual relationship between capital shares and establishment scale de-

pendence in the U.S. using a new data set commissioned from the U.S. Census Bureau on

establishment growth and net exit rates, as well as establishment size distributions, for very

�ne size categories and 2 digit SIC (or 3 digit NAICS) sectors. Using these data, we �rst test

the implication for growth rates and show that, as predicted by the theory, scale dependence

in establishment growth rates is positively and signi�cantly related to physical capital shares.

We then show that this relationship is re�ected in net exit rates and in signi�cant di¤erences

in the size distribution of establishments across sectors. The di¤erences are economically

large. For example, a doubling of the size of an establishment results in a decline in growth
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rates of more than half a percentage point per year in the physical capital-intensive manufac-

turing sector, but has little e¤ect in the labor-intensive educational services sector. Likewise,

in order to make the size distribution of establishments in the manufacturing sector conform

to the size distribution of establishments in the educational services sector, we would need

to move roughly 3 million employees (about 20 percent of total manufacturing employment)

out of medium-sized manufacturing establishments (between 50 and 1000 employees), and

reallocate 2 million of them to very large establishments and 1 million to very small estab-

lishments. We believe that this is the �rst study to use such detailed establishment size data

for the entire non-farm private sector. The broad, �ne coverage allows us to uncover the novel

empirical regularities predicted by our theory.1

Most recent theoretical attempts to explain the size dynamics and distribution of

establishments generate scale dependence via selection mechanisms: unsuccessful establish-

ments decline and exit. In Hopenhayn (1992), Ericson and Pakes (1995), and Luttmer (2004),

this selection occurs as a result of sequences of bad productivity shocks, while in Jovanovic

(1982) it occurs as establishments learn about their �xed productivity, and in Klette and

Kortum (2004) as establishments adjust product lines in response to their own and com-

petitors�investments in research and development. In contrast, while acknowledging that a

selection mechanism is important for small establishments, we argue that it is less relevant

in explaining the scale dependence observed for medium-sized and large establishments, and

we abstract from it in our theory.

Another mechanism that generates scale dependence in establishment dynamics is the

presence of ine¢ ciencies in �nancial markets, as in Cooley and Quadrini (2001), Cabral and

Mata (2003), Albuquerque and Hopenhayn (2002), and Clementi and Hopenhayn (2006).

Other models, for example Lucas (1978) and Garicano and Rossi-Hansberg (2004), produce

a size distribution for establishments that inherits the properties of the distribution of man-

1Relatively little work has examined cross-industry di¤erences in establishment sizes. In terms of
�rm/plant growth rates, Audretsch et. al. (2004) �nd that Gibrat�s law is a better approximation for
the Dutch services sector than for the manufacturing sector. In terms of entry and exit, Geroski (1983)
�nds that gross entry and exit rates of �rms are positively correlated across industries, while Geroski and
Schwalbach (1991) �nd that turnover rankings are common across countries. Orr (1974), Gorecki (1976),
Hause and Du Rietz (1984), and MacDonald (1986) all �nd that �rm/plant exit rates are negatively related
to measures of physical capital intensity by industry.
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agerial ability in the population. In contrast, our approach endogenously produces the size

dynamics and distribution of establishments as the result of the e¢ cient accumulation and

allocation of factors of production.

Our theory is not the �rst to successfully produce scale dependence in establishment

growth rates, net exit rates, and the size distribution observed for all establishments in the

U.S. economy. However, many of the other theories have very di¤erent implications for welfare

and government policy. Consequently, we need to �nd new dimensions of the data which we

can use to discriminate among these theories. Here we propose such a dimension: the variation

in scale dependence across sectors. We derive the empirical predictions of our theory and

show that, consistent with the theory, scale dependence in growth rates, net exit rates and

the size distribution increases with physical capital shares. None of the other theories has

developed this prediction. Paraphrasing Jovanovic (1982), many of the mechanisms in the

literature undoubtedly contribute toward an explanation of establishment dynamics. This

paper shows, we believe, that the accumulation of industry-speci�c human capital matters

too.

The rest of this paper is structured as follows. Section 2 describes our theory and de-

rives its key empirical predictions. Section 3 describes our data and shows that establishment

growth and net exit rates, as well as the establishment size distribution, vary with physical

capital shares in precisely the way predicted by our theory. Section 4 concludes. A number of

extensions, designed to show the robustness of our mechanism and its predictions to changes

in the institutional environment, are presented in Appendix A, along with a discussion of the

link between our theory and the empirical work on speci�c human capital by Kambourov and

Manovskii (2005). Appendix B contains proofs of the propositions.

2. 2. The Model
We present a stochastic dynamic general equilibrium model in which establishments

are perfectly competitive. Labor is mobile across industries, while both physical and human

capital are speci�c to each industry. At an establishment, �xed costs plus increasing marginal

costs of production imply a U-shaped average cost curve, while the features of free entry and

exit ensures that all establishments operate at the bottom of their average cost curves. Since
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our focus is on the accumulation and allocation of factors of production, the demand side

of the model is kept as simple as possible by assuming logarithmic preferences. Combined

with Cobb-Douglas production functions and log-linear depreciation, this ensures that we can

solve the entire model in closed form.

A. 2.1 Households

The economy is populated by a unit measure of identical small households. At the

beginning of time, each household has N0 members, and over time the number of members

of the household Nt grows exogenously at rate gN . Households do not value leisure and order

their preferences over state-contingent consumption streams fCtg of the single �nal good

according to

(1� �)E0

" 1X
t=0

�tNt ln

�
Ct
Nt

�#
;(1)

where � is the discount factor of the household and E0 an expectation operator conditioned

on information available to the household at the beginning of time. This function re�ects the

fact that at any point in time, each of the Nt members of the household consumes an equal

share of the household�s consumption bundle and that the household as a whole sums the

individual valuations of all of its members.

The household produces the �nal good by combining quantities of J intermediate

goods fQtjg according to the constant returns to scale production function

Ct +

JX
j=1

Xtj = B

JY
j=1

(Qtj)
�j :(2)

The �nal good can be used for consumption as well as for investment in physical capital in each

of the J intermediate-good industriesXtj:We distinguish these intermediates by what we refer

to as a sector and an industry. In particular, we assume that the economy has S sectors and

that each sector has Js industries, where s = 1; :::; S: Each industry produces a single distinct

good, so that the number of goods being produced in this economy is J = �Ss=1Js. Sectors

di¤er according to the methods by which output is produced and factors are accumulated;

within a sector, the parameters governing production and accumulation of factors for each

industry are identical. Each industry within a sector is assumed to have the same share
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in production of the �nal good, so that �j = �i for all i; j in sector s: Importantly, each

industry within a sector receives its own productivity shock and accumulates its own stocks

of human and physical capital. This is useful below: because each industry within a sector

evolves separately, according to a process governed by the same parameters, the invariant

distribution of establishment sizes within each sector can be characterized. In thinking about

the data, we will de�ne our sectors to be roughly comparable to the list of 3 digit NAICS

classi�cations, while our industries will map into NAICS industries at a much �ner level of

disaggregation.

In each time period, each member of the household is endowed with one unit of time

which the household can allocate to work in any one of the J industries, so that the amount

of time worked in industry j in period t, Ntj is constrained by

JX
j=1

Ntj � Nt:(3)

Households also rent out their stocks of each of the J industry-speci�c physical and human

capital stocks, denoted Ktj and Htj; respectively. Physical capital accumulates according to

the log-linear form

Kt+1j = K
�j
tj X

1��j
tj :(4)

This log-linear form for physical capital accumulation has grown increasingly popular as a

device for modelling adjustment of physical capital while still admitting closed form solutions.

Here �j captures the importance of past physical capital stocks to the amount of capital next

period: if �j is one, capital does not evolve and is a �xed factor; if �j is zero, physical capital

depreciates fully each period.

Human capital is also assumed to accumulate according to a log-linear function:

Ht+1j = At+1jH
!j
tj I

1�!j
tj :(5)

Here, At+1j is an industry-speci�c productivity shock that is assumed to be independent and

identically distributed (i.i.d) with compact support
�
Aj; Aj

�
and is designed to capture the

random accumulation of knowledge within an industry. Itj denotes investment in human cap-

ital accumulation. This industry-speci�c productivity shock is the only source of randomness
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in our model, and follows processes that are common across sectors.2 We assume that Itj is

denominated in terms of the output of the particular industry, in order to capture the idea

that industry-speci�c learning requires some industry-speci�c inputs. The resource constraint

for output of industry j; Ytj; is therefore Qtj + Itj = Ytj:

In our framework there are no externalities: Human capital investments are paid by

households, and they rent the new human capital for use in production. In Appendix A,

we will extend the model to allow for learning-by-doing externalities and show that this

extension has similar properties. Moreover, with learning-by-doing externalities, households

do not appropriate the rewards to industry-speci�c learning, which is consistent with the

empirical evidence on industry-speci�c human capital, as seen, for example, in the work

of Kambourov and Manovskii (2005). The assumption that human capital accumulation

responds to industry-speci�c production levels is essential for our results because it is the

primary source of industry-speci�c mean reversion.

Finally, as discussed above, we assume that the accumulation parameters are identical

across all industries within a sector; that is, !j = !i and �j = �i for all i; j in sector s: The

household begins with initial stocks of these speci�c factors, denoted K0j and H0j:

B. 2.2 Establishments

Production within each industry takes place in production units that we call estab-

lishments. For simplicity, we initially abstract from establishment-speci�c heterogeneity and

assume that each establishment in industry j in period t has access to the same production

technology (We will relax this assumption in Appendix A.) To produce in any period, an es-

tablishment must pay a �xed cost Fj that period. Once that cost has been paid, the establish-

ment hires industry-j-speci�c physical capital ktj; in combination with an industry-j-speci�c

labor input that is, in turn, produced by combining raw labor ntj with industry-j-speci�c

human capital, htj; and produces according to

ytj =

�
k
�j
tj

�
h
�j
tj n

1��j
tj

�1��j�
j
:(6)

2We could have added industry-speci�c shocks to total factor productivity (TFP), instead of shocks to
the human-capital accumulation equation. This would not change any of our substantive results, but would
come at the cost of some substantially more complicated algebra.
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Here 
j < 1 captures the extent of decreasing returns to production which, in combination

with the �xed cost, ensures that average costs are U-shaped and pins down the size of the

establishment. The parameter �j governs the share of physical capital in value added, while

�j captures the share of human capital in the labor aggregate. Production parameters are

assumed to be common across all industries within a sector: �j = �i, �j = �i, and 
j = 
i

for all i; j in sector s:

None of our results depend on the denomination of the �xed cost, so to begin we

assume it is denominated in the units of the establishment�s output. This has the expositional

advantage of pinning down the scale of production of the establishment (measured in terms of

output), so that we can easily analyze the e¤ects of changes in factor prices on the size of the

establishment (measured in terms of the number of employees); we return to this assumption

in Appendix A.

C. 2.3 Capital Accumulation and Labor Allocation

To complete the characterization of the evolution of establishment sizes in this econ-

omy, all we need to do is characterize the evolution of productivity and factors in equilib-

rium. If we allow for a noninteger number of establishments, �tj; this economy satis�es all

of the assumptions of the welfare theorems. Because we are primarily interested in alloca-

tions, not prices, we proceed by solving the social planning problem for this economy: Choose

state-contingent sequences
�
Ctj; Xtj; Itj; Ntj; �tj; Htj; Ktj

	1;J
t=0;j=1

so as to maximize household

welfare

(1� �)E0

" 1X
t=0

�tNt ln

�
Ct
Nt

�#
(7)

subject to, for all periods and states, the resource constraint on the �nal good

Ct +
JX
j=1

Xtj = B
JY
j=1

(Ytj � Itj)
�j ;(8)

and the resource constraint on each intermediate good

Ytj =

�
K
�j
tj

�
H
�j
tj N

1��j
tj

�1��j�
j
�
1�
j
tj � Fj�tj;(9)

for all industries; the accumulation equations for each industry-speci�c factor given by (4)

and (5), and the constraint on labor allocation (3).
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Inspection of this problem reveals that the choice of the number of establishments

is entirely static: �tj only appears in the resource constraint for industry j in period t,

(9). This implies that we can solve for the optimal number of establishments before solving

for the dynamics of the economy. The �rst-order condition with respect to �tj is given

by Fj =
�
1� 
j

�
ytj, which leads to an equilibrium establishment size (and a number of

establishments, �tj) that depends on the amount of factors in the industry according to

ntj =
Ntj
�tj

=

�
Fj

1� 
j

� 1

j

�
Ntj
Ktj

��j �Ntj
Htj

��j(1��j)
:(10)

This equation shows that, if the stock of speci�c factors is large relative to the amount

of labor employed in the industry (which corresponds to a time of relatively cheap speci�c

factor prices), then establishment size measured in terms of the number of employees will be

small as establishments substitute towards the cheaper factors. Similarly, mean reversion in

the stock of relative speci�c factor stocks will drive mean reversion in establishment sizes. Im-

portantly, the qualitative nature of the relationship between factor stocks and establishment

size can be reversed without changing the result that mean reversion in these stocks produces

mean reversion in establishments size. We show below that the incentive to accumulate spe-

ci�c factors produces precisely the required mean reversion in the general equilibrium of our

model.

Substituting for the optimal number of establishments �tj in the resource constraint

gives

Qtj + Itj � 
j

�
1� 
j
Fj

� 1�
j

j

K
�j
tj

�
H
�j
tj N

1��j
tj

�1��j
:

This is our �rst main result: by varying the number of establishments, each of which produces

at the bottom of its average cost curve, we see that the industry behaves as if it has constant

returns to scale. Hence, at the industry level (but not at the establishment level) increases

in physical capital shares are related to decreases in human capital shares. The result is an

entirely standard log-linear, multi-sector growth model with a new constant returns to scale

production function.3 As a result of the log-linear assumptions, we get the well-known result

3In a related paper Jones (2005) shows how a Pareto size distribution of ideas leads to an aggregate
Cobb-Douglas production function.
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(as in, for example, Rossi-Hansberg and Wright (2006)) that income and substitution e¤ects

o¤set to ensure that a �xed proportion of the labor supply is allocated to each industry, a �xed

proportion of the �nal good is consumed, �xed proportions are invested in each industry, and

a �xed proportion of the output of each intermediate input is used for investment in human

capital speci�c to that industry.

D. 2.4 Establishment Growth, Net Exit, and the Size Distribution

We can now characterize the evolution of establishment sizes in the economy. Taking

natural logarithms and di¤erences of the expression for establishment size (10), we �nd that

the growth rate of an establishment in industry j that survives from one period to the next

is given by

lnnt+1j � lnntj =
�
�j + �j (1� �j)

�
gN � �j [lnKt+1j � lnKtj]

��j (1� �j) [lnHt+1j � lnHtj] :

Substituting for the evolution of human capital, we get that

lnnt+1j � lnntj =
�
�j + �j (1� �j)

�
gN � �j [lnKt+1j � lnKtj]

��j (1� �j) [lnAt+1j � (1� !j) lnHtj + (1� !j) Itj] :

This equation reveals that the growth rate of a surviving establishment in industry j

is driven by three factors. One is the deterministic growth in the aggregate labor supply gN

which, other things equal, encourages establishments to expand in size over time. We will

often assume either that population growth is zero or that establishment growth rates are

being measured relative to trend, in order to abstract from this term. A second factor is the

growth in industry-speci�c physical capital. However, since physical capital investment in

each industry is a constant proportion of the aggregate production of the �nal good, this is

also determined by aggregate forces. Over time, if the number of industries is large, so that

industry-speci�c randomness washes out in the aggregate, the aggregate economy converges

to a steady state, and this term will be a constant. In what follows, we assume this is the

case in order to focus on industry-speci�c variation; in general, the results that follow can be
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thought of as being conditioned on the state of the aggregate economy. Finally, we have the

contribution of industry-speci�c variability, which works through the shock to human capital

accumulation, and the level of industry output, which a¤ects human capital accumulation

through Itj: if industry output is high, then human capital accumulation proceeds, on average,

at a faster pace.

Before turning to a discussion of scale dependence in growth rates, we examine the

conditions under which we get scale independence; in other words, the conditions under which

we get Gibrat�s law. Suppose we eliminate human capital as a factor of production by either

reducing the importance of labor as a whole ((1� �j) ! 0) or reducing the importance of

human capital in producing labor services (�j ! 0). Without human capital, establishments

grow at a deterministic rate independent of scale. This is because the only source of industry-

speci�c randomness comes from shocks to the accumulation of human capital.4 Alternatively,

suppose that human capital is accumulated exogenously, or that !j = 1: this ensures that

output in an industry has no e¤ect on the pace of its human capital accumulation.5 With

the aggregate economy in steady state, the growth rate of establishments now becomes

lnnt+1j � lnntj =
�
�j + �j (1� �j)

�
gN � �j (1� �j) lnAt+1j;

which is a constant plus an i.i.d. random variable: the growth rate of the establishment is

independent of the size of the establishment.

To see how the growth rates of surviving establishments depend on establishment size

in general, assume as before that population growth is zero and the aggregate economy is in

steady state, so that physical capital is constant in all industries. Then using equation (10)

we can write the growth rate of the establishment, after substituting for Itj, as

lnnt+1j � lnntj = nCj � (1� !j)
�
1� �j + �j�j

�
lnntj � �j (1� �j) lnAt+1j;(11)

4One way to retain randomness in production while still eliminating human capital as a factor is to scale up
the shock to human capital by the inverse of the elasticity of human capital in production �j (1� �j). In this
case, the growth rate of the �rm also satis�es Gibrat�s law and becomes lnnt+1j � lnntj = �jgN � ln Ât+1j ;
where Ât+1j is the scaled shock process.

5If !j = 1; human capital in industry j, and consequently also output, is di¤erence stationary. If industry
j is of positive measure, the aggregate physical capital stock will not in general converge to a steady state
under this assumption. As long as 1 � !j is positive, no matter how small, the existence of a steady state
is preserved. When we refer to the case of !j = 1 below, we shall think of 1 � !j as arbitrarily small but
positive.
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where nCj is a constant term that depends on the physical capital stock. In steady state, the

theory implies that the natural logarithm of establishment size is an AR(1) process with an

autoregressive coe¢ cient given by 1� (1� !j)
�
1� �j + �j�j

�
� 1:

We summarize the results of this discussion in the following proposition. There we

emphasize the e¤ect of changes in physical capital intensity, an observable parameter which

we will focus on in our empirical analysis.

Proposition 1. Growth rates of surviving establishments are weakly decreasing in size. The

larger is the physical capital share, the faster growth rates decline with size. The growth rate of

surviving establishments is independent of size only if either human capital is not a factor of

production (in the limit when �j or (1� �j) equal zero); or human capital evolves exogenously

(in the limit, as !j approaches one).

The log-linearity of the model was shown above to imply that the employment alloca-

tion across industries is constant over time. Combined with the result of Proposition 1, this

has strong implications for net exit rates: net exit is positive whenever establishment sizes

grow on average and negative when they decline. Moreover, Proposition 1 implies that the

larger the physical capital share, the faster the net exit rate decreases with establishment

size. In a more general model in which the labor allocation varies across industries in equilib-

rium, these results continue to hold as long as the elasticity of substitution in consumption

of each good is not too large. This is su¢ cient to guarantee that the labor allocation to the

industry does not change by as much as establishment sizes. We formalize these arguments

as a corollary.

Corollary 2. Establishment net exit rates are weakly decreasing in size. The larger is the

physical capital share, the faster net exit rates decline with size. The net exit rate of estab-

lishments is independent of size only if either human capital is not a factor of production (in

the limit when �j or (1� �j) equal zero), or human capital evolves exogenously (in the limit,

as !j approaches one).
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These implications for the relationship among physical capital shares, surviving estab-

lishment growth rates, and net exit rates can be tested directly using longitudinal data. In

combination with the assumption that the distribution of establishment sizes has converged

to its long-run distribution, these implications can also be tested with data on the size dis-

tribution of establishments. The next four propositions characterize the implications of our

model for the invariant distribution of establishment sizes for di¤erent assumptions about pa-

rameter values, the distribution of human capital shocks, and the presence of a lower bound

on establishment sizes.

To begin, we examine the conditions under which our model is capable of reproducing

the commonly used benchmark of Zipf�s law: the size distribution is Pareto with coe¢ cient

one. A number of authors, including most notably Gabaix (1999), have shown that if Gibrat�s

law characterizes the growth rate of a �nite number of establishments, and one imposes a

lower bound on establishment sizes that converges to zero, then the invariant distribution

converges to Zipf�s law. In the present framework, the entry and exit of establishments

means that these results do not directly apply. However, in a related paper, Rossi-Hansberg

and Wright (2006) show that scale-independent growth for a �nite number of industries,

combined with this form of entry and exit and a lower bound for establishment sizes that

converges to zero, is su¢ cient to generate an invariant distribution that satis�es Zipf�s law.

An analogous result holds for the current framework, for the same limiting parameter values

that produced Gibrat�s Law for establishment growth above.

Proposition 3. (Zipf�s Law) If either human capital is not a factor of production (in the

limit when �j or (1� �j) equal zero), or human capital evolves exogenously (in the limit,

as !j approaches one), and establishment sizes are bounded below by `; the invariant size

distribution of establishments converges to a Pareto distribution with shape coe¢ cient one as

` converges to zero.

Away from these limiting parameter values, so that there is mean reversion in condi-

tional establishment growth rates, we characterize the properties of the invariant distribution

for two cases. First, we examine a case in which productivity shocks are unbounded and
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are drawn from a lognormal distribution. In this special case, the invariant distribution of

establishment sizes can be derived in closed form, and we can study the way its variance

changes with physical capital shares. Second, we characterize the invariant distribution of

establishment sizes for arbitrary productivity shock processes with bounded support. Here

we study how the amount of dispersion in the establishment size distribution � measured

by the amount of mass in the tails of the distribution � varies with the capital share. This

alternate measure of dispersion has the advantage that it is less sensitive to the sizes of the

very largest establishments, which is especially important for combinations of parameters

that are close to the limiting cases studied in Proposition 3, where the long-run variance of

establishment sizes diverges.

To begin with the �rst case, assume that the logarithm of the productivity shock Atj is

distributed normally with meanMAj and variance S
2
Aj
: Given the AR(1) form of the equation

governing the evolution of surviving establishments, (11), it is straightforward to see that the

invariant distribution of representative establishment sizes in a sector, in logarithms, will be

normal with mean Mj = �j (1� �j)MAj and variance

var (lnnj) � S2j =

�
�j (1� �j)

�2
S2Aj

1�
�
1� (1� !j)

�
1� �j (1� �j)

��2 :(12)

To obtain the size distribution of establishments and its variance, we must also account for

the process of entry and exit or, more speci�cally, adjust for the fact that an industry in

this sector has precisely �j = Nj=nj establishments of size nj: The following proposition

establishes that the actual size distribution of establishments (as opposed to the distribution

of representative establishments sizes) also turns out to be lognormal.

Proposition 4. (Lognormality) If the productivity shock Atj is distributed lognormally with

meanMAj and variance S
2
Aj
; then the long-run size distribution of establishments is lognormal

with mean and variance, respectively, given by

eMj�
S2j
2 and e2Mj+S

2
j

�
eS

2
j � 1

�
:

Furthermore, the long run variance of the size distribution of establishments is decreasing in

�j:
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The assumption of lognormal shocks is arguably quite strong. Also, in practice, the

empirical variance of establishments in a sector is quite sensitive to the measured size of the

largest establishments and, hence, to measurement error in their sizes. This should not be

surprising given that, by Proposition 3, for sectors with small physical capital shares the size

distribution of establishments can be close to a Pareto distribution with shape coe¢ cient one,

for which the variance diverges. This suggests we should look at other measures of dispersion

in the size distribution.

The following series of propositions characterizes the invariant distribution of establish-

ment sizes for the class of probability distributions for A with compact support and presents

a di¤erent measure of dispersion in the size distribution. In particular, the assumption that

log productivity levels lie in the compact set
�
lnA; lnA

�
for some A suitably small and A

suitably large and that establishment sizes are measured relative to trend (or equivalently

that population growth is zero) is su¢ cient to guarantee that establishment sizes lie in this

compact set:

lnntj 2 LN �
�j (1� �j)

(1� !j)
�
1� �j (1� �j)

� �� lnA;� lnA� :(13)

Under this assumption, we get the following proposition:

Proposition 5. (Existence and Uniqueness) If log productivity levels are bounded, then for

any �j; �j; !j 2 (0; 1), there exists a unique invariant distribution of establishment sizes in

sector j.

We also want to establish how the size distribution of establishments in a sector varies

with the physical capital share of a sector. Clearly, for any �j; �j; !j 2 (0; 1) ; the invariant

distribution of establishment sizes has compact support and hence necessarily has thinner

tails than the Pareto distribution which has an unbounded support. Next we de�ne an

ordering over distributions with a common compact support in terms of the thinness of their

tails, and show that sectors with larger physical capital shares have thinner tails according

to this ordering. We make these notions precise in the following de�nition and proposition:
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De�nition 1. Let � and  be probability measures on
�
b; b
�
: The probability measure �

has thinner tails than  if there exist x and x 2
�
b; b
�
such that for all b � x � x;

� ([b; x]) �  ([b; x]) ; for all x � x � x; � ([x; x]) �  ([x; x]); and for all x � x � b;

� ([x; x]) �  ([x; x]) :

All other things equal, it is easy to see from equation (13) that an increase in the capital

share produces a distribution with thinner tails as the support of the distribution shrinks.

We can also prove a stronger result if we standardize the support of the size distribution

produced by our model. This is also necessary to contrast the implications of our model with

the data in which the size categories are the same for all industries. Speci�cally, if we scale

the productivity process Atj by

(1� !j)
�
1� �j (1� �j)

�
�j (1� �j)

;

then the support of the establishment size distribution is unchanged across sectors and is

equal to
�
� lnA;� lnA

�
. Under this scaling, we prove the following proposition:

Proposition 6. (Thinner Tails) For any �j; �j; !j 2 (0; 1) ; the invariant distribution of

establishment sizes has thinner tails than the Pareto distribution with coe¢ cient 1. Other

things equal, if �j > �k; then the invariant distribution of establishments in sector j has

thinner tails than the one in sector k:

So far we have established that the process of accumulating industry-speci�c human

capital alone is su¢ cient to generate many properties of establishment size dynamics and

distributions. In Appendix A, we demonstrate that these implications are also robust to

relaxing a number of the modelling assumptions used above. We view the robustness of these

results as a strength of our approach, which is particularly important given the robustness

of the facts about establishment size dynamics. Another strength of our approach is that,

since our theory uses the accumulation of industry-speci�c human capital to explain scale

dependence, it also has new testable implications for the way in which the degree of scale

dependence varies with the physical capital intensity of an industry. In the next section we

examine these predictions using U.S. data.
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3. 3. Evidence on Scale Dependence
Our model can reproduce the fact that establishment growth and net exit rates decline

with establishment size and that the size distribution of establishments has thinner tails than

the Pareto distribution with shape coe¢ cient one. More importantly, our model also has

strong predictions for the way in which scale dependence varies across sectors. In our theory,

the degree of reversion to the mean in human capital stocks, and therefore in establishment

sizes, increases with the degree of diminishing returns in human capital. As our model

endogenously produces constant returns to scale at the industry level, large capital shares

imply small human capital shares, and are evidence of a greater degree of diminishing returns

in human capital. Hence, our model implies that if we look at sectors with large capital shares

we should observe a greater degree of scale dependence in growth rates and in net exit rates,

and a size distribution of establishments with thinner tails. In this section, we show that this

prediction is supported by results from a new data set on establishment dynamics and size

distributions for the private non-farm U.S. economy. This data set is novel in that it provides

data for a wider range of sectors and industries, and at a �ner level of disaggregation, than

previously available. We thus begin by �rst verifying these facts for the entire U.S. economy.

We then turn to an examination of the sectoral predictions of our model.

A. 3.1 Data Sources and Economy-Wide Scale Dependence

We investigate scale dependence and its variation across sectors using data on growth

rates, exit and entry rates (and so net exit rates), and the distribution of establishment sizes.

We use two data sets constructed especially for this project by the U.S. Census Bureau.

For our purposes, these new data sets have several advantages over the publicly available

data sources. One advantage is that they provide the number of establishments per size

category for the �nest size categories that the U.S. Census will release (given its con�dentiality

restrictions). Due to our emphasis on the tails of the size distribution, this level of detail

is crucial, as previous analyses of the size distribution of establishments have used data for

much coarser size categories. Second, these data sets include all sectors in the private nonfarm

U.S. economy, including both manufacturing and services. This is important for our study

because we want to understand the e¤ect of sectoral di¤erences in physical capital shares on

17



the size distribution of establishments, and the variation in physical capital shares is much

larger across services and manufacturing sectors than within them. Third, the data sets refer

to establishment sizes, and not enterprise sizes, which as we have argued, is a better �t for

our theory.

3.1.1 Cross-Section Data and the Size Distribution

The �rst data set is drawn from the Statistics of U.S. Businesses (SUSB) program,

and contains data on establishment size distributions by sector at the two-digit SIC level for

1990 and three-digit NAICS level for 2000. The data are constructed from several sources,

including the annual County Business Patterns (CBP) data �les. Figure 1 illustrates the scale

dependence in the size distribution of establishments by comparing the distribution of estab-

lishment sizes (employment at operations at a single location) and enterprises (employment

at operations under common ownership or control) for the U.S. economy in 2000 to a com-

monly used benchmark: a Pareto distribution with shape coe¢ cient one (as in, for example,

Axtell (2001)). For the Pareto distribution the logarithm of the share of production units

greater than a particular employment size varies linearly with the logarithm of employment,

at a negative rate determined by its shape coe¢ cient. Consequently, we plot the logarithm

of the share of production units greater than a particular employment size against size for

the actual size distributions.

The �gure shows that the enterprise and establishment size distributions are similar,

re�ecting the fact that only the very largest enterprises possess more than a single establish-

ment. However, in the �gure both look concave re�ecting the fact that they have thinner

tails than the Pareto benchmark. As the Pareto distribution is scale independent, in the

sense that the distribution is invariant to truncation of the left tail, this is evidence of scale

dependence in the size distributions of both establishments and enterprises. It is worth noting

that the size distribution of enterprises is much closer to the Pareto, especially if we focus

attention on enterprises with between 50 and 10000 employees. The di¤erences between the

size distributions for establishments and enterprises may shed light on the forces that deter-

mine the boundaries of the �rm. However, our theory focuses on the technology of a single

production unit and does not address questions of ownership or control. Consequently, this
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topic, although fascinating, is beyond the scope of this study and hereafter we focus solely

on establishment data.

3.1.2 Longitudinal Data, Growth, and Net Exit

To examine establishment size dynamics, we use a second new data set drawn from the

U.S. Census Bureau�s Business Information Tracking Series (BITS), which includes data on

growth rates of establishments between 1990 and 2000 and deaths and births of establishments

by size category for 1995�96. The unique aspect of this longitudinal data set is that it tracks

the size of establishments for several years and, for exiting/entering establishments, for three

years before/after they exit/enter.

With these data, we examine the well-known stylized fact that small establishments

grow faster than large establishments, when attention is restricted to those establishments

that remain in operation.6 This is illustrated in Figure 2, which plots growth rates by

establishment employment for the U.S. over both one and ten-year intervals. This �gure

shows that the di¤erence in growth rates between small and large establishments can be as

much as 20 percentage points within a year, and that the accumulated e¤ect of this pattern

over a decade leads to di¤erences of more than 100 percentage points between small and

large establishments. Moreover, this scale dependence in growth rates is not limited to the

smallest establishments and is signi�cant throughout the size distribution. Note that Figure

2 presents data on establishments that survived the relevant period: hence, selection may

be a relevant force explaining the exhibited scale dependence (We will address this in detail

below.)

Figures 1 and 2 show a signi�cant degree of scale dependence in the size distribution

and growth rates of establishments in the U.S. economy. Below, we show that this scale

dependence also manifests itself in net exit rates. However, this scale dependence has been

documented using data aggregated by size category. Our theory predicts that we should also

observe it for average industry (or representative) establishment sizes within a sector. As we

6This fact was most forcefully demonstrated by Mans�eld (1962) in his study of �rms in the steel, petro-
leum, tire, and automobile industries. More recent work by Evans (1987a,b) and Hall (1987)using data on
�rms, and by Dunne, Roberts, and Samuelson (1989a,b) using data on manufacturing plants, has con�rmed
this �nding. See also the surveys by Scherer (1980), Geroski (1995), Sutton (1997), and Caves (1998), which
document the robustness of these results across time, industries, and countries.
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have argued, our notion of an industry is very narrow, since it includes only establishments

that produce the same goods and use exactly the same technology and physical and human

capital. We do not have data disaggregated at this level. Hence, hereafter we interpret each

establishment in our data set as a representative establishment in a narrowly de�ned industry

which has the number of establishments per industry given by our theory.7

3.1.3 Selection, Survival, and Age E¤ects

The theory outlined in Section 2 makes speci�c predictions for the growth rate of es-

tablishments, conditional on their survival. It also makes predictions about the behavior of

the net exit rate of establishments and about the size distribution of establishments. Conse-

quently, in the empirical analysis below, we focus, separately, on conditional growth rates, net

exit rates, and size distributions. The focus on conditional growth rates contrasts with the

empirical literature testing Gibrat�s law, which has emphasized establishment growth rates

not conditioned on survival and, in particular, the role of exit in reducing the unconditional

growth rate of small establishments. We do not take that approach here for three reasons.

One is that our theory makes speci�c predictions both for growth rates conditional on survival

and for net exit rates, so we examine both directly. Also, the implications of all theories are

sensitive to the precise way in which the growth rate of exiting establishments is treated, and

whether or not entering establishments are also included. Moreover, there is no clear consen-

sus as to the appropriate way to include entry; note the alternative empirical methodologies

of Dunne, Roberts and Samuelson (1989 a,b) and Davis and Haltiwanger (1999). The theory

of our work here continues to predict scale dependence under either of these methodologies.

However, the fact that the same mechanism causes the scale dependence in conditional growth

rates and net exit rates means that there exist yet further treatments of entry and exit that

result in unconditional growth rates that display no scale dependence. This leads to the third

reason for our conditional approach: by focusing on these facts separately, we can directly

examine whether or not the degree of scale dependence in both conditional growth rates and

net exit rates varies across sectors as our theory predicts.

7A theoretically consistent empirical decomposition between industry and establishment heterogeneity
requires unit record data which are not available for a broad sample like ours.
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This focus also further distinguishes our approach from studies that emphasize se-

lection mechanisms in producing scale-dependent growth. Although we acknowledge that

selection e¤ects may be important for small establishments, we interpret the evidence as sug-

gesting that they are less so for the scale dependence observed across medium-sized and large

establishments. For example, one important prediction of selection theories is that estab-

lishments should become smaller in the years prior to exit, which is often referred to as the

�Shadow of Death�(Griliches and Regev (1995)). To assess this prediction, we plot in Figure

3 establishment exit rates in 1995-96 with respect to establishment�s size in the year of exit, as

well as one and three years before they exit (Note that these are exit and not net exit rates.)

The �gure shows no evidence of the �Shadow of Death�; that is, most establishments do not

appear to decline in size in the years leading up to their exit. Evidence of such an e¤ect in

Figure 3 would be curves shifting leftward as the year of exit approached. Instead, the only

di¤erence between the curves is among quite small establishments and consists primarily of

those that survive fewer than one or three years. This suggests that selection may be impor-

tant for small, young establishments, but not for medium-and large ones. In contrast, our

theory predicts that establishments will exit and enter at all sizes, as the equilibrium number

of establishments in an industry adjusts to productivity shocks.

Our theory emphasizes the role of size in establishment dynamics but, as many theories

do, it abstracts completely from age e¤ects. In our theory, young establishments behave

identically to old establishments: size, but not age, matters. Unfortunately, our data set

does not contain information on age and so we are not able to present results for given

age cohorts. Therefore, some of the scale dependence we document may be the result of age

e¤ects. However, the preceding empirical literature on establishment dynamics has found that

scale e¤ects are important even after controlling for age (for example, Evans (1987a,b), Hall

(1987), and Davis and Haltiwanger (1999)8). Moreover, the magnitude of the age dependence

documented by Davis and Haltiwanger (1999) for the U.S. is much smaller than the scale

dependence we have found in our data.9 Age e¤ects also seem to diminish quite quickly with

8Davis and Haltiwanger (1999) study only unconditional growth rates.
9Using more aggregated data for enterprises with only one establishment we can verify that the predictions

of our theory for sectoral variation in the thickness of the tails of the size distribution hold for establishments
younger and older than �ve years in the leading example used below.
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establishment age and the scale dependence in growth rates that we document and will use

later concerns ten year growth rates conditional on survival.

3.1.4 Sectoral Capital Shares

To examine the implications of our model for cross-sectoral di¤erences in mean re-

version, we will need data on physical capital shares, which come from the U.S. Bureau of

Economic Analysis (BEA) industry accounts. We use the BEA data on labor costs and value

added at basic prices to construct labor shares which include human capital. We then con-

struct physical capital shares as one minus the labor share. This method implies that the

physical capital shares we use include everything that is not classi�ed as labor. This sug-

gests two potential problems with our computations. One is that the physical capital shares

include land shares. Land is not an industry-speci�c factor, but because its share is usually

small, this should have a negligible e¤ect on the physical capital shares we use. The other

potential problem is that we are using the physical capital share in value added, but our

theory abstracts from the use of intermediate inputs. To address the �rst problem, we focus

on sectors with physical capital shares smaller than one-half, although the result are similar if

we consider all sectors. To address the second problem, we also present results with physical

capital shares adjusted for the share of value added and the share of materials purchased

from the same sector.

B. 3.2 Evidence on Sectoral Scale Dependence

Besides the economy-wide scale dependence just documented, our theory implies that

scale dependence should be larger in sectors which use physical capital more intensively. This

implication distinguishes our theory from other theories that may also imply economy-wide

scale dependence. For example, theories that emphasize �nancial constraints in explaining

scale dependence predict that scale dependence should be more pronounced in sectors in

which establishments have less collateral. This plausibly corresponds to sectors in which the

human capital share is relatively large and the physical capital share relatively small, which

is the opposite prediction of our theory. We now present evidence on the sectoral variation

in scale dependence for conditional growth rates, net exit rates, and size distributions and

show that this evidence corroborates the implications of our theory.
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3.2.1 Growth Rates of Surviving Establishments

We begin by examining an example with two sectors. Educational services is a very

labor and human capital-intensive sector, with a physical capital share of 0:054, while man-

ufacturing is much more physical capital-intensive, with a share of 0:397. If out theory is

consistent with the data we should see growth rates of manufacturing establishments decline

faster with size than do growth rates of establishments in the educational services sector

(Proposition 1). That is what we see in Figure 4. In the �gure, the di¤erences are very

large over a period of ten years (1990�2000). Not only do small establishments grow faster

than large establishments in both sectors, but the scale dependence is signi�cant for the

entire range of establishment sizes. The di¤erence between the growth rates in these two

sectors increases with establishment size and is, for the largest establishments, more than 40

percentage points.

This evidence is not peculiar to the pair of sectors in the example. We demonstrate

this by examining the same implication of our theory for all sectors. We use data on the

growth rate of establishments, nt+1j=ntj; in a particular size category, ntj; and estimate the

regression speci�ed by equation (11):

ln

�
nt+1j
ntj

�
= ~aj +~b lnntj + ~e�j lnntj + ~"tj;(14)

where

~aj = nCj , ~b = � (1� !j)
�
1� �j

�
,

~e = � (1� !j) �j, and ~"tj = ��j (1� �j) lnAt+1j:

Notice that a full structural estimation of our model would require ~b and ~e to vary as

�j and !j vary by sector. Unfortunately, we do not have data on the share of industry-speci�c

human capital in labor services or the share of investment in human capital production, and

so we assume that these two shares do not vary across sectors or, if they do, that they are

uncorrelated with capital shares. If they are uncorrelated, then our estimation strategy is

not e¢ cient, but the coe¢ cients are still unbiased and consistent. Given that all the results

presented below are signi�cant at a 1 percent level, the lack of e¢ ciency of the estimator

is not worrisome.10 Our estimation procedure lets us back out the average level of these

10If �j and !j are correlated with �j , then the estimates of ~e are biased. Let �j = � + �ej , where � is
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parameters for the U.S. (which we compute below). Apart from this caveat, our empirical

exercise uses precisely the structure imposed by our model.

A requirement for a structural estimation of our model is to account for the het-

eroscedasticity that the model implies. In particular, if the variance of technology shocks

is constant across sectors, the model predicts that the variance of the error term decreases

with �j. We use generalized least squares (GLS) to take this e¤ect into account and estimate

equation (14) with and without the e¤ect of physical capital shares on the variance.

We estimate this relationship using GLS to take into account the fact that the smaller

size categories have many more establishments, as well as the heteroscedasticity predicted

by our model. Of course, taking account of heteroscedasticity should improve the e¢ ciency

of our estimation, but the results without doing so are still unbiased and consistent. We

calculate the weights using data on the number of establishments in each size category and

physical capital shares. Throughout, we use average U.S. physical capital shares for the period

1990�2000. The theory predicts that the estimate of ~e should be negative and signi�cant.

The estimates of ~e are presented in Table 1. The �rst and third columns present

the estimates using average capital shares for the period 1990�2000. The �rst two columns

weight observations only by the number of establishments in a particular size class bin. The

last two columns adjust also for the heteroscedasticity predicted by our model. Although

the estimates of ~e are negative and strongly signi�cant in all regressions, the results are the

strongest when we use the exact speci�cation given by our theory, namely, variance terms

that depend on capital shares. Given the largest establishment size in our sample, a larger

(in absolute value) coe¢ cient implies more scale dependence for all establishment sizes. The

the mean of �j . Similarly, let !j = ! + !
e
j : Then the sign of the bias depends on the sign of the covariance

between !ej� + �
e
j (1� !) + 2!ej�

e
j and �j : If !

e
j = 0 for all j, then if cov

�
�ej ; �j

�
� 0, our estimates are

biased toward zero. If true, the estimates below are a lower bound for the true e¤ect, which strengthens our
conclusions. If �ej = 0 for all j; then if cov

�
!ej ; �j

�
� 0; we again get estimates biased toward zero, which

again reinforces our results. In general, in order for our estimates to be biased toward zero, we need to assume
that

cov
�
!ej� + �

e
j (1� !) + 2!ej�ej ; �j

�
� 0:

This restriction amounts to saying that human capital depreciates more slowly, and accounts for a larger
share, in industries that are more capital intensive. This would be the case if, for example, industry-speci�c
human capital is needed to operate industry-speci�c machines and if those machines depreciate more slowly
in industries that use more physical capital. We leave this as a restriction imposed on the empirical model.
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results in Table 1 show that scale dependence increases signi�cantly with sectoral physical

capital shares: A doubling in the size of establishments in manufacturing (�j � 1=3) decreases

average growth by about 5 percent relative to the educational services sector (�j � 0).

As mentioned above, the physical capital shares have been calculated as one minus the

share of labor costs in value added. Since materials are a large fraction of gross output in an

industry, however, this may result in physical capital shares that are too large relative to the

ones in gross output. Since our theory does not include materials, it is not designed to address

this distinction. To address it empirically, we also calculated the share of value added plus

the share of inputs originating from the same sector using the input-output data provided

by the BEA. We then multiplied this share by the original physical capital share to obtain

an adjusted physical capital share. If all intermediate inputs originated in the same sector,

then the original physical capital shares would equal the adjusted physical capital shares.

If the rest of the materials used in production are homogeneous, then the adjusted physical

capital shares would di¤er from the original shares, and the adjustment is theoretically exact.

In general, even with this adjustment, we are abstracting from the e¤ects of mean reversion

in human capital stocks in other industries. However, the omission of these e¤ects could

be expected to bias our coe¢ cients toward zero. Given the statistical signi�cance of our

results presented in the second and forth columns of Table 1, we do not think the omission

undermines our empirical strategy.11 The omission of intermediate inputs from other sectors

may account for some of the unexplained variation in growth rates. So may variation across

sectors in other parameters of the model, such as the share of raw labor, the variance of

productivity shocks, or the depreciation parameters.

Our estimation of ~b and ~e assumes that both �j and !j are constant, or independent

of �j, across sectors. (Call the average or constant values � and ! respectively.) We can then

use the estimates presented in Table 1, together with the estimates of ~b and equation (11)

to infer values for � and !. The estimates of ~b for the exercises in the �rst two columns of

Table 1 are �:146 (s.e. :009) and �:154 (s.e. :008). When we use the capital share in the

weights in the third and fourth columns they become �:134 (s.e. :011) and �:145 (s.e. :008).

11Adjusting the physical capital shares increases the number of sectors in our sample with physical capital
shares below one-half from 44 to 52.
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These values imply a share of industry-speci�c human capital in labor services between :432

and :556 (where � = 1=(1 + ~b=~e)). That is, the model and the estimation above imply that

the share of labor services related to industry-speci�c human capital is roughly half. Thus,

as we have argued, the share of industry-speci�c human capital consistent with the scale

dependence in establishment dynamics is very signi�cant. Other forms of human capital that

are not industry-speci�c (those associated with individuals rather than industries) are, of

course, not included in this share. Our estimates also imply an average share of investment

in human capital production (1 � ! = ~e=�) between :258 and :326. This investment share

depends on the period over which we calculate growth rates, which in this case is ten years.

The last ten years have witnessed a substantial decline in employment among large

manufacturing establishments. A potential concern is that this phenomenon may be driving

the larger scale dependence observed in physical capital-intensive manufacturing sectors. To

address this concern, we replicate the previous exercise for manufacturing and nonmanufac-

turing sectors separately. The results presented in Table 2 show that this phenomenon is

not driving the results in Table 1. The point estimates for nonmanufacturing are close to

those for the whole economy and are strongly signi�cant. For manufacturing, the estimates

are much less precise, re�ecting the smaller variation in physical capital shares among these

sectors. This was precisely our justi�cation for using all sectors in the economy.

3.2.2 Net Exit Rates

Our mechanism, which emphasizes mean reversion in stocks of speci�c factors, when

combined with an assumption on the level of the elasticity of substitution, also implies that

net exit rates should decline with establishment size. Furthermore, the rate of decline should

increase with physical capital shares.12 Using BITS data for U.S. sectors in 1995�1996, we

run the following regression

ln (1 +NERj) = �aj +�b lnnj + �e�j lnnj + �"tj;(15)

12Orr (1974), Gorecki (1976), Hause and Du Rietz (1984), and MacDonald (1986) �nd that �rm, not
establishment, exit rates are negatively related to measures of physical capital intensity by industry. Given
that these studies do not distinguish among �rms with di¤erent sizes, the negative relationship may be the
result of the dependence predicted by our theory. This would be the case if �rms in physical capital-intensive
sectors are larger on average.
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where NERj denotes the net exit rate in sector j and size bin nj: This amounts to estimating

the exponential relationship between net exit rates and sizes implied by the model. The

results are presented in Table 3 for net exit rates in 1995�1996.13 The top panel shows

the results using GLS, where the weights in the variance-covariance matrix include only the

number of establishments.14 The bottom panel presents results of the same exercise with

the weights adjusted to take into account the heteroscedasticity predicted by the theory.

Again, we present all results using average capital shares for the period 1990�2000, along

with results using adjusted capital shares. Besides this, we also present the results if we

measure establishment size one year before/after exit/entry.

The results are consistent with our theory: All of the estimates are negative and sig-

ni�cant. The results are also economically signi�cant. As shown in Table 3, a doubling of

establishment size decreases net exit rates by around 1 percent (� �:0314 � :33) in manu-

facturing while net exit rates decline little with size in educational services. The results are

still very signi�cant but smaller in magnitude when we measure size one year before/after

entry/exit.

Finally, note that our theory, with logarithmic preferences, implies that the estimates

of �e should be identical to the estimates of ~e for conditional growth rates, as presented

earlier (Table 1), once we correct for the fact that the share of investment in human capital

accumulation (1� !) should be smaller for one year (as for net exit rates) than for ten years

(as for growth rates). We can use one-year growth rates in 1990 and net exit rates in 1993�

1994 (using size also in 1993�1994) and estimate the two equations jointly, restricting the

parameters to be the same. (The di¤erence in years is due to data limitations.) Now we get

estimates for ~e = �e of �:0507 (s.e. :006), with unadjusted capital shares, and �:0418 (s.e.

:007) with adjusted capital shares. If we take into account the heteroscedasticity implied by

the model, we get �:0496 (s.e. :007) and �:0372 (s.e. :008) respectively. Hence, restricting

the parameters to be the same yields results that are very much in line with the results in

13The results are very similar if we use net exit rates in 1993�1994.
14The measure of size we use is given by ��j =

��
�jy1 + �jy2

�
=2
�2
=
�
�jy1 + Ejy1

�
; where �jy2 is the number

of establishments in year yi of a given size indexed by j and Ejy1 is the number of establishments that entered
in y2 of a given size j. The reason we use this measure is that in contrast with the growth rate regressions we
should not just use the number of surviving �rms but the sum of all �rms alive before exit and after entry.
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Table 3. This con�rms yet another of the theory�s predictions: that the amount of scale

dependence in both growth and net exit rates should be similar within a given sector.

3.2.3 Size Distributions

We now turn to the implications of our theory for the size distribution of establish-

ments. As we have argued above, within a sector the variance of growth rates and net exit

rates, and therefore establishment sizes, should be smaller the larger the sector�s physical

capital share, given a common volatility of shocks across sectors.15 In fact, in some exercises

above, we have used this prediction to calculate e¢ cient estimates of the variation of scale

dependence with physical capital shares. It is natural, therefore, to look directly at the re-

lationship between the standard deviation of establishment sizes and physical capital shares

across sectors. In Figure 5 we plot the standard deviation of establishment sizes against

adjusted physical capital shares for the years 1990 and 2000, together with �tted lines for

both years. As the theory predicts, the relationship between the standard deviation and the

adjusted physical capital shares is negative. It is also similar for both years.16

In Section 2.4, we also examined an alternate measure of the amount of dispersion in

establishment sizes based on the thinness of the tails of the size distribution of establishments.

This measure has the advantage of being less sensitive to the size of the largest establishments

in the sample, which is particularly important for sectors in which the size distribution is well

approximated by a Pareto distribution for which second moments are not de�ned. To compare

thinness of tails, we use data from SUSB to calculate the share of establishments in sector

j with employment larger than nj, denoted by Pj. If the distribution of establishment sizes

is Pareto with coe¢ cient one, or growth rates are scale independent, then the relationship

between lnPj and lnnj should be linear with slope minus one. If growth rates depend

negatively on scale, then the tails of the distribution are thinner than the tails of a Pareto

15We do not have evidence that suggest that the volatility of productivity shocks is common across sectors.
Di¤erences in the underlying distribution of productivity shocks may result in di¤erence in the standard
deviation of establishment sizes not explained by our mechanism.
16The �tted lines are calculated by running an OLS regression of the standard deviation of establishment

sizes by sector against capital shares. The estimated coe¢ cient is signi�cant at the 1 percent level. Even if
we eliminate some of the industries that seem to be outliers in Figure 5 (excluding from the regression the
�ve industries with lowest capital shares and the �ve industries with highest capital shares), the estimated
coe¢ cient remains signi�cant at the 1 percent level.
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with coe¢ cient one, and the relationship is concave. Our theory states that the degree of

concavity should be positively related to physical capital shares (Proposition 6).

A �rst look at the data con�rms that prediction. In Figure 6 we plot lnPj and nj for

the manufacturing and educational services sectors. This representation of the size distribu-

tion emphasizes the degree of concavity and makes di¤erences between the two distributions

particularly clear. The distribution of establishment sizes in the educational sector has more

mass for very small and large establishments and less mass for intermediate establishments

than the distribution in the manufacturing sector. This is particularly clear for small estab-

lishments. The �gure also compares these distributions with the Pareto distribution with

coe¢ cient one (which corresponds to a straight line with slope -1 in Figure 6). The Pareto

distribution with coe¢ cient one has even more mass at the tails and less at the center, con-

sistent with Proposition 6 as long as �j; !j; (1� �j) > 0: Both sectors have thinner tails than

the Pareto, but as the theory predicts, the di¤erence is larger for the manufacturing sec-

tor. Moreover, the di¤erences between these distributions are economically large: in order to

transform the size distribution of the manufacturing sector to that of the educational services

sector, about 20 percent of the labor force that currently works in medium-sized manufac-

turing establishments would need to be reallocated to establishments with fewer than 50 or

more than 1000 employees.

In order to test the relationship between physical capital shares and the size distrib-

ution of establishments for all sectors, we use our new data set on the size distributions of

establishments for 1990 and 2000. We estimate the following regression:

lnPj = âj + b̂j lnnj + d̂ (lnnj)
2 + ê�j (lnnj)

2 + "̂j;(16)

where âj and b̂j are industry-speci�c coe¢ cients. This amounts to �tting a second order

equation and constraining the quadratic term to vary linearly with the physical capital share.

The model now predicts that ê should be negative and signi�cant.17 The results are presented

in Table 4, which shows that the estimate of ê for both 1990 and 2000, is negative and strongly

signi�cant. The physical capital shares used in the regression are those corresponding to 1990

17This prediction is the result of Proposition 7. Since Proposition 7 does not provide an explicit expression
for the distribution of establishments, we estimate the variation in the thinness of the tails as a function of
capital shares using the quadratic equation in the text.
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and 2000. The results with the adjusted physical capital shares further con�rm the empirical

signi�cance of the mechanism in our theory.

4. 4. Conclusion
In this paper, we have constructed a theory that is consistent with some well-known

facts on scale dependence in establishment size dynamics and distributions. The theory

emphasizes the role of the accumulation of industry-speci�c human capital and is robust to

institutional and economic di¤erences across sectors. We claim that the ubiquitous presence

of these facts has to be the result of a mechanism, like ours, that is general enough to be

present in a variety of circumstances. The central role of accumulation of industry-speci�c

human capital in the theory led us to focus on cross-sectoral di¤erences in the importance

of human capital, and therefore physical capital, in production, and in particular, physical

capital intensity. Increases in the importance of industry-speci�c physical capital lead to

an increase in the degree of diminishing returns in human capital and, hence, more scale

dependence in establishment growth rates, net exit rates, and distributions. We take this

prediction to the data and show that it is a surprisingly good description for the cross-section

of U.S. sectors. Any theory of establishment size dynamics has to confront this new evidence.

Other studies have emphasized various forms of market ine¢ ciencies, such as �nancial

frictions, as explanations of scale dependence. Financial frictions are also often cited as jus-

ti�cation for various forms of policy intervention such as subsidies to small business. What

we have shown is that, even though these frictions may be important for very small estab-

lishments, they are not necessary to explain the degree of scale dependence and its variation

across sectors. As a consequence, if policy is to be applied to address these frictions, it is

important that it be designed so as not to interfere with the growth and net exit of larger

and existing establishments which are well described by our e¢ cient theory.

Our �ndings could also help assess di¤erences in the e¢ ciency of resource allocation

across countries. Both Guner, Ventura and Yi (2005) and Restuccia and Rogerson (2004) have

argued that government policies targeted at establishments of speci�c sizes may explain large

cross-country di¤erences in productivity. International evidence on establishments dynamics

and the size distribution of establishments, when combined with our e¢ cient benchmark,
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could shed some light on the empirical signi�cance of such scale dependent policies. Other

research (see, for example, the survey by Tybout (2000) and the empirical evidence presented

by Sleuwaegen and Goedhuys (2002)) has concluded that the thicker tails of the size distri-

bution of establishments in sub-Saharan African countries, relative to that in the U.S., are

evidence of corruption in these countries; establishments either stay small in order to avoid

o¢ cial notice, or grow until they are large enough to co-opt the system to their own bene�t.

Our empirical �nding that the size distributions in sectors with lower physical capital inten-

sities display thicker tails may strengthen this conclusion given the greater concentration of

the U.S. economy in human capital-intensive sectors.

Finally, by emphasizing the accumulation of speci�c human capital, our theory makes

predictions as well for the evolution of the establishment size distribution. The ongoing

specialization of developed economies in services will lead to a more dispersed distribution of

establishment sizes, where we will see more small and more very large establishments. These

argument suggests that we are moving toward an economy in which the dominance of large

establishments in some industries, like Walmart stores, will coexist increasingly with large

numbers of small establishments in di¤erent industries within the same sector, like bakeries

or tailors. According to our analysis, this trend is the natural result of the e¢ cient division

of an industry�s production among establishments.
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5. Appendix A: Robustness of the Mechanism
We have argued that any proposed explanation for the documented patterns in es-

tablishment size dynamics and distribution must be robust to the wide variety of di¤erences

in institutions and market structures for which these patterns have been observed. Here we

establish that the mechanism described above is preserved as we generalize the model in a

number of ways.

A. A.1 Establishment Costs

In the model above, establishments face decreasing returns to scale and a �xed cost

denominated in terms of the establishment�s output. This combination implies that the

output of the establishment is constant, so that establishments reduce employment (and

hence size in terms of employment) when the stock of speci�c human capital grows: reversion

to the mean in the stock of speci�c factors from above produces reversion to the mean in

establishment sizes from below. Changes in the speci�cation of the cost structure can reverse

the qualitative relationship between factor supplies and establishment size, but do not change

our basic results.

To see this, assume as before that each establishment in industry j in period t produces

output according to equation (6). Now, however, assume that �xed costs depend on the

average number of workers, �ntj and are given by Fj�n
�j
tj . We have in mind institutional or

organizational costs (for example, dealing with unions or other industry organizations) that

depend on the average size of establishments in the industry. Individual establishments do

not take into account the e¤ect of their hiring decisions on the �xed costs, so the problem of

the establishment is identical to the one presented above. We assume that 0 � �j < 1; so if

�j = 0 we have exactly the same case studied in the text. Taking �rst order conditions and

allowing for free entry and exit we �nd that�
1� 
j

�
ytj = Fj�n

�j
tj :

Now output changes with the average level of employment in the industry and, since in

equilibrium all establishments in an industry are identical, also with the employment level of

the establishment. Given this symmetry, equilibrium in factor markets implies that the size
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of the typical establishment in the industry is given by

ntj =
Ntj
�tj

=

"�
1� 
j

�
Fj

# 1
�j�
j �Ntj

Ktj

� �j
j

j��j

�
Ntj
Htj

��j(1��j)
j

j��j

:

This equation is analogous to one derived before, with the di¤erence that both em-

ployment and output respond to changes in factor supplies.18 Moreover, the direction of the

change can di¤er: it �j > 
j; increases in the stock of industry-speci�c physical and human

capital lead to increases in the size of the establishment. As long as the size of an establish-

ment responds monotonically to the stock of human capital, mean reversion in factor supplies

will drive mean reversion in establishment sizes, and the main properties for establishment

growth and exit rates, and the size distribution, are preserved. The direction of this response

is not important: when �j > 
j, reversion to the mean in the stock of speci�c factors from

above, produces reversion to the mean in establishment sizes from above.

B. A.2 Within-Industry Establishment Heterogeneity

In our theory above, we have abstracted from heterogeneity among establishments

within an industry in order to focus attention on heterogeneity across industries. Yet, dif-

ferences in establishment sizes exist even within narrowly de�ned industries. Now we show

how such heterogeneity can be added without introducing selection e¤ects or changing the

key empirical implications of our theory.

Suppose that after having decided to produce in a period and paying the �xed cost F;

each establishment i 2 [0; �] observes an establishment-speci�c productivity shock zi, where

we suppress time and industry subscripts. This shock is assumed to be i.i.d. over time,

establishments, and industries within a sector. After observing this shock, establishment i

hires labor ni and industry-j-speci�c physical capital, ki, and human capital, hi, to produce

output according to

yi = zi

�
k�i

h
h�i n

1��
i

i1���

:

18Notice that because the �xed costs entail an external cost, the equilibrium will not be Pareto optimal.
However, a pseudo-social planner problem can be set up that yields the same aggregate implications as the
problem discussed in Section 2.
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It is straightforward to show that in equilibrium, the relative levels of output and

factors across establishments in an industry are given by

yi
yj
=
ki
kj
=
hi
hj
=
ni
nj
=

�
zi
zj

� 1
1�


;

so that establishments with a larger shock use more of both inputs and produce more output.

This leads to an industry level production function that has exactly the same form as for

the original problem. Consequently, the choices of N and �; as well as investment in both

types of capital, are analogous, and the implications for the average growth and net exit

rates of establishments in that industry, or the average size distribution of establishments,

are unchanged. Establishment speci�c shocks will increase the amount of mean reversion

within all sectors, but the relationship with factor intensities across sectors is maintained as

long as the distribution of shocks within a sector is independent of factor intensities.

In more general models of within-industry heterogeneity there will be an active se-

lection mechanism and this will lead to a survivorship bias as establishments with low pro-

ductivity realizations exit. In such models, the estimated level of scale dependence will be

a¤ected by this bias. However, as long as this bias is not related to factor intensities, it will

not a¤ect di¤erences in the degree of scale dependence across sectors. Under other plausible

assumptions, for example if establishments in capital-intensive sectors are less likely to exit

in response to a negative shock because of large set-up costs, then the survivorship bias will

be smaller for capital-intensive sectors and our empirical results are strengthened.

C. A.3 Learning-by-Doing Externalities

So far we have assumed that human capital accumulation requires some industry-

speci�c inputs. The dependence on industry-speci�c inputs is important for our model; it

allows human capital accumulation to vary with industry output and is the primary source of

mean reversion at the industry level. The inputs to learning are purchased by consumers, and

the resulting level of human capital is rented out by consumers, so that there is no externality.

An alternative assumption that has similar e¤ects is the assumption that human capital is

accumulated from learning-by-doing externalities so that

Ht+1j = At+1jH
!j
tj Y

1�!j
tj ;
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Thus, the larger is output in the industry, the larger is human capital accumulation. Im-

portantly, this involves no resource cost to the economy. Suppose that production occurs

according to

Ytj + Fj�tj =
�
K
�j
tj (HtjNtj)

1��j�
j �1�
jtj ;

so that human capital operates exactly like labor-augmenting technological progress.

With this change, we can no longer use the social planners problem to solve for equilib-

rium allocations in this model, but we can use a pseudo-planner�s problem. Similar reasoning

then produces an expression for the normalized rate of growth of an establishment given by

lnnt+1 � lnnt = nC � �j (1� !j) lnnt � (1� �j) lnAt+1;

where nC again denotes a constant speci�c to this formulation. If there is no learning by

doing, or !j = 1, then there is no mean reversion in human capital stocks, and establishment

growth rates satisfy Gibrat�s law. As before, increases in the capital intensity of an industry

increase the rate of mean reversion in establishment sizes.

This extension emphasizes that what matters for our results on mean reversion is

not industry-speci�c human capital per se, but rather the sensitivity of current production

decisions to past output in the industry. This is important in light of recent research by

Kambourov and Manovskii (2005) who �nd little evidence in individual earnings data for

the existence of industry-speci�c human capital.19 However, their result is consistent with

industry-speci�c learning-by-doing externalities in which individual workers do not appropri-

ate the returns to industry-speci�c human capital.

D. A.4 Monopolistic Competition

The theory in the text uses a competitive model of establishments to derive conclu-

sions on the growth, exit and size distribution of establishments. Now we demonstrate that

our conclusions are not sensitive to this speci�cation for the organization of production in

establishments by deriving similar conclusions from a Dixit-Stiglitz monopolistic competition

19Our model makes no distinction between workers within an industry and so cannot distinguish between
industry-speci�c human capital and the occupation-speci�c human capital emphasized by Kambourov and
Manovskii (2005).
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model with a taste for variety in which we identify an establishment with each variety. In this

model, substitution for varieties in the same industry limits demand for a particular variety

in an industry and thus determines the size of the establishment. The industry expands and

contracts through variation in the number of establishments.

We assume that each industry consists of a continuum of potential varieties, which

we index by $: Output of each variety D$
tj is combined by the household using a constant

elasticity of substitution production function with parameter �j > 1 to produce a composite

industry good that is used for investment in human capital and as an input to production of a

�nal good. The problem of a consumer is to purchase goods and accumulate industry-speci�c

capitals to maximize lifetime utility

max
D$
tj ;Ntj ;Ctj ;Xtj

(1� �)E0

" 1X
t=0

�tNt ln

�
Ct
Nt

�#
subject to

E0

264 1X
t=0

JX
j=1

Z
0�$�
tj

ptj$Dtj$d$

375 � E0

" 1X
t=0

JX
j=1

rtjKtj + stjHtj + wtjNtj

#
;

Kt+1j = K
�j
tj X

1��j
t ; Ht+1 = At+1jH

!j
tj I

1�!j
tj

Qtj + Itj � Etj �
(Z

0�$�
tj
(Dtj$)

�j�1
�j d$

) �j
�j�1

;

Ct +Xt =
JY
j=1

(Qtj)
�j ;

JX
j=1

Ntj � Nt:

for all t and all j; where Etj is total demand for the �nal good from industry j; ptj$ is the

price of variety $, and Qtj is the amount of the �nal good in industry j used to produce

consumption and physical capital investment in combination with the goods in other indus-

tries. The consumer takes as given the prices of intermediate inputs and factors, as well as

the range of varieties of goods available.

An establishment produces a variety$ using a constant returns to scale Cobb-Douglas

technology y$ = k�$
�
h�$n

1��
$

�1��
: Pro�t maximization combined with free entry yields in-

dustry output given by

Y =
� � 1
�

K�H�(1��)N (1��)(1��):
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This function has constant returns to scale, with TFP given by a function of the elasticity of

substitution. The size of establishments in terms of employees is

n$ = F�

�
N

K

���
N

H

��(1��)
;

which is a similar expression to the one derived for perfect competition version of the theory.

As a result, this model has identical implications for establishment dynamics and the size

distribution.

All that remains to calculate the dynamics of establishment sizes is to solve for the

accumulation decisions of agents. The log-linearity of the model implies that the equilibrium

allocations can be obtained as the solution of a pseudo-planner�s problem identical to the

planner�s problem in the text except that the resource constraint is now

Ct +Xt �
JY
j=1

�
�j � 1
�j

K�
tjH

�(1��)
tj N

(1��)(1��)
tj � Itj

��j
;

for all t and j (see Chapter 18 of Stokey, Lucas and Prescott (1989)). The result is a process

for the evolution of establishment sizes that parallels the evolution of establishment sizes in

the model with perfect competition.

6. Appendix B: Proofs

Proof of Proposition 3. See Rossi-Hansberg and Wright (2006) Proposition 3.

Proof of Proposition 4. As shown in the text, if we detrend the growth rate of surviving

establishments, then the invariant distribution of representative or average establishment

sizes, in logs, is normal with mean Mj and variance as in (12). If we let y = lnn; then the

distribution of actual establishment sizes has to be weighted by Nj=ey: If we normalize the

distribution to be a probability distribution, we obain the pdf of the size distribution

1

S
p
2�
e�
[y�(Mj�S

2)]
2

2S2 ;

which means that the actual size distribution of establishments is also lognormal with mean

exp
�
Mj � S2

2

�
and variance

e2Mj+S
2
j

�
eS

2
j � 1

�
:
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That the variance is decreasing in �j follows from the fact that both the mean and variance

of representative establishment sizes are decreasing in �j:

Proof of Proposition 5. The proof is independent for each sector, so we drop j from the

notation. The size of an establishment in period t+ 1 is given by

lnnt+1 = g (nt; At+1) � � lnAt+1 + 1� (1� !j)
��
1� �j (1� �j)

��
lnnt;

where we have assumed that the population size is �xed. (Alternatively, we could work with

variations from trend.) This lies in the compact set LN de�ned in the text. Let � be the

probability measure over A: Then, the probability of a transition from a point n to a set S

is given by

Q (n; S) = � (A : g (n;A) 2 S) :

For any function f : LN ! R; de�ne the operator T by

(Tf) (n) =

Z
LLN

f (n0)Q (n; dn0) =

AZ
A

f (g(n;A)) d� (A) :

De�ne also the operator T �, which maps the probability of being in a set S next period given

the current distribution, say �; as

(T ��) (S) =

Z
LLN

Q (n; S)� (dn) :

Since the set LN is compact, we are able to use Theorem 12.12 in Stokey, Lucas, and

Prescott (1989) to prove that a unique invariant distribution exists, if we can show that the

transition probability function Q satis�es the Feller property, is monotone, and satis�es the

mixing condition.

To see that Q satis�es the Feller property, note that the function g is continuous in lnn

and lnA. Since g is continuous and bounded, if f is continuous and bounded, then f (g(�))

is continuous and bounded, and therefore so is Tf . Hence, T maps the space of bounded

continuous functions into itself, T : C( �S) ! C( �S). To see that Q is monotone, we need to

prove that if f : LN ! R is a nondecreasing function, then so is Tf: But this follows from

the fact that g is nondecreasing in n. Hence, f (g(n;A)) is nondecreasing in n; and therefore,
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so is Tf: Finally, to show that Q satis�es the mixing condition, we need to show that there

exist c 2 LN and � > 0 such that

Q

 
� lnA�j (1� �j)

(1� !j)
�
1� �j (1� �j)

� ;"c; � lnA�j (1� �j)

(1� !j)
�
1� �j (1� �j)

�#! � �;

and

Q

 
� lnA�j (1� �j)

(1� !j)
�
1� �j (1� �j)

� ;" � lnA�j (1� �j)

(1� !j)
�
1� �j (1� �j)

� ; c#! � �:

Now let c = 0: Since g is continuous and decreasing in A, there exists an A0 such that for all

A � A0, g (n;A) > 0. Then let �0 = 1� �(A0): Similarly, there exists an A00 such that for all

A � A00, g (n;A) < 0: Finally, let �00 = 1 � �(A00). Call the minimum of these probabilities

�: Then c = 0 and � guarantee that the mixing condition holds. Theorem 12.12 in Stokey,

Lucas, and Prescott (1989) guarantees that a unique invariant distribution exists, and that

the iterates of T � converge weakly to it.

Proof of Proposition 6. The �rst claim is immediate from the discussion in the text. To see

the second claim, for each � denote the unique invariant probability measure of establishment

sizes (see Proposition 5) by �� : LN ! [0; 1] ; where LN denotes the Borel ��algebra

associated with LN; with associated transition function Q� and operator T ��: Since �� is an

invariant distribution,

��
��
� lnA; lnn

��
= (T ����)

��
� lnA; lnn

��
=

Z
Q�
�
z;
�
� lnA; lnn

��
�� (dz)

=

Z
�
�
A : g� (z; A) 2

�
� lnA; lnn

��
�� (dz) ;

where g�(z; A) denotes the log of the establishment size growth rate. We saw above that

dg�(z; A)

d�
< 0.

So for n small enough, we know that

��k
��
� lnA; lnn

��
=

Z
�
�
A : g�k (z; A) 2

�
� lnA; lnn

��
��k (dz) ;

>

Z
�
�
A : g�j (z; A) 2

�
� lnA; lnn

��
��k (dz) ;
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and, hence, ��k is not the invariant distribution for �j; and the operator T
�
�j
maps the ��k into

distributions with thinner left tails. The cases for intermediate and high lnn are analogous.
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Figure 1:
Distribution of Establishments and Enterprises Sizes in 2000
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The �gure presents the probability that estab lishm ents and enterprises

are larger than a particu lar size against that size in 2000. The �gure also

presents the sam e probability for a pareto density w ith co e¢ cient one.

The data on enterprises are aggregated into 50 b ins and into 43 b ins for

estab lishm ents. Source: U .S . Census Bureau , Statistics of U .S . Businesses.

Figure 2: Establishment Conditional Growth Rates, 1990­2000
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The �gure presents average estab lishm ent employm ent grow th rates by

size b in of estab lishm ents that ex isted b etween 1990 and 2000, 1999

and 2000, or 1990 and 1991. Employment sizes are d iv ided into 29 size

b ins. Source: U .S . Census Bureau , Business In formation Tracking System

Figure 3: Establishment Exit Rates, 1995­1996
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The �gure presents the ex it rate of estab lishm ents b etween 1995 and

1996 by size in the year of ex it (1995), one year b efore ex it (1994),

and 3 years b efore ex it (1992). The data are aggregated into 44 size b ins.

Source: U .S . Census Bureau , Business In formation Tracking Series.

Figure 4: Establishment Conditional Growth Rates by Sector, 1990­2000
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The �gure presents average estab lishm ent employm ent grow th rates by size b in of

estab lishm ents that ex isted b etween 1990 and 2000 in the educational serv ices and

manufacturing sectors. In b oth sectors employm ent sizes are d iv ided into 29 size b ins.

Source: U .S . Census Bureau , Business In formation Tracking Series.
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Figure 5: Standard Deviation of
Establishment Sizes and Capital Shares, 1990 and 2000
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The �gure presents the variance of estab lishm ent sizes by sector and

the corresp onding physica l cap ita l shares for 1990 and 2000. The variance .

is computed from data aggregated into size b ins. Source: U .S . Census Bureau ,

Statistics of U .S . Businesses.

Figure 6: Distribution of Establishment Sizes by Sector, 2000
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The �gure presents the probability that estab lishm ents in the educational

serv ices and manufacturing sectors are larger than a particu lar size against

that size in 2000. It a lso presents the sam e probability for a Pareto density

w ith co e¢ cient one.The data on the number of estab lishm ents are aggregated

into 43 b ins. Source: U .S . Census Bureau , Statistics of U . S . Businesses

Table 1: Establishment Growth and Capital Intensity

Growth Rates 1990�2000

Variance = 1=�j Variance = (1� �j)
2 =�j

(adjusted) (adjusted)

~e �0:1115 �0:1517 �0:1488 �0:1814

Standard Error 0:0255 0:0314 0:0304 0:0325

P-Value 0:0000 0:0000 0:0000 0:0000

# of Observations 940 1082 940 1082

The tab le presents the estim ates of �e obtained from the regression equation sp eci�ed in (14). E stim ates are presented under two di¤erent

assumptions on the form of heteroscedastic ity as describ ed in the text. Source: U .S . Census Bureau , Business In formation Tracking Series.
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Table 2: Establishment Growth and Capital Intensity

in Manufacturing and Non-Manufacturing Sectors

Growth Rates 1990�2000

Variance = 1=�j

Manufacturing Nonmanufacturing

(adjusted) (adjusted)

~e �0:0524 �0:0485 �0:1159 �0:1619

Standard Error 0:0981 0:1213 0:0265 0:0329

P-Value 0:5930 0:6900 0:0000 0:0000

Variance = (1� �j)
2 =�j

Manufacturing Nonmanufacturing

(adjusted) (adjusted)

~e �0:0876 �0:0720 �0:1556 �0:1922

Standard Error 0:0972 0:1295 0:0322 0:0342

P-Value 0:3680 0:578 0:0000 0:0000

# of Observations 940 1082 940 1082

The tab le presents the estim ates of �e obtained from the regression equation sp eci�ed in (14) estim ated on the

manufacturing and non-manufacturing sector subsamples. Source: U .S . Census Bureau , Business In formation Tracking Series.
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Table 3: Net Exit Rates and Capital Intensity

Net Exit Rate 1995�1996,
�

Exit96 � Entry95
(# Establishments96 + # Establishments95)=2

�
Variance = 1=��j

Size in 1995�1996 Size in 1994�1997

(adjusted) (adjusted)

�e �0:0314 �0:0331 �0:0172 �0:0186

Standard Error 0:0029 0:0034 0:0024 0:0028

P-Value 0:0000 0:0000 0:0000 0:0000

Weights = (1� �j)
2 =��j

Size in 1995�1996 Size in 1994�1997

(adjusted) (adjusted)

�e �0:0324 �0:0280 �0:0164 �0:0151

Standard Error 0:0036 0:0036 0:0029 0:0030

P-Value 0:0000 0:0000 0:0000 0:0000

# of Observations 1733 2029 1721 2012

The tab le presents the estim ates of µe obtained from the regression equation sp eci�ed in (15). E stim ates are presented under two di¤erent

assumptions on the form of heteroscedastic ity as describ ed in the text. Source: U .S . Census Bureau , Business In formation Tracking Series.

Table 4: Size Distributions and Capital Intensity

Size Distribution 1990 2000

(adjusted) (adjusted)

ê �0:1015 �0:0402 �0:0730 �0:1309

Standard Error 0:0152 0:0145 0:0167 0:0163

P-Value 0:0000 0:0060 0:0000 0:0000

# of Observations 1864 2182 1486 1799

The tab le presents the estim ates of ê obtained from the regression equation sp eci�ed in (16).

Source: U .S . Census Bureau , Statistics of U .S . Businesses.
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