Using High-Order Moments to Estimate Linear Independent Factor Models

Stéphane Bonhomme CEMFI, Madrid Jean-Marc Robin Université de Paris I, Panthéon-Sorbonne, University College London and Institute for Fiscal Studies

Linear factor models

Examples:

• Measurement error model:

$$\begin{cases} y_i = a + bx_i^* + u_i, \\ x_i = x_i^* + v_i. \end{cases}$$

• Panel data models with one or more individual effect, with time-individual interactions:

$$y_{it} = z_{it}^T \beta + \lambda_{t1} x_{i1} + \dots + \lambda_{tK} x_{iK} + u_{it}.$$

Usually small T, large N.

• Structural VAR models:

$$y_t = By_{t-1} + Cu_t, \quad y_t, u_t \text{ vectors.}$$

• Finance (APT).

Questions

- Identification and estimation of parameters b, λ and C (factor loadings)?
- Identification and estimation of factor distributions? Prediction of factors and common components. (See companion paper.)

Orthogonal factor analysis

Model structure:

$$Y = \Lambda X + U, \quad \text{where} \begin{cases} Y : L\text{-vector} \\ X : K\text{-vector (zero mean)} \\ U : L\text{-vector (zero mean)} \\ \Lambda : L \times K \text{ matrix} \end{cases}$$

Assumptions: orthogonal factors and errors, and $Var(X) = I_K$ (normalisation).

Identifying restrictions: Matrix Λ identified from second-order restrictions:

$$\operatorname{Var}(Y) = \Lambda \Lambda^T + \operatorname{Var}(U).$$

Fundamental nonidentification result: Λ identified up to a multiplicative orthonormal matrix (as $\Lambda\Lambda^T = \Lambda Q Q^T \Lambda^T$ for all orthonormal Q).

Principal Component Analysis: $ML + normal errors \Rightarrow$ one particular normalisation.

Independent component analysis

Like OFA with "independence" instead of "orthogonality" + **no noise.**

Identification based on second and fourth-order moments.

Very commonly used in the literature on blind signal separation and image processing.

Many algorithms: e.g. Cardoso and Souloumiac's (1993) JADE algorithm (based on structural restrictions on matrices of fourth-order cumulants of data), Hyvärinen's FastICA algorithm (find wmaximizing the non-gaussianity of the projection $w^T Y$).

Quasi-JADE

In this paper,

We develop a two-stage estimation algorithm for **noisy linear independent factor models**:

- First stage estimates error moments;
- Second stage applies JADE.

We show formal identification results,

We run Monte-Carlo simulations,

We provide an empirical application.

Empirical application

- Y: log hourly wage (residual of a regression on background variables and age)
- D : age at the end of school
- D^\ast : median of D given certified highest diploma

OLS:

- Regress Y on D = 4.37%;
- Regress Y on $D^* = 6.03\%$.

Model:

One-factor model

$$\begin{cases}
Y = \lambda_{11}X_1 + U_1 \\
D = \lambda_{21}X_1 + U_2 \\
D^* = \lambda_{31}X_1 + U_3
\end{cases}$$
or
$$\begin{cases}
Y = \lambda_{11}X_1 + \lambda_{12}X_2 + U_1 \\
D = \lambda_{21}X_1 + \lambda_{22}X_2 + U_2 \\
D^* = \lambda_{31}X_1 + \lambda_{32}X_2 + U_3
\end{cases}$$

	$\mathbf{I} = \boldsymbol{\Delta}$
$\begin{array}{ c c c c c c } \hline PCA & quasi-JADE(4) & quasi-JADE(3,4) & quasi-JADE(4) & q$	JADE(3,4)
$\widehat{\lambda}_{11} .141 \ (.138,.145) .154 \ (.136,166) .142 \ (.137,.148) .172 \ (.146,.200) .166 \ (.146,.200$	(.145,.182)
$\widehat{\lambda}_{21}$ 2.15 (2.12,2.19) 2.09 (2.02,2.18) 2.13 (2.09,2.20) 2.05 (1.96,2.16) 2.09 ((2.02, 2.19)
$\widehat{\lambda}_{31}$ 2.01 (1.98,2.03) 2.05 (1.95,2.14) 2.03 (1.96,2.11) 2.02 (1.93,2.12) 2.02 ((1.93, 2.10)
$\frac{\hat{\lambda}_{11}}{\hat{\lambda}_{21}}$ 6.6% 7.4% 6.7% 8.5%	7.9%
$\hat{\lambda}_{12}$	209,040)
$\hat{\lambda}_{22}$ – – – .360 (.009,.561) .316 ((.091,.459)
$\widehat{\lambda}_{32}$ 475 (.310,.660) .381 ((.131,.484)
$\widehat{V}(U_1)$.066 (.065,.067) .052 (.041,.070) .066 (.060,.069) .038 (.000,.060) .040 ((.010,.063)
$\widehat{V}(U_2)$ 2.31 (2.22,2.40) 2.56 (2.06,2.90) 2.43 (2.04,2.65) 2.61 (1.85,3.04) 2.50 ((1.92, 2.84)
$\widehat{V}(U_3)$.672 (.604,.745) .426 (.000,.850) .586 (.177,.867) .385 (.000,.766) .500 ((.089,.889)
$\kappa_3(X_1)$ - 1.34 (1.29,1.39) - 1.17 ((1.08, 1.30)
$\kappa_3(X_2)$ 087 (-	709,6.10)
$\kappa_4(X_1) \qquad .612 \ (.391,.854) \ .741 \ (.354,1.02) \ .627 \ (.439,.768) \ .665 \ .665 \ .66$	(.445,.841)
$\kappa_4(X_2)$ 13.6 (3.58,196) 15.5 ((4.28, 580)

• We thus obtain the following factor structure:

$$\begin{cases} Y = .17X_1 - .14X_2 + U_1 \\ D = 2X_1 + .4X_2 + U_2 \\ D^* = 2X_1 + .4X_2 + U_3 \end{cases}$$

• Interestingly, this model is consistent with a classical Mincer equation:

$$\begin{cases} Y = \alpha E + V, \\ E = 2X_1 + .4X_2, \\ V = (.17 - 2\alpha)X_1 - (.14 + .4\alpha)X_2 + U_1. \end{cases}$$

where E can be interpreted as "true education", measured with error by D and D^* (Var (E) = 5.6, Var $(U_2) = 2.6$ and Var $(U_3) = .4$).

- Cov(E, V) = 0 if and only if $\alpha = 6.8\%$. Same as 2SLS (controls for measurement error).
- Next, suppose that $Cov(E, V) \neq 0$. Identification of α requires instruments Z.
- Except if one assumes that Z is independent of V. Then, $Z = X_1$ or X_2 and $\alpha = 8.5\%$ or $\alpha = -35\%$. Only $\alpha = 8.5\%$ is reasonable.

• Yields following decomposition: ICA - OLS = 4.1%, 2.4% is due to measurement error and 1.7% reflects unobserved heterogeneity.

Cumulants

Univariate cumulants of centred random variables:

$$\kappa_2(Z) = \operatorname{Cum}(Z, Z) = \operatorname{Var}(Z) = \mathbb{E}Z^2,$$

$$\kappa_3(Z) = \operatorname{Cum}(Z, Z, Z) = \mathbb{E}Z^3,$$

$$\kappa_4(Z) = \operatorname{Cum}(Z, Z, Z, Z) = \mathbb{E}(Z^4) - 3\mathbb{E}(Z^2)^2.$$

Multivariate cumulants of centred random vectors:

$$Cum(Y_i, Y_j) = \mathbb{E}(Y_i Y_j),$$

$$Cum(Y_i, Y_j, Y_\ell) = \mathbb{E}(Y_i Y_j Y_\ell),$$

$$Cum(Y_i, Y_j, Y_\ell, Y_m) = \mathbb{E}(Y_i Y_j Y_\ell Y_m) - \mathbb{E}(Y_i Y_j) \mathbb{E}(Y_\ell Y_m)$$

$$-\mathbb{E}(Y_i Y_\ell) \mathbb{E}(Y_j Y_m) - \mathbb{E}(Y_i Y_m) \mathbb{E}(Y_j Y_\ell).$$

Tensor or multi-linear structure.

Moment restrictions

Second order:

$$\operatorname{Cum}(Y_i, Y_j) = \sum_{k=1}^{K} \lambda_{ik} \lambda_{jk} + \operatorname{Cov}(U_i, U_j)$$

$$\Leftrightarrow \Sigma_Y = \Lambda \Lambda^T + \Sigma_U.$$

Third order:

$$\operatorname{Cum}\left(Y_{i}, Y_{j}, Y_{\ell}\right) = \sum_{k=1}^{K} \lambda_{ik} \lambda_{jk} \lambda_{\ell k} \kappa_{3}\left(X_{k}\right) + \mathbf{1}\left\{i = j = \ell\right\} \kappa_{3}\left(U_{i}\right)$$

Fourth-order:

$$\operatorname{Cum}\left(Y_{i}, Y_{j}, Y_{\ell}, Y_{m}\right) = \sum_{k=1}^{K} \lambda_{ik} \lambda_{jk} \lambda_{\ell k} \lambda_{mk} \kappa_{4}\left(X_{k}\right) + \mathbf{1}\left\{i = j = \ell = m\right\} \kappa_{4}\left(U_{i}\right).$$

Tensor or multi-linear structure.

Matrix restrictions

Multilinear restrictions of order 2, 3, 4 in matrix form.

Let

$$\Gamma_Y(\ell) = \left[\operatorname{Cum}\left(Y_i, \underline{Y}_\ell, Y_j\right); (i, j) \in \{1, ..., L\}^2 \right] \in \mathbb{R}^{L \times L}, \quad \ell \in \{1...L\}.$$

Then

$$\Gamma_Y(\ell) = \Lambda D_3 \operatorname{diag}(\Lambda_\ell) \Lambda^T + \kappa_3(U_\ell) \operatorname{Sp}_{L,\ell},$$

where
$$\Lambda_{\ell}^{T} \in \mathbb{R}^{K \times 1}$$
 is the ℓ th row of Λ ,
 $D_{3} = \operatorname{diag}(\kappa_{3}(X_{1}), ..., \kappa_{3}(X_{K})),$
and $\operatorname{Sp}_{L,\ell}$ is the $L \times L$ sparse matrix with only one 1 in position (ℓ, ℓ) .

Let

$$\Omega_Y(\ell, m) = \left[\operatorname{Cum}\left(Y_i, Y_\ell, Y_m, Y_j\right) \right]_{i \times j} \in \mathbb{R}^{L \times L}, \quad (\ell \le m).$$

Then,

$$\Omega_Y(\ell, m) = \Lambda D_4 \operatorname{diag} \left(\Lambda_\ell \odot \Lambda_m\right) \Lambda^T + \delta_{\ell m} \kappa_4\left(U_\ell\right) \operatorname{Sp}_{L,\ell},$$

where $D_4 = \text{diag}(\kappa_4(X_1), ..., \kappa_4(X_K))$, and \odot is the Hadamard (element by element) matrix product. Identification of factor loadings – noisy model $(U \neq 0)$ First case: kurtic factor distributions

Let

$$\Omega_Y = \left[\operatorname{Cum}\left(Y_i, Y_j, \underline{Y_\ell}, \underline{Y_m}\right)\right]_{(i \le j) \times (\ell < m)} \in \mathbb{R}^{\frac{L(L+1)}{2} \times \frac{L(L-1)}{2}}.$$

Then

$$\operatorname{Cum}\left(Y_{i}, Y_{j}, Y_{\ell}, Y_{m}\right) = \sum_{k=1}^{K} \lambda_{ik} \lambda_{jk} \lambda_{\ell k} \lambda_{mk} \kappa_{4}\left(X_{k}\right)$$

implies that

$$\Omega_Y = \overline{Q} D_4 Q^T,$$

where

$$\overline{Q} \equiv \overline{Q}(\Lambda) = [\lambda_{i1}\lambda_{j1}, ..., \lambda_{iK}\lambda_{jK}]_{(i \le j) \times k} \in \mathbb{R}^{\frac{L(L+1)}{2} \times K}$$
$$Q \equiv Q(\Lambda) = [\lambda_{\ell 1}\lambda_{m1}, ..., \lambda_{\ell K}\lambda_{mK}]_{(\ell < m) \times k} \in \mathbb{R}^{\frac{L(L-1)}{2} \times K}.$$

Lemma 1 Assume that (i) $K \leq \frac{L(L-1)}{2}$, (ii) Q has rank K and (iv) factor variables have non zero kurtosis excess. Then matrix Ω_Y has rank K.

First case: kurtic factor distributions (cont'ed)

Remark that, for any diagonal matrix D = diag(d), $\text{vech}(\Lambda D \Lambda^T) = \overline{Q}d$, where vech stacks the non redundant elements of a symmetric matrix.

For example,

$$\operatorname{vech}\left(\Gamma_{Y}\left(\ell\right)\right) = \operatorname{vech}\left(\Lambda D_{3}\operatorname{diag}\left(\Lambda_{\ell}\right)\Lambda^{T} + \kappa_{3}\left(U_{\ell}\right)\operatorname{Sp}_{L,\ell}\right) \\ = \overline{Q}D_{3}\Lambda_{\ell} + \kappa_{3}\left(U_{\ell}\right)\operatorname{vech}\left(\operatorname{Sp}_{L,\ell}\right).$$

Let $\overline{C} \in \mathbb{R}^{\frac{L(L+1)}{2} \times \left(\frac{L(L+1)}{2} - K\right)}$ be a basis of the null space of Ω_Y . Then, $\overline{C}^T \operatorname{vech}\left(\Gamma_Y\left(\ell\right)\right) = \kappa_3\left(U_\ell\right)\overline{C}_{(\ell,\ell)},$ where $\overline{C}_{(\ell,\ell)}$ is the (ℓ,ℓ) th column of \overline{C}^T . More generally, we have the following lemma:

Lemma 2 Assume that (i) $K \leq \frac{L(L-1)}{2}$, (ii) Q has rank K and (iv) factor variables have non zero kurtosis excess. Let $\overline{C} \in \mathbb{R}^{\frac{L(L+1)}{2} \times \left(\frac{L(L+1)}{2} - K\right)}$ be a basis of the null space of Ω_Y . Then the following propositions hold true.

1. Var (U_{ℓ}) , $\kappa_3(U_{\ell})$ and $\kappa_4(U_{\ell})$ solve the system:

$$\overline{C}^{T} \operatorname{vech} (\Sigma_{Y}) = \sum_{\ell=1}^{L} \operatorname{Var} (U_{\ell}) \overline{C}_{(\ell,\ell)},$$
$$\overline{C}^{T} \operatorname{vech} (\Gamma_{Y} (\ell)) = \kappa_{3} (U_{\ell}) \overline{C}_{(\ell,\ell)},$$
$$\overline{C}^{T} \operatorname{vech} (\Omega_{Y} (\ell, \ell)) = \kappa_{4} (U_{\ell}) \overline{C}_{(\ell,\ell)}.$$

where $\overline{C}_{(\ell,\ell)}^{T}$ denotes the (ℓ,ℓ) th row of \overline{C} . 2. Matrix $[\overline{C}_{(1,1)}, ..., \overline{C}_{(L,L)}]$ is full rank and $\operatorname{Var}(U_{\ell})$, $\kappa_{3}(U_{\ell})$ and $\kappa_{4}(U_{\ell})$ are uniquely defined. The following theorem then follows straightforwardly.

Theorem 3 (Sufficient conditions for parametric identification when $K \leq L$) Assume that (i) $K \leq \min\left\{L, \frac{L(L-1)}{2}\right\}$, (ii) Λ is full column rank, (iii) $Q(\Lambda)$ has rank K, and (iv) factor variables have non zero kurtosis excess. Then, factor loadings are identified from second and fourth-order moments.

Identification of factor loadings – noisy model $(U \neq 0)$ Second case: nonkurtic factor distributions

If some or all factor distributions may have zero kurtosis excess, search identification in third-order moments. Let

$$\Omega_Y(j) = \left[\operatorname{Cum} \left(Y_i, Y_j, Y_\ell, Y_m \right) \right]_{i \times (\ell < m)} \in \mathbb{R}^{L \times \frac{L(L-1)}{2}}$$
$$= \Lambda \operatorname{diag} \left(\Lambda_j \right) D_4 Q^T,$$

$$\Gamma_Y = [\operatorname{Cum}(Y_i, Y_\ell, Y_m)]_{i \times (\ell < m)} \in \mathbb{R}^{L \times \frac{L(L-1)}{2}}$$
$$= \Lambda D_3 Q^T$$

$$\Xi_{Y} = [\Gamma_{Y}, \Omega_{Y}(1), ..., \Omega_{Y}(L)]$$

Lemma 4 Assume that (i) $K \leq \min\left\{L, \frac{L(L-1)}{2}\right\}$, (ii) Λ and $Q(\Lambda)$ have full column rank K and (iii) each factor distribution is either skewed or kurtic. Then, matrix Ξ_Y has rank K.

Second case: nonkurtic factor distributions and... $K \leq L-1$

The identifiability of error moments then comes at the price of some additional assumptions on the matrix of factor loadings.

Lemma 5 Assume that (i) $K \leq L - 1$, (ii) every submatrix of Λ made of a selection of L - 1rows has rank K, (iii) $Q(\Lambda)$ have full column rank K and (iv) each factor distribution is either skewed or kurtic. Let $C \in \mathbb{R}^{L \times (L-K)}$ be a basis of the null space of Ξ_Y . Let C_{ℓ}^T denote the ℓ th row of C. The following propositions hold true.

1. Var
$$(U_{\ell})$$
, $\kappa_{3}(U_{\ell})$ and $\kappa_{4}(U_{\ell})$ solve the system:

$$C^{T} \begin{pmatrix} \operatorname{Cum}(Y_{1}, Y_{\ell}) & \operatorname{Cum}(Y_{1}, Y_{\ell}, Y_{\ell}) & \operatorname{Cum}(Y_{1}, Y_{\ell}, Y_{\ell}, Y_{\ell}) \\ \vdots & \vdots & \vdots \\ \operatorname{Cum}(Y_{L}, Y_{\ell}) & \operatorname{Cum}(Y_{L}, Y_{\ell}, Y_{\ell}) & \operatorname{Cum}(Y_{L}, Y_{\ell}, Y_{\ell}, Y_{\ell}) \end{pmatrix} = [\operatorname{Var}(U_{\ell}), \kappa_{3}(U_{\ell}), \kappa_{4}(U_{\ell})] C_{\ell}.$$

2. No column of C is nil $(C_{\ell} \neq 0, \forall \ell)$ and $\operatorname{Var}(U_{\ell}), \kappa_3(U_{\ell})$ and $\kappa_4(U_{\ell})$ are identified.

Note that if, in particular, all factor distributions are skewed then one can define C as the null space of Γ_Y .

The following theorem then follows immediately.

Theorem 6 (Sufficient conditions for parametric identification when $K \leq L - 1$) Assume that (i) $K \leq L - 1$, (ii) every submatrix of Λ made of a selection of L - 1 rows has rank K, (iii) matrix $Q(\Lambda)$ has rank K, (iv) each factor is either skewed or kurtic. Then, factor loadings are parametrically identified from second, third and fourth-order moments.

Again, if all factors are skewed then factor loadings are parametrically identified from second and third-order moments.

Corollary 7 (Sufficient conditions for parametric identification from second and third-order moments when $K \leq L-1$) Assume that (i) $K \leq L-1$, (ii) every submatrix of Λ made of a selection of L-1 rows has rank K, (iii) matrix $Q(\Lambda)$ has rank K, (iv) all factor distributions are skewed. Then, factor loadings are parametrically identified from second and third-order moments. Example: the measurement error model

Model:

$$\begin{cases} Y_1 = \lambda_{11} X_1 + U_1, \\ Y_2 = \lambda_{21} X_1 + U_2, \end{cases}$$

where factor X_1 has a non symmetric distribution: $\mathbb{E}(X_1^3) \neq 0$.

Using second and third-order restrictions yields:

$$\lambda_{11} = \sqrt{\mathbb{E}(Y_1Y_2)\frac{\mathbb{E}(Y_1Y_1Y_2)}{\mathbb{E}(Y_1Y_2Y_2)}},$$

$$\lambda_{21} = \sqrt{\mathbb{E}(Y_1Y_2)\frac{\mathbb{E}(Y_1Y_2Y_2)}{\mathbb{E}(Y_1Y_1Y_2)}}.$$

Interestingly,

$$\frac{\lambda_{21}}{\lambda_{11}} = \frac{\mathbb{E}(Y_1 Y_2 Y_2)}{\mathbb{E}(Y_1 Y_1 Y_2)}.$$

Replacing expectations by sample means, we obtain Geary's (1942) estimator for the measurement error model:

Regress Y_2 on Y_1 , with no intercept, by 2SLS, using Y_1Y_2 as an instrument for Y_1 .

Estimation Number of factors

We apply Robin and Smith's (2000) rank test to various matrices.

1. Estimating K when $K \leq \frac{L(L-1)}{2}$ and all factors are kurtic. Assuming that Q is full column rank and that factor variables have non zero kurtosis, then

rank
$$(\Omega_Y) = K$$
, for all $K \leq \frac{L(L-1)}{2}$.

This allows to test whether $K \leq L$ or not.

• **Refinement.** Based on matrices

$$\Omega_Y(\ell, m) = \Lambda D_4 \operatorname{diag} \left(\Lambda_\ell \odot \Lambda_m\right) \Lambda^T, \quad \ell < m.$$

Let $w = (w_{1,2}, ..., w_{L-1,L})$ be a vector of $\frac{L(L-1)}{2}$ positive weights. As no column of Q is identically zero, then

$$\Omega_{Y,w} \equiv \sum_{\ell < m} w_{\ell,m} \Omega_Y(\ell,m) = \Lambda D_4 \operatorname{diag} \left(Q^T w \right) \Lambda^T \quad \text{has rank } \min \left\{ K, L \right\} \text{ for almost all } w.$$

2. Estimating K when $K \leq \min \left\{ L, \frac{L(L-1)}{2} \right\}$ and all factors are skewed. Assuming that Λ and Q are full column rank and that factor variables have non zero skewness, then

rank
$$(\Gamma_Y) = K$$
, for all $K \le \min\left\{L, \frac{L(L-1)}{2}\right\}$.

- 3. Estimating K when $K \leq \min \left\{L, \frac{L(L-1)}{2}\right\}$ and all factors are either skewed or kurtic. Assuming Λ and Q full column rank (so $K \leq \min \left\{L, \frac{L(L-1)}{2}\right\}$) and that each factor is either skewed or kurtic, then apply rank test to matrix Ξ_Y .
 - **Refinement.** Based on matrices Γ_Y and $\Omega_Y(j)$:

$$\Xi_{Y,w} \equiv \Gamma_Y + \sum_{j=1}^L b_j \Omega_Y(j) = \Lambda \left[D_3 + D_4 \operatorname{diag} \left(\Lambda^T \beta \right) \right] Q^T \quad \text{has rank } K \text{ for almost all } w.$$

Cardoso and Souloumiac's JADE algorithm (U = 0, K = L)

Assuming no noise, theory implies that there exist diagonal matrices $D_{4,\ell,m}$ (unspecified) such that

$$\Omega_Y(\ell, m) = \Lambda D_{4,\ell,m} \Lambda^T, \quad (\ell \le m), \text{ and } \Sigma_Y = \Lambda \Lambda^T.$$

Joint Diagonalisation algorithm:

- 1. "Whiten" the data, i.e. compute $\widetilde{Y} = P^{-1}Y$, where P is a $L \times L$ such that $PP^T = \Sigma_Y$.
- 2. Compute $\Omega_{\widetilde{Y}}(\ell, m)$, for all $\ell \leq m$. These matrices satisfy the restrictions: $V^T \Omega_{\widetilde{Y}}(\ell, m) V = D_{4,\ell,m},$

where $V = P^{-1}\Lambda$ is an orthonormal matrix of dimensions L.

3. Compute V as an orthonomal matrix minimising the sum of squares of the off-diagonal elements of matrices V^TΩ_Ỹ (ℓ, m) V. Then, Λ = PV.
Cardoso and Souloumiac (1993) develop a simple and efficient algorithm to do this optimisation (inspired from standard algorithms for PCA).

Given an i.i.d. sample, the **JADE algorithm** (Joint Approximate Diagonalisation of Eigenmatrices) applies the JD algorithm to matrices of empirical moments.

Asymptotic theory for JADE

- Let $\widehat{A}_1, ..., \widehat{A}_J$ be root-*N* consistent and asymptotically normal estimators of *J* symmetric $K \times K$ matrices $A_1, ..., A_J$. Let $\widehat{A} = \left[\widehat{A}_1, ..., \widehat{A}_J\right]$ and $A = [A_1, ..., A_J]$.
- The JADE estimator is

$$\widehat{V} = \arg\min_{V \in \mathcal{O}_K} \sum_{j=1}^J \operatorname{off}(V^T \widehat{A}_j V),$$

where off $(M) = \sum_{i \neq j} m_{ij}^2$ and \mathcal{O}_K is the set of orthonormal $K \times K$ matrices.

- Assume that $\exists ! V \in \mathcal{O}_K, \forall j, V^T A_j V = D_j$, where $D_j = \text{diag}(d_{j1}, ..., d_{jK})$.
- Define the $K^2 \times K^2$ matrices:

$$R(D_j) = \left[\frac{(d_{jk} - d_{jm})}{\sum_{j'=1}^{J} (d_{j'k} - d_{j'm})^2}; k, m = 1, ..., J\right],$$

and let W be the following $K^2 \times JK^2$ matrix:

$$W = [\operatorname{diag}(\operatorname{vec}(R(D_1))), \dots, \operatorname{diag}(\operatorname{vec}(R(D_J)))].$$

Theorem 8 Assume that
$$\sum_{j=1}^{J} (d_{jk} - d_{jm})^2 \neq 0$$
 for all $k \neq m$. Then
 $N^{1/2} \left(\operatorname{vec}(\widehat{V}) - \operatorname{vec}(V) \right) \xrightarrow[N \to \infty]{L} \mathcal{N} \left(0, \operatorname{Var} \left(\operatorname{vec}(\widehat{V}) \right) \right),$

where:

$$\operatorname{Var}\left(\operatorname{vec}(\widehat{V})\right) = (I_K \otimes V)W(I_J \otimes V^T \otimes V^T)\operatorname{Var}\left(\operatorname{vec}(\widehat{A})\right)(I_J \otimes V \otimes V)W^T(I_K \otimes V^T).$$

• When J = 1, yields variance-covariance matrix of the eigenvectors of a symmetric matrix (e.g. Anderson, 1963).

The diagonal coefficients of matrix W are equal to $1/(d_{1k} - d_{1m})$, for $k \neq m$.

The variance of eigenvectors thus blows up (model not identified) when two eigenvalues of A_1 get close to each other.

• If J > 1, variance blows up if $\sum_{j} (d_{jk} - d_{jm})^2 \to 0$. For example, if $A_j \equiv \Omega_Y(\ell, m)$, then $D_j = D_4 \operatorname{diag}(\Lambda_\ell \odot \Lambda_m)$. Variance blows up if $\exists k, k'$ such that $d_{jk} = d_{jk'}$ for all j, or

$$\lambda_{\ell k} \lambda_{m k} \kappa_4 \left(X_k \right) = \lambda_{\ell k'} \lambda_{m k'} \kappa_4 \left(X_{k'} \right), \forall \ell, m.$$

This cannot happen if model is identified, i.e. at most one factor has zero kurtosis excess and if no couple of columns of Λ are proportional to each other.

Practical recommendation:

• Use bootstrap to compute stds of estimates. Matrix $\operatorname{Var}\left(\operatorname{vec}(\widehat{A})\right)$ difficult to compute or imprecisely estimated by resampling:

N	500	1000	5000	10000	∞							
κ_3	4.51 (1.98)	5.01 (2.36)	5.73(2.65)	5.89(2.02)	6.18							
κ_4	36.1 (38.4)	48.6 (62.4)	77.0 (132.3)	83.3 (104.7)	110.9							
	Log-normal distribution											

• Weight each matrix \widehat{A}_j by average precision (one over the sqrt of the sum of the variances of the elements of \widehat{A}_j).

Quasi-JADE algorithm

- 1. Estimate matrices $C \in \mathbb{R}^{L \times (L-K)}$ and/or $\overline{C} \in \mathbb{R}^{\#\overline{\Delta}_{L,2} \times (\#\overline{\Delta}_{L,2}-K)}$ of Lemmas 2 and 5 by Singular Value Decomposition.
- 2. Estimate Var (U_{ℓ}) , $\kappa_3(U_{\ell})$ and/or $\kappa_4(U_{\ell})$ using the restrictions in Lemmas 2 and 5.
- 3. Proceed to the JD of matrices

$$P^{-}\left[\Gamma_{Y}\left(\ell\right)-\kappa_{3}\left(U_{\ell}\right)\operatorname{Sp}_{L,\ell}\right]P^{-T}\quad\text{and/or}\quad P^{-}\left[\Omega_{Y}\left(\ell,m\right)-\delta_{\ell m}\kappa_{4}\left(U_{\ell}\right)\operatorname{Sp}_{L,\ell}\right]P^{-T},$$

where P is a full column rank $L \times K$ matrix such that

$$\Sigma_Y - \Sigma_U = P P^T.$$

Let V be the orthonormal matrix of joint eigenvectors. Then $\Lambda = PV$.

4. Estimate factor cumulants $\kappa_3(X_k)$ and $\kappa_4(X)$ by OLS from restrictions:

$$\begin{bmatrix} V^T P^- \left[\Gamma_Y(\ell) - \kappa_3(U_\ell) \operatorname{Sp}_{L,\ell} \right] P^{-T} V \end{bmatrix}_{k,k} = \lambda_{\ell k} \kappa_3(X_k), \\ \begin{bmatrix} V^T P^- \left[\Omega_Y(\ell, m) - \delta_{\ell m} \kappa_4(U_\ell) \operatorname{Sp}_{L,\ell} \right] P^{-T} V \end{bmatrix}_{k,k} = \lambda_{\ell k} \lambda_{m k} \kappa_4(X), \end{bmatrix}$$

where we denote as $[A]_{i,j}$ the (i, j) entry of matrix A.

Simulations: Convergence of the quasi-JADE estimator

_	N	500	1000	5000	10000
_	λ_{11}	2.03 (.28)	2.03(.17)	2.01 (.09)	2.01 (.06)
	λ_{21}	.95 (.23)	.99 (.14)	1.00(.07)	1.00(.05)
	λ_{31}	.95 (.23)	.99 (.15)	.99 (.07)	1.00(.05)
	λ_{12}	.98 (.23)	.98 (.15)	1.00 (.06)	1.00(.05)
	λ_{22}	2.05 (.27)	2.03(.19)	2.01(.08)	2.01(.07)
	λ_{32}	.97 (.23)	.98 (.17)	1.00 (.06)	1.00(.05)
	λ_{13}	.97 (.23)	.98 (.15)	.99 (.06)	1.00(.05)
	λ_{23}	.97 (.23)	.98 (.16)	1.00 (.06)	1.00(.05)
	λ_{33}	2.06 (.27)	2.02(.19)	2.01(.09)	2.00(.05)
	$\operatorname{Var}(U_1)$.77 (.59)	.87 (.43)	.96 (.20)	.98 (.16)
	$\operatorname{Var}(U_2)$.76 (.57)	.87 (.43)	.98 (.20)	.98 (.17)
	$\operatorname{Var}(U_3)$.74 (.56)	.86 (.42)	.96 (.20)	.98 (.16)

Quasi-JADE algorithm based on 2nd, 3rd and 4th moments, assuming all factors kurtic. Log-normal factors, standard normal errors.

Simulations: Robustness of Quasi-JADE to noise

$\operatorname{Var}(U_{\ell})$.01	.25	1	4	.01	.25	1	4
λ_{11}	2.00 (.07)	2.11 (.08)	2.36 (.12)	2.81 (.46)	1.98 (.12)	2.01(.13)	2.03 (.17)	2.02 (.44)
λ_{21}	1.00 (.11)	1.00 (.12)	.95 (.24)	.72 (.86)	1.00 (.15)	.99 (.12)	.99 (.14)	.95(.31)
λ_{31}	1.00 (.11)	1.03(.14)	1.08(.22)	1.05(.77)	1.00 (.16)	.99 (.13)	.99 (.15)	.95 (.32)
λ_{12}	1.00 (.11)	1.00(.12)	.97 (.24)	.78 (.86)	1.00 (.16)	.99 (.13)	.98 (.15)	.97 (.33)
λ_{22}	2.00 (.07)	2.11(.07)	2.37(.12)	2.86(.32)	1.97 (.11)	2.02(.11)	2.03(.19)	2.02(.41)
λ_{32}	1.00 (.12)	1.03(.13)	1.08(.22)	1.08(.76)	.99 (.16)	.99 (.13)	.98 (.17)	.97 (.32)
λ_{13}	1.00 (.11)	.87 (.13)	.61 (.20)	.16 (.69)	1.00 (.16)	1.00 (.14)	.98 (.15)	.96 (.32)
λ_{23}	1.00 (.11)	.87 (.12)	.62 (.20)	.15 (.67)	1.00 (.16)	1.00 (.13)	.98 (.16)	.96 (.32)
λ_{33}	2.00 (.08)	2.02(.09)	2.13(.16)	2.52(.43)	1.98 (.11)	2.02(.11)	2.02(.19)	2.01(.42)
$\operatorname{Var}(U_1)$.04 (.11)	.18 (.22)	.87 (.43)	3.77(.98)
$\operatorname{Var}(U_2)$.04 (.11)	.17 (.23)	.87 (.43)	3.77(.94)
$\operatorname{Var}(U_3)$.04 (.11)	.17 (.22)	.86 (.42)	3.77(.97)
		JA	DE			Quasi-	-JADE	

Log-normal factors (variance = 4.67), standard normal errors, N = 1000.

Simulations: Role of factor kurtosis

Factors are normal mixtures $(N(0, 1/2) \text{ w.prob. } \rho \text{ and } N(0, (2 - \rho)/(2 - 2\rho)) \text{ w.p. } 1 - \rho)$. Normal errors. N = 1000.

$\kappa_4(ho)$ ($ ho$)	-6/5(-1)	$1/2 \left(\frac{2}{5}\right)$	$1\left(\frac{4}{7}\right)$	5	$10 \left(\frac{40}{43}\right)$	$100 \left(\frac{400}{403}\right)$	$\thickapprox 110(1)$
λ_{11}	1.94 (.48)	1.66 (.78)	1.76 (.74)	2.03 (.33)	2.01 (.26)	2.01 (.19)	2.03 (20)
λ_{21}	.91 (.48)	.97 (.71)	.94 (.63)	.97 (.30)	.98 (.21)	.99 (.16)	.98 (.15)
λ_{31}	.92 (.48)	1.00 (.69)	.96(.65)	.97 (.29)	.97 (.21)	.98 (.17)	.98 (.16)
λ_{12}	.97 (.49)	1.00(.71)	.98(.65)	.96 (.30)	.98 (.21)	.99 (.19)	.98 (.16)
λ_{22}	1.98(.44)	1.71 (.69)	1.83(.64)	2.02(.35)	2.02(.26)	2.01(.18)	2.03(.18)
λ_{32}	.98 (.49)	1.00(.72)	.95 (.66)	.97 (.30)	.98 (.20)	.99 (.18)	.98 (.16)
λ_{13}	.96 (.49)	1.12(.74)	1.05(.70)	.97 (.29)	.99 (.20)	.99 (.17)	.98 (.15)
λ_{23}	.94 (.49)	1.12(.75)	1.05(.69)	.97 (.29)	.98 (.19)	.99 (.18)	.98 (.15)
λ_{33}	1.97(.43)	1.83(.57)	1.89(.56)	2.03(.32)	2.03(.25)	2.02(.18)	2.03(.20)
$\operatorname{Var}(U_1)$.71 $(.65)$.92 (.84)	.76 (.79)	.77(.63)	.88 (.53)	.92 (.40)	.86 (.44)
$\operatorname{Var}(U_2)$.75 (.65)	.89 (.83)	.69 (.78)	.75 (.64)	.83 (.55)	.93 (.40)	.87 (.43)
$\operatorname{Var}(U_3)$.74 (.66)	.93 (.82)	.76 (.80)	.77(.64)	.84 (.53)	.91 (.40)	.86 (.44)

	N	500	500	1000	1000	5000	5000
-	Cumulants	2,3,4	2,3	2,3,4	2,3	2,3,4	2,3
-	λ_{11}	1.95 (.28)	1.93 (.32)	1.98 (.19)	1.97 (.24)	2.00 (.08)	2.00 (.08)
	λ_{21}	1.96 (.30)	1.91(.37)	1.99 (.16)	1.96 (.23)	1.00 (.09)	2.00(.05)
	λ_{31}	.97 (.23)	.98 (.25)	.98 (.17)	.98 (.20)	1.00 (.08)	1.00 (.08)
	λ_{12}	2.02 (.24)	2.03(.27)	2.01(.17)	2.01 (.20)	1.00 (.08)	2.00 (.08)
	λ_{22}	1.02 (.28)	1.05(.32)	1.00 (.18)	1.02(.22)	2.00 (.09)	1.00(.08)
	λ_{32}	2.01 (.12)	1.99 (.14)	2.01 (.10)	2.00 (.11)	1.00(.05)	2.00(.05)
	$\operatorname{Var}(U_1)$.98 (.21)	1.01 (.16)	.98 (.15)	1.00 (.13)	.97(.09)	1.00 (.06)
	$\operatorname{Var}(U_2)$.94 (.21)	.99 (.20)	.96 (.15)	1.00(.15)	.97 (.08)	1.00(.07)
	$\operatorname{Var}(U_3)$.94 (.22)	1.00 (.20)	.96 (.15)	1.00(.15)	.98 (.09)	1.00(.07)

Simulations: Lots of factors

			L = K = 5)	L = K = 10			
	N	500	1000	5000	500	1000	5000	
	λ_{11}	2.06 (.41)	2.03 (.28)	2.01 (.13)	1.85 (.72)	1.97(.56)	2.00 (.27)	
	λ_{21}	.95~(.35)	.98 (.25)	.99 (.12)	.89 (.52)	.90 (.43)	.98 (.22)	
	λ_{31}	.95 (.34)	.98 (.24)	1.00 (.12)	.88 (.53)	.90 (.45)	.98 (.23)	
	λ_{41}	.95~(.35)	.98 (.24)	.99 (.11)	.88 (.53)	.92 (.43)	.98 (.22)	
	λ_{51}	.95 (.34)	.98 (.24)	.99 (.12)	.88 (.53)	.90 (.43)	.98 (.22)	
	λ_{61}				.88 (.54)	.91 (.43)	.98 (.22)	
	λ_{71}				.89 (.53)	.90 (.44)	.98 (.22)	
	λ_{81}				.88 (.52)	.90 (.44)	.98 (.23)	
	λ_{91}				.87 (.53)	.91 (.44)	.98 (.23)	
	$\lambda_{10,1}$.88 (.52)	.89 (.44)	.98 (.22)	
Va	$\operatorname{ar}(U_1)$.58 (.56)	.81 (.44)	.95 (.20)	.40 (.55)	.49 (.53)	.88 (.28)	

Simulations: Rank test based on Ω_Y , Size

The true value of Λ is

$\mathbf{s}\left($	$ \begin{array}{c} 2 & 2 \\ 2 & 1 \\ 1 & 2 \end{array} \right). $	Factor	s are	norm	al mixt	ures. E	rrors are n	orma
	ho	-	2/5	4/7	20/23	40/43	400/403	
	$\kappa_4(ho)$	-6/5	1/2	1	5	10	100	
	$\alpha = .10$.90	.73	.82	.87	.85	.62	
	$\alpha = .20$.79	.57	.67	.74	.69	.43	
	$\alpha = .30$.67	.44	.54	.61	.57	.29	
	$\alpha = .40$.58	.33	.42	.50	.45	.19	
	$\alpha = .50$.47	.24	.32	.40	.35	.11	
	$\alpha = .60$.37	.16	.22	.32	.26	.05	
	$\alpha = .70$.27	.10	.13	.24	.19	.02	
	$\alpha = .80$.20	.05	.08	.15	.11	.01	
	$\alpha = .90$.10	.02	.04	.06	.04	.00	

Simulations: Rank test for $K \leq L$, Size

The true value of Λ is	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$). Log-normal factors. Standard normal errors. $N = 1$.000.
--------------------------------	---	--	-------

Matrix	Ω_Y	$\sum_{\ell < m} w_{\ell m} \Omega_Y(\ell, m)$	Γ_Y
$\alpha = .10$.56	.87	.90
$\alpha = .20$.34	.71	.79
$\alpha = .30$.20	.56	.69
$\alpha = .40$.12	.44	.58
$\alpha = .50$.08	.32	.48
$\alpha = .60$.05	.21	.38
$\alpha = .70$.02	.13	.29
$\alpha = .80$.01	.06	.16
$\alpha = .90$	00.	.01	.07

Simulations: Rank test for $K \leq L$, Power

Tests K = 2 against K = 3. True value is $\Lambda = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$. Factors are normal mixtures. Errors are normal. N = 1000.

$\kappa_4(ho)$	-6/5	1/2	1	5	10	100
$\alpha = .10$.99	.81	.81	1.00	1.00	.89
$\alpha = .20$.99	.63	.66	1.00	1.00	.80
$\alpha = .30$.98	.68	.51	.99	1.00	.72
$\alpha = .40$.97	.36	.39	.99	1.00	.64
$\alpha = .50$.96	.26	.29	.98	.99	.56
$\alpha = .60$.94	.18	.22	.96	.98	.47
$\alpha = .70$.93	.11	.16	.92	.96	.35
$\alpha = .80$.89	.06	.10	.86	.90	.22
$\alpha = .90$.83	.02	.04	.72	.77	.12

Empirical application: Stocks

Fama and French (1993) identify three factors explaining a large proportion of the variance of timeseries of U.S. excess stock returns, $Y_{\ell}(t) = R_{\ell}(t) - R_F(t), \ \ell = 1, ..., L.$

In addition to the market return $(R_M(t) - R_F(t))$, where $R_F(t)$ is the risk-free return), which is the unique factor of the CAPM model, they identify two additional factors:

- SMB(t), or "small minus big", is the difference between the average of the returns on two stock portfolios: one containing firms with market value (price time number of shares) less than the median, and one containing firms with size above the median.
- HML(t), or "high minus low", is the difference between the average of the returns on two stock portfolios: one gathering firms with book-to-market ratio (book value of capital divided by market value, denoted B/M) less that the 30th percentile and another one containing all firms with B/M ratio above the 70th percentile.

Fama and French show that these three factors explain monthly data on 25 portfolios formed by intersecting size and book-to-market quintiles remarkably well.

Size	B/M ratio	Factor 1	Factor 2	Factor 3	Error variance	\mathbb{R}^2
Small	Low	.57	.79	37	.055	.95
	2	.50	.67	23	.054	.93
	3	.45	.56	14	.035	.93
	4	.41	.52	09	.029	.94
	High	.43	.52	05	.028	.94
2	Low	.70	.72	50	.102	.92
	2	.59	.58	26	.049	.94
	3	.54	.51	17	.066	.89
	4	.53	.47	10	.079	.84
	High	.61	.51	08	.118	.82
3	Low	.71	.61	58	.122	.90
	2	.62	.47	30	.050	.93
	3	.58	.40	15	.061	.88
	4	.60	.37	10	.080	.84
	High	.70	.40	06	.095	.85
4	Low	.74	.46	61	.094	.92
	2	.70	.33	28	.041	.94
	3	.69	³⁸ .29	16	.038	.94
	4	.68	.28	08	.086	.84
	High	77	30	06	146	$\overline{70}$

	X_1	X_2	X_3		X_1	X_2	X_3
$R_M - R_F$.84	.24	41	$R_M - R_F$.97	01	09
SMB	49	.85	09	SMB	01	.98	06
HML	11	.23	.90	HML	.09	.07	.93

a) Fama French

b) Independent Fama French

Conclusion

Nonparametric estimation of factor densities. Done in a companion paper.

Allows to predict factors X_{kt} , k = 1, ..., K, t = 1, ..., L:

$$\mathbb{E}\left[g(X)|Y=y\right] = \frac{\int g(x)f_U(y-\Lambda x)f_X(x)dx}{\int f_U(y-\Lambda x)f_X(x)dx}.$$

In the future, we plan to pursue our research in the following directions.

- First, there is plenty room for efficiency improvements of quasi-JADE and of the test for the number of factors.
- A second direction of research concerns the extension of existing algorithms to deal with more factors than measurements (K > L). In the ICA literature, this case is referred to as *overcomplete* ICA.
- Address the issue of dynamics (MA factors and errors).
- Nonlinearities.