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Abstract

Despite wide recognition of their significant role in explaining sustained growth and economic
development, uncompensated knowledge spillovers have not yet been fully modeled with a microeconomic
foundation.  How do knowledge spillovers occur?  What are the channels through which  knowledge
spillovers influence the advancement and concentration of economic activity?  This paper illustrates the
exchange of knowledge as well as its consequences on agglomerative activity in a general-equilibrium
search-theoretic framework.  Agents, possessing differentiated types of knowledge, search for partners to
exchange ideas in order to improve production efficacy.  When individuals’ types of knowledge are too
diverse, a match is less likely to generate significant innovations.  We demonstrate that the extent of
agglomeration has significant implications for the patterns of information flows in economies.  By
simultaneously determining the patterns of knowledge exchange and the population agglomeration of an
economy we identify additional channels for interaction between agglomerative activity and knowledge
exchange.  The main implication of the model is a negative correlation between population and diversity of
knowledge exchange.  Contrary to previous work in urban economics and growth theory, it is possible that
a decentralized equilibrium is under-populated or over-populated and under-specialized or over-specialized
in knowledge exchange, compared to the social optimum.  By allowing for perpetual knowledge
accumulation, we find that population agglomeration is generally accompanied by higher growth. The main
findings remain qualitatively unchanged even if we allow individual knowledge types to change over time,
though the creation of new types of knowledge may result in multiple equilibria. 
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I. Introduction

Uncompensated knowledge spillovers have played a central role in explaining sustained growth

and economic development.  In their pioneering work, Romer (1986) and Lucas (1988) develop models in

which the positive external effects of society’s aggregate knowledge or human capital stock promote

economic growth.  The incorporation of this type of positive externality has resulted in abundant research

in the areas of growth and development.  These insights, however, raise many important but unsettled

questions.  How do knowledge spillovers occur?  What are the consequences of knowledge spillovers on

the advancement and concentration of economic activity?  Lucas points out that interaction among

economic agents is the key for the development of knowledge:  “...human capital accumulation is a social

activity involving groups of people...” (p. 19).  Given that interaction seems to promote both knowledge

acquisition and creation, various types of economic clusters may emerge as economic organizations to

foster the transmission of information.  The present paper is devoted to examining these important but

largely open issues.

Our paper establishes a microfoundation to explain the patterns and implications of knowledge

exchange.  Knowledge exchange involves an interpersonal externality: “if one man starts a new idea, it is

taken up by others and combined with suggestions of their own; and thus it becomes the source of new

ideas.” (Marshall 1890, p.352).  Kuznets (1962) echoes this view by emphasizing: “creative effort

flourishes in a dense intellectual atmosphere, and it is hardly accident that the locus of intellectual progress

lies in the larger cities; ... the possibility of more intensive intellectual contact ... afforded by greater

numbers may be an important factor in stepping up the rate of additions to new knowledge” (pp.328-9). 

Jacobs (1969) also stresses that knowledge spillovers are the primary force for agglomeration, such as city

formation, firm clustering, and geographical concentration of research activity.  Furthermore, Shell (1966)

demonstrates that technical knowledge may be transmitted with very little resource cost.  As a

consequence, knowledge can be regarded as a public good in production and the knowledge-induced

production externality provides a basis for sustained economic growth.  



1Empirical studies by Rauch (1993) and Saxenian (1994) seem to concur with these insights by
demonstrating that cities provide the opportunity for knowledge transmission to occur.  Jaffe et al (1993,
1996) also show that knowledge spillovers are localized in the sense that patents are more likely to cite
previous patents from the same area and spillovers can cross national borders only with delay.  Audretsch
and Feldman (1996) find that even after controlling for the geographical concentration of production,
innovative activity clusters more in industries where knowledge spillovers are crucial.  Glaeser et al
(1992) and Henderson et al (1995) suggest that spillovers occur both within and between industries and
characteristics of urban areas play a role in the location decisions of industries.  Ciccone and Hall (1997)
document that locally increasing returns resulting from geographical concentration can explain more than
half of labor productivity variation across U.S. states.

2Glaeser (1999) considers the role of cities for the propagation of knowledge.  His focus,
however, is more on the role of cities to promote knowledge acquisition by younger, less skilled workers
from older and more skilled workers.  In contrast, we focus on the potential to learn from individuals with
different types of knowledge or ideas as a stimulus for the evolution of knowledge and agglomeration. 
Helsley and Strange (2002) provide an alternative view on cities and innovative activity.  They describe
how agglomeration facilitates innovation by lowering the costs of innovation through a higher density of
factor suppliers.  
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These arguments suggest that agglomeration promotes the transmission of knowledge due to lower

costs of communication in dense environments and fosters growth.1  Yet, despite the clearly important role

of geography for the propagation of knowledge, spatial considerations have received limited attention in

the theoretical literature.2  We attempt to fill this gap by developing a simple search-theoretic model

particularly suitable for analyzing the knowledge transmission mechanism and its interactions with

agglomerative activity.  We believe the random-matching model to be the most appropriate for studying

these issues because it provides an explicit notion of transactions costs (search and entry frictions) and

patterns of interaction (knowledge exchange).  The latter aspect, in particular, allows us to analyze the

relationships between endogenous knowledge exchange and endogenous population agglomeration.    

In our economy, agents, such as individual consumers/workers, firms and patent holders, possess

horizontally differentiated types of knowledge and search for partners to exchange ideas, so as to improve

production efficacy.  We consider that heterogeneity (in terms of different types of knowledge) plays a role

in the transfer of knowledge.  When individuals’ types of knowledge are too diverse, a match is associated

with less knowledge exchange.  The same applies when individuals’ types are too similar, so little is

obtained through collaboration.  We first endogenously determine the range of agents with whom an



3For a discussion of the properties and uses of the classical closed and open city models of urban
economics, see Fujita (1989).

4For papers examining the links between market frictions and economic growth, see Aghion and
Howitt (1994), Laing, Palivos, and Wang (1995), and Acemoglu (1996). 

5Pred (1966), for example, argues that “[i]t is logical that the larger the city, the larger the number
of intentionally and unintentionally overlapping information fields of laborers and other industrial
personnel, the larger the volume of influential short-distance information flows...”  (pp. 128-9).
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individual will undertake knowledge exchange, hereafter called the knowledge spread, and characterize its

determinants in a closed-city model.  We later consider the case of a small, open city.  This allows us to

study the interactions between the determinants of knowledge exchange and the endogenous process of

population agglomeration.  By characterizing the role of heterogeneity for the flow of ideas, our structure

provides insights into questions regarding human capital accumulation, the patterns of information flows,

and their interactions with agglomerative activity.  

In our first model, we consider the case of a closed-city where the population size is fixed.3  This

exercise is important for two reasons.  First, it is valuable in the endogenous growth context as we provide

explanations behind the determinants of knowledge exchange.  We show that economies with higher search

or market frictions will have more diversified patterns of information exchange so that individuals obtain

more, but generally less effective, interactions with others.  Thus, market frictions play an important role in

the patterns of human capital accumulation and an economy’s rate of growth.4   Second, we show that the

extent of agglomeration may influence an economy’s pattern of information flows and development.  We

demonstrate that economies with a higher population size will have more specialized patterns of knowledge

exchange and higher welfare.5 

In our second model, we simultaneously determine the patterns of knowledge exchange and the

spatial agglomeration of the economy.  Extending our analysis to determine the economy’s population size

provides additional channels for interaction between agglomerative activity and knowledge exchange.  

Within the closed-city framework, the level of technology does not affect the range of individuals agents

try to meet.  Under the endogenous population migration setup, however, a higher level of technology



6For example, Romer (1986) and Lucas (1988) show that knowledge accumulation may be below
the socially optimal level because individuals do not take into account the benefits of their own level of
human capital on aggregate learning.  In contrast, we show that human capital accumulation may be
inefficient because of the economy’s matching externality.   
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improves production efficacy and further encourages agglomeration.  With a higher population size,

individuals can concentrate on more effective knowledge exchange and thus try to work with a smaller

range of individuals.  In general, any factor that induces a higher population mass will enhance knowledge

exchange, whereas any factor that promotes knowledge exchange will encourage more migration.

In an array of extensions, we depart from the benchmark model by incorporating perpetual

knowledge accumulation, thereby allowing us to study the interactions between population agglomeration

and economic growth. In particular, we find that higher growth is accompanied by a larger population. We

also consider how knowledge exchange leads to the development of new types of knowledge which further

expands the breadth of knowledge of society. In this context, we find that multiple equilibria emerge.

Finally, we examine how an individual’s base of knowledge may evolve as a result of matching.

Contrary to previous work in spatial agglomeration or endogenous growth, we demonstrate the

possibility that a decentralized equilibrium is under-populated or over-populated and under-specialized or

over-specialized in knowledge exchange, compared to the social optimum.  This occurs for two reasons. 

First, as individuals decide to migrate, they do not take into account the effect of their entry on the total

population mass.  This is a congestion externality which is common in the urban economics literature. 

Second, we provide a channel for agglomeration inefficiencies to arise due to distortions associated with

knowledge exchange.  This results from a matching externality - since the arrival rate of potential

collaborators may depend on the remaining mass of unmatched individuals, agents do not take into account

the effect of their choices on the pool of potential collaborators and the probability of matching for other

individuals.  This establishes an additional reason for knowledge transfer to be socially inefficient.6 

Because of the matching externality, the decentralized equilibrium may be under-specialized in knowledge

exchange or under-populated relative to the social optimum.



7Similar knowledge spillover factors are also considered in Palivos and Wang (1997), Eaton and
Eckstein (1997), and Black and Henderson (1998), among others, in urban growth frameworks.
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The remainder of the paper is organized as follows.  We conclude the introduction by providing a 

brief survey of the related literature.  Section II describes the economy’s physical environment.  In Section

III, we consider determination of the economy’s steady-state equilibrium in a closed-city (fixed population)

model.  This allows us to identify the effects of the level of agglomeration on the economy’s endogenous

patterns of knowledge exchange.  In Section IV, we simultaneously determine the patterns of interaction

and the economy’s population size.  We also examine the optimality properties of the decentralized

equilibrium allocation.  Section V generalizes our matching framework to allow for endogenous knowledge

accumulation and endogenous growth. Section VI further extends our structure to endogenize the

economy’s knowledge space over time and illustrates an extension of the basic structure to permit an

individual’s knowledge type to evolve as a result of matching. Section VII concludes.  The Appendix

contains an extension and some additional mathematical details.

Related Literature

Our paper is related to prior research in both urban economics and the labor matching literature.

Within the context of urban economics, Fujita and Ogawa (1982) study urban configurations by

constructing a “locational potential function” to account for the externality of business agglomeration.  In

their model, they postulate that firms’ profits are lower when firms are located farther apart.  Berliant, Peng

and Wang (2002) examine urban structures in the presence of uncompensated inter-firm knowledge

spillovers which decrease with the distance between firms.7  However, these papers regard the mechanism

of knowledge spillovers as exogenously given, thereby ruling out any two-way interactions between

endogenous patterns of knowledge transmission and population agglomeration.  This unexplored issue is

the main focus of the present paper.

Our work is also connected with previous contributions in the labor matching literature.  Jovanovic

and Rob (1988) study the diffusion and growth of knowledge in a model where agents exhibit
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heterogeneity in the “vertical” aspects of knowledge (i.e., of the same type but of different quality).  Our

approach differs from theirs as we emphasize the “horizontal” aspects of knowledge and allow for

interactions between knowledge exchange decisions and agglomerative activities.  Helsley and Strange

(1990) illustrate how agglomeration economies can result from a matching process between firms and

heterogeneous workers in a system of cities.  Our framework contrasts with their approach since we

consider knowledge exchange as the main driving force for agglomeration and our model is explicitly

dynamic.  Additionally, unlike these papers, we conduct both positive and normative analyses by

characterizing the decentralized equilibrium as well as the social optimum.  

Summarizing, our main contributions to the two streams of research, urban economics and

matching in labor markets, are threefold.  First, rather than assuming the presence of uncompensated

knowledge spillovers in public goods or aggregate externality forms as in the literature, we model explicitly

the knowledge exchange activity and the choice with whom to match in an economy with heterogeneous

agents.  Second, search dynamics and random matching are central to our analysis of knowledge exchange

and agglomeration.  Despite our focus on characterizing the steady-state equilibrium and social optimum,

our model is dynamic with active searches within a random-matching framework that captures the ideas of

Marshall (1890), Kuznets (1962) and Jacobs (1969) .  In particular, we use a two-sided random-matching

model, which allows us to generate transactions costs endogenously.  Delay in finding others with whom to

produce or delay in detaching from matched production is the transactions cost in our model.  It is not

possible to model such costs in a static framework.  Notably, the endogenous transactions costs in our

framework stem from two sets of decision-making in our analysis:  (i) the choice of the knowledge spread

which results in the matching externality and (ii) the migration decision which affects the arrival rate of

matches in the economy.  

Furthermore, we contend that the random matching aspects of knowledge exchange are quite

relevant for our study. Thus, following Marshall, Kuznets, and Jacobs, we postulate that unpredictable

interactions between individuals facilitate new production.  Third, we do not assume that the productivity



8It is important to delineate the differences between our work and the entrepreneur input-sharing
model of Helsley and Strange (2002, hereafter referred to as HS), an interesting and important
contribution that might appear to be closely related.  This discussion also allows us to be explicit about
the innovations in our model relative to the rest of the literature.  The fundamental difference is: our paper
develops a two-sided random- matching microfoundation for knowledge exchange, while theirs is a
deterministic intermediate input matching model with randomness introduced only in the arrival of input
requirements for new inventions.  There are three additional major differences.  First, and following on
the matching framework, in our model, agents know the quality of a potential match before they make
their decisions about whether or not to produce.  In HS, this is not known to the entrepreneurs until after
they decide to produce.  Second, the incentives involved in the exchange or creation of knowledge are
substantially different in our work than HS.  In their model, firms attempt to take their new “projects” to
the market in anticipation of being able to receive ex-post monopoly rents. Thus, the compensation for
newly developed ideas provides incentives for innovation. In contrast, the surplus from matching and
exchanging ideas in our model is freely available to both agents in a match. Consequently, the surplus is a 
pure externality. Therefore, in comparison to HS, there are no prices in our model and the exchange of
knowledge is uncompensated.  Finally, as previously mentioned, our model features production (matching
surplus) as a single peaked function of the difference in agent characteristics. HS employ a model where
intermediate inputs are endogenously determined on a circle by suppliers, while input requirements for
new inventions enter randomly on the circle.  Distance between available inputs and the requirements of
new inventions increases cost, absorbed by the entrepreneur. Thus, they employ a surplus function that is
monotonically decreasing in the difference between matching characteristics.  (The reader may also be
referred to their paper for a discussion contrasting our paper with theirs.)  We claim that neither model is
a special case of the other.  In particular, there is no obvious mapping between the equilibrium concepts
and the predictions of the two models.
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of a match is monotonically decreasing with the difference in agents’ knowledge types.  Rather, we assume

that there is an optimal difference, not necessarily zero, so production as a function of knowledge

differences is single peaked.8

II. The Basic Structure of the Economy

This section specifies the economic environment and outlines the mechanisms through which

knowledge spillovers occur among agents.  We use a continuous-time framework where each infinitely-

lived agent has an identical discount rate of r > 0.  For illustrative purposes, we present in this section a

simple benchmark setup of a steady-state economy with knowledge exchange, relegating the discussion of

knowledge accumulation and endogenous growth to Section V below. 

II.A. Economic Agents

Our goal is to investigate the impact of heterogeneity on the patterns of knowledge accumulation,

as well as its interactions with agglomerative activity.  We emphasize the ‘horizontal’ aspects of knowledge
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rather than its ‘vertical’ aspects.  Each agent is endowed with a specific type of knowledge from the set 6

which embodies the set of ideas or types of knowledge that society has available.  We refer to 6  as the

“knowledge space” of the economy.  The knowledge space may contain any fields of relevance, such as art,

biology, history, physics, and economics.  As agents in this economy might be regarded as individual

workers/consumers, firms, or patent holders, one could interpret k 0 6 as an individual’s primary field of

expertise.  

We make the following additional assumptions about the economy.  First, there is a continuum of

agents in the economy with a total population of Lebesgue measure N.  Second, we assume that agents’

knowledge types are uniformly distributed across the economy’s knowledge space.  In addition, the

knowledge space, 6, is a circle of unit circumference.  Please refer to Figure 1 where the knowledge space

is depicted.  Each point along the circle indicates a particular knowledge type.  For illustrative purposes,

Figure 1 highlights two specific knowledge types k and k’.  As we have described, this could represent two

different fields such as art and biology.  Finally, note that since N is the total population in the economy

and knowledge types are uniformly distributed across 6, the density of individuals of each knowledge

type is also given by N.  

II.B. Intellectual Exchange

Agents can meet with others, collaborate and share their knowledge, which enables them to

produce more effectively when matched.  To begin, consider two individuals k and kN ,6 currently

matched and exchanging information with each other.  Obviously, heterogeneity among agents plays an

important role in the transfer of knowledge.  To model the effects of heterogeneity on the knowledge

exchange process, we consider the following possibility.  When individuals are too alike, they cannot

accomplish much and little knowledge will be obtained.  In contrast, if individuals are too different, they



9We show in an extension in the Appendix that our results are robust to the alternative possibility
that knowledge exchange is monotonically more effective when agents are alike.

10In general, one may define an individual’s knowledge expertise as a set.  Such generalization
would, however, require the adoption of the Hausdorff metric to measure the knowledge distance between
different sets of individual knowledge.  For simplicity, the present paper labels agents by a single point
representing their expertise, allowing us to adopt the conventional Euclidean metric to measure the
distance between two individuals in knowledge space.

9

will not have productive exchange.  This latter point can be envisioned by contemplating the results of a

match between a brain surgeon and an opera singer, as they have little in common to communicate and

hence nothing to exchange.9

Therefore, it is important to define a distance measure in the knowledge space.  Let the knowledge

distance between k and kN , 6  be measured by the Euclidean metric d(k,k’).10  Under our construction

regarding the efficacy of knowledge exchange, it is natural to assert there is an optimal level of idea-

diversity among agents denoted by .  Specifically, knowledge exchange is increasing in d for  but

decreasing in d for .

The additional knowledge obtained by an individual k, when collaborating with another individual

kN, is denoted as S(k,kN) and is given by:

 (1)

The term q0 refers to the additional knowledge that an agent obtains from a match independent of the

knowledge type of a partner.  The parameter a1 reflects the sensitivity of knowledge exchange to

heterogeneity among agents with different types of expertise or ideas.  Finally, a0 reflects the maximum

increase in production that results from differences in ideas while s0 is a positive scaling factor for

knowledge exchange.  We assume throughout that each parameter in S(k,kN) is non-negative.  

For clarity, we illustrate the role of heterogeneity among agents for knowledge exchange in Figure

2.  This figure is depicted from the perspective of an individual of knowledge type k.  The horizontal axis

of Figure 2 represents the set of knowledge types that the individual may meet.  The vertical axis gives the

flow value of matching with each type of agent.  Figure 2 emphasizes that agents would generate the most



11Admittedly, our structure has two limitations in order to provide tractability.  On the one hand,
we do not allow for an individual-specific quality measure which may play a role in affecting the efficacy
of knowledge exchange (e.g., a high ability agent may gain little from a low ability agent regardless of
their knowledge heterogeneity).  On the other, new knowledge obtained from matching does not
permanently augment an individual’s human capital level.  We address this second limitation in section
V.B.
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new knowledge upon producing with an individual who is  units away in idea space.  For an  individual

of knowledge type k, Figure 2 shows that the best matches would occur upon meeting with either an

individual of knowledge type k -  or k + .

We briefly summarize the important concepts regarding intellectual exchange.  In our model,

heterogeneity in terms of agents’ types of knowledge affects the efficacy of exchanging information and

producing with others.  As one possibility for understanding the role of heterogeneity for knowledge

exchange,  we initially assume that knowledge exchange is less effective when meeting with individuals

who are too alike or too different.  To formalize this idea, we postulate that there is an optimal level of

idea-diversity among agents which we denote as .  This assumption is just a simple way of attempting to

uncover the impact of heterogeneity among agents on the process of knowledge exchange and human

capital accumulation in actual economies.11  Finally, since the additional knowledge obtained through

matching depends on the distance between d(k,k’) and , we find it useful to refer to the distance,

, as the match-specific knowledge spread.  This match-specific knowledge spread is denoted as

*(k,k’), which measures the distance away from an ideal match between a pair of agents k and kN , 6 .

II.C. Production and Tastes

By meeting and exchanging ideas with each other, individuals enhance their ability to produce  a

homogeneous consumption good.  With their additional knowledge stock, , agents produce flow

output, y(k,k’) given by:

  (2)

where A > 0 is a scaling factor capturing the overall level of technology in the economy.  In addition,

everyone in the economy has the same preferences over the homogeneous consumption good with flow
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utility given by:

  (3)

where y is the consumption of output which occurs upon matching and creating new knowledge.  There is

no disutility of effort.  Moreover, flow utility is intertemporally separable.  Individuals make choices, as

described below, to maximize their expected lifetime utility.   

II.D. Meetings

In our economy, each agent enters as unmatched to search for a partner to exchange ideas. 

Unmatched agents meet via a random- matching technology.  Let U denote the mass of unmatched

individuals and let M denote the mass of matched individuals in the economy, where M = N ! U.  In order

to illustrate how a dense economic environment fosters more opportunities for interaction, we assume that

the flow of meetings is given by a well-defined, standard random- meeting technology.  That is, the

aggregate number of meetings per unit of time is given by a function m that has as its first argument the

number of unmatched agents who can be in the first position of a meeting, and as its second argument the

number of unmatched agents who can be in the second position.  If there were two distinct populations,

then the two positions or arguments could differ in a feasible allocation.  However, since our agents meet

symmetrically (in that any agent can meet with any other), at a feasible allocation the number of eligible

agents in each argument of m is the same.  

Specifically, we write m(U, U’), where m is strictly increasing and concave in each argument and

homogeneous of degree ( > 1 (exhibiting increasing returns to scale) and where m satisfies standard

boundary conditions m(U, 0) = m(0, UN) = 0.  We can thus rewrite the random- meeting technology for

feasible allocations (U = U’) as:  m(U, U) = U( m(1, 1).  This follows the specification in Diamond (1982),

implying that the flow probability for an unmatched agent to locate another is higher in economies with a

higher population density of unmatched agents.  For feasible allocations, symmetry makes this flow

meeting rate resemble the arrival rate of meetings in one-sided search and matching models – thus, we will

use flow meeting rate and arrival rate interchangeably.  More explicitly, denoting this arrival rate per



12Note that we could also allow for decreasing returns to scale in the matching technology if ( 0
(0, 1). Under this interpretation, there would be congestion in matching. Although allowing for decreasing
returns is possible in our framework, it is clearly not appropriate for our study and does not appear to be
relevant empirically. (See the discussion that follows in the next paragraph of the text.) Alternatively, one
may deviate from our random- matching setup to incorporate directed search as in Lagos (2000), where
an explicit micro structure is considered.  Agents wishing to move between locations are given
exogenously by a Markov chain and thus the aggregate movement is nonstochastic under a large-number
approximation.  This latter approach will have the “aggregate matching function” arising endogenously. 
Under the economic environment of this study, the aggregate matching function for feasible allocations
(U = U’) becomes:  m(U, U) = U min{1, N}, where N is regarded as parametrically given by individuals,
depending on the degree of search frictions of the economy.  Thus, we have: :(U) = "0, with "0 / min{1,
N} > 0, i.e., the arrival rate is a constant whenever N > 1 and is generally independent of the mass U even
if N # 1.  It should be noted that we can allow for a more general matching technology to yield: :(U) = "0
+ "U, which encompasses the Lagos case without changing any of the main findings.

13For a comprehensive survey of empirical matching functions, the reader is referred to a recent
article by Petrongolo and Pissarides (2001).
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unmatched individual by :, we have :(U) = m(U, U)/U = U(-1 m(1, 1).  (It is the arrival rate for each

individual that is important in each agent’s optimization problem.)  When we come to solving the model

analytically, we will for simplicity make the assumption that ( = 2, under which the arrival rate becomes

linear in the mass of unmatched agents:  :(U) = "U, with " / m(1, 1) > 0 measuring the arrival intensity.12  

Empirically, there is evidence suggesting that this random- matching technology in the labor

market may exhibit constant or increasing returns to scale.  For example, Blanchard and Diamond (1989)

use national-level U.S. data to estimate the aggregate matching function and find it either of constant or

mild increasing returns.  Constructing the matching function from disaggregate individual-level U.S. data,

Anderson and Burgess (2000) lend support to increasing returns in labor matching functions at the state

level.13  In the context of micro matching for individual knowledge exchange and agglomeration, casual

empirics seem to be more favorable toward increasing returns.  The basic idea is straightforward: with a

larger mass of individuals residing in a given physical area, individuals interact more frequently, which

results in a higher arrival rate of potential partners for knowledge exchange.  The idea that population

density may stimulate knowledge exchange and production is emphasized in Kuznets (1962), Pred (1966),

and Jacobs (1969), as illustrated in introduction.  Indeed, one could also interpret the arrival rate : as the

inverse of the amount of time it takes for information flows to accrue across sectors in an economy rather



14This is, in fact, the interpretation adopted by Alfred Marshall, “...so great are the advantages
which people following the same skilled trade get from near neighborhood to one another.  The mysteries
of the trade become no mysteries; but are as it were in the air, and children learn many of them
unconsciously.”  (1895, p.352)

13

than an explicit search-theoretic interpretation, which is still consistent with our random- matching

framework.14  

Further, given the effects of heterogeneity on the efficacy of knowledge exchange in this economy,

it is important to distinguish between meetings and matches.  Meetings occur between any two agents with

flow probability :(U) = "U, but only a subset of meetings result in matches.  Agents do not want to

produce with individuals whose areas of expertise are too alike or too different, since such a match  would

result in less effective knowledge exchange.  This is reflected in the match-specific knowledge spread,

*(k,k’).  Note that an agent’s optimal match-specific knowledge spread with no transactions cost is

*(k,k’)=0.  Due to the expected delay between meetings, individuals will accept matches with a positive

match-specific knowledge spread.  Agents will not accept all matches, however, because individuals cannot

meet other potential partners while matched and separation is not instantaneous.  Thus, individuals will

choose a range of acceptable matches, reflecting a trade-off between the quantity and quality of matches.  

Throughout the paper, we will focus only on steady-state pure-strategy symmetric Nash equilibria. 

We hereafter refer to the individual agent’s choice of acceptable matches simply as the knowledge spread,

*k, which is the lifetime utility maximizing match-specific knowledge spread to agent k with any agent kN ,

6 .  As illustrated in Figure 2, the choice of *k leads to acceptance by an agent of type k of matches in two

intervals,  and .  The agent’s knowledge spread, in turn, affects the

frequency of matches.  We therefore denote the endogenous flow probability of a match for an individual

agent k as $(*k;U ).  Of course, as we demonstrate below, $(*k;U ) < :(U).  

As mentioned above, $(*k;U ) will depend on the range of types of knowledge that an agent k

accepts for intellectual exchange.  Specifically, k will select a range of agents with whom to exchange ideas

given by:



15In focusing on steady-state equilibrium allocations in our economy, the total mass of unmatched
agents, U, will be constant over time and the flow probability of matching will be the same in each period. 
Thus, there is no incentive for individuals to choose a different knowledge spread in each time period.   

16An exogenous separation rate provides tractability.  We could endogenize the separation rate
along the lines of Jovanovic (1979) if the productivity of each match is not known ex-ante and agents
update their beliefs regarding the productivity of a match over time.  Once an agent determines that a
match is not sufficiently worthwhile, endogenous separation would occur.  This extension is not likely to
add more insights into the fundamental issues we study. 
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 (4)

as depicted in Figure 3.  Thus, in computing the flow probability of a match, $(*k;U ), we may write:15

   (5)

Note that the term  reflects the total mass of individuals that agent k selects as potential matches.

This is divided by the total mass of unmatched agents to obtain the proportion of unmatched agents in the

economy that agent k selects to try to engage in intellectual exchange.  The flow probability of a match is

thus given by the flow probability of a meeting multiplied by the proportion of unmatched agents selected

for knowledge exchange.  In addition, matches between agents are terminated with an exogenous flow

probability 0, i.e., the exogenous detachment rate in the economy is given by 0.16  If two individuals meet,

but do not match, detachment occurs immediately.  

The selection over which agents are accepted for matches is restricted to pure-strategy best

responses taking as given the behavior of other agents.  It will depend on both the effectiveness of

knowledge exchange and primitives of the economic environment such as the ability of individuals to meet

in the economy.  For example, as it becomes easier for unmatched agents to meet, individuals would be

expected to be more selective in the range of agents they will accept for engaging in knowledge exchange. 



17See Diamond and Fudenberg (1989) and Trejos and Wright (1995) for constructing analogous
evolution equations in their search models.
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II.E. Asset Values

Recall that in any time period, agents will either be matched or unmatched.  Each state is associated

with a different level of expected lifetime utility because agents’ consumption opportunities will vary

depending on whether they are currently matched or not.  Therefore, let VMt (k, k’; U) denote the expected

lifetime utility for an agent of knowledge type k who is currently matched with an agent of knowledge type

k’ in time period t.  The expected lifetime utility for an unmatched agent of knowledge type k is given by

VUt (k; U) in time period t.  

We begin by describing the evolution of the expected lifetime utility for an agent of knowledge

type k.17  A derivation of the agent’s Bellman equation is easiest to see by considering time in discrete units

of length ).  Under this time convention, the expected lifetime utility for an agent who is currently matched

in time period t is given by:

  (6)

where under the Poisson assumption for the separation rate, the probability that a breakup will occur within

the time interval ) is given by 0).   Until the break-up occurs, it is assumed that agents will be exchanging

information and producing.  As of period (t+)), the individual will have an expected lifetime utility of

VUt+)(k; U).  In contrast, with probability (1- 0)), agents will remain matched and therefore have an

expected discounted lifetime utility of VMt+)(k, k’; U) as of period (t+)).  Rearranging (6), dividing by ),

and taking limits as )60 yields:

  (7)

We choose to study the steady-state of the economy.  In this setting, the values of all variables are assumed

to be constant over time.  In particular, the expected lifetime utility of a matched agent is independent of

time and, from (7), the Bellman equation for an agent of knowledge type k who is currently matched with
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an agent of type kN is:

  (8)

This implies that the flow value of matches is the sum of the flow output produced based on new

knowledge obtained and the expected capital loss associated with the change of state from a matched to an

unmatched agent.  Specifically, note that the value of matching is independent of time, which rules out

cyclical behavior.     Analogously, we can express the corresponding Bellman equation for unmatched

agents of type k.  It is derived in the same manner as the Bellman equation for matched agents.  Given the

set of knowledge types and  (that an

individual of knowledge type k selects for matching), the Bellman equation for an unmatched agent of type

k is:

 (9)

It is important to note that the selection strategy will be chosen by recognizing the tradeoff between a

higher number of matches (a contact rate effect) and more effective matches (a “knowledge efficacy”

effect) because knowledge exchange would not be effective when an agent is matched with agents who are

too similar or too different.   

From (4) and (5), we obtain $(*k; U ) = 4:(U)*k.  Using this relationship, manipulation of

equations (8) and (9) yields a solution for an agent’s unmatched value function which is provided in the

following lemma: 

 
Lemma 1: (Unmatched Value) An agent’s unmatched value can be written as a function of *k and U :

    if  

      VU(*k;U) = (10)

    if    

Proof.   All proofs are in the Appendix.
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II.F. Steady-State Populations

In any time period, agents will either be matched or unmatched.  Without imposing additional a

priori heterogeneity in the knowledge space, we assume that the distribution of unmatched (and thus

matched) agents is uniform.  Constant population in the steady-state therefore requires that the inflows and

outflows of population in each category are equal in each time period. 

For each type of agent, there is a given mass of unmatched individuals Uk.  Also, let Mk denote the

pool of matched agents of type k.  From the pool of unmatched agents, the flow probability that an agent

will find a suitable match is given by $(*k; U ).  Suppressing arguments for notational convenience, this

implies that an outflow of $(*k; U )Uk agents of type k from the unmatched pool will become matched

within the period.  Similarly, given the exogenous detachment rate 0, an inflow of 0Mk agents of type k will

enter the unmatched pool.  Since we intend to examine a symmetric, steady-state equilibrium we require the

following in order for the populations of matched and unmatched agents to remain constant over time:

 (11)

where the reference to agents of type k is removed in the interest of a symmetric equilibrium.  From (11)

and the result that $(*;U ) = 4:(U)* we find  

. (12)

Individuals regard their own selection of the knowledge spread as having no influence on the steady-state

population of unmatched agents.

  
III.  Steady-State Equilibrium

In this section, we focus on determining the steady-state pure-strategy symmetric Nash

equilibrium in the context of an environment where the population mass is exogenously given.  This allows

us to highlight the influence of the extent of agglomeration on the knowledge exchange process, as well as

to obtain insights concerning the knowledge spread.  Throughout, we assume that:



18By Lemma 1, the agent’s unmatched value function has a kink at *k= .  Under Assumption 1,
however, this kink will occur where VU(*k;U) is negative.  Therefore, the value of  does not affect the
agent’s choice of her knowledge spread.  This considerably simplifies the analysis.  The Appendix
presents some additional technical details for the case where Assumption 1 does not necessarily hold. 
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Assumption 1.  (Knowledge Diversity) The optimal level of idea-diversity satisfies:18 

                            

Consider,

 
Definition 1: (Steady-State Equilibrium)  A non-degenerate, symmetric, steady-state equilibrium (SSE) is

a tuple   satisfying the following conditions:

(E-1) agents maximize their expected lifetime utilities through their choice of the knowledge spread, 

that is   is such that: /   VU(*k;U) , where the value function VU satisfies (7);

(E-2) equilibrium range of agents for k to exchange ideas: (4);

(E-3) steady-state population: (12);

(E-4) symmetry: , œ k 0 6; 

(E-5) there is interaction among agents (the steady-state equilibrium is non-degenerate):  

Notice that there is an ex ante optimal level of idea heterogeneity, , between any two matched

parties.  Based on parameters of the model such as matching rates, agents establish the maximal distance  

away from  to match.  As illustrated in Figure 3, this determines the equilibrium range of agents with

whom agent k exchanges ideas.  Upon deriving the range of individuals for whom agents match, we can pin

down the degree of diversity of knowledge exchange in this economy in steady-state equilibrium. Once the

equilibrium knowledge spread, , is determined, the steady-state populations of matched and unmatched

agents can be derived using (12).  Symmetry is also important here.  Any time when two agents meet, they

both have the same possible gains from matching.  Therefore, if an agent of type k wants to match with an
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agent of type kN, then type kN also wants to match with type k.   

For the remainder of the paper, we assume: :(U) = "U. 

Theorem 1: (Existence and Uniqueness) Suppose that Assumption 1 holds and s0 and a1 are strictly

positive.  Under these conditions, the steady-state equilibrium knowledge spread, , is defined by:

      N (13)

Thus, the (non-degenerate) symmetric, steady-state equilibrium exists and is unique.

 Upon establishing existence of the steady-state equilibrium for the economy, we seek to understand

how the pattern of information flows, as exhibited by the knowledge spread, responds to the extent of

agglomeration, as measured by the exogenous population size in the basic model. We can show:

 
Proposition 1: (Effect of the extent of agglomeration on knowledge exchange pattern)  Economies with a

higher population mass have a smaller equilibrium knowledge spread.  

 
Intuitively, this occurs because the probability of finding other unmatched agents is higher in economies

with a higher population mass.  As a consequence, agents are more selective in knowledge exchange.  The

main implication of this result is that with population agglomeration, knowledge spillovers are likely to be

more specialized.  Interestingly, these benefits associated with specialization are different than those 

suggested by Adam Smith.  Although Smith posited that internal economies of scale may drive

specialization and the division of labor, we show that specialization can also be driven by external effects

due to matching.  A higher density of workers implies that for any given matching range, the likelihood of

finding an acceptable partner will be higher.

It may be noted that as knowledge itself becomes more specialized, knowledge exchange with

agents in other fields becomes less effective.  This is captured in our model by a higher penalty for

heterogeneity (a1), which induces agents to become more selective in matching.   However, the overall

level of technology (A) has no effect on the equilibrium knowledge spread.  A higher level of technology
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raises the productivity of each match, but it also raises the costs of a higher knowledge spread because

agents forfeit production that would have been obtained from more effective knowledge exchange with

other agents.  

We next turn to the various effects of matching frictions.  An increase in the efficiency of the local

economy’s matching technology, ", is associated with a smaller knowledge spread.  When it is easier for

unmatched agents to find potential partners for knowledge exchange, they can concentrate on finding more

productive matches.  The effects of the discount rate are similar.  If the discount rate is higher, agents are

less patient and therefore less finicky when trying to locate partners.  Finally, the exogenously given

detachment rate, 0, is positively associated with more diverse patterns of knowledge exchange.  This occurs

because higher values of 0 imply that matches do not last as long on average, resulting in a smaller

opportunity cost to taking part in relatively less effective knowledge exchange.

IV. Endogenous Migration

In this section, we discuss equilibrium determination of the population size along with the steady-

state equilibrium knowledge spread.  In contrast with the benchmark case investigated in Section III, where

the population mass is exogenously given, we pin down the equilibrium knowledge spread along with the

endogenous population mass.  This framework provides numerous insights into the interactions between

the patterns of knowledge exchange and the process of agglomeration.  We demonstrate that these

considerations identify new sources of inefficiency associated with population migration.  In particular,

individuals fail to take into account the potential effect of the selection of their knowledge spread on others,

which we refer to as the matching externality effect.  The matching externality effect provides a channel

that suggests the equilibrium population size may fall below its socially optimal value.  We also find that a

congestion externality exists in the economy.  Although the existence of congestion externalities is

standard in the conventional urban economics literature, we show this effect also has implications for the



19See chapter 6 of Fujita (1989) for details of the conventional model that results in cities that are
overpopulated in equilibrium relative to the social optimum.  There are some models that generate cities
that are underpopulated in equilibrium relative to the optimum.  In the presence of either a fixed set-up
cost [Abdel-Rahman (1990)] or a free-rider effect [Palivos and Wang (1997)], the equilibrium city size
may be too small.  Within our general equilibrium search-theoretic framework, channels for either over-
population or under-population are present.

20See Chapter 6 of Fujita (1989) for a discussion of congestible city goods.

21Our model of endogenous migration is an open city model.  We could close the model using a
system of cities approach where migration across locations may occur until equilibrium is achieved.
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patterns of knowledge exchange.19  In particular, we demonstrate that the congestion effect causes

individuals to under-search by over-specializing in knowledge exchange.

In regard to migration decisions, individuals must account for costs associated with residing in the

city under consideration.  These costs (which are asserted to depend positively on N) may, for example, be

seen as the (present-discounted) value of city taxes imposed on each immigrant.  A higher N may be

associated with congestion costs or destruction of existing structures, thus requiring government

infrastructure spending to increase at least proportionately (i.e., a higher N leads to the same or an increase

in real per capita infrastructure costs).20  In short, we specify v=v(N) as the (average) entry cost function,

where v is strictly increasing (and convex) in N.  For comparative statics exercises, we view any increase in

costs associated with residing in the city as an increase in ‘entry’ costs and represent them as a shift in the

entry cost function.

Please refer to Figure 4 to better understand how the endogenous population mass is determined. 

The horizontal axis of Figure 4 represents different values of the population mass, N, and the vertical axis

provides the different values for an unmatched agent’s expected lifetime utility and entry costs for each

value of N.  In our analysis, an agent’s unmatched value function is expressed in terms of N by substituting

for U from the steady-state population condition (12).  Individuals will continue to migrate as long as

VU(*;N) $ v(N) .21  For values of N less than ,  VU(*;N) > <(N), providing an incentive for agents to move

to the area.  If  N is greater than , agents would obtain higher expected lifetime utility by choosing not to

migrate to the area.  Thus when the extent of agglomeration is such that VU(*; ) = v( ), migration will no



22Our results can be generalized to the case of increasing, weakly concave functional forms for
the entry cost function. We present the linear case here because it is the most tractable.
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longer occur.  For these reasons, we refer to the condition that VU(*; ) = v( ) as the equilibrium entry

condition.  It may also be useful to think of the condition VU(*; ) = v( ) as the endogenous population

condition.  From the equilibrium entry condition, we can obtain a locus of * and N where individuals are

indifferent between migrating and not migrating.  Through this endogenous migration choice, the

population mass is pinned down for each possible value of the knowledge spread.  In combination with the

knowledge spread locus, we are able to obtain a steady-state equilibrium allowing for endogenous

migration.  

IV.A.  Steady-State Equilibrium with Endogenous Migration

The elements above forge our definition of a steady-state equilibrium with endogenous migration. 

Consider, 

 
Definition 2: (Steady-State Equilibrium with Endogenous Migration)  A non-degenerate, symmetric

steady-state equilibrium with endogenous migration (SSEEM) is a SSE  together with a

population mass  satisfying the following additional conditions:

(E-6) equilibrium entry: VU( ; ) = < ( ) œ k 0 6;

(E-7) population agglomeration occurs (the steady-state equilibrium is non-degenerate): .

 We illustrate our solution algorithm through the use of Figure 5 where the horizontal axis

represents the different values of an agent’s knowledge spread and the vertical axis lists values of N.  We

first derive the knowledge spread (KS) locus which determines the choice of the knowledge spread * by

each agent for a given size of population mass N.  We next determine the values of *, U, and N that keep

agents indifferent between migrating and not migrating to the area, i.e., equilibrium entry of agents from

Figure 4.  For tractability, we begin our analysis by focusing our attention on the case where the entry cost

function is linear in the population size (v(N)=v0 N).22  We refer to the equilibrium entry (EE) locus as the
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relationship between the total population, the mass of unmatched agents and the knowledge spread such

that individuals are indifferent between migrating or not migrating to the city. A steady-state equilibrium

with endogenous migration occurs for values of the knowledge spread and population mass where the

equilibrium entry and knowledge spread loci intersect.  

Assumption 2.   

Theorem 2: (Existence of Steady-State Equilibrium under Endogenous Migration)  Suppose that

Assumptions 1 and 2 hold and s0 and a1 are strictly positive. Then a non-degenerate steady-state

equilibrium with endogenous migration (SSEEM) exists and is unique.

 
We continue by outlining some interesting connections between knowledge exchange and

endogenous agglomeration.  Additional results are presented in the Appendix.  

  
Proposition 2: (Interactions between the pattern of knowledge exchange and the extent of agglomeration) 

An SSEEM possesses the following properties:

(i) any exogenous factor that induces a higher equilibrium population mass  will reduce the

equilibrium knowledge spread ;

(ii) any exogenous factor that reduces the equilibrium knowledge spread  will induce a higher

equilibrium population mass .  

 
Part (i) of Proposition 2 is an extension of Proposition 1 to the case of endogenous migration.  The intuition

for the result in Part (ii) is generally straightforward.  As an example, we describe the effects of an increase

in ".  A higher arrival intensity (") implies that agents can concentrate on finding more effective

opportunities for knowledge exchange and hence will choose a lower knowledge spread (  lower) -- this is

reflected by the shift of the KS locus to the left (see Figure 5).  In addition, however, the higher arrival
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intensity raises the gains from migrating because there is less delay between matches.  This results in a

higher steady-state equilibrium population mass (  higher) which further encourages agents to favor more

effective collaborative efforts.  The effects of other variables which promote knowledge exchange are 

qualitatively the same. 

In contrast with the closed-city model in Section IV, we find that more technologically advanced

cities (cities with higher A) will have more specialized patterns of information sharing.  This occurs

because the higher level of technology has the direct effect of inducing more population agglomeration. 

Because of the beneficial aspects of population density for matching, agents in turn decide to become more

specialized in their matching.  Similar results emerge in regard to the effect of different parameter values

concerning the effectiveness of knowledge exchange.  According to our closed-economy analysis, a higher

penalty for heterogeneity (a1) induces agents to become more selective in matching.  This result does not

remain robust to allowing for population migration.  Due to the negative effects of the penalty for migration

incentives, less agents will decide to migrate.  With a lower population mass, there is a lower population

density, making it difficult to meet other agents.  As a result, agents increase their knowledge spread in

equilibrium. 

IV.B.  Socially Optimal Knowledge Spread and Population Mass

In Section IV.A., we analyzed the various two-way interactions between the endogenous

knowledge transmission mechanism and the process of population agglomeration.  In this section, we

demonstrate that these interactions lead to new sources of inefficiency associated with population

migration.  

In a decentralized equilibrium, individuals choose their knowledge spread to maximize their

unmatched value function given the population size, and continue to migrate until the net utility from

migrating is equal to zero.  In a social planner’s problem, we assume that the city planner (or the

immigration officer) seeks to maximize the net welfare of a representative city resident (i.e., social welfare

maximization of J.S. Mill) over (i) the knowledge spread and (ii) the population mass (or mass of



23We make two clarifying remarks.  First, we use our definition of a social optimum instead of a
Pareto optimum as our welfare criterion.  In particular, the latter concept need not be well-defined in an
“open city” model with migration, since the set of agents present in the model is ill-defined. 
Conceivably, one could close the model using a system of a large number of cities and show that the
Pareto and social optimum are the same; that is beyond the scope of this paper.  Second, we consider the
case where a city planner chooses to maximize the net welfare of only the individuals residing in the city;
the city does not yet exist when the planner solves the optimization problem.  One may also consider the
case in which the city does exist and the social planner maximizes the welfare of current residents and
potential immigrants.  This entails consideration of redistribution issues which detract from our principal
interest – the interactions between the social inefficiencies from knowledge exchange and congestion
externalities.

24Conceptually, this means that at time 0, all agents that will enter the city are unmatched, but at
any time greater than zero in this continuous time model, steady state is presumed to occur.
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unmatched agents) to be established in which all residents simultaneously move to the city.23  Since an

agent enters the economy as unmatched, his/her expected value of potential future matches is captured by

VU(*;U).  Since both * and U may vary over time, a true social optimum would involve solving the entire

path of .  For simplicity as well as for comparison with the steady-state equilibrium analysis, we

instead restrict our attention to a “steady-state” social welfare maximization with invariant values of

.24  Formally, define:

 
Definition 3: (Social Optimum)  A symmetric social optimum (SO) is a triple  satisfying:

(S-1) optimal knowledge spread and population size:

where VU is defined as in (10);

 
(S-2) steady-state population: (12).

Theorem 3: (Existence of a Social Optimum) Suppose that Assumption 1 holds and that s0 and a1 are 

strictly positive.  Under these conditions, a social optimum exists and is unique.

 
Thus, the social planner chooses * and N simultaneously to maximize the net welfare of a 

representative resident.  Because the arrival rate depends on the mass of unmatched agents, it is more

convenient to transform the problem such that the social planner chooses * and U to maximize the net



25Mathematically, this is isomorphic to solving for * and N first, which provides a solution for U
in a recursive manner, though the transformed problem is more tractable.  

26Burdett and Coles (1997) demonstrate the existence of a sorting externality in their analysis of
marriage markets.
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utility of a potential representative resident.  Then, by applying the steady-state population condition, (12),

we can solve for N.25  As we demonstrate below, the situation where " is a function of U implies that a

matching externality occurs in equilibrium.  This, in turn, distorts the economy’s extent of population

agglomeration.

We can compare the decentralized equilibrium with the social optimum to conclude:

  
Proposition 3: (Social inefficiency)  It is possible that a decentralized equilibrium SSEEM is under-

populated or over-populated relative to the social optimum (SO); it is also possible that an SSEEM is

under-specialized or over-specialized in knowledge exchange compared to the SO.  

We shall illustrate this result graphically after some discussion.  In our model, social inefficiency arises for

two reasons.  First, the city may feature an equilibrium population mass larger than the social optimum

because individuals do not consider their impact on the city utility level.  By not taking into account their

effect on the overall population mass, the city may be over-populated relative to the social optimum.  This

result occurs in much of the conventional urban economics literature--we show, however, this congestion

externality leads to an additional distortion in the pattern of information flows in an economy.  In

particular, we demonstrate that the congestion externality may cause individuals to under-search for

potential collaborators by over-specializing in knowledge exchange. 

Second, there is another possible inefficiency when the gains from a higher population density are

sufficiently large.  The selection of the knowledge spread induces a matching externality in the economy.26 

This occurs because agents fail to account for the fact that accepting matches with more types of

individuals lowers the mass of unmatched agents in the economy, rendering it more difficult for everyone

to meet other unmatched agents.  This potentially results in a decentralized equilibrium that is under-
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specialized in its patterns of knowledge exchange and under-populated relative to the social optimum.    

Specifically, the first-order condition for the social planner’s choice of the knowledge spread is:   

  (14)

Note that the first term in (14) corresponds to the choice of the individual’s knowledge spread in a 

decentralized equilibrium.  Individuals, taking the mass of unmatched agents as given, choose the

knowledge spread to maximize their expected lifetime utility.  The social planner, however, takes into

account that a larger knowledge spread lowers the mass of unmatched agents in the economy (which we

refer to as the matching externality effect).  This is the second term in equation (14).

As stated in Proposition 3, it is possible that compared to the social optimum, a decentralized

equilibrium is under-populated or over-populated and under-specialized or over-specialized in knowledge

exchange.  For illustrative purposes, we will discuss the two most interesting cases (i) a decentralized

equilibrium is over-populated and over-specialized relative to the optimum (Figure 6); (ii) a decentralized

equilibrium is under-populated and under-specialized relative to the optimum (Figure 7).  To introduce

these arguments graphically, we need to introduce some additional notation.  Denote VU( ; N) as an

unmatched agent’s expected lifetime utility given the private choice of the knowledge spread.  In addition,

let VSP(**, N) denote an unmatched  agent’s expected lifetime utility under the planner’s choice of the

knowledge spread, **. 

Next, we refer to Figure 6 where the horizontal axis gives the population mass, N, and the vertical

axis gives the entry cost (< ), and expected lifetime utilities for unmatched agents under the private and

planner’s choice of the knowledge spread (VU and VSP ).  Consider the case where the matching externality

is minimal so that the planner’s choice of the knowledge spread is not too much smaller than in

equilibrium.  Since the matching externality in this case is not too strong, an agent’s unmatched value

function (VU) will not lie much below the lifetime utility that would occur (for each value of N) under the

planner’s choice of the knowledge spread (VSP) .  Recall that under endogenous migration, the steady-state



27It is evident that a mixed force of matching and congestion externalities may lead to under-
population with over-specialization or over-population with under-specialization in a decentralized
equilibrium.
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equilibrium population level is pinned down where the unmatched value function intersects with the entry

cost function, .  For the social optimum, however, the population level is found where the slope of the

unmatched value function with respect to N has the same slope as the entry cost function, N*.  In this case,

we obtain the standard over-population result in decentralized equilibrium as in the urban economic

literature.  Moreover, individuals over-specialize in knowledge exchange and this under-searching behavior

is consistent with that obtained in the endogenous growth literature.

Now refer to Figure 7.  In contrast with the analysis above, when the matching externality effect is

strong, the equilibrium value of the knowledge spread is large relative to the optimum.  As a consequence,

VSP may lie far above VU and the optimal population N* exceeds the equilibrium population . 

Interestingly, in a decentralized equilibrium, cities are under-populated and individuals are over-searching

to yield an under-specialized knowledge exchange pattern.27  This finding contrasts with conventional

results in both the urban and growth literatures.

We now make our arguments more precise by proceeding with a formal discussion of our results.

We first present the conditions for the endogenous knowledge spread and population mass in equilibrium:

(15)

 (16)

In contrast, the planner’s choices of the knowledge spread and population mass are:

 (17)

 (18)

where the LHS is the marginal social benefit whereas the RHS is the marginal social cost. 



28Alternatively, if we allow for matches to breakup, there will be a non-uniform distribution of
individuals with different levels of human capital due to randomness in meeting partners.
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Although it would be quite interesting to derive conditions on the parameter space for the various

cases of Proposition 3, such analysis is intractable. Instead, we provide the examples below which illustrate

our insights. In obtaining our illustrative results, we assume that: v(N) =  v1 + v0 N, under which only three

out of four possible cases can be established.

Example 1 (Under-Specialization and Over-Population). Consider: q0=1, s0=1, a0=.5, a1=5, A=1, r=.2,
0=.2, "=.2, v0 =.2, v1=0. In this case, the steady-state equilibrium (with endogenous migration) allocation is

whereas the socially optimal allocation is . Thus, the equilibrium
allocation is under-specialized and the economy is now over-populated in equilibrium compared to the
social optimum. 

Example 2 (Over-Specialization and Over-Population). Maintain all values of the parameters except
"=.5. In this case, the steady-state equilibrium (with endogenous migration) allocation is

whereas the socially optimal allocation is . Thus, the equilibrium
allocation is over-specialized and the economy is now over-populated in equilibrium compared to social
optimum. Further, higher values of " lead to further deviations between the equilibrium and the socially
optimal allocation.

Example 3 (Under-Specialization and Under-Population). Consider: q0=1, s0=1.5, a0=.5, a1=9.5, A=1,
r=.2, 0=.22, "=.31, v0 =.2145, v1=0.7. In this case, the steady-state equilibrium (with endogenous
migration) allocation is whereas the socially optimal allocation is

. Thus, the equilibrium allocation is under-specialized and the economy is now
under-populated in equilibrium compared to the social optimum. 

 V.  Knowledge Creation and Endogenous Growth

In this section, we demonstrate how to extend the basic model of knowledge exchange to allow for

endogenous knowledge accumulation and endogenous growth.  Specifically, we regard knowledge

exchange as a process to create “new” knowledge.  Thus, the effectiveness of matching affects the rate of

knowledge accumulation, which in turns fosters the growth of the economy.  The main message here is to

illustrate the possibility of embedding our micro structure into the canonical frameworks of endogenous

growth that rely on knowledge or human capital spillovers. 

In order to pursue this objective in the most tractable manner, we assume that all matches between

agents are permanent.28 That is, we do not allow for breakups to occur in the economy. Upon matching,



29Layard, Nickell, and Jackman (1991) and Neuman and Weiss (1995) document loss of human
capital due to obsolescence or internal depreciation of skills.  It is also possible that the obsolescence of
human capital is a consequence of intergenerational competition, as in Laing, Palivos and Wang (2002).

30See Laing, Palivos and Wang (1995) for a detailed discussion on establishing a well-behaved
model of search and matching with a perpetually growing stock of capital.
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both agents exit the search pool forever and are replaced by an identical pair of unmatched individuals. We

assume that the new knowledge created between an individual k and another individual kN (previously

denoted as S(k,kN) in Section II) now adds to k’s stock of knowledge or human capital, H(k).  In order to

ensure that the value created by knowledge exchange is bounded, we consider that new knowledge may

partially duplicate the existing knowledge and can be subject to obsolescence or internal depreciation.

Assuming that the depreciation rate of human capital is denoted by B., we require that S(k,kN) < r + B in

order for the value of human capital to be bounded.29  We can then specify the capitalized value of the

human capital stock to individual k from time t and on (to infinity) as:  

(19)

where H0 is the initial stock of human capital.30  In order to express an agent’s expected lifetime utility in

stationary terms, we normalize the value of the human capital stock by its growth factor. Therefore, the

effective human capital stock of an individual k permanently matched with an individual  kN is simply:

(20)

We next determine the level of utility through the impact of knowledge exchange on production. In

addition to the effects of matching, we also examine the distinct roles of general and specific human capital

for population agglomeration and growth. In particular, we posit that general human capital in the economy

improves the productivity of each match by envisioning that the productivity factor, A, depends on the

economy’s average knowledge spread such that A=A( ) and AN( ) # 0. This hypothesis is analogous to 



31Of course, to accept the balanced growth equilibrium, the migration cost must now be assumed
to grow at the common rate S - B (that is, the effective cost of migration is constant over time).
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the specification of the externality of general knowledge and human capital as in Romer (1986) and Lucas

(1988).  Since a smaller knowledge spread implies that all matches lead to more knowledge creation, the

overall stock of knowledge in the economy will be higher when  is smaller. Thus, while higher values of

A( ) can be regarded an increase in general knowledge, h(k) represents the role of individual or match-

specific knowledge. In addition, our framework also captures the distinction between general and specific

human capital in the conventional dynamic labor and human capital literature [e.g., Heckman (1976) and

Rosen (1976)].  In this manner, we will be able to show how an increase in general knowledge enhances the

value of match-specific knowledge and therefore encourages a higher level of population agglomeration.

Therefore, more general knowledge will be associated with a higher population size and a higher rate of

growth. 

In order to express utility in stationary terms, we note that (2) can be modified as: 

 
  (21)

This is the value of surplus accrued from matching for a forward-looking individual.  Notably, since y(k) is

still strictly increasing (and concave) in S(k,kN), the equilibrium properties established in Section III and IV

will still apply, with an exception that it is now a balanced growth equilibrium rather than the previously

defined steady state.31  Due to symmetry, the rate of economic growth, g, is equal to each individual’s

human capital growth rate.  Utilizing (1), this endogenous growth rate can be derived as:

(22)

Thus, under the particular human capital evolution setup, (20), we can follow the techniques developed by

Laing, Palivos and Wang (1995) to establish:
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Proposition 4: (Endogenous Growth)  In a closed endogenous-growth economy without migration, a

higher population size causes more specialized patterns of knowledge exchange and higher growth.  When

endogenous migration is allowed, a decentralized equilibrium may be under- or over-populated and may

feature higher or lower  growth relative to the social optimum.

 
VI.  The Evolution of Knowledge

The analysis in Section V incorporates endogenous economic growth as in Romer (1986) and

Lucas (1988) into our framework. By matching and exchanging ideas with others, individuals develop new

knowledge so that their level of human capital increases; this, in turn, enhances their productive capabilities

and leads to economic growth. Alternatively, as we emphasized earlier, the creation of new knowledge can

also lead to the introduction of new types of ideas. That is, as a result of matching and the endogenous

creation of knowledge, the knowledge space of an economy may expand. Interestingly, by incorporating

this aspect of the evolution of knowledge, we find that multiple equilibria can emerge in which two

economies with the same population size may be either specialized or diverse for the same set of

parameters. Finally, we also consider the possibility that knowledge exchange causes individuals to evolve

to a different type of specialized knowledge. In particular, as a result of matching, knowledge exchange

enables two individuals to become more alike, while the entire knowledge space remains unchanged. Under

this framework, all of  our findings remain valid. 

VI.A.  Expansion of the Knowledge Space

A natural and simple way to permit the knowledge space to expand is to link patterns of knowledge

exchange in an economy to its overall measure of diversity.  We let b represent the circumference of the

knowledge space 6 in the economy (initially set at one) and assume that b is endogenously determined. 

We attempt to study the interactions between patterns of knowledge exchange and an economy’s overall

measure of diversity by envisioning that the economy-wide diversity depends on the economy’s average

knowledge spread : b=b( ). In contrast to the previous section on endogenous growth, we consider that
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the overall base of knowledge in the economy is higher when the knowledge spread is higher. As depicted

in Figure 9, a particular agent k’s knowledge location moves along a fixed ray from the center O.

Our focus is merely on exploring the determinants of an economy’s overall measure of diversity. 

We thus restrict our attention to examining this setup within the context of a closed-city model as in

Section III. As before, we derive the knowledge spread of a representative individual.  As long as the

economy-wide diversity is increasing and sufficiently convex in the average knowledge spread, multiple

equilibria emerge for the same set of parameters as a result of self-fulfilling prophecies.  We find there

exists both a specialized equilibrium and a diversified equilibrium.  The specialized equilibrium emerges

because when agents believe that the overall economy is very specialized, they expect a higher density of

agents across ideas and can thus concentrate on more effective matching.  The resultant knowledge spread

is therefore more specialized and the economy-wide diversity turns out to be narrow--a self-fulfilling

prophecy.  By similar arguments, the diversified equilibrium emerges when agents believe that the

economy is more diverse.  These equilibria are Pareto-rankable as welfare is higher in the specialized

equilibrium than in the diversified equilibrium.  This provides a role for city planners to induce the

economy to select a more specialized set of industries in an effort to help encourage more effective means

of informal learning from others.  Of course, one cannot directly compare this welfare result with the

empirical findings in Glaeser et al (1992) in which a more diversified city is associated with higher

employment growth and welfare.  

Our conclusion that a specialized equilibrium is Pareto superior depends on the form of knowledge

exchange.  One could extend our knowledge-distance framework with the optimal level of idea-diversity

( ) to allow for “industries” by partitioning the knowledge space into clusters of types of knowledge.  For

example, industry i may encompass knowledge types along the interval [i, i + ci] where ci represents the

Lebesgue measure of cluster (or industry) i.  Because interaction with individuals from the same industries

will contain knowledge that is too similar to promote highly effective knowledge exchange, economies

with more industrial diversity may have higher welfare since they allow for the possibility to meet with
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individuals from a greater variety of industries.  In this manner, the model would allow for a diversified

equilibrium to be associated with more effective knowledge exchange and higher city growth as in Glaeser

et al. (1992).

VI.B.  The Evolution of Individual Knowledge

While the previous sections have demonstrated how knowledge exchange can lead to the creation

of new types of knowledge, it is also possible that an individual’s inherent base of knowledge will evolve

as a result of matching. In particular, upon matching, an individual’s type of knowledge may become closer

to his partner so that both individuals will become more alike. In order to model the evolution of an

individual’s type of knowledge, we need to carefully distinguish the initial date of a match from calendar

time t.  To begin, consider a particular individual who is currently matched. In particular, denote n as agent

k’s nth successful match and Jn as the corresponding calendar time at which the match began. In order to

emphasize how an individual’s type of knowledge will depend on his previous matches, let the agent’s

knowledge type be denoted as kn , 6. Further, let  knN denote the knowledge type of agent kn’s current

partner in exchange. 

Next, recall that individual meetings and separations both follow a Poisson process. Given the

constant break-up rate 0, the pair (kn, knN ) will (on average) remain matched for the length of time 1/0.

Further, in a steady state, the expected time at which the individual will begin his (n+1)th successful match

is:  

(23)

It remains to specify the process of knowledge evolution.  In particular, individual knowledge

locations are no longer time invariant.  After two agents have completed their collaboration, the pair (kn, knN

) will find that knowledge locations have evolved towards each other.  To put the idea in perspective,

consider a match between an economist and a mathematician.  Knowledge exchange enables the economist

to learn more rigorous mathematical analyses and the mathematician to learn more practical economic
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applications.  Such an exchange can be simply captured by a convex combination of their knowledge:

(24)

 
where 8 0 [0, 1] and the case of 8 = 1 captures the benchmark model presented in Sections II-IV.  The

evolution of knowledge of agents (kn, knN ) from J = JnN to Jn+(1/0) can be best illustrated by Figure 8.

Since we study a symmetric equilibrium in which all agents choose the same knowledge spread, the

density of agents across the knowledge space 6 will remain stationary due to the law of large numbers.

Therefore, the non-degenerate, symmetric, steady-state equilibrium is well-defined.  As a consequence, our

main findings established in previous sections remain qualitatively unchanged.

 
VII.  Concluding Remarks

This paper develops a search-theoretic model to examine the patterns of knowledge exchange and

their interaction with agglomerative activity.  It illustrates that heterogeneity in agents’ knowledge types

plays a crucial role in the transmission of ideas.  This occurs because agents in our model face a trade-off

between specialized, highly beneficial knowledge exchange and a higher number of matches.  

We initially consider an environment in which the population size is fixed and examine the role of

agglomeration in an economy’s endogenous pattern of knowledge exchange.  We demonstrate that

economies with higher search or market frictions will have more diversified patterns of information

exchange.  Individuals favor obtaining a higher quantity, but less effective interactions with others in

economies with higher search frictions.  In this way, we examine the role of market frictions in human

capital accumulation and economic growth.  We also find that cities with a higher population size will have

more specialized patterns of information flows.  This leads to a potentially testable hypothesis of the

theory, namely that the degree of specialization in a city and its population are positively correlated.  This

result holds in both the closed and open city models.  We shall return to this momentarily.
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We later examined the interaction between the patterns of knowledge exchange and the

endogenous spatial agglomeration of an economy.  This analysis demonstrates how information exchange

affects population agglomeration.  We show that any factor that induces a higher population mass will

enhance knowledge exchange, whereas any factor that promotes knowledge exchange will encourage more

migration.  Moreover, a technologically advanced economy will have a larger population size and more

specialized patterns of information exchange.  These main findings remain qualitatively unchanged even if

we allow individual knowledge types to change over time.  By linking an economy’s overall measure of

knowledge diversity to its patterns of knowledge exchange, we find that multiple equilibria exist in which

economies with the same population size may be either specialized or diverse.  Because these equilibria are

Pareto-rankable, we obtain a role for city planners to induce the economy to select a more specialized set of

industries and thereby encourage more effective means of learning from others.  We further elaborate on a

modified structure that allows for perpetual knowledge accumulation and endogenous growth.  We find that

agglomeration is accompanied by higher growth, as long as the negative effect of the specialization of

individual knowledge spread on the speed of knowledge expansion via human capital spillovers is not too

strong.  In an extension outlined in the Appendix, we describe how our basic insights are robust to the

alternative possibility that knowledge exchange is monotonically more effective when agents are alike

. 

We believe there are a number of interesting issues which may be pursued in this research.  The

first objective is to explore the interactions between knowledge exchange and agglomerative activity in

environments where individuals have different levels of human capital.  This would allow for a rich array

of possible interactions among agents due to ‘horizontal’ and ‘vertical’ aspects of knowledge, and their

consequences for agglomeration.  Second, one may seek to investigate the relationships between

knowledge exchange and agglomerative activity when individuals make human capital investments prior to

engaging in the exchange of information.  In this manner, the benefits of agglomeration due to lower costs

of communication in dense environments will affect initial human capital decisions.    
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An important objective of our research is examining the implications of horizontal differences in

knowledge for patterns of information exchange and agglomerative activity.  In particular, our model

demonstrates that larger cities should have more specialized patterns of information flows due to lower

costs of communication in dense economic environments.  With these insights, we believe it would be

interesting to reconsider the evidence on knowledge spillovers using patent data as in Jaffe et al (1993,

1996).  This might begin by examining if larger cities have more specialized knowledge exchange or if

large clusters of economic activities are associated with more research outsourcing as a result of a smaller

knowledge spread.
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Figure 1: Knowledge Space of the Economy



Figure 2: Role of Heterogeneity for Knowledge Creation

Figure 3: Knowledge Space and Selection of Knowledge Spread



Figure 4: Equilibrium Entry (Migration) Decisions

Figure 5: Steady-State Equilibrium under Endogenous Migration (:(U)="U)



Figure 6: Comparison Between Social Optimum and Equilibrium with Strong Congestion Externality

 Figure 7: Comparison Between Social Optimum and Equilibrium with Strong Matching Externality



Figure 8: Knowledge Exchange and Evolution of Knowledge Types

Figure 9: Knowledge Exchange and Evolution of Knowledge Types
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Appendix A

 
This Appendix is devoted to deriving two fundamental equilibrium relationships, the equilibrium

knowledge spread locus (KS) and the equilibrium entry locus (EE), as well as proving Lemma 1 and

Theorems 1 and 2. 

 
1.  Proof of Lemma 1:

Manipulating the Bellman equation for matched individuals, equation (8) yields:

(A1)

Recall that agent k will agree to match and exchange ideas with any individual k’ belonging to the set

.  Thus, the Bellman equation for an

unmatched agent of type k is:

 
 (A2)

Note, however, from the definition of R(k) that an agent’s unmatched value function will have a kink where

.  We begin by transforming the unmatched value in terms of the match-specific knowledge spread

 and then find  over the region where .  Integration from zero to yields:

 where . (A3)

Integration over the region where  yields (10).  Q.E.D.

 
2.  Derivation of the Equilibrium Knowledge Spread and Proof of Theorem 1:

To prove the Theorem, recall (10).  Denote  which implies that for any value of *k

= * > *max , .  Thus, under Assumption 1, the kink in the value function occurs over a region

where an agent’s unmatched value is negative and is not important for determining the individual’s

knowledge spread.  For additional details, see the extensions in Appendix B.  Differentiating VU(*;U) with

respect to * provides the first-order condition for obtaining the equilibrium knowledge spread.  Simple

algebra yields the following quadratic equation which can be used to derive :
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(A4)

One can easily solve for the mass of unmatched agents from the knowledge spread to obtain:

                                                        (A5)

 
From the steady-state population condition (12), we obtain:

                      (A6)

It is easy to see the knowledge spread locus is a downward-sloping curve as depicted in Figure 4. Q.E.D.

 
3.  Derivation of the Equilibrium Entry Locus:

Recall the equilibrium entry locus is a curve of values of the knowledge spread and the population mass 

where VU(*;U) = <(N) .  This implies:

  (A7)

Substituting the steady-state population condition (12) for the mass of unmatched agents in (A7) above

generates the equilibrium entry locus.  
 
4.  Proof of Theorem 2:

Define .  We claim there exists a unique value of (*,U) such that * 0 (0, ),

satisfying both the knowledge spread (KS) and the equilibrium entry (EE) relationships. 

Recall the first-order condition for the knowledge spread as in (A4) to obtain:

  (A8)

which is strictly decreasing in * for * 0 (0, ) with  and .  Substituting (A8)

into (A7), the equilibrium entry condition becomes:

(A9)

which can be rewritten as:
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 (A10)

We prove the existence of the steady-state equilibrium knowledge spread using the following mean value

argument. Note that 7(*) is continuous and strictly decreasing in * over the range of (0, ).  Moreover,

it is clear that  and that  under Assumption 2.  Since

individuals will never choose a knowledge spread which yields zero utility, * must be chosen below the

upper bound .  Therefore, there is a value of * 0 (0, ) such that 7(*)=0, which demonstrates that a

steady-state equilibrium under endogenous migration exists (as the second-order condition holds trivially). 

Since 7(*) is a monotone decreasing function of * over the range of (0, ), there can only be one value

of * solving the steady-state equilibrium under endogenous migration which proves the uniqueness of

equilibrium.    Q.E.D.

5.  Proof of Theorem 3:

Using the relationship $(*; U ) = 4"U* and (12), the first-order conditions for the knowledge spread and

population mass facing the social planner are::

 (A11)

 (A12)

where the LHS is the marginal social benefit whereas the RHS is the marginal social cost of * and N,

respectively.  Manipulation of (A11) implies:

, (A13)

which yields a unique positive root $ = F(*).  Define .  Then F a strictly decreasing

function of * over the range of (0, ).  Substituting this into (A12) gives a fixed point map in *.  Following

similar arguments as in the Proof of Theorem 2, we can show the existence of a unique fixed point * as

long as 0 and r are both strictly positive. This implies that a social optimum exists when v(N)=v0 N  (as the

second-order condition holds trivially). Q.E.D.
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Appendix B: Extension: Knowledge Exchange Most Effective when Agents are Alike

 
Throughout the paper,  we have explored an agent’s pattern of interaction with others while

acknowledging knowledge exchange depends on differences among agents in terms of types of ideas.  In

that version of our knowledge distance structure ( ), we assume that the exchange of knowledge is not

very effective when agents possess very similar types of knowledge or when agents have little in common. 

We now consider an alternative view by assuming knowledge exchange is most effective when

agents are alike ( ).  Thus, this is a special case of the set of parameters where Assumption 1 does not

hold.  Recalling (10), for the case where , the value function is:

VU(*k;U) =   (B1)

As in Section III, we analyze the determinants of the knowledge spread when the population mass is given

exogenously.  Although the hypothesis concerning knowledge exchange is different than that we pursue in

Section III, the underlying determinants of the knowledge spread in the economy remain the same.  As

before, agents choose their selection strategy recognizing tradeoffs between higher probabilities of matches

(a contact rate effect) and more effective matches (a knowledge efficacy effect).  Because the underlying

costs and benefits of matching are the same as in Section III, the properties of the steady-state equilibrium

are also similar.         

There is an intermediate case where  satisfies neither Assumption 1 nor =0.  This case does not

admit a closed-form solution for the relationship between the individual’s knowledge spread and the

population mass.  Our analysis does seem to suggest that, for a given mass of unmatched agents, a higher

value of  is associated with a smaller knowledge spread.  The smaller value of the knowledge spread

implies that individuals are more selective of their partners for collaboration which leads to a higher mass

of unmatched agents in the steady-state.  A higher steady-state mass of unmatched agents further

encourages agents to be more selective since the arrival rate of matches is higher when there is a higher

mass of unmatched agents in the economy.


