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Abstract

This paper considers the problem of inference for partially identified econo-

metric models. The class of models studied are defined by a population objective

function Q(θ, P ) for θ ∈ Θ. The second argument indicates the dependence of the

objective function on P , the distribution of the observed data. Unlike the classical

extremum estimation framework, it is not assumed that Q(θ, P ) has a unique min-

imizer in the parameter space Θ. The goal may be either to draw inferences about

some unknown point in the set of minimizers of the population objective function

or to draw inferences about the set of minimizers itself. In this paper, the object

of interest is some unknown point θ ∈ Θ0(P ), where Θ0(P ) = arg minθ∈Θ Q(θ, P ),

and so we seek random sets that contain each θ ∈ Θ0(P ) with at least some pre-

specified probability asymptotically. We also consider situations where the object

of interest is the image of some point θ ∈ Θ0(P ) under a known function. Compu-

tationally intensive, yet feasible procedures for constructing random sets satisfying

the desired coverage property under weak assumptions are provided. We also pro-

vide conditions under which the confidence regions are uniformly consistent in

level. To do this, we first derive new uniformity results about subsampling that

are of independent interest.
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1 Introduction

This paper provides computationally intensive, yet feasible methods for inference for a

large class of partially identified econometric models. A partially identified model is

a model in which the parameter of interest is not uniquely defined by the distribution

of the observed data. Such models arise naturally in many parts of empirical work in

economics. The class of models considered is defined by a population objective function

Q(θ, P ) for θ ∈ Θ. The second argument indicates the dependence of the objective

function on P , the distribution of the observed data. Unlike the classical extremum

estimation framework, it is not assumed that Q(θ, P ) has a unique minimizer in the

parameter space Θ. The goal may be either to draw inferences about some unknown

point in the set of minimizers of the population objective function or to draw inferences

about the set of minimizers itself. In this paper, we consider the first of these two goals.

The object of interest is some unknown point θ ∈ Θ0(P ), where

Θ0(P ) = arg min
θ∈Θ

Q(θ, P ) . (1)

We henceforth refer to any θ ∈ Θ0(P ) as an identifiable parameter and Θ0(P ) as the

identified set. In this instance, given i.i.d. data Xi, i = 1, . . . , n, generated from P , we

seek random sets Cn = Cn(X1, . . . , Xn) that contain each identifiable parameter with at

least some prespecified probability asymptotically. That is, for all θ ∈ Θ0(P ) we have

lim inf
n→∞

P{θ ∈ Cn} ≥ 1− α . (2)

We term such sets as confidence regions for identifiable parameters that are pointwise

consistent in level. This terminology reflects the fact that the confidence regions are

valid only for a fixed probability distribution P and helps distinguish this coverage

requirement from others discussed later in which we will demand that the confidence

regions are valid uniformly in P . We construct random sets Cn satisfying (2) under weak

assumptions on P . These assumptions are formulated in terms of restrictions on the

asymptotic behavior of the estimate of the population objective function, Q̂n(θ). Most

often Q̂n(θ) = Q(θ, P̂n) for some estimate P̂n of P . Our construction is based on the

usual duality between confidence regions and hypothesis testing: we invert tests of each

of the null hypotheses Hθ : θ ∈ Θ0(P ) for θ ∈ Θ that control the usual probability

of a Type 1 error at level α. Typically, Θ is a subset of Euclidean space and so the
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number of null hypotheses may be uncountably infinite. The idea of inverting tests

using computer-intensive methods can be traced to DiCiccio and Romano (1990).

In the second goal, the object of interest is the identified set, Θ0(P ), itself. In this

case, given i.i.d. data Xi, i = 1, . . . , n, generated from P , we seek instead random sets

Cn = Cn(X1, . . . , Xn) that contain the identified set with at least some prespecified prob-

ability asymptotically. The problem of constructing such sets is treated in a companion

paper Romano and Shaikh (2006).

Our results on confidence regions for identifiable parameters build upon the earlier

work of Chernozhukov et al. (2004), who were the first to consider inference for the same

class of partially identified models. We show that our construction produces smaller con-

fidence regions than theirs without violating the desired coverage property. In fact, the

confidence regions described in this paper may even be smaller in a first-order asymptotic

sense.

Our analysis also extends the work of Imbens and Manski (2004), who analyze the

special case of the above class of partially identified models in which the identified set

is an interval whose upper and lower endpoints are means or at least behave like means

asymptotically. The authors discuss different definitions for confidence regions in the

context of this setting and argue forcefully that it may be desirable to demand validity

of confidence regions not just for each fixed probability distribution P satisfying weak

assumptions, but rather uniformly over all P in some large class of distributions P.

Confidence regions that fail to satisfy this requirement have the feature that for every

sample size n, however large, there is some probability distribution P ∈ P for which the

coverage probability of the confidence region under P is not close to the prescribed level.

Researchers may therefore feel that inferences made on the basis of asymptotic approx-

imations are more reliable if the confidence regions exhibit good uniform behavior. Of

course, such a requirement will typically require restrictions on P beyond those required

for pointwise consistency in level. Bahadur and Savage (1956), for example, show that

if P is suitably large, then there exists no confidence interval for the mean with finite

length and good uniform behavior. Romano (2004) extends this non-existence result to

a number of other problems. We provide restrictions on P under which both types of

confidence regions suggested in this paper have good uniform behavior. Concretely, we
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provide conditions under which Cn satisfies

lim inf
n→∞

inf
θ∈Θ

inf
P∈P:θ∈Θ0(P )

P{θ ∈ Cn} ≥ 1− α . (3)

By analogy with our earlier terminology, sets satisfying (3) are referred to as confidence

regions for identifiable parameters that are uniformly consistent in level. Note that if

the identified set Θ0(P ) consists of a single point θ0(P ), then this definition reduces to

the usual definition of confidence regions that are uniformly consistent in level; that is,

lim inf
n→∞

inf
P∈P

P{θ0(P ) ∈ Cn} ≥ 1− α .

In order to provide conditions under which these coverage properties hold, we first de-

rive more general conditions under which confidence regions for a parameter constructed

using subsampling are uniformly consistent in level. These results on subsampling are

of interest independent of their role in constructing sets satisfying (3).

We have so far assumed that the object of interest is either an identifiable parameter,

θ ∈ Θ0(P ). More generally, the object of interest may be the image of an identifiable

parameter under a known function. A typical example of such a function is the projection

of Rk onto one of the axes. We extend the above definitions of confidence regions to

this setting as follows. Consider a function f : Θ → Λ. Denote by Λ0(P ) the image of

Θ0(P ) under f ; that is,

Λ0(P ) = {f(θ) : θ ∈ Θ0(P )} . (4)

We refer to a set Cf
n as a confidence region for a function of identifiable parameters that

is pointwise consistent in level if for any λ ∈ Λ0(P ) we have that

lim inf
n→∞

P{λ ∈ Cf
n} ≥ 1− α . (5)

As before, we may also demand uniformly good behavior over a class of probability

distributions P by requiring that Cf
n satisfy

lim inf
n→∞

inf
λ∈Λ

inf
P∈P:λ∈Λ0(P )

P{λ ∈ Cf
n} ≥ 1− α . (6)

By analogy with our earlier terminology, sets satisfying (6) are referred to as confidence

regions for a function of identifiable parameters that are uniformly consistent in level.
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We adapt our constructions of confidence regions for identifiable parameters to provide

constructions of confidence sets satisfying these alternative coverage requirements.

Methods for drawing inferences in partially identified models have allowed economists

to solve many empirical problems that previously either were intractable or relied on

untenable assumptions to achieve identification. Manski (2003) has argued forcefully

against invoking such assumptions to make inferences in the context of missing outcome

data and treatment response, as it degrades the credibility of inferences made under those

assumptions. Another class of models that may only be partially identified is given by

game-theoretic models with multiple equilibria. When confronted with such models,

researchers often impose identification by assuming some sort of an ad hoc equilibrium

selection mechanism. More recently, the empirical literature has explored inferences

based on exploiting only those restrictions implied by equilibrium behavior that do not

depend on the particular equilibrium being played by the agents. These restrictions are

often defined by a system of moment inequalities, which is a special case of the class

of models considered in this paper. Cilberto and Tamer (2004) and Borzekowski and

Cohen (2005), for example, use this idea together with the techniques of Chernozhukov

et al. (2004) for inference in partially identified models to analyze an entry model and

a coordination game, respectively. Benkard et al. (2005) consider more generally the

problem of making inferences in dynamic models of imperfect competition, where, in the

absence of additional assumptions, the unknown parameters of the model are naturally

restricted to a set defined by moment inequalities. Andrews et al. (2004) and Pakes

et al. (2005) provide other economic applications of systems of moment inequalities, but

develop independent methods of inference for systems of moment inequalities distinct

from the methods of Chernozhukov et al. (2004). These methods are, however, more

conservative than those of Chernozhukov et al. (2004), and thus more conservative than

the methods developed in this paper as well.

The remainder of the paper is organized as follows. We begin in Section 2 by provid-

ing a number of concrete examples that fall within the class of models we are considering.

These examples not only serve as motivation, but will also be useful later for illustrating

our methodology. In Section 3, we analyze the problem of constructing confidence sets

that satisfy the coverage requirements (2) and (3). In order to do so, we first develop

some useful results about the coverage probability of confidence sets constructed using
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subsampling for a fixed distribution P and also uniformly over a class of distributions

P. We then extend this methodology to construct confidence regions satisfying (5) and

(6). Finally, we conclude and provide directions for future research in Section 4.

2 Some Motivating Examples

In this section, we provide motivation for our study of partially identified models by

describing several specific examples of such models. We will return to these examples

repeatedly in the sequel as illustrations of our methodology.

Example 2.1 (One-Sided Mean) Perhaps the simplest example of a partially identified

model is given by the following setup. Let Xi, i = 1, . . . , n, be an i.i.d. sequence of

random variables with distribution P on R. Denote by µ(P ) the mean of the distribution

P . The parameter of interest, θ0, is known to satisfy θ0 ≥ µ(P ). For example, θ0 might

be the mean of an unobservable random variable Zi with distribution Q on R that is

known to satisfy Zi ≥ Xi, and so µ(Q) ≥ µ(P ). The identified set is therefore given by

Θ0(P ) = {θ ∈ R : θ ≥ µ(P )}. We may characterize this set as the set of minimizers of

the population objective function

Q(θ, P ) = (µ(P )− θ)2
+ ,

where the notation (a)+ is used as shorthand for max{a, 0}. The sample analog of

Q(θ, P ) is given by Q̂n(θ) = (X̄n − θ)2
+.

Example 2.2 (Two-Sided Mean) A natural generalization of Example 2.1 is to consider

bivariate random variables. To this end, let (Xi, Yi), i = 1, . . . , n, be an i.i.d. sequence

of random variables with distribution P on R2. Let µX(P ) denote the mean of the first

component of the distribution P and µY (P ) the mean of the second component of the

distribution P . The parameter of interest, θ0, is known to satisfy µX(P ) ≤ θ0 ≤ µY (P ).

For example, θ0 might be the mean of another distribution Q on R that is known to

satisfy µX(P ) ≤ µ(Q) ≤ µY (P ). The identified set is therefore given by Θ0(P ) = {θ ∈
R : µX(P ) ≤ θ ≤ µY (P )}. This set may be characterized as the set of minimizers of

Q(θ, P ) = (µX(P )− θ)2
+ + (θ − µY (P ))2

+ .
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The sample analog of Q(θ, P ) is given by Q̂n(θ) = (X̄n − θ)2
+ + (θ − Ȳn)2

+

Remark 2.1 Let Wi ∈ [0, 1] and Di ∈ {0, 1}. For example, Wi may be the answer to

the question, “Do you vote Republican or Democrat?”, and Di may be the indicator

variable for whether the person asked chooses to answer the question. Suppose the

researcher observes an i.i.d. sequence (WiDi, Di), i = 1, . . . , n, with distribution P ;

i.e., Wi is observed if and only if Di = 1. The parameter of interest, θ0 = E{Wi},
is not determined by the distribution of the observed data, but the researcher can say

with certainty that θ0 satisfies EP{WiDi} ≤ θ0 ≤ EP{WiDi + 1 −Di}. By identifying

Xi = WiDi and Yi = WiDi + 1 − Di, this example can be seen to be a special case of

Example 2.2. This example is analyzed in detail by Imbens and Manski (2004).

Example 2.3 (Regression with Interval Outcomes) The following example allows for in-

ference in a linear regression model in which the dependent variable is interval-censored.

Let (Xi, Y1,i, Y2,i, Y
∗
i ), i = 1, . . . , n, be an i.i.d. sequence of random variables with dis-

tribution Q on Rk × R × R × R. The parameter of interest, θ0, is known to satisfy

EQ{Y ∗
i |Xi} = X ′

iθ0, but Y ∗
i is unobserved, which precludes conventional estimation of

θ0. Let P denote the distribution of the observed random variables (Xi, Y1,i, Y2,i). The

random variables (Y1,i, Y2,i) are known to satisfy Y1,i ≤ Y ∗
i ≤ Y2,i with probability 1

under Q. Thus, θ0 ∈ Θ0(P ) = {θ ∈ Rk : EP{Y1,i|Xi} ≤ X ′
iθ ≤ EP{Y2,i|Xi} P−a.s.}.

This set may be characterized as the set of minimizers of

Q(θ, P ) = EP{(EP{Y1,i|Xi} −X ′
iθ)

2
+ + (X ′

iθ − EP{Y2,i|Xi})2
+} .

The sample analog Q̂n(θ) of Q(θ, P ) is given by replacing expectations with appropriately

defined estimators, the nature of which may depend on further assumptions about P .

Manski and Tamer (2002) characterize the identified set in this setting and also consider

the case where Y ∗
i is observed, but Xi is interval-censored.

Remark 2.2 A Tobit-like model is a special case of the previous example if we suppose

further that Y2,i = Y ∗
i and Y1,i = Y ∗

i if Y ∗
i > 0, and Y2,i = 0 and Y1,i = −∞ (or

some large negative number if there is a plausible lower bound on Y ∗
i ) if Y ∗

i ≤ 0. It is

worthwhile to note that conventional approaches to inference for such a model, while
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enforcing identification, rely on the much stronger assumption that εi = Y ∗
i − X ′

iθ0 is

independent of Xi. By allowing for only partial identification, we will be able to draw

inferences under much weaker assumptions.

Example 2.4 (Moment Inequalities) Consider the following generalization of Examples

2.1 and 2.2. Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with distribu-

tion P on Rk. For j = 1, . . . ,m, let gj(x, θ) be a real-valued function on Rk ×Rl. The

identified set is assumed to be Θ0(P ) = {θ ∈ Rl : EP{gj(Xi, θ)} ≤ 0 ∀j s.t. 1 ≤ j ≤ m}.
This set may be characterized as the set of minimizers of

Q(θ, P ) =
∑

1≤j≤m

(EP{gj(Xi, θ)})2
+ ,

or equivalently as {θ ∈ Θ : Q(θ, P ) = 0}. The sample analog of Q(θ, P ) is given by

Q̂n(θ) =
∑

1≤j≤m( 1
n

∑
1≤i≤n gj(Xi, θ))

2
+. This choice of Q(θ, P ) is especially noteworthy

because it is used by Cilberto and Tamer (2004), Benkard et al. (2005) and Borzekowski

and Cohen (2005) in their empirical applications. Since any equality restriction may

be thought of as two inequality restrictions, this example may also be viewed as a

generalization of the method of moments to allow for equality and inequality restrictions

on the moments, rather than just equality restrictions.

Remark 2.3 A prominent example of an econometric model which gives rise to moment

inequalities is an entry model. See, for example, Andrews et al. (2004) or Cilberto

and Tamer (2004) for a detailed description of such models and a derivation of the

inequalities. Briefly, consider an entry model with two firms and let Xi be the indicator

for the event “firm 1 enters”. Because of the multiplicity of Nash equilibria, the model

only gives upper and lower bounds, L(θ) and U(θ), on the probability of this event as a

function of the unknown parameter, θ, of the econometric model. It is therefore natural

to use the functions

g1(Xi, θ) = L(θ)−Xi

g2(Xi, θ) = Xi − U(θ)

as a basis for inference in such a model.
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3 Confidence Regions for Identifiable Parameters

In this section, we consider the problem of constructing confidence regions for identifiable

parameters. We begin in Section 3.1 with a general result about subsampling that will

be used frequently throughout the remainder of the paper. For the sake of continuity,

the proof of the result, which is lengthy, is deferred to the appendix. In Section 3.2, we

then treat the construction of sets satisfying (2), before turning our attention in Section

3.3 to the problem of constructing sets satisfying (3). In Section 3.4, we generalize these

constructions to confidence regions for functions of identifiable parameters.

3.1 A Useful Result about Subsampling

The following theorem describes conditions under which confidence sets constructed

using subsampling are asymptotically valid for a fixed P as well as uniformly over P.

The conditions for a fixed P are distinct from those described in Politis et al. (1999)

and can accomodate certain degenerate situations not covered by the results presented

there. As we will see below, this feature of the conditions will be essential for the types

of problems we are considering.

Theorem 3.1 Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with dis-

tribution P . Let ϑ(P ) be a real-valued parameter and let ϑ̂n be some estimator of ϑ(P ).

Denote by Jn(·, P ) the distribution of the root τn(ϑ̂n − ϑ(P )), where τn is a sequence of

known constants. Let b = bn < n be a sequence of positive integers tending to infinity,

but satisfying b/n → 0. Let Nn =
(

n
b

)
and

Ln(x) =
1

Nn

∑
1≤i≤Nn

I{τb(ϑ̂n,b,i − ϑ(P )) ≤ x} , (7)

where ϑ̂n,b,i denotes the estimate ϑ̂n evaluated at the ith subset of data of size b. Finally,

let L−1
n (1 − α) = inf{x ∈ R : Ln(x) ≥ 1 − α}. Then, for α ∈ (0, 1), the following

statements are true:

(i) If lim supn→∞ supx∈R{Jb(x, P )− Jn(x, P )} ≤ 0, then

lim inf
n→∞

P{τn(ϑ̂n − ϑ(P )) ≤ L−1
n (1− α)} ≥ 1− α .
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(ii) If lim supn→∞ supx∈R{Jn(x, P )− Jb(x, P )} ≤ 0, then

lim inf
n→∞

P{τn(ϑ̂n − ϑ(P )) ≥ L−1
n (α)} ≥ 1− α .

(iii) If limn→∞ supx∈R |Jb(x, P )− Jn(x, P )| = 0, then

lim inf
n→∞

P{L−1
n (

α

2
) ≤ τn(ϑ̂n − ϑ(P )) ≤ L−1

n (1− α

2
)} ≥ 1− α .

Morever, we have that:

(iv) If lim supn→∞ supP∈P supx∈R{Jb(x, P )− Jn(x, P )} ≤ 0, then

lim inf
n→∞

inf
P∈P

P{τn(ϑ̂n − ϑ(P )) ≤ L−1
n (1− α)} ≥ 1− α .

(v) If lim supn→∞ supP∈P supx∈R{Jn(x, P )− Jb(x, P )} ≤ 0, then

lim inf
n→∞

inf
P∈P

P{τn(ϑ̂n − ϑ(P )) ≥ L−1
n (α)} ≥ 1− α .

(vi) If limn→∞ supP∈P supx∈R |Jb(x, P )− Jn(x, P )| = 0, then

lim inf
n→∞

inf
P∈P

P{L−1
n (

α

2
) ≤ τn(ϑ̂n − ϑ(P )) ≤ L−1

n (1− α

2
)} ≥ 1− α .

Proof: See appendix.

Remark 3.1 The subsampling distribution Ln(x) defined by (7) differs from the typical

definition given in Politis et al. (1999) in that it centers about the true value of the

parameter ϑ(P ) instead of its estimate ϑ̂n. Strictly speaking, it is therefore not possible

to compute Ln(x) as it is defined above. We may, however, compute Ln(x) under the

null hypothesis that ϑ(P ) equals a particular value. For our purposes below, this will

suffice.

3.2 Pointwise Consistency in Level

We assume in the remainder of the paper that infθ∈Θ Q(θ, P ) = 0. Note that this

restriction is without loss of generality, as it can always be enforced simply by subtracting

the quantity infθ∈Θ Q(θ, P ) from the objective function whenever infθ∈Θ Q(θ, P ) exists.
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Our construction exploits the well-known duality between 1 − α confidence regions

and tests of the individual null hypotheses

Hθ : Q(θ, P ) = 0 for θ ∈ Θ (8)

that control the usual probability of a Type 1 error at level α. The hypotheses Hθ are

one-sided in the sense that the alternative hypotheses are understood to be

Kθ : Q(θ, P ) > 0 for θ ∈ Θ .

Typically, Θ will be a subset of Euclidean space, in which case there may be an uncount-

ably infinite number of hypotheses in this family. For each null hypothesis Hθ, a test

statistic is required such that large values of the test statistic provide evidence against

the null hypothesis. We will use the statistic anQ̂n(θ) for some sequence an → ∞ for

this purpose.

The construction of critical values for these tests will be based on subsampling.

In order to define the critical values precisely, some further notation is required. Let

b = bn < n be a sequence of positive integers tending to infinity, but satisfying b/n → 0.

Let Nn =
(

n
b

)
and let Q̂n,b,i(θ) denote the statistic Q̂n(θ) evaluated at the ith subset of

data of size b from the n observations. For α ∈ (0, 1), define

d̂n(θ, 1− α) = inf{x :
1

Nn

∑
1≤i≤Nn

I{abQ̂n,b,i(θ) ≤ x} ≥ 1− α} . (9)

We will test each null hypothesis Hθ by comparing the test statistic anQ̂n(θ) with the

critical value d̂n(θ, 1−α). The set of θ values corresponding to the accepted hypotheses

from this procedure will form Cn, i.e.,

Cn = {θ ∈ Θ : anQ̂n(θ) ≤ d̂n(θ, 1− α)} . (10)

We now provide conditions under which Cn defined by (10) satisfies the desired coverage

property (2).

Theorem 3.2 Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with dis-

tribution P . Denote by Jn(·, θ, P ) the distribution of an(Q̂n(θ)−Q(θ, P )). Suppose that

for every θ ∈ Θ0(P )

lim sup
n→∞

sup
x∈R

{Jb(x, θ, P )− Jn(x, θ, P )} ≤ 0 . (11)

Then, Cn defined by (10) satisfies (2).

12



Proof: Fix θ ∈ Θ0(P ). By Theorem 3.1(i), we have immediately that

lim inf
n→∞

P{anQ̂n(θ) ≤ d̂n(θ, 1− α)} ≥ 1− α .

Thus, by the definition (10), it follows that (2) holds.

Remark 3.2 Because
(

n
b

)
may be large, it is often more practical to use the following

approximation to (9). Let Bn be a positive sequence of numbers tending to ∞ as n →∞
and let I1, . . . , IBn be chosen randomly with or without replacement from the numbers

1, . . . , Nn. Then, it follows from Corollary 2.4.1 of Politis et al. (1999) that one may

approximate (9) by

inf{x :
1

Bn

∑
1≤i≤Bn

I{abQ̂n,b,Ii
(θ) ≤ x} ≥ 1− α}

without affecting the conclusions of Theorem 3.2.

We now revisit each of the examples described in Section 2 and provide conditions

under which the hypothesis (11) of Theorem 3.2 holds. It follows that for each of these

examples Cn defined by (10) satisfies (2).

Example 3.1 (One-Sided Mean) Recall the setup of Example 2.1. Let an = n and

suppose P is such that the variance σ2(P ) exists. We will verify that the required

condition (11) holds for any such P . Consider θ ∈ Θ0(P ). We may assume without

loss of generality that µ(P ) = 0. First note that because Q̂n(θ) ≥ 0, we may restrict

attention to x ≥ 0 in (11). There are two cases to consider: θ > 0 and θ = 0. In the

former case, we have for any ε > 0 that X̄n − θ < ε − θ with probability approaching

one. By choosing ε sufficiently small, we therefore have that an(Q̂n(θ) − Q(θ, P )) =

n(X̄n − θ)2
+ = 0 with probability approaching one. Hence, (11) holds trivially. In the

latter case, an(Q̂n(θ)−Q(θ, P )) = n(X̄n)2
+. Thus, for x ≥ 0,

Jn(x, θ, P ) = P{n(X̄n)2
+ ≤ x} = P{

√
nX̄n ≤

√
x} .

Since
√

nX̄n
L→ Φσ(P ), where Φσ(P ) is the distribution of a mean-zero normal random

variable with variance σ2(P ), Polya’s Theorem implies that

sup
x∈R

|P{
√

nX̄n ≤ x} − Φσ(P )(x)| → 0 .

The desired condition (11) now follows from an appeal to the triangle inequality.
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Example 3.2 (Two-Sided Mean) Recall the setup of Example 2.2. Let an = n and

suppose P is such that the variances σ2
X(P ) and σ2

Y (P ) exist and µX(P ) ≤ µY (P ).

Denote by σX,Y (P ) the covariance of Xi and Yi under P . We will verify that the required

condition (11) holds for any such P . Consider θ ∈ Θ0(P ). First note, as before, that

because Q̂n(θ) ≥ 0, we may restrict attention to x ≥ 0 in (11). There are two cases to

consider: either µX(P ) < µY (P ) or µX(P ) = µY (P ).

If µX(P ) < µY (P ), then we must consider the case in which θ ∈ (µX(P ), µY (P )) and

the case in which θ ∈ {µX(P ), µY (P )} separately. In the former case, it is easy to see

that an(Q̂n(θ)−Q(θ, P )) = n(X̄n − θ)2
+ + n(θ− Ȳn)2

+ = 0 with probability approaching

one. Hence, (11) holds trivially. In the latter case, we may assume without loss of

generality that θ = µX(P ) and µX(P ) = 0; the case in which θ = µY (P ) is symmetric.

In this case, an(Q̂n(θ) − Q(θ, P )) = n(X̄n)2
+ + n(−Ȳn)2

+. Because µY (P ) > 0, we have

that with probability tending to 1, an(Q̂n(θ)−Q(θ, P )) = n(X̄n)2
+. The desired condition

(11) now follows from the reasoning given in Example 3.1.

If µX(P ) = µY (P ), then we may assume without loss of generality that this common

value is 0. Then, an(Q̂n(θ)−Q(θ, P )) = n(X̄n)2
+ + n(−Ȳn)2

+. Thus, for x ≥ 0,

Jn(x, θ, P ) = P{n(X̄n)2
+ + n(−Ȳn)2

+ ≤ x} = P{(
√

nX̄n,−
√

nȲn)′ ∈ Sx} ,

where Sx is the appropriate convex set. Note that

(
√

nX̄n,−
√

nȲn)′
L→ ΦσX(P ),σY (P ),−σX,Y (P ) ,

where ΦσX(P ),σY (P ),−σX,Y (P ) is a mean-zero bivariate normal distribution with variances

σ2
X(P ) and σ2

Y (P ) and covariance −σX,Y (P ). It follows from Theorem 2.11 of Bhat-

tacharya and Rao (1976) that

sup
S∈S

|P{(
√

nX̄n,−
√

nȲn)′ ∈ S} − ΦσX(P ),σY (P ),−σX,Y (P )(S)| → 0 ,

where S is the set of all convex subsets of R2. Hence, the desired condition (11) again

follows from an appeal to the triangle inequality.

Example 3.3 (Regression with Interval Outcomes) Recall the setup of Example 2.3.

Let an = n and let {x1, . . . , xJ} be a set of vectors in Rk whose span is of dimension k.
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Suppose P is such that (i) suppP (Xi) = {x1, . . . , xJ} and (ii) the variances of Y1 and Y2,

σ2
1(P ) and σ2

2(P ), exist. For l ∈ {1, 2} and j ∈ {1, . . . , J}, let τl(xj) = EP{Yli|Xi = xj}
and

τ̂l(xj) =
1

n(xj)

∑
1≤i≤n:Xi=xj

Yli ,

where n(xj) = |{1 ≤ i ≤ n : Xi = xj}|. Let

Q̂n(θ) =
∑

1≤j≤J

n(xj)

n
{(τ̂1(xj)− x′jθ)

2
+ + (x′jθ − τ̂2(xj))

2
+} .

Note that it follows from the above assumptions on P that the vector whose com-

ponents are given by
√

n(τ̂l(xj)− τl(xj)) for j = 1, . . . , J converges in distribution to a

multivariate normal distribution.

We will now verify that the required condition (11) holds for this setup. Consider

θ ∈ Θ0(P ). First note, as before, that because Q̂n(θ) ≥ 0, we may restrict attention to

x ≥ 0 in (11). There are two cases to consider: either θ ∈ int(Θ0(P )) or θ ∈ ∂Θ0(P ). In

the former case, τ1(xj) < x′jθ < τ2(xj) for all j. Thus, it is easy to see that anQ̂n(θ) = 0

with probability tending to 1. Hence, (11) holds trivially. In the latter case, let Il denote

the set of j indices such that τl(xj) = x′jθ. Note that at most one of I1 or I2 may be

empty. Then, with probability approaching one, we have that

anQ̂n(θ) =
∑
j∈I1

n(xj)

n
(
√

n(τ̂1(xj)− x′jθ))
2
+ +

∑
j∈I2

n(xj)

n
(
√

n(x′jθ − τ̂2(xj)))
2
+ .

Let Ŵn(θ) denote the vector whose components are given by
√

n(τ̂1(xj)−x′jθ) for j ∈ I1

and
√

n(x′jθ − τ̂2(xj)) for j ∈ I2 and let W (θ) denote the limiting multivariate normal

distribution of Ŵn(θ). For x ≥ 0, we have that

Jn(x, θ, P ) = P{Ŵn(θ) ∈ Ŝx} ,

where Ŝx is the appropriate (random) convex set. It follows from Theorem 2.11 of

Bhattacharya and Rao (1976) that

sup
S∈S

|P{Ŵn(θ) ∈ S} − P{W (θ) ∈ S}| → 0 ,

where S is the set of all convex subsets of R|I1|+|I2|. Hence, the desired condition (11)

again follows from an appeal to the triangle inequality.
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Example 3.4 (Moment Inequalities) Recall the setup of Example 2.4. Let an = n

and suppose P is such that the variance of the vector whose components are given by

gj(Xi, θ) for j = 1, . . . ,m exists for all θ ∈ Θ. It follows from this assumption that the

vector whose components are given by

1√
n

∑
1≤i≤n

(gj(Xi, θ)− EP{gj(Xi, θ)})

for j = 1, . . . ,m converges in distribution to a multivariate normal random variable for

each θ ∈ Θ. We will verify that the required condition (11) holds for any such P .

Consider θ ∈ Θ0(P ). There are two cases to consider: either θ ∈ int(Θ0(P )) or

θ ∈ ∂Θ0(P ). In the former case, EP{gj(Xi, θ)} < 0 for all j, so anQ̂n(θ) = 0 with

probability tending to 1. Hence, (11) holds trivially. In the latter case, let I denote the

set of j indices such that EP{gj(Xi, θ)} = 0. Note that I must be non-empty. Then,

with probability approaching one, we have that

anQ̂n(θ) =
∑
j∈I

(
1√
n

∑
1≤i≤n

gj(Xi, θ))
2
+ .

Let Ŵn(θ) denote the vector whose components are given by

1√
n

∑
1≤i≤n

gj(Xi, θ)

for j ∈ I and let W (θ) denote the limiting multivariate normal distribution. For x ≥ 0,

we have that

Jn(x, θ, P ) = P{Ŵn(θ) ∈ Sx} ,

where Sx is the appropriate convex set. It follows from Theorem 2.11 of Bhattacharya

and Rao (1976) that

sup
S∈S

|P{Ŵn(θ) ∈ S} − P{W (θ) ∈ S}| → 0 ,

where S is the set of all convex subsets of R|I|. Hence, the desired condition (11) again

follows from an appeal to the triangle inequality.

Remark 3.3 In each of the examples from Section 2, there are many other choices of

Q(θ, P ) sharing the feature that

Θ0(P ) = arg min
θ∈Θ

Q(θ, P ) . (12)
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Consider Example 2.4. Let g(x, θ) denote the vector whose components are given by

gj(x, θ), j = 1, . . . ,m and extend the definition of (·)+ on the real line to vectors in the

natural way. It is easy to see that

Q(θ, P ) = (EP{g(X, θ)})′+W (θ)(EP{g(X, θ))+} ,

where W (θ) is a positive definite matrix for each θ ∈ Θ also satisfies (12) for this

example. The objective function given by

Q(θ, P ) = max
1≤j≤m

wj(θ)EP{gj(X, θ)} ,

where wj(θ), j = 1, . . . ,m are positive for each θ ∈ Θ, also satisfies (12) for this example.

Each of these choices of Q(θ, P ) will lead to different test statistics anQ̂n(θ), which in

turn will lead to different tests of the individual null hypotheses in (8). Of course, more

powerful tests will reject more false hypotheses and thereby lead to smaller confidence

regions, so the choice of Q(θ, P ) is an important direction for future research.

Remark 3.4 If it were true that under the null hypothesis Hθ, the statistic anQ̂n(θ)

converged in distribution to a random variable that was continuous at its 1−α quantile,

then it would follow immediately from Theorem 2.2.1 of Politis et al. (1999) that Cn

defined by (10) satisfies (2). Unfortunately, in the examples from Section 2, this assertion

does not always hold. Indeed, in many instances, for θ ∈ int(Θ0(P )), it is true that

anQ̂n(θ) = 0 with probability tending to 1. For this reason, it is necessary to appeal to

Theorem 3.1 to establish the desired conclusions.

Remark 3.5 Chernozhukov et al. (2004) consider the problem of constructing confi-

dence regions Cn satisfying (2). Their construction relies upon an initial estimate of

Θ0(P ), which they obtain as Θ̂0,n = {θ ∈ Θ : Q̂n(θ) < εn} where εn is a positive se-

quence of constants tending to 0 slowly. Because of this rate restriction, they are able

to show that Θ̂0,n satisfies

P{Θ0(P ) ⊆ Θ̂0,n} → 1 .

They define their confidence region to be

Cn = {θ ∈ Θ : anQ̂n(θ) ≤ sup
θ∈Θ̂0,n

d̂n(θ, 1− α)} ,
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where d̂n(θ, 1 − α)} is given by (9). Of course, such a construction is clearly more

conservative than the one given by (10) whenever both are valid in the following sense.

Since Θ0(P ) ⊆ Θ̂0,n with probability tending to 1, we have for any θ′ ∈ Θ0(P ) that

d̂n(θ′, 1− α) ≤ sup
θ∈Θ0(P )

d̂n(θ, 1− α) ≤ sup
θ∈Θ̂0,n

d̂n(θ, 1− α) (13)

with probability tending to 1. Often, the first inequality in (13) will be strict for most

θ ∈ Θ0(P ). To illustrate this, recall the setup of Example 2.2. Suppose further that

µX(P ) < µY (P ) and σ2
X(P ) < σ2

Y (P ) < ∞. Then, for θ ∈ int(Θ0(P )), it follows from

Lemma 5.2 in the appendix that d̂n(θ, 1−α)
P→ 0. We also have that d̂n(µX(P ), 1−α)

P→
σ2

X(P )z2
1−α and d̂n(µY (P ), 1−α)

P→ σ2
Y (P )z2

1−α. It follows that with probability tending

to 1, d̂n(µX(P ), 1− α) < d̂n(µY (P ), 1− α), and so

sup
θ∈Θ0(P )

d̂n(θ, 1− α) = d̂n(µY (P ), 1− α) .

Therefore, the first inequality in (13) is strict with probability tending to 1 except when

θ′ = µY (P ). In fact, for any θ′ 6= µY (P ), the difference between the two critical values

is asymptotically bounded away from zero.

Remark 3.6 In certain applications, it may be of interest to test the null hypothesis

that there exists some point θ ∈ Θ for which Q(θ, P ) = 0. Such a test may be viewed as

a specification test of the model. One may test such a hypothesis by first constructing

a confidence region for identifiable parameters and then rejecting the hypothesis if the

confidence region is empty. To see this, note that under the null hypothesis, Θ0(P ) 6= ∅.
Thus, there is some θ′ ∈ Θ0(P ). Under the assumptions of Theorem 3.2, it must be the

case that

lim inf
n→∞

P{θ′ ∈ Cn} ≥ 1− α .

Thus, under the null hypothesis Cn will be nonempty with probability at least 1 − α

asymptotically.

Remark 3.7 Our construction of critical values for testing Hθ : Q(θ, P ) = 0 versus

Kθ : Q(θ, P ) > 0 has used subsampling. We now show by example that the bootstrap

may fail to approximate the distribution of the test statistic, anQ̂n(θ), under the null

hypothesis.
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To this end, recall the setup of Example 2.1. Let an = n and suppose that P =

N(0, 1). Note that Q(θ, P ) = 0 at θ = 0, so the null hypothesis is true when θ = 0.

Our argument follows the one given by Andrews (2000) to show that the bootstrap is

inconsistent when the parameter is on the boundary of the parameter space. Note that

anQ̂n(0) = (
√

nX̄n)2
+ ∼ (Z)2

+, where Z is a standard normal random variable. Denote

by X∗
i , i = 1, . . . , n an i.i.d. sequence of random variables with distribution P̂n given by

the empirical distribution of the original observations Xi, i = 1, . . . , n. Define

Q̂∗
n(θ) = (X̄∗

n − θ)2
+

and consider the event

Ac = {ω : lim inf
n→∞

√
nX̄n < −c} (14)

for c ∈ (0,∞). The Law of the Iterated Logarithm asserts that

lim sup
n→∞

√
nX̄n√

2 log log n
= 1 P−a.s. .

This in turn implies that

{
√

nX̄n >
√

2 log log n i.o.} P−a.s.

and by symmetry that

{
√

nX̄n < −
√

2 log log n i.o.} P−a.s.

It follows that P{Ac} = 1.

Now consider the bootstrap approximation to the distribution of anQ̂n(θ) at θ = 0,

which is given by

L(an(Q̂∗
n(0)− Q̂n(0))|Xi, i = 1, . . . , n) . (15)

This approximation mimics the hypothesis that Q(0, P ) = 0 by centering Q̂∗
n(0) about

Q̂n(0). For ω ∈ Ac, consider a subsequence nk of n ≥ 1 for which
√

nkX̄nk
(ω) < −c for

all k. For such a subsequence, we have, conditionally on Xi(ω), i = 1, . . . , n, that

nk(Q̂
∗
nk

(0)− Q̂nk
(0)(ω)) = (

√
nkX̄

∗
nk

)2
+

= (
√

nk(X̄
∗
nk
− X̄nk

(ω)) +
√

nkX̄nk
(ω))2

+

≤ (
√

nk(X̄
∗
nk
− X̄nk

(ω))− c)2
+

L→ (Z − c)2
+ ,
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where Z is again a standard normal random variable. The first equality and the inequal-

ity follow from the fact that
√

nkX̄nk
(ω) < −c < 0. It follows that the bootstrap fails

to approximate the distribution of anQ̂n(θ) at θ = 0.

It is worthwhile to consider the actual probability of a Type 1 error if the bootstrap

approximation above is used instead of subsampling. To this end, first note that the

probability of such an error is given by

P{anQ̂n(0) > ĉboot,n(1− α)} , (16)

where ĉboot,n(1−α) is the 1−α quantile of (15). Recall that anQ̂n(0) = (
√

nX̄n)2
+ ∼ (Z)2

+,

where Z is a standard normal random variable. Note that

an(Q̂∗
n(0)− Q̂n(0)) = (

√
n(X̄∗

n − X̄n) +
√

nX̄n)2
+ − (

√
nX̄n)2

+ .

Therefore, (15) coverges in distribution to

L((Z∗ + Z)2
+ − (Z)2

+|Z) , (17)

where Z∗ is a standard normal random variable distributed independently of Z. The

probability (16) is therefore asymptotically equal to

P{(Z)2
+ > c(1− α|Z)} ,

where c(1−α|Z) is the 1−α quantile of (17). Using this representation, we simulate the

asymptotic value of (16) and find that the probability of Type 1 error is controlled, but

too conservatively for practical purposes. In fact, with 2000 simulations, we estimate

that (16) is asymptotically equal to 0 to three significant digits for both α = .1 and

α = .05.

3.3 Uniform Consistency in Level

We now turn our attention to providing conditions under which Cn defined by (10)

satisfies (3). Recall from the discussion in the introduction that inferences made on the

basis of asymptotic arguments with confidence regions that are not uniformly consistent

in level may be very misleading in the sense that asymptotic approximations may be

poor for arbitrarily large sample sizes.
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Theorem 3.3 Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with dis-

tribution P . Denote by Jn(·, θ, P ) the distribution of an(Q̂n(θ) − Q(θ, P )). Suppose

that

lim sup
n→∞

sup
θ∈Θ

sup
P∈P:θ∈Θ0(P )

sup
x∈R

{Jb(x, θ, P )− Jn(x, θ, P )} ≤ 0 . (18)

Then, Cn defined by (10) satisfies (3).

Proof: By Theorem 3.1(iv), we have immediately that

lim inf
n→∞

inf
θ∈Θ

inf
P∈P:θ∈Θ0(P )

P{anQ̂n(θ) ≤ d̂n(θ, 1− α)} ≥ 1− α .

Thus, by the definition (10), it follows that (3) holds.

We now provide two applications of Theorem 3.3 to constructing confidence regions

satisfying the coverage requirement (3).

Example 3.5 (One-Sided Mean) Recall the setup of Example 2.1. We will now use

Theorem 3.3 to show that for this example Cn defined by (10) satisfies (3) for a large

class of distributions P. To this end, let an = n and let P be a set of distributions

satisfying

lim
λ→∞

sup
P∈P

EP

[
|X − µ(P )|2

σ2(P )
I

{
|X − µ(P )|

σ(P )
> λ

}]
= 0 . (19)

We will argue by contradiction that the required condition (18) holds. If the result were

false, then there would exist a subsequence nj and a corresponding sequence (θnj
, Pnj

) ∈
Θ×P such that µ(Pnj

) ≤ θnj
and

sup
x∈R

{Jbnj
(x, θnj

, Pnj
)− Jnj

(x, θnj
, Pnj

)} → δ (20)

for some δ > 0. Since anQ̂n(θnj
) ≥ 0, we may restrict attention to x ≥ 0. We may thus

rewrite (20) as

sup
x≥0

{Pnj
{(Zbnj

(Pnj
) + Tbnj

(θnj
, Pnj

))2
+ ≤ x} − Pnj

{(Znj
(Pnj

) + Tnj
(θnj

, Pnj
))2

+ ≤ x}} ,

where

Zm(P ) =
√

m(X̄m − µ(P ))

Tm(θ, P ) =
√

m(µ(P )− θ) .
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Since bnj
≤ nj and µ(Pnj

) ≤ θnj
, we have that Tbnj

(θnj
, Pnj

) ≥ Tnj
(θnj

, Pnj
). Thus, (20)

is bounded above by

sup
x≥0

{Pnj
{(Zbnj

(Pnj
) + Tnj

(θnj
, Pnj

))2
+ ≤ x} − Pnj

{(Znj
(Pnj

) + Tnj
(θnj

, Pnj
))2

+ ≤ x}} .

By redefining x appropriately and absorbing the term Tnj
(θnj

, Pnj
) into x, it follows that

sup
x∈R

{Pnj
{Zbnj

(Pnj
) ≤ x} − Pnj

{Znj
(Pnj

) ≤ x}} 6→ 0 .

By Lemma 11.4.1 of Lehmann and Romano (2005), this yields the desired contradiction.

Example 3.6 (Two-Sided Mean) Recall the setup of Example 2.2. As in Example 3.5,

we may use Theorem 3.3 to show that for this example Cn defined by (10) satisfies (3)

for a large class of distributions P. To this end, let an = n, let P be a set of bivariate

distributions such that the marginal distributions satisfy (19) and µX(P ) ≤ µY (P ). As

before, we will argue by contradiction that the required condition (18) holds, but we will

require the following result, which generalizes Lemma 11.4.1 of Lehmann and Romano

(2005), in order to do so. Again, for the sake of continuity, the proof of the result is

found in the appendix.

Lemma 3.1 Let P be a set of bivariate distributions such that the marginal distributions

satisfy (19). Let (Xi, Yi), i = 1, . . . , n, be an i.i.d. sequence of random variables with

distribution P ∈ P and denote by ΦσX(P ),σY (P ),ρ(P )(·) the probability distribution of a

bivariate normal random variable with mean 0, standard deviations σX(P ) and σY (P ),

and correlation ρ(P ). Then,

sup
P∈P

sup
S∈S

|P{(
√

n(X̄n − µX(P )),
√

n(Ȳn − µY (P )))′ ∈ S} − ΦσX(P ),σY (P ),ρ(P )(S)}

converges to 0, where

S = {S ⊆ R2 : S convex and Φ1,1,1(∂S) = Φ1,1,−1(∂S) = 0} . (21)

Proof: See appendix.
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We now return to verifying (18). If the result were false, then there would exist a

subsequence nj and a corresponding sequence (θnj
, Pnj

) ∈ Θ × P such that µX(Pnj
) ≤

θnj
≤ µY (Pnj

) and

sup
x∈R

{Jbnj
(x, θnj

, Pnj
)− Jnj

(x, θnj
, Pnj

)} → δ (22)

for some δ > 0. Note that abnj
Q̂bnj

(θnj
)

(Z1,bnj
(Pnj

) + T1,bnj
(θnj

, Pnj
))2

+ + (Z2,bnj
(Pnj

) + T2,bnj
(θnj

, Pnj
))2

+ ,

where

Z1,m(P ) =
√

m(X̄m − µX(P ))

Z2,m(P ) =
√

m(µY (P )− Ȳm)

T1,m(θ, P ) =
√

m(µX(P )− θ)

T2,m(θ, P ) =
√

m(θ − µY (P )) .

Let J̃bnj
(x, θnj

, Pnj
) be the distribution of the statistic

(Z1,bnj
(Pnj

) + T1,nj
(θnj

, Pnj
))2

+ + (Z2,bnj
(Pnj

) + T2,nj
(θnj

, Pnj
))2

+ .

Since Tk,bnj
(θnj

, Pnj
) ≥ Tk,nj

(θnj
, Pnj

), we have that

J̃bnj
(x, θnj

, Pnj
) ≥ Jbnj

(x, θnj
, Pnj

) .

Thus, (22) implies that

sup
x∈R

{J̃bnj
(x, θnj

, Pnj
)− Jnj

(x, θnj
, Pnj

)} 6→ 0 . (23)

Since anQ̂n(θ) ≥ 0, we may restrict attention to x ≥ 0. For such x, J̃bnj
(x, θnj

, Pnj
) is

simply the probability under Pnj
that the vector (Z1,bnj

(Pnj
), Z2,bnj

(Pnj
))′ lies in a set

Sx ∈ S, where S is defined by (21). Importantly, Jnj
(x, θnj

, Pnj
) is simply the probability

under Pnj
that the vector (Z1,nj

(Pnj
), Z2,nj

(Pnj
))′ lies in the same set. But, by Lemma

3.1, however, we know that

sup
S∈S

|Pnj
{(Z1,nj

(Pnj
), Z2,nj

(Pnj
))′ ∈ S} − ΦσX(Pnj ),σY (Pnj ),ρ(Pnj )(S)| → 0 ,

and

sup
S∈S

|Pnj
{(Z1,bnj

(Pnj
), Z2,bnj

(Pnj
))′ ∈ S} − ΦσX(Pnj ),σY (Pnj ),ρ(Pnj )(S)| → 0 .

An appeal to the triangle inequality yields the desired contradiction to (23).
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Remark 3.8 Recall that Imbens and Manski (2004) analyze a special case of Example

2.2 in which Xi = WiDi and Yi = WiDi +1−Di where Wi ∈ [0, 1] and Di ∈ {0, 1}. The

motivation for their study of this problem stems from considering

Cn = [X̄n −
z1−ασ̂X,n√

n
, Ȳn +

z1−ασ̂Y,n√
n

] , (24)

where σ̂X,n and σ̂Y,n are the usual consistent estimators of σX(P ) and σY (P ) respectively,

and z1−α is the 1−α quantile of the standard normal distribution. For any P such that

P{Di = 1} < 1, Cn defined by (24) satisfies (2). To see this, consider the two cases

θ ∈ int(Θ0(P )) and θ ∈ ∂Θ0(P ) separately. In the former case, X̄n < θ < Ȳn with

probability approaching 1, which implies that θ ∈ Cn with probability approaching 1 as

well. In the latter case, θ = µX(P ) or θ = µY (P ). Suppose θ = µX(P ); the case in

which θ = µY (P ) is completely symmetric. Then, θ < Ȳn with probability approaching

1 and θ > X̄n − z1−ασ̂X,n√
n

with probability at least 1 − α asymptotically. We therefore

have that θ ∈ Cn with probability at least 1− α asymptotically, as desired. Imbens and

Manski (2004) show, however, that this convergence is not uniform over all P satisfying

P{Di = 1} < 1. Specifically, they show that for every sample size n there is a P with

P{Di = 1} sufficiently close, but not equal, to 1 and a θ ∈ Θ0(P ) for which

P{θ ∈ Cn} ≈ 1− 2α .

To rectify this shortcoming, Imbens and Manski (2004) propose an alternative to Cn

defined by (24) which satisfies the uniform coverage requirement (3) for P = P′ such

that

inf
P∈P′

P{Di = 1} > 0

inf
P∈P′

σ2
Wi|Di=1(P ) > 0 .

We may apply the analysis of Example 3.6 and conclude immediately that Cn defined

by (10) also satisfies (3) for P such that the distributions of Xi and Yi defined above

satisfy (19). This class of distributions is larger than the one considered by Imbens and

Manski (2004). To see this, first note that

inf
P∈P′

σ2
WiDi

(P ) ≥ inf
P∈P′

P{Di = 1}σ2
Wi|Di=1(P )

≥ inf
P∈P′

P{Di = 1} inf
P∈P′

σ2
Wi|Di=1(P ) > 0 .
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Since WiDi is supported on a compact set, it follows that for any δ > 0

sup
P∈P′

EP

{(
|WiDi − µWiDi

(P )|
σWiDi

(P )

)2+δ
}

< ∞ .

From the pointwise inequality

x2I{x > λ} ≤ |x|2+δ

λδ

for λ > 0 and δ > 0, we therefore have that (19) holds for WiDi and P = P′. Next note

that to show that

inf
P∈P′

σ2
WiDi+1−Di

(P ) > 0

it suffices to show that

inf
P∈P′

ρWiDi,1−Di
(P ) > −1 . (25)

But, by direct calculation, we have that

ρWiDi,1−Di
(P ) =

−1√
1 +

σ2
Wi|Di=1

(P )

EP {Wi|Di=1}2P{Di=0}

.

It now follows immediately that (25) holds. We may therefore argue as above for WiDi

to establish that (19) holds for WiDi + 1−Di and P = P′. Hence, P′ is a subset of the

set of distributions obtained by applying the analysis of Example 3.6.

It is worthwhile to note that the shortcoming of the construction given by (24) pointed

out by Imbens and Manski (2004) disappears if we require further that the confidence

region Cn = [L̂n, Ûn] is equitailed in the sense that for any θ ∈ Θ0(P )

lim sup
n→∞

P{θ < L̂n} ≤ α

2

lim sup
n→∞

P{θ > Ûn} ≤ α

2
.

One such confidence region is given by (24) in which z1−α is replaced by z1−α
2
. Note that

even if P{Di = 1} = 1, so Θ0(P ) is a singleton, the confidence region Cn defined in this

way satisfies (2).
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3.4 Confidence Regions for Functions of Identifiable Parame-

ters

In this section, we consider the problem of constructing sets satisfying (5) and (6). Let

f : Θ → Λ be given. Our construction again relies upon test inversion, but in this case

the individual null hypotheses are given by

Hλ : λ ∈ Λ0(P ) for λ ∈ Λ , (26)

where Λ0(P ) is defined by (4). The alternative hypotheses are understood to be

Kλ : λ 6∈ Λ0(P ) for λ ∈ Λ .

For λ ∈ Λ, let f−1(λ) = {θ ∈ Θ : f(θ) = λ}. Note that

λ ∈ Λ0(P ) ⇐⇒ ∃ θ ∈ Θ0(P ) s.t. f(θ) = λ

⇐⇒ ∃ θ ∈ Θ s.t. Q(θ, P ) = 0 and f(θ) = λ

⇐⇒ ∃ θ ∈ f−1(λ) s.t. Q(θ, P ) = 0

⇐⇒ inf
θ∈f−1(λ)

Q(θ, P ) = 0 .

This equivalence suggests a natural test statistic for each of these null hypotheses Hλ:

inf
θ∈f−1(λ)

anQ̂n(θ) , (27)

where anQ̂n(θ) is the test statistic used earlier to test the null hypothesis that Q(θ, P ) =

0.

We may now proceed as before, but with the test statistic (27) in place of our earlier

test statistic anQ̂n(θ). For α ∈ (0, 1), define

d̂f
n(λ, 1− α) = inf{x :

1

Nn

∑
1≤i≤Nn

I{ inf
θ∈f−1(λ)

abQ̂n,b,i(θ) ≤ x} ≥ 1− α} ,

and let

Cf
n = {λ ∈ Λ : inf

θ∈f−1(λ)
anQ̂n(θ) ≤ d̂f

n(λ, 1− α)} . (28)

We now have the following theorem, which generalizes Theorems 3.2 and 3.3.
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Theorem 3.4 Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with dis-

tribution P . Denote by Jn(·, λ, P ) the distribution of

an( inf
θ∈f−1(λ)

Q̂n(θ)− inf
θ∈f−1(λ)

Q(θ, P )) .

(i) Suppose that for every λ ∈ Λ0(P )

lim sup
n→∞

sup
x∈R

{Jb(x, λ, P )− Jn(x, λ, P )} ≤ 0 . (29)

Then, Cf
n defined by (28) satisfies (5).

(ii) Suppose that

lim sup
n→∞

sup
λ∈Λ

sup
P∈P:λ∈Λ0(P )

sup
x∈R

{Jb(x, λ, P )− Jn(x, λ, P )} ≤ 0 . (30)

Then, Cf
n defined by (28) satisfies (6).

Proof: The proof is identical to the proofs of Theorems 3.2 and 3.3.

We now provide a simple illustration of the use of Theorem 3.4 to construct sets

satisfying (5) and (6).

Example 3.7 Consider the following straightforward generalization of Example 2.1.

Let (Xi, Yi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P on

R2. The parameter of interest, θ0, is known to satisfy θ0,1 ≥ µX(P ) and θ0,2 ≥ µY (P ).

The identified set is therefore given by Θ0(P ) = {θ ∈ R2 : θ1 ≥ µX(P ) and θ2 ≥
µY (P )}. This set may be characterized as the set of minimizers of

Q(θ, P ) = (µX(P )− θ1)
2
+ + (µY (P )− θ2)

2
+ .

The sample analog of Q(θ, P ) is given by Q̂n(θ) = (X̄n − θ1)
2
+ + (Ȳn − θ2)

2
+. Suppose

interest focuses on θ0,1 rather than the entire vector θ0; that is, the object of interest

is f(θ0), where f : R2 → R is defined by f(θ) = θ1, instead of θ0. Note that in this

instance Λ0(P ) is simply {θ1 ∈ R : θ1 ≥ µX(P )}.
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First, consider the problem of constructing sets satisfying (5). To this end, let an = n

and suppose P is such that σ2
X(P ) exists. Consider θ1 ∈ Λ0(P ). Assume without loss of

generality that µX(P ) = 0. Then,

inf
f−1(θ1)

anQ̂n(θ) = inf
θ2∈R

n(X̄n − θ1)
2
+ + n(Ȳn − θ2)

2
+

= n(X̄n − θ1)
2
+ .

It now follows immediately from the analysis of Example 3.1 that (29) holds. Therefore,

Cf
n defined by (28) satisfies (5).

Now consider the problem of constructing sets satisfying (6). As before, let an = n

and let P be a set of distributions for which the marginal distribution of X satisfies

(19). Consider θ1 ∈ Λ0(P ). Since inff−1(θ1) anQ̂n(θ) is simply n(X̄n − θ1)
2
+, it follows

immediately from the analysis of Example (3.5) that (30) holds. Therefore, Cf
n defined

by (28) satisfies (6).

Remark 3.9 Of course, given a confidence region for identifiable parameters Cn, one

crude construction of a confidence region for a function of identifiable parameters is avail-

able as the image of Cn under the function of interest. Unfortunately, such a construction

will typically be very conservative.

4 Conclusion

This paper has provided computationally intensive, yet feasible methods for inference

for a large class of partially identified models. The class of models we have considered

are defined by a population objective function Q(θ, P ). The main problem we have

considered is the construction of random sets that contain each identifiable parameter

with at least some prespecified probability asymptotically. We have also extended these

constructions to situations in which the object of interest is the image of an identifiable

parameter under a known function. We have verified that these constructions can be

applied in several examples of interest.

The results developed in this paper build upon earlier work by Chernozhukov et al.

(2004), who also consider the problem of inference for the same class of partially identified
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models. Our construction of confidence regions for identifiable parameters produces

smaller confidence regions than theirs without violating the desired coverage property.

This feature persists even asymptotically.

We have also provided conditions under which our confidence regions are uniformly

consistent in level. Imbens and Manski (2004) consider the problem of constructing

confidence regions for identifiable parameters that are uniformly consistent in level,

but their analysis considers only the special case of our class of partially identified

models in which the identified set is an interval whose upper and lower endpoints are

means or at least behave like means asymptotically. Our results therefore provide a

generalization of their results to this broader class of models. In order to prove these

results, we have first derived more general conditions under which confidence regions

for a parameter constructed using subsampling are uniformly consistent in level. These

results on subsampling are of interest independently.

In a companion paper, Romano and Shaikh (2006), we consider the problem of

constructing random sets that contain the entire identified set with at least some pre-

specified probability asymptotically. There we also provide an empirical illustration of

the methodologies in both papers.

There are several important directions for future research. Here, we conclude by

briefly mentioning two. First, while we have shown that the confidence regions that we

have constructed are uniformly consistent in level under weak assumptions, ideally we

would like confidence regions with finite-sample validity. Of course, it may not always

be possible to construct meaningful confidence regions with finite-sample validity, but

it may be possible to do so in specific instances of the general class of models. We

hope to explore this possibility in future research. Second, we have not considered the

question of whether the confidence regions we have constructed are optimal. Recall from

the brief discussion in Remark 3.3 that this question is closely related to the optimal

choice of the population objective function Q(θ, P ). Of course, questions of optimality

inevitably rely upon a choice of optimality criterion. When the object of interest is

an identifiable parameter, this question essentially reduces to the optimal testing of the

individual null hypotheses in (8), so several optimality criteria from the theory of testing

single hypotheses may be used for this purpose.
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5 Appendix: Auxillary Results and Proofs

5.1 Proof of Theorem 3.1.1

We begin with a basic result establishing the relationship between the quantiles of two

distribution functions F and G when they are “close” in a certain sense. Recall that for

any distribution F on the real line, F−1(1− α) is defined to be inf{x : F (x) ≥ 1− α}.

Lemma 5.1 Let F and G be (nonrandom) distribution functions on R. Then, provided

that all arguments are strictly between 0 and 1, the following are true:

(i) If supx∈R{G(x)− F (x)} ≤ ε, then

G−1(1− α) ≥ F−1(1− (α + ε)) .

(ii) If supx∈R{F (x)−G(x)} ≤ ε, then

G−1(α) ≤ F−1(α + ε) .

Furthermore, if X ∼ F , it follows that:

(iii) If supx∈R{G(x)− F (x)} ≤ ε, then

P{X ≤ G−1(1− α)} ≥ 1− (α + ε) .

(iv) If supx∈R{F (x)−G(x)} ≤ ε, then

P{X ≥ G−1(α)} ≥ 1− (α + ε) .

(v) If supx∈R |G(x)− F (x)| ≤ ε, then

P{G−1(α) ≤ X ≤ G−1(1− α)} ≥ 1− 2(α + ε) .

If Ĝ is a random distribution function on R, then, provided all arguments are between

0 and 1, we have further that:
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(vi) If P{supx∈R{Ĝ(x)− F (x)} ≤ ε} ≥ 1− δ, then

P{X ≤ Ĝ−1(1− α)} ≥ 1− (α + ε + δ) .

(vii) If P{supx∈R{F (x)− Ĝ(x)} ≤ ε} ≥ 1− δ, then

P{X ≥ Ĝ−1(α)} ≥ 1− (α + ε + δ) .

(viii) If P{supx∈R |Ĝ(x)− F (x)| ≤ ε} ≥ 1− δ, then

P{Ĝ−1(α) ≤ X ≤ Ĝ−1(1− α)} ≥ 1− 2(α + ε + δ) .

Proof: To see (i), first note that supx∈R{G(x)−F (x)} ≤ ε implies that G(x)−ε ≤ F (x)

for all x ∈ R. Thus, {x : G(x) ≥ 1 − α} = {x : G(x) − ε ≥ 1 − α − ε} ⊆ {x :

F (x) ≥ 1 − α − ε}, from which it follows that F−1(1 − (α + ε)) = inf{x : F (x) ≥
1 − α − ε} ≤ inf{x : G(x) ≥ 1 − α} = G−1(1 − α}. Similarly, to prove (ii), first

note that supx∈R{F (x) − G(x)} ≤ ε implies that F (x) − ε ≤ G(x) for all x ∈ R, so

{x : F (x) ≥ α + ε} = {x : F (x)− ε ≥ α} ⊆ {x : G(x) ≥ α}. Therfore, G−1(α) = inf{x :

G(x) ≥ α} ≤ inf{x : F (x) ≥ α + ε} = F−1(α + ε).

To prove (iii), note that because supx∈R{G(x) − F (x)} ≤ ε, it follows from (i) that

{X ≤ G−1(1− α)} ⊆ {X ≤ F−1(1− (α + ε))}. Hence, P{X ≤ G−1(1− α)} ≤ P{X ≤
F−1(1 − (α + ε))} ≥ 1 − (α + ε). Using the same reasoning, (iv) follows from (ii) and

the assumption that supx∈R{F (x)−G(x)} ≤ ε. To see (v), note that

P{G−1(α) ≤ X ≤ G−1(1− α)}

≥ 1− P{X < G−1(α)} − P{X > G−1(1− α)}

= P{X ≥ G−1(α)}+ P{X ≤ G−1(1− α)} − 1

≥ 1− 2(α + ε) ,

where the first inequality follows from the Bonferroni inequality and the second inequal-

ity follows from (iii) and (iv).
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To prove (vi), note that

P{X ≤ Ĝ−1(1− α)}

≥ P{X ≤ Ĝ−1(1− α) ∩ sup
x∈R

{Ĝ(x)− F (x)} ≤ ε}

≥ P{X ≤ F−1(1− (α + ε)) ∩ sup
x∈R

{Ĝ(x)− F (x)} ≤ ε}

= P{X ≤ F−1(1− (α + ε))} −

P{X ≤ F−1(1− (α + ε)) ∩ sup
x∈R

{Ĝ(x)− F (x)} > ε}

≥ P{X ≤ F−1(1− (α + ε))} − P{sup
x∈R

{Ĝ(x)− F (x)} > ε}

= 1− α− ε− δ ,

where the second inequality follows from (i). A similar argument using (ii) establishes

(vii). Finally, (viii) follows from (vi) and (vii) by an argument analogous to the one used

to establish (v).

We now show that the subsampling estimate of the distribution of a statistic based

on a sample of size n is uniformly close to the distribution of the statistic based on a

sample of size b.

Lemma 5.2 Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with distri-

bution P . Denote by Jn(·, P ) the distribution of τn(ϑ̂n − ϑ(P )). Suppose ϑ̂n ∈ R. Let

Nn =
(

n
b

)
, kn = b n

bn
c and define Ln(x) according to (7). Then, for any ε > 0, we have

that

P{sup
x∈R

|Ln(x)− Jb(x, P )| > ε} ≤ 1

ε

√
2π

kn

. (31)

We also have that for any 0 < δ < 1

P{sup
x∈R

|Ln(x)− Jb(x, P )| > ε} ≤ δ

ε
+

2

ε
exp{−2knδ

2} . (32)

Proof: Let ε > 0 be given and define Sn(x, P ; X1, . . . , Xn) by

1

kn

∑
1≤i≤kn

I{τb(ϑ̂b(Xb(i−1)+1, . . . , Xbi)− ϑ(P )) ≤ x} − Jb(x, P ) .
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Denote by Sn the symmetric group with n elements. Note that using this notation, we

may rewrite
1

Nn

∑
1≤i≤Nn

I{τb(ϑ̂n,b,i − ϑ(P )) ≤ x} − Jb(x, P )

as

Zn(x, P ; X1, . . . , Xn) =
1

n!

∑
π∈Sn

Sn(x, P ; Xπ(1), . . . , Xπ(n)) .

Note further that

sup
x∈R

|Zn(x, P ; X1, . . . , Xn)| ≤ 1

n!

∑
π∈Sn

sup
x∈R

|Sn(x, P ; Xπ(1), . . . , Xπ(n))| ,

which is a sum of n! identically distributed random variables. Let ε > 0 be given. It

follows that P{supx∈R |Zn(x, P ; X1, . . . , Xn)| > ε} is bounded above by

P{ 1

n!

∑
π∈Sn

sup
x∈R

|Sn(x, P ; Xπ(1), . . . , Xπ(n))| > ε} . (33)

Using Markov’s inequality, (33) can be bounded by

1

ε
E{sup

x∈R
|Sn(x, P ; X1, . . . , Xn)|} (34)

=
1

ε

∫ 1

0

P{sup
x∈R

|Sn(x, P ; X1, . . . , Xn)| > u}du . (35)

We may then use the Dvoretsky-Kiefer-Wolfowitz inequality to bound (35) by

1

ε

∫ 1

0

2 exp{−2knu
2}du ,

which, when evaluated, yields

2

ε

√
2π

kn

[Φ(2
√

kn)− 1

2
] <

1

ε

√
2π

kn

.

To establish (32), note that for any 0 < δ < 1, we have that

E{sup
x∈R

|Sn(x, P ; X1, . . . , Xn)|} ≤ δ + P{sup
x∈R

|Sn(x, P ; X1, . . . , Xn)| > δ} . (36)

The result (32) now follows immediately by using the Dvoretsky-Kiefer-Wolfowitz in-

equality to bound the second term on the right hand side in (36).

Using Lemma 5.2, we have the following bounds on the probabilty that the subsam-

pling estimate of the distribution of a statistic based on sample of size n is uniformly

close to the distribution of the statistic based on a sample of size n.
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Lemma 5.3 Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with distri-

bution P . Denote by Jn(·, P ) the distribution of the statistic τn(ϑ̂n − ϑ(P )). Suppose

ϑ̂n ∈ R. Define Ln(x) according to (7). Then, for all ε > 0 and γ ∈ (0, 1), we have the

following:

(i) P{supx∈R{Ln(x)− Jn(x, P )} > ε} ≤

1

γε

√
2π

kn

+ I{sup
x∈R

{Jb(x, P )− Jn(x, P )} > (1− γ)ε} .

(ii) P{supx∈R{Jn(x, P )− Ln(x)} > ε} ≤

1

γε

√
2π

kn

+ I{sup
x∈R

{Jn(x, P )− Jb(x, P )} > (1− γ)ε} .

(iii) P{| supx∈R{Ln(x)− Jn(x, P )}| > ε} ≤

1

γε

√
2π

kn

+ I{sup
x∈R

|Jb(x, P )− Jn(x, P )| > (1− γ)ε} .

Proof: Let ε > 0 and γ ∈ (0, 1) be given. Note that

P{sup
x∈R

{Ln(x)− Jn(x, P )} > ε}

≤ P{sup
x∈R

{Ln(x)− Jb(x, P )}+ sup
x∈R

{Jb(x, P )− Jn(x, P )} > ε}

≤ P{sup
x∈R

{Ln(x)− Jb(x, P )} > γε}+ I{sup
x∈R

{Jb(x, P )− Jn(x, P )} > (1− γ)ε}

≤ 1

γε

√
2π

kn

+ I{sup
x∈R

{Jb(x, P )− Jn(x, P )} > (1− γ)ε} ,

where the final inequality follows from Lemma 5.2. A similar argument establishes (ii)

and (iii).

We may assemble the above results together to make the following statements about

the finite-sample coverage properties of confidence intervals formed using quantiles of

the subsampling estimate of the distribution of the statistic based on sample of size n.
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Lemma 5.4 Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with distri-

bution P ∈ P. Denote by Jn(·, P ) the distribution of the statistic τn(ϑ̂n−ϑ(P )). Suppose

ϑ̂n ∈ R. Define Ln(x) according to (7). Let

δ1,n(ε, γ, P ) =
1

γε

√
2π

kn

+ I{sup
x∈R

{Jb(x, P )− Jn(x, P )} > (1− γ)ε}

δ2,n(ε, γ, P ) =
1

γε

√
2π

kn

+ I{sup
x∈R

{Jn(x, P )− Jb(x, P )} > (1− γ)ε}

δ3,n(ε, γ, P ) =
1

γε

√
2π

kn

+ I{sup
x∈R

|Jb(x, P )− Jn(x, P )| > (1− γ)ε} .

Then, for any ε > 0 and γ ∈ (0, 1), we have that

(i) P{τn(ϑ̂n − ϑ(P )) ≤ L−1
n (1− α)} ≥

1− (α + ε + δ1,n(ε, γ, P )) .

(ii) P{τn(ϑ̂n − ϑ(P )) ≥ L−1
n (α)} ≥

1− (α + ε + δ2,n(ε, γ, P )) .

(iii) P{L−1
n (α

2
) ≤ τn(ϑ̂n − ϑ(P )) ≤ L−1

n (1− α
2
)} ≥

1− (α + ε + δ3,n(ε, γ, P )) .

Moreover,

(iv) infP∈P P{τn(ϑ̂n − ϑ(P )) ≤ L−1
n (1− α)} ≥

1− (α + ε + sup
P∈P

δ1,n(ε, γ, P )) .

(v) infP∈P P{τn(ϑ̂n − ϑ(P )) ≥ L−1
n (α)} ≥

1− (α + ε + sup
P∈P

δ2,n(ε, γ, P )) .

(vi) infP∈P P{L−1
n (α

2
) ≤ τn(ϑ̂n − ϑ(P )) ≤ L−1

n (1− α
2
)} ≥

1− (α + ε + sup
P∈P

δ3,n(ε, γ, P )) .
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Proof: Let ε > 0 and γ ∈ (0, 1) be given. By part (i) of Lemma 5.3, we have that

P{sup
x∈R

{Ln(x)− Jn(x, P )} > ε} ≤ δ1,n(ε, γ, P ) .

Assertion (i) follows by applying part (vi) of Lemma 5.1. Assertions (ii) and (iii) are

established similarly. Assertions (iv), (v), and (vi) follow immediately by taking the

infimum over P ∈ P of both sides of inequalities (i), (ii) and (iii).

We are now in a position to prove Theorem 3.1, which is an asymptotic version of

Lemma 5.4.

Proof of Theorem 3.1: To prove (i), note that by part (i) of Lemma 5.4, we have

for any ε > 0 and γ ∈ (0, 1) that

P{τn(θ̂n − θ(P )) ≤ L−1
n (1− α)} ≥ 1− (α + ε + δ1,n(ε, γ, P )) ,

where

δ1,n(ε, γ, P ) =
1

γε

√
2π

kn

+ I{sup
x∈R

{Jb(x, P )− Jn(x, P )} > (1− γ)ε} .

By the assumption on supx∈R{Jb(x, P ) − Jn(x, P )}, we have that for every ε > 0,

δ1,n(ε, γ, P ) → 0. Thus, there exists a sequence εn > 0 tending to 0 so that δ1,n(εn, γ, P ) →
0. The desired claim now follows from applying part (i) of Lemma 5.4 to this sequence.

The proofs (ii) and (iii) follow in exactly the same way. The proofs of (iv), (v) and (vi)

also follow from the same reasoning with the assumption on supP∈P supx∈R{Jb(x, P )−
Jn(x, P )}.

5.2 Proof of Lemma 3.3.1

First note that we may assume without loss of generality that σX(P ) = σY (P ) = 1.

We will now argue by contradiction. If the result were false, then there would exist a

subsequence nj and a corresponding sequence Pnj
∈ P such that σX(Pnj

) = σY (Pnj
) = 1,

ρ(Pn,j) → ρ ∈ [−1, 1] and

sup
S∈S

|Pnj
{(√nj(X̄nj

− µX(Pnj
)),
√

nj(Ȳnj
− µY (Pnj

)))′ ∈ S} − Φ1,1,ρ(Pnj )(S)}|

does not converge to zero. There are two cases to consider: either |ρ| < 1 or |ρ| = 1.
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First consider the case in which |ρ| < 1. In this case, there exists δ > 0 such that

|ρ| ≤ 1− δ. We will use the Cramer-Wold device to establish that

(
√

n(X̄n − µX(Pnj
)),
√

n(Ȳn − µY (Pnj
)))′

L→ Φ1,1,ρ

under Pnj
. Let (0, 0) 6= (a, b) ∈ R2 and consider

√
nj(aX̄nj

+ bȲnj
− aµX(Pnj

)− bµY (Pnj
)) . (37)

To show that (37) converges in distribution to the appropriate normal distribution, by

Lemma 11.4.1 of Lehmann and Romano (2005) it suffices to show that aX + bY satisfies

(19) when (X, Y ) ∼ P ∈ P and σX(P ) = σY (P ) = 1. We may assume without loss of

generality that both a and b are nonzero, since otherwise the result follows from Lemma

11.4.1 of Lehmann and Romano (2005). Moreover, since (aX, bY ) has a distribution in

P whenever (X, Y ) does, we may assume further that a = b = 1. For any λ > 0 and

any such P , note that

EP

[
(X + Y − µX(P )− µY (P ))2

σ2
X+Y (P )

I{|X + Y − µX(P )− µY (P )|
σX+Y (P )

> λ}
]

≤ EP

[
(X + Y − µX(P )− µY (P ))2

2δ
I{|X + Y − µX(P )− µY (P )|

2δ
> λ}

]
.

Using the fact that (A + B)2 ≤ 2(A2 + B2), we have further that this last expression is

bounded above by

EP

[
(X − µX(P ))2

δ
I{|X − µX(P )|

2δ
> λ}

]
+ EP

[
(Y − µY (P ))2

δ
I{|Y − µY (P )|

2δ
> λ}

]
.

Thus, by the assumption on the marginal distributions of P ∈ P, we have that

lim
λ→0

sup
P∈P

EP

[
(X + Y − µX(P )− µY (P ))2

σ2
X+Y (P )

I{|X + Y − µX(P )− µY (P )|
σX+Y (P )

> λ}
]

= 0 ,

which establishes the desired convergence. By Theorem 2.11 of Bhattacharya and Rao

(1976), we have that

sup
S∈S

|Pnj
{(√nj(X̄nj

− µX(Pnj
)),
√

nj(Ȳnj
− µY (Pnj

)))′ ∈ S} − Φ1,1,ρ(S)}| → 0 .

37



Since we also have that supS∈S |Φ(1, 1, ρ(Pnj
))(S)−Φ1,1,ρ(S)| → 0, this yields the desired

contradiction in the first case.

Now consider the second case in which |ρ| = 1. Assume without loss of generality

that ρ = 1. In this case, we have that the variance of
√

n(X̄n− Ȳn) equals 2(1− ρ(Pnj
)),

and therefore tends to 0. As a result,

√
n(X̄n − Ȳn)

Pnj→ 0 . (38)

Consider x < y and note that because of the convergence (38) and Lemma 11.4.1 of

Lehmann and Romano (2005), we have that

Pnj
{√nj(X̄nj

− µX(Pnj
)) ≤ x,

√
nj(Ȳnj

− µY (Pnj
)) ≤ y} → Φ(x) ,

where Φ is the standard normal distribution. Symmetrically, for x > y, we have that

Pnj
{√nj(X̄nj

− µX(Pnj
)) ≤ x,

√
nj(Ȳnj

− µY (Pnj
)) ≤ y} → Φ(y) .

By applying these arguments to y = x + ε and y = x− ε for ε arbitrarily small, we have

that

Pnj
{√nj(X̄nj

− µX(Pnj
)) ≤ x,

√
nj(Ȳnj

− µY (Pnj
)) ≤ x} → Φ(x) .

Thus, by the Pormanteau Lemma (see, for example, van der Vaart (1998)), we have that

(
√

nj(X̄nj
− µX(Pnj

)),
√

nj(Ȳnj
− µY (Pnj

)))′
L→ Φ1,1,1

under Pnj
. Again, by Theorem 2.11 of Bhattacharya and Rao (1976), it follows that

sup
S∈S

|Pnj
{(√nj(X̄nj

− µX(Pnj
)),
√

nj(Ȳnj
− µY (Pnj

)))′ ∈ S} − Φ1,1,1(S)}| → 0 ,

where here we are relying upon the assumption that Φ1,1,1(∂S) = 0. Since we also have

that supS∈S |Φ(1, 1, ρ(Pnj
))(S)− Φ1,1,1(S)| → 0, this yields the desired contradiction in

the second case.
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