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Linear factor models

Examples:

� Measurement error model: (
yi = a + bx

�
i + ui;

xi = x
�
i + vi:

� Panel data models with one or more individual e�ect, with time-individual interactions:

yit = z
T
it� + �t1xi1 + ::: + �tKxiK + uit:

Usually small T , large N .

� Structural VAR models:
yt = Byt�1 + Cut; yt; ut vectors.

� Finance (APT).
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Questions

� Identi�cation and estimation of parameters b, � and C (factor loadings)?

� Identi�cation and estimation of factor distributions? Prediction of factors and common compo-
nents. (See companion paper.)
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Orthogonal factor analysis

Model structure:

Y = �X + U; where

8>>>><>>>>:
Y : L-vector

X : K-vector (zero mean)

U : L-vector (zero mean)

� : L�K matrix

Assumptions: orthogonal factors and errors, and Var (X) = IK (normalisation).

Identifying restrictions: Matrix � identi�ed from second-order restrictions:

Var (Y ) = ��T + Var (U) :

Fundamental nonidenti�cation result: � identi�ed up to a multiplicative orthonormal matrix

(as ��T = �QQT�T for all orthonormal Q).

Principal Component Analysis: ML + normal errors ) one particular normalisation.
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Independent component analysis

Like OFA with \independence" instead of \orthogonality" + no noise.

Identi�cation based on second and fourth-order moments.

Very commonly used in the literature on blind signal separation and image processing.

Many algorithms: e.g. Cardoso and Souloumiac's (1993) JADE algorithm (based on structural re-

strictions on matrices of fourth-order cumulants of data), Hyv�arinen's FastICA algorithm (�nd w

maximizing the non-gaussianity of the projection wTY ).
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Quasi-JADE

In this paper,

We develop a two-stage estimation algorithm for noisy linear independent factor models:

� First stage estimates error moments;

� Second stage applies JADE.

We show formal identi�cation results,

We run Monte-Carlo simulations,

We provide an empirical application.
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Empirical application

Y : log hourly wage (residual of a regression on background variables and age)

D : age at the end of school

D� : median of D given certi�ed highest diploma

OLS:

� Regress Y on D = 4:37%;

� Regress Y on D� = 6:03%:

Model:
One-factor model8>><>>:
Y = �11X1 + U1

D = �21X1 + U2

D� = �31X1 + U3

or

Two-factor model8>><>>:
Y = �11X1 + �12X2 + U1

D = �21X1 + �22X2 + U2

D� = �31X1 + �32X2 + U3
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K = 1 K = 1 K = 1 K = 2 K = 2

PCA quasi-JADE(4) quasi-JADE(3,4) quasi-JADE(4) quasi-JADE(3,4)b�11 .141 (.138,.145) .154 (.136,166) .142 (.137,.148) .172 (.146,.200) .166 (.145,.182)b�21 2.15 (2.12,2.19) 2.09 (2.02,2.18) 2.13 (2.09,2.20) 2.05 (1.96,2.16) 2.09 (2.02,2.19)b�31 2.01 (1.98,2.03) 2.05 (1.95,2.14) 2.03 (1.96,2.11) 2.02 (1.93,2.12) 2.02 (1.93,2.10)b�11b�21 6.6% 7.4% 6.7% 8.5% 7.9%b�12 - - - -.138 (-.212,-.067) -.136 (-.209,-.040)b�22 - - - .360 (.009,.561) .316 (.091,.459)b�32 - - - .475 (.310,.660) .381 (.131,.484)bV (U1) .066 (.065,.067) .052 (.041,.070) .066 (.060,.069) .038 (.000,.060) .040 (.010,.063)bV (U2) 2.31 (2.22,2.40) 2.56 (2.06,2.90) 2.43 (2.04,2.65) 2.61 (1.85,3.04) 2.50 (1.92,2.84)bV (U3) .672 (.604,.745) .426 (.000,.850) .586 (.177,.867) .385 (.000,.766) .500 (.089,.889)

�3(X1) - 1.34 (1.29,1.39) - 1.17 (1.08,1.30)

�3(X2) - - - .087 (-.709,6.10)

�4(X1) .612 (.391,.854) .741 (.354,1.02) .627 (.439,.768) .665 (.445,.841)

�4(X2) - - 13.6 (3.58,196) 15.5 (4.28,580)
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� We thus obtain the following factor structure:8>><>>:
Y = :17X1 � :14X2 + U1
D = 2X1 + :4X2 + U2

D� = 2X1 + :4X2 + U3

� Interestingly, this model is consistent with a classical Mincer equation:8>><>>:
Y = �E + V;

E = 2X1 + :4X2;

V = (:17� 2�)X1 � (:14 + :4�)X2 + U1:

whereE can be interpreted as \true education", measured with error byD andD� (Var (E) = 5:6,

Var (U2) = 2:6 and Var (U3) = :4).

� Cov(E; V ) = 0 if and only if � = 6:8%. Same as 2SLS (controls for measurement error).

� Next, suppose that Cov(E; V ) 6= 0. Identi�cation of � requires instruments Z.

� Except if one assumes that Z is independent of V . Then, Z = X1 or X2 and � = 8:5% or

� = �35%. Only � = 8:5% is reasonable.
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� Yields following decomposition: ICA - OLS = 4.1%, 2.4% is due to measurement error and 1.7%
reects unobserved heterogeneity.
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Cumulants

Univariate cumulants of centred random variables:

�2 (Z) = Cum (Z;Z) = Var (Z) = EZ2;

�3 (Z) = Cum (Z;Z; Z) = EZ3;

�4 (Z) = Cum (Z;Z; Z; Z) = E
�
Z4
�
� 3E

�
Z2
�2
:

Multivariate cumulants of centred random vectors:

Cum (Yi; Yj) = E(YiYj);

Cum (Yi; Yj; Y`) = E(YiYjY`);

Cum (Yi; Yj; Y`; Ym) = E(YiYjY`Ym)� E(YiYj)E(Y`Ym)
�E(YiY`)E(YjYm)� E(YiYm)E(YjY`):

Tensor or multi-linear structure.
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Moment restrictions

Second order:

Cum (Yi; Yj) =
KX
k=1

�ik�jk + Cov (Ui; Uj)

, �Y = ��
T + �U :

Third order:

Cum (Yi; Yj; Y`) =
KX
k=1

�ik�jk�`k�3 (Xk) + 1 fi = j = `g�3 (Ui)

Fourth-order:

Cum (Yi; Yj; Y`; Ym) =

KX
k=1

�ik�jk�`k�mk�4 (Xk) + 1 fi = j = ` = mg�4 (Ui) :

Tensor or multi-linear structure.
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Matrix restrictions

Multilinear restrictions of order 2, 3, 4 in matrix form.

Let

�Y (`) =
h
Cum

�
Yi; Y`; Yj

�
; (i; j) 2 f1; :::; Lg2

i
2 RL�L; ` 2 f1:::Lg:

Then

�Y (`) = �D3 diag (�`) �
T + �3 (U`) SpL;`;

where �T` 2 RK�1 is the `th row of �,
D3 = diag (�3 (X1) ; :::; �3 (XK)),

and SpL;` is the L� L sparse matrix with only one 1 in position (`; `).

Let


Y (`;m) =
h
Cum

�
Yi; Y`; Ym; Yj

�i
i�j
2 RL�L; (` � m):

Then,


Y (`;m) = �D4 diag (�` � �m) �T + �`m�4 (U`) SpL;`;

where D4 = diag (�4 (X1) ; :::; �4 (XK)) ;

and � is the Hadamard (element by element) matrix product.
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Identi�cation of factor loadings { noisy model (U 6= 0)
First case: kurtic factor distributions

Let


Y = [Cum (Yi; Yj; Y`; Ym)](i�j)�(`<m) 2 R
L(L+1)
2 �L(L�1)2 :

Then

Cum (Yi; Yj; Y`; Ym) =
KX
k=1

�ik�jk�`k�mk�4 (Xk)

implies that


Y = QD4Q
T ;

where

Q � Q (�) = [�i1�j1; :::; �iK�jK ](i�j)�k 2 R
L(L+1)
2 �K

Q � Q (�) = [�`1�m1; :::; �`K�mK ](`<m)�k 2 R
L(L�1)
2 �K:

Lemma 1 Assume that (i) K � L(L�1)
2 , (ii) Q has rank K and (iv) factor variables have non

zero kurtosis excess. Then matrix 
Y has rank K.
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First case: kurtic factor distributions (cont'ed)

Remark that, for any diagonal matrix D = diag (d), vech
�
�D�T

�
= Qd, where vech stacks the non

redundant elements of a symmetric matrix.

For example,

vech (�Y (`)) = vech
�
�D3 diag (�`) �

T + �3 (U`) SpL;`
�

= QD3�` + �3 (U`) vech
�
SpL;`

�
:

Let C 2 R
L(L+1)
2 �

�
L(L+1)
2 �K

�
be a basis of the null space of 
Y . Then,

C
T
vech (�Y (`)) = �3 (U`)C(`;`);

where C(`;`) is the (`; `)th column of C
T
.
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More generally, we have the following lemma:

Lemma 2 Assume that (i) K � L(L�1)
2 , (ii) Q has rank K and (iv) factor variables have non

zero kurtosis excess. Let C 2 R
L(L+1)
2 �

�
L(L+1)
2 �K

�
be a basis of the null space of 
Y . Then the

following propositions hold true.

1. Var (U`), �3 (U`) and �4 (U`) solve the system:

C
T
vech (�Y ) =

LX
`=1

Var (U`)C(`;`);

C
T
vech (�Y (`)) = �3 (U`)C(`;`);

C
T
vech (
Y (`; `)) = �4 (U`)C(`;`):

where C
T
(`;`) denotes the (`; `)th row of C.

2. Matrix
�
C(1;1); :::; C(L;L)

�
is full rank and Var (U`), �3 (U`) and �4 (U`) are uniquely de�ned.
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First case: kurtic factor distributions (cont'ed)

The following theorem then follows straightforwardly.

Theorem 3 (Su�cient conditions for parametric identi�cation when K � L) As-

sume that (i) K � min
n
L; L(L�1)2

o
, (ii) � is full column rank, (iii) Q(�) has rank K, and (iv)

factor variables have non zero kurtosis excess. Then, factor loadings are identi�ed from second

and fourth-order moments.
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Identi�cation of factor loadings { noisy model (U 6= 0)
Second case: nonkurtic factor distributions

If some or all factor distributions may have zero kurtosis excess, search identi�cation in third-order

moments. Let


Y (j) =
h
Cum

�
Yi; Yj; Y`; Ym

�i
i�(`<m)

2 RL�
L(L�1)
2

= �diag (�j)D4Q
T ;

�Y = [Cum (Yi; Y`; Ym)]i�(`<m) 2 RL�
L(L�1)
2

= �D3Q
T

�Y = [�Y ;
Y (1) ; :::;
Y (L)]

Lemma 4 Assume that (i) K � min
n
L; L(L�1)2

o
, (ii) � and Q (�) have full column rank K

and (iii) each factor distribution is either skewed or kurtic. Then, matrix �Y has rank K.
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Second case: nonkurtic factor distributions and... K � L� 1

The identi�ability of error moments then comes at the price of some additional assumptions on the

matrix of factor loadings.

Lemma 5 Assume that (i) K � L� 1, (ii) every submatrix of � made of a selection of L� 1
rows has rank K, (iii) Q (�) have full column rank K and (iv) each factor distribution is either

skewed or kurtic. Let C 2 RL�(L�K) be a basis of the null space of �Y . Let CT` denote the `th
row of C. The following propositions hold true.

1. Var (U`), �3 (U`) and �4 (U`) solve the system:

CT

0BB@ Cum (Y1; Y`) Cum (Y1; Y`; Y`) Cum (Y1; Y`; Y`; Y`)
... ... ...

Cum (YL; Y`) Cum (YL; Y`; Y`) Cum (YL; Y`; Y`; Y`)

1CCA = [Var (U`) ; �3 (U`) ; �4 (U`)]C`:

2. No column of C is nil (C` 6= 0, 8`) and Var (U`), �3 (U`) and �4 (U`) are identi�ed.

Note that if, in particular, all factor distributions are skewed then one can de�ne C as the null space

of �Y .
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Second case: nonkurtic factor distributions K � L� 1

The following theorem then follows immediately.

Theorem 6 (Su�cient conditions for parametric identi�cation when K � L � 1)
Assume that (i) K � L � 1, (ii) every submatrix of � made of a selection of L � 1 rows has
rank K, (iii) matrix Q (�) has rank K, (iv) each factor is either skewed or kurtic. Then, factor

loadings are parametrically identi�ed from second, third and fourth-order moments.

Again, if all factors are skewed then factor loadings are parametrically identi�ed from second and

third-order moments.

Corollary 7 (Su�cient conditions for parametric identi�cation from second and

third-order moments when K � L� 1) Assume that (i) K � L� 1, (ii) every submatrix
of � made of a selection of L�1 rows has rank K, (iii) matrix Q (�) has rank K, (iv) all factor
distributions are skewed. Then, factor loadings are parametrically identi�ed from second and

third-order moments.
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Example: the measurement error model

Model: (
Y1 = �11X1 + U1;

Y2 = �21X1 + U2;

where factor X1 has a non symmetric distribution: E
�
X3
1

�
6= 0.

Using second and third-order restrictions yields:

�11 =

s
E(Y1Y2)

E(Y1Y1Y2)
E(Y1Y2Y2)

;

�21 =

s
E(Y1Y2)

E(Y1Y2Y2)
E(Y1Y1Y2)

:

Interestingly,
�21
�11

=
E(Y1Y2Y2)
E(Y1Y1Y2)

:

Replacing expectations by sample means, we obtain Geary's (1942) estimator for the measurement

error model:

Regress Y2 on Y1, with no intercept, by 2SLS, using Y1Y2 as an instrument for Y1.

21



Estimation

Number of factors

We apply Robin and Smith's (2000) rank test to various matrices.

1. Estimating K when K � L(L�1)
2 and all factors are kurtic. Assuming that Q is full

column rank and that factor variables have non zero kurtosis, then

rank (
Y ) = K, for all K � L (L� 1)
2

:

This allows to test whether K � L or not.

� Re�nement. Based on matrices


Y (`;m) = �D4 diag (�` � �m) �T ; ` < m:

Let w = (w1;2; :::; wL�1;L) be a vector of
L(L�1)
2 positive weights. As no column of Q is

identically zero, then


Y;w �
X
`<m

w`;m
Y (`;m) = �D4 diag
�
QTw

�
�T has rank min fK;Lg for almost all w.

22



2. Estimating K when K � min
n
L; L(L�1)2

o
and all factors are skewed. Assuming that

� and Q are full column rank and that factor variables have non zero skewness, then

rank (�Y ) = K, for all K � min
�
L;
L (L� 1)

2

�
:

3. Estimating K when K � min
n
L; L(L�1)2

o
and all factors are either skewed or

kurtic. Assuming � and Q full column rank (so K � min
n
L; L(L�1)2

o
) and that each factor

is either skewed or kurtic, then apply rank test to matrix �Y .

� Re�nement. Based on matrices �Y and 
Y (j):

�Y;w � �Y +
LX
j=1

bj
Y (j) = �
�
D3 +D4 diag

�
�T�

��
QT has rank K for almost all w.
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Cardoso and Souloumiac's JADE algorithm (U = 0; K = L)

Assuming no noise, theory implies that there exist diagonal matrices D4;`;m (unspeci�ed) such that


Y (`;m) = �D4;`;m�
T ; (` � m) ; and �Y = ��

T :

Joint Diagonalisation algorithm:

1. \Whiten" the data, i.e. compute eY = P�1Y , where P is a L� L such that PP T = �Y .
2. Compute 
eY (`;m), for all ` � m. These matrices satisfy the restrictions:

V T
eY (`;m)V = D4;`;m;
where V = P�1� is an orthonormal matrix of dimensions L.

3. Compute V as an orthonomal matrix minimising the sum of squares of the o�-diagonal elements

of matrices V T
eY (`;m)V . Then, � = PV .
Cardoso and Souloumiac (1993) develop a simple and e�cient algorithm to do this optimisation

(inspired from standard algorithms for PCA).

Given an i.i.d. sample, the JADE algorithm (Joint Approximate Diagonalisation of Eigenmatrices)

applies the JD algorithm to matrices of empirical moments.
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Asymptotic theory for JADE

� Let bA1; :::; bAJ be root-N consistent and asymptotically normal estimators of J symmetricK�K
matrices A1; :::; AJ .

Let bA = h bA1; :::; bAJi and A = [A1; :::; AJ ].
� The JADE estimator is bV = arg min

V 2OK

JX
j=1

o�(V T bAjV );
where o�(M) =

P
i 6=jm

2
ij and OK is the set of orthonormal K �K matrices.

� Assume that 9!V 2 OK , 8j, V TAjV = Dj, where Dj = diag (dj1; :::; djK).

� De�ne the K2 �K2 matrices:

R(Dj) =

"
(djk � djm)PJ

j0=1(dj0k � dj0m)2
; k;m = 1; :::; J

#
;

and let W be the following K2 � JK2 matrix:

W = [diag(vec(R(D1))); :::; diag(vec(R(DJ)))] :
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Theorem 8 Assume that
PJ

j=1(djk � djm)2 6= 0 for all k 6= m. Then

N 1=2
�
vec(bV )� vec(V )� L!

N!1
N
�
0;Var

�
vec(bV )�� ;

where:

Var
�
vec(bV )� = (IK 
 V )W (IJ 
 V T 
 V T ) Var�vec( bA)� (IJ 
 V 
 V )W T (IK 
 V T ):

� When J = 1, yields variance-covariance matrix of the eigenvectors of a symmetric matrix (e.g.
Anderson, 1963).

The diagonal coe�cients of matrix W are equal to 1=(d1k � d1m), for k 6= m.
The variance of eigenvectors thus blows up (model not identi�ed) when two eigenvalues of A1 get

close to each other.

� If J > 1, variance blows up if
P

j(djk � djm)2 ! 0.

For example, if Aj � 
Y (`;m), then Dj = D4 diag (�` � �m).
Variance blows up if 9k; k0 such that djk = djk0 for all j, or

�`k�mk�4 (Xk) = �`k0�mk0�4 (Xk0) ;8`;m:

This cannot happen if model is identi�ed, i.e. at most one factor has zero kurtosis excess

and if no couple of columns of � are proportional to each other.
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Practical recommendation:

� Use bootstrap to compute stds of estimates. Matrix Var
�
vec( bA)� di�cult to compute or impre-

cisely estimated by resampling:

N 500 1000 5000 10000 1
�3 4.51 (1.98) 5.01 (2.36) 5.73 (2.65) 5.89 (2.02) 6.18

�4 36.1 (38.4) 48.6 (62.4) 77.0 (132.3) 83.3 (104.7) 110.9

Log-normal distribution

� Weight each matrix bAj by average precision (one over the sqrt of the sum of the variances of the
elements of bAj).
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Quasi-JADE algorithm

1. Estimate matrices C 2 RL�(L�K) and/or C 2 R#�L;2�(#�L;2�K) of Lemmas 2 and 5 by Singular
Value Decomposition.

2. Estimate Var (U`), �3 (U`) and/or �4 (U`) using the restrictions in Lemmas 2 and 5.

3. Proceed to the JD of matrices

P�
�
�Y (`)� �3 (U`) SpL;`

�
P�T and/or P�

�

Y (`;m)� �`m�4 (U`) SpL;`

�
P�T ;

where P is a full column rank L�K matrix such that

�Y � �U = PP T :

Let V be the orthonormal matrix of joint eigenvectors. Then � = PV .

4. Estimate factor cumulants �3 (Xk) and �4 (X) by OLS from restrictions:�
V TP�

�
�Y (`)� �3 (U`) SpL;`

�
P�TV

�
k;k

= �`k�3 (Xk) ;�
V TP�

�

Y (`;m)� �`m�4 (U`) SpL;`

�
P�TV

�
k;k

= �`k�mk�4 (X) ;

where we denote as [A]i;j the (i; j) entry of matrix A.
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Simulations: Convergence of the quasi-JADE estimator

N 500 1000 5000 10000

�11 2.03 (.28) 2.03 (.17) 2.01 (.09) 2.01 (.06)

�21 .95 (.23) .99 (.14) 1.00 (.07) 1.00 (.05)

�31 .95 (.23) .99 (.15) .99 (.07) 1.00 (.05)

�12 .98 (.23) .98 (.15) 1.00 (.06) 1.00 (.05)

�22 2.05 (.27) 2.03 (.19) 2.01 (.08) 2.01 (.07)

�32 .97 (.23) .98 (.17) 1.00 (.06) 1.00 (.05)

�13 .97 (.23) .98 (.15) .99 (.06) 1.00 (.05)

�23 .97 (.23) .98 (.16) 1.00 (.06) 1.00 (.05)

�33 2.06 (.27) 2.02 (.19) 2.01 (.09) 2.00 (.05)

Var(U1) .77 (.59) .87 (.43) .96 (.20) .98 (.16)

Var(U2) .76 (.57) .87 (.43) .98 (.20) .98 (.17)

Var(U3) .74 (.56) .86 (.42) .96 (.20) .98 (.16)

Quasi-JADE algorithm based on 2nd, 3rd and 4th moments, assuming all factors kurtic. Log-normal

factors, standard normal errors.
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Simulations: Robustness of Quasi-JADE to noise

Var(U`) .01 .25 1 4 .01 .25 1 4

�11 2.00 (.07) 2.11 (.08) 2.36 (.12) 2.81 (.46) 1.98 (.12) 2.01(.13) 2.03 (.17) 2.02 (.44)

�21 1.00 (.11) 1.00 (.12) .95 (.24) .72 (.86) 1.00 (.15) .99 (.12) .99 (.14) .95 (.31)

�31 1.00 (.11) 1.03 (.14) 1.08 (.22) 1.05 (.77) 1.00 (.16) .99 (.13) .99 (.15) .95 (.32)

�12 1.00 (.11) 1.00 (.12) .97 (.24) .78 (.86) 1.00 (.16) .99 (.13) .98 (.15) .97 (.33)

�22 2.00 (.07) 2.11 (.07) 2.37 (.12) 2.86 (.32) 1.97 (.11) 2.02 (.11) 2.03 (.19) 2.02 (.41)

�32 1.00 (.12) 1.03 (.13) 1.08 (.22) 1.08 (.76) .99 (.16) .99 (.13) .98 (.17) .97 (.32)

�13 1.00 (.11) .87 (.13) .61 (.20) .16 (.69) 1.00 (.16) 1.00 (.14) .98 (.15) .96 (.32)

�23 1.00 (.11) .87 (.12) .62 (.20) .15 (.67) 1.00 (.16) 1.00 (.13) .98 (.16) .96 (.32)

�33 2.00 (.08) 2.02 (.09) 2.13 (.16) 2.52 (.43) 1.98 (.11) 2.02 (.11) 2.02 (.19) 2.01 (.42)

Var(U1) .04 (.11) .18 (.22) .87 (.43) 3.77 (.98)

Var(U2) .04 (.11) .17 (.23) .87 (.43) 3.77 (.94)

Var(U3) .04 (.11) .17 (.22) .86 (.42) 3.77 (.97)

JADE Quasi-JADE

Log-normal factors (variance = 4.67), standard normal errors, N = 1000.
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Simulations: Role of factor kurtosis

Factors are normal mixtures (N(0; 1=2) w.prob. � and N(0; (2 � �)=(2 � 2�)) w.p. 1 � �). Normal
errors. N = 1000:

�4(�) (�) �6=5 (�1) 1=2
�
2
5

�
1
�
4
7

�
5 10

�
40
43

�
100

�
400
403

�
� 110 (1)

�11 1.94 (.48) 1.66 (.78) 1.76 (.74) 2.03 (.33) 2.01 (.26) 2.01 (.19) 2.03 (20)

�21 .91 (.48) .97 (.71) .94 (.63) .97 (.30) .98 (.21) .99 (.16) .98 (.15)

�31 .92 (.48) 1.00 (.69) .96 (.65) .97 (.29) .97 (.21) .98 (.17) .98 (.16)

�12 .97 (.49) 1.00 (.71) .98 (.65) .96 (.30) .98 (.21) .99 (.19) .98 (.16)

�22 1.98 (.44) 1.71 (.69) 1.83 (.64) 2.02 (.35) 2.02 (.26) 2.01 (.18) 2.03 (.18)

�32 .98 (.49) 1.00 (.72) .95 (.66) .97 (.30) .98 (.20) .99 (.18) .98 (.16)

�13 .96 (.49) 1.12 (.74) 1.05 (.70) .97 (.29) .99 (.20) .99 (.17) .98 (.15)

�23 .94 (.49) 1.12 (.75) 1.05 (.69) .97 (.29) .98 (.19) .99 (.18) .98 (.15)

�33 1.97 (.43) 1.83 (.57) 1.89 (.56) 2.03 (.32) 2.03 (.25) 2.02 (.18) 2.03 (.20)

Var(U1) .71 (.65) .92 (.84) .76 (.79) .77 (.63) .88 (.53) .92 (.40) .86 (.44)

Var(U2) .75 (.65) .89 (.83) .69 (.78) .75 (.64) .83 (.55) .93 (.40) .87 (.43)

Var(U3) .74 (.66) .93 (.82) .76 (.80) .77 (.64) .84 (.53) .91 (.40) .86 (.44)
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Simulations: K = 2; L = 3

N 500 500 1000 1000 5000 5000

Cumulants 2,3,4 2,3 2,3,4 2,3 2,3,4 2,3

�11 1.95 (.28) 1.93 (.32) 1.98 (.19) 1.97 (.24) 2.00 (.08) 2.00 (.08)

�21 1.96 (.30) 1.91 (.37) 1.99 (.16) 1.96 (.23) 1.00 (.09) 2.00 (.05)

�31 .97 (.23) .98 (.25) .98 (.17) .98 (.20) 1.00 (.08) 1.00 (.08)

�12 2.02 (.24) 2.03 (.27) 2.01 (.17) 2.01 (.20) 1.00 (.08) 2.00 (.08)

�22 1.02 (.28) 1.05 (.32) 1.00 (.18) 1.02 (.22) 2.00 (.09) 1.00 (.08)

�32 2.01 (.12) 1.99 (.14) 2.01 (.10) 2.00 (.11) 1.00 (.05) 2.00 (.05)

Var(U1) .98 (.21) 1.01 (.16) .98 (.15) 1.00 (.13) .97 (.09) 1.00 (.06)

Var(U2) .94 (.21) .99 (.20) .96 (.15) 1.00 (.15) .97 (.08) 1.00 (.07)

Var(U3) .94 (.22) 1.00 (.20) .96 (.15) 1.00 (.15) .98 (.09) 1.00 (.07)
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Simulations: Lots of factors

L = K = 5 L = K = 10

N 500 1000 5000 500 1000 5000

�11 2.06 (.41) 2.03 (.28) 2.01 (.13) 1.85 (.72) 1.97 (.56) 2.00 (.27)

�21 .95 (.35) .98 (.25) .99 (.12) .89 (.52) .90 (.43) .98 (.22)

�31 .95 (.34) .98 (.24) 1.00 (.12) .88 (.53) .90 (.45) .98 (.23)

�41 .95 (.35) .98 (.24) .99 (.11) .88 (.53) .92 (.43) .98 (.22)

�51 .95 (.34) .98 (.24) .99 (.12) .88 (.53) .90 (.43) .98 (.22)

�61 .88 (.54) .91 (.43) .98 (.22)

�71 .89 (.53) .90 (.44) .98 (.22)

�81 .88 (.52) .90 (.44) .98 (.23)

�91 .87 (.53) .91 (.44) .98 (.23)

�10;1 .88 (.52) .89 (.44) .98 (.22)

Var(U1) .58 (.56) .81 (.44) .95 (.20) .40 (.55) .49 (.53) .88 (.28)
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Simulations: Rank test based on 
Y , Size

The true value of � is

0BB@ 2 2

2 1

1 2

1CCA. Factors are normal mixtures. Errors are normal. N = 1000.

� - 2/5 4/7 20/23 40/43 400/403

�4(�) -6/5 1/2 1 5 10 100

� =.10 .90 .73 .82 .87 .85 .62

� =.20 .79 .57 .67 .74 .69 .43

� =.30 .67 .44 .54 .61 .57 .29

� =.40 .58 .33 .42 .50 .45 .19

� =.50 .47 .24 .32 .40 .35 .11

� =.60 .37 .16 .22 .32 .26 .05

� =.70 .27 .10 .13 .24 .19 .02

� =.80 .20 .05 .08 .15 .11 .01

� =.90 .10 .02 .04 .06 .04 .00
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Simulations: Rank test for K � L, Size

The true value of � is

0BB@ 2 2

2 1

1 2

1CCA. Log-normal factors. Standard normal errors. N = 1000.

Matrix 
Y
P

`<mw`m
Y (`;m) �Y

� =.10 .56 .87 .90

� =.20 .34 .71 .79

� =.30 .20 .56 .69

� =.40 .12 .44 .58

� =.50 .08 .32 .48

� =.60 .05 .21 .38

� =.70 .02 .13 .29

� =.80 .01 .06 .16

� =.90 .00 .01 .07
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Simulations: Rank test for K � L, Power

Tests K = 2 against K = 3. True value is � =

0BB@ 2 1 1

1 2 1

1 1 2

1CCA. Factors are normal mixtures. Errors are
normal. N = 1000.

�4(�) �6=5 1=2 1 5 10 100

� =.10 .99 .81 .81 1.00 1.00 .89

� =.20 .99 .63 .66 1.00 1.00 .80

� =.30 .98 .68 .51 .99 1.00 .72

� =.40 .97 .36 .39 .99 1.00 .64

� =.50 .96 .26 .29 .98 .99 .56

� =.60 .94 .18 .22 .96 .98 .47

� =.70 .93 .11 .16 .92 .96 .35

� =.80 .89 .06 .10 .86 .90 .22

� =.90 .83 .02 .04 .72 .77 .12
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Empirical application: Stocks

Fama and French (1993) identify three factors explaining a large proportion of the variance of time-

series of U.S. excess stock returns, Y` (t) = R`(t)�RF (t), ` = 1; :::; L.

In addition to the market return (RM (t)�RF (t), where RF (t) is the risk-free return), which is the
unique factor of the CAPM model, they identify two additional factors:

� SMB(t), or \small minus big", is the di�erence between the average of the returns on two stock
portfolios: one containing �rms with market value (price time number of shares) less than the

median, and one containing �rms with size above the median.

� HML(t), or \high minus low", is the di�erence between the average of the returns on two stock
portfolios: one gathering �rms with book-to-market ratio (book value of capital divided by market

value, denoted B=M) less that the 30th percentile and another one containing all �rms with B=M

ratio above the 70th percentile.

Fama and French show that these three factors explain monthly data on 25 portfolios formed by

intersecting size and book-to-market quintiles remarkably well.
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Size B/M ratio Factor 1 Factor 2 Factor 3 Error variance R2

Small Low .57 .79 -.37 .055 .95

2 .50 .67 -.23 .054 .93

3 .45 .56 -.14 .035 .93

4 .41 .52 -.09 .029 .94

High .43 .52 -.05 .028 .94

2 Low .70 .72 -.50 .102 .92

2 .59 .58 -.26 .049 .94

3 .54 .51 -.17 .066 .89

4 .53 .47 -.10 .079 .84

High .61 .51 -.08 .118 .82

3 Low .71 .61 -.58 .122 .90

2 .62 .47 -.30 .050 .93

3 .58 .40 -.15 .061 .88

4 .60 .37 -.10 .080 .84

High .70 .40 -.06 .095 .85

4 Low .74 .46 -.61 .094 .92

2 .70 .33 -.28 .041 .94

3 .69 .29 -.16 .038 .94

4 .68 .28 -.08 .086 .84

High .77 .30 -.06 .146 .79

Big Low .83 .14 -.52 .125 .87

2 .84 .08 -.33 .034 .96

3 .81 .08 -.23 .077 .89

4 .80 .07 -.12 .061 .91

High .83 .13 -.12 .256 .64

% Variance .544 .258 .099 .099

Skewness -1.21 -.76 -.56 -

Kurtosis 30 28 77 -
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X1 X2 X3

RM �RF .84 .24 -.41

SMB -.49 .85 -.09

HML -.11 .23 .90

X1 X2 X3

RM �RF .97 -.01 -.09

SMB -.01 .98 -.06

HML .09 .07 .93

a) Fama French b) Independent Fama French
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Conclusion

Nonparametric estimation of factor densities. Done in a companion paper.

Allows to predict factors Xkt, k = 1; :::; K; t = 1; :::; L:

E [g(X)jY = y] =
R
g(x)fU(y � �x)fX(x)dxR
fU(y � �x)fX(x)dx

:

In the future, we plan to pursue our research in the following directions.

� First, there is plenty room for e�ciency improvements of quasi-JADE and of the test for the

number of factors.

� A second direction of research concerns the extension of existing algorithms to deal with more
factors than measurements (K > L). In the ICA literature, this case is refered to as overcomplete

ICA.

� Address the issue of dynamics (MA factors and errors).

� Nonlinearities.
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