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1 IntrodutionIn this paper we extend the parametri, asymmetri, stohasti volatility model (ASV),where returns are orrelated with volatility, by exibly modeling the bivariate distributionof the return and volatility innovations nonparametrially.1 Log-volatility of the ASV be-longs to the parametri, �rst-order autoregressive, lass of stohasti volatility, whih anaomodate stationarity as imposed in the literature (Jaquier et al. (1994) and Kim et al.(1998)) as well as nonstationary deviations from this assumption. The rest of the modelis nonparametri in the sense that no assumptions are made about the underlying jointdistribution of returns and volatility. Instead, the exible Dirihlet proess mixture (DPM)lass of priors by Lo (1984) along with return data is used to estimate the joint distribution.The version of the DPM used is an in�nite mixture of bivariate, Normal distributionswith mean zero, but unknown ovariane matries and mixture probabilities. This is usedto �t the return and log-volatility distribution. As a mixture, eah observations ovarianematrix is distributed aording to a Dirihlet proess prior { a nonparametri prior over thevalue of the ovariane matrix and the probability of its ourrene.Others have nonparametrially modeled the return distribution of a stohasti volatilitymodel, but the joint return, log-volatility distribution has not been. Jensen (2004), GriÆnand Steel (2006), Jensen and Maheu (2010), GriÆn and Steel (2011), and Delatola andGriÆn (2011a), eah apply a Dirihlet proess mixture type prior to the return distribu-tion. For the asymmetri stohasti volatility model, Delatola and GriÆn (2011b) inludea onstant leverage e�et and model the distribution of the log-squared return innovationnonparametrially with the in�nite mixture, Constant Component Variane model of Grif-�n (2011). Yu (2011) diretly models the leverage e�et nonparametrially by modeling theorrelation between returns and volatility with a �xed ordered linear spline, and Durham(2007) models the return distribution with a �nite mixture model where its order is �xed apriori by the eonometriian.By relaxing the parametri distribution of the asymmetri stohasti volatility model,the approah taken in this paper is more exible and better positioned to model non-Gaussian behavior. As pointed out by Das and Sundaram (1999), the parametri stohastivolatility model an only produe the level of skewness and kurtosis observed in the datawhen it takes on implausible parameter values. By design a nonparametri joint distributionallows the stohasti volatility model to apture these types of harateristis in the datawithout sari�ing the time dependent nature of the stohasti volatility model.1See Harvey et al. (1994), Yu (2005) and Omori et al. (2007) or Eq. (20)-(21) for the parametri versionof the asymmetri stohasti volatility model. 2



A Markov hain, Monte Carlo posterior algorithm for sampling the nonparametri andparametri portions of the model is presented. Our semiparametri sampler extends theunivariate algorithm of the semiparametri stohasti volatility model by Jensen and Maheu(2010). A restrited version of the algorithm is also applied to a fully parametri, asym-metri, stohasti volatility model. Parameter, volatility, and distributional unertainty areintegrated out with the sampler of the posterior. These draws will be used to generate boththe one-day-ahead preditive joint density for daily market returns and log-volatility andthe marginal density for one-day-ahead returns.Stohasti volatility models and eonometri models in general are hosen based on theirpreditability (see Geweke (2001), and Geweke and Whiteman (2006)). This is understand-able given the important role preditions play in valuing stoks and options, onstrutingportfolios, and reating hedging strategies. Strong evidene in favor of our semiparametrimodel relative to parametri models is provided by the sequential preditive likelihoods forreturns. In partiular, the DPM estimate of the unknown preditive distribution for returnsis found to be robust over low and high volatility periods and to large return shoks.Great emphasis is also plaed on the ability of a model to foreast volatility.2 Asym-metry, where an unexpeted deline in prie leads to higher volatility, whereas an inreasein prie auses volatility to deline, is ommon in volatility models (see Bekaert and Wu(2000), Chen and Ghysels (2011)). In the stohasti volatility model this asymmetry omesfrom returns and log-volatility being negatively orrelated. Sine the ovariane matrixof the nonparametri return and log-volatility innovations distribution follows a randomseond-order e�et, this paper's semiparametri volatility model exhibits asymmetry. How-ever, the random seond-order e�et for the ovariane also allows the orrelation to hangedepending on market onditions. During a regular market the asymmetry is like that foundby Chen and Ghysels (2011), moderate inreases in stok pries redue expeted volatility,whereas any deline in stok pries or a large unexpeted inrease in pries leads to higherexpeted volatility. However, during volatile times, expeted volatility barely inreases fol-lowing an unexpeted shok to market returns. In other words, the asymmetri return andvolatility relationship is not a high volatility phenomenon.The paper is organized as follows. In the Setion 2, the asymmetri, stohasti volatilitymodel with a nonparametri Dirihlet proess mixture prior for the unknown distributionis onstruted. Setion 3 spells out the nonparametri model's Markov hain, Monte Carlosampler of all the unknown parameters and latent variables. In Setion 5 we apply oursemiparametri and an existing parametri asymmetri, stohasti volatility models to 282See Poon and Granger (2003) for an extensive overview of the volatility foreasting literature3



years worth of daily market returns as measured by the value-weighted market portfoliofrom the Center of Researh in Seurity Pries. In Setion 6 and 7, we ompare our em-pirial results by �rst using the Savage-Dikey density ratio to evaluate the Bayes fatorin favor of a nested parametri versions of the nonparametri model. We then omparethe foreasting performane of the models over the last two years of the data with theirumulative log preditive Bayes fators. In Setion 8 we estimate volatility's response tounexpeted hanges in stok pries. A summary and onlusions are ontained in Setion9.2 ModelWe model asset returns using the following semiparametri, asymmetri, stohasti, log-volatility modelyt = �+ expfht=2g�t (1)ht+1 = 'ht + �t (2)where yt is the ontinuously ompounded daily return at time periods t = 1; : : : ; n, and ht+1is the value of the latent, log-volatility, one-day-ahead. The absolute value of the autore-gressive parameter, ', is onstrained to the unit interval.3 Hene, ht+1 will be ovarianestationary.We relax all assumptions onerning the joint distribution of �t and �t, and, instead,allow their distribution to be ompletely unknown and random as if the distribution werean additional unknown to the parameters and latent volatilities of the ASV model.Being unknown and random, the joint distribution requires a prior, whih an then beused to obtain the random distributions posterior one data has been olleted. We hoosethe following Lo (1984) type Dirihlet proess mixture prior (DPM)� �t�t ������t � N(0;�t); (3)�t � G; (4)GjG0; � � DP (�;G0); (5)to model the unknown distribution. In Eq. (3)-(5), the tth innovations are distributedas a bivariate Normal with a mean zero vetor but with a random ovariane matrix,�t = � �2y;t �yh;t�yh;t �2h;t � ; distributed as G. The distribution G is unknown with the Dirihlet3Beause the mean of ht+1 an be subsumed into the variane of �t, identi�ation requires the mean oflog-volatility to be zero; i.e., the interept term of ht+1 must be set equal to zero.4



proess distribution prior, DP (�;G0), of Ferguson (1973). The nonzero salar � is thepreision parameter and G0 is the base distribution.The DPM builds on the well known property that a exible distribution an be foundby mixing together a �nite number of known distributions. It extends this onept bymixing together an in�nite number of distributions. In its simplest and most basi form theDirihlet proess mixture models the innovation vetor (�t; �t)0 as independent realizationsfrom the same, unknown, distribution whih we model as a mixture of distributionsZ FN (0;�)G(d�); (6)where FN is a Normal distribution funtion with mean zero and ovariane matrix �, andG is a weighted mixture of the �s.Eq. (1)-(5) onstitute the semiparametri, asymmetri, stohasti volatility model withDPM prior model (ASV-DPM). At �rst glane, the ASV-DPM model, with its mean zero,bivariate, Normal distribution funtion, might seem to lak the apaity to �t the non-Gaussian behavior of returns and log-volatility. This, however, is inorret. Fixing themean of F to zero only limits the DPM prior to the lass of distributions having one mode.This is hardly a limitation sine asset returns are not known to have distributions withmore than one mode.The DPM prior for the ASV model an be viewed in terms of a random, seond-order,e�ets model, where �t is the random e�et, but with a slight twist. Unlike a randome�ets model where �t is assumed to follow a parametri, Inverse-Wishart distribution,in the ASV-DPM model G is unknown and is modeled nonparametrially. As a unknownrandom distribution funtion, G enables the �ts to be distributed with \multimodality", andmore \skewness" and \kurtosis" than is possible with a parametri distribution. However,beause G is nonparametri the seond-order, random e�ets matries, �ts, do not haveany �nanial or eonomi meaning. They are simply building bloks in �tting the unknowndistribution of (�t; �t).Employing Sethuraman (1994) de�nition of DP (�;G0), G will almost surely be equalto the disrete distributionG(d�) = 1Xj=1 �jÆ�j (d�); (7)where Æ�j (�) is a degenerative distribution on the ovariane matrix atom�j = � �2y;j �yh;j�yh;j �2h;j � ; (8)5



with �yh;j = �j�y;j�h;j. Eah �j is a unique ovariane matrix randomly drawn from theDP prior's base distribution, G0. To ensure onjugay, G0 is a Inverse-Wishart distributionwith sale matrix S0 and v0 degrees of freedom, i.e.,G0 � Inv-Wish(S0; v0): (9)The probability of �t being equal to a partiular �j is �j where �1 = V1; �j = VjQj0<j(1�Vj0), and Vj � Beta(1; �), for � > 0.In (7), G0 is our \best" guess at the distribution of the �ts. Beause the Vjs aredistributed as Beta(1; �), their expeted value is E[Vj ℄ = 1=(1+�). It follows that for largevalues of � the �js will be lose to zero and, hene, G will be lose to G0. Formally,� �t�t ������t � N(0;�t);�t � G0 � Inv-Wishart(S0; v0);when �!1. This illustrates the exibility of the ASV-DPM beause, as �!1, the ASV-DPM onverges to a parametri, ASV model where (�t; �t)0 are distributed as a bivariate,Student-t distribution with mean zero, ovariane matrix, v0=(v0 � 2)S0, and v0 degreesof freedom.4 In the Student-t ase, expfhtg does not typially have �nite unonditionalmoments, nor ovariane stationary (see Nelson (1991)). Hene, the posterior moments ofexpfhtg depend on the data.At the other end of the spetrum when � lose to zero, the DP prior for G is a disretedistribution with support over a few unique ovariane matries, �js. When taken to itsextreme, �t = �, for all t, and� �t�t � � N(0;�);� � Inv-Wishart(S0; v0)when �! 0. In other words, the ASV-DPM model onverges to the parametri, normallydistributed, ASV model of Harvey et al. (1994) with G0 being the prior of �.2.1 Parsimony with the DPParsimony, in other words, lustering or uniqueness in the ovarianes, �t, of the ASV-DPMmodel is provided by the almost sure disreteness of Eq. (7). By modeling G as a DP prior4Beause the ASV-DPM is a mixture of Normals it only spans the set of Student-t distributions whosemarginals distributions have the same degree of freedom. For the marginals to have di�erent degrees offreedom one ould replae the mixture of bivariate Normals with a mixture of opulas (see Burda andProkhorov (2012) and Rey and Roth (2012)). This is a topi for future researh.6



there is guaranteed to be ties among the �ts. To be expliit, the joint distribution of the o-varianes an be de�ned sequentially as �(�1;�2; : : : ;�n) � �(�1)�(�2j�1):::�(�nj�1; : : : ;�n�1)where �(�1) � G0 and�tjG;�1; : : : ;�t�1 � G; (10)Gj�1; : : : ;�t�1 � DP  �; ��+ t� 1G0 + t�1Xt0=1 1�+ t� 1Æ�t0 (dG)! ; (11)for t = 2; : : : ; n (see Blakwell and MaQueen (1973)). Integrating out G from eah of theonditional distributions in Eq. (10), we obtain the onditional distribution for �t�tj�1; : : : ;�t�1 � � G0 with probability ��+t�1 ;�j with probability nj�+t�1 ; j = 1; : : : ; kt; (12)where �j, j = 1; : : : ; kt are the unique ovariane matries among the �t0 , t0 = 1; : : : ; t, andkt is the number of unique ovarianes.Eq. (12) shows the self-reinforing property of the DP where previously sampled valuesare more likely to be resampled in the future. The more �t0s belonging to a luster, thelarger nj will be and the greater the probability �t being assigned �j. On the other hand,if only a few �t0 have been assigned �j, both nj and the likelihood of �t being assigned �jwill be smaller. Notie also that there is a non-trivial hane, proportional to �, of a newovariane luster being seleted from G0. If � ! 1, no lustering ours, whereas thereis extreme lustering when �! 0.2.2 Orthogonal representationThe ASV-DPM model an be written in terms of orthogonal innovations by �rst de�ningthe latent assignment variable st = j when �t equals the jth unique ovariane �j; i.e.,when �t = �j , then st = j. Under the DP prior st is distributedst � 1Xj=1 �jÆj;where the probability weights, �j , j = 1; : : : ; are those de�ned in Eq. (7).Inorporating st into the de�nition of the ASV-DPM model, we arrive atyt = �+ �y;st expfht=2gut; (13)ht+1 = 'ht + �h;stvt; (14)� utvt ����� st;�st � N(0;�st); (15)7



st � 1Xj=1 �jÆj ; (16)�st � G0; (17)where the orrelation matrix �j = � 1 �j�j 1 �, with �j = �hy;j=(�h;j�y;j).Letting �1=2st represent the Cholesky deomposition, �st � �1=2st �1=20st , we pre-multiply(ut; vt)0 by the inverse of �1=2st to obtain the unorrelated innovation vetor� wtvt � � ��1=2st ��1� utvt � = � (ut � vt�st)=p1� �2stvt � :Solving for ut in terms of wt and substituting this into Eq. (13), the ASV-DPM model interms of the orthogonal shoks (wt; vt)0 equals:yt = �+ �y;st expfht=2g�stvt + �y;st expfht=2gq1� �2stwt (18)ht+1 = 'ht + �h;stvt: (19)where (wt; vt)0 iid� N(0; I2). This form of the ASV-DPM model will be shown to be onve-nient for the posterior sampling of log-volatilities and '.3 EstimationIn this setion we outline the likelihood-based approah we take to parameter inferene,distributional unertainty, and model omparison with the ASV-DPM model by skethingout the Markov hain Monte Carlo (MCMC) sampler. We leave the details to AppendixA. The MCMC sampler has a number of advantages. Along with providing parameterestimates, the MCMC sampler also estimates the latent volatilities and integrates out theunertainty of the latent mixture variables from the DPM prior.Let y = (y1; : : : ; yn)0 be the observed asset returns and h = (h0; h1; : : : ; hn; hn+1)0 thevetor of its unobserved log-volatilities. The ASV-DPM posterior distribution�(�; '; h; f�tg; �jy) / f(yj�; '; h; f�tg; �)�(�)�(hj')�(')�(f�tgj�)�(�)does not have a losed form. As a result, we strategially group the unknown parameters,latent volatilities, and mixture order, identities and assignments into manageable blokswhere the seleted bloks onditional posterior distributions are either known or have atratable form. A Markov hain is then onstruted by iteratively sampling through eahblok's posterior distribution onditioning on the value of the other parameters and latentvariables drawn earlier.The bloks of onditional distributions are:8



� �(f�tgjy; h; �; '; �)� �(hjy; �; '; f�tg)� �('jy; h; �; f�tg)� �(�jy; h; f�tg)� �(�jf�tg)Sampling from f�tgjy; h; �; '; � ould be done by using the Polya urn, Gibbs sam-pler method of Esobar (1994). However, we hoose the more eÆient two-step, Poly urnbased approah of West et al. (1994) and MaEahern and M�uller (1998). This methodmakes draws from the equivalent distribution �(�1; : : : ;�k; sjy; h; �; '; �), where the �j,j = 1; : : : ; k, k � n, are the distint �t, t = 1; : : : ; n, and s = (s1; : : : ; sn)0 is the vetoronsisting of the assignment variables, st; i.e., st = j when �t = �j . This sampler breaks upthe draws of st, t = 1; : : : ; n from the draws of �j , j = 1; : : : ; k, resulting in less dependenythan if �t, t = 1; : : : ; n were drawn diretly. Hene, dereasing the number of sweeps neededfor the sampler to span the support of the posterior distribution.Sine log-volatilities are highly orrelated, step-by-step draws from htjy; ht�1; ht+1 willmix very slowly.5 Hene, we propose a more eÆient tailored, Metropolis-Hasting samplerof randomly drawn bloks of h. Draws from �(hjy; �; '; f�tg) are made by forming randompartitions of h where the length of eah subvetor in the partition is equal to a randomdraw from a Poisson distribution. Eah blok will be di�erent from sweep to sweep ensuringthat the bloks are not drawn onditionally on the same adjaent volatilities. Eah blokvolatility's onditional distribution is nonstandard so we use the Metropolis-Hasting sampler(see Chib and Greenberg (1995)) found in Appendix A.2.Draws from �('; jy; h; f�tg) are made with a Metropolis-Hastings sampler where theandidate distribution is the onditional distribution of ' in a SV model without leverage(see Appendix A.3 for details). Sine �(�) � N(m; �), �(�jy; h; f�tg) is Normal withthe mean and variane spelled out in Appendix A.4. Lastly, when the mixture order, k,identifying vetor, s, and ovarianes f�jg, are all known, the posterior of � depends onlyon k. So instead of diretly drawing from �(�jf�g) we instead use the two step algorithm ofEsobar and West (1995) found in Appendix A.5 to sample from the equivalent distribution�(�jk).5See Kim et al. (1998) and Chib et al. (2002) for evidene of this with the SV model.9



4 Results from quasi-return dataTo determine how well the ASV-DPM model approximates the unknown distribution, andhow well the sampler spans the posterior distribution of the parameters, we apply ourMCMC sampler to returns generated from three parametri, asymmetri, stohasti volatil-ity models whereyt = �+ expfht=2g�t; (20)ht+1 = 'ht + �t; (21)is the ommon struture, but the distributions of �t and �t di�er. They are:1. Harvey et al. (1994) ASVmodel with (�t; �t)0 � N(0;�), where � = � �2y ��y�h��y�h �2h �and � � Corr(�t; �t).2. Jaquier et al. (2004) ASV-t model where �t � �1=2t zt and �t iid� Inv-Gamma(�=2; �=2)with � = 10; i.e., �t is distributed as a Student-t with � degrees of freedom. Theinnovations (zt; �t)0 � N(0;�).3. Durham (2007) ASV-MIX3 model where�t � 0:8386N(0:015; 1:0292) + 0:0041N(�3:611; 2:6512) + 0:1576N(0:015; 0:4442);�t � N(0; �2h) and Corr(�t; �t) = �. The mixture parameter values ome from Durham(2007) and ensure a mean of zero and a variane of one for �t.The value of the strutual parameters in Eq. (20)-(21) and for � are set equal to theestimates reported in Table 2 of Setion 5. These estimates ome from estimating the ASVmodel with 7,319 daily returns (multiplied by a 100) of the Center of Researh in SeurityPries (CRSP) value-weighted portfolio index over the January 2, 1980 to Deember 31,2008 time period. These parameter values are used to generate 1,000 quasi-returns fromeah of the three models.We �t the ASV-DPM to returns simulated from the ASV, ASV-t and ASV-MIX3 models.The priors for the ASV-DPM model are �(�) � N(0; 0:1) and �(') � N(0; 100)Ij'j<1. Forthe DPM, we hoose the base distribution G0 � Inv-Wish(S0; v0) where S0 = I2 andv0 = 10. The prior for the DPM preision parameter is �(�) = Gamma(2; 8) so thatE[�℄ = 1=4 and Var[�℄ = 1=32.Using the initial starting parameter values, we throw away the �rst 1,000 draws of log-volatility and then the following 10,000 draws of both the volatilities and parameters, before10



keeping the last 30,000 parameter draws. Table 1 reports the posterior mean, standarddeviation, and 95% probability interval of the parameters from the ASV-DPM model whenapplied to the quasi-returns. Also reported is the ineÆieny measure of Geweke (1992)whih is1 + 2RR� 1 LX�=1K � �L� (�);where K(�) is Parzen's �lter (see Perival and Walden (1993), p. 265), (�) is the sampleautoorrelation funtion of the drawn parameter, R is the number of draws (R = 30,000),and L is the largest lag at whih the autoorrelation funtion is omputed (L = 1000). TheineÆieny measure quanti�es how well the sampler has onverged to the target posteriordensity and how lose it is to making unorrelated draws by quantifying the losses from usingorrelated draws to ompute the posterior properties like mean and standard deviation.There is nothing out of the ordinary in the posterior results of Table 1. The ASV-DPM parameter estimates are reasonably lose to their true value. The average numberof mixture lusters k for the di�erent quasi-return series reet the inreasing omplexityof the data generating proess's underlying distribution. Lastly, the ineÆieny measuresrange from a high of 260.0 for the ASV-t model's ' to a low of 5:3 for the ASV-MIX3model's �. These levels of ineÆieny are muh smaller than those reported by Omori et al.(2007) with the single-move h sampler of Jaquier et al. (2004). This improvement in theineÆieny measures is likely due to our random blok sampler of h.
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Table 1: The posterior estimates from the ASV-DPM model as applied to 1,000 quasi-returns simulated from the ASV, ASV-t,and ASV-MIX3 models. Given the initial starting parameter values, the �rst 1,000 draws of log-volatility are disarded andthen the next 10,000 draws of both the volatilities and parameters are thrown away, before keeping the last 30,000 draws.ASV ASV-t ASV-MIX3mean stdev 95% prob interval ine� mean stdev 95% prob interval ine� mean stdev 95% prob interval ine�� 0.1690 0.1414 (0.0207, 0.4727) 6.9 0.2254 0.1534 (0.0305, 0.6051) 26.1 0.2509 0.1646 (0.0347, 0.6545) 22.5k 1.0 0.8454 (1, 4) 23.5 2.3884 1.3337 (1, 6) 76.0 2.7617 1.4616 (1, 6) 56.3' 0.9634 0.0118 (0.9386, 0.9849) 146.9 0.9611 0.0150 (0.9301, 0.9896) 260.0 0.9482 0.0169 (0.9108, 0.9774) 68.8� 0.0501 0.0237 (0.0032, 0.0962) 80.6 0.0552 0.0244 (0.0071, 0.1033) 50.2 0.0730 0.0195 (0.0345, 0.1111) 5.3Returns were generated from the three parametri ASV models with the same struture,yt = �+ expfht=2g�t and ht+1 = 'ht + �t, where � = 0:06and ' = 0:97, but the ASV innovations are distributed (�t; �t)0 � N(0;�) with� = � 0:61 �0:46 � p0:61 � 0:04�0:46 � p0:61 � 0:04 0:04 � :The ASV-t return innovations are �t � �1=2t zt, with �t iid� Inv-Gamma(10=2; 10=2), and (zt; �t)0 � N(0;�). Lastly, the ASV-MIX3 innovations aredistributed as �t � 0:8386 �N(0:015; 1:0292) + 0:0041 �N(�3:611; 2:6512) + 0:1576 �N(0:015; 0:4442) and �t � N(0; 0:04) with Corr(�t; �t) = �0:46.12



4.1 Preditive densityWe also ompare the joint preditive densities, f((yn+1; hn+2)0jy;M); M = ASV-DPM; ASV,by numerially alulating and graphing eah of the two model's density. Let � = (�; '; h; f�jg ; s; �).Then the preditive density for the ASV-DPM isf �� yn+1hn+2 ����� y;ASV-DPM� � Z f �� yn+1hn+2 ����� ���(�jy) d�;� R�1 RXl=1 f �� yn+1hn+2 � ����(l)� ; (22)where R = 30;000, �(l) = ��(l); '(l); h(l);n�(l)j o ; s(l); �(l)� is the lth draw from the posterior�(�jy) and G(d�) has already been integrated out of the unknown joint distribution of �tand �t (see Gelfand and Mukhopadhyay (1995)) to arrive atf �� yn+1hn+2 ����� �� = ��+ nfMSt � yn+1hn+2 ����� � �'hn+1 � ;�Hn+1S0Hn+1v0 � 1 ��1 ; v0 � 1!+ kXj=1 nj�+ nfN �� yn+1hn+2 ����� � �'hn+1 � ;Hn+1�jHn+1� ; (23)with Hn+1 = � ehn+1=2 00 1 �. By averaging over the weighted draws of the parametersand the unknown volatilities, the preditive density integrates out both parameter andlog-volatility unertainty leaving a distribution dependent on only the return series, y.In the ASV model, the preditive density integrates out �; '; h;�, from the samplingdistribution,fN �� yn+1hn+2 ����� � �'hn+1 � ;Hn+1�Hn+1� : (24)Similarly, the marginal posterior preditive density of yn+1 an be approximated byaveraging over the randomly sampled draws of � from the posterior �(�jy). For the ASV-DPM model the marginal posterior preditive density for returns equalsf (yn+1jy;ASV-DPM) = Z f(yn+1j�)�(�jy)d�;� R�1 RXl=1 f �yn+1 ����(l)� ; (25)wheref �yn+1 ����(l)� = �(l)�(l) + nfSt0�yn+1 �������(l); s11eh(l)n+1v0 � 1 !�1 ; v0 � 11A13



+ 1�(l) + n k(l)Xj=1 n(l)j fN �yn+1 ����(l); eh(l)n+1�2(l)y;j � : (26)Given a realization of yn+1, Eq. (26) is the preditive likelihood for the ASV-DPM model.In addition to estimating the ASV-DPM model we now estimate the ASV model forthe quasi-returns generated from the ASV. The priors for the ASV are those for the ASV-DPM, meaning the prior for � is G0. The sampler of the ASV model is also the same asthe ASV-DPM model's exept with k and st, t = 1; : : : ; n, �xed and set equal to 1.In Figure 1 we plot the joint preditive densities of both models. Sine the densitiesare three-dimensional, we plot eah model's density from two vantage points { the lefthandside �gures plot the joint densities from the yn+1-axis vantage point, and the righthand�gures plot the densities, but from the hn+2-axis perspetive. The two model's densitiesare nearly idential in their shape and loation. Both densities are entered at yn+1 = 0and hn+2 = 1:25, and both show a slight upward skewness in the hn+2 dimension. If thereis a di�erene to be found it is in their height. The ASV-DPM model's preditive densityreahes a maximum density value of 0:2 that is slightly larger than the ASV, indiating thepreditive distribution of the ASV-DPM model is leptokurtoti relative to the preditivedistribution of the ASV model. This does not ome as a surprise. From the results in Table1, there are sweeps where the DPM sampler drew a mixture representation with two or morelusters. Furthermore, in Eq. (23) we see that the ASV-DPM preditive density inludesthe Student-t density funtion with v0 � 1 degrees of freedom { a known leptokurtotidistribution.
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Figure 1: Joint preditive densities of the ASV-DPM and ASV model from the vantagepoints of the yn+1-axis (lefthand side plots) and hn+2-axis (righthand side plots) as appliedto return data simulated from the ASV model.
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5 Empirial AppliationWe analyze the ASV-DPM and ASV models by applying them to 7,319 daily returns (mul-tiplied by a 100) over the period of January 2, 1980 to Deember 31, 2008 from the Centerof Researh in Seurity Pries (CRSP) value-weighted portfolio index. In Figure 2, we plotthe value-weighted portfolio returns. The hosen time period is ideal sine market returnsexhibit a number of di�erent dynamis. For example, the pre- and post-1987 market rashperiods, the teh bubble of the late 90s, and the �nanial risis of 2008. Over the entiresample, returns average 0.045 and have a variane of 1.12. Daily market returns appear tobe asymmetrially distributed with fat-tails as is evident in a negative skewness of -0.757and an exess kurtosis measure of 19.296.Figure 2: CRSP value-weighted portfolio daily ompounded returns from January 2, 1980to Deember 31, 2008 (in perentages).
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Table 2: Posterior estimates of the ASV-DPM and ASV models for daily ompoundedCRSP value-weighted portfolio returns from January 2, 1980 to Deember 29, 2008 (7319observations, 41,000 draws with the �rst 1000 draws of log-volatility followed by the next10,000 draws of all the unknowns being disarded).ASV-DPM ASVmean stdev 95% prob interval ine� mean stdev 95% prob interval ine�f 0.0423 0.0191 (0.0057, 0.0727) 39.38� 0.3188 0.1609 (0.0862, 0.7007) 16.53k 4.4220 1.3120 (3, 8) 56.52' 0.9799 0.0030 (0.9739, 0.9855) 136.94 0.9740 0.0037 (0.9662, 0.9809) 73.38� 0.0665 0.0082 (0.0506, 0.0826) 163.02 0.0611 0.0083 (0.0448, 0.0774) 56.50�2y 0.6100 0.0514 (0.5112, 0.7169) 337.98�2h 0.0391 0.0046 (0.0308, 0.0490) 131.62� -0.4682 0.0371 (-0.5402,-0.3944) 40.78f is the preditive likelihood, f(yn+1jy), where yn+1 = 3:0911 is the daily return on January 2, 2009.draws from the two models for inferene purposes.Table 2 reports the posterior mean, standard deviation, and 95% Bayesian probabilityinterval for the parameters of the ASV-DPM and ASV models, along with the posteriorestimate of the preditive likelihood, f(yn+1jy), for the ASV-DPM model. Posterior drawsof the ASV-DPM parameters along with their smoothed histogram and autoorrelationfuntion are plotted in Figure 3. Although some of the posterior draws are orrelated,our sampler overall mixes well and produes realizations from over the entire posteriordistribution.The posterior mean for the ASV-DPM model's unonditional mean of return, �, at0:067 is slightly larger than the ASV model's estimate of 0:061. But their posterior stan-dard deviations have the same value of 0:008. Hene, the model's posterior distributions,�(�jy), are similar in shape but the ASV-DPM is shifted slightly to the right. Althoughthe di�erene in the estimates of � are small, it an still have an e�et on one's expetedmedian wealth say 20 years into the future. For example the median expeted wealth perunit of investment over twenty years (e�=100�365�20) is 128:32 for the ASV-DPM model asopposed to 86:51 for the ASV.Persistene in volatility, as aptured by the posterior distribution of the autoregressiveparameter, ', is lose to being the same for the two models. In the ASV-DPM model, theposterior mean of ' is 0:98, whereas, in the ASV model it is 0:97. The standard deviationsare also similar with the ASV-DPM model's equaling 0:003 and the ASV slightly larger at17



0:004. Values of ' so lose to one is evidene of a strongly persistent volatility proess wherea shok to volatility impats its future values and lives on for a very long time in eithermodel. Even under a nonparametri distribution, the ' for ASV-DPM �nds lustering involatility where large and small utuations follow similar type of behavior.Figure 3: 30,000 MCMC draws, their smoothed histogram and autoorrelation funtion,from the ASV-DPM model of the daily ompounded CRSP value-weighted portfolio returnsfrom January 2, 1980 to Deember 29, 2008.
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The average number of posterior lusters is k = 4:42. In other words, the DPM useson average 4:42 bivariate Normal densities to model the unknown return, log-volatilitydistribution. We alulate the average posterior value for eah ovariane matrix, �t, t =1; : : : ; 7319 and plot them in Figure 4. The �rst graph is of the average posterior draw of�2y;t, the seond graph �2h;t, and the third is of �t. The behavior over time in �2y;t and �2h;tare indistinguishable. Both move at the same time and in the same diretion. This dynamisuggests that a market where �2y;t is large also has a large �2h;t. Instanes where the �2y;tand �2h;t are both large also helps identify mixture lusters with relatively low probability,but, whih only our when the market delines. For example, those instanes where �2y;t >18



Figure 4: Time plots of the posterior average of �2y;t; �2h;t; �t, t=1,. . . ,7319
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0:5; �2h;t > 0:1; �t < �0:457 only our eleven times out of the 7319 observations, but eahof these epsiodes orresponds to a market deline ranging from the 2% market drop onFebruary 4, 1994 to the 17% deline during the Otober '87 rash.6 This luster ontrastswith the one where �2y;t � 0:07; �2h;t � 0:02; �t � �0:455. Beause most of the sampleonsists of this seond luster, it has the largest mixture probability and, hene, representsthe market's 'typial' ovariane.Figure 4 also identi�es a third mixture luster. This third luster onsists of �ts whose�2y;t are between 0:15 and 0:4, and whose �2h;t are between 0:04 and 0:08. The luster'sorrelation is no di�erent from the �0:45 found for the 'typial' mixture luster. In totalthere are 29 ourenes of the third luster with twenty-two ouring when returns werenegative, and, exept for four of these days, delining 2%. On the days were returns werepositive the market inreased betweeen 2 to 4%. Hene, unlike the �rst luster where returns6The exat dates of these episodes, with the market return in parenthesis, are: 9/11/1986 (-4.4%),10/19/1987 (-17.1%), 1/8/1988 (-5.5%), 4/14/1988 (-3.6%), 10/13/1989 (-5.3%), 11/14/1991 (-3.4%),2/16/1993 (-2.6%), 2/4/1994 (-2.3%), 3/8/1996 (-2.8%), 10/27/1997 (-6.5%), 2/27/2007 (-3.4%).19



Table 3: Posterior estimates of the ASV-DPM model with the preision parameter priorGamma(0:1; 0:1) for daily ompounded CRSP value-weighted portfolio returns from January2, 1980 to Deember 29, 2008 (7319 observations, 41,000 draws with the �rst 1000 draws oflog-volatility followed by the next 10,000 draws of all the unknowns being disarded).mean stdev 95% prob interval ine�f 0.0443 0.0188 (0.0067, 0.07307) 33.17� 0.5085 0.3767 (0.0613, 1.4901) 54.19k 5.3737 2.3133 (3, 11) 96.01' 0.9799 0.0030 (0.9736, 0.9853) 140.39� 0.6684 0.0081 (0.0510, 0.0825) 150.24f is the posterior preditive likelihood of yn+1.were always negative, this third luster ours during a market gain or loss. Its leveragee�et is also smaller.5.1 Robustness to �(�)To gauge the sensativity of the ASV-DPM results to �(�), we re-estimate the ASV-DPMmodel using the more di�use prior �(�) � Gamma(0:1; 0:1). Under this prior E[�℄ = 1 andVar[�℄ = 10. Table 3 ontains the results. Similar to Jensen and Maheu (2010) �ndingsfor the semiparametri stohasti volatility model, the struturual parameters, �, ', areunhanged relative to Table 2 results. On the other hand, the DPM parameters, � and k,both go up. The preision parameter goes from 0:32 to 0:51 and k inreases from a posteriormedian of 4 to 5 lusters. In addition, �(�) e�et on the preditive likelihood, f , is negligble.Neither the preditive likelihood's posterior mean, standard deviation, probability interval,or ineÆieny level are impated by the hange to �(�).5.2 FitA point of possible ontention with the ASV-DPM model is that it �ts an unknown jointdistribution where one of the random variables, h, is not observed. To address this onernwe ompare the draws of h from the ASV-DPM model with those from the ASV model. Ifthe ASV-DPM model is unable to �t a nonparametri distribution to the latent volatilityproess, we would expet to �nd the draws from the smooth distribution �(hjy) to be lesspreise and have a very di�erent posterior mean from the parametri model. We would alsoexpet the loation and spread of the ASV-DPM model's joint preditive density to notmath up with the ASV model's preditive distribution.20



In Figure 5 we plot two graphs. In Figure 5(a) we plot the di�erene between the ASVand ASV-DPM sampler's standard deviations of �(hjy) over the trading days, January 2,1980 to Deember 29, 2008, and in Figure 5(b) the sample means of the two model's drawsof h. Exept for a few trading days, the standard deviation of the ASV draws are slightlylarger than the ASV-DPM models. Beause of the large di�erene between the ASV-DPMand ASV standard deviation on those days where the ASV-DPM standard deviations islarger, on average, the ASV-DPM standard deviations are 0:0026 larger than the ASV. Onthese days market volatility was generally low.In Figure 5(b), the two model's smoothed volatilities, E[hjy℄, are similar in their leveland pattern. However, there are di�erenes, suh as when volatility reahes a loal peak.In these instanes, the ASV model's smooth volatility is larger than the ASV-DPM model.Beause the instantaneous variane of returns, �2y , in the ASV model is onstant, largehanges in the return proess orrespond to large hanges in volatility. This ontrasts withthe ASV-DPM model where �2y;st is exible and, as we saw in Figure 4, hanges value whenit needs to adapt to a market deline. As a result the ASV-DPM model's volatilities areless volatile and do not inrease by as muh as the ASV model.6 Nested Model ComparisonThe DP preision parameter � an be understood as being a tuning parameter to the numberof unique �ts; i.e., the degree of lustering imposed by the DP prior. Under the DP (�;G0)prior, a data set of length n is expeted to have E[kn℄ = Pni=1 �=(� + i � 1) lusters. Byinreasing or dereasing the value of �, the ASV-DPM model is more or less likely to addnew lusters. As � approahes zero, the probability of a seond unique ovariane matrix,�=(1 + �), approahes zero, as does the probability of there being a seond, third, fourth,et. luster. It follows that the ASV-DPM model is equivalent to the parametri ASV modelwhen � is equal to zero.At the other end of the spetrum, the prior probability of drawing a new luster for �tgoes to one as �!1. Beause the DP prior for G is no longer disrete, but is instead equalto the distributionG0, when �!1, the prior for �t, t = 1; : : : ; n, is G0. Hene, as �!1,the ASV-DPM model is the ASV-t model { a parametri ASV model whose innovations aredistributed as a bivariate, Student-t with mean-vetor zero, ovariane matrix, S0=(v0 � 3)and v0 � 1 degrees of freedom (see Eq. (43)).Beause the ASV and ASV-t models are nested versions of the ASV-DPM that dependon the value of �, Bayes fators in favor of the nested models an be omputed using the21



Figure 5: (a) di�erene between the ASV and ASV-DPM standard deviation from theMCMC draws of �(htjy), and (b) the average draw of htjy from the ASV and ASV-DPM.Both �gures are for the period of January 2, 1980 to Deember 31, 2008.
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Savage-Dikey density ratio test (see Dikey (1971)). In general, the Savage-Dikey densityratio favors the nested modelM 0 : � = �0, where, in our ase, �0 = f0;1g, over the generalmodel M : �, where � � 0, when Bayes-fatorBF (� = �0) � m(yjM 0)m(yjM) ; (27)= �(� = �0jy;M)�(� = �0) ; (28)where m is the marginal likelihood, is large. In our ase, M = ASV-DPM and M 0 =ASV; ASV-t, respetively.The limit �0 !1 does not lend itself easily to the Savage-Dikey density ratio, so wetransform � into the random variable u � �=(� + 1) and assume u is distributed as themaximum entropy prior�(uj�) = e�u�e� � 1 ; � 2 R; (29)over the unit interval, u 2 [0; 1℄. The orresponding maximum entropy prior for � is�(�j�) = � expf��=(1 + �)g(e� � 1)(1 + �)2 : (30)Under this transformation, u! 0, as � ! 0, and u! 1, as �!1. The random variableu is thus, the prior probability of there being a seond mixture luster. If u = 1, then �2will be drawn from G0. Whereas, if u = 0, the probability of drawing a seond luster iszero and �2 = �1.Let the nested ASV and ASV-t models M 0 : u = u0, be, respetively, u0 = f0; 1g andthe unrestrited model M : u 2 [0; 1℄. In terms of u, the Savage-Dikey density ratio infavor of the nested model M 0 isBF (u = u0) � �(u = u0jy;M)�(u = u0) :Unlike the Gamma prior we used earlier for �, the maximum entropy prior does not lenditself to a standard distribution for the onditional posterior of �, so, we modify the Esobarand West (1995) sampler of �. Sine drawing either � or u requires a Metropolis sampler,we ould hoose to sample either one. However, beause � is de�ned on the positive realline, whereas u is onstrained to the unit interval, we hoose to draw � and use a randomwalk proposal with unit variane to generate the andidate draws.Denote the andidate draw by �0. It will be aepted as a draw from �(�jy) withprobability�(kj�0; n)�(�0j�)�(kj�; n)�(�j�) = �0k�(�0)=�(�0 + n)�(�0j�)�k�(�)=�(� + n)�(�j�) ; (31)23



where � is the draw from the previous sweep and k is the number of lusters from the urrentsweep (see Esobar and West (1995) for the formula of the likelihood funtion, �(kj�; n)).For eah draw of � we ompute the orresponding draw of u and evaluate u's empirialposterior distribution �(ujy) at zero and one. If the Savage-Dikey ratio at these points isgreater than one then there is evidene in favor of the nested model, M 0.Figure 6: The prior, �(uj� = 0) � Unif(0; 1), and the empirial posterior density�(ujy;ASV-DPM).
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uWe hoose the maximum entropy prior for u where � = 0 when testing the nested ASVand ASV-t models against the ASV-DPM. When � = 0, the maximum entropy prior is auniform prior over the unit interval. Exept for the prior of u, the MCMC sampler is thesame as Setion 5.In Figure 6, we plot the uniform prior and empirial posterior density of u. The Savage-Dikey density ratio in favor of the ASV model (u0 = 0) has a 1-in-20 hane of ourringand indiates that there is some likelihood for the parametri ASV model but not muh.Sine �(u = 1jy) = 0, there is virtually no evidene supporting the ASV-t model (u0 = 1).Though there is little empirial evidene supporting the nested ASV and ASV-t models,in Figure 6, there is still a range of values for u0 where a sharp hypothesis is supported.If we restrit u0 to values where �(u = u0jy;ASV-DPM) is greater than �(u0), we �nd anumber of Bayes-fators in favor of the restrited ASV-DPM model. From Figure 6, thedata supports a ASV-DPM model where u is between 0:125 and 0:525, with a mode ofu � 0:3. Given the relationships, E[kn℄ = Pni=1 �=(� + i � 1) and � � u=(1 � u), these24



posterior values of u support ASV-DPM models with approximately 2 to 10 lusters.6.1 Prior sensitivityBeause M 0 is a sharp hypothesis, the prior for u under M 0 is the Dira delta funtion,�(ujM 0) = Æuo(u). For the unrestrited model, M , the prior is the maximum entropydistribution of Eq. (29) with hyperparameter � 2 R. As � ! �1, the prior �(uj�;M) !Æ0(u); i.e., the prior of the unrestrited model onverges to that of the sharp ASV modelhypothesis. As �!1, �(uj�;M)! Æ1(u) and the prior is that of the ASV-t model.The marginal likelihood for M ism(yj�;M) = Z l(yju; �;M)�(uj�;M) du; (32)and the marginal likelihood for the nested model M 0 ism(yjM 0) = Z l(yju; �;M)Æu0 (u) du (33)= l(yju = u0;M): (34)The Bayes fator in favor of the restrited model M 0 written in terms of these marginallikelihoods isBF (u = u0jy; �;M) = l(yju = u0;M)m(yj�;M) :Under this prior for u, there exists limits where the unrestrited model equals the re-strited. The two restrited models are u0 = 0 (ASV) and u0 = 1 (ASV-t). To obtain theASV model with the unrestrited model, the priorlim�!�1�(uj�;M) = Æ0(u);and for the ASV-t modellim�!1�(uj�;M) = Æ1(u):Thus, the Bayes fator in favor of the ASV model an be written in terms of M 's marginallikelihood funtion asBF (u = 0jy; �;M) = m(yj�! �1;M)m(yj�;M) (35)and for the ASV-t the Bayes fator an be expressed asBF (u = 1jy; �;M) = m(yj�!1;M)m(yj�;M) : (36)25



Eq. (35) illustrates how the Bayes fator of a sharp hypothesis is inuened by the prioreven when the posterior is robust to the prior. The situation ours when the marginallikelihood of the unrestrited model is sensitive to the prior. For example, the maximumentropy prior auses the Bayes fator in favor of the ASV model to get loser and loser toone for more and more negative values of �.We use the prior �(uj� = �10;M) to ompute the Bayes fator favoring the ASV modeland the prior �(uj� = 10;M) for the Bayes fator favoring the ASV-t. These priors givethe bene�t of doubt to the restrited ASV-DPM model. In Figure 7 we graph in subplot(a) the prior �(uj� = 10;M) and in subplot (b) the prior �(uj� = �10;M). Eah plot alsoontains the empirial distribution of u using the respetive prior.Using these two maximum entropy priors, the Savage-Dikey density ratio for the twosharp hypothesis reinfores the �ndings of Setion 6. In the ase where the prior lendssupport to a ASV model (� = �10), the density ratio at u0 = 0 in Figure 7(b) shows thereto be slightly less than a 1-in-10 hane of a ASV model. The Savage-Dikey density ratiogoes to zero in Figure 7(a) when the prior heavily weights ASV-DPM models having a largenumber of lusters. Neither prior hanges the likelihood of the data oming from a ASV-tmodel. In eah ase �(u = 1jy;M) is zero.Figure 7 also shows how the expeted number of posterior lusters is robust to the prior.As was the ase with the uniform prior, the data supports a u between 0:125 and 0:5 (0:75)when � = �10 (� = 10). Again these are sharp hypothesis that the data an support.7 PreditabilityTo ompare the ASV-DPM model with the ASV and SV-DPM-P models, and more gen-erally any model of returns, we ompute the marginal likelihood of eah model using theprodut of its one-step-ahead preditions. As we have mentioned, in addition to integrat-ing out parameter unertainty, the marginal likelihood of stohasti volatility models alsointegrates out the unertainty assoiated with the latent volatilities. In the past, partile�lters have been applied to stohasti volatility models to integrate out volatility (see Chibet al. (2002)). However, the marginal likelihood for the ASV-DPM model also requiresintegrating out the latent DP ovariane matries. Basu and Chib (2003) have a way ofdoing this but only for a DPM type model, not a DPM model with stohasti volatility.The ASV-DPM model requires a partile �lter for integrating out the latent volatilities andDP parameters, making the Basu and Chib approah infeasible.77An appealing alternative to the approah we take here is the sequential Monte Carlo method to esti-mating and �ltering DPM type model of Carvalho et al. (2010).26



Figure 7: The empirial posterior density of u under the maximum entropy priors (a)�(uj� = 10) and (b) �(uj� = �10).
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Beause of the additional omputation osts involved in integrating out the volatilitiesand DPM ovarianes, and also beause of the inreased availability of parallel omputing,Beowulf lusters, and quad-ore proessors, we hoose to ompute the ASVmodel's marginallikelihood sequentially with one-step-ahead preditive likelihoods. Given the low ost ofmulti-thread omputing and availability of multiple proessors, a large number of individualand independent MCMC draws an be onduted on the histories of the return series. Forthe ASV-DPM, ASV and SV-DPM-P models we simulataneously arry out 50 separate andunique MCMCs on 5 servers where eah server has two quad-ore proessors. As a result amodel's marginal likelihood is omputed well within the length of a day.Our approah is as follows. Let the vetors yt�1 = (y1; : : : ; yt�1)0, where t = 2; : : : ; n,denote the histories of returns up to time period t � 1. By the law of onditional proba-bility, the marginal likelihood an be expressed in terms of the one-step-ahead preditivelikelihoodsm(yjM) = nYt=1 f(ytjyt�1;M); (37)where M = ASV-DPM; ASV; SV-DPM-P. It is helpful to write the posterior preditivedensities asf(ytjyt�1;M) � Z f(ytjyt�1;�M ;M)�(�M jyt�1;M) d�M ; (38)where �M is a vetor of the unobservable parameters and volatilities. The posterior density�(�M jyt�1;M) / �(�M jM) t�1Y�=1 f(y� jy��1;�M ;M);where �(�M jM) is the Mth model's prior density for �M . For the ASV-DPM model theone-step-ahead posterior preditive likelihoods, f(ytjyt�1;ASV-DPM), is found in Eq. (26)exept it will be evaluated at yt and yt�1 replaes y.When t is small, �(�M jM) will inuene the one-step-ahead preditive likelihood. So,in pratie, the produt in Eq. (37) generally does not begin at t = 1, but will instead startfurther into the data set. However with DPM models the densities f(y� jy��1;�M ;M), M =ASV-DPM; SV-DPM-P are unknown and must be learned by observing data. Whereasthe ASV model's preditive density funtion is already known and similar to the priorit will inuene f(ytjyt�1;ASV) and ause it to have a relative advantage over the DPMmodels. Hene, it will be informative to see how the ASV-DPM learns relative to theASV by omputing f(ytjyt�1;M) for t = 2; : : : ; n. Our marginal likelihoods will then bem2(yjM) =Qnt=2 f(ytjyt�1;M). 28



Eah of the n�2 MCMC posterior onditional samplers is independent from the others.Given this independene we only need to supply a partiular sampler with one of then � 2 histories yt�1 before letting it run. First, we farm out as many histories as thereare proessors available. On a quad-ore, multi-threaded, omputer this generally equals10 potential MCMC samplers. When a proessor's task of sampling R draws from theposterior distribution onditioned on that partiular history is ompleted, the proessoromputes the one-step-ahead preditive likelihood in Eq. (26) and returns it for later use.If preditive likelihoods for other histories still need to be omputed, the proessor willrequest another history and sample from its posterior. One all n� 2 preditive likelihoodshave been omputed the marginal likelihood is alulated.7.1 Cumulative Bayes-fatorFrom the posterior preditive likelihoods, f(ytjyt�1;M), the umulative log-Bayes fator(CLBF) of the ASV-DPM relative to the other two models equalslog�mL(y� jASV-DPM)mL(y� jM) � = �Xt=2 log�f(ytjyt�1;ASV-DPM)f(ytjyt�1;M) � ; � = 2; : : : ; n; (39)where M = ASV; SV-DPM-P. Eah point on the CLBF represents the log-Bayes fatorbetween the relative models for the history y� . By plotting the CLBF over � we are ableto identify those instanes where one model out preforms the others. Day-to-day hange inthe CBLF depit how well the models perform relative to foreasting the next day's returnas illustrated by the quantities log f(ytjyt�1;ASV-DPM)� log f(ytjyt�1;M).Beause of the large omputational osts involved in omputing the preditive likelihoodsover the 7,319 daily returns of Setion 5, we investigate the umulative log-Bayes fatorsusing the value-weighted CRSP portfolio returns from January 3, 2006 to Deember 31, 2008(755 trading days). For the three models we ompute the posterior preditive likelihoods,f(ytjyt�1;M), from t = 2 (Jan. 4, 2006) to 755 (De 31, 2008), by sampling the model'sunknowns 11,000 times and disarding the �rst 1,000 draws. The umulative log-Bayesfators are plotted in the top panel of Figure 8. In the bottom panel, we plot the dailyreturn for the CRSP value-weighted portfolio over the orresponding period.Unlike Geweke and Amisano (2010), who �nd the CBLF for a handful of symmetrialstohasti volatility models jumping by as muh as 50 points on a partiular days, the ASV-DPM model's CLBF do not move more than a point on a single day, but, instead exhibitgeneral behavior and trends. For example, the ASV model's CLBF initially muddles aroundwith values less than one until the middle of 2006. This muddling is a time of learning29



Figure 8: Cumulative log-Bayes fator, log �mL(y� jASV-DPM)mL(y� jM) �, of the ASV-DPM modelrelative to the ASV (red line) and SV-DPM-P (green line) models from January 4, 2006 toDeember 31, 2008 using CRSP value-weighted portfolio returns (blue line) bak to January3, 2006.
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for the ASV-DPM as it identi�es the neessary number of mixture ovarianes and theirloations. On the other hand, the ASV's normality assumption allows it to start reduingthe unertainty around its unknown ovariane right from the beginning. After this initialperiod of learning, the CLBF begins to limb steadily, experiening a few short lived dropsalong the way, in favor of the ASV-DPM model. During the summer of 2008 the ASV-DPMbriey enjoys a period where the CLBF exeeds seven before delining over the �nanialrisis to 6:0. This general upward trend in the ASV model's CLBF is evidene of the ASV-DPM model produing on average better day-ahead preditions of market returns thanthe ASV model. Aording to Je�eries (1961), a �nal CLBF value of six is \very strong"evidene in favor of the ASV-DPM model over the ASV model.Leverage appears to play less of a role when markets are volatile than it does whenmarket volatility is low. In Figure 8, the CLBF between the model with leverage, ASV-DPM, and the one without, SV-DPM-P, rises when the market is tranquil from mid-2006to mid-2007 (as seen in the smoothness of CRSP returns over this period). During thistime the CLBF rises to over 10, \deisive" evidene in favor of the ASV-DPM model forthe �rst half of the return series. Returns then beome more volatile and the SV-DPM-Pmodel begins to produe on average better foreasts until volatility reedes after the �rstquarter of 2008. By the end of 2008 the CLBF is 4:3. This is \strong" evidene in favor ofthe ASV-DPM model relative to the SV-DPM-P for the entire series.8 Volatility ResponseEver sine Blak (1976) proposed the leverage hypothesis and Frenh et al. (1987) thevolatility feedbak e�et, many have studied how volatility reats to hanges in marketreturns.8 Yu (2005) and Asai and MAleer (2009) both establish the theoretial relation-ship for stohasti volatility and returns when leverage is present. Yu (2005) derives thevolatility-return relationship for the asymmetri stohasti volatility model and Asai andMAleer (2009) for the multivariate stohasti volatility model, but neither empiriallyinvestigates the relationship.Volatility's response in the ASV-DPM to a hange in market returns is derived fromEq. (22) { the joint posterior preditive density, f((yn+1; hn+2)0jyn). This preditive densitydispenses with parameter and latent volatility unertainty by integrating out the unknownsover their posterior.9 For a 200 � 200 array of equally spaed values of yn+1 and hn+2, we8See Bekaert and Wu (2000) for a review of the researh prior to 2000 and Chen and Ghysels (2011) formore reent work on the subjet.9The volatility-return relationship of Yu (2005) and Asai and MAleer (2009) do not integrate out this31



ompute f((yn+1; hn+2)0jyn). In other words, we evaluate the preditive density at four-thousand points, fyn+1;j; hn+2;j0gj;j0 , where j; j0 = 1; : : : ; 200. Tomorrow's 200 di�erentreturns are entered around the next day's atual return and the log-volatilities are enteredaround the average draw of hn+1 from the MCMC burnin.The ASV-DPM's preditive joint density ontains a healthy amount of information on-erning the return-volatility relationship. However, sine the preditive posterior densityis bivariate and depends on today's return, yn, it is diÆult to visualize all this infor-mation in a density plot. We try to summarize some of the more interesting features ofthe return-volatility relationship by omputing and plotting the onditional expetation ofnext period's log-volatility, E[hn+2jyn; yn+1℄, over a range of values for yn+1. If tomorrow'sreturn is y0n+1, next period's expeted log-volatility will equalE[hn+2jyn; y0n+1℄ = Z hn+2 f(hn+2jyn; y0n+1) dhn+2� 200Xj=1 hn+2;j " f(y0n+1; hn+2;j jyn)P200j0=1 f(y0n+1; hn+2;j0 jyn)# : (40)We ompute the ASV-DPM model's joint preditive density using the MCMC drawsfrom Setion 7 and the CRSP portfolio returns from January 3, 2006 to Deember 31,2008. In Figure 9, we plot �fteen of the ontour lines from the preditive density (solidlines) along with E[hn+2jyn; yn+1℄ (dashed line). In the �gure, the ontour lines bow upand out when tomorrow's return is negative, while the ontours are nearly linear over smallvalues of hn+2; i.e., onditional on returns being negative, the preditive distribution forhn+1 is not symmetrial but is skewed upward. Skewness is also present when yn+1 > 0.However, these ontour lines are less (more) bowed out for large (small) values of hn+1.When market returns are positive, the onditional distribution of tomorrow's log-volatilityis skewed upward, but less so relative to when yn+1 is negative. Thus, tomorrow's volatilityis likely to be higher following either a market deline or inrease, but beause of thedi�erene in the degree of skewness, volatility's expeted response is asymmetri.This asymmetri response in volatility is seen in the dashed line of E[hn+2jyn; yn+1℄.When the market does not move, tomorrow's expeted log-volatility is 1:46. With eahperentage point deline in the daily market return, expeted log-volatility inreases atapproximately the rate of 0:3. This ontrasts with a market inrease, where expeted log-volatility responds in a nonlinear manner. Expeted log-volatility ever so slightly delinesfor market gains smaller than 0.2%. inreasing at a rate of 0:1. But as returns get evenlarger expeted log-volatility rises at a faster rate of 0:2. Even though this rate of inreaseunertainty and depend on the value of the estimated parameters.32



Figure 9: Contour lines (solid lines) of the ASV-DPM model's joint preditive density,f((yn+1; hn+2)0jyn), and the onditional expeted value of log-volatility given tomorrow'sreturn, E[hn+2jyn; yn+1℄, (dashed line) where yn ontains 755 daily CRSP value-weightedportfolio returns from January 3, 2006, to Deember 31, 2008.
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in expeted log-volatility is smaller than had the market dropped, tomorrow's expetedvolatility will be larger after any sizable move in the market, be it negative or positive.Thus, in the words of Campbell and Hentshel (1992) and Chen and Ghysels (2011),\Nonews is good news," when talking about market returns and volatility.8.1 Time-varying volatility responseLike volatility, the volatility-return relationship an vary. This begs the question, does thedashed line in Figure 9 represent the typial joint preditive distribution of tomorrow'smarket return and log-volatility, or is it an abnormality? To answer this question we deletethe last 540 returns from the return history and sequentially estimate the volatility-returnrelationship beginning with the return history ending on November 8, 2006 and adding onereturn at a time until we reah Deember 31, 2008.Figure 10: The ASV-DPM onditional expeted log-volatility, E[hn+2jyn; yn+1℄, plottedagainst future return, yn+1, for the return series, yn = (y1; : : : ; yn), n = 216; : : : ; 755.

In Figure 10, we plot E[hn+2jyn; yn+1℄ for eah of the 540 return histories, yn, n =216; : : : ; 755. This �gure illustrates how the volatility-return relationship depends on the re-turn history. The value of E[hn+2jyn; yn+1 = 0℄ ranges from -1 to 4, with the highest onen-34



tration falling between �0:5 to 1:5. Histories assoiated with the largest E[hn+2jyn; yn+1 =0℄ end during the most volatile period of September, 2008. The E[hn+2jyn; yn+1 = 0℄near the origin have yn that end during almer more normal market periods. Currentvolatility explains 89 perent of the variation in E[hn+2jyn; yn+1 = 0℄ when regressing it onE[hn+1jyn℄. Hene, as one would expet tomorrow's expeted volatility is strongly orre-lated with today's volatility.Many studies of the leverage e�et assume that debt is una�eted by hanges in thestok market, and is hene, riskless; e.g. see Shwert (1989) and Figlewski and Wang(2000). Christie (1982) shows that by allowing the value of debt to hange in the samediretion as market apital, the leverage e�et is weakened. Under risky debt, a negativemarket return leads to an inrease in volatility, but the size of the impat delines as leveragegrows. By most pratitioners, leverage was viewed as being high during 2008. The returnhistories ending during this period have the highest values for E[hn+2jyn; yn+1℄, but alsothe attest.The degree of asymmetry in E[hn+2jyn; yn+1℄ is also a�eted. Asymmetry is greatestwhen E[hn+2jyn; yn+1 = 0℄ is negative and today's volatility is low. At the other end of thespetrum, volatility's response to the market is nearly symmetrial when E[hn+2jyn; yn+1 =0℄ is greater than 2 and the return history ends during volatile bear markets. Volatilityresponse is not only symmetrial for these histories, there is almost no volatility responseat all.The degree of shading in Figure 10 provides a rough density measure of the di�erentvolatility-return responses. Dark bands over the negative returns show that for many ofthe 540 volatility-return responses a drop in the market today orresponds to an inrease inexpeted log-volatility. A similar but not quite as dark a band an also be seen for positivedaily returns.10 The lighter lines are the volatility-return relationships whose histories endduring rare, but very volatile, times. As mentioned above, these responses are symmetrialand nearly at. Thus, we see that during \normal" times, no news is good news for volatility,whih is even more true during tranquil times. During the most turbulent of markets, newsof any sort just does not matter for expeted volatility. This is a notable feature of thesemiparametri ASV model. When markets are highly volatile, a return shok must belarge in order to a�et the market's expetations about tomorrow's volatility. Whereas, ona typial day only a little bit of news is required to ause expeted volatility to inrease.10The dark band in Figure 10 has a shape very similar to Chen and Ghysels (2011) nonparametri newsimpat urve on p. 49. 35



9 ConlusionIn this paper we extended the asymmetri, stohasti, log-volatility model whose innova-tions are orrelated and normally distributed by modeling the unertainty in their jointdistribution with a nonparametri, bivariate Dirihlet proess mixture prior. We providea sampling algorithm to integrate out the parameter, volatility and distributional uner-tainty of our semiparametri, asymmetri, stohasti volatility model. Our algorithm is alsoused to ompute the log Bayes preditive foreast of the semiparametri model relative tothe parametri version. These log Bayes preditions are used to evaluate and ompare theforeasting abilities of the two models.The nonparametri prior inreases the exibility of the asymmetri stohasti volatilitymodel by allowing the orrelation between its innovations to take on in�nite number of val-ues, while being manageable and parsimonious by taking on a �nite number of orrelationsfor a �nite length data set. This exibility is important when foreasting market returns,espeially when the market transitions from a low to high volatility state or the marketsuddenly delines. In the empirial ase study, foreasts from our semiparametri asym-metri stohasti volatility model apture these types of episodes, whereas the parametrimodel does not. This leads to the daily preditive Bayes fators favoring the nonparametriasymmetri stohasti volatility model more often than the parametri version.The exibility of having more than one value to model the orrelation between volatilityand return is also important for modeling the volatility-return relationship and the responsein expeted volatility to a unexpeted hange in market returns. In partiular, the size andand degree of asymmetry in the response of volatility to an unexpeted hange in marketpries an vary. Using the semiparametri model of the asymmetri stohasti volatility, theresponse in the expeted value of volatility to a deline in stok pries versus an inreaseis highly asymmetri when volatility is urrently low and the market is alm. However,if volatility is high and the market irregular, the asymmetry nearly disappears and theresponse in expeted volatility beomes muted. In other words, during normal times, just alittle bit of news a�ets volatility, whereas, during a turbulent market, it takes a signi�antamount of news to impat volatility.
36



A Details of MCMC samplerA.1 Sampler of �De�ne z = (z1; : : : ;zn)0, where zt = ((yt��) expf�ht=2g; ht+1�'ht)0, then �t onditionalposterior distribution is :�tjf�t0 : t0 6= tg;zt; � � ��+ n� 1g(zt)G(d�jzt)+ 1�+ n� 1Xt0 6=t fN (ztj�t0)Æ�t0 (d�); (41)where g(zt) � R fN (ztj0;�) G0(�)d�, and, by the law of onditional probability,G(d�jzt) /fN (ztj0;�)G0(d�). Applying the prior information of Eq. (3) and (9) it follows that thedensity for the distribution G(d�jzt) is:g(�jzt) / j�j�1=2 exp��12trztz0t��1� jS0jv0=2j�j(v0+3)=2 exp��12tr��1S0� ;= jS0jv0=2j�j(v0+4)=2 exp��12tr(S0 + ztz0t)��1� ; (42)This is the kernel to the Inverse-Wishart distribution, G(d�jzt) � Inv-Wish(S0+ztz0t; v0+1) (see Zellner (1971), p.395). Integrating out � from G(d�jzt) results in the marginallikelihood funtion:g(zt) = fMSt(ztj0; (S0=(v0 � 1))�1; v0 � 1); (43)In other words, the bivariate Student-t density funtion with v0 � 1 degrees of freedom,mean-zero vetor, and ovariane, S0=(v0�3) (see Zellner (1971), Eq. (B.20), p. 383 for theexat formula of fMSt).Let nj be the number of observations where st = j, k(t) to be the distint number of �jin f�t0 : t0 6= tg, and n(t)j the number of observations where st0 = j, t0 6= t. For a given h,�, ' and �, draws from the posterior �(f�jg; sjz; �) � �(f�jg; sjy; h; �; '; �) are made in2-steps:1. s and k are drawn by sampling st, t = 1; : : : ; n, from:stjf�t0 : t0 6= tg;zt; � � ( ��+n�1g(zt) Æ0(dst)1�+n�1Pk(t)j=1 n(t)j fN (ztj0;�j) Æj(dst): (44)If zero is drawn for st, k inreases by one, st is set equal to the new value of k, and anew �k is drawn from the distribution whose density is Eq. (42). Otherwise, st equalsthe randomly drawn j. 37



2. Disard the �js from Step 1 and use the sampled s and k to iteratively draw new �j,j = 1; : : : ; k, from:�(�jjz; s; k) / Yt:st=j fN (ztj0;�j)G0(d�) (45)/ Yt:st=j j�j j�1=2 exp��12trztz0t��1j �� jS0jv0=2j�j j(v0+3)=2 exp��12trS0��1j � (46)= jS0jv0=2j�j j(v0+nj+3)=2 exp8<:�12tr0�Xt:st=j ztz0t + S01A��1j 9=; (47)� Inv-Wish0�S0 + Xt:st=j ztz0t; v0 + nj1A : (48)A.2 Sampler of hGiven a partiular partition of h sequentially draw eah volatility blok onditional on thevalue of the other volatilities. The onditional distribution of the volatility blok h(t0;�) =(ht0 ; ht0+1; : : : ; h� )0, with 1 � t0 � � < n, and lt0 � � � t0 + 1 being randomly distributed asa Poisson distribution, Pois(�h), is:�(h(t0 ;�)jy(t0;�); h�(t0 ;�)) / �(h(t0 ;�)jh�+1; ht0�1)f(y(t0;�)jh(t0 ;�); h�+1)= exp(�12 (ht0 � 'ht0�1)2�2h;st0 ) �Yt=t0 exp(�12 "(ht+1 � 'ht)2�2h;st + ht#)� �Yt=t0 exp(�12 �yt � �� eht=2�y;st�st(ht+1 � 'ht)=�h;st�2(1� �2st) expfhtg�2y;st ) :(49)For the �rst blok, �(h(1;�)jh�+1; h0) depends on h0. The unknown h0 is modeled withthe prior �(h0) � N(0; �2h;0=(1 � '2)), where �2h;0 � E[G0(d�)℄2;2 is the expeted varianeof log-volatility from the the DPM base distribution. By drawing h0 from �(h0jh1) �N('h1; �2h;0), it is integrated out.If the draw of lt0 auses � to be greater than or equal to n, the onditional distribution ofthe volatility blok is the same as above exept � = n. For the last blok of h we integrateout the one period ahead, out of sample, volatility, hn+1, by replaing it with a randomdraw from:�(hn+1jy; hn) � N(�hn+1; ��2hn+1); (50)38



where�hn+1 = 'hn + (yn � �)�sn�h;sne�hn=2�y;sn ; ��2hn+1 =  �2sn(1� �2sn)�2h;sn + 1�2h;sn!�1 ;and hn is from the previous sweep of the sampler.The onditional distributions �(h(t;�)jy(t;�); h�(t;�)) are nonstandard, so a Metropolis-Hasting sampler is used. Candidate draws of h(t;�) are made from a lt-variate Student-t dis-tribution having mean vetorm, ovariane matrix S, and � degrees of freedom. The andi-date mean vetor,m, is set equal to the argument maximizing �(h(t0 ;�)jh�+1; ht0�1)f(y(t0;�)jh(t0;�); h�+1),and the andidate ovariane, S, equals the negative inverted Hessian of the unnormalizedonditional distribution evaluated at m.A.3 Sampler of 'Draws from �('jy; h; f�tg) are made with a Metropolis-Hasting sampler whose andidatedistribution is N(b'; b�2') where:b' = b�2' �'�2' + n�1Xt=1 ht+1ht�2h;st ! ; b�2' =  1�2' + n�1Xt=1 h2t�2h;st!�1:A draw, '0, from this andidate distribution will be aepted with probability �('0; ') =minng('0)g(') fN ('jb';b�2')fN ('0jb';b�2') ; 1o whereg(') / f(yj'; h; f�jg; s; hn+1)�(hj'; f�jg; s)�(hn+1jhn; ')�(h0j')�(');= nYt=1 exp(�12 "�yt � �� �teht=2�y;st(ht+1 � 'ht)=�h;st�2(1� �2st)�2y;steht + (ht+1 � 'ht)2�h;st #)� exp(�12 "(h1 � 'h0)2�2h;0 + h20�2h;0=(1 � '2)#) fN ('j�'; �2')Ij'j<1:If the andidate '0 is rejeted, the previous sweep's value of ' is kept as the urrent sweep'sdraw from �('jy; h; f�tg).A.4 Sampler of �To draw from �(�jy; h; f�tg), let �(�) � N(m; �). Sine �(�) is Normal, draws of � aremade from the onjugate posterior N(�̂; �̂) where:�̂ = �̂  m� + nXt=1 ~yt~�2t ! ; �̂ =  1� + nXt=1 1~�2t !�1;and ~y = yt � �teht=2�y;st(ht+1 � 'ht)=�h;st and ~�2t = (1� �2st)�2y;st expfhtg.39



A.5 Sampler of �The two step algorithm of Esobar andWest (1995) is used to sample the ASV-DPMmodel'spreision parameter from �(�jf�tg) equivalent distribution �(�jk). More preisely, assume�(�) � �(a; b), where a > 0 and b > 0. Draws from �(�jk) are made by1. Sampling the random variable � from �(�j�; k) � Beta(�+ 1; n)2. Sampling � from the mixture �(�j�; k) � ���(a+k; b�ln �)+(1���)�(a+k�1; b�ln �),where ��=(1� ��) = (a+ k � 1)=[n(b � ln �)℄.
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