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Summary: In this paper we confront sensitivity analysis with diagnostic
testing. Every model is misspecified (in the sense that no model coincides
with the data-generating process), but a model is useful if the parameters of
interest (the focus) are not sensitive to small perturbations in the underlying
assumptions. The study of the effect of these violations on the focus is called
sensitivity analysis. Diagnostic testing, on the other hand, attempts to find
out whether a nuisance parameter is (statistically) ‘large’ or ‘small’. Both
aspects are important, but traditional applied econometrics tends to use only
diagnostics and forget about sensitivity analysis. We develop a theory of sen-
sitivity in a maximum likelihood framework, give conditions under which the
diagnostic and the sensitivity are asymptotically independent, and demon-
strate with three core examples that this independence is the rule rather than
the exception, thus underlying the importance of sensitivity analysis.
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1 Motivation and background

Since models are often compared to maps, let us consider the following map
of Europe. At first glance the map appears to be fine. But upon further

Figure 1. Map of Europe.

investigation, it becomes clear that the map is not useful when planning
a trip from Palermo to Lisbon, from Ibiza to Dublin, or from Zagreb to
Ajaccio. In fact, the map fails in eight important respects: Ireland seems to
have been replaced by Iceland, Normandy is where Brittany used to be and
vice versa, Sardinia and Corsica have changed places, Sicily has disappeared,
the Balearic Islands have moved from the south-east of Spain to the north-
west, Portugal and north-west Spain have disappeared completely, and so
have the Baltic States, Albania, and former Yugoslavia, so that Austria and
Hungary now border the Adriatic Sea. As a map of Europe, this is not a
good one. Nevertheless, for many itineraries the map is perfectly adequate.
The route from Paris to Warsaw, for example, is correctly specified.

The example illustrates the well-known fact that inadequate models may
still be useful in certain important directions, and it leads to the distinc-
tion between diagnostic testing and sensitivity analysis. A diagnostic test
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asks the question whether the model is correct (and would be rejected in our
map example), while sensitivity analysis asks whether deviations from the
truth are important in the direction that we are interested in (which is not
the case if we travel from Paris to Warsaw). These are different questions
and the second question (the sensitivity) seems to be the more important.
In econometric practice, however, diagnostic testing is the norm and sensi-
tivity analysis the exception. If diagnostic testing and sensitivity analysis
were closely correlated, then this would not be a problem. The main result
of this paper, however, is that the diagnostic test and the sensitivity are
(asymptotically) independent. Hence sensitivity analysis does matter.

In econometric terms, suppose we wish to estimate β from the linear
regression model

y = Xβ + θz + ε, ε|(X, z) ∼ N(0, In),

where the regressor z may or may not be included in the model. In the
restricted model (where θ = 0), we estimate β by β̂ = (X ′X)−1X ′y, while
the least-squares estimators for β and θ in the unrestricted model are

β̃ = β̂ − (X ′X)−1X ′z(z′Mz)−1z′My, θ̃ =
z′My

z′Mz
,

where M := In − X(X ′X)−1X ′. The difference between β̃ and β̂ is thus
given by

β̃ − β̂ = −(X ′X)−1X ′zθ̃. (1)

Now consider the function β̂(θ) := (X ′X)−1X ′(y − θz), which estimates β

for each fixed value of θ. In particular we have β̃ = β̂(θ̃) and β̂ = β̂(0). A
Taylor expansion gives

β̃ − β̂ = β̂(θ̃) − β̂(0) =
∂β̂(θ)

∂θ

∣∣∣∣∣
θ=0

θ̃ + Op(1/n), (2)

where — in this simple case — the remainder term is identically zero. We see
from (1) and (2) that the difference between β̃ and β̂ factorizes as β̃−β̂ = Sθ̃,
where S denotes the sensitivity

S :=
∂β̂(θ)

∂θ

∣∣∣∣∣
θ=0

= −(X ′X)−1X ′z.

Hence, the larger is θ̃ (the diagnostic), the more important is the sensitivity.

We may think of θ̃ as the ‘magnitude’ and of S as the ‘direction’ of the



4

impact of the misspecification on β̂. (Figure 2 in Section 3 further clarifies
this interpretation.) Seen in this light it becomes important to investigate

the relationship between θ̃ and S. If our focus is not to estimate β but, say,
to forecast y, then the magnitude of the impact does not change, but the
direction does change. This simply reflects the fact that a model may be a
good approximation for one focus, but not for another.

In applied econometrics the choice between β̃ and β̂ is almost always
based exclusively on the t-statistic tθ := (z′Mz)−1/2z′My or on a simple
transformation thereof, such as the Wald statistic W = t2θ. In other words,

the choice is based on a diagnostic, answering the question whether θ̃ is
(statistically) ‘large’ or ‘small’. Since θ is a nuisance parameter, we are not

primarily interested in whether θ̃ is large or small (relative to its precision);

our interest is in β. It may very well be that θ̃ is large, but that nevertheless
the difference between β̃ and β̂ is small, a frequent observation in econometric
practice, which occurs if the sensitivity is small. A proper choice between
the estimators should therefore be based on both factors: the diagnostic
and the sensitivity. If the diagnostic and the sensitivity would be highly
correlated, then ignoring the sensitivity might not matter. However, as we
shall demonstrate, the more common situation is that the sensitivity and
the diagnostic are (asymptotically) independent. Then sensitivity analysis
matters.

The current paper is motivated by the above highly stylized and simpli-
fied example. Sensitivity analysis matters in this example, and it equally
matters in more complex examples and in other contexts. The idea of check-
ing the sensitivity of objects of interest to restrictions underlies also Haus-
man’s (1978) specification test, which builds on Durbin (1954). Hausman
is not interested in whether certain restrictions on the parameters hold, but
rather whether the parameters are estimated consistently. Hausman’s test
is, however, not a sensitivity; it is a diagnostic as Holly (1987, p. 68) has
demonstrated. Our paper is closer to the idea of ‘local inconsistency’ con-
tained in Kiefer and Skoog (1984). We shall return to these papers after we
have formally introduced sensitivity.

The aim of this paper is threefold. First, we develop the theory of sen-
sitivity analysis in a general maximum likelihood context. Second, we give
conditions under which the sensitivity is asymptotically independent of the
diagnostic test. Third, we demonstrate that these conditions are satisfied in
three important directions: mean misspecification, variance misspecification,
and distribution misspecification.

(Local) sensitivity analysis thus studies the effect of (small) changes in the
underlying assumptions on the output of the system. It plays an important
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role in (non)linear programming (Gal and Greenberg, 1997), chemistry and
physics (Saltelli, Chan, and Scott, 2000), and other disciplines (Kleijnen,
1997). In econometrics, the ‘output’ is the statistic of interest, such as an
estimator, a forecast, or a policy recommendation.1

There are two branches of sensitivity analysis: data perturbation and
model perturbation. In data perturbation one may perturb the location of
the regressors, or the location or the scale of the dependent variable in a
regression context. This branch is associated mainly with the work of Huber
(2004, first edition 1980) and Cook (1979, 1986).2 In contrast, model pertur-
bation considers the effects on the parameter of interest (or any other focus)
of small deviations from the hypothesized model, such as the deletion of rel-
evant regressors, the misspecification of the variance matrix, or deviations
from normality. This branch plays a role in Bayesian statistics, in particular
the effect of misspecifying the prior distribution (Leamer (1978, 1984), Po-
lasek (1984)), but also in classical econometrics (Banerjee and Magnus (1999,
2000)).

In the current paper, our interest lies in the perturbation of models, and
‘sensitivity analysis’ will be understood to mean the study of the effect of
small changes in model assumptions on an estimator of a parameter of in-
terest. The paper is organized as follows. The formal maximum likelihood
framework and the notation is explained in Section 2, where we state the
assumptions used and obtain two asymptotic results concerning maximum
likelihood estimation and diagnostic tests. In Section 3 we introduce the sen-
sitivity statistic and obtain its asymptotic distribution. Some often-occurring
special cases are considered as well. The conditions under which the sensi-
tivity and the diagnostic are asymptotically independent are studied in Sec-
tion 4. This completes the theoretical part of the paper. In Sections 5–7 we
investigate three important directions of model misspecification: the mean,
the variance, and the error distribution. The finite sample performance is
illustrated with Monte Carlo simulations. Section 8 concludes.

1See Chatterjee and Hadi (1988) for an early summary of sensitivity analysis in lin-
ear regression, and Saltelli, Chan, and Scott (2000) for applications in many different
directions.

2See also Cook and Weisberg (1982). Cook’s ‘likelihood displacement’ method has been
applied to elliptical disturbances (Galea, Paula, and Bolfarine (1997) and Liu (2000)),
multivariate regression (Fung and Tang, 1997), growth curve models (Pan, Fang, and von
Rosen, 1997), ridge regression (Shi and Wang, 1999), dropout models (Verbeke, Molen-
berghs, Thijs, Lesaffre, and Kenward, 2001), multivariate elliptical linear regression (Liu,
2002), and prediction (Hartless, Booth, and Littell, 2003). See Liu (2002) for further
references. In Section 3 we shall relate Cook’s method to our definition of sensitivity.
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2 Maximum likelihood and diagnostic tests

The observations consist of the first n terms of a sequence of random vectors
(y1,x1), (y2,x2), . . . , not necessarily independent or identically distributed,
where we think of y as the dependent variable and of x as the vector of
explanatory variables.3 The joint density, denoted by f(·; δ), is assumed to
be known, except for the values of a finite and fixed number of parameters
δ = (δ1, . . . , δp)

′ ∈ D ⊂ R
p. The log-likelihood function is

ℓ(δ) := ℓ(δ; (y1,x1), . . . , (yn,xn)) := log f((y1,x1), . . . , (yn,xn); δ).

We denote the true (but unknown) value of δ by δ0. All probabilities and
expectations are taken with respect to the true underlying distribution. We
impose a set of relatively weak conditions on the data to ensure the existence
of certain expansions and the proper behavior of maximum likelihood (ML)
estimators. All limits are taken for n→ ∞.

Assumption 1:

(a) the parameter space D is a compact subset of R
p,

(b) δ0 lies in the interior D0 of D,
(c) ℓ(δ) is continuous on D,
(d) ℓ(δ) is two times continuously differentiable on D0.

Assumption 2: Let κ := κ(δ, δ0) := −E (ℓ(δ) − ℓ(δ0)) denote the abso-
lute value of the Kullback-Leibler information. Then,
(a) κ(δ, δ0) → ∞ for every δ 6= δ0,
(b) (1/κ2) var(ℓ(δ) − ℓ(δ0)) → 0,
(c) for every δ 6= δ0 ∈ D there exists a neighborhood N(δ) of δ such that

Pr

(
(1/κ) sup

φ∈N(δ)

(ℓ(φ) − ℓ(δ)) < 1

)
→ 1.

Assumption 2(c) ensures that the normalized log-likelihood ratio is locally
equicontinuous in probability. This condition is weaker than the more com-
mon condition that (1/n)ℓ(δ) converges uniformly in probability. Assump-

tions 1(a), 1(c), and 2 together guarantee that the ML estimator δ̃ of δ exists
and is consistent, see Heijmans and Magnus (1986a).

We now define the score and the Hessian matrix as

q(δ) :=
1√
n

∂ℓ(δ)

∂δ
, H(δ) :=

1

n

∂2ℓ(δ)

∂δ ∂δ′
,

3We follow the notation proposed in Abadir and Magnus (2002).
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where we note that these are normalized in order to ensure stable variates.

Assumption 3:

(a) q(δ0)
d−→ N(0,I(δ0)),

(b) H(δ0)
p−→ −I(δ0),

(c) The information matrix I(δ) is continuous on D0 and I(δ0) is positive
definite,
(d) for every ǫ > 0 there exists a neighborhood N(δ0) of δ0 such that

Pr

(
sup

δ∈N(δ0)

|Hij(δ) + I ij(δ)| > ǫ

)
→ 0 (i, j = 1, . . . , p).

We notice that condition 3(d) is weaker than the more common assumptions
requiring uniform convergence in probability of H(δ) or uniform boundedness

of third-order derivatives. Under Assumptions 1–3 the ML estimator δ̃ is
first-order efficient and asymptotically normal in the sense that

√
n(δ̃ − δ0)

d−→ N
(
0,I(δ0)

−1
)
,

see Heijmans and Magnus (1986b). Other sets of assumptions, such as those
of Andrews (1998, p. 170), are of course possible.

We wish to think of the parameter vector δ as consisting of two parts,
namely a focus parameter β ∈ R

k and a nuisance parameter θ ∈ R
m, where

k +m = p. Our interest lies in the estimation of the focus parameter β. In
the unrestricted model both β and θ are estimated, and the ML estimators
are denoted β̃ and θ̃, respectively. In the restricted model we impose the
restriction θ = 0, so that only β is estimated; the restricted ML estimator is
denoted β̂.

The score, Hessian, and information matrix can be evaluated at δ = (β, θ)

(generic), at δ̃ = (β̃, θ̃) (unrestricted ML estimator), at δ̂ = (β̂, 0) (restricted
ML estimator), or at δ0 = (β0, θ0) (true value). We follow standard notation

by writing I, Ĩ, Î, and I
0 to indicate at which point the information matrix

is evaluated; similar notation is adopted for the score and Hessian matrix.
We partition

q =

(
qβ

qθ

)
, H =

(
Hββ Hβθ

Hθβ Hθθ

)
,

and similarly for the information matrix I. Then, the unrestricted ML esti-
mators β̃ and θ̃ satisfy the first-order conditions

qβ(β̃, θ̃) = 0, qθ(β̃, θ̃) = 0, (3)
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while the restricted ML estimator β̂ satisfies

qβ(β̂, 0) = 0. (4)

To test the null hypothesis H0 : θ = 0, several statistics are available. The
three classical tests are the Wald (W), the likelihood ratio (LR), and the
Lagrange multiplier (LM) test. The latter, also known as the score test, is
the most natural diagnostic in our context, and takes the form

LM = q̂ ′

θ

(
Îθθ − ÎθβÎ

−1

ββ Îβθ

)
−1

q̂θ. (5)

The W and LR tests are asymptotically equivalent to the LM test, and hence
all asymptotic results hold for these two tests as well.

In order to establish asymptotic behavior, we need the first-order expan-
sions:

0 = q(δ̃) = q(δ0) + H
0
√
n(δ̃ − δ0) +Op(1/

√
n), (6)

0 = qβ(β̂, 0) = qβ(β0, 0) + H
0
ββ

√
n(β̂ − β0) +Op(1/

√
n), (7)

and
q̂θ = qθ(β̂, 0) = qθ(β0, 0) + H

0
θβ

√
n(β̂ − β0) +Op(1/

√
n). (8)

The following well-known theorem can then be established and will serve as
our point of departure.

Theorem 1 (Asymptotic distribution of ML estimators and LM test): Given
Assumptions 1–3,
(a) the unrestricted ML estimator β̃ is consistent and asymptotically normal
such that

√
n(β̃ − β0)

d−→ N
(
0,Veβ

)
, Veβ

=
(
I

0
ββ − I

0
βθ(I

0
θθ)−1

I
0
θβ

)
−1

;

(b) under the null hypothesis H0 : θ = 0, the restricted ML estimator β̂

is consistent and asymptotically normal with asymptotic variance (I0
ββ)−1,

and the LM statistic (5) follows asymptotically a χ2(m)-distribution.

Proof: We use the expansions (6), (7), and (8), which give

√
n(δ̃ − δ0) = (I0)−1q(δ0) +Op(1/

√
n)

d−→ N(0, (I0)−1),

√
n(β̂ − β0) = (I0

ββ)−1qβ(β0, 0) +Op(1/
√
n)

d−→ N(0, (I0
ββ)−1),
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and

q̂θ = q0
θ − I

0
θβ(I0

ββ)−1q0
β +Op(1/

√
n)

d−→ N(0,I0
θθ − I

0
θβ(I0

ββ)−1
I

0
βθ),

and the results follow. ‖

The expansions (6)–(8) also imply the following basic orthogonality result,
which is related to the arguments in Kiviet and Phillips (1986, Section 5)
and Davidson and MacKinnon (1987, Section 4); see also Proposition 1 in
Bickel, Klaassen, Ritov, and Wellner (1993).

Theorem 2 (Asymptotic independence of β̂ and LM test): If Assump-
tions 1–3 hold and θ0 = 0, then

√
n cov

(
q̂θ, β̂ − β0

)
→ O,

and hence the restricted estimator β̂ and the LM test are asymptotically
independent.

Proof: For two random vectors z1 and z2, let z1 ≈ z2 denote ‘asymp-
totic equality’ in the sense that z1 = z2 + Op(1/

√
n). Since q̂θ ≈ q0

θ −
I

0
θβ(I0

ββ)−1q0
β, we obtain

cov
(
q̂θ, q

0
β

)
≈ E

(
q0

θq
0
β

′

)
− I

0
θβ(I0

ββ)−1 E
(
q0

βq0
β

′

)

≈ I
0
θβ − I

0
θβ(I0

ββ)−1
I

0
ββ = O,

using the fact that I
0 ≈ E(q0q0′). Hence, the LM test is asymptotically un-

correlated with q0
β, and, because of the asymptotic normality, asymptotically

independent. In addition, q0
β is asymptotically equal to I

0
ββ

√
n(β̂−β0). The

result follows. ‖

Theorem 2 provides a generalization of the following well-known fact from
least-squares theory. Let y = Xβ + Zθ + ε, where ε ∼ N(0, σ2In). The

estimator of θ in the unrestricted model is θ̃ = (Z ′MZ)−1Z ′My, where
M = In − X(X ′X)−1X ′. Under the restriction that θ = 0, the estimator

of β in the restricted model is β̂ = (X ′X)−1X ′y. Clearly, θ̃ and β̂ are inde-
pendent, because MX = O. Moreover, q̂θ := Z ′My/σ̂2 is also independent

of β̂, because both Z ′My and σ̂2 := y′My/n are independent of β̂.
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3 Sensitivity

While a diagnostic test answers the question ‘Is it true?’ (that the nuisance
parameter is not zero), a sensitivity statistic answers the question ‘Does it
matter?’ A diagnostic test such as the LM test may reject the null hypothesis
that θ = 0, but this does not mean that the estimator of the focus parameter
β will be sensitive to deviations of θ from 0. In fact, Banerjee and Magnus
(1999) found in the special case of AR(1) errors that the diagnostic test
tells you very little about the sensitivity.4 The essential difference between

ℓ(β, θ)

ℓ̃

ℓ̂

θ

θ̃

β
β̂ β̃

β̂(θ)

ℓ̂(θ)

Figure 2. Diagnostic test and sensitivity

a diagnostic test and a sensitivity statistic is graphed in Figure 2, where we
assume for simplicity that k = m = 1; hence there is one focus parameter β
and one nuisance parameter θ. Figure 2 is a generalization of the well-known
picture of the three classical tests, see for example Ruud (2000, p. 390).

At (β̃, θ̃) we obtain the maximum of the likelihood ℓ̃, while at (β̂, 0), we

obtain the restricted maximum ℓ̂. For every fixed value of θ, let β̂(θ) denote
the value of β which maximizes the (restricted) likelihood. The locus of all

constrained maxima is the curve C :=
(
β̂(θ), θ, ℓ(β̂(θ), θ)

)
. In particular,

4See also Helton and Davis (2000, p. 126).
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the points (β̂, 0, ℓ̂) and (β̃, θ̃, ℓ̃) are on this curve.

The β̂(θ)-curve is thus the projection of the curve C onto the (β, θ)-plane;
we shall call this projection the sensitivity curve. In contrast, if we project
C onto the (θ, ℓ)-plane, we obtain the curve ℓ̂(θ) defined as

ℓ̂(θ) := ℓ(β̂(θ), θ), (9)

which we shall call the diagnostic curve. The diagnostic curve ℓ̂ in the (θ, ℓ)-
plane contains all relevant information needed to perform the usual diagnostic
tests. In particular, the LR test is based on ℓ̂(θ̃)− ℓ̂(0), the Wald test is based

on θ̃, and the LM test is based on the derivative of ℓ̂(θ) at θ = 0. The last

statement follows from the fact that, at (β, θ) = (β̂, 0),

∂ℓ̂(θ)

∂θ
=
∂ℓ(β̂(θ), θ)

∂θ
=
∂ℓ(β, θ)

∂β

∂β̂(θ)

∂θ
+
∂ℓ(β, θ)

∂θ
=
∂ℓ(β, θ)

∂θ
,

since ∂ℓ(β, θ)/∂β = 0 at the restricted maximum, by (4).

Analogous to the LM test in the (θ, ℓ)-plane, the sensitivity of β̂ is the

derivative of β̂(θ) at θ = 0 in the (β, θ)-plane. The sensitivity thus measures

the effect of small changes in θ on the restricted ML estimator β̂. The
difference between sensitivity and all diagnostic tests (including the Hausman

test based on β̃ − β̂) is now clear. The diagnostic tests are designed to test

how close the restricted maximum (β̂, 0, ℓ̂) and the global maximum (β̃, θ̃, ℓ̃)
are on the curve C. Different diagnostic tests look at this closeness from
different angles. Sensitivity, in contrast, measures the local behavior of β̂(θ)
at θ = 0.

We now formally introduce the sensitivity statistic. The sensitivity curve
contains all restricted ML estimators β̂(θ) as a function of θ, that is, the
collection of estimators satisfying the first-order condition

qβ(β̂(θ), θ) = 0. (10)

The difference between the two estimators β̃ and β̂ can be approximated by
the first term of a Taylor expansion,

β̃ − β̂ = β̂(θ̃) − β̂(0) =
∂β̂(θ)

∂θ′

∣∣∣∣∣
θ=0

θ̃ + Op(1/n). (11)

Thus motivated we propose the following definition.
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Definition 1 (Sensitivity): The (local) sensitivity of an estimator β̂(θ) to
the nuisance parameter θ at the point 0 is

Sbβ
:=

∂β̂(θ)

∂θ′

∣∣∣∣∣
θ=0

. (12)

Differentiating the first-order condition (10) with respect to θ we obtain

Sbβ
= −Ĥ

−1

ββĤβθ. (13)

In some cases, it is convenient to scale the first-order condition (10) by a
constant c(β, θ). This scaling does not affect the sensitivity. Also, we might
wish to study sensitivity with respect to a function of θ rather than with
respect to θ itself. The generalization is straightforward.

Let us now return to the Hausman (1978) specification test, which is

based on
√
n(β̃ − β̂). We distinguish between two cases. If I

0
θβ = O, then

Theorem 1 shows that the two estimators β̃ and β̂ have the same asymptotic
distribution, so that Hausman’s test is not applicable. Sensitivity analysis,
however, goes one step further, because it analyzes the term of order 1/n in
the expansion (11). If I

0
θβ 6= O, then Hausman’s test is equivalent to the LM

test (a diagnostic), because the probability limit of the sensitivity is nonzero.
Thus, Hausman’s test does not measure sensitivity.

Kiefer and Skoog (1984, p. 876) introduce ‘local inconsistency’, an idea
related to Theil (1957), and provide (nonlinear) examples. This comes close
to sensitivity analysis. Kiefer and Skoog (1984) do not, however, study prop-
erties of the ‘local inconsistency’ and its relation to the diagnostic.

Our definition should also be compared with Cook’s (1986) definition of
‘likelihood displacement’. Let us define the likelihood ratio function by

LR(θ) = 2
(
ℓ(β̂(θ), θ) − ℓ(β̂(0), 0)

)
,

so that the usual LR-statistic is given by LR(θ̃). Cook’s likelihood displace-
ment is closely related to the LR function. In our context it can be defined
as

LD(θ) = −2
(
ℓ(β̂(θ), 0) − ℓ(β̂(0), 0)

)
.

The first derivative of the LD at θ = 0 vanishes, because LD reaches its
maximum at θ = 0, and the second derivative (‘Cook’s curvature’) at θ = 0

is

Cbβ
:=

∂2LD(θ)

∂θ∂θ′

∣∣∣∣
θ=0

= −2nĤθβĤ
−1

ββĤβθ = 2nĤθβSbβ
. (14)
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Cook’s curvature is thus closely related to our sensitivity statistic. The m×m
matrix Cbβ

is positive semidefinite, and we can find its largest eigenvalue
and the associated eigenvector. This eigenvector gives the ‘most sensitive
direction’ of the LD-curve. While the LD-curve is a general feature, the
sensitivity is more informative in specific directions such as we are studying
here; see also Cook (1986, p. 136).

The stochastic properties of Sbβ
(or Cbβ

) have not been investigated in the
literature. Neither has the relationship between Sbβ

(or Cbβ
) and diagnostic

testing been investigated.5 To these issues we now turn. We shall need some
further smoothness conditions on the Hessian matrix.

Assumption 4: There exists a finite k(k + m) × k matrix R0 and a fi-
nite k(k +m) × k(k +m) positive semidefinite matrix G0 such that

√
n vec

(
(Ĥββ : Ĥβθ) − (H0

ββ : H
0
βθ)
)

= R0
√
n(β̂ − β0) +Op(1/

√
n)

and √
n vec

(
(Ĥββ : Ĥβθ) + (I0

ββ : I
0
βθ)
)

d−→ N(0,G0).

The assumption may appear a little opaque because the matrices R0 and
G0 are left undefined. These matrices can be obtained (somewhat tediously)
from Bartlett identities relating expected derivatives of the log-likelihood
function, as in Chesher (1983) and Lancaster (1984). Assumption 4 can also
be formulated in terms of ‘deeper’ assumptions, involving three times contin-
uous differentiability and uniform boundedness, as in Assumption 3 of Newey
and Smith (2004, p. 226), but there is no need to do so here.

Theorem 3 (Asymptotic behavior of the sensitivity): If Assumptions 1–
4 hold and θ0 = 0, then the sensitivity Sbβ

satisfies

Sbβ

p−→ −(I0
ββ)−1

I
0
βθ

and √
n vec

(
Sbβ

+ (I0
ββ)−1

I
0
βθ

)
d−→ N(0,VS),

where

VS =

(
(I0

ββ)−1I
0
βθ ⊗ (I0

ββ)−1

−Im ⊗ (I0
ββ)−1

)′

G0

(
(I0

ββ)−1I
0
βθ ⊗ (I0

ββ)−1

−Im ⊗ (I0
ββ)−1

)
.

5The only exception seems to be Schwarzmann (1991) who shows — for the case of
location perturbation of the dependent variable — that the eigenvector associated with
the largest eigenvalue of Cook’s curvature is proportional to the vector of residuals.
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In the special case where I
0
βθ = O, we obtain Sbβ

p−→ O and
√
n vec Sbβ

d−→
N(0,VS), with

VS =
(
Im ⊗ (I0

ββ)−1
) (

lim
n→∞

var(
√
n vec Ĥβθ)

) (
Im ⊗ (I0

ββ)−1
)
.

Proof: The first result follows from Ĥββ
p−→ −I

0
ββ and Ĥβθ

p−→ −I
0
βθ. In

order to obtain the asymptotic distribution of the sensitivity, we write

√
n
(
Sbβ

+ (I0
ββ)−1

I
0
βθ

)

= (I0
ββ)−1

(
−
√
n(Ĥβθ + I

0
βθ) +

√
n(Ĥββ + I

0
ββ)(I0

ββ)−1
I

0
βθ

)

+Op(1/
√
n).

Vectorizing and using the assumed asymptotic distribution of (Ĥββ : Ĥβθ),
gives the required result. ‖

In Theorem 3 we have chosen to analyze sensitivity at the point where the
nuisance parameter θ is zero, because this corresponds with our key ques-
tion: what sort of error does the practitioner make (in terms of sensitivity)
when choosing the small model instead of the large model. It is possible to
evaluate the sensitivity at some other value of the nuisance parameter and
under some other null hypothesis, but we shall not pursue this further.

In special cases substantial simplifications occur, as we shall see in Sec-
tions 5–7. Sometimes we are only interested in a subvector of β or, more
generally, in a function g(β). We can easily extend the definition by defining

the sensitivity of g(β̂(θ)) to the nuisance parameter θ at the point 0 by

S
g( bβ) =

∂g(β̂(θ))

∂β′

∂β̂(θ)

∂θ′

∣∣∣∣∣
θ=0

. (15)

In particular, if we choose g(β) = 2
√
nqθ(β, 0), then the sensitivity is equal

to Cook’s curvature of the LD function. Cook’s curvature can thus be inter-
preted as the speed with which qθ(β̂, 0) changes along the sensitivity curve.

These expressions are particularly useful when one is interested in predic-
tion or forecasting. In the case of the linear model y = Xβ+ε, the predictor
is obtained by writing g(β) = Xβ and is studied in detail in Banerjee and
Magnus (1999). The same paper also studies the sensitivity of the variance,
which is the main building block for interval estimation.

The special case where the focus parameter is partitioned as β = (β1,β2)

and we are only interested in the sensitivity of β̂1 to the nuisance parameter
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θ, is of particular importance as we shall see in Sections 5–7. By (10) we
have

qβ1
(β̂1(θ), β̂2(θ), θ) = 0, qβ2

(β̂1(θ), β̂2(θ), θ) = 0,

and hence, upon differentiating, at θ = 0,

Ĥβ1β1

∂β̂1(θ)

∂θ′
+ Ĥβ1β2

∂β̂2(θ)

∂θ′
+ Ĥβ1θ = O

Ĥβ2β1

∂β̂1(θ)

∂θ′
+ Ĥβ2β2

∂β̂2(θ)

∂θ′
+ Ĥβ2θ = O.

This gives

Sbβ1
= −Ĥ

−1

β1β1
Ĥβ1θ,

where
Ĥβ1β1

:= Ĥβ1β1
− Ĥβ1β2

Ĥ
−1

β2β2
Ĥβ2β1

,

and
Ĥβ1θ := Ĥβ1θ − Ĥβ1β2

Ĥ
−1

β2β2
Ĥβ2θ.

If we define similarly

I
0
β1β1

:= I
0
β1β1

− I
0
β1β2

(I0
β2β2

)−1
I

0
β2β1

,

and
I

0
β1θ := I

0
β1θ − I

0
β1β2

(I0
β2β2

)−1
I

0
β2θ,

then we find Sbβ1

p−→ −(I0
β1β1

)−1I
0
β1θ.

In the special case where I
0
β1β2

= O, we obtain Sbβ1

p−→ −(I0
β1β1

)−1I
0
β1θ,

and the asymptotic variance of Sbβ1
is based on the relationship

√
n
(
Scβ1

+ (I0
β1β1

)−1
I

0
β1θ

)

= (I0
β1β1

)−1
(
−
√
n(Ĥβ1θ + I

0
β1θ) +

√
n(Ĥβ1β1

+ I
0
β1β1

)(I0
β1β1

)−1
I

0
β1θ

+
√
n(Ĥβ1β2

)(I0
β2β2

)−1
I

0
β2θ

)
+ Op(1/

√
n)

together with the joint asymptotic distribution of

√
n(Ĥβ1θ + I

0
β1θ),

√
n(Ĥβ1β1

+ I
0
β1β1

),
√
n(Ĥβ1β2

).
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4 Asymptotic independence

We recall from Theorem 2 that the LM test is asymptotically independent
of β̂. This does not, however, imply that the LM test is asymptotically
independent of the direction of β̂(θ) at θ = 0, that is, of the sensitivity. It
is this type of independence that we address in this section.

We already know that the LM test is based on the score,

q̂θ ≈ q0
θ − I

0
θβ(I0

ββ)−1q0
β, (16)

and that the sensitivity statistic satisfies

√
n
(
Sbβ

+ (I0
ββ)−1

I
0
βθ

)

≈ (I0
ββ)−1

(
−
√
n(Ĥβθ + I

0
βθ) +

√
n(Ĥββ + I

0
ββ)(I0

ββ)−1
I

0
βθ

)
. (17)

Based on these facts we wish to demonstrate the following central result.

Theorem 4 (Asymptotic independence of sensitivity and LM test): If As-
sumptions 1–4 hold and θ0 = 0, then the LM test and the sensitivity statistic
Sbβ

are asymptotically independent if and only if the correlation between

q0
θ − I

0
θβ(I0

ββ)−1q0
β,

and √
n(H0

βθ + I
0
βθ) −

√
n(H0

ββ + I
0
ββ)(I0

ββ)−1
I

0
βθ

vanishes asymptotically.
In the special case where I

0
βθ = O, asymptotic independence of the LM

test and the sensitivity statistic occurs if and only if the correlation between
q0

θ and
√
nH

0
βθ approaches zero. The latter condition is satisfied if I

0
θθ does

not depend on β and the correlation between q0
β and

√
nq0

θq
0
θ

′

approaches
zero.

Proof: In view of the joint asymptotic normality, the LM test and the
sensitivity statistic will be asymptotically independent if and only if the cor-
relation between

q0
θ − I

0
θβ(I0

ββ)−1q0
β,

and √
n(Ĥβθ + I

0
βθ) −

√
n(Ĥββ + I

0
ββ)(I0

ββ)−1
I

0
βθ

vanishes asymptotically. Now write

vec
(
(Ĥββ : Ĥβθ) − (H0

ββ : H
0
βθ)
)
≈ R0(β̂ − β0).
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Then,

√
n vec

(
(Ĥββ : Ĥβθ) + (I0

ββ : I
0
βθ)
)

≈ R0
√
n(β̂ − β0) +

√
n vec

((
H

0
ββ : H

0
βθ

)
+
(
I

0
ββ : I

0
βθ

))

≈ R0(I0
ββ)−1q0

β +
√
n vec

((
H

0
ββ : H

0
βθ

)
+
(
I

0
ββ : I

0
βθ

))
.

Since q0
β is asymptotically independent of q0

θ−I
0
θβ(I0

ββ)−1q0
β, by Theorem 2,

the first result follows. In the special case I
0
βθ = O, the result follows from

the fact that

∂

∂β′
vec E(q0

θq
0
θ

′

) =
√
nE

(
(Im ⊗ q0

θ + q0
θ ⊗ Im)H0

θβ

)

+
√
nE((vec q0

θq
0
θ

′

)q0
β

′

). ‖

The condition for independence is essentially a third-moment condition in
the same spirit as Corollary 4.4 in Newey and Smith (2004, p. 229). We will
see in the examples of Sections 5–7 that the condition is satisfied for a wide
class of situations. The special case where I

0
βθ = O and I

0
θθ does not depend

on β occurs often, for example in the case of variance misspecification; see
Magnus (1978, Theorem 3, p. 288) and Section 6 below. It is not true that
the sensitivity and the diagnostic are always independent. For example, the
sensitivity of σ̂2 is typically not independent of the diagnostic test, as we
shall see in Section 6.

Again we consider separately the important special case where the focus
parameter β is partitioned as β = (β1,β2), and we are only interested in the

sensitivity of β̂1 to the nuisance parameter θ. The condition in Theorem 4
then concerns the correlation between

q0

θ
− I

0
θβ1

(I0
β1β1

)−1q0

β1

, (18)

and √
n(H0

β1θ + I
0
β1θ) −

√
n(H0

β1β1
+ I

0
β1β1

)(I0
β1β1

)−1
I

0
β1θ, (19)

where

q0

β1

:= q0
β1

− I
0
β1β2

(I0
β2β2

)−1q0
β2
, q0

θ
:= q0

θ − I
0
θβ2

(I0
β2β2

)−1q0
β2
.

The special case where β̃1 and β̃2 are asymptotically independent is espe-
cially useful.

Theorem 5 (Asymptotic independence of sensitivity and LM test, special
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case): Consider the case where β = (β1,β2) and we are interested in the

sensitivity of β̂1 to θ. If Assumptions 1–4 hold, θ0 = 0, and, in addition,
I

0
β1β2

= O, then the LM test and the sensitivity statistic Sbβ1
are asymptot-

ically independent if and only if the correlation between

q0
θ − I

0
θβ1

(I0
β1β1

)−1q0
β1

− I
0
θβ2

(I0
β2β2

)−1q0
β2

and
√
n(H0

β1θ + I
0
β1θ) −

√
n(H0

β1β1
+ I

0
β1β1

)(I0
β1β1

)−1
I

0
β1θ

−
√
nH

0
β1β2

(I0
β2β2

)−1
I

0
β2θ

vanishes asymptotically.

Proof: If I
0
β1β2

= O, we find I
0
β1β1

= I
0
β1β1

, I
0
β1θ = I

0
β1θ, and q0

β1

= q0
β1

.

In addition,
Ĥβ1β1

= Ĥβ1β1
+Op(1/n),

Ĥβ1θ = Ĥβ1θ − 1√
n

(
√
nĤβ1β2

)(I0
β2β2

)−1
I

0
β2θ +Op(1/n),

while
q0

θ
= q0

θ − I
0
θβ2

(I0
β2β2

)−1q0
β2
.

is not simplified. The result now follows from (18) and (19). ‖

We comment briefly on the question how sensitivity can be studied for the
more general class of extremum estimators. An extremum estimator δ of δ

maximizes Q(δ) over δ for some real-valued function Q. The regularity con-
ditions for Q are typically weaker than those for the log-likelihood function.
As a result, the asymptotic distribution of δ might be nonnormal and the
convergence rate might be different from the traditional

√
n-convergence rate

(for example, Manski’s (1975) maximum score estimator has a convergence
rate of n−1/3 and a nonstandard limiting distribution; see Kim and Pollard,
1990). If Q is twice differentiable, sensitivity may be defined similar to (13)
as

Sbβ
= −Q̂−1

ββQ̂βθ,

where

Q̂ββ =
∂2Q

∂β∂β′

∣∣∣∣
β= bβ,θ=0

and Q̂βθ =
∂2Q

∂β∂θ′

∣∣∣∣
β= bβ,θ=0

.

The asymptotic variances of the estimators and the sensitivity statistic will
change because the information equality E(q0

δq
0
δ

′
) = −E(H0

δδ) does not nec-
essarily hold. Diagnostic tests are usually considered only for specific sub-
classes of extremum estimators. For example, in the generalized method of
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moments, Wald, gradient, and distance difference tests are comparable to
the usual Wald, LM, and LR tests; see Ruud (2000, Chapter 22). In other
subclasses, the asymptotic independence between sensitivity and well-defined
diagnostics may still hold as long as the asymptotic expansions remain valid.

This completes the theoretical part of the paper. We now turn to three
examples.

5 Misspecification in the mean

Our first example is the linear regression model

y = Xβ + Zθ + ε, ε|(X,Z) ∼ N(0, σ2In),

where we consider (β, σ2) as the focus parameter, and θ as the nuisance
parameter. The linearity is chosen for simplicity of exposition only. The
nonlinear regression model can be treated similarly, for example along the
lines of Kiefer and Skoog’s (1984) analysis of the probit model.

We are interested in the sensitivity of β with respect to θ. The likelihood
is the product of the conditional likelihood (conditional on (X : Z)) and
the likelihood of (X : Z). The conditional log-likelihood is given by

ℓ = −n
2

log 2π − n

2
log σ2 − 1

2σ2
(y − Xβ − Zθ)′(y − Xβ − Zθ).

The score vector is

q0 =




q0

β

q0
σ2

q0
θ



 =
1√
n




X ′ε/σ2

0

(ε′ε − nσ2
0)/(2σ

4
0)

Z ′ε/σ2
0





and the Hessian matrix is

H
0 = −1

n




X ′X/σ2

0 X ′ε/σ4
0 X ′Z/σ2

0

∗ (ε′ε − nσ2
0/2)/σ6

0 Z ′ε/σ4
0

∗ ∗ Z ′Z/σ2
0



 .

We notice that H
0
βσ2 and H

0
σ2θ are both of the order Op(1/

√
n), reflecting

the fact that (β̃, θ̃) is asymptotically independent of σ̃2. Hence, according
to Theorem 5, the LM test and the sensitivity Sbβ

are independent if the two
expressions

q0
θ − I

0
θβ(I0

ββ)−1q0
β

and √
n(H0

βθ + I
0
βθ) −

√
n(H0

ββ + I
0
ββ)(I0

ββ)−1
I

0
βθ
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are asymptotically uncorrelated. Now, the first expression is asymptotically
proportional to Z ′Mε/

√
n, where M = In − X(X ′X)−1X ′. The second

expression depends only on X and Z, and has finite variance by Assump-
tion 4. Hence they are asymptotically uncorrelated due to the regression
condition E(ε|X,Z) = 0.

The restricted estimator is β̂ = (X ′X)−1X ′y, the LM test takes the form

LM =
y′MZ(Z ′MZ)−1Z ′My

y′My/n
,

the sensitivity in this example is Sbβ
= −(X ′X)−1X ′Z, and we have shown

that Sbβ
and LM are asymptotically independent. In this case we can prove

a stronger result: Sbβ
and LM are independent in finite samples as well. This

follows from the fact that the Wald test in this case is proportional to an
F-distribution. As shown by Godfrey (1988, p. 51), the LM and LR tests are
related to the Wald test by

LM =
W

1 + W/n
, LR = n log(1 + W/n),

and hence the distribution of LM (and W and LR) does not depend on
(X,Z). Thus, for any two measurable functions φ and ψ,

E (φ(LM)ψ(X,Z)) = E (E(φ(LM)|X,Z)ψ(X,Z))

= E (φ(LM))E (ψ(X,Z)) .

Not only are LM and Sbβ
uncorrelated, but any two measurable functions

of LM and Sbβ
are uncorrelated as well. Then, by Doob (1953, p. 92), LM

and Sbβ
are independent, and the same holds for the Wald and LR tests. We

note, however, that q̂θ and Sbβ
are only asymptotically independent, because

the conditional distribution of q̂θ does depend on (X,Z).

6 Misspecification in the variance

Our second example concerns the linear regression model

y = Xβ + ε, ε|X ∼ N(0, σ2Ω(θ)),

where Ω(0) = In. Again we regard (β, σ2) as the focus parameter and θ
as the single nuisance parameter. Extensions to more than one nuisance
parameter and to the nonlinear regression model are straightforward.6 We

6Magnus (1978) provides the relevant framework and formulae for this case.
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are interested in the sensitivity of β to θ. The log-likelihood (conditional on
X) is

ℓ = −n
2

log 2π − n

2
log σ2 − 1

2
log |Ω| − 1

2σ2
(y − Xβ)′Ω−1(y − Xβ).

Letting V1 := ∂Ω(θ)/∂θ and V2 := ∂2Ω(θ)/∂θ2, both at θ = 0, the score
vector is given by

q0 =




q0
β

q0
σ2

q0
θ


 =

1√
n




X ′ε/σ2
0

(ε′ε − nσ2
0)/(2σ

4
0)

(ε′V1ε − σ2
0 tr V1)/(2σ

2
0)




and the Hessian matrix is

H
0 = −1

n




X ′X/σ2
0 X ′ε/σ4

0 X ′V1ε/σ
2
0

∗ (ε′ε − nσ2
0/2)/σ6

0 ε′V1ε/(2σ
4
0)

∗ ∗ ∗


 ,

with

H
0
θθ = − 1

2nσ2
0

(
(2ε′V 2

1 ε − σ2
0 tr V 2

1 ) − (ε′V2ε − σ2
0 tr V2)

)
.

In this example, both H
0
βσ2 and H

0
βθ are of the orderOp(1/

√
n), reflecting the

fact that β̃ is asymptotically independent of (θ̃, σ̃2). Hence Theorem 5 implies
that the LM test and the sensitivity Sbβ

are independent if the correlation
between

q0
θ − I

0
θσ2(I0

σ2σ2)−1q0
σ2

and √
nH

0
βθ −

√
nH

0
βσ2(I0

σ2σ2)−1
I

0
σ2θ

approaches zero. (We could also have employed the fact that I
0
θθ does not

depend on β, and apply Theorem 4.) The first expression depends only on
the two quadratic forms ε′V1ε and ε′ε, while the second expression depends
only on the linear forms X ′V1ε and X ′ε. Hence they are asymptotically
independent if both expressions have finite variances in the limit. This is
guaranteed if trV1, trV 2

1 , X ′V1X, and X ′X are all of the order Op(n).
This, in turn, is implied by Assumptions 3(c) and 4.

Letting M := In − X(X ′X)−1X ′, the restricted estimator and the sen-
sitivity are

β̂ = (X ′X)−1X ′y, Sbβ
= (X ′X)

−1
X ′V1My,
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while the LM test takes the form

LM =
n

2 trV 2
1 /n

(
y′MV1My

y′My
− tr V1

n

)2

,

which confirms that the LM test is a quadratic function of ε while the sensi-
tivity is a linear function. We notice that LM and Sbσ2 are not independent in
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Figure 3a. Nonscalar variance: independence of LM test and sensitivity

this case, because Sbσ2 = −y′MV1My/n, which is strongly correlated with
LM.

The fact that asymptotically LM and Sbβ
are independent, does not tell

us how fast the convergence takes place. Thus, we perform a Monte Carlo
experiment in the same spirit as Banerjee and Magnus (1999). For a given
value of n, we generate five regressors: a constant, a time trend, and series
from the normal distribution N(0, 9), lognormal distribution log N(0, 9), and
uniform distribution U[−2, 2]. Based upon these five regressors we consider
ten data sets: five with two regressors and five with three regressors, as fol-
lows:
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1: constant, linear trend 6: constant, linear trend, N(0, 9)
2: constant, N(0, 9) 7: constant, linear trend, log N(0, 9)
3: constant, log N(0, 9) 8: constant, log N(0, 9), U[−2, 2]
4: N(0, 9), U[−2, 2] 9: N(0, 9), log N(0, 9), U[−2, 2]
5: linear trend, N(0, 9) 10: linear trend, N(0, 9), U[−2, 2].

Our assumed alternative is the AR(1) model with parameter θ. Assum-
ing that the null hypothesis that θ = 0 is true, we calculate critical values
SS∗ and LM∗ such that

Pr(SS > SS∗) = Pr(LM > LM∗) = 0.05,

where we use the one-dimensional ‘scaled sensitivity’

SS := n(vec Sbβ
)′V̂ +

S (vec Sbβ
), (20)

rather than the multi-dimensional sensitivity statistic Sbβ
. If SS and LM are

independent, then the conditional probability Pr(SS < SS∗|LM ≥ LM∗) will
be equal to 0.95. If, on the other hand, SS and LM are perfectly dependent,
then the conditional probability will be zero.7 We performed 100,000 Monte
Carlo simulations for each of the ten models and for each of n = 25, 50,
100, 250, 500, and 1000. Figure 3a demonstrates that the convergence to
independence is fast, and that the behavior for each of the ten data sets is
similar. Interestingly, the LM test and the (scaled) sensitivity are negatively

correlated in this case.8

We have chosen the LM test as our diagnostic test. The LR test and
the Wald tests are asymptotically the same as the LM test, but not in finite
samples. Hence, the LR and Wald tests will also be asymptotically indepen-
dent of the scaled sensitivity, but the speed of convergence could be different.
This is analyzed in Figures 3b and 3c. All three tests converge quickly to the
95% line; the Wald test is the slowest. The Wald test and the LR test are
both positively correlated with the scaled sensitivity.

7 Misspecification in the distribution

Our third and final example concerns the linear regression model

y = Xβ + σε, ε|X ∼ D(0, In),

7We look at the conditional probabilities rather than at the correlations, because this
combines the convergence of the relevant random variables to normality with the conver-
gence of the correlations to zero. The convergence of the correlations to zero is more rapid
than the converge to normality.

8On average the correlation ρ between the LM test and the scaled sensitivity is ρ =
−0.06 for n = 25, ρ = −0.03 for n = 50, and ρ = −0.01 for n = 100.
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Figure 3b. Nonscalar variance: independence of LR test and sensitivity

where the ε1, . . . , εn, conditional on X, are i.i.d. with mean zero and variance
one. We do not assume that the distribution D is normal. Instead we assume
that the εi follow a general Pearson distribution defined implicitly by

dlog f(εi)

dεi
=

θ1 − εi

1 − θ1εi + θ2(ε2
i − 3)

,

see Kendall and Stuart (1976, p. 159). Notice that in our formulation of
the Pearson family the random variable is scaled so that its variance is one.
We regard (β, σ2) as the focus parameter and θ = (θ1, θ2) as the nuisance
parameter. At θ = 0 we obtain dlog f(εi)/ dεi = −εi which defines the
N(0, 1) distribution. We are interested in the sensitivity of β to θ. The
log-likelihood conditional on X is given by

ℓ = −n
2

log σ2 +

n∑

i=1

log f(εi), εi =
yi − x′

iβ

σ
,

where yi denotes the i-th component of y and x′

i denotes the i-th row of X.
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Figure 3c. Nonscalar variance: independence of Wald test and sensitivity

The score vector is given by

q0 =




q0
β

q0
σ2

q0
θ


 =

1√
n




X ′ε/σ0

(ε′ε − n)/(2σ2
0)

∗


 ,

where

q0
θ =

1√
n

(
1
3

∑
i εi(3 − ε2

i )
1
4

∑
i(ε

4
i − 6ε2

i + 3)

)
,

and the Hessian matrix is

H
0 = −1

n




X ′X/σ2
0 X ′ε/σ3

0 ∗
∗ (ε′ε − n/2)/σ4

0 ∗
∗ ∗ ∗


 ,

with

H
0
θβ = − 1

nσ0

( ∑
i(1 − ε2

i )x
′

i∑
i εi(ε

2
i − 3)x′

i

)
, H

0
θσ2 = − 1

2nσ2
0

(∑
i εi(1 − ε2

i )∑
i ε

2
i (ε

2
i − 3)

)
,

and

H
0
θθ = −1

n

(
1
6

∑
i(3ε

4
i − 6ε2

i + 1) 1
15

∑
i(−6ε5

i + 35ε3
i − 45εi)

∗ 1
6

∑
i(2ε

6
i − 18ε4

i + 54ε2
i − 21)

)
.
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In this example, three blocks of the Hessian matrix, namely H
0
βσ2 , H

0
βθ,

and H
0
σ2θ are all of the order Op(1/

√
n), reflecting the fact that β̃, σ̃2, and

θ̃ are asymptotically independent. (In fact, since −E(H0
θθ) = E(q0

θq
0
θ) =

diag(2/3, 3/2), θ̃1 and θ̃2 are asymptotically independent as well.) Hence
Theorem 5 implies that the LM test and the sensitivity Sbβ

are independent

if and only if the correlation between q0
θ and

√
nH

0
βθ approaches zero. In

general, this is not the case. We have
√
nE
(
q0

θ1
H

0
βθ1

)
→ 0,

√
nE

(
q0

θ2
H

0
βθ2

)
→ 0,

√
nE
(
q0

θ2
H

0
βθ1

)
→ 0,

but

corr
(√

nH
0
βθ2
, q0

θ1
|X
)

=
1√
n

(X ′X)−1/2X ′ı,

where ı denotes the n× 1 vector of ones. Hence, the LM test and the sensi-
tivity Sbβ

are independent if and only if
√
nH

0
βθ2

and q0
θ1

are asymptotically

uncorrelated, that is, if and only if ı′X(X ′X)−1X ′ı/n
p−→ 0.

We now distinguish between two cases. First, if the regression contains a
constant term, then there is no loss in generality in taking the other regres-
sors in deviation from their respective means. The sensitivity of the slope
parameters is then asymptotically independent of the LM test. The sensi-
tivity of the constant term itself will be correlated with the LM test because
ı′X(X ′X)−1X ′ı/n = 1 for X = ı.

Second, if the regression contains no constant term, then the sensitivity
of the parameters will in general be correlated with the LM test, unless the
regressors happen to be centered at zero. For example, if x is a sample
from a distribution with mean µ and variance σ2, then ı′x(x′x)−1x′ı/n

p−→
µ2/(µ2+σ2), which is zero if and only if µ/σ = 0. If x is the trend 1, 2, . . . , n,
then ı′x(x′x)−1x′ı/n→ 3/4.

The restricted estimators are

β̂ = (X ′X)−1X ′y, σ̂2 = y′My/n,

where M := In − X(X ′X)−1X ′. Letting ε̂ = My/σ̂, the sensitivity of β̂

to θ1 and θ2 is

Sbβ
= −σ̂(X ′X)−1

(
n∑

i=1

(1 − ε̂ 2
i )xi :

n∑

i=1

ε̂ 3
i xi

)
+Op(1/n),

while the LM test is the Jarque-Bera test,9

LM = n

(
µ̂ 2

3

6
+

(µ̂4 − 3)2

24

)
,

9See Jarque and Bera (1980, 1987).
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where

µ̂3 =
1

n

n∑

i=1

(ε̂i − µ̂ ′

1)
3, µ̂4 =

1

n

n∑

i=1

(ε̂i − µ̂ ′

1)
4, µ̂ ′

1 =
1

n

n∑

i=1

ε̂i.

Instead of calculating the sensitivities of β̂ with respect to θ1 and θ2, we
can also calculate the sensitivities with respect to the skewness µ3 and the
kurtosis µ4, using the relationships

µ3 =
2θ1

4θ2 − 1
, µ4 − 3 =

6(θ2
1 − 4θ2

2 + θ2)

(4θ2 − 1)(5θ2 − 1)
.

The sensitivity of β̂ to µ3 and µ4 is then

Sbβ
= −σ̂(X ′X)−1

(
1

2

n∑

i=1

(ε̂ 2
i − 1)xi :

1

6

n∑

i=1

ε̂ 3
i xi

)
+Op(1/n).

In Figure 4 we present the probability that the estimator β̂ is not sensitive
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Figure 4. Nonnormality: (in)dependence of JB-test and sensitivity

to non-normality (SS ≤ SS∗), while the Jarque-Bera test rejects the null hy-
pothesis of normality (JB > JB∗). The sensitivity is for the slope parameters
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only. Data sets 1–3 and 6–8 contain a constant term and the conditional
probability therefore converges to 95%. The other four data sets do not con-
tain a constant term, and indeed the probability in data sets 5 and 10 does
not converge to 95%. Data set 4 contains no constant term, but the two
regressors are both centered at zero; hence the probability also converges to
95%. Finally, data set 9 contains two regressors that are centered at zero,
and one (a sample from the lognormal distribution) which is not centered at
zero. Nevertheless it looks as if the probability converges here also to 95%.
The reason is that for a regressor sampled from the log N(0, 9)-distribution,
the correlation between

√
nH

0
βθ2

and q0
θ1

converges to e−9/2 ≈ 0.01, which is
not zero, but close to zero.

A special case of particular importance is the case where θ1 = 0, so
that there is no skewness. In this case — which corresponds to the (scaled)
t-distribution — we can test for kurtosis. Since

√
nE

(
q0

θ1
H

0
βθ1

)
→ 0, the JB-

test for kurtosis and the scaled sensitivity are asymptotically independent in
this case, whether the regressors are measured in deviations or not. Figure 5
shows that the convergence to independence is rather slow however.
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Figure 5. Kurtosis: independence of JB-test and sensitivity
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8 Conclusion

The usual diagnostic test provides only half the information required to de-
cide whether a restricted estimator is good enough to learn about the focus
parameters in the model; the other half is provided by the sensitivity. Knowl-
edge of one gives very little or no information on the other. Hence sensitivity
analysis matters.

Suppose one assumes normality. One may test whether normality is
rejected or not (diagnostic) or one may ask whether one step away from
normality leads to ‘large’ changes in the estimates of the focus parameters
(sensitivity). The paper shows that these two questions are essentially or-
thogonal. Hence the diagnostic may firmly reject the hypothesis of normality,
in practice it may matter little.

The sensitivity (in a specific direction) can usually be calculated. But
how does one decide whether the sensitivity is large or small? This is similar
to asking whether the diagnostic is large or small. The latter question has
a quantitative statistical answer in terms of ‘statistical significance’ but also
a common-sense qualitative answer in terms of ‘importance’. In the same
manner, a sensitivity test can be based on the statistical significance of the
scaled sensitivity (20) (the B1-statistic of Banerjee and Magnus (1999) in the
case of variance misspecification), but also (and perhaps more importantly)
on the qualitative importance.

The application of sensitivity analysis depends on the context. In some
cases it may be sufficient to know whether the sensitivity statistic itself is
large or small. In other cases the statistical properties of the sensitivity
statistic should play a role. Sometimes the sign of the sensitivity can provide
important information, for example if one distinguishes between directions
of change in β̂. Sometimes ‘relative sensitivity’ Sbβj

/β̂j might be of interest,
showing the percentage change in the estimator of βj when the nuisance pa-
rameter increases by one unit. (Note that relative sensitivity is also asymp-
totically independent of the diagnostic tests.) Finally, sensitivity may be
used to discriminate between directions: the higher the sensitivity, the more
precise this direction should be estimated.

Under suitable regularity conditions, the results in this paper can be
generalized from maximum likelihood to extremum estimators, and applied
to a great variety of situations that are more complex than the relatively
simple ones considered. Also, other characteristics of the sensitivity curve
(apart from the derivative at zero) can be considered.

Sensitivity analysis is also important for its own sake, not in combination
with diagnostics. It will help to expose the weakest link in a project, be it
the model formulation, the data, the estimation method, or something else.



30

This is our ultimate goal: to learn from a simple model in which direction
we should generalize. The current paper is just a small step in this direction.
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