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Abstract

In this paper, we study nonparametric methods for estimating the distributions of factor
and error variables in linear independent multi-factor models, under the assumption
that factor loadings are known. We show that one can nonparametrically identify and
estimate the distributions of up to L (L + 1) /2 factors and errors given L measurements.
Nonparametric deconvolution estimators of these distributions are constructed and their
asymptotic properties are studied. Monte-Carlo simulations show good finite-sample
performance, less so if distributions are highly skewed or leptokurtic. In addition, we
provide an application to data from the PSID, analyzing a simple permanent/transitory
decomposition of individual wages.

JEL codes: C13, C14.
Keywords: Factor models, nonparametric estimation, deconvolution, Fourier trans-

formation, earnings dynamics.



1 Introduction

In this paper, we study nonparametric methods for identifying and estimating the distrib-

utions of factor and error variables in linear multi-factor models of the form: Y = ΛX+U ,

where Y is a vector of L observed outcomes, X is a vector of K unobservable common

factors, U is a vector of L independent errors and Λ is a L × K matrix of parameters

(factor loadings). The critical assumption is that all components of X and U are mutu-

ally independent. Throughout the paper, we assume that a root-N consistent estimator

of the matrix of factor loadings Λ is available and that the number of factors is known.

Examples of applications of factor models are numerous in econometrics. In financial

econometrics, Principal Component Analysis (PCA) is widely used to uncover funda-

mental factors driving the dynamics of stock returns. Macroeconometric structural VAR

models aim at identifying the effects of various structural shocks on macro-variables.

Microeconometric applications flourish.1

In this paper we consider the following particular application. The log of earnings at

time t of some individual i, yit, is modelled as the sum of a fixed effect αi, a random walk

component, pit, and a transitory, say i.i.d., component, rit:

yit = αi + pit + rit

= αi + pi0 + ui1 + ... + uit + vit, t = 1, ..., L, (1)

where uit and vit are independent permanent and transitory shocks. This is a linear factor

model with 2L + 1 factors/errors. The generalized nonparametric deconvolution method

of this paper allows to recover nonparametrically the distributions of the transitory and

permanent shocks.

In many applications of factor models, it is important to estimate both factor loadings

and a prediction of the underlying factors given observables. If the matrix Λ is full column

rank and there are no errors, then simple matrix inversion works for this purpose, as in

PCA. However, if either errors are present or there are more factors than measurements,

then more sophisticated methods have to be used. This is the case of model (1).

One possible solution uses flexible parametric families of distributions, such as the

family of normal mixtures. There are two main difficulties with this approach: First,

it is difficult to estimate the degree of mixing—the number of components—of a mix-

1Factor models are also useful in nonlinear models. For example, in a series of recent papers, Heck-
man and various coauthors estimate Roy models of education choice, assuming outcome and treatment
variables independent given individual heterogeneity. They model unobserved heterogeneity variables as
independent factors. See Carneiro, Hansen and Heckman (2003), Cunha, Heckman and Navarro (2005)
and Heckman and Navarro (2005).
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ture model. Second, whether statistical inference is frequentist or Bayesian, computer-

intensive techniques such as the EM algorithm and MCMC algorithms are requested.

The alternative approach that we adopt in this paper uses nonparametric deconvolu-

tion methods. The most classical deconvolution problem has one factor and one error,

and the error distribution is known. With repeated observations, one can also solve the

problem of one-factor models with unknown error distributions. We briefly review this

literature in the next section. To our best knowledge no general solution to the linear

multi-factor case has been proposed so far.2

Our contribution is twofold: First, we show that L(L+1)
2

factor and error distributions

are nonparametrically identified under relatively mild conditions on second-order partial

derivatives of the logarithm of the characteristic function of the data. Second, we propose

a nonparametric estimation procedure for factor and error distributions based on these

second-order functional restrictions. Factor and error densities then straightforwardly

follow by integration and inverse Fourier transformation. This procedure can be seen as

a generalization of Li and Vuong’s (1998) estimator to the multi-factor case.

We prove that our estimator converges uniformly to the true density when the sample

size tends to infinity. Moreover, we provide upper bounds for the convergence rates in

special cases. Following Hu and Ridder (2005), we do not assume bounded support for

factor and error variables. It is indeed generally not possible for the cumulant generating

function of a bounded random variable to be everywhere nonvanishing. Allowing for

unbounded support makes asymptotic results more difficult to obtain but gives them

greater generality.

Our findings are consistent with those in the deconvolution literature. Asymptotic

convergence rates are slower than root-N , and can be very slow in special cases. We

illustrate our approach by means of Monte Carlo simulations. We find that the shape of

factor distributions strongly influences the finite-sample performance of the estimator. In

particular, the estimation of factor distributions is more difficult when these distributions

are skewed or leptokurtic.

Finally, we apply our methodology to individual earnings data from the PSID. We

estimate the distributions of the permanent and transitory shocks in model (1). This

model generalizes the model of Horowitz and Markatou (1996) by allowing permanent

shocks and non symmetric distributions. Our results show that both shocks exhibit more

kurtosis than the normal distribution. We then compute a prediction of both factors for

2The case of nonlinear models with one variable measured with errors has also received some attention.
See Li (2002), Schennach (2004) and Hu and Ridder (2005).
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each individual in the sample given observables. Correlating these imputed values to job

change propensity, we find that frequent job changers face more permanent and more

transitory earnings shocks than job stayers.

The outline of the paper is as follows. First, we provide a short review of the literature.

In Section 3, we discuss identification. In Section 4, we propose our nonparametric

estimator and we study its asymptotic properties in Section 5. Sections 6 and 7 present

some simulations and the application. Lastly, Section 8 concludes.

2 Review of the literature

The deconvolution problem. The problem is to estimate the distribution of X (with

density fX) given the density of U (fU) and a sample of i.i.d. observations of a random

variable Y such that Y = X + U . It is assumed that X and U are independent and

absolutely continuous. Let ϕY , ϕY and ϕU denote the characteristic functions (c.f.) of

Y , X and U . Assume that ϕU is nonvanishing everywhere. Then,

ϕX(t) =
ϕY (t)

ϕU(t)
,

and the probability density function (p.d.f.) of X, say fX , follows as the inverse Fourier

transform of ϕX :

fX(x) =
1

2π

∫
e−itxϕX(t)dt,

=
1

2π

∫
e−itx

ϕY (t)

ϕU(t)
dt. (2)

As noted by several authors (e.g. Horowitz, 1998), this argument proves identification,

but cannot be directly used for estimation since the above integral does not necessar-

ily converge when the characteristic functions are replaced by their empirical analogs.

Consistent estimation of fX therefore requires some regularization, resulting in low con-

vergence rates.

Generalizing the results of Carroll and Hall (1988), Fan (1991) shows that the con-

vergence rate of the deconvolution estimator crucially depends on the smoothness of the

distributions of X and U , as characterized by the speed of convergence of characteristic

functions to 0. A normal distribution has a c.f. which converges to 0 at an exponential

rate. The worst case is obtained when the error is much smoother than the factor. This

happens for example when the factor’s c.f. converges at a polynomial rate and the error

at an exponential rate, as in the normal case.
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An alternative way of solving the deconvolution problem uses projection estimators.

See Pensky and Vidakovic (1999), Fan and Koo (2002), Carrasco and Florens (2005),

Comte, Rozenholc and Taupin (2006), and references therein. The deconvolution equation

in the density space,

fY (y) =

∫
fU(y − x)fX(x)dx,

is an inverse problem of the type: TfX = fY , where T is a linear operator. By restricting

the domain of T , one obtains a compact operator. One can then, for example, compute

the singular value decomposition of T coupled with Tikhonov regularization to invert

the integral equation. It may be possible to generalize this approach to the multi-factor

deconvolution problem. However, the operator linking factor densities to the density of

the data is no more linear in that case. One solution to this problem could be to use a

local linearization of the operator around the true values (Carrasco et al., 2006). Still,

this approach is not straightforward in the present case and we leave it for future research.

Repeated measurements. Now, let there be two measurements of X:
{

Y1 = X + U1,
Y2 = X + U2,

with X, U1 and U2 independent. Let us also assume that measurements are centered,

and X, U1 and U2 have zero mean. Kotlarski (1967) shows that the distributions of all

three variables X, U1 and U2 are identified by the distribution of Y = (Y1, Y2) (see e.g.

Rao, 1992, p. 21).

Various nonparametric estimators of the distributions of X and U have been proposed

in the literature. Horowitz and Markatou (1996) focus on the case where the distribution

functions (d.f.) of U1 and U2 are identical and symmetric. Then, the information con-

tained in the three univariate distributions of Y1, Y2 and Y2 − Y1 is enough to construct

consistent estimators of fX and fU1 = fU2 . Li and Vuong (1998) consider the general case

of non symmetric distributions for U1 and U2, possibly different.

We now describe Li and Vuong’s estimator in some details as our paper extends their

approach to the multi-factor case. The c.f. of Y = (Y1, Y2) is

ϕY (t1, t2) = ϕX(t1 + t2)ϕU1
(t1)ϕU2

(t2). (3)

Hence,
∂ ln ϕY (0, t)

∂t1
= (ln ϕX)′ (t),

as
(
ln ϕU1

)′
(0) = iEU1 = 0. Li and Vuong estimate ϕX(t) as

ϕ̂X(t) = exp

∫ t

0

∂ ln ϕ̂Y (0, u)

∂t1
du, (4)
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where ϕ̂Y (t) = 1
N

ΣN
i=1e

ityi is a consistent estimate of ϕY (t) from an i.i.d. sample (y1, .., yN).

The p.d.f. of X is recovered by inverse Fourier transformation, as in the deconvolution

problem. Li and Vuong derive the convergence rates of their estimator in several cases,

depending on the smoothness of the distributions. Li (2002) uses this estimator in the

context of nonlinear errors-in-variables models.

In a recent paper, Hall and Yao (2003) build an alternative uniformly consistent

estimator of fX from the distributions of Y1, Y2 and Y1 +Y2. Condition (3) indeed implies

the following restriction:3

ϕY (t, t)

ϕY (t, 0)ϕY (0, t)
=

ϕY1+Y2
(t)

ϕY1
(t)ϕY2

(t)
=

ϕX(2t)

ϕX(t)2
. (5)

Function h (t) =
ϕY1+Y2

(t)

ϕY1
(t)ϕY2

(t)
has an immediate empirical counterpart and fX can be es-

timated either as a discrete approximation verifying restriction (5) or by inverse Fourier

transformation of the analytical solution to equation (5), that is:

ϕX (t) =
∞∏

j=0

h

(
t

2j+1

)2j

. (6)

Extending this approach to the multi-factor case is not straightforward. We provide a

generalization in a technical appendix to this paper.4

3 Identification

In this section, we study the identification of factor densities. We shall most of the time

eliminate the distinction between factors and errors, because, as far the identification and

estimation of their distribution is concerned, the distinction is not essential. So, we now

consider the case of DGPs of the form: Y = AX, where

1. Y = (Y1, ..., YL)T is a vector of L ≥ 2 zero-mean real-valued random variables

(where T denotes the matrix transpose operator).

2. X = (X1, ..., XK)T is a random vector of K real valued, mutually independent and

non degenerate random variables, with zero mean and finite variances.

3. A = [aij] is a known L × K matrix of scalar parameters.

3This restriction is not exactly identical to the one exploited by Hall and Yao. The difference is not
essential however.

4“Generalizing the Hall and Yao Estimator”, available at http://www.cemfi.es/∼bonhomme/
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In this paper, we assume that factor loadings are known to the researcher. Alterna-

tively, we may assume that a root-N consistent estimator of A is available. The asymp-

totic results derived in this paper remain unchanged, as we will find convergence rates of

density estimators that are slower than root-N . If we are interested in functionals of the

density estimators such as means and variances, then the randomness of the estimator of

matrix A should be taken into account.

3.1 The identification theorem

The following two assumptions will be maintained throughout the paper.

Assumption 1 Any two columns of A are linearly independent.

Assumption 2 The characteristic functions of factor variables X1,...,XK are every-

where non vanishing and twice differentiable.

In the factor analysis literature, variables Yℓ are called measurements, and parameters

aij are called factor loadings. If the kth column of A (say, A[·,k]) contains only one nonzero

element, variable Xk is called an error and otherwise, it is called a factor. In the various

examples that we shall consider, we use U1, ..., UL to denote error variables, reserving the

notation X for common factors if A of the form A = (Λ, IL).

Assumption 1 is clearly necessary for identification. If two columns of A are pro-

portional, say A[·,k] = αA[·,j], then A[·,k]Xk + A[·,j]Xj = A[·,j] (αXk + Xj) and there is

obviously no way to separately identify the distribution of Xk from the distribution of

Xj.

However, Assumptions 1 and 2 are not sufficient for factor distributions to be identi-

fied. For identification to hold, we need an additional rank condition on matrix A. Let

Q (A) be the matrix operator that changes A = [aij] ∈ RL×K into the L(L+1)
2

×K matrix

which generic element is aℓkamk, when the row index is (ℓ,m) ∈ {1, ..., L}2, ℓ ≤ m, and

the column index is k ∈ {1, ..., K}. In the sequel, we write Q for Q (A) to simplify the

notations. Let us assume that matrix Q has rank K. Then the following theorem, due

to Székely and Rao (2000, p. 85), shows that the distribution of Xk is identified.

Theorem 3 If assumptions 1-2 hold, and if Q has rank K, then the distribution of

(X1, ..., XK) is uniquely determined.

Theorem 3 gives a sufficient condition for nonparametric identification. In addition,

Székely and Rao (2000) prove that this condition is necessary. Precisely they prove that, if
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rank(Q) < K then one can always find a distribution for Y for which factor distributions

are not uniquely determined. However, Q being full-column rank is not necessary for

identification if factor variances are known.

In this paper we shall assume that Assumption 2 is satisfied. The existence of first

derivatives in a neighborhood of zero (i.e. finite expectations) is sufficient for this purpose.

We now explain how Assumption 2 yields convenient identifying restrictions to construct

estimators of factor distributions.

3.2 Moment restrictions

Notations. Under assumption 2, cumulant generating functions (c.g.f.) are well defined

and everywhere two times differentiable. Let us denote the characteristic functions of Y

and Xk as ϕY and ϕXk
, and their c.g.f.’s as κY = ln ϕY and κXk

= ln ϕXk
. The indepen-

dence assumptions and the linear factor structure imply that, for all t = (t1, ..., tL) ∈ RL,

κY (t) ≡ ln
[
E exp

(
itTY

)]
=

K∑

k=1

κXk

(
tTA[·,k]

)
. (7)

We denote as ∂ℓκY (t) the ℓth partial derivative of κY (t) and as ∂2
ℓmκY (t) the second-

order partial derivative of κY (t) with respect to tℓ and tm:

∂ℓκY (t) = i
E

[
Yℓe

itTY
]

E
[
eitTY

] , (8)

∂2
ℓmκY (t) = −

E

[
YℓYmeit

TY
]

E
[
eitTY

] +
E

[
Yℓe

itTY
]

E
[
eitTY

]
E

[
Ymeit

TY
]

E
[
eitTY

] . (9)

Let ∆L,2 =
{
(ℓ,m) ∈ {1, ..., L}2 , ℓ ≤ m

}
be a set of L(L+1)/2 bidimensional indices.

We denote as ∇κY (t) the L-dimensional gradient vector and as ∇2κY (t) the vector of

all L(L+1)
2

non redundant second-order partial derivatives arranged in lexicographic order

of (ℓ,m) in ∆L,2. Lastly, for any τ = (τ 1, ..., τK) ∈ RK , we denote as

κX (τ) = (κX1 (τ 1) , ..., κXK
(τK))T ,

κ
′
X (τ) =

(
κ′
X1

(τ 1) , ..., κ′
XK

(τK)
)T

,

κ
′′
X (τ) =

(
κ′′
X1

(τ 1) , ..., κ′′
XK

(τK)
)T

,

the K-dimensional vectors of factor cumulant generating functions and their first and

second derivatives.
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Restrictions. First-differentiating equation (7) yields

∇κY (t) = Aκ
′
X

(
AT t

)
=

K∑

k=1

κ′
Xk

(
tTA[·,k]

)
A[·,k]. (10)

In general K > L as there are L errors and at least one common factor. So there are

more function κ′
Xk

than ∂ℓκY . To obtain an invertible system, we differentiate one more

time:

∇2κY (t) = Qκ
′′
X

(
AT t

)
, (11)

where Q is the matrix L(L + 1)/2 × K matrix defined above. Equation (11) is a gen-

eralization to the entire spectrum of the variance equality used in factor analysis (e.g.

Anderson and Rubin, 1956). It is the basis of our identification and estimation strategy.

Assume Q full column rank. This requires in particular that K ≤ L(L+1)
2

. One can

invert equation (11) as

κ
′′
X

(
AT t

)
= Q−∇2κY (t) , (12)

where Q− is a generalized inverse of Q.5 This equation provides a set of overidentifying

restrictions which can be exploited to yield an expression for κ′′
Xk

.

Let Tk =
{
t ∈ RL|tTA[·,k] = 1

}
. Tk is not empty as there is at least one non zero

element in A[·,k]. Let (Q−)[k,·] denote the kth row of Q−. Then, for all t ∈ Tk and τ k ∈ R,

κ′′
Xk

(τ k) =
(
Q−
)
[k,·]

∇2κY (τ kt) .

Integrating with respect to τ k, using the constants of integration: κ′
Xk

(0) = iEXk = 0

and κXk
(0) = 0, yields

κXk
(τ k) =

∫ τk

0

∫ u

0

(
Q−
)
[k,·]

∇2κY (vt) dvdu. (13)

Equation (13) can directly be used for estimation of factor characteristic functions and

densities, as we shall explain in the next section.

Example: the measurement error model. Let

{
Y1 = X + U1,
Y2 = aX + U2,

with a 6= 0 and X ∈ R. We here assume that a is known.6

5That is: Q− =
(
QTWQ

)
−1
QTW , for a symmetric, positive definitive matrix W .

6A root-N consistent estimator of a could be obtained using third-order moments of Y , by regressing
Y2 on Y1 using Y1Y2 as instrument, provided that the distribution of X is skewed (Geary, 1942, Reiersol,
1950).
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Then,

κY (t1, t2) = κX (t1 + at2) + κU1 (t1) + κU2 (t2) ,

and 


∂2
11κY (t1, t2)

∂2
12κY (t1, t2)

∂2
22κY (t1, t2)




︸ ︷︷ ︸
∇2κY (t)

=




1 1 0
a 0 0
a2 0 1




︸ ︷︷ ︸
Q




κ′′
X (t1 + at2)
κ′′
U1

(t1)
κ′′
U2

(t2)




︸ ︷︷ ︸
κ
′′
X(AT t)

.

The restriction:

κ′′
X (t1 + at2) =

1

a
∂2

12κY (t1, t2) , ∀ (t1, t2) ,

implies that, for all τ and t1,

κ′′
X (τ) =

1

a
∂2

12κY

(
t1,

1

a
τ − 1

a
t1

)
,

and

κX (τ) =
1

a

∫ τ

0

∫ u

0

∂2
12κY

(
t1,

1

a
v − 1

a
t1

)
dvdu,

=

∫ τ

0

[
∂1κY

(
t1,

1

a
u − 1

a
t1

)
− ∂1κY

(
t1,−

1

a
t1

)]
du.

Taking t1 = 0 yields Li and Vuong’s (1998) solution:

κX (τ) =

∫ τ

0

∂1κY

(
0,

1

a
u

)
du.

This discussion shows that Li and Vuong’s estimator is particular for two reasons:

First, in general, the double integrals of second-order derivatives of κY in (13) will not

simplify into a simple integral of first derivatives. Second, the choice of which component

of t to fix a priori is arbitrary. It does not matter for identification. Yet, intuitively,

overidentifying restrictions could be used to obtain more efficient estimates.

4 Estimation

We here introduce our estimator of factor densities. In the next section, we shall discuss

its asymptotic properties.

4.1 The estimator

The estimation procedure goes through the following steps.
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First step: Following most of the literature on deconvolution, given an i.i.d. sample

of size N , we first estimate κY and its derivatives by empirical analogs, replacing the

mathematical expectations in (7), (8) and (9) by arithmetic means:

κ̂Y (t) = ln
(
EN

[
eit

TY
])

, (14)

∂̂ℓκY (t) = i
EN

[
Yℓe

itTY
]

EN

[
eitTY

] = ∂ℓκ̂Y (t), (15)

and

∂̂2
ℓmκY (t) = −

EN

[
YℓYmeit

TY
]

EN

[
eitTY

] +
EN

[
Yℓe

itTY
]

EN

[
eitTY

]
EN

[
Ymeit

TY
]

EN

[
eitTY

] = ∂2
ℓmκ̂Y (t), (16)

where EN denotes the empirical expectation operator.

Second step: As the choice of t in Tk =
{
t ∈ RL|tTA[·,k] = 1

}
, along which to perform

the integration yielding κXk
(τ k), is arbitrary, one can estimate κXk

by averaging solution

(13) over a distribution of points in Tk, that is,

κ̂Xk
(τ) =

∫ τ

0

∫ u

0

(
Q−
)
[k,·]

(∫
∇2κ̂Y (vt) dW (t)

)
dvdu

=

∫ τ

0

∫ u

0

(
Q−
)
[k,·]

(
p∑

j=1

wj∇2κ̂Y (vtj)

)
dvdu, (17)

where W =
∑p

j=1 wjδtj is a discrete probability distribution on Tk.

Third step: We then estimate the factor distribution functions by inverse Fourier trans-

formation:

f̂Xk
(x) =

1

2π

∫ TN

−TN

ϕ̂Xk
(τ)e−iτxdτ (18)

=
1

2π

∫ TN

−TN

exp [−iτx + κ̂Xk
(τ)] dτ ,

where the smoothing parameter TN tends to infinity at a rate to be specified.

Note that one could use alternative approaches instead of this third deconvolution

step. For instance, the “histogram-based” estimator proposed by Hall and Yao (2003)

could be used for the purpose of estimating factor densities, given that their c.f.’s have

been previously estimated by steps 1 and 2.
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4.2 Choice of the weighting distribution W

Empirical characteristic functions are typically well estimated around the origin and

badly estimated in the tails. When c.f.’s approach zero, the estimation of c.g.f.’s and

their derivatives worsens rapidly. It thus makes sense to choose t such that ∇2κY (τ kt)

is well estimated on a maximal interval. A natural choice is to minimize the Euclidian

norm of t
tTA[.,k]

, which yields, by Cauchy-Schwartz inequality:

t∗ =
(
A[·,k]

)−T
=

A[·,k]

AT
[·,k]A[·,k]

. (19)

The simulation section will provide evidence that choosing W = δt∗ works well in practice.

5 Asymptotic properties

In this section, we study the asymptotic properties of our estimator. All mathematical

proofs are in the appendix.

5.1 Consistency

We now proceed to show that f̂Xk
is a uniformly consistent estimator of fXk

, for all k =

1, ..., K, provided that the characteristic functions of factors and errors are everywhere

nonvanishing.

Li and Vuong (1998) and Hall and Yao (2003) assume bounded supports.7 However, as

recently emphasized by Hu and Ridder (2005), the two assumptions of bounded support

and nonvanishing characteristic functions are mutually exclusive. As the c.f.’s of most

standard distributions are never zero, and as economic variables often have unbounded

support, we relax the assumption of bounded support.

To prove the consistency of our estimators in the case of unbounded support, we

first extend Hu and Ridder’s Lemma 1 proving a uniform consistency result for empirical

characteristic functions. To proceed, write |t| = maxℓ |tℓ|, for any vector t ∈ RL. We

have the following lemma.

Lemma 4 Let X be a scalar random variable and let Y be a vector of L scalar random

variables. Let Z =
(
X,Y T

)T
. Let F denote the c.d.f. of Z (E denotes the corresponding

expectation operator) and let FN (resp. EN) denote the empirical c.d.f. (resp. mean)

corresponding to a sample ZN ≡ (Z1, ..., ZN ) of N i.i.d. draws from F . Assume that

7Horowitz and Markatou (1996) do not assume support boundedness. However, as pointed out by
Hu and Ridder (2005), their proofs implicitely require this hypothesis.
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EX2 ≤ M1 < ∞ and that E |Y |i < ∞ for all i ∈ {1, ..., L}. Define ft(x, y) = x exp(itTy)

for t ∈ RL. Lastly, let K|X| (ε) be the positive and nonincreasing function implicitly

defined by the equality:

E [|X|1 {|X| > K}] =

∫ ∞

K

uf|X| (u) du = ε.

Then, sup|t|≤TN
|ENft − Eft| = O(εN), a.s., for all εN , TN such that ln TN = O (ln N)

and
K|X|(εN )

εN
= o

[(
N

lnN

) 1
2

]
.

Lemma 4 shows that the rate of convergence of the empirical mean of ft depends on

the tails of the distribution of X: the thicker the right tail of the distribution of |X|, the

slower the rate of convergence. For example, if X is Gaussian:

1√
2πσ

∫ ∞

K

xe−
x2

2σ2 dx =
1√
2π

σe−
K2

2σ2 ,

and K|X| (ε) tends to infinity when ε ↓ 0 as
√

ln (1/ε). If X is Pareto:

∫ ∞

K

x
aba

xa+1
dx =

aba

a − 1

1

Ka−1
, a > 1.

In which case, K|X| (ε) diverges as (1/ε)
1

a−1 .

We now apply Lemma 4 to the first two derivatives of the c.f. of a vector of random

variables Y : E
(
Yℓ exp(itTY )

)
and E

(
YℓYm exp(itTY )

)
, for ℓ,m = 1, ..., L. This allows

us to prove the following uniform consistency result for the characteristic functions of

factors.

Theorem 5 Suppose that there exists an integrable, decreasing function gY : R+ → [0, 1],

such that |ϕY (t)| ≥ gY (|t|) as |t| → ∞. Then, there exists εN ↓ 0 and TN → ∞ such that

sup
|τ |≤TN

∣∣ϕ̂Xk
(τ) − ϕXk

(τ)
∣∣ =

T 2
N

gY (TN)3
O(εN) a.s., (20)

where εN is the minimum convergence rate satisfying the conditions of Lemma 4 for all

functions ft of the form exp
(
itTY

)
, Yℓ exp

(
itTY

)
and YℓYm exp

(
itTY

)
, ℓ,m ∈ {1, ..., L},

and TN satisfies two constraints: ln TN = O (ln N), and
T 2

N

gY (TN )3
εN = o(1).

Theorem 5 shows that the estimator of factor characteristic functions converges to

the true c.f’s at a polynomial rate. The following theorem states that f̂Xk
converges

uniformly to fXk
when the sample size tends to infinity.

Theorem 6 Suppose that there exists an integrable, decreasing function gX : R+ → [0, 1]

such that |ϕX(τ)| ≥ gX(|τ |) as |τ | → ∞. Suppose also that there exist K integrable

12



functions hXk
: R+ → [0, 1] such that hXk

(|τ |) ≥
∣∣ϕXk

(τ)
∣∣ as |τ | → ∞. Then, f̂Xk

is a

uniformly consistent estimator of the p.d.f. fXk
of Xk, i.e.

sup
x

∣∣∣f̂Xk
(x) − fXk

(x)
∣∣∣ =

T 3
N

gX(TN)3
O(εN) + O

(∫ +∞

TN

hXk
(v)dv

)
= o (1) a.s., (21)

where εN and TN are given by Theorem 5 applied to gY (|t|) = gX(L |A| |t|), with |A| =

maxi,j (|aij|).

Theorem 6 shows that the convergence rate of the factor density estimator depends

on the shape of factor and measurement distributions in two different ways. Firstly, as

emphasized by Lemma 4, the rate of convergence of derivatives of factor c.f.’s depends on

the tails of factor distributions: the thicker the tails, the slower the rate. Secondly, the

rate of convergence of factor densities depends on how fast the tails of factor c.f.’s decay

to zero—which characterizes the smoothness of factor distributions and is controlled by

functions gX and hXk
.

Interestingly, smoothness has an ambiguous effect on the convergence rate. This is

apparent from the fact that one needs to bound factor c.f.’s from both sides. On the one

hand, smooth distributions require less trimming. This effect is reflected in the second

term on the right-hand side of equation (21): the same value of
∫ +∞

TN
hXk

(v)dv can be

obtained with less trimming (higher TN) if hXk
(v) decays faster to zero. On the other

hand, it is more difficult to separate the different sources of information if factors are

smooth. Looking at equation (20) in Theorem 5, one sees that a given convergence

rate of factor characteristic functions can be achieved uniformly over a wider interval

[−TN , TN ] if gY (and thus gX) decays more slowly to zero. Lastly, the smoothness of

the other factor distributions (the thickness of the tails of ϕXm
, for m 6= k) has an

unambiguous effect on the convergence rate: the thinner the tails of other factors’ c.f.’s,

the lower the convergence rate.

5.2 Optimal convergence rates

We now examine how the preceding results can be used in practice to calculate optimal

convergence rates. We consider one particular example which illustrates how the conver-

gence rate varies with the thickness of the tails of factor distributions and their degree

of smoothness.

The optimal rate of convergence is obtained by choosing an optimal trimming para-

meter TN and an optimal rate εN so as to minimize:

T 3
N

gX(TN)3
O(εN) +

∫ +∞

TN

hXk
(v)dv, (22)

13



under the constraints:
K|X|(εN )

εN
= o

[(
N

lnN

) 1
2

]
, ln TN = O(ln N) and

T 2
N

gX(L|A|TN )3
εN = o(1).

To make this procedure operational, one has to specify the tails of factor distributions

(determine function K|X|) and their degree of smoothness (determine gX and hXk
). We

assume that factor distributions have Pareto tails. Since Fan’s (1991) influential paper

it has become standard to distinguish between smooth distributions (polynomial gX and

hXk
functions) and supersmooth distributions (gX and hXk

decay at a faster, exponential,

rate). Examples of smooth distributions are the uniform, gamma or Laplace distributions.

The normal distribution is supersmooth. We here focus on the case where all factors are

smooth.

The following corollary follows straightforwardly from Theorem 6.

Corollary 7 (Smooth, Pareto-tailed factors) Assume that there exist (αk, βk),

1 < βk ≤ αk, such that

|τ |−αk ≤
∣∣ϕXk

(τ)
∣∣ ≤ |τ |−βk , |τ | → ∞,

and a > 1 such that K|Xk| (ε) ≤ (1/ε)
1

a−1 . Then for all γ > 0 small enough

sup
x

∣∣∣f̂Xk
(x) − fXk

(x)
∣∣∣ = O



(

ln N

N

) βk−1

2+3α+βk
(1−1/a)(1/2−γ)


 a.s., (23)

for α =
∑K

k=1 αk, and for a trimming parameter TN in f̂Xk
chosen such as

TN = O

((
N

ln N

) (1−1/a)(1/2−γ)
2+3α+βk

)
. (24)

Three remarks are in order. First, the convergence rate is polynomial in lnN
N

instead

of ln lnN
N

as in Li and Vuong (1998). This is because we do not require factor distributions

to have bounded support. Second, thicker tails (smaller a) require more trimming and

yield lower convergence rates. The limit when a tends to infinity gives the convergence

rate in the case of factor densities with thin tails (thinner than polynomial), like the

normal.

Third, the rate of convergence in (23) increases with βk and decreases with α. This

reflects the ambiguous effect of the degree of smoothness on the convergence rate. To

see why, hold αm, for m 6= k, constant. Then the rate increases with βk and decreases

with αk. To determine the net effect of smoothness in this case, it is necessary to tie αk

to βk. This can be done by fixing a priori the exact degree of smoothness, i.e. αk = βk.

Then, the optimal convergence rate unambiguously increases with βk and less trimming

is necessary to achieve this rate.
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Furthermore, the optimal uniform rate of convergence of f̂Xk
(x) unambiguously de-

creases with α − αk =
∑

m6=k αm. Hence it is more difficult to identify and estimate the

distribution of one factor if the other factors and errors are smoother. When the other

factors are not only smoother than a smooth factor Xk, but supersmooth, then, applying

the same calculation techniques as in Corollary 7 shows that the rate of convergence of

f̂Xk
(x) becomes logarithmic.8

5.3 Practical choice of the smoothing parameter TN

It is tempting to use (24) as a guideline to choose TN in practice. However, our ex-

periments suggest that doing so one underestimates TN . The reason could be that this

“optimal” TN maximizes an upper bound for the convergence rate, which can be very

conservative. Moreover, in finite samples, the upper bound of the asymptotic rate may

be severely inadequate. We obtained much better results by using the following simple

method due to Diggle and Hall (1993). Refining the bound further is an interesting issue

that we leave for future research.

Diggle and Hall consider the problem of computing TN in the context of a deconvolu-

tion problem, Y = X + U , with independent random samples for Y and U . Estimating

the density of X as

f̂X(x) =
1

2π

∫ TN

−TN

e−itx
ϕ̂Y (t)

ϕ̂U(t)
dt, (25)

where ϕ̂Y (t) and ϕ̂U(t) are the empirical c.f. of Y and U , and maximizing the asymptotic

Mean Integrated Squared Error
∫
|f̂X(x) − fX(x)|2dx with respect to TN , the optimal

trimming parameter has to satisfy:

ϕY (TN) = N−1/2. (26)

For given t, |ϕ̂Y (t) − ϕY (t)| is also of order N−1/2. One thus cannot directly replace

the unknown c.f. in (26) by its estimated counterpart. Assuming that |ϕY (t)| = α |t|−β

for large enough |t|, Diggle and Hall then propose to proceed in two steps. First, estimate

α and β by a linear regression of ln |ϕ̂Y (t)| on ln |t| on an interval where this relationship

is approximately linear. Then, substitute α̂T−bβ
N for ϕY (TN) into (26) to get TN .

In addition, Diggle and Hall recommend to perform the integration in (25) by mul-

tiplying the argument of the integral by a “damping factor” that aims at reducing the

oscillations that often characterize estimated c.f.’s in their tails. That is, estimate the

8See Caroll and Hall (1988) and Horowitz and Markatou (1996) for deconvolution estimators with
logarithmic rates of convergence.
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Figure 1: Empirical c.f. of year-to-year wage growth residuals (PSID, 1978-1987) — Plot
of Y = ln |ϕ̂Y (t)| against X = |t|.

density as

f̃X(x) =
1

2π

∫ TN

−TN

d(t)e−itx
ϕ̂Y (t)

ϕ̂U(t)
dt,

where d(t) is the damping function. In practice, we use:

d(t) = 1 {|t| < (1 − µ)TN} + 1 {(1 − µ)TN ≤ |t| ≤ TN} ·
1

µ
[1 − |t|/TN ] .

Varying the scalar µ ∈ [0, 1], we can reduce the magnitude of the oscillations in the tails.

In the case of model Y = AX, we suggest to proceed analogously. For k ∈ {1, ..., K},
let t∗ = A−T

[.,k] =
A[.,k]

AT
[.,k]

A[.,k]
. Then

t∗TY = t∗TAX = Xk +
∑

m6=k

t∗TA[.,m]Xm. (27)

We treat the d.f. of
∑

m6=k t∗TA[.,m]Xm in (27) as if it were known. In this case, the

problem of estimating the density of factor Xk boils down to a classical deconvolution

problem, and the approach in Diggle and Hall (1993) can be applied.

In practice, characteristic functions can have tails decaying at a faster rate than

polynomial. An illustration is provided by Figure 1, which plots the (real part of the)

empirical c.g.f. (the log-modulus of the c.f.) of the wage data considered in Section

7. The c.g.f. is approximately linear in |t| over a wide range, and becomes more erratic

afterwards. It is straightforward to extend Diggle and Hall’s method to such cases. In the

Monte Carlo simulations that we have done, this simple approach provided a reasonable

guide for choosing TN .
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6 Monte-Carlo simulations

In this section, we study the finite-sample behavior of our density estimators.

6.1 The measurement error model

We first consider the estimation of the characteristic function of the unique factor in the

measurement error model: {
Y1 = X1 + U1,
Y2 = X1 + U2,

where (X1, U1, U2) ∼ N (0, I3).

Figure 2 presents Monte Carlo simulations for estimates of the c.f.’s of Y and X1. For

each simulation in this section, we draw 100 independent realizations of Y . The thin line

is the true factor characteristic function and the thick line is the pointwise median of the

100 estimates. The dashed lines correspond to the pointwise first and ninth deciles of the

Monte Carlo distributions of estimates.

In panels a) and b), we plot the (real part of the) c.g.f. of Y , i.e. ln |ϕ̂Y (t)| =

ln
∣∣∣EN

[
eit

TY
]∣∣∣, evaluated at (t1, t2) = (0, τ) (panel a) and (t1, t2) = (τ/2, τ/2) (panel b),

where τ ∈ R+. We set the scale on the x-axis equal to τ 2. The c.f. of the standard

normal distribution being exp(−t2/2), the true value of the c.f. is then a straight line

with slope −1 in panel a), and −3/4 in panel b).

We note that the c.f. of measurement variables is well estimated over a wide range

and that the precision of the estimates is worse at higher frequencies. Note also that the

bias is smaller and the precision is higher for ln |ϕ̂Y (τ/2, τ/2)| than for ln |ϕ̂Y (0, τ)|.
In panel c), we report estimates of the c.f. of X1 obtained by Li and Vuong’s method;

that is: integrating along the direction (0, τ), for τ ∈ R+. Panel d) shows the results of

our preferred method, that is: integrating along the direction of (τ/2, τ/2).

We draw two conclusions from this figure. First, the bias is larger and the precision

of the estimation of the c.f. of X1 is much lower than that of the c.f. of Y . A plausible

reason is that small errors in the estimation of the tail of a c.f. translate into large errors

for its derivative. Second, the c.f. of X1 is better estimated by the second method, i.e.

using as direction of integration the vector of minimal Euclidian norm. This observation

is in line with the discussion in 5.3.
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a) ln |ϕY (t)|, t = (0, τ) b) ln |ϕY (t)|, t = (τ/2, τ/2)

c) ln
∣∣ϕX1

(τ)
∣∣, t = (0, τ) d) ln

∣∣ϕX1
(τ)
∣∣, t = (τ/2, τ/2)

Figure 2: Monte Carlo simulations for the estimated characteristic functions in the mea-
surement error model
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6.2 The 3-measurements, 3-factors, noisy case

Let us now consider the case of a linear factor model with three measurements, three

factors and three errors.9 The DGP is: Y = ΛX + U , with Y ∈ R3 (L = 3), X ∈ R3 is

the vector of common factors and U ∈ R3 is the vector of errors. We set

Λ =




2 1 1
1 2 1
1 1 2


 ,

and assume that all factors follow the same distribution, and likewise for all errors. For

reasons of symmetry, we shall present the estimation results for the first factor and the

first error component only. The sample size is N = 1000.

The normal-supersmooth case. We first study the case where factors and errors are

normally distributed. Factors have unit variance and we run three different simulations

with error standard deviation σU equal to .5, 2 and 4. Figure 3 presents the simulation

results. In this figure and all figures in the current subsection, the left panels corresponds

to the first factor X1, and the right panels to the first error U1. The thin line is the

true factor (resp. error) distribution and the thick line is the pointwise median of 100

estimates. As before, the dashed lines correspond to the pointwise first and ninth deciles

of the Monte Carlo distributions of estimates.

It is clear that the estimation of factor p.d.f.’s deteriorates as the signal gets more

noisy. For moderate error variances there is only a small finite sample bias and the

precision is fairly good. Note that, as far as each factor is concerned the two other

factors are an additional source of noise. So, even with σU equal to zero, identifying

three source distributions from three linear mixtures with such a precision is already

very satisfactory.

When error variances get larger, confidence bands for factor distributions become

wider. Simultaneously, it becomes easier to identify the error distributions.

Smooth factors and smooth or supersmooth errors. In the two top-panels of

Figure 4, factors and errors follow a centered double exponential or Laplace distribution.

The density of the standard Laplace distribution is fX(x) = 1/
√

2 exp(−
√

2|x|) and its

characteristic function is ϕX(t) = 1/(1 + 1
2
t2). It is an example of smooth distribution.

It is also symmetric and leptokurtic (the kurtosis of the standard Laplace distribution is

9Note that the discussion following Theorem 3 shows that L(L + 1)/2 is the maximum number of
factors/errors identifiable in a linear factor model. So K = 3 (one factor and two errors) is the maximal
number when L = 2, and K = 6 (three factors and three errors) is the maximal number when L = 3.
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Factor, σU = .5 Error σU = .5

Factor, σU = 2 Error, σU = 2

Factor, σU = 4 Error, σU = 4

Figure 3: Monte Carlo simulations for density estimates in the linear factor model with
3 measurements, 3 factors and 3 errors — normal distributions
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equal to 6). We set the variance of factors equal to one and the standard deviation of

errors equal to 2.

Figure 4 shows that in this case the general shape of the double exponential is well

reproduced, albeit not perfectly. The estimator shows some incapacity to capture the

right peakedness and the singularity at zero.

In the two bottom-panels of Figure 4, factors are still Laplace, and errors are normally

distributed with a standard deviation of 2. In this case, factors are smooth and errors are

supersmooth. Therefore, we expect the convergence rate of our estimator to be extremely

low (see section 5). Nonetheless, there is no striking difference between the two figures in

the top-left and bottom-left panels, although the confidence band is wider in the latter

case. Hence, at least in this particular case, the deconvolution problem does not seem to

be rendered much more difficult by the presence of a smoother error distribution.

Skewness and kurtosis. In the last part of this section, we study the ability of our

estimator to deal with skewed and/or leptokurtic distributions. In all remaining simula-

tions, factors and errors follow the same distribution up to scale, and σU is 2.

In the four panels of Figure 5, factors follow a Gamma distribution, with parameters

(5, 1) and (2, 1), respectively. For these values of the parameters, factor skewness is

2/
√

5 ≈ .89 and
√

2, respectively, and kurtosis excess is equal to 1.2 and 3. The results

suggest that our estimator captures skewness reasonably well. However, the estimation

is less precise if the distribution is less symmetric (the second row of Figure 5).

Next, we turn to kurtosis. In the two upper panel of Figure 6, factors are mixtures of

independent normals.10 The kurtosis excess of factor densities is set equal to 100. As in

the case of the Laplace distribution, the estimator does not manage to capture the right

amount of peakedness. The density at the mode is underestimated and precision is low.

Lastly, we report in the two lower panels of Figure 6 the simulation results for log-

normally distributed factors. Their skewness and kurtosis excess are approximately 6.2

and 110, respectively. It is clear from the figure that factor densities are badly estimated

in this case. The estimated left tail is particularly out of range. This illustrates the

difficulty of identifying support bounds from finite samples.

10More precisely, we construct factors as mixtures of two independent normals. Let W1 ∼ N(0, 1/2),
and let ρ ∈]0, 1[. Define W2 ∼ N(0, (2 − ρ)/(2 − 2ρ)), independent of W1. Then it is straightforward
to see that X define as the mixture of (W1, ρ) and (W2, 1 − ρ) has variance one, and kurtosis excess
κ4(ρ) = 3ρ/(4(1 − ρ)).
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Factor, Laplace/Laplace Error, Laplace/Laplace

Factor, Laplace/normal Error, Laplace/normal

Figure 4: Monte Carlo simulations for density estimates in the linear factor model with
3 measurements, 3 factors and 3 errors — Laplace and normal distributions

22



Factor, gamma (5, 1) Error, gamma (5, 1)

Factor, gamma (2, 1) Error, gamma (2, 1)

Figure 5: Monte Carlo simulations for density estimates in the linear factor model with
3 measurements, 3 factors and 3 errors — Gamma distributions
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Factor, normal mixture (κ4 = 100) Error, normal mixture (κ4 = 100)

Factor, log-normal Error, log-normal

Figure 6: Monte Carlo simulations for density estimates in the linear factor model with
3 measurements, 3 factors and 3 errors — normal mixtures and log-normal distributions
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Job changes All 0 1/2 3+

Age 37.4 39.6 37.4 36.2
High school dropout .21 .23 .23 .17
High school graduate .54 .59 .52 .53

Hours 2183 2186 2193 2172
Married .85 .84 .84 .86
White .69 .63 .69 .74

Children 1.6 1.6 1.6 1.6
Family size 3.68 3.80 3.69 3.60

Family income ($1000) 33.7 33.5 33.6 33.9
North east .15 .15 .13 .17

North central .27 .29 .25 .27
South .43 .44 .51 .36
SMSA .59 .60 .55 .61

Number 659 152 240 267

Table 1: Means of variables

7 Application to earnings dynamics

In this section, we apply our methodology to estimate the distributions of shocks in a

simple model of earnings dynamics.

The data. We use PSID data, between 1978 to 1987. We select employed male workers

who have non missing wage observations on the full period. We thus obtain a balanced

panel of 659 individuals that we follow over 10 years. Descriptive statistics are presented

in the first column of Table 1.

Let wit denote the logarithm of annual wages, and let xit be a vector of regressors,

namely: education dummies, a quadratic polynomial in age, a race dummy, geographic

indicators and year dummies. We shall focus on wage growth residuals, defined as the

residuals of the OLS regression of ∆wit = wit−wit−1 on ∆xit = xit−xit−1. We denote these

residuals as ∆yit. We shall also consider moving sums of wage growth residuals, defined as

∆syit = yit−yi,t−s =
∑s

k=1 ∆yi,t−k+1, for s = 1, 2, ... Table 2 shows the marginal moments

of these variables, as well as their first three autocorrelation coefficients. Focusing on the

first row, we see that the variance of ∆syit increases with s. This shows that wage

differences between two points in time are more dispersed the longer the lag.

Another feature of Table 1 is the high kurtosis of wage growth residuals. Figure 7

confirms that the distribution of ∆yit is very different from the normal. On panel a), the

thick line represents a kernel estimate of the density (standardized in order to have mean

zero and variance one), and the thin one is the standard normal density. An alternative

way of presenting the evidence of non-normality is to draw the normal probability plot
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∆yit ∆2yit ∆3yit ∆Tyit

Variance .0915 .1206 .1374 .1804
Skewness -.244 -.440 -.377 .059
Kurtosis 24.2 22.9 19.7 9.43

Autocorrelation 1 -.354 .171 .302 -
Autocorrelation 2 -.048 -.377 .057 -
Autocorrelation 3 -.019 -.065 -.404 -

Table 2: Moments of log wage differences

a) Density b) Normal probability plot

Figure 7: Non normality of wage growth residuals

of ∆yit. If the data are normally distributed, then Φ−1(FN(∆yit)) is a straight line up

to sampling error.11 Panel b) in Figure 7 shows that this is not the case, as the c.d.f. of

∆yit has fatter tails than the normal. This evidence is similar to the one in Horowitz and

Markatou (1996), who use data from the Current Population Survey.

The model. We consider the following model:

∆yit = ∆pit + ∆rit,

= εit + rit − rit−1, i = 1...N, t = 2...T, (28)

where pit follows a random walk: pit = pit−1 + εit, where εit and rit are white noise

innovations with variances σ2
ε and σ2

r. We shall refer to pit as the permanent wage

component and to rit as the transitory component.

Permanent-transitory decompositions are very popular in the earnings dynamics lit-

erature, see among others Lillard and Willis (1978) and Abowd and Card (1989). There

is a growing concern that the distributions of wage shocks might be non normal (see e.g.

11Recall that FN (∆yit) denotes the empirical c.d.f. of ∆yit.
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Geweke and Keane, 2000). To assess this issue, Horowitz and Markatou (1996) estimate a

model with an individual fixed effect and a transitory i.i.d. shock. There is no permanent

shock in their model. Their estimation procedure is fully nonparametric. However, one

particular implication of their model is that ∆yit, ∆2yit, ... are identically distributed.

This is clearly at odds with the evidence presented in Table 2. However, the introduction

of a permanent component easily permits to capture the increase in Var(∆syit) when s

increases.12 The generalized deconvolution technique of this paper allows to conduct the

same fully nonparametric analysis as in Horowitz and Markatou (1996) while allowing

for a permanent component in wages.

We estimate σ2
ε and σ2

r in (28) by Equally Weighted Minimum Distance. Then, as the

first and last permanent/transitory shocks are not separately identified, we treat εi2 − ri1

and εiT + riT as additional factors. We end up with K = 2T − 3 factors. We estimate

the c.g.f. of each εit, for t = 3, ..., T − 1, and then use the average c.g.f. to obtain the

density estimate by deconvolution. We proceed identically for each rit, t = 2, ..., T − 1.13

Estimation results. We estimate that the variance of permanent shocks is σ2
ε =

.02561, and the transitory variance is σ2
r = .03612, with standard errors of .00497 and

.00451, respectively.14 According to these estimates, permanent shocks account for 26%

of the total variance of wage growth residuals.

Figure 8 presents the density estimates. The permanent and temporary components

are shown in panels a) and b), respectively. In each panel, the thick solid line represents

the density of the shock, standardized to have unit variance, and the thin solid line

represents the standard normal density, that we draw for comparison. The dashed lines

delimit the bootstrapped 10%-90% confidence band.

Figure 8 shows that none of the two distributions is Gaussian. Both permanent and

transitory shocks appear strongly leptokurtic. In particular, they have high modes and

fatter tails than the normal. Moreover, the transitory part seems to have higher kurtosis

than the permanent component. Consistently with the Monte Carlo simulations, the

estimation is somewhat less precise in this case, especially in the left tail. Lastly, both

12Notice that model (28) implies that

Var (∆syit) − Var (∆yit) = (s− 1)σ2

ε.

The marginal distributions of ∆yit and ∆2yit thus contain all the necessary information to identify σ2

ε

and σ2

η.
13Note that we do not use all the restrictions implied by stationarity. For instance, the distributions

of the additional shocks at t = 2 and t = T are convolutions of the permanent and stationary densities.
14Standard errors were computed by 1000 iterations of individual block bootstrap.
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a) Permanent shock b) Transitory shock

Figure 8: Nonparametric estimates of the densities of standardized permanent and tran-
sitory shocks (normal case: thin line; nonparametric estimate: thick line; bootstrapped
10%-90% confidence band: dashed lines).

densities are approximately symmetric.

Fit. Figure 9 compares our density estimates for ∆syit, s = 1, 2, 3, to actual p.d.f.’s. In

panels a1) to c1), the thin line is a kernel estimator of the actual distribution’s density.

The thick line is the predicted density. The dashed line shows the density that is predicted

under the assumption of normal innovations. The predicted densities of ∆syit, s = 1, 2, 3,

where calculated analytically by convolution of the estimated densities of εit and rit.

Figure 9 shows that our specification reproduces two features apparent in Table 2:

the high kurtosis of wage growth residuals, and the decreasing kurtosis when the time

lag increases. Note that the high mode of the density is remarkably well captured by our

nonparametric method, even in the case of ∆3yit. In contrast, the normal specification

gives a rather poor fit. However, the density tails are more imprecisely estimated. A

likely reason for this is the imprecise estimation of the tails of the highly leptokurtic

transitory shock (see Figure 8, panel b)).

We then present in Table 3 the moments of wage growth residuals, as in the data and

as predicted under normality and nonparametrically. We see that the bad estimation of

the tails of factor densities has strong consequences on moment estimates. In particular,

variances are severely underestimated. Moreover, the estimated kurtosis is greater than

three (normal case) but very far from the kurtosis of the distribution to be fitted (around

20). Overall, our method captures the shapes of factor distributions well, but fails at

fitting the tails, which produces a severe underestimation of higher moments.
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a1) ∆yit a2) ∆yit, normal mixture

b1) ∆2yit b2) ∆2yit, normal mixture

c1) ∆3yit c2) ∆3yit, normal mixture

Figure 9: Fit of the model, densities of wage growth residuals (data: thin line; nonpara-
metric/normal mixture estimate: thick line; normal estimate: dashed line).
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∆yit ∆2yit ∆3yit

Data

Variance .0915 .1206 .1374
Skewness -.244 -.440 -.377
Kurtosis 24.2 22.9 19.7

Predicted, nonparametric

Variance .0579 .0734 .0892
Skewness -.031 -.0034 -.0093
Kurtosis 6.46 5.46 4.87

Predicted, normal

Variance .0978 .1235 .1492
Skewness 0 0 0
Kurtosis 3 3 3

Predicted, normal mixture

Variance .1007 .1275 .1543
Skewness 0 0 0
Kurtosis 11.5 8.66 7.28

Table 3: Fit of the model, moments of wage growth residuals

To fit the moments better, we use our nonparametric estimates as a guide to find a

convenient parametric form for factor densities. Figure 8 suggests that a mixture of two

normals centered at zero may work well in practice. We thus estimate model (28) under

this parametric specification for both εit and rit. Parameters are estimated by Maximum

Likelihood, using the EM algorithm of Dempster, Laird and Rubin (1977). Panels a2) to

c2) in Figure 9 show the fit of the model. The high modes of the densities are slightly less

precisely estimated. However, the tails seem better approximated. This visual impression

is confirmed by the last three rows of Table 3, showing the first three predicted moments.

The normal mixture specification yields much better estimates of variance and kurtosis.

Notice that the normal mixture model was already used by Geweke and Keane (2000) to

model earnings dynamics. Our results thus strongly support this modelling choice.

Wage mobility. We then use the model to weight the respective influence of per-

manent and transitory shocks in wage mobility. To this end, we compute the condi-

tional expectations of the permanent and transitory components of ∆syit, s = 1, 2, 3:

E(
∑s−1

r=0 εit−r|∆syit) and E(rit − rit−s|∆syit).

To do so, we first compute the conditional distribution of permanent and transitory

shocks using Bayes rule. For instance the conditional density of the permanent shock
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a) ∆yit b) ∆2yit c) ∆3yit

Figure 10: Conditional expectation of shocks given wage growth residuals (permanent:
thick line; transitory: thin line)

given wage observations is given by:

f(ε|∆y) =
h(ε)f(∆y|ε)∫
h(ε̃)f(∆y|̃ε)dε̃

=
h(ε)

∫
g(r)g(∆y − ε − r)dr∫

h(ε̃)
∫

g(r)g(∆y − ε̃ − r)drdε̃
,

where h is the p.d.f. of ε and g is the p.d.f. of r. We proceed similarly for transitory

shocks rit − rit−1.

Figure 10 plots these conditional expectations. We verify that the volatility of earnings

is more likely to have a permanent origin if s is large. In panel a), we see for example

that a log wage growth of ±1.5 has a transitory origin for more than ±1 and a permanent

origin for less that ±0.5. In panel c), we see that a change ∆3yit of ±1.5 is almost as

likely to be transitory as permanent.

Job changes. Finally, we address the issue of the link between the degree of perma-

nence of wage shocks and job-to-job mobility. It is notoriously difficult to identify job

changes precisely in the PSID (see Brown and Light, 1992), so we tend to think of this

exercise as tentative. We adopt the simplest criteria to identify job changes, setting the

job change dummy equal to one if tenure is less than 12 months.15 We then classify indi-

viduals into job stayers (no job change during the period), infrequent job changers (one

or two job changes) and frequent job changers (more than three job changes). The last

three columns of Table 1 give descriptive statistics for these three groups of individuals.

Then we compute the densities of permanent and transitory shocks given wage growth

separately for each category of job changers by averaging within each group the con-

15Note that there were two “tenure” variables before 1987 in the PSID: time in position and time with
employer. We take the former as our definition of tenure.
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Job changes 0 1/2 3+

∆yit

total .04048 .05334 .10929
permanent .01244 .01400 .02195
transitory .02804 .03934 .08734

∆2yit

total .04793 .07045 .13705
permanent .02239 .02858 .04702
transitory .02554 .04187 .09003

∆3yit

total .06140 .08155 .15740
permanent .03310 .04170 .07253
transitory .02830 .03985 .08487

Table 4: Variances of the shocks by categories of job changers

ditional densities that we have already calculated. Table 4 presents the variances of

permanent and transitory shocks for each mobility group. Focusing on the first three

rows we see that wage volatility, as measured by the variance, is higher for frequent job

changers. Moreover, these individuals are more likely to experience both permanent and

transitory wage changes. The transitory variance is about 40% higher for infrequent job

movers than for job stayers (.039 versus .028), and about three times higher for frequent

job movers (.087). At the same time, the permanent variance is about 10% higher for

infrequent job movers than for job stayers (.014 versus .012), and about 70% higher for

frequent job movers (.022). As permanent shocks accumulate over time while transitory

shocks do not, the difference in wage growth volatility increases with the length of time

over which wage growth is computed. For example, the variance of wage growth over ten

years is .15 (= .028 + 10 ∗ .012) for an individual who stayed with the same employer

over the whole period, while it is about .31 (= .087+10 ∗ .022) for an individual who has

changed job three times or more.

These results give some basis to the interpretation of permanent shocks as resulting

for a large part from job changes. Nevertheless, identifying permanent wage shocks with

job changes is likely to be wrong for two reasons. First, part of the shocks faced by

job stayers are permanent. Indeed, the share of permanent variance in total variance is

higher for job stayers (more than one third two years apart) than for frequent job changers

(less than one fourth). This finding suggests that there might be other permanent wage

movements, caused for instance by within-job promotions. Second, job changers also face

more transitory shocks. Describing precisely these effects requires modelling job change
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decisions together with wage profiles.

8 Conclusion

This paper provides a generalization of the nonparametric estimator of Li and Vuong

(1998) to the case of a general linear independent factor structure, allowing for any

number of measurements, L, and at most L(L+1)
2

factors (including errors). The main

lessons of the standard deconvolution literature carry over to the more general context

that we consider in this paper. In particular, asymptotic convergence rates are low, and

it is more difficult to estimate the distribution of one factor if the characteristic functions

of the other factors have thinner tails.

Our Monte Carlo results yield interesting insights. The finite-sample performance

of our estimator critically depends on the shape of the distributions to be estimated

(smoothness and tails properties). We also find that it is easier to estimate distributions

with little skewness or kurtosis excess. In Bonhomme and Robin (2006), we show that

skewness and peakedness are required for the matrix of factor loadings to be identified

from higher-order moments. There is thus a tension between obtaining a precise estimate

of factor loadings and a precise estimate of the distribution of factors.

In any case, identifying the distributions of more factors than measurements should be

viewed as a considerably more difficult problem than the prototypical measurement error

case. Given the difficulty of the problem at hand, we view the results of our simulations

and the application as a confirmation that the nonparametric deconvolution approach

can be successfully applied to a wide range of distributions.

The empirical application shows that the permanent and transitory components of

individual earnings dynamics are clearly non normal. Predicting transitory and perma-

nent shocks for the individuals in the sample, we see that frequent job changers face more

permanent and transitory earnings shocks than job stayers. This result has important

consequences for welfare analysis. Savings and insurance should be very different if the

risk of large deviations is much higher than is usually assumed with normal shocks. Of

course, the model of wage dynamics that we have considered is very limited. We might

want to add non i.i.d. transitory shocks and yet allow for measurement error (as in

Abowd and Card, 1989). We experimented with a MA(1) transitory shock without much

success. It seems very difficult to nonparametrically identify the MA(1) component from

the PSID data. Thus, maybe the sample we have studied is not appropriate, or a single

non normal MA(0) transitory shock/measurement error is enough to describe the PSID
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data.

Another interesting issue is the assumption of independence between factors that

we maintain throughout this analysis. Meghir and Pistaferri (2004) show evidence of

autoregressive conditional heteroskedasticity in permanent and transitory components.

It is not straightforward at all to extend the study of the nonparametric identification

and estimation of factor densities in conditionally heteroskedastic factor models like:

yit = Aεit, εkit = σ(εit−1)η
k
it, k = 1, ..., K,

where ηit = (η1
it, ..., η

K
it )

T is a K × 1 vector of i.i.d. random variables. But this is a very

exciting problem for future research.
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APPENDIX

A Proof of Lemma 4

1. First, remark that

ENft − Eft = EN Re(ft) − E Re(ft) + i [EN Im(ft) − E Im(ft)]

and, for any T > 0,

sup
|t|≤T

|ENft − Eft| ≤ sup
|t|≤T

|EN Re(ft) − E Re(ft)| + sup
|t|≤T

|EN Im(ft) − E Im(ft)| .

It will thus suffice to show that the proposition is true for the family of functions Re(ft)(x, y) =

x cos(tT y), t ∈ R, for it to be true for functions Im(ft) and ft. So, without loss of generality,

we prove the result for real functions ft(x, y) = x cos(tT y), using the same notation for ft and

its real part. The proof uses the techniques exposed in Chapter II of Pollard (1984). See also

Mendelson (2003).

2. Firstly, the integrability of X allows us to choose a constant K, for any ε > 0, such that

E [|X|1 {|X| > K}] ≤ ε. Then, writing ENft for the sample mean 1
N

∑N
n=1 ft(Xn, Yn),

sup
|t|≤T

|ENft − Eft| ≤ sup
|t|≤T

|EN [ft1 {|X| ≤ K}] − E [ft1 {|X| ≤ K}]|

+ sup
|t|≤T

EN [|ft|1 {|X| > K}] + sup
|t|≤T

E [|ft|1 {|X| > K}]

≤ sup
|t|≤T

|EN [ft1 {|X| ≤ K}] − E [ft1 {|X| ≤ K}]|

+EN [|X|1 {|X| > K}] + E [|X|1 {|X| > K}] .

The last two terms converge almost surely to 2E [|X|1 {|X| > K}], which is less than 2ε.

3. From now on, one may as well consider that the support of X is absolutely bounded by K

(i.e. |X| ≤ K almost surely). Let ZN = (Z1, ..., ZN ) be an i.i.d. sample of random variables with

distribution F . The two symmetrization steps of the proof of the Glivenko-Cantelli Theorem

provide a first bound. The first symmetrization step replaces FN − F by FN − F ′
N , where

F ′
N (resp. E′

N ) is the empirical distribution (resp. the empirical mean operator) of another

i.i.d. sample Z
′
N = (Z ′

1, ..., Z
′
N ) of random variables with distribution F , independent of ZN .

Specifically, the symmetrization lemma in section 3 of chapter II of Pollard (1984) shows that

Pr

{
sup
|t|≤T

|ENft − Eft| ≥ ε

}
≤ 2 Pr

{
sup
|t|≤T

∣∣ENft − E′
Nft
∣∣ ≥ 1

2
ε

}
, (A1)

if Pr
{
|ENft − Eft| ≤ 1

2ε
}

≥ 1
2 for all |t| ≤ T . Chebyshev inequality shows that the latter

inequality holds whenever N ≥ 8Var ft(Xn,Yn)
ε2

. As

Var ft(Xn, Yn) = Var
[
Xn cos

(
tTYN

)]
≤ EX2

n ≤M1,

inequality (A1) is true for N ≥ 8M1
ε2

.

4. The second symmetrization step uses an i.i.d. sample of Rademacher random variables

σN = (σ1, ..., σN ), where σn = 1 or −1 with the same probability 1
2 , n = 1, ..., N , independent
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of ZN and Z
′
N . The sequence of random variables σn [ft(Zn) − ft(Z

′
n)] then has the same joint

distribution as the original sequence ft(Zn) − ft(Z
′
n). It follows that

Pr

{
sup
|t|≤T

∣∣ENft − E′
Nft
∣∣ ≥ 1

2
ε

}
= Pr

{
sup
|t|≤T

∣∣∣∣∣
1

N

N∑

n=1

σnft(Zn) −
1

N

N∑

n=1

σnft(Z
′
n)

∣∣∣∣∣ ≥
1

2
ε

}
,

≤ Pr

{
sup
|t|≤T

∣∣∣∣∣
1

N

N∑

n=1

σnft(Zn)

∣∣∣∣∣ ≥
1

4
ε

}

+ Pr

{
sup
|t|≤T

∣∣∣∣∣
1

N

N∑

n=1

σnft(Z
′
n)

∣∣∣∣∣ ≥
1

4
ε

}
,

= 2 Pr

{
sup
|t|≤T

∣∣∣∣∣
1

N

N∑

n=1

σnft(Zn)

∣∣∣∣∣ ≥
1

4
ε

}
,

= 2E Pr

{
sup
|t|≤T

∣∣∣∣∣
1

N

N∑

n=1

σnft(Zn)

∣∣∣∣∣ ≥
1

4
ε

∣∣∣∣∣ZN

}
. (A2)

5. A maximal inequality then follows from the following finite-covering argument. For any

couple (t1, t2),

∣∣x cos(tT1 y) − x cos(tT2 y)
∣∣ ≤

∣∣x(tT1 y − tT2 y)
∣∣

≤
∑

ℓ

|xyℓ (t1ℓ − t2ℓ)|

≤
∑

ℓ

|xyℓ| · |t1 − t2|

≤ L |x| |y| · |t1 − t2| .

Fix ZN , and define M2,N = 1
N

∑
n |Yn|. Partition [−T, T ]L into rN =

(
2T

8LKM2,N

ε

)L
adjacent

hypercubes of side length ε
8KM2,N

. Lastly, let {tk; k = 1, ..., rN} be the set of all cube corners.

Then, for any t ∈ [−T, T ]L there exists k such that

∣∣∣∣∣
1

N

N∑

n=1

σn (ftk − ft) (Zn)

∣∣∣∣∣ ≤ 1

N

N∑

n=1

|(ftk − ft) (Zn)|

≤ LKM2,N |tk − t|

≤ LKM2,N
ε

8LKM2,N
=

1

8
ε,

as |Xn| ≤ K. Hence, for all t ∈ [−T, T ]L such that
∣∣∣ 1
N

∑N
n=1 σnft(Zn)

∣∣∣ ≥ 1
4ε,

∣∣∣∣∣
1

N

N∑

n=1

σnftk(Zn)

∣∣∣∣∣ ≥
∣∣∣∣∣
1

N

N∑

n=1

σnft(Zn)

∣∣∣∣∣−
∣∣∣∣∣
1

N

N∑

n=1

σn (ftk − ft) (Zn)

∣∣∣∣∣ ,

≥ 1

8
ε.
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One can thus refine the bound further as:

Pr

{
sup
|t|≤T

∣∣∣∣∣
1

N

N∑

n=1

σnft(Zn)

∣∣∣∣∣ ≥
1

4
ε

∣∣∣∣∣ZN

}
≤ Pr

{
max
k

∣∣∣∣∣
1

N

N∑

n=1

σnftk(Zn)

∣∣∣∣∣ ≥
1

8
ε

∣∣∣∣∣ZN

}

≤
rN∑

k=1

Pr

{∣∣∣∣∣
1

N

N∑

n=1

σnftk(Zn)

∣∣∣∣∣ ≥
1

8
ε

∣∣∣∣∣ZN

}
,

≤ rN max
k

Pr

{∣∣∣∣∣
1

N

N∑

n=1

σnftk(Zn)

∣∣∣∣∣ ≥
1

8
ε

∣∣∣∣∣ZN

}
. (A3)

6. Lastly, applying Hoeffding’s inequality to the sequence [σnftk(Zn)], bounded byK, yields:

Pr

{
sup
k

∣∣∣∣∣
1

N

N∑

n=1

σnftk(Zn)

∣∣∣∣∣ ≥
1

8
ε

∣∣∣∣∣ZN

}
≤ 2 exp

[
− Nε2

128K2

]
. (A4)

7. At this stage, we have thus shown that, for N ≥ 8M1
ε2

,

Pr

{
sup
|t|≤T

|ENft − Eft| ≥ ε

}
≤ 24L+3E

(
ML

2,N

)(LKT
ε

)L
exp

[
− Nε2

128K2

]
,

= 24L+3LLE
(
ML

2,N

)
exp

[
L ln

(
KT

ε

)
− Nε2

128K2

]
. (A5)

Assuming that E |YN |i < +∞ for all i ≤ {1...L}, then one can find M2 < +∞ such that

E |YN |i < M i
2, ∀i ≤ L. Since (YN ) is an i.i.d. sequence we thus have

E
(
ML

2,N

)
= E



(

1

N

N∑

n=1

|Yn|
)L


≤ (M2)
L .

Let (εN ) be a sequence of positive numbers converging to zero and let (KN ) and (TN ) be two

diverging sequences of positive numbers. If εN tends to zero slowly enough for ε2N ≥ 8M1
N and

so that
∑

N exp
[
L ln

(
KNTN
εN

)
− Nε2N

128K2
N

]
<∞, then

∑

N

Pr

{
sup

|t|≤TN

|ENft − Eft| ≥ εN

}
<∞.

The Borel-Cantelli Lemma then implies that only a finite number of events are such that

sup
|t|≤TN

|ENft − Eft| ≥ εN .

Hence,

sup
|t|≤TN

|ENft − Eft| = O(εN ), a.s..

8. The last step of the proof characterizes TN , KN and εN further. The series

∑

N

exp

[
ln

(
KNTN
εN

)
− Nε2N

128K2
N

]
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converges ifN
(
εN
KN

)2
increases faster than lnN and ln

(
KNTN
εN

)
not faster, i.e. KN

εN
= o

[(
N

lnN

) 1
2

]

and ln
(
KNTN
εN

)
= O(lnN), which in turn holds if lnTN = O (lnN): TN tends to infinity not

faster than polynomial rate.

Let K|X| (ε) be implicitly defined by the equality:

E [|X|1 {|X| > K}] =

∫ ∞

K
uf|X| (u) du = ε.

It is required that KN ≥ K|X| (εN ). To choose εN as small as possible given KN
εN

, then it is best

to set KN = K|X| (εN ).

This achieves to prove Lemma 4.

B Proof of Theorem 5

(i) Fix any t ∈ RL, let ϕ(t) ≡ ϕY (t) = E

[
eit

TY
]
, ψℓ(t) = E

[
Yℓe

itTY
]

and ξℓm(t) = E

[
YℓYme

itT Y
]
,

for any ℓ,m = 1, ..., L. Then, Lemma 4 defines εN ↓ 0 and TN → ∞ such that (all convergence

statements are implicitly holding almost surely)

sup
|t|≤TN

|ϕ̂(t) − ϕ(t)| = O(εN ),

sup
|t|≤TN

∣∣∣ψ̂ℓ(t) − ψℓ(t)
∣∣∣ = O(εN ),

sup
|t|≤TN

∣∣∣ξ̂ℓm(t) − ξℓm(t)
∣∣∣ = O(εN ),

hold simultaneously. One can take the largest εN and the smallest TN .

In addition, we shall require below that
T 2

NεN

g(TN )3
= o (1). As h (t) = t2

g(t)3
is an increasing

function, one can redefine TN –if necessary– as TN = h−1
(
εγ−1
N

)
, with 0 < γ < 1.

(ii) Removing the subscript Y from ϕY and gY to simplify the notations, as |ϕ(t)| ≥ g(|t|)
when |t| → ∞, and as ϕ is nonvanishing everywhere, then for TN large enough

inf
|t|≤TN

|ϕ(t)| ≥ g(TN ),

and

sup
|t|≤TN

∣∣∣∣
ϕ̂(t) − ϕ(t)

ϕ(t)

∣∣∣∣ =
O(εN )

g(TN )
= o (1) .

The last equality follows from the fact that
T 2

NεN

g(TN )3
≥ εN

g(TN ) for N large enough.

(iii) We have

∂κY (t)

∂tℓ
= i

ψℓ(t)

ϕ(t)
= i

E

[
Yℓe

itTY
]

E
[
eitTY

] ,

and

ψ̂ℓ(t)

ϕ̂(t)
− ψℓ(t)

ϕ(t)
=

ψ̂ℓ(t)

ϕ̂(t)
− ψ̂ℓ(t)

ϕ(t)
+
ψ̂ℓ(t)

ϕ(t)
− ψℓ(t)

ϕ(t)

= − ψ̂ℓ(t)
ϕ(t)

bϕ(t)−ϕ(t)
ϕ(t)bϕ(t)−ϕ(t)

ϕ(t) + 1
+

1

ϕ(t)

[
ψ̂ℓ(t) − ψℓ(t)

]
.
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One can bound ψ̂ℓ(t) as follows:

sup
|t|≤TN

∣∣∣ψ̂ℓ(t)
∣∣∣ ≤ sup

|t|≤TN

∣∣∣ψ̂ℓ(t) − ψℓ(t)
∣∣∣+ sup

t∈[−TN ,TN ]
|ψℓ(t)|

≤ sup
|t|≤TN

∣∣∣ψ̂ℓ(t) − ψℓ(t)
∣∣∣+ E |Yℓ| = O(1),

as E |Yℓ| <∞ if EY 2
ℓ ≤M1 <∞.

It follows that

sup
|t|≤TN

∣∣∣∣∣
ψ̂ℓ(t)

ϕ̂(t)
− ψℓ(t)

ϕ(t)

∣∣∣∣∣ =
O(εN )

g(TN )2
= o (1) .

The same argument applies to show that

sup
|t|≤TN

∣∣∣∣∣
ξ̂ℓm(t)

ϕ̂(t)
− ξℓm(t)

ϕ(t)

∣∣∣∣∣ =
O(εN )

g(TN )2
= o (1)

for all ℓ,m.

(iv) It is easy to extend these results to second derivatives of cumulant generating functions:

ζℓm(t) ≡ ∂2κY
∂tℓ∂tm

(t)

= −
E

[
YℓYme

itTY
]

E
[
eitTY

] +
E

[
Yℓe

itTY
]

E
[
eitTY

]
E

[
Yme

itTY
]

E
[
eitTY

]

= −ξℓm(t)

ϕ(t)
+
ψℓ(t)

ϕ(t)

ψm(t)

ϕ(t)
.

Let ζ̂ℓm(t) = −bξℓm(t)bϕ(t) +
bψℓ(t)bϕ(t)

bψm(t)bϕ(t) . Then,

ζ̂ℓm(t) − ζℓm(t) = −
[
ξ̂ℓm(t)

ϕ̂(t)
− ξℓm(t)

ϕ(t)

]

+

[
ψ̂ℓ(t)

ϕ̂(t)
− ψℓ(t)

ϕ(t)

]
ψm(t)

ϕ(t)
+

[
ψ̂m(t)

ϕ̂(t)
− ψm(t)

ϕ(t)

]
ψℓ(t)

ϕ(t)

+

[
ψ̂ℓ(t)

ϕ̂(t)
− ψℓ(t)

ϕ(t)

][
ψ̂m(t)

ϕ̂(t)
− ψm(t)

ϕ(t)

]
.

Since

sup
|t|≤TN

∣∣∣∣
ψℓ(t)

ϕ(t)

∣∣∣∣ ≤
E |Yℓ|
g(TN )

for all ℓ, it follows that

sup
|t|≤TN

∣∣∣ζ̂ℓm(t) − ζℓm(t)
∣∣∣ =

O(εN )

g(TN )2
+
O(εN )

g(TN )3
+

(
O(εN )

g(TN )2

)2

=
O(εN )

g(TN )3

because
εN

g(TN )3
>

ε2N
g(TN )4

⇔ 1 >
εN

g(TN )

for N large enough.
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(v) For any vector t = (t1, ..., tL)T ∈ RL and τ ∈ R, then

Bℓ (t) = sup
τ∈[−TN ,TN ]

∣∣∣∣∣

∫ τ

0

ψ̂ℓ(ut)

ϕ̂(ut)
du−

∫ tℓ

0

ψℓ(ut)

ϕ(ut)
du

∣∣∣∣∣

≤ sup
τ∈[−TN ,TN ]

(
τ sup
|t|≤TN

∣∣∣∣∣
ψ̂ℓ(t)

ϕ̂(t)
− ψℓ(t)

ϕ(t)

∣∣∣∣∣

)

≤ TN sup
|t|≤TN

∣∣∣∣∣
ψ̂ℓ(t)

ϕ̂(t)
− ψℓ(t)

ϕ(t)

∣∣∣∣∣

=
TN

g(TN )2
O(εN ).

Similarly,

Cℓm (t) = sup
τ∈[−TN ,TN ]

∣∣∣∣
∫ τ

0

∫ u

0
ζ̂ℓm(vt)dvdu−

∫ τ

0

∫ u

0
ζℓm(vt)dvdu

∣∣∣∣

≤ sup
τ∈[−TN ,TN ]

(
τ2

2
sup

|t|≤TN

∣∣∣ζ̂ℓm(t) − ζℓm(t)
∣∣∣
)

≤ T 2
N sup

|t|≤TN

∣∣∣ζ̂ℓm(t) − ζℓm(t)
∣∣∣

=
T 2
N

g(TN )3
O(εN ).

Moreover, for any distribution W on Tk,
∫
Bℓ (t) dW (t) ≤ sup

|t|≤TN

Bℓ (t) ·
∫
dW (t) =

TN
g(TN )2

O(εN )

and ∫
Cℓm (t) dW (t) ≤ sup

|t|≤TN

Cℓm (t) ·
∫
dW (t) =

T 2
N

g(TN )3
O(εN ).

(vi) It easily follows from the previous step that:

sup
τ∈[−TN ,TN ]

|κ̂Xk
(τ) − κXk

(τ)| =
T 2
N

g(TN )3
O(εN ) = o(1).

In particular, supτ∈[−TN ,TN ] |κ̂Xk
(τ) − κXk

(τ)| < 1 for N large enough. Therefore, for N

large enough

sup
τ∈[−TN ,TN ]

∣∣ϕ̂Xk
(τ) − ϕXk

(τ)
∣∣ = sup

τ∈[−TN ,TN ]
|exp (κ̂Xk

(τ)) − exp (κ̂Xk
(τ))| ,

≤ sup
τ∈[−TN ,TN ]

|κ̂Xk
(τ) − κXk

(τ)| ,

from which it follows that

sup
τ∈[−TN ,TN ]

∣∣ϕ̂Xk
(τ) − ϕXk

(τ)
∣∣ = T 2

N

g(TN )3
O(εN ).

This ends the proof of Theorem 5.
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C Proof of Theorem 6

For all x in the support of Xk:

∣∣∣f̂Xk
(x) − fXk

(x)
∣∣∣ ≤ 1

2π

(∫ TN

−TN

∣∣ϕ̂Xk
(v) − ϕXk

(v)
∣∣ dv +

∫ −TN

−∞

∣∣ϕXk
(v)
∣∣ dv +

∫ +∞

TN

∣∣ϕXk
(v)
∣∣ dv
)

≤ TN
π

sup
|τ |≤TN

∣∣ϕ̂Xk
(τ) − ϕXk

(τ)
∣∣+ 1

π

∫ +∞

TN

hXk
(v)dv.

Note that

|ϕY (t)| =
∣∣∣E
[
eit

TY
]∣∣∣ =

∣∣∣E
[
eit

TAX
]∣∣∣

= |ϕX(AT t)|
≥ gX(

∣∣AT t
∣∣)

≥ gX(L |A| |t|),

where |A| = maxi,j (|aij |). Moreover, function gY inherits gX ’s properties: it maps R+ onto

[0, 1], it is decreasing and it is integrable, so that in particular gY (|t|) → 0 when |t| → ∞. We

can thus apply Theorem 5 and obtain:

sup
x

∣∣∣f̂Xk
(x) − fXk

(x)
∣∣∣ =

T 3
N

g(TN )3
O(εN ) +O

(∫ +∞

TN

hXk
(v)dv

)
.

where g (|t|) = gX (L |A| |t|) and
∫ +∞
TN

hX(v)dv = o (TN ), as hXk
is integrable. This ends the

proof of Theorem 6.

D Proof of Corollary 7

The distribution of factor Xk is smooth and there exists 1 < βk < αk such that

|τ |−αk ≤
∣∣ϕXk

(τ)
∣∣ ≤ |τ |−βk , |τ | → ∞.

This allows to set hXk
(|τ |) = |τ |−βk . Moreover, as factors Xk are mutually independent,

|ϕX(τ)| =
K∏

k=1

∣∣ϕXk
(τk)

∣∣ ≥
K∏

k=1

|τk|−αk ≥ |τ |−
PK

k=1 αk .

One can thus take gX(|τ |) = |τ |−α, with α =
∑K

k=1 αk.

Minimizing

T 3
N

gX(TN )3
∆N +

∫ +∞

TN

hXk
(v)dv = T

3(1+α)
N ∆N +

1

βk − 1
T

1−βk
N

with respect to TN yields:

TN = (3(1 + α)∆N )−1/(2+3α+βk) .

If factor p.d.f.’s have Pareto-tails with K|Xk| (ε) ≤ (1/ε)
1

a−1 , Lemma 4 shows that one can

choose

∆N =

(
lnN

N

)(1−1/a)(1/2−γ)

,
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where 0 < γ < 1/2 should be chosen close to zero.

It thus follows that one can choose:

TN =

(
N

lnN

) (1−1/a)(1/2−γ)
2+3α+βk

.

Note that TN tends to infinity with N at a polynomial rate, so lnTN = O(lnN).

Then, up to a multiplicative constant

T 3
N

gX(TN )3
∆N = T

3(1+α)
N ∆N =

(
lnN

N

) βk−1

2+3α+βk
(1−1/a)(1/2−γ)

.

As this last term is o(1), so is
T 2

N
gX(L|A|TN )3

∆N . Moreover:

∫ +∞

TN

|t|−βkdv =
1

βk − 1
T

1−βk
N =

(
lnN

N

) βk−1

2+3α+βk
(1−1/a)(1/2−γ)

.

This implies that:

sup
x

∣∣∣f̂Xk
(x) − fXk

(x)
∣∣∣ = O



(

lnN

N

) βk−1

2+3α+βk
(1−1/a)(1/2−γ)


 a.s.

Note that, as βk > 1 this quantity is o(1). This ends the proof.
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