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1 INTRODUCTION

In this paper, we will examine the factors that affect housing construction in the Tokyo

Metropolitan Area (TMA) using area-based panel data and also consider relevant econometric

issues related to the use of such data.

Housing construction is one of the main topics of urban economics. Many researchers have

empirically investigated the factors influencing housing construction and their magnitudes - for

example, Topel and Rosen (1988), DiPasquale and Wheaton (1994), and Mayer and Somerville

(2000), among others. Unlike the authors of the current paper, these authors were concerned

with total housing construction in a country, not with spatial disparity within a metropolitan

region. Although Japan suffered from a serious economic depression after the burst of the

bubble economy in the 1990s, a period sometimes referred to as ”the lost decade”, housing

construction in the TMA increased drastically in the mid-1990s. This increase was largely

attributable to a combination of factors, including a sharp decline in land prices, low interest

rates and tax policies favorable to housing construction. Although housing construction has

increased, at the same time we have observed that this increase is not spatially uniform over

the TMA, but is uneven.

The purpose of this paper is, first, to investigate the factors that cause changes in the number

of houses being constructed and the spatial disparity. The TMA consists of jurisdictional areas

called municipalities. Municipalities can determine regional public spending policies or make

regulations on economic activities that relate to the living standards of residents or to the

amenities of the area. For example, via financial support, municipalities strongly influence the

quality and quantity of healthcare services for residents and of facilities like elementary and

junior high schools. In addition, urban planning or land use regulations, like zoning, sometimes

restrict housing construction and the development of unused land for residential houses.

People who are concerned with the availability of healthcare and schooling facilities seriously

consider which municipality is the best to live in before purchasing or constructing new houses.

Assuming people are heterogeneous, those who have the same preferences or the same socio-

economic characteristics tend to live together in the same area, as the Tiebout model predicts
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(see Tiebout 1956, Gramlich and Rubinfeld 1982 and Aaronson 2001). People who concerned

with the healthcare and education of their children prefer to live in a municipality where the

quality of education or of the public health care services is higher than in other municipalities.

These demand-side factors partly cause the spatial disparity of housing construction within the

TMA.

The regulations on land use make large housing developments costly or difficult. In general,

most of the houses supplied in the TMA are condominiums. Although large housing devel-

opments enable developers to cut costs by enjoying scale economies, they may be costly for

municipalities. This is because the municipalities have to provide additional facilities for new

residents, which may involve constructing parks and elementary schools, hiring teachers and so

on. Strict regulations, such as height restrictions on condominiums, or proportion restrictions,

regulating the area of public open space in relation to the total developing area, increase the

cost of development. Thus, differences in the severity of such regulations among municipalities,

which are supply-side factors, cause differences in the number of houses being constructed and

the observed spatial disparity.

As some of the factors that affect housing construction and the spatial disparity are usually

unobservable or difficult to evaluate numerically, we cannot incorporate them as explanatory

variables of an econometric model. For example, some municipalities impose regulations that

force developers to make an agreement with the residents who live near the construction area of

a planned condominium. It is very difficult to evaluate the severity of the regulations because

it depends upon the characteristics of the residents or the area. Therefore, we have to take

these as unobservable factors. Moreover, the regulations on housing construction themselves

are sometimes unobservable because municipalities regulate developers through implicit codes of

development, which are not necessarily publicly available. Often these regulations are similar

to those in adjacent municipalities because each area faces similar problems in relation to

housing construction. Therefore, the regulations can be regarded as unobservable factors that

are spatially clustered.

In addition, it is often difficult to evaluate how the quality or quantity of local public or

private goods/services impacts on housing construction. Hence, these factors also have to
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be taken as unobservable. An attractive facility in a municipality, like a new, well-designed

museum, library or shopping mall built in a redeveloped inner area, may increase housing

construction not only in that municipality but also in adjacent municipalities. Such a situation

involves spillover effects from local public or private goods and services. Network infrastructure

lying across the borders of municipalities, such as railways, subways, highways, roads and so

on, will enlarge the spillover effects. Spillover effects are one of the sources of spatial clusters

due to unobservable factors.

The second purpose of this paper is to propose econometric models that enable us to ex-

amine the clustering structure of these unobservable factors. We are concerned not only with

how large the effects of these unobservable factors are within municipalities, but also with

the question of which adjacent areas constitute a spatial cluster of the unobservable factors.

These unobservable effects can be expressed as area-specific effects in panel data models. If

we were not concerned with the clustering structure of the effects, but only with the param-

eters of observable explanatory variables, we could adopt a standard fixed-effects model that

has area-specific effect parameters for each area. Then, we could obtain the within estimates

for parameters of concern (see Hsiao 1986 for details). However, as we are concerned with

the clustering structure, we require models that enable us to capture this structure. We will

propose two types of model that correspond to the fixed- or random-effects models, namely, a

spatially clustered fixed-effects model (SCFEM) and a spatially correlated random-effects model

(SCREM).

In section 2, we will explain both the SCFEM and the SCREM. In relation to the SCFEM,

we have to consider a statistical method that will detect which areas belong to which cluster.

From a statistical viewpoint, this issue is regarded as a type of model selection problem. We

adopt a resampling method, namely a leave-one-out cross-validation, since the method is robust

to distributional assumptions and the calculation is easily implemented for a linear model. The

method was introduced by Stone (1974) and Geisser (1975) and its applications for broad model

selection problems are discussed in Davison and Hinkley (1997). However, it has not yet been

applied to detect clusters with area-based data. The selection procedures, the forward-stepwise

(FS) and backward-stepwise (BS) methods, are also discussed. Section 3 shows the results of
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the simulation studies, detailing how well the leave-one-out cross-validation works to detect the

clusters. In addition, we compare the SCFEM estimates with the within estimates and find

that the former are more efficient than the latter.

In the SCREM, spatial correlation of the area-specific errors between adjacent areas is

modeled. Spatial correlation is recently focused and is often discussed in relation to the spatial

interaction of agents’ behaviors. Netz and Taylor (2002) empirically test implications from

location theory using the location of Los Angeles-area gasoline stations in physical space and

in the space of product attributes. They use the model proposed by Anselin (1988), where the

dependent variable is spatially correlated. On the other hand, Pinkse and Slade (1998) employ

the Probit model with the errors of the underlying linear model spatially correlated. We use

the conditional Gaussian model for the area-specific effects errors. Cressie (1993) discussed the

differences between the simultaneous Gaussian model, which is like Anselin’s model, and the

conditional Gaussian model. In panel data models, if we follow Anselin’s model, we have to deal

with the correlation between the explanatory variable, namely, the adjacent area’s dependent

variable, and the area-specific errors. This is also the case with panel data models that use

a lagged dependent variable as a regressor. This will make the estimation more complex and

difficult.

In section 3, the two models, the SCFEM and the SCREM, are employed to estimate the

reduced form of housing-construction functions in the Tokyo Metropolitan Area using area-

based panel data for three years. The estimated function includes both demand- and supply-

side factors. As demand-side factors, we mainly consider the economic attributes of an area,

for example, income per household and time-distance to Tokyo Station, and amenities or dis-

amenities, for example, public spending for education or population density. The supply-side

factors, like construction costs influenced by land use regulations or spillovers from local public

or private goods, are treated as unobservable factors. Section 4 concludes the paper.
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2 ECONOMETRIC MODELS WITH AREA-EFFECTS

Let us consider a model with area-based panel data. Assume that we have observations of m

areas for T periods. The area-effects model is expressed as follows:

yit = xitβ + ui + vit, i = 1, . . . ,m; t = 1, . . . , T (1)

The {yit} and {xit} (a 1 ×K vector) are dependent and independent variables that represent

the socio-economic properties of the ith area. The β (K×1) represents the relationship between
them which is of concern for researchers. The ui, an area-effect, represents unobservable socio-

economic characteristics in the ith area. The vit is an error that is independent and identically

distributed for all i and t. Note that {xit} does not include a constant term in the SCFEM but

does in the SCREM, as is the case for standard panel models.

Before explaining the econometric models, we have to clarify the meanings of the terms that

we use, namely, region, area and cluster. The region is the geographical domain or space where

economic activities are observed. In the empirical study in section 3, the Tokyo metropolitan

area is adopted to represent the region. An area is defined as a minimum areal unit of the

region. It is often a jurisdictional unit or a statistical unit. We adopt the municipality as

an area in the empirical study. A cluster is a collection of areas, in which an area should be

adjacent to at least one of the other areas that constitute the cluster.

2.1 THE SPATIALLY CLUSTERED FIXED-EFFEXTS MODEL

Let us assume there are q (q ¿ m) clusters. As they are unobservable we have to determine the

number of clusters, q, and their structure statistically. Then, the area-effects, ui, i = 1, . . . ,m,

should be classified into q classes, say u1, . . . , uq. The SCFEM is expressed as follows:

yit = xitβ + uq + vit, i = 1, . . . ,m; t = 1, . . . , T ; if i ∈ qth cluster (2)

The vector form of eq.(2) is:

yt = Xtβ +D0u0 + vt, t = 1, . . . , T. (3)
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The yt (m×1), Xt (m×K) and vt (m×1) are defined as yt = (y1t, . . . , ymt)
0, Xt = (x

0
1t, . . . ,x

0
mt)

0

and vt = (v1t, . . . , vmt)
0, respectively. The u0 = (u1, . . . , uq)

0 is a parameter vector to be

estimated, which we will call cluster-effects. D0 is an m× q matrix of dummies that indicates
which area belongs to which cluster. For example, if sth area and lth area belong to the same

cth cluster, then the cth element of the sth and the lth rows of D0 are the same, namely 1, and

the other elements of the rows are 0s. We will call the matrix a cluster-dummy matrix.

Now, we will consider how we can decide the rank of D0 (namely q), identify the structure

of D0 based on the model eq.(3) statistically and estimate u0 and β. That is, we have to find

how many clusters are there, which area belongs to which cluster and estimate the parameters

of concern at the same time. Without the classification of area-effects into cluster-effects, we

cannot obtain consistent estimates of u0 or a more efficient estimate of β than the within

estimates.

From the statistical point of view, detecting the rank and structure of D0 is regarded as

a model selection problem. In this case, the largest model is the case where u1, . . . , um have

different values. That is, they are not classified into fewer classes. This is the standard fixed-

effects model. On the other hand, the smallest model is the case where u1, . . . , um have the

same value, that is, they all are classified into one class, which is called the pooled model. There

are a lot of possibilities of classification between the largest and the smallest models.

In a statistical model selection context, there are two major methods, one using information-

based selection criteria, namely AIC, BIC and SBIC (see Lütkepohl (1991), for example), and

the other using a resampling method-based selection criterion. The formulas of the former

criteria are easily obtained as they are simple functions of the likelihood and the number of

parameters. On the other hand, they depend heavily upon assumptions about the distributions

of the random variables. Although the latter criterion is demanding computationally, it does

not require any assumptions about exact distributions. Stone (1977) has proved the asymptotic

equivalence of one form of the latter method, the cross-validation, to AIC.

One of the model selection criteria with the resampling methods we employed here is the
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aggregate prediction error (APE). In a regression model, it is defined as:

∆ =
1

n

mX
j=1

E((Y+j − η(Xj, F̂ ))
2|F̂ )

where Y+j is one of possible realizations at Xj, η(Xj, F̂ ) being an estimate of the mean response

function and F̂ is an empirical joint distribution of Y and X that represents data. One of the

estimates of the APE is obtained by using leave-one-out cross-validation, which is defined as:

∆̂CV =
1

n

mX
j=1

(yj − η(xj, F̂−j))2

where F̂−j represents the n− 1 observations {(xk, yk), k 6= j}. In a linear regression model, we
have η(xj, F̂−j) = xjβ̂−j where β̂−j is the estimate using only the data of Y and X , excluding

the jth sample. See chapter 6 of Davison and Hinkley (1997) for more detail of the criterion

and its estimation methods.

Let us explain the model selection procedure. The matrix form of eq.(3) is:

y = Xβ + (1T ⊗D0)u0 + v, (4)

where y = (y01, . . . ,y
0
T )
0, X = (X 0

1, . . . , X
0
T )
0 and v = (v01, . . . ,v

0
T )
0. The purposes are to find the

structure of clusters which is represented by D0 and to estimate u0 and β. They are regarded as

a sort of problems that select a set of explanatory variables to determine the rank and structure

of D0. In principle, to select these from all the possible combinations of explanatory variables,

we have to calculate ∆̂CV for all combinations and select the combination that attains the

minimum value. However, this is almost impossible because there are so many combinations.

In general, forward-stepwise (FS) or backward-stepwise (BS) methods are often used for

selecting combinations of explanatory variables when trying all combinations is impossible. We

employ both of these methods. The FS starts with the smallest model, dividing clusters or

combining adjacent areas/clusters, and selects the combination that attains the smallest APE.

The BS starts with the largest model, doing the same as the FS to attain the smallest APE.

Note that our setup of the variable-selection problem is different from the usual setup in the

following two ways. First, a new explanatory variable is created by splitting a column vector
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of an existing cluster-dummy matrix or an explanatory variable is eliminated by integrating a

column vector to an existing column vector of the matrix. For example, when the cth cluster

composed of sth and lth adjacent areas is split into two areas, then the cth column of the

cluster-dummy matrix is split into two columns. When the hth area is combined with the

sth cluster, then the column vector corresponding to the hth area is eliminated and the sth

element of the hth row vector turns from 0 to 1. Second, the combining process is subject to the

adjacency restriction. Thus, two areas that share no border cannot be combined into a cluster.

When the structure of clusters, which is represented by the cluster-dummy matrix, is changed

in the searching process, then the adjacency of areas/clusters is also altered. Thus, we have

to ensure that the adjacency information corresponds to the structure of the areas/clusters at

every step of the procedure.

Let A(m) be an adjacent matrix of areas in the largest model, which is an m×m symmetric

dummy matrix indicating which areas are neighbors of an area. For example, if the (i, j) element

of the matrix is 1, then the ith area is adjacent to the jth area. All of the diagonal elements are

1s by definition. The argument of the adjacent matrix, m, means the number of areas/clusters

of the region. We call it the dimension of the adjacent matrix. The term dimension is also used

for the cluster-dummy matrix, where it is equivalent to the number of column vectors of the

matrix. When the model is at its largest, the dimension is m. On the other hand, if all areas

belong to just one cluster, then the dimension is 1.

We will explain the process of the FS method first. In the initial condition, D(1) = 1m and

A(1) = {1}. Let us redefine yj and xj as the jth element and jth row vector of y and X for all

j = 1, . . . ,mT , respectively. Then APE(k) is calculated as:

APE(k) =
1

mT

mTX
j=1

(yj − xjβ̂−j − dj(k)û−j)2

where dj(k) is the jth column of 1T ⊗D(k), û−j and β̂−j are the OLS estimates using the data,
excluding yj, dj(k) and xj. We use two steps, a dividing step and a combining step, to search

for the cluster-dummy matrix that minimizes the APE. Both the FS and BS procedures consist

of the following two steps:
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STEP1 (Dividing Step): Select an area from the region and allocate it a different area-effect

parameter. Note that the selection is conducted from all of the areas in the region, even

if the area is already a component of a cluster. We select an area from a cluster even in

cases where, due to the selection, the remaining areas no longer constitute a cluster. This

is often the case where a selected area connects two areas or clusters that share no border.

After conducting all possible selections and calculating their APEs, choose a division that

attains the minimum of the APE. This step expands the dimension of D(·) and A(·).

STEP2 (Combining Step): Select two adjacent areas/clusters and combine them. This im-

plies that we allocate them the same new area-effect parameter. After conducting all

possible selections and calculating their APEs, choose the combining that attains the

minimum of the APE. This step shrinks the dimension of D(·) and A(·).

The FS procedure first repeatedly conducts step 1 only to find a cluster-dummy matrix that

minimizes APE. For example, if the jth area is selected in the first step from the initial condition,

D(2) becomes an m × 2 matrix composed of two vectors: a vector where all the elements are
1 except the jth element, which is 0, and a vector where all the elements are 0, except the

jth element, which is 1. A(2) becomes a 2 × 2 matrix with all elements being 1. After the
repetition of the procedure, we obtain D(l) and A(l) which corresponds to the temporally

optimized division.

Then, we search for other possible combinations of areas around this temporally optimized

division using the stepwise method that will make APE smaller. One cycle of the stepwise

procedure consists of steps 1 and 2. We conduct both steps once each, compare the APEs and

choose either the division or the combining. Of course, the combining always dominates the

division in the first stepwise process, since we start at a state where further divisions never gain

in APE. However, note that the division will gain in APE after at least one stepwise procedure

going ahead. If one of the stepwise procedures does not give a smaller APE than the previous

procedure, then we quit the procedure and take the structure of areas/clusters and estimates

of the parameters in the previous cycle as the optimized model.

In the BS procedure, we start with D(m) = Im and A(m). First, the combining step
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involves finding the cluster-dummy matrix that minimizes APE. Then, the stepwise procedure

is repeated as per the FS method. A simple example of how to obtain the cluster-dummy

matrix and the adjacent matrix is shown in the appendix.

2.2 THE SPATIALLY CORRELATED RANDOM-EFFECTS MODEL

In the SCREM, we specify the density function of the ith random area-effect, ui, conditional

on its adjacent areas as follows:

f(ui|{uj, j ∈ Ni}) = 1√
2πσu

exp
h
−(ui −m(uj; j ∈ Ni))

2/σ2
u

i
, (5)

where Ni is a set of adjacent areas of the ith area and the conditional mean is assumed to be

a linear combination of these areas as:

m(uj; j ∈ Ni) =
X
j∈Ni

λuj =
mX
j=1

λcijuj

where cij is a dummy of adjacency that satisfies cij = cji, cii = 0 and cij = 1 if area i and

area j are adjacent to each other, namely share a border between them. Otherwise, cij = 0.

The parameter λ shows how large the influence of the adjacent areas is. Note that an area is

influenced by the adjacent areas regardless of their directions, the length of the border they

share or socio-economic relationships between each pair of adjacent areas. This may be rather

restrictive in expressing spatial correlation with a statistical model, as we know only the average

effects of the neighbors with this model.

Then, the joint distribution of u = {u1, . . . , um} is obtained as follows:

u ∼ N(0m,σ2
uΣ), Σ ≡ (I − λC)−1 (6)

where C is an m×m matrix with its i, jth element being cij and thus, C = A(m). A detailed

explanation of how to derive the joint distribution is found in Cressie (1993).

The I − λC should be non-singular for the well-definition of Σ. The λ should be restricted

for the non-singularity. Let e1 < · · · < em be eigenvalues of C. There are three cases for the
restriction of λ: first, if 0 < e1, then λ < e−1

m ; second, if e1 < 0 < em, then e
−1
1 < λ < e−1

m ;
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and finally, if em < 0, then e
−1
1 < λ. (See chapter 6 of Cressie (1993) for more detail.) We will

discuss the restriction again in estimating housing-construction functions in section 4.

Now, we will briefly sketch the estimation of the SCREM using the maximum likelihood

method. We define the mT × 1 vector w containing two types of errors as:

w = 1T ⊗ u+ v.

The variance of w is obtained as follows:

Ω ≡ V ar(w) = (1T10T )⊗ σ2
uΣ+ σ2

vImT

= σ2[(1T10T )⊗ ρΣ+ (1− ρ)ImT ],

where σ2 = σ2
u+ σ2

v and ρ = σ2
u/σ

2. We define R as: R = (1T10T )⊗ ρΣ+ (1− ρ)ImT . Then, the
likelihood function of the parameters to be estimated is:

lnL(β,λ, σ2, ρ) = −mT
2
ln 2π − 1

2
ln |Ω|− 1

2
(y −Xβ)0Ω−1(y −Xβ)

= −mT
2
ln 2π − mT

2
ln σ2 − 1

2
ln |R|− 1

2σ2
(y −Xβ)0R−1(y −Xβ).

Since the MLEs of σ2 and β are obtained as

σ̂2 =
1

mT
(y −Xβ)0R−1(y −Xβ),

and

β̂ = (X 0R−1X)−1X 0R−1y,

respectively, the concentrated likelihood function is:

lnL(λ, ρ) = −mT
2
ln
h
y0(R−1 − R−1X(X 0R−1X)−1X 0R−1)y

i
− 1
2
ln |R|.

Since the R is an mT ×mT matrix, it is burdensome to calculate its determinant and inverse
matrix repeatedly in every step of the maximization procedure. To decrease the computational

burden, we use the following transformations for R−1:

R−1 =
1

1− ρ

Ã
ImT +

ρ

1− ρ
(1T ⊗ Σ1/2)(1T ⊗ Σ1/2)0

!−1
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=
1

1− ρ
ImT − ρ

(1− ρ)2
(1T ⊗ Σ1/2)

Ã
IN +

ρT

1− ρ
Σ

!−1

(1T ⊗ Σ1/2)0

=
1

1− ρ
ImT − ρ

(1− ρ)2
(1T10T )⊗

Σ− ρ2

(1− ρ)3
Σ

Ã
IN +

ρT

1− ρ
Σ

!−1

Σ

 .
Here, we do not have to take the inverse of an mT ×mT matrix but only the m×m matrix.

Even in the SCREM, we can discuss which areas have large area-effects and/or which areas

have correlations in effects using the conditional mean and variance of u, which are regarded

as realizations of the random area-effects. They are obtained as:

E(u|y) = ρ(1T ⊗ Σ)0R−1(y−Xβ),

and

E(uu0|y) = ρσ2
h
Σ− ρ(1T ⊗ Σ)0R−1(1T ⊗ Σ)

i
.

When we substitute the estimates for the parameters, we can obtain their estimates. However,

we do not show these values in the empirical studies as the estimation results are not as good

as those of the SCFEM.

3 SIMULATIONS AND ESTIMATION

In this section, we will examine whether the methods proposed in the previous section would

work well, and we apply them to analyze municipality-based data on housing construction

in the TMA. In the simulations, we will compare the estimates of the SCFEM with within

estimates and OLS estimates with true clusters being known (OLSTrue). In the OLSTrue

model, we calculate the OLS estimates based on the true model, where we know the structure

of cluster. In the estimation of the housing-construction function, we apply both the SCFEM

and the SCREM to examine the main factors that affect housing construction, how large the

unobservable supply-side factors, like regulations on housing developments, are and which areas

constitute a cluster.
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3.1 SIMULATIONS

In the simulations, we generate the necessary data based on eq.(2) for three years (T=3). We

use a 6 × 6 lattice for the total region to be examined, where there are 36 areas (m = 36 in

eq.(2)). First, we have to define which areas are neighbors of a particular area. We set as

neighbors the left, right, upper and lower adjacent areas of an area. Note that there are just

two neighbors for four corner areas in this region and three neighbors for edge areas. We make

sequential numbers for the areas in an order so that the i, jth cell of the lattice should be

6× (i− 1)+ j (see Fig. 1). We set three clusters, the upper left cluster consisting of nine areas
(1,2,3,7,8,9,13,14,15), the upper right cluster consisting of nine areas (4,5,6,10,11,12,16,17,18),

and the rest consisting of 18 areas. The cluster-effects are set as u = (2, 5, 10) for the upper

left, upper right and the remaining clusters, respectively.

The explanatory variable and the errors, xit and vit, are independently drawn from N(3, 9)

and N(0, 4), respectively. The parameter β is set to be two. We conducted 1000-times repeti-

tions.

First, we evaluate how accurately we can find the clusters among the area-effects and how

efficiently we can estimate the values of the area-effects, u, with our proposed method. For the

first point, we examine the distribution of the selected number of clusters in the simulations.

In addition, we consider the expectation regarding how many estimated clusters lie across the

true clusters. For the second point, we evaluate the efficiency from the mean squared error for

each of the 36 areas, comparing the three estimates, namely the SCFEM, the within- and the

OLSTrue estimates.

Table 1 shows descriptive statistics of the distribution of the estimated number of clusters

and the number of estimated clusters lying across the true clusters, for both the FS and the BS

method. The mean and median of the estimated number of clusters obtained with 1000-times

repetitions are 9.459 and 9 respectively for the FS method, and 9.672 and 10 respectively for

the BS method. The standard deviations are 1.897 and 1.889 for each method respectively,

whereas for both methods about 80 % of the estimates are in a region from seven to 12. With

this simulation, we know both of the methods tend to select a larger number of clusters.
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Even if the estimated number of the clusters is larger than the true clusters, this will not

cause a bias of the estimates as long as the column vectors of the true cluster matrix, D0 of

eq.(3), are expressed as linear combinations of the estimated cluster matrix D̂. In other words,

if the estimated clusters are derived by dividing the true clusters and the estimated clusters

do not lie across the true clusters, the estimates of the area-effects are still unbiased. The

expectation regarding the number of estimated clusters that lie across the true clusters is less

than 0.5, its median being 0 and the 90 percentile being 1 in the FS method. These results

are nearly the same for the BS method. Thus, the probability of the estimated clusters lying

across the true clusters is somewhat small for both methods. However, note that, even if they

are unbiased, the estimates with D̂ are less efficient than the estimates when the true clusters,

D0, are known.

In table 2, we show the simulation means of the area-effects, û, and the mean squared errors

(MSE) of the SCFEM, the OLSTrue estimates and the within estimates. The estimates of the

SCFEM, with the third column relating to the FS method, and the fourth related to the BS

method, are almost unbiased. The MSEs of the SCFEM, for both the FS and the BS method,

of the OLSTrue estimates and the within estimates are shown in the fifth column to the eighth

column. Of course, the MSEs of the OLSTrue estimates are uniformly the smallest. The MSEs

of the SCFEM, for both the FS and the BS methods, are smaller than those of the within

estimates without one exception (Area 16). Note that the MSE of the SCFEM consists of two

parts, that is, the squared bias caused by mis-clustering and the variance of the estimate. The

within estimate has a larger variance since the model has larger parameters to be estimated

than the other models. This is why the MSEs of the SCFEM estimates are smaller than those

of the within estimates, in general. The first part of the MSE is negligibly small, as the results

in table 1 show.

Second, we compare the estimates of the β of the SCFEM, for both the FS and the BS

methods, with the OLSTrue estimate and the within estimate. Table 3 shows the means,

standard deviations and MSEs of these estimates. The means of the estimates are nearly the

same and show no remarkable bias. Needless to say, the OLSTrue estimate is the most efficient

among the estimates. The estimates of the SCFEM for both methods are more efficient than
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the within estimates. Their MSEs are also smaller than for the within estimates. Thus, the

estimates of the β of the SCFEM are superior to the within estimates, both in terms of efficiency

and MSE.

From the results of the simulations, we are able to conclude as follows. First, both the FS

and BS methods tend to select a larger model than the true model. However, as the estimated

clusters seldom lie across the true clusters, estimates of the cluster-effects are almost unbiased.

In addition, they are more efficient than the within estimates. Second, the estimate of the

parameter of the other explanatory variable except the cluster-effects is more efficient than the

within estimate. Thus, the estimates proposed in this paper are more promising than the within

estimates when clusters exist.

3.2 ESTIMATION OF A HOUSING-CONSTRUCTION FUNCTION

In this subsection, we will estimate a housing-construction function and examine the magnitudes

of the factors affecting the function. We use data from 1996 to 1998 for the municipalities in

the TMA, which encompasses areas that are located within 60-minutes-distance from Tokyo

Station. There are 88 areas in the region. Note that Yokohama and Kawasaki cities each have 18

and seven areas, respectively, although these areas are only administrative branches of the cities

and hence have no jurisdictional power. We regard them as areas because their populations

are as large as an average municipality. In addition, they have distinguishable socio-economic

characteristics, which are observable from the data we used, which mark them as independent

areas. On the other hand, the Tokyo-23-discricts, which are located in the economic center of

Tokyo, surrounding Tokyo Station, have limited but not full jurisdictional power. They can

decide on public spending, urban planning and regulations on housing development, but they

cannot decide policies relating to local taxes. The other areas examined are municipalities that

are regarded as fully jurisdictional areas.

We use a logarithm of housing construction per household in a municipality as a dependent

variable.1 We assume that housing construction in an area is determined by the following fac-

1The number of households is the number registered in the beginning of a year, whereas the number of
housing constructions is calculated from the notifications of housing construction at the end of a year.
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tors. First, the socio-economic characteristics of an area that affect the housing demand of the

area are major factors. If the areas are the same with respect to the socio-economic charac-

teristics of their residents, housing demand is determined only by the number of households in

the area, so that housing construction per household is constant. In fact, the socio-economic

characteristics are very different between the areas. We decompose these socio-economic char-

acteristics into three categories, namely, economic attributes, housing stock and amenity. The

economic attributes consist of income per household and the time distance to Tokyo Station,

the housing stock, or the number of houses constructed per household and age of housing stock.

In addition, they include the amenity of population density, public spending on education per

household, the college advancement rate of the high schools, the number of hospitals/clinics per

thousand households and the number of parks per household. All of these variables are taken

into account in the logarithm.

Second, we consider supply-side effects like the regulations for housing development and

spillover effects from public or private infrastructures located near an area that should affect

the housing construction within the area. These effects are captured by the cluster-effects in the

SCFEM and by the spatial-correlation parameters in the SCREM since they are unobservable

or it is difficult to measure their strength.

Table 4 shows descriptive statistics, namely the means, standard deviations and the coeffi-

cients of variation (CV) of the dependent and independent variables from 1996 to 1998. The

coefficient of variation is a measure for evaluating spatial unevenness among the areas.

The number of houses constructed per household decreased from 1996 to 1998, although the

standard deviation increased and thus the absolute value of CV increased. This implies that the

decline of the housing boom occurred unevenly among the areas. In addition, household income

decreased in 1998, whereas the CV increased. The time distance to Tokyo Station is fixed in

1997 as no new lines were constructed in these years. The housing stock is measured by the

number of houses per household and by the age of housing stock. The former is a proxy for the

abundance of houses with respect to the number of households, while the latter measures the

need to rebuild houses. The age of the housing stock is calculated using a weighted average of

the time-lengths after construction, with weights being the proportion of houses built in certain
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construction years. The population density and its CV hardly changed in these years. Public

spending for education per household decreased constantly, as did its CV, which implies that

public spending evened out among the areas. The college advancement rate of high schools

is measured by the proportion of students who attend colleges or universities. This rate also

evened out among the areas, as did the number of hospitals per thousand households. However,

this pattern did not hold for the number of clinics. Overall, the differences of amenity among

areas came to be small.

In order to estimate the SCREM, Σ of eq.(6) should be well defined so that the range of

λ is restricted according to the values of the smallest and the largest eigenvalues of C. In

our case, the smallest eigenvalue of C, namely e1, is negative, whereas the largest one, namely

em, is positive. Thus, we have to restrict the parameter λ because e
−1
1 < λ < e−1

m in the

numerical maximization procedure of the likelihood function. In the procedure, we reformulate

λ as λ =
e−1

m +e−1
1

2
+

e−1
m −e−1

1

π
arctan(γ), −∞ < γ < ∞, where γ is the substituted parameter for

λ.

In the same way, we reformulate ρ with the substitution parameter η as ρ = 1
1+exp(η)

. We

evaluated the standard errors of λ and ρ with the delta method as s.e.(λ̂) =
e−1

m −e−1
1

π
1

1+γ2π ×
s.e.(γ̂) and s.e.(ρ̂) = ρ̂(1− ρ̂)× s.e.(η̂).
When we estimate the SCFEM with the BS method, we have to make the dimension of the

cluster-dummy matrix less than m − 3 because three explanatory variables, the time distance
to Tokyo, the number of houses per household and the age of the housing stock, are time-

invariant variables. We combine four pairs of areas with the estimation results from the within

model. We obtain estimates of the fixed-effects using the within model and then we combine

the adjacent areas by selecting the four that have the smallest differences of effects between

areas. Consequently, we make four clusters, each of which is composed of two adjacent areas.

In table 5, we show the estimation results of the SCFEM, using both the FS and the

BS methods, and of the SCREM. In addition, we show the estimation results of the linear

regression (LR) model and the within model. First, we compare the estimates of the within

model with the LR model. The within estimates are unbiased, although not efficient, in the

cases where either the SCFEM or the SCREM are true, whereas the LR estimates are unbiased
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if the SCREM is true but are biased if the SCFEM is true. The signs of the LR estimates of

important explanatory variables, like household income and population density, are the same

as the estimates of the within model. Household income has no significant effect in either of

the models, while population density has a significantly negative effect on housing construction

both in the LR and the within models. The magnitudes of population density are bigger in the

within model than in the LR model. Based on both of the model selection criteria, adjusted R2

and the aggregate prediction error, the within model is superior to the LR model. As a result,

we discard the LR model.

Second, we compare the remaining three models, beginning with the SCREM. The esti-

mates of household income are significantly positive, whereas those of population density are

significantly negative. The estimates and values of the SCFEM are very similar to those of

the SCREM in this case. The components of the housing stock are insignificant, and public

spending for education per household has significant negative effects on housing construction.

This result differs from the estimation results of the SCFEM and the within models. Further-

more, the adjusted R2 of the SCREM is somewhat lower than the other models. Thus, we can

conclude that the SCREM is the least preferable model, compared with the other models for

this data set.

Third, we compare the within model with the SCFEM. The within model cannot employ the

time-invariant explanatory variables, like time distance to Tokyo Station or variables relevant

to the housing stock, although they are captured in the fixed-effects, as well as in other area-

specific effects. It is a defect of the within model that we cannot discuss the effects of these

variables. The signs and values of the estimates using the within model are nearly the same as

for the SCFEM, except for the value of the population density coefficient. However, unlike the

SCFEM estimate, the estimate of household income is not significant. Moreover, the aggregate

prediction error is bigger for the within model than for the SCFEM. Thus, the SCFEM is

preferable to the within model.

Finally, we examine which method of the SCFEM is better using our data set, the FS or the

BS method. The signs of the estimates are different for the number of houses per household,

the number of hospitals and the number of clinics, as they are negative for the BS method
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but positive using the FS method. The number of clusters with the BS method is 69, whereas

with the FS method it is 50. Note that the estimates become less efficient as the number of

clusters becomes larger. In particular, when we want to discuss the structure of the clusters,

the efficiency of the estimates is important. The adjusted R2 with the BS method is larger

than for the FS method and the within model. However, using the BS method, the aggregate

prediction error is bigger than for the FS method, but smaller than for the within model. With

these facts, we conclude that the SCFEM with the FS method is the best of these models using

our data set.

Now, we examine the effects of the factors influencing housing construction using the esti-

mation results of the SCFEM based on the FS method, which were shown in table 5. In relation

to the factors for economic attributes, the coefficient of household income was significantly pos-

itive, whereas that of distance to Tokyo Station was significantly negative. The number of

houses constructed per household was larger in areas that had higher household incomes and

were nearer to Tokyo Station.

The estimation results of factors in the housing stock are interesting. The signs of the number

of houses per household and the age of the housing stock are significantly positive and negative,

respectively. These results reflect the difficulties of housing construction in areas that developed

in earlier periods. Because a huge number of individual landowners own small portions of land,

large-scale development of houses in these areas is costly. Most of the landowners are old, live

on pensions and have a deep affection for their town, so that they have no incentive to either

re-build or sell their houses.

The coefficients of the variables in amenity are significant except for number of hospitals

per thousand households. Population density, the college advancement rate of high schools

and the number of parks all have negative effects. By contrast, public spending for education

per household and the number of clinics per thousand households have positive effects. The

estimation results seem to be reasonable, except for the college advancement rate and number

of parks. In general, the high schools with high college advancement rates locate in areas

that are centers for wider areas. Students with high scores commute from the suburbs to the

center. Housing development in this center is restricted or difficult because it was developed in
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an earlier period. Thus, the college advancement rate is not a good proxy of the educational

environment of an area. The coefficient of the number of parks is negative because parks are

not in such high demand in the suburbs as in business districts. This is because more natural

environments remain in the suburbs, whereas business districts tend to have more parks.

Figures 2 and 3 are Choropleth maps that show the spatial distribution of the estimated

values of the cluster-effects and the location of clusters, respectively. Table 6 shows the values

of the cluster-effects. The cluster-effects term represents unobservable area-specific factors,

beyond the explanatory variables, that affect housing construction in the area. Larger positive

values of the effects mean that unobservable factors do enhance housing construction. From

figure 2 and table 6, we find that unobservable effects are large in the east, west and north of

central Tokyo and in the Tokyo-23-districts. However, they are small in the south.

Our explanatory variables do not incorporate factors that would reduce the construction

cost of houses. In general, houses are supplied in the TMA, not in the form of detached houses

but in the form of condominiums. Although large developments decrease the cost of housing

construction and often attract consumers, it is often subject to restrictive regulations. Since

municipalities can impose a new regulation or change the coverage of regulations regarding

land use, typically zoning, construction costs are different among the municipalities. These

regulations underlie the unobserved factors represented by the area-effects. The estimated

area-effects mean that it is easier to undertake large developments of condominiums in the east,

west and north of the TMA. Because the south of the TMA was developed earlier than were

other areas, it has tended to suffer from over-population and congestion for a long time. The

regulations against large development are more severe than in the other areas. The exceptional

municipality that has high area-effects in the south is Kamakura, which is the famous old capital

and a strongly preferred residence.

In figure 3, we find that the biggest cluster is located in Yokohama city and is composed of

eight out of the 18 areas of the city. The next largest cluster lies across Yokohama and Kawasaki

cities, which are adjacent each other. Two clusters composed of five areas are located in the

center of the Tokyo-23-districts and of boundary areas in the west of the Tokyo-23-districts.

We cannot say exactly what factors assist in creating clusters from these results, but the larger
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clusters tend to locate in the Tokyo-23-districts and the cities of Yokohama and Kawasaki. This

is consistent with our intuition, as there are well-developed public transportation networks in the

Tokyo-23-districts and the areas of Yokohama and Kawasaki have no independent jurisdictional

powers. Smaller clusters tend to be formed along the main railways.

4 CONCLUSION

In this paper, we have proposed two types of econometric models, a spatially clustered fixed-

effects model (SCFEM) and a spatially correlated random-effects model (SCREM), to examine

area-based panel data. We have observed that housing construction is spatially uneven in

the Tokyo Metropolitan Area (TMA). We investigate what factors affect housing construction,

incorporating unobservable factors, such as local differences in regulations governing housing

developments and spillovers of local public or private goods, which may cause spatial clustering

or correlation of housing construction.

The SCFEM is a type of fixed-effects model where a cluster has the same effects, so that

we have to find which areas constitute a cluster. The issue of finding clusters can be regarded

as a problem of model selection from too many possible models. We adopt an aggregate predic-

tion error as a model selection criterion, which is estimated by a resampling method, namely

leave-one-out cross-validation. Forward- and backward-stepwise methods are employed for the

searching procedure. We show by simulations that these methods work well and the estimated

parameters of concern are more efficient than the within estimates. The SCREM is a model

where the random-effects are spatially correlated. We use the concentrated maximum likelihood

method for the estimation.

We estimate housing-construction functions and find that the SCFEM using the forward-

stepwise method is the best model since its aggregate prediction error is the smallest among

the models and the signs and magnitudes of the estimates are rationally accountable. The

unobservable area-effects are large in the east, west and north areas of the TMA but small in

the south. This may result from the fact that the south was developed earlier than the other

areas, so that regulations against housing development are more severe. Clusters are found
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in huge cities like Yokohama, Kawasaki and the Tokyo-23-districts. This is partly because

Yokohama and Kawasaki have no independent jurisdictional powers and partly because there

are spillover effects from the well-developed public transportation networks in the Tokyo-23-

districts. Smaller clusters tend to be formed along the main railways.
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Appendix:

In this appendix, we provide an example of how to construct the cluster-dummy matrix,

D(k), and the corresponding adjacent matrix, A(k) with dimension k. Let A(m) be the matrix

of the largest model, which means it is the matrix representing adjacency of the municipalities

of the region. In this example, there are seven municipalities and the adjacency is represented

by A(7) as:

A(7) =



1 1 0 1 0 0 0
1 1 1 0 1 0
1 0 0 1 1
1 1 1 0
1 1 0
1 1
1


,

where the lower-left elements are omitted for simplicity since A(m) is symmetric. Starting with

this state, assume that we can combine the second and sixth area into a cluster. We impose a

rule that the column vector with the larger column number is merged into the smaller-number

column vector when combining areas/clusters. Then, the cluster-dummy matrix is obtained as:

D(6) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1


.

The corresponding adjacent matrix is constructed as follows. Let a(k)j be the jth column

vector of A(k). Define a logical operator of dummy vectors with elements being 1 or 0, ∨, that
creates a vector which takes a disjunction of two vectors. For example, when x = {0 1 0 1} and
y = {1 1 0 0}, then x ∨ y gives {1 1 0 1}. With this operator, replace the second column and
row vectors of A(7) as follows:

a(7)C2 ⇐ a(7)C2 ∨ a(7)C6,
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and

a(7)R2 ⇐ a(7)R2 ∨ a(7)R6,

where subscripts represent the numbers of the columns or the rows, respectively. Then, the

newly created adjacent matrix is obtained as:

A(7) =



1 1 0 1 0 0 0
1 1 1 1 1 1
1 0 0 1 1
1 1 1 0
1 1 0
1 1
1


.

The adjacency of the created cluster, which is composed of what were previously the second

and sixth municipalities, is represented by the second column of the above matrix. The sixth

column is now redundant. Hence, the adjacent matrix of dimension six is obtained by deleting

both the sixth column and row vectors as follows:

A(6) =



1 1 0 1 0 0
1 1 1 1 1
1 0 0 1
1 1 0
1 0
1


.
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No. of Clusters
No. of Estimated

Clusters Lying across
True Clusters

No. of Clusters
No. of Estimated

Clusters Lying across
True Clusters

Mean 9.459 0.479 9.672 0.485
s.d. 1.897 0.593 1.889 0.583

5 percentile 6 0 7 0
10 percentile 7 0 7 0
Median 9 0 10 0
90 percentile 12 1 12 1
95 percentile 13 1 13 1

Backward-stepwise method

Table 1: Descriptive Statistics of Selecting Clusters

Forward-stepwise method



Area

Mean of
SCFEM

Estimates:
FS

Mean of
SCFEM

Estimates:
BS

MSE of
SCFEM

Estimates:
FS

MSE of
SCFEM

Estimates:
BS

MSE of OLS
Estimates
with True

Model

MSE of
Within

Estimates

1 1.968 1.963 1.157 1.204 0.158 1.612
2 2.030 2.034 0.971 1.023 0.158 1.335
3 2.099 2.100 1.279 1.309 0.158 1.406
7 1.921 1.928 1.156 1.167 0.158 1.529
8 2.009 2.000 0.993 0.970 0.158 1.318
9 2.106 2.111 1.333 1.276 0.158 1.405
13 1.983 1.974 1.089 1.066 0.158 1.393
14 1.973 1.980 1.027 1.051 0.158 1.352
15 2.055 2.053 1.149 1.128 0.158 1.316

4 4.873 4.871 1.417 1.489 0.185 1.569
5 4.916 4.903 1.070 1.160 0.185 1.438
6 5.038 5.048 0.967 1.057 0.185 1.379
10 4.874 4.896 1.276 1.285 0.185 1.393
11 4.945 4.955 0.961 0.965 0.185 1.250
12 5.011 4.994 0.902 0.954 0.185 1.324
16 4.893 4.879 1.711 1.609 0.185 1.572
17 5.005 4.991 1.191 1.064 0.185 1.348
18 5.011 4.988 1.232 1.142 0.185 1.369

19 10.038 10.033 1.046 1.158 0.112 1.450
20 10.052 10.068 0.930 1.059 0.112 1.460
21 10.057 10.043 0.837 0.996 0.112 1.373
22 9.892 9.912 1.095 1.198 0.112 1.503
23 9.964 9.957 0.918 1.140 0.112 1.389
24 10.010 10.019 0.914 1.036 0.112 1.313
25 10.050 10.075 0.978 1.117 0.112 1.548
26 10.022 10.020 0.922 1.126 0.112 1.476
27 9.924 9.914 0.789 0.992 0.112 1.318
28 9.998 10.000 0.847 1.012 0.112 1.373
29 9.918 9.930 0.812 1.069 0.112 1.436
30 9.947 9.965 0.793 0.972 0.112 1.278
31 10.057 10.077 0.954 1.113 0.112 1.395
32 9.956 9.949 0.810 1.052 0.112 1.374
33 9.972 9.961 0.874 1.050 0.112 1.354
34 10.015 9.992 0.964 1.120 0.112 1.509
35 9.941 9.963 0.905 1.093 0.112 1.438
36 9.989 9.967 0.778 0.962 0.112 1.237

Table 2: Estimates of the Area-Effects and Mean Squared Errors

Notes: SCFEM, FS and BS are abbreviations of spatially clustered fixed-effects model, forward-
stepwise and backward-stepwise, respectively.
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SCFEM
estimate with

forward-
stepwise
method

SCFEM
estimate with

backward-
stepwise
method

OLS Estimates
with True

Model Known
Within estimate

Mean 2.0016 2.0016 1.9995 1.9973
S.D. 0.0736 0.0754 0.0633 0.0783

MSE 0.0054 0.0057 0.0040 0.0061
Note: S.D. is an an abbreviation of standard deviation.

Table 3: Comparison of the Estimates



Table 4: Descriptive Statistics of the Data

Mean S.D. Coefficient of Variation
1998 1997 1996 1998 1997 1996 1998 1997 1996

Dependent Variable

-3.591 -3.494 -3.395 0.310 0.273 0.252 -0.086 -0.078 -0.074

Independent Variable

1.595 1.610 1.604 0.121 0.116 0.115 0.076 0.072 0.072

5.212 3.041 0.583

0.029 0.059 2.024

-0.368 0.082 -0.224

9.002 8.996 8.991 0.488 0.491 0.494 0.054 0.055 0.055

-1.510 -1.457 -1.412 1.240 1.305 1.328 -0.821 -0.896 -0.941

3.750 3.678 3.613 0.383 0.435 0.473 0.102 0.118 0.131

-2.328 -2.319 -2.261 0.542 0.574 0.561 -0.233 -0.247 -0.248

0.578 0.586 0.583 0.479 0.482 0.489 0.827 0.823 0.840

0.029 0.059 2.024No. of Parks per
household (log)

Population Density (log)
Public Spending for

Education per Household
(log)

College Advancement
Rate of the High Schools

(log)
No. of Hospitals per 1000

household (log)

No. of Housing
Construction per
Household (log)

Economic Attributes

Household Income (log)

Time Distance to Tokyo
Station (log)

Housing Stock

No. of Houses per
Household (log)

Age of Housing Stock
(log)

Amenity

No. of Clinics per 1000
household (log)



Linear
Regression

Model

Within
Model

FS BS

-2.088 -2.580
1.086 0.691

1.008 0.904 0.586 0.181 0.335
0.137 0.176 0.317 0.209 0.745
-0.008 -0.196 -0.001 0.001
0.003 0.013 0.008 0.005

0.564 -0.927 0.687 0.600
0.255 0.291 0.522 0.335
-0.343 -2.615 -0.227 -0.435
0.186 0.284 0.438 0.281

-0.245 -0.950 -0.220 -0.193 -2.909
0.040 0.064 0.087 0.052 0.888

0.208 0.274 -0.136 -0.071 0.263

0.025 0.054 0.044 0.029 0.077

-0.175 -0.128 -0.038 0.089 -0.135
0.029 0.046 0.063 0.045 0.090
0.047 -0.065 0.085 0.019 -0.117
0.021 0.032 0.053 0.037 0.092
0.184 -0.451 0.145 0.250 -0.120
0.038 0.061 0.089 0.051 0.369
-0.877 -0.896 -0.190 -0.076 -0.895
0.038 0.039 0.033 0.023 0.049

0.168
61.432

0.577
1.524
0.067

No. of Clusters 50 69 1 88

-1.293
Adjusted R2 0.842 0.873 -0.015 0.249 0.869

0.012 0.015 0.067 0.017

Table 5: Estimates of SCFE and SCRE Models

Note: The italics are standard errors of the estiamtes. The standard error of σ 2 is not calculated because it is not so
important nor easy for calculation. FS and BS are abbreviations of forward-stepwise and backward-stepwise,
respectively.

Aggregate Prediction Error

Spatial error term

Log Likelihood

College Advancement Rate
of the High Schools (log)
No. of Hospitals per 1000

household (log)

No. of Clinics per 1000
household (log)

No. of Parks per household
(log)

Age of Housing Stock (log)

Amenity

Population Density (log)

Public Spending for
Education per Household

(log)

Household Income (log)

Time Distance to Tokyo
Station (log)

Housing Stock

No. of Houses per Household
(log)

Spatially Clustered
Fixed-Effects Model

Spatially
Correlated

Random-Effects

constant

Economic Attributes

λ

ρ

2σ



Table 6: Structure of Clusters and Effects of Unobservable Factors

1 1.323 0.490 34 1 31 0.704 0.529 19 5 61 -0.259 0.514 9 1
2 1.380 0.520 35 2 32 1.517 0.546 40 1 62 0.599 0.522 16 1
3 1.380 0.520 35 2 33 1.132 0.522 28 5 63 0.392 0.515 12 2
4 1.227 0.512 31 3 34 1.531 0.517 41 3 64 -2.514 0.501 2 3
5 1.227 0.512 31 3 35 0.860 0.526 24 4 65 -2.193 0.504 5 1
6 1.227 0.512 31 3 36 0.294 0.534 11 1 66 -2.467 0.505 3 8
7 0.858 0.498 23 3 37 0.860 0.526 24 4 67 -2.467 0.505 3 8
8 0.858 0.498 23 3 38 0.860 0.526 24 4 68 -2.467 0.505 3 8
9 1.235 0.523 32 1 39 0.704 0.529 19 5 69 -2.351 0.519 4 1

10 2.131 0.511 49 1 40 0.416 0.506 14 2 70 -2.762 0.503 1 2
11 1.206 0.508 30 1 41 0.704 0.529 19 5 71 -2.762 0.503 1 2
12 0.729 0.493 20 1 42 0.416 0.506 14 2 72 -2.008 0.501 6 7
13 0.588 0.517 15 1 43 0.979 0.506 25 1 73 -2.467 0.505 3 8
14 1.471 0.508 38 2 44 0.406 0.512 13 1 74 -2.467 0.505 3 8
15 0.812 0.494 22 1 45 1.471 0.508 38 2 75 -2.467 0.505 3 8
16 0.688 0.497 18 1 46 1.028 0.532 27 1 76 -2.008 0.501 6 7
17 0.673 0.513 17 1 47 1.720 0.521 45 1 77 -2.467 0.505 3 8
18 0.858 0.498 23 3 48 1.132 0.522 28 5 78 -2.467 0.505 3 8
19 1.132 0.522 28 5 49 1.531 0.517 41 3 79 -2.008 0.501 6 7
20 0.994 0.512 26 1 50 1.744 0.513 46 1 80 -1.769 0.495 7 2
21 1.531 0.517 41 3 51 1.237 0.534 33 1 81 -2.514 0.501 2 3
22 1.684 0.529 44 1 52 0.860 0.526 24 4 82 -2.514 0.501 2 3
23 1.139 0.518 29 1 53 2.204 0.533 50 1 83 -2.008 0.501 6 7
24 1.562 0.505 42 1 54 1.509 0.521 39 1 84 -1.769 0.495 7 2
25 0.787 0.502 21 1 55 1.997 0.534 48 1 85 -2.008 0.501 6 7
26 1.132 0.522 28 5 56 1.387 0.518 36 1 86 -2.008 0.501 6 7
27 0.242 0.565 10 1 57 1.627 0.516 43 1 87 -2.008 0.501 6 7
28 1.132 0.522 28 5 58 1.795 0.517 47 1 88 1.401 0.519 37 1
29 0.704 0.529 19 5 59 -0.332 0.512 8 1
30 0.704 0.529 19 5 60 0.392 0.515 12 2

Note: The s.e. is the abbreviation of standard error. All areas/clusters are numbered with the cluster number.
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