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Abstract

This paper provides computationally intensive, yet feasible methods for in-

ference in a very general class of partially identified econometric models. Let P

denote the distribution of the observed data. The class of models we consider are

defined by a population objective function Q(θ, P ) for θ ∈ Θ. The point of depar-

ture from the classical extremum estimation framework is that it is not assumed

that Q(θ, P ) has a unique minimizer in the parameter space Θ. The goal may be

either to draw inferences about some unknown point in the set of minimizers of the

population objective function or to draw inferences about the set of minimizers

itself. In this paper, the object of interest is Θ0(P ) = arg minθ∈Θ Q(θ, P ), and so

we seek random sets that contain this set with at least some prespecified probabil-

ity asymptotically. We also consider situations where the object of interest is the

image of Θ0(P ) under a known function. Random sets satisfying the desired cov-

erage property are constructed under weak assumptions. Conditions are provided

under which the confidence regions are asymptotically valid not only pointwise in

P , but also uniformly in P . Finally, we illustrate the use of our methods with an

empirical study of the impact of top-coding of outcomes on inferences about the

parameters of a linear regression.
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1 Introduction

Recent empirical work in economics has shown that partially identified econometric

models arise naturally in many contexts. By a partially identified model we mean any

model in which the parameter of interest is not uniquely defined by the distribution of the

observed data. This paper provides computationally intensive, yet feasible methods for

inference for one large class of such models. Let P denote the distribution of the observed

data. The class of models we consider are defined by a population objective function

Q(θ, P ) for θ ∈ Θ. The point of departure from the classical extremum estimation

framework is that it is not assumed that Q(θ, P ) has a unique minimizer in the parameter

space Θ. The goal may be either to draw inferences about some unknown point in the

set of minimizers of the population objective function or to draw inferences about the

set of minimizers itself. In this paper we consider the second of these two goals. The

object of interest is

Θ0(P ) = arg min
θ∈Θ

Q(θ, P ) . (1)

We henceforth refer to Θ0(P ) as the identified set. In this instance, given i.i.d. data

Xi, i = 1, . . . , n, generated from P , we seek random sets Cn = Cn(X1, . . . , Xn) that

contain the identified set with at least some prespecified probability asymptotically.

That is, we require

lim inf
n→∞

P{Θ0(P ) ⊆ Cn} ≥ 1− α . (2)

We refer to such sets as confidence regions for the identified set that are pointwise con-

sistent in level. This terminology reflects the fact that the confidence regions are valid

only for a fixed probability distribution P and helps distinguish this coverage require-

ment from others discussed later in which we will demand that the confidence regions

are valid uniformly in P . We show that the problem of constructing Cn satisfying (2) is

equivalent to a multiple hypothesis testing problem in which one wants to test the family

of null hypotheses Hθ : θ ∈ Θ0(P ) indexed by θ ∈ Θ while controlling the familywise

error rate, the probability of even one false rejection under P . Using this duality, we

go on to construct Cn satisfying (2) under weak assumptions on P . These assumptions

are formulated in terms of restrictions on the asymptotic behavior of the estimate of the

population objective function, Q̂n(θ). Most often Q̂n(θ) = Q(θ, P̂n) for some estimate

P̂n of P .
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In the first goal, the object of interest is some unknown point θ ∈ Θ0(P ). We refer

to any θ ∈ Θ0(P ) as an identifiable parameter. In this case, given i.i.d. data Xi, i =

1, . . . , n, generated from P , we seek random sets Cn = Cn(X1, . . . , Xn) that contain each

identifiable parameter with at least some prespecified probability asymptotically. The

problem of constructing such sets is treated in a companion paper Romano and Shaikh

(2006).

To further motivate our study of partially identified models, we now provide a few

concrete examples of such models. We will return to these examples later to provide

illustrations of our methodology.

Example 1.1 (One-Sided Mean) Perhaps the simplest example of a partially identified

model is given by the following setup. Let Xi, i = 1, . . . , n, be an i.i.d. sequence of

random variables with distribution P on R. Denote by µ(P ) the mean of the distribution

P . The parameter of interest, θ0, is known to satisfy θ0 ≥ µ(P ). For example, θ0 might

be the mean of another distribution Q on R that is known to satisfy µ(Q) ≥ µ(P ). The

identified set is therefore given by Θ0(P ) = {θ ∈ R : θ ≥ µ(P )}. We may characterize

this set as the set of minimizers of the population objective function

Q(θ, P ) = (µ(P )− θ)2
+ ,

where the notation (a)+ is used as shorthand for max{a, 0}. The sample analog of

Q(θ, P ) is given by Q̂n(θ) = (X̄n − θ)2
+.

Example 1.2 (Two-Sided Mean) A natural generalization of Example 1.1 is to consider

bivariate random variables. To this end, let (Xi, Yi), i = 1, . . . , n, be an i.i.d. sequence

of random variables with distribution P on R2. Let µX(P ) denote the mean of the first

component of the distribution P and µY (P ) the mean of the second component of the

distribution P . The parameter of interest, θ0, is known to satisfy µX(P ) ≤ θ0 ≤ µY (P ).

For example, θ0 might be the mean of another distribution Q on R that is known to

satisfy µX(P ) ≤ µ(Q) ≤ µY (P ). The identified set is therefore given by Θ0(P ) = {θ ∈
R : µX(P ) ≤ θ ≤ µY (P )}. This set may be characterized as the set of minimizers of

Q(θ, P ) = (µX(P )− θ)2
+ + (θ − µY (P ))2

+ .
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The sample analog of Q(θ, P ) is given by Q̂n(θ) = (X̄n − θ)2
+ + (θ − Ȳn)2

+.

To provide an empirical context for this setup, consider the following special case.

Let Wi ∈ [0, 1] and Di ∈ {0, 1}. For example, Wi may be the answer to the question, “Do

you vote Republican or Democrat?”, and Di may be the indicator variable for whether

the person asked chooses to answer the question. Suppose the researcher observes an

i.i.d. sequence (WiDi, Di), i = 1, . . . , n, with distribution P ; i.e., Wi is observed if

and only if Di = 1. The parameter of interest, θ0 = E{Wi}, is not determined by

the distribution of the observed data, but the researcher can say with certainty that

θ0 satisfies EP{WiDi} ≤ θ0 ≤ EP{WiDi + 1 − Di}. By identifying Xi = WiDi and

Yi = WiDi + 1−Di, this example can be seen to be a special case of the above setup.

Example 1.3 (Regression with Interval Outcomes) The following example allows for in-

ference in a linear regression model in which the dependent variable is interval-censored.

Let (Xi, Y1,i, Y2,i, Y
∗
i ), i = 1, . . . , n, be an i.i.d. sequence of random variables with dis-

tribution Q on Rk × R × R × R. The parameter of interest, θ0, is known to satisfy

EQ{Y ∗
i |Xi} = X ′

iθ0, but Y ∗
i is unobserved, which precludes conventional estimation of

θ0. Let P denote the distribution of the observed random variables (Xi, Y1,i, Y2,i). The

random variables (Y1,i, Y2,i) are known to satisfy Y1,i ≤ Y ∗
i ≤ Y2,i with probability 1

under Q. Thus, θ0 ∈ Θ0(P ) = {θ ∈ Rk : EP{Y1,i|Xi} ≤ X ′
iθ ≤ EP{Y2,i|Xi} P−a.s.}.

This set may be characterized as the set of minimizers of

Q(θ, P ) = EP{(EP{Y1,i|Xi} −X ′
iθ)

2
+ + (X ′

iθ − EP{Y2,i|Xi})2
+} .

The sample analog Q̂n(θ) ofQ(θ, P ) is given by replacing expectations with appropriately

defined estimators, the nature of which may depend on further assumptions about P .

Manski and Tamer (2002) characterize the identified set in this setting and also consider

the case where Y ∗
i is observed, but Xi is interval-censored.

A Tobit-like model is a special case of the above setup if we suppose further that

Y2,i = Y ∗
i and Y1,i = Y ∗

i if Y ∗
i > 0, and Y2,i = 0 and Y1,i = −∞ (or some large negative

number if there is a plausible lower bound on Y ∗
i ) if Y ∗

i ≤ 0. It is worthwhile to note that

conventional approaches to inference for such a model, while enforcing identification, rely

on the much stronger assumption that εi = Y ∗
i −X ′

iθ0 is independent of Xi. By allowing

for only partial identification, we will be able to draw inferences under much weaker

assumptions.

5



Example 1.4 (Moment Inequalities) Consider the following generalization of Examples

1.1 and 1.2. Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with distribu-

tion P on Rk. For j = 1, . . . ,m, let gj(x, θ) be a real-valued function on Rk ×Rl. The

identified set is assumed to be Θ0(P ) = {θ ∈ Rl : EP{gj(Xi, θ)} ≤ 0 ∀j s.t. 1 ≤ j ≤ m}.
This set may be characterized as the set of minimizers of

Q(θ, P ) =
∑

1≤j≤m

(EP{gj(Xi, θ)})2
+ .

Of course, this set may be written equivalently as {θ ∈ Θ : Q(θ, P ) = 0}. The sam-

ple analog of Q(θ, P ) is given by Q̂n(θ) =
∑

1≤j≤m( 1
n

∑
1≤i≤n gj(Xi, θ))

2
+. This choice

of Q(θ, P ) is especially noteworthy because it is used by Cilberto and Tamer (2004),

Benkard et al. (2005) and Borzekowski and Cohen (2005) in their empirical applica-

tions. Since any equality restriction may be thought of as two inequality restrictions,

this example may also be viewed as a generalization of the method of moments to al-

low for equality and inequality restrictions on the moments, rather than just equality

restrictions.

A prominent example of an econometric model which gives rise to moment inequali-

ties is an entry model. See, for example, Andrews et al. (2004) or Cilberto and Tamer

(2004) for a detailed description of such models and a derivation of the inequalities.

Briefly, consider an entry model with two firms and let Xi be the indicator for the event

“firm 1 enters”. Because of the multiplicity of Nash equilibria, the model only gives

upper and lower bounds, L(θ) and U(θ), on the probability of this event as a function of

the unknown parameter, θ, of the econometric model. It is therefore natural to use the

functions

g1(Xi, θ) = L(θ)−Xi

g2(Xi, θ) = Xi − U(θ)

as a basis for inference in such a model.

Our results on confidence regions for the identified set build upon the earlier work of

Chernozhukov et al. (2004), who were the first to consider inference for the same class

of partially identified models. An important feature of our procedure for constructing
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confidence regions for the identified set is that it avoids the need for an initial estimate

of Θ0(P ). Moreover, our results provide a justification for iterating their procedure

to produce ever smaller confidence regions until a stopping criterion is met while still

maintaining the coverage requirement.

In this paper, we also wish to construct confidence regions whose coverage probability

is close to the nominal level not just for a fixed probability distribution P , but rather

uniformly over all P in some large class of distributions P. Confidence regions that

fail to satisfy this requirement have the feature that for every sample size n, however

large, there is some probability distribution P ∈ P for which the coverage probability

of the confidence region under P is not close to the prescribed level. Researchers may

therefore feel that inferences made on the basis of asymptotic approximations are more

reliable if the confidence regions exhibit good uniform behavior. Of course, such a

requirement will typically require restrictions on P beyond those required for pointwise

consistency in level. Bahadur and Savage (1956), for example, show that if P is suitably

large, then there exists no confidence interval for the mean with finite length and good

uniform behavior. Romano (2004) extends this non-existence result to a number of other

problems. We provide restrictions on P under which the confidence regions in this paper

have good uniform behavior. Concretely, we provide conditions under which Cn satisfies

lim inf
n→∞

inf
P∈P

P{Θ0(P ) ⊆ Cn} ≥ 1− α . (3)

By analogy with our earlier terminology, sets satisfying (3) are referred to as confidence

regions for the identified set that are uniformly consistent in level. Note that if the

identified set Θ0(P ) consists of a single point θ0(P ), then this definition reduces to the

usual definition of confidence regions that are uniformly consistent in level; that is,

lim inf
n→∞

inf
P∈P

P{θ0(P ) ∈ Cn} ≥ 1− α .

Imbens and Manski (2004) analyze the special case of the above class of partially

identified models in which the identified set is an interval whose upper and lower end-

points are means or at least behave like means asymptotically. For this special case,

they construct confidence regions that contain each identifiable parameter with at least

some prespecified probability asymptotically and are valid uniformly in P . Romano and

Shaikh (2006) construct confidence regions with this same coverage property for the
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more general class of models considered here. To the best of our knowledge, this paper

is the first to consider confidence regions for the identified set that are valid uniformly

in P .

We have so far assumed that the object of interest is the identified set, Θ0(P ), itself.

More generally, the object of interest may be the image of the identified set under a

known function. A typical example of such a function is the projection of Rk onto one

of the axes. We extend the above definitions of confidence regions to this setting as

follows. Consider a function f : Θ → Λ. Denote by Λ0(P ) the image of Θ0(P ) under f ;

that is,

Λ0(P ) = {f(θ) : θ ∈ Θ0(P )} . (4)

We refer to a set Cf
n as a confidence region for a function of the identified set that is

pointwise consistent in level if it satisfies

lim inf
n→∞

P{Λ0(P ) ∈ Cf
n} ≥ 1− α . (5)

As before, we may also demand uniformly good behavior over a class of probability

distributions P by requiring that Cf
n satisfy

lim inf
n→∞

inf
P∈P

P{Λ0(P ) ∈ Cf
n} ≥ 1− α . (6)

By analogy with our earlier terminology, sets satisfying (6) are referred to as confidence

regions for a function of the identified set that are uniformly consistent in level. We adapt

our constructions of confidence regions for the identified set to provide constructions of

confidence sets satisfying these alternative coverage requirements.

Economists have used techniques for drawing inferences in partially identified mod-

els to solve many empirical problems that previously either were intractable or relied on

untenable assumptions to achieve identification. In the context of missing outcome data

and the analysis of treatment response, Manski (2003) has argued forcefully that reliance

on such assumptions to make inferences is unfortunate, as it degrades the credibility of in-

ferences made under those assumptions. A prominent example of this problem in other

parts of empirical work in economics is provided by game-theoretic models that may

have multiple equilibria. When confronted with such models, researchers often impose

identification by assuming some sort of an ad hoc equilibrium selection mechanism. An
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alternative to this approach can be based on exploiting only those restrictions implied by

equilibrium behavior that do not depend on the particular equilibrium being played by

the agents. These restrictions can often be written as a system of moment inequalities,

which can be viewed as a special case of the class of models we are considering. Cilberto

and Tamer (2004) and Borzekowski and Cohen (2005), for example, use this idea together

with the techniques of Chernozhukov et al. (2004) for inference in partially identified

models to analyze an entry model and a coordination game, respectively. Benkard et al.

(2005) consider more generally the problem of making inferences in dynamic models of

imperfect competition, where, in the absence of additional assumptions, the unknown

parameters of the model are naturally restricted to a set defined by moment inequalities.

Andrews et al. (2004) and Pakes et al. (2005) provide other economic applications of sys-

tems of moment inequalities, but develop independent methods of inference for systems

of moment inequalities distinct from the methods of Chernozhukov et al. (2004). These

methods are, however, more conservative than those of Chernozhukov et al. (2004), and

thus more conservative than the methods developed in this paper as well.

The remainder of the paper is organized as follows. In Section 2, we consider the

problem of constructing confidence regions that satisfy the coverage properties (2) and

(3). The construction exploits a useful equivalence between the construction of confi-

dence regions for the identified set and a suitable multiple hypothesis testing problem.

We then extend this methodology to construct confidence regions satisfying (5) and (6).

We also briefly discuss an alternative, but less general approach to constructing confi-

dence regions for the identified set. We provide an illustration of our methods in Section

3, wherein we study empirically the impact of top-coding of outcomes on inferences

about the parameters in a linear regression. Finally, we conclude and provide directions

for future research in Section 4.

2 Confidence Regions for the Identified Set

In this section, we consider the problem of constructing confidence regions for the iden-

tified set. We begin by treating the construction of sets satisfying (2) before turning our

attention to the problem of constructing sets satisfying (3).
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2.1 Pointwise Consistency in Level

2.1.1 Equivalence with a Multiple Testing Problem

We will first show that the problem of constructing confidence regions satisfying (2) is

equivalent to a certain multiple hypothesis testing problem. The problem is to test the

family of hypotheses

Hθ : Q(θ, P ) = 0 for θ ∈ Θ (7)

in a way that asymptotically controls the familywise error rate (FWERP ), the proba-

bility of one or more false rejections under P , at level α. Formally,

FWERP = P{reject at least 1 null hypothesis Hθ s.t. Q(θ, P ) = 0} , (8)

and by asymptotic control of the FWERP at level α, we mean the requirement that

lim sup
n→∞

FWERP ≤ α . (9)

The following lemma establishes the equivalence between these two problems.

Lemma 2.1 Let P denote the true distribution of the data. Given any procedure for

testing the family of null hypotheses (7) which yields a decision for each of the null

hypotheses, the set of θ values for which the corresponding null hypothesis Hθ is accepted,

Cn, satisfies

P{Θ0(P ) ⊆ Cn} = 1− FWERP ,

where Θ0(P ) is defined by (1). Conversely, given any random set Cn, the procedure for

testing the family of hypotheses (7) in which a null hypothesis Hθ is accepted iff θ ∈ Cn

satisfies

FWERP = 1− P{Θ0(P ) ⊆ Cn} .

Proof: To establish the first conclusion, note that by the definition of Θ0(P ) we have

P{Θ0(P ) ⊆ Cn} = P{reject no null hypothesis Hθ s.t. Q(θ, P ) = 0}

= 1− FWERP .

The second conclusion follows from the same reasoning.

10



It follows from Lemma 2.1 that given any procedure for testing the family of null

hypotheses (7) satisfying (9), the set of θ values corresponding to the set of accepted

hypotheses, Cn, satisfies (2). We thus turn our attention to analyzing the problem of

constructing tests of (7) that satisfy (9).

2.1.2 Single-step Control of the Familywise Error Rate

First, we briefly discuss a single-step approach to asymptotic control of the FWERP at

level α, since it serves as a building block for the more powerful stepdown procedures

that we will develop in the next section. As before, we will require a test statistic for each

null hypothesis Hθ such that large values of the test statistic provide evidence against

the null hypothesis. The statistic anQ̂n(θ) for some sequence an → ∞ will be used for

this purpose.

For any K ⊆ Θ, let cn(K, 1− α, P ) denote the smallest 1− α quantile of the distri-

bution of

sup
θ∈K

anQ̂n(θ) (10)

under P ; that is,

cn(K, 1− α, P ) = inf{x : P{sup
θ∈K

anQ̂n(θ) ≤ x} ≥ 1− α} .

Consider the idealized test in which a null hypothesis Hθ is rejected if and only if

anQ̂n(θ) > cn(Θ0(P ), 1 − α, P ). This is a single-step method in the sense that each

anQ̂n(θ) is compared with a common value in order to determine its significance. Clearly,

such a test satisfies FWERP ≤ α. To see this, note that

FWERP = P{anQ̂n(θ) > cn(Θ0(P ), 1− α, P ) for some θ ∈ Θ0(P )}

= 1− P{ sup
θ∈Θ0(P )

anQ̂n(θ) ≤ cn(Θ0(P ), 1− α, P )} ≤ α .

But this test is infeasible, as the critical value depends on the unknown P . A crude

solution to this difficulty is available if we are given estimates ĉn(K, 1− α) of the 1− α

quantile of the distribution of (10) that satisfy two properties. First, we require that the

estimates ĉn(K, 1−α) be at least conservative under the joint null hypothesisQ(θ, P ) = 0

for all θ ∈ K. Second, we require that the estimates are monotone in the sense that

ĉn(K, 1− α) ≥ ĉn(Θ0(P ), 1− α) for any K ⊇ Θ0(P ) . (11)
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Since Θ0(P ) ⊆ Θ, it follows that under these assumptions we have that ĉn(Θ, 1 −
α) asymptotically provides a conservative estimate of cn(Θ0(P ), 1 − α, P ). Hence, the

single-step method in which each statistic anQ̂n(θ) is compared with the common cutoff

ĉn(Θ, 1− α) asymptotically controls of the FWERP at level α provided that these two

assumptions are satisfied.

We will refrain from giving a more precise statement of the conditions under which

such a test procedure provides asymptotic control of the FWERP because the results

will follow from the analysis of the more powerful stepdown method in the next section.

2.1.3 Stepdown Control of the Familywise Error Rate

Stepdown methods begin by first applying a single-step method, but then additional

hypotheses may be rejected after this first stage by proceeding in a stepwise fashion,

which we now describe. In the first stage, test the entire family of hypotheses using a

single-step procedure; that is, reject all null hypotheses whose corresponding test statistic

is too large, where large is determined by some common critical value as described above.

If no hypotheses are rejected in this first stage, then stop; otherwise, test the family of

hypotheses not rejected in the first stage using a single-step procedure. If no further

hypotheses are rejected in this second stage, then stop; otherwise, test the family of

hypotheses not rejected in the first and second stages using a single-step procedure.

Repeat this process until no further hypotheses are rejected. We now formally define

this procedure, which can be viewed as a generalization of Romano and Wolf (2005),

who only consider a finite number of hypotheses.

Algorithm 2.1

1. Let S1 = Θ. If supθ∈S1
anQ̂n(θ) ≤ ĉn(S1, 1 − α), then accept all hypotheses and

stop; otherwise, set S2 = {θ ∈ Θ : anQ̂n(θ) ≤ ĉn(S1, 1− α)} and continue.

2. If supθ∈S2
anQ̂n(θ) ≤ ĉn(S2, 1− α), then accept all hypotheses Hθ with θ ∈ S2 and

stop; otherwise, set S3 = {θ ∈ Θ : anQ̂n(θ) ≤ ĉn(S2, 1− α)} and continue.

...
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j. If supθ∈Sj
anQ̂n(θ) ≤ ĉn(Sj, 1− α), then accept all hypotheses Hθ with θ ∈ Sj and

stop; otherwise, set Sj+1 = {θ ∈ Θ : anQ̂n(θ) ≤ ĉn(Sj, 1− α)} and continue.

...

We now prove that this algorithm provides asymptotic control of the FWERP under

the monotonicity assumption (11) and

lim sup
n→∞

P{ sup
θ∈Θ0(P )

anQ̂n(θ) > ĉn(Θ0(P ), 1− α)} ≤ α . (12)

Theorem 2.1 Let P denote the true distribution generating the data. Consider Algo-

rithm 2.1 with critical values satisfying (11). Then,

FWERP ≤ P{ sup
θ∈Θ0(P )

anQ̂n(θ) > ĉn(Θ0(P ), 1− α)} . (13)

Hence, if the critical values also satisfy (12), then

lim sup
n→∞

FWERP ≤ α .

Proof: To establish (13), denote by ĵ the smallest random index for which there is a

false rejection; that is, there exists θ′ ∈ Θ0(P ) such that

anQ̂n(θ′) > ĉn(Sĵ, 1− α) .

By definition of ĵ, we must have that Θ0(P ) ⊆ Sĵ. Thus, by (11) we have that

ĉn(Sĵ, 1− α) ≥ ĉn(Θ0(P ), 1− α) .

Hence, it must be the case that

sup
θ∈Θ0(P )

anQ̂n(θ) ≥ anQ̂n(θ′) > ĉn(Θ0(P ), 1− α) .

The second conclusion follows immediately.

Remark 2.1 For S ⊆ Θ, let HS denote the null hypothesis that S = Θ0(P ). The

second condition (12) used in the proof of Theorem 2.1 essentially requires that the

critical values ĉn(S, 1 − α) asymptotically control the probability of a Type 1 error at

level α when testing the null hypothesis HS using the test statistic supθ∈S anQ̂n(θ).

Thus, Theorem 2.1 remarkably reduces the multiple testing problem to the problem of

constructing valid tests of each of the null hypotheses HS.
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Remark 2.2 It is worthwhile to note that the bound (13) is valid in finite samples.

Thus, if critical values for testing the joint null hypotheses that Q(θ, P ) = 0 for all

θ ∈ K, K ⊆ Θ0(P ) that control the usual probability of a Type 1 error in finite samples

are available, then Algorithm 2.1 with these critical values provides finite sample control

of the FWERP . Unfortunately, in the settings that are of interest to us, rarely will such

critical values exist, and so we will have to resort to asymptotic arguments.

2.1.4 A Subsampling Construction

It follows from Theorem 2.1 that under the two restrictions (11) and (12), the set of θ

values corresponding to the accepted hypotheses from Algorithm 2.1, Cn, satisfies (2).

We now provide a concrete construction of critical values that satisfy these two properties

under a weak assumption on the asymptotic behavior of the test statistics anQ̂n(θ). The

construction will be based on subsampling.

For K ⊆ Θ and α ∈ (0, 1), define

r̂n(K, 1− α) = inf{x :
1

Nn

∑
1≤i≤Nn

I{sup
θ∈K

abQ̂n,b,i(θ) ≤ x} ≥ 1− α} . (14)

Note that by construction, the critical values defined by (14) satisfy the monotonicity

restriction (11). We now provide conditions under which they also satisfy (12).

Theorem 2.2 Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with dis-

tribution P . Let Jn(·, P ) denote the distribution of supθ∈Θ0(P ) anQ̂n(θ) under P . Suppose

Jn(·, P ) converges in distribution to a limit distribution J(·, P ) and J(·, P ) is continuous

at its smallest 1− α quantile. Then, the following are true:

(i) Condition (12) holds when ĉn(Θ0(P ), 1− α) is given by (14) with K = Θ0(P ).

(ii) Algorithm 2.1 with ĉn(K, 1 − α) given by (14) provides asymptotic control of the

FWERP at level α.

(iii) The set of θ values corresponding to accepted hypotheses from Algorithm 2.1 with

ĉn(K, 1− α) given by (14), Cn, satisfies (2).
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Proof: The first result follows from Theorem 2.1.1 of Politis et al. (1999). The second

follows from Theorem 2.1. The third follows from Lemma 2.1.

Remark 2.3 As we will see below, in some cases, though it may be possible to assert

that Jn(·, P ) converges in distribution to a limit distribution J(·, P ), it may be difficult

to determine whether or not the limit distribution J(·, P ) is continuous at its smallest

1 − α quantile. In these instances, the conclusion of Theorem 2.2 will still hold if

ĉn(Θ0(P ), 1 − α) is given by r̂n(K, 1 − α) + ε with K = Θ0(P ) and ε > 0. A formal

justification of this assertion is provided in the appendix.

Remark 2.4 Because
(

n
b

)
may be large, it is often more practical to use the following

approximation to (14). Let Bn be a positive sequence of numbers tending to ∞ as

n → ∞ and let I1, . . . , IBn be chosen randomly with or without replacement from the

numbers 1, . . . , Nn. Then, it follows from Corollary 2.4.1 of Politis et al. (1999) that one

may approximate (14) by

inf{x :
1

Bn

∑
1≤i≤Bn

I{sup
θ∈K

abQ̂n,b,Ii
(θ) ≤ x} ≥ 1− α}

without affecting the conclusions of Theorem 2.2.

We now revisit each of the examples described in the introduction and use Theorem

2.2 to provide conditions under which Algorithm 2.1 with ĉn(Θ0(P ), 1−α) given by (14)

asymptotically controls the FWERP and thus the set of θ values corresponding to the

accepted hypotheses, Cn, satisfies (2).

Example 2.1 (One-Sided Mean) Recall the setup of Example 1.1. Suppose P is such

that the variance σ2(P ) exists and is nonzero. It is straightforward to verify the assump-

tions of Theorem 2.2 for any such P . Let an = n. Assume without loss of generality

that µ(P ) = 0. Then,

sup
θ∈Θ0(P )

anQ̂n(θ) = sup
θ≥0

n(X̄n − θ)2
+ = (

√
nX̄n)2

+
L→ (σ(P )Z)2

+ ,

where Z is a standard normal random variable. This limit distribution is continuous at

its 1− α quantile provided α < 1
2
.
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Example 2.2 (Two-Sided Mean) Recall the setup of Example 1.2. Suppose that P is

such that the variances σ2
X(P ) and σ2

Y (P ) (and thus the covariance σX,Y (P )) exist and

are both nonzero. Suppose further that µX(P ) ≤ µY (P ). As in Example 2.1, it is

straightforward to verify the assumptions of Theorem 2.2 for any such P . Let an = n.

There are two cases to consider: either µX(P ) < µY (P ) or µX(P ) = µY (P ). In the

former case, we have that with probability tending to 1, X̄n < Ȳn eventually. Hence,

only one of (X̄n − θ)2
+ or (θ − Ȳn)2

+ will be strictly positive. It is easy to see that

the point of maximum of Q̂n(θ) over θ ∈ Θ0(P ) will occur on the boundary. Thus,

supθ∈Θ0(P ) nQ̂n(θ) equals

max{nQ̂n(µX(P )), nQ̂n(µY (P ))} L→ max{(σX(P )Z1)
2
+, (σY (P )Z2)

2
+}

where Z1 and Z2 are distributed as standard normal random variables with covariance

− σX,Y (P )

σX(P )σY (P )
. This limit distribution is continuous at its 1− α quantile provided α < 1

2
.

In the latter case, it is easy to see that

sup
θ∈Θ0(P )

nQ̂n(θ) = nQ̂n(µ1(P ))
L→ (σ1(P )Z1)

2
+ + (σ2(P )Z2)

2
+ ,

where Z1 and Z2 are distributed as before. Again, this limit distribution is continuous

at its 1− α quantile provided α < 1
2
.

Example 2.3 (Regression with Interval Outcomes) Recall the setup of Example 1.3.

Let an = n and let {x1, . . . , xJ} be a set of vectors in Rk whose span is of dimension k.

Suppose P is such that (i) suppP (Xi) = {x1, . . . , xJ} and (ii) the variances of Y1 and Y2,

σ2
1(P ) and σ2

2(P ), exist. For l ∈ {1, 2} and j ∈ {1, . . . , J}, let τl(xj) = EP{Yli|Xi = xj}
and

τ̂l(xj) =
1

n(xj)

∑
1≤i≤n:Xi=xj

Yli ,

where n(xj) = |{1 ≤ i ≤ n : Xi = xj}|. Let

Q̂n(θ) =
∑

1≤j≤J

n(xj)

n
{(τ̂1(xj)− x′jθ)

2
+ + (x′jθ − τ̂2(xj))

2
+} .

Chernozhukov et al. (2004) prove under these conditions that Jn(·, P ) converges in dis-

tribution to a limit distribution J(·, P ). Unfortunately, it is difficult to determine for

which α the distribution of ζ(P ) is continuous at its 1−α quantile. Even so, Algorithm

2.1 may be used to construct confidence regions satisfying (2) following Remark 2.3.
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Example 2.4 (Moment Inequalities) Recall the setup of Example 1.4. Let an = n and

for δ ∈ Rm
+ , let

Kn(δ, P ) = {θ ∈ Θ : −δj ≤
√
nEP{gj(Xi, θ)} ≤ 0 for all j = 1, . . . ,m} .

Suppose P is such that (i) for each j = 1, . . . ,m

sup
θ∈Θ0(P )

1√
n

∑
1≤i≤n

(gj(Xi, θ)− EP{gj(Xi, θ)}) = OP (1) . (15)

and (ii) for each δ ∈ Rm
+ ,

sup
θ∈Kn(δ,P )

∑
1≤j≤m

(
1√
n

∑
1≤i≤n

(gj(Xi, θ))
2
+

L→ ζ(δ, P ) .

With an abuse of notation, let

Kn(δ, P )c = {θ ∈ Θ0(P ) : θ 6∈ Kn(δ, P )} .

Using this notation, we have that supθ∈Θ0(P ) anQ̂n(θ) may be written as

sup
θ∈Kn(δ,P )

anQ̂n(θ) ∨ sup
θ∈Kn(δ,P )c

anQ̂n(θ) .

Note that the first of these two terms, supθ∈Kn(δ,P ) anQ̂n(θ), equals

sup
θ∈Kn(δ,P )c

∑
1≤j≤m

{ 1√
n

∑
1≤i≤n

(gj(Xi, θ)− EP{gj(Xi, θ)}+
√
nEP{gj(Xi, θ)})2

+} .

Using the defintion of Kn(δ, P ) and (15), it is not difficult to see that this expression

equals 0 with probability tending to 1 as n and δ both tend to infinity. By assumption,

we have that the second term, supθ∈Kn(δ,P ) anQ̂n(θ), converges in distribution to ζ(δ, P ).

Define ζ(P ) = limδ→∞ ζ(δ, P ). Note that this limit exists by the Monotone Convergence

Theorem and is tight because supθ∈Θ0(P ) anQ̂n(θ) is bounded above by

sup
θ∈Θ0(P )

∑
1≤j≤m

1√
n

∑
1≤i≤n

(gj(Xi, θ)− EP{gj(Xi, θ)})2
+ .

Following the arguments given in Chernozhukov et al. (2004), we may now assert that

sup
θ∈Θ0(P )

anQ̂n(θ)
L→ ζ(P ) .

Unfortunately, as in Example 2.3, it is difficult to determine for which α the distribution

of ζ(P ) is continuous at its 1 − α quantile, but Algorithm 2.1 may still be used to

construct confidence regions satisfying (2) following Remark 2.3.
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Remark 2.5 Throughout this paper, we are assuming that the observations Xi, i =

1, . . . , n are an i.i.d. sequence of random variables with distribution P . Many of the

results, however, can be extended to certain time series settings. Consider, for example,

the following extension of Theorem 2.2. Let

r̂n(K, 1− α) = inf{x :
1

n− b+ 1

∑
1≤i≤n−b+1

I{sup
θ∈K

abQ̂n,b,i(θ) ≤ x} ≥ 1− α} , (16)

where i = 1, . . . , n− b+ 1 now indexes only the subsets of data of size b whose observa-

tions are consecutive. If one assumes that the Xi, i = 1, . . . , n are observations from a

distribution P for which the corresponding α-mixing sequence αX(m) → 0 as m→∞,

but otherwise maintains the assumptions of Theorem 2.2, then it follows from Theorem

3.2.1 of Politis et al. (1999) that the conclusions of the theorem continue to hold.

Remark 2.6 Our construction of critical values has used subsampling. We now show

by example that the bootstrap may fail to approximate the distribution of the statistic

sup
θ∈K

anQ̂n(θ) = (
√
nX̄n)2

+ (17)

when K = Θ0(P ). Note that supθ∈Θ0(P ) anQ̂n(θ) ∼ (Z)2
+, where Z is a standard normal

random variable.

To this end, recall the setup of Example 1.1. Let an = n and suppose that P =

N(0, 1). Denote by X∗
i , i = 1, . . . , n an i.i.d. sequence of random variables with distri-

bution P̂n given by the empirical distribution of the original observationsXi, i = 1, . . . , n.

Define

Q̂∗
n(θ) = (X̄∗

n − θ)2
+ .

First note that P{Ac} = 1 for any c ∈ (0,∞), where

Ac = {ω : lim inf
n→∞

√
nX̄n < −c} . (18)

To see this, note that the Law of the Iterated Logarithm asserts that

lim sup
n→∞

√
nX̄n√

2 log log n
= 1 P−a.s. .

This in turn implies that

{
√
nX̄n >

√
2 log log n i.o.} P−a.s.
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and by symmetry that

{
√
nX̄n < −

√
2 log log n i.o.} P−a.s.

It follows that P{Ac} = 1.

Now consider the bootstrap approximation to the distribution of (17) at K =

Θ0(P ) = [0,∞), which is given by

L( sup
θ∈Θ0(P )

an(Q̂∗
n(θ)− Q̂n(θ))|Xi, i = 1, . . . , n) . (19)

This approximation mimics the hypothesis that Q(θ, P ) = 0 for all θ ∈ Θ0(P ) by

centering about Q̂n(θ). For ω ∈ Ac, consider a subsequence nk of n ≥ 1 for which
√
nkX̄nk

(ω) < −c for all k. For such a subsequence, we have, conditionally on Xi(ω), i =

1, . . . , n, that

sup
θ∈Θ0(P )

ank
(Q̂∗

nk
(θ)− Q̂nk

(θ)(ω)) = sup
θ≥0

(nk(X̄
∗
nk
− θ)2

+ − nk(X̄nk
(ω)− θ)2

+)

= sup
θ≥0

nk(X̄
∗
nk
− θ)2

+

= (
√
nkX̄

∗
nk

)2
+

= (
√
nk(X̄

∗
nk
− X̄nk

(ω)) +
√
nkX̄nk

(ω))2
+

≤ (
√
nk(X̄

∗
nk
− X̄nk

(ω))− c)2
+

L→ (Z − c)2
+ .

The second equality follows from the fact that
√
nk(X̄nk

(ω)− θ) < 0 for all θ ≥ 0 since
√
nkX̄nk

(ω) < −c. It follows that the bootstrap fails to approximate the distribution of

(17) at K = Θ0(P ).

It is worthwhile to consider the actual value of the probability (12) if the bootstrap

approximation above were used instead of subsampling. To this end, first note that this

probability is given by

P{ sup
θ∈Θ0(P )

anQ̂n(θ) > ĉboot,n(1− α)} , (20)

where ĉboot,n(1 − α) is the 1 − α quantile of (19). Recall that supθ∈Θ0(P ) anQ̂n(θ)

is distributed as (Z)2
+, where Z is a standard normal random variable. Note that
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supθ∈Θ0(P ) an(Q̂∗
n(θ)− Q̂n(θ)) equals

sup
θ∈Θ0(P )

n((X̄∗
n − θ)2

+ − (X̄n − θ)2
+)

= sup
θ≥0

(
√
n(X̄∗

n − X̄n) +
√
nX̄n −

√
nθ)2

+ − (
√
nX̄n −

√
nθ)2

+) .

Therefore, (19) converges in distribution to

L(sup
θ≥0

(Z∗ + Z − θ)2
+ − (Z − θ)2

+|Z) , (21)

where Z∗ is a standard normal random variable distributed independently of Z. The

probability (20) is therefore asymptotically equal to

P{(Z)2
+ > c(1− α|Z)} , (22)

where c(1− α|Z) is the 1− α quantile of (21). Note that (21) dominates

L((Z∗ + Z)2
+ − (Z)2

+|Z) . (23)

It follows that c(1−α|Z) is no smaller than c′(1−α|Z), the 1−α quantile of (23). The

probability (22) is therefore bounded above by

P{(Z)2
+ > c′(1− α|Z)} .

Using this bound, we may use simulation to determine that (22) is asymptotically

bounded above by approximately 0 for α = .1 and α = .05. In fact, with 2000 sim-

ulations we find that (22) is asymptotically bounded above by 0 to three significant

digits for both α = .1 and α = .05. Therefore, while critical values from the bootstrap

satisfy (12), they are, as before, too conservative for practical purposes.

Remark 2.7 It is interesting to note that the proof of Theorem 2.1 only requires that

the initial set S1 be such that Θ0(P ) ⊆ S1. Indeed, one can allow for S1 to be random

provided that it satisfies

P{Θ0(P ) ⊆ S1} → 1 (24)

without affecting the argument in any way. Thus, using our results, it is possible to recast

the method of Chernozhukov et al. (2004) as a single-step method with a particular choice

of S1. In their procedure,

S1 = Θ̂0,n = {θ ∈ Θ : Q̂n(θ) < εn} ,
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where εn is a positive sequence of constants tending to zero slowly. Recall that because

of this rate restriction on εn, they are able to show that (24) holds. Hence, using our

results, it follows that their confidence regions satisfy (2). Unfortunately, the level of

εn is completely arbitrary and the confidence region resulting from application of their

method may thus be very large or very small depending on the choice of εn. Our results

provide a justification of iterating their procedure, thereby removing this arbitrariness,

and produce ever smaller confidence regions until a stopping criterion is met while still

maintaining the coverage requirement.

The authors’ goal, however, is not confidence regions that satisfy (2), but instead

ones that satisfy the stronger coverage property

lim
n→∞

P{Θ0(P ) ⊆ Cn} = 1− α . (25)

They show that their confidence regions satisfy (25) under certain assumptions, including

the assumptions of our Theorem 2.2, and verify that these assumptions hold for several

examples. Consider the confidence region resulting from our stepdown procedure with

S1 = Θ̂0,n. Since confidence regions produced in this way are smaller than theirs, but still

satisfies the level constraint, it follows that such confidence regions satisfy (25) whenever

their assumptions hold.

Remark 2.8 It follows from the discussion in Remark 2.7 that there are no first-order

asymptotic differences between confidence regions from our stepdown procedure with

S1 = Θ̂0,n and those of Chernozhukov et al. (2004). Even with such a delicate choice of

S1, we expect the iterative approach to perform better in finite samples. To this end, it

is worthwhile to examine second-order differences. Consider Example 1.1. Let an = n

and suppose P is such that σ2(P ) exists. Assume further that EP{X4
i } exists and that

Cramér’s condition holds; that is,

lim sup
|s|→∞

|ψP (s)| < 1 ,

where ψP (s) denotes the characteristic function of P . Let

Θ̂0,n = {θ ∈ R : n(X̄n − θ)2
+ ≤ λn} ,
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where λn > 0 is an increasing sequence tending to infinity, but so slowly that λn/n→ 0.

These rate restrictions on λn ensure that the assumptions of Chernozhukov et al. (2004)

are satisfied. The confidence region of Chernozhukov et al. (2004) is given by

C ′n = {θ ∈ R : n(X̄n − θ)2
+ ≤ r̂n(Θ̂0,n, 1− α)} .

In order to obtain a second-order accurate expression for r̂n(Θ̂0,n, 1− α), first note that

r̂n(Θ̂0,n, 1− α) is the 1− α quantile of

Ln(x) =
1

Nn

∑
1≤i≤Nn

I{b(X̄n,b,i − X̄n +
√
λn/n)2

+ ≤ x} ,

which, for x ≥ 0, we may rewrite as

1

Nn

∑
1≤i≤Nn

I{
√
b(X̄n,b,i − X̄n) ≤

√
x−

√
λnb/n} .

Now consider

L̃n(x) =
1

Nn

∑
1≤i≤Nn

I{
√
b(X̄n,b,i − X̄n) ≤ x} .

Since
√
b(X̄n − µ(P )) = OP (

√
b/n), it follows from Lemma 5.2 of Romano and Shaikh

(2006) that

L̃n(x) = Jb(x, P ) +OP (

√
b

n
)

uniformly in x, where Jb(x, P ) = P{
√
b(X̄b − µ(P )) ≤ x}. From Theorem 15.5.1 of

Lehmann and Romano (2005), we have that

Jb(x, P ) = Φ(
x

σ(P )
)− 1

6
√
b
γ(P )φ(

x

σ(P )
)(

x2

σ2(P )
− 1) +O(

1

b
)

uniformly in x, where

γ(P ) = EP{(
Xi − µ(P )

σ(P )
)3} .

It follows that

L̃n(x) = Φ(
x

σ(P )
)− 1

6
√
b
γ(P )φ(

x

σ(P )
)(

x2

σ2(P )
− 1) +OP (

1

b
∨

√
b

n
)

uniformly in x. From this we can deduce that the 1− α quantile of L̃n(x) is

σ(P )(z1−α +
δ√
b
) +OP (

1

b
∨

√
b

n
) ,
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where δ = 1
6
γ(P )(z2

1−α − 1) and z1−α is the 1 − α quantile of the standard normal

distribution. Hence,

r̂n(Θ̂0,n, 1− α) = (σ(P )(z1−α +
δ√
b
) +

√
λnb

n
+OP (

1

b
∨

√
b

n
))2 .

Now consider the confidence region Cn given by Algorithm 2.1. First note that

supθ∈Θ̂0,n
anQ̂n(θ) = λ2

n. From the above expression for r̂n(Θ̂0,n, 1 − α), we therefore

have that

P{ sup
θ∈Θ̂0,n

anQ̂n(θ) > r̂n(Θ̂0,n, 1− α)} → 1 .

It follows that Cn is no larger than

{θ ∈ R : n(X̄n − θ) ≤ r̂n(C ′n, 1− α)}

with probability tending to 1. From the above analysis, we have immediately that

r̂n(C ′n, 1− α) is given by

(σ(P )(z1−α +
δ√
b
) +

√
b

n
(σ(P )(z1−α +

δ√
b
) +

√
λnb

n
) +OP (

1

b
∨

√
b

n
))2 .

To complete the comparison, suppose first that 1/b is of order no larger than
√
b/n;

that is, n/b3 = O(1). If this is the case, then it follows from the above expressions for

r̂n(Θ̂0,n, 1−α) and r̂n(C ′n, 1−α) that Cn is smaller to second-order than C ′n. To see this,

note that if 1/b is of order no larger than
√
b/n, then

r̂n(Θ̂0,n, 1− α) = (σ(P )(z1−α +
δ√
b
) +OP (

√
λnb

n
))2 ,

whereas

r̂n(C ′n, 1− α) = (σ(P )(z1−α +
δ√
b
) +OP (

√
b

n
(1 ∨

√
λnb

n
)))2 .

When 1/b is of order larger than
√
b/n, the comparison of Cn to C ′n becomes more

delicate and depends on the rate at which λn tends to infinity, but by construction Cn

can, of course, never be larger than C ′n.

Finally, we note briefly that it is possible to to construct confidence regions that are

even smaller to second-order than Cn above by considering test statistics in which the

mean has been studentized; that is, replace the test statistics above with ones based on

Q̂n(θ) = (
X̄n

σ̂n

− θ)2
+ .
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where σ̂n is the usual estimate of σ(P ). See Chapter 10 of Politis et al. (1999) for details.

2.1.5 An Alternative Construction

As an alternative to the construction of confidence regions satisfying (2) presented above,

consider a single-step method in which

S1 = Θ̃0,n = {θ ∈ Θ : Q̂n(θ) = 0}

and critical values are given by (14); that is,

Cn = {θ ∈ Θ : anQ̂n(θ) ≤ r̂n(Θ̃0,n, 1− α)} . (26)

Under the assumptions of Theorem 2.2, such an approach may often lead to confidence

regions satisfying (2), as in the following two examples.

Example 2.5 (One-Sided Mean) Recall the setup of Example 1.1. Let an = n and

suppose P is such that the variance σ2(P ) exists and is nonzero. From the analysis

of Example 2.1, we have that supθ∈Θ0(P ) anQ̂n(θ)
L→ (σ(P )Z)2

+, where Z is a standard

normal random variable. Note that this limit distribution is continuous at its 1 − α

quantile provided α < 1
2
. By Theroem 2.1.1 of Politis et al. (1999), to show that Cn

defined by (26) satisfies (2), it therefore suffices to show that supθ∈Θ̃0,n
abQ̂b(θ) shares

this limit distribution. To this end, first note that Θ̃0,n = {θ ∈ Θ : θ ≥ X̄n}. Thus,

sup
θ∈Θ̃0,n

abQ̂b(θ) = b(X̄b − X̄n)2
+

L→ (σ(P )Z)2
+ ,

where Z is again a standard normal random variable. The desired conclusion follows.

Example 2.6 (Two-Sided Mean) Recall the setup of Example 1.2. Let an = n and

suppose that P is such that the variances σ2
X(P ) and σ2

Y (P ) (and thus the covariance

σX,Y (P )) exist and are both nonzero. Suppose further that µX(P ) ≤ µY (P ). From the

analysis of Example 2.2, we have that

sup
θ∈Θ0(P )

anQ̂n(θ)
L→

max{(σX(P )Z1)
2
+, (σY (P )Z2)

2
+} if µX(P ) < µY (P )

(σ1(P )Z1)
2
+ + (σ2(P )Z2)

2
+ if µX(P ) = µY (P )

,
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where Z1 and Z2 are standard normal random variables with covariance − σX,Y (P )

σX(P )σY (P )
.

Note that this limit distribution is continuous at its 1 − α quantile provided α < 1
2
.

Therefore, as in Example 2.5, to show that Cn defined by (26) satisfies (2), it suffices to

show that supθ∈Θ̃0,n
abQ̂b(θ) shares this limit distribution.

To this end, first consider the case in which µX(P ) < µY (P ). Then, with probability

approaching 1, we have that X̄n < Ȳn, so

Θ̃0,n = {θ ∈ R : X̄n < θ < Ȳn} .

Similarly, we also have that X̄n < Ȳb and X̄b < Ȳn with probability approaching 1. Thus,

sup
θ∈Θ̃0,n

abQ̂b(θ) = max{abQ̂b(X̄n), abQ̂b(Ȳn)}

= max{b(X̄b − X̄n)2
+ + b(X̄n − Ȳb)

2
+, b(X̄b − Ȳn)2

+ + b(Ȳn − Ȳb)
2
+}

L→ max{(σX(P )Z1)
2
+, (σY (P )Z2)

2
+} .

The desired conclusion now follows for this case.

Now consider the case in which µX(P ) = µY (P ). Then,

Θ̂0,n =

{θ ∈ R : X̄n < θ < Ȳn} if X̄n < Ȳn

{ X̄n+Ȳn

2
} otherwise

.

Thus, if X̄n < Ȳn,

sup
θ∈Θ̃0,n

abQ̂b(θ) = max{abQ̂b(X̄n), abQ̂b(Ȳn)}

= max{b(X̄b − X̄n)2
+ + b(X̄n − Ȳb)

2
+, b(X̄b − Ȳn)2

+ + b(Ȳn − Ȳb)
2
+}

L→ (σ1(P )Z1)
2
+ + (σ2(P )Z2)

2
+ .

On the other hand, if X̄n ≥ Ȳn,

sup
θ∈Θ̃0,n

abQ̂b(θ) = abQ̂b(
X̄n + Ȳn

2
)

= b(X̄b −
X̄n + Ȳn

2
)2
+ + b(

X̄n + Ȳn

2
− Ȳb)

2
+

L→ (σ1(P )Z1)
2
+ + (σ2(P )Z2)

2
+ .

The desired conclusion now follows.
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The following example, however, shows that the alternative construction given by

(26) may not always produce valid confidence regions.

Example 2.7 Let Xi, i = 1, . . . , n be an i.i.d. sequence of random variables with dis-

tribution P . The identified set, Θ0(P ), is assumed to be the set of medians of P . For

ease of argument, suppose it is known to the researcher that 0 is a median of P , but it

may not be the only median. This set may be characterized as the set of minimizers of

Q(θ, P ) = EP{|X − θ| − |X|} .

The sample analog of Q(θ, P ) is simply 1
n

∑
1≤i≤n |Xi − θ| − |Xi|.

Let an =
√
n and suppose P is defined by P{Xi = 1} = P{Xi = −1} = 1

2
. Hence,

Θ0(P ) = [−1, 1]. Note that

|x− θ| − |x| = D(x)θ +R(x, θ) ,

where D(x) = −I{x > 0} + I{x ≥ 0} and R(x, θ) = 2(θ − x)sgn(x)I{|x| ≤ |θ|}. Since

P{|X| ≤ θ} = 0 for any θ ∈ Θ0(P ), it follows that with probability 1

sup
θ∈Θ0(P )

anQ̂n(θ) = sup
−1≤θ≤1

1√
n

∑
1≤i≤n

D(Xi)θ = ẐnI{Ẑn > 0} − ẐnI{Ẑn ≤ 0} ,

where Ẑn = 1√
n

∑
1≤i≤nD(Xi). Therefore, by the Continuous Mapping Theorem

sup
θ∈Θ0(P )

anQ̂n(θ)
L→ ZI{Z > 0} − ZI{Z ≤ 0}) , (27)

where Z is a standard normal random variable.

We will now show that asymptotically the distribution of supθ∈Θ̃0,n
abQ̂b(θ) is not

close to the distribution of supθ∈Θ0(P )

√
nQ̂n(θ). To this end, let n tend to infinity

through the odd integers . As a result, Θ̃0,n will always be a singleton. Let θ̃n denote

this point. It is easy to see that

θ̃n =

1 if Ẑn > 0

−1 if Ẑn < 0
. (28)
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Since θ̃n ∈ Θ0(P ), we have as before that P{|X| ≤ θ̃n} = 0. It follows that with

probability 1

sup
θ∈Θ̃0,n

abQ̂b(θ) =
1√
b

∑
1≤i≤b

D(Xi)θ̃n = ẐbI{Ẑn > 0} − ẐbI{Ẑn ≤ 0} .

Since b/n→ 0, (Ẑb, Ẑn)′ converges in distribution to a bivariate normal distribution with

variances equal to 1 and correlation 0. Hence, by the Continuous Mapping Theorem, the

distribution of supθ∈Θ̃0,n
aBQ̂b(θ) is asymptotically quite different from the distribution

(27). Importantly, it’s 1 − α quantile will asymptotically be strictly smaller than the

1 − α quantile of the distribution of (27). Thus, Cn defined by (26) fails to satisfy (2)

for this example.

2.2 Uniform Consistency in Level

We now provide conditions under which the set of θ values corresponding to the accepted

hypotheses from Algorithm 2.1, Cn, satisfies (3).

Theorem 2.3 Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with dis-

tribution P . Let Jn(·, P ) denote the distribution of supθ∈Θ0(P ) anQ̂n(θ) under P . Suppose

P ∈ P and

lim sup
n→∞

sup
P∈P

sup
x∈R

{Jb(x, P )− Jn(x, P )} ≤ 0 . (29)

Then, the set of θ values corresponding to the accepted hypotheses from Algorithm 2.1

using critical values given by (14), Cn, satisfies (3).

Proof: By Theorem 2.1, we have that

FWERP ≤ 1− P{ sup
θ∈Θ0(P )

anQ̂n(θ) ≤ r̂n(Θ0(P ), 1− α)} .

By Theorem 3.1(iv) of Romano and Shaikh (2006), it follows that

lim inf
n→∞

inf
P∈P

P{ sup
θ∈Θ0(P )

anQ̂n(θ) ≤ r̂n(Θ0(P ), 1− α)} ≥ 1− α .

Thus,

lim sup
n→∞

sup
P∈P

FWERP ≤ α .
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The asserted claim now follows immediatly from Lemma 2.1.

We now provide two applications of Theorem 2.3 to constructing confidence regions

satisfying the coverage requirement (3).

Example 2.8 (One-Sided Mean) Recall the setup of Example 1.1. We will now use

Theorem 2.3 to show that for this example the set of θ values corresponding to the

accepted hypotheses from Algorithm 2.1, Cn, satisfies (3) for a large class of distributions

P. To this end, let an = n and let P be a set of distributions satisfying

lim
λ→∞

sup
P∈P

EP

[
|X − µ(P )|2

σ2(P )
I

{
|X − µ(P )|

σ(P )
> λ

}]
= 0 . (30)

Note that because supθ∈Θ0(P ) anQ̂n(θ) ≥ 0, we may restrict attention to x ≥ 0 in (29).

Note further that for x ≥ 0,

Jn(x, P ) = P{(
√
n(X̄n − µ(P )))2

+ ≤ x} = P{
√
n(X̄n − µ(P )) ≤

√
x} .

By Lemma 11.4.1 of Lehmann and Romano (2005), we have that

sup
P∈P

sup
x≥0

|Jn(x, P )− Φσ(P )(x)| → 0 ,

where Φσ(P ) is the distribution of a mean-zero normal random variable with variance

σ2(P ). The desired condition (29) follows from an appeal to the triangle inequality.

Example 2.9 (Two-Sided Mean) Recall the setup of Example 1.2. We will now use

Theorem 2.3 to show that for this example the set of θ values corresponding to the

accepted hypotheses from Algorithm 2.1, Cn, satisfies (3) for a large class of distributions

P. To this end, let an = n, let P be a set of bivariate distributions such that the marginal

distributions satisfy (30) and Xi ≤ Yi with probability 1 (thus, µX(P ) ≤ µY (P )). We

will argue by contradiction that the required condition (29) holds. If the result were

false, then there would exist a subsequence nj and a corresponding sequence Pnj
∈ P

such that µX(Pnj
) ≤ µY (Pnj

) and

sup
x∈R

{Jbnj
(x, Pnj

)− Jnj
(x, Pnj

)} → δ . (31)
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for some δ > 0. Note that since X̄bnj
< Ȳbnj

, then supθ∈Θ0(Pnj ) abnj
Q̂bnj

(θ) equals

max{(Z1,bnj
(Pnj

))2
+ + ((Z2,bnj

(Pnj
)) + ∆bnj

(Pnj
))2

+,

(Z2,bnj
(Pnj

))2
+ + ((Z1,bnj

(Pnj
)) + ∆bnj

(Pnj
))2

+} ,

where

Z1,m(P ) =
√
m(X̄m − µX(P ))

Z2,m(P ) =
√
m(µY (P )− Ȳm)

∆m(P ) =
√
m(µX(P )− µY (P )) .

Let J̃bnj
(x, Pnj

) be the distribution of

max{(Z1,bnj
(Pnj

))2
+ + ((Z2,bnj

(Pnj
)) + ∆nj

(Pnj
))2

+,

(Z2,bnj
(Pnj

))2
+ + ((Z1,bnj

(Pnj
)) + ∆nj

(Pnj
))2

+} ,

Since ∆bnj
(Pnj

) ≥ ∆nj
(Pnj

), we have that

J̃bnj
(x, Pnj

) ≥ Jbnj
(x, Pnj

) .

Thus, (31) implies that

sup
x∈R

{J̃bnj
(x, Pnj

)− Jnj
(x, Pnj

)} 6→ 0 . (32)

Since anQ̂n(θ) ≥ 0, we may restrict attention to x ≥ 0. Next, note that for x ≥ 0,

J̃bnj
(x, Pnj

) is the probability under Pnj
that (Z1,bnj

(Pnj
), Z2,bnj

(Pnj
))′ lies in a set Sx ∈

S, where

S = {S ⊆ R2 : S convex and Φ1,1,1(∂S) = Φ1,1,−1(∂S) = 0} .

Importantly, Jnj
(x, Pnj

) is simply the probability under Pnj
that (Z1,nj

(Pnj
), Z2,nj

(Pnj
))′

lies in the same set. But, by Lemma 3.1 of Romano and Shaikh (2006), however, we

know that

sup
S∈S

|Pnj
{(Z1,nj

(Pnj
), Z2,nj

(Pnj
))′ ∈ S} − ΦσX(Pnj ),σY (Pnj ),ρ(Pnj )(S)| → 0 ,

and

sup
S∈S

|Pnj
{(Z1,bnj

(Pnj
), Z2,bnj

(Pnj
))′ ∈ S} − ΦσX(Pnj ),σY (Pnj ),ρ(Pnj )(S)| → 0 .

An appeal to the triangle inequality yields the desired contradiction to (32).
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2.3 Confidence Regions for Functions of the Identified Set

In this section, we consider the problem of constructing sets satisfying (5) and (6). Let

f : Θ → Λ be given. Our construction again relies upon equivalence with an appropriate

multiple testing problem, but in this case the family of null hypotheses is given by

Hλ : λ ∈ Λ0(P ) for λ ∈ Λ , (33)

where Λ0(P ) is defined by (4). The alternative hypotheses are understood to be

Kλ : λ 6∈ Λ0(P ) for λ ∈ Λ .

As before, it suffices to consider the problem of testing this family of null hypotheses in

a way that controls the FWERP at level α.

For λ ∈ Λ, let f−1(λ) = {θ ∈ Θ : f(θ) = λ}. Note that

λ ∈ Λ0(P ) ⇐⇒ ∃ θ ∈ Θ0(P ) s.t. f(θ) = λ

⇐⇒ ∃ θ ∈ Θ s.t. Q(θ, P ) = 0 and f(θ) = λ

⇐⇒ ∃ θ ∈ f−1(λ) s.t. Q(θ, P ) = 0

⇐⇒ inf
θ∈f−1(λ)

Q(θ, P ) = 0 .

This equivalence suggests a natural test statistic for each of these null hypotheses Hλ:

inf
θ∈f−1(λ)

anQ̂n(θ) , (34)

where anQ̂n(θ) is the test statistic used earlier to test the null hypothesis that Q(θ, P ) =

0.

We may now proceed as before, but with this test statistic in place our earlier test

statistic anQ̂n(θ). For K ⊆ Λ, let ĉfn(K, 1 − α) be an estimate of the 1 − α quantile of

distribution of

sup
λ∈K

inf
θ∈f−1(λ)

anQ̂n(θ) ,

and consider the following modification of Algorithm 2.1.
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Algorithm 2.2

1. Let S1 = Λ. If supλ∈S1
infθ∈f−1(λ) anQ̂n(θ) ≤ ĉfn(S1, 1−α), then accept all hypothe-

ses and stop; otherwise, set S2 = {λ ∈ Λ : infθ∈f−1(λ) anQ̂n(θ) ≤ ĉfn(S1, 1−α)} and

continue.

2. If supλ∈S2
infθ∈f−1(λ) anQ̂n(θ) ≤ ĉfn(S2, 1− α), then accept all hypotheses Hλ with

λ ∈ S2 and stop; otherwise, set S3 = {λ ∈ Λ : infθ∈f−1(λ) anQ̂n(θ) ≤ ĉfn(S2, 1− α)}
and continue.

...

j. If supλ∈Sj
infθ∈f−1(λ) anQ̂n(θ) ≤ ĉfn(Sj, 1 − α), then accept all hypotheses Hλ with

λ ∈ Sj and stop; otherwise, set Sj+1 = {λ ∈ Λ : infθ∈f−1(λ) anQ̂n(θ) ≤ ĉfn(Sj, 1−α)}
and continue.

...

We now provide conditions under which the set of θ values corresponding to accepted

hypotheses from Algorithm 2.2 leads to confidence regions satisfying (5) and (6). For

K ⊆ Λ and α ∈ (0, 1), let

r̂f
n(K, 1− α) = inf{x :

1

Nn

∑
1≤i≤Nn

I{sup
λ∈K

inf
θ∈f−1(λ)

abQ̂n,b,i(θ) ≤ x} ≥ 1− α} . (35)

Theorem 2.4 Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with distri-

bution P . Let Jn(·, P ) denote the distribution of supλ∈Λ0(P ) infθ∈f−1(λ) anQ̂n(θ) under P .

Let Cf
n denote the set of θ values corresponding to accepted hypotheses from Algorithm

2.2 when ĉfn(K, 1− α) is given by (35).

(i) Suppose Jn(·, P ) converges in distribution to J(·, P ) and J(·, P ) is continuous at

its smallest 1− α quantile. Then, Cf
n satisfies (5).

(ii) Suppose P ∈ P and

lim sup
n→∞

sup
P∈P

sup
x∈R

{Jb(x, P )− Jn(x, P )} ≤ 0 . (36)

Then, Cf
n satisfies (6).
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Proof: Follows immediately from the arguments given in Sections 2.1 and 2.2.

We now provide a simple illustration of the use of Theorem 2.4 to construct sets

satisfying (5) and (6).

Example 2.10 Consider the following straightforward generalization of Example 1.1.

Let (Xi, Yi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P on

R2. The parameter of interest, θ0, is known to satisfy θ0,1 ≥ µX(P ) and θ0,2 ≥ µY (P ).

The identified set is therefore given by Θ0(P ) = {θ ∈ R2 : θ1 ≥ µX(P ) and θ2 ≥
µY (P )}. This set may be characterized as the set of minimizers of

Q(θ, P ) = (µX(P )− θ1)
2
+ + (µY (P )− θ2)

2
+ .

The sample analog of Q(θ, P ) is given by Q̂n(θ) = (X̄n − θ1)
2
+ + (Ȳn − θ2)

2
+. Suppose

the object of interest is the projection of Θ0(P ) onto its first component rather than the

entire set Θ0(P ); that is, the object of interest is Λ0(P ) = f(Θ0(P )), where f : R2 → R

is defined by f(θ) = θ1, instead of Θ0(P ). Note that Λ0(P ) is simply {θ1 ∈ R : θ1 ≥
µX(P )}.

First consider the problem of constructing sets satisfying (5). To this end, let an =

n and suppose P is such that σ2
X(P ) exists. Assume without loss of generality that

µX(P ) = 0. Then,

sup
θ1∈Λ0(P )

inf
f−1(θ1)

anQ̂n(θ) = sup
θ1≥0

inf
θ2∈R

n(X̄n − θ1)
2
+ + n(Ȳn − θ2)

2
+

= sup
θ1≥0

n(X̄n − θ1)
2
+

= n(X̄n)2
+

L→ (σX(P )Z)2
+ ,

where Z is a standard normal random variable. It now follows from Theorem 2.4(i)

that the set of θ values corresponding to accepted hypotheses from Algorithm 2.2 when

ĉfn(K, 1− α) is given by (35), Cf
n , satisfies (5).

Now consider the problem of constructing sets satisfying (6). As before let an = n and

let P be a set of distributions for which the marginal distribution of X satisfies (30).

Since supθ1∈Λ0(P ) inff−1(θ1) anQ̂n(θ) is simply n(X̄n)2
+, it follows immediately from the
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analysis of Example 2.8 that (36). Therefore, it follows from Theorem 2.4(ii) that the set

of θ values corresponding to accepted hypotheses from Algorithm 2.2 when ĉfn(K, 1−α)

is given by (35), Cf
n , satisfies (6).

Remark 2.9 Of course, given a confidence region for the identified set Cn, one crude

construction of a confidence region for a function of the identified set is available as

the image of Cn under the function of interest. Unfortunately, such a construction will

typically be very conservative.

3 Empirical Illustration

In this section, we use the techniques developed above to examine the impact of top-

coding of outcomes on the inferences that can be made about the parameters of a linear

regression. By top-coding of a random variable, we mean the practice of recording the

realization of the random variable if and only if it is below a certain threshhold. This

model is a special case of our Example 1.3, and so the theory developed above applies

here under the appropriate assumptions.

The motivation for our exercise stems from the following observation. In order to

study changes in the wage structure and earnings inequality, researchers often regress

the logarithm of hourly wages on various demographic characteristics. Data sets that

are used for this purpose invariably top-code wages for reasons of confidentiality. One

approach to deal with the top-coding of wages is to simply replace all of the top-coded

outcomes with a common value. In practice, this common value is often taken to be

a scalar multiple of the threshhold. This approach is justified theoretically under the

assumption that the distribution of wages conditional on top-coding is distributed as a

Pareto random variable. For a detailed description of such studies and documentation

of this practice, see Katz and Autor (1999), wherein the scalar used for this purpose is

taken to be 1.5. Of course, we do not wish to impose any parametric assumptions.

In order to examine this issue, we begin with a sample of observations from the

Annual Demographic Supplement of the Current Population Survey for the year 2000.

For each individual in the survey, the survey records a variety of demographic variables
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as well as information on wages and salaries. We select observations with the following

demographic characteristics: (1) race is white; (2) age is between 20 and 24 years; (3)

are at least college graduates; (4) primary source of income is wages and salaries; and (5)

worked at least 2 hours per week on average. There are 305 such observations, none of

which suffer from top-coding of wages and salaries. We treat this sample of individuals

as the distribution of the observed data P and draw an i.i.d. sample of n = 1000

observations from this P . We will analyze this data both for the benchmark case of

no top-coding and for cases in which some amount of top-coding has been artificially

imposed on the data.

Recall the setup of Example 1.3. In order to allow for graphical illustration of the

confidence regions, we consider only a model in which k = 2; specifically, we take

Xi = (1, Di), where Di is 1 if the sex is female and 0 otherwise. The latent outcome

variable Y ∗
i = log(wage∗i /Hi), where wage∗i is total wages and salaries, which is possibly

unobserved in the presence of top-coding, and Hi is total hours worked. We assume that

wage∗i is bounded above by wage = $108. In the benchmark case in which there is no

top-coding, we will let Y1,i = Y2,i = Y ∗
i . In the cases in which there is some top-coding,

let wage be the threshhold above which wages are not observed. Define Y1,i = Y2,i = Y ∗
i

if wage∗i ≤ wage; otherwise, let Y1,i = Y i = log(wage/Hi) and Y2,i = Y i = log(wage/Hi).

Below we will construct both confidence regions for the identified set for each of

three different scenarios. For the sake of completeness, we will also construct confidence

regions for identifiable parameters, as discussed in Romano and Shaikh (2006). We

will compare the inferences that can be drawn from these confidence regions with the

ones that can be drawn from regressing Y a
i on Xi, where, in the benchmark case of no

top-coding, Y a
i = Y ∗

i , and, in cases with top-coding, Y a
i = Y ∗

i if wage∗i ≤ wage and

Y a
i = 1.5× Y i otherwise.

Before proceeding, we discuss some computational details. First, consider the choice

of the subsample size b. In practice, one would, of course, like to use a data-dependent

subsample size; see Politis et al. (1999) for a review of several algorithms for choosing the

subsample size in this way. For the purposes of this exercise, however, we use the same

subsample size, b = 30, in each of the constructions. As a result, differences among the

confidence regions below are not drive by variation in the choice of subsample size. Note
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Figure 1: Confidence Regions with No Top-Coding and wage = $108: Green = Confi-

dence Region for Identifiable Parameters, Red = Confidence Region for Identified Set,

Blue = Wald-style Confdience Region

that the results below remain similar for subsample sizes between 20 and 50. Second,

when computing critical values, we also used an approximation as described in Remark

2.4 with B = 200 because
(

n
b

)
is too large to compute critical values exactly. Finally,

following the discussion in Remark 2.7, in the first step of Algorithm 2.1, we let

S1 = {θ ∈ R2 : Q̂n(θ) ≤ 1000} .

The results below remain similar for much larger choices of S1, though the algorithm

then requires a few more steps to converge.

We first consider the case in which there is no top-coding. Algorithm 2.1 converged

after 11 steps and the confidence region for the identified set is given by

Cn = S11 = {θ ∈ R2 : Q̂n(θ) ≤ .0055} .

We also regress Y a
i on Xi and obtain a Wald-style confidence region. These two con-

fidence regions together with the confidence region for identifiable parameters are dis-

played in Figure 1. Since the true P generating the data is known, it is also pos-

sible to calculate the identified set, which in this case is a singleton. It is given by
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Figure 2: Confidence Regions with 5% Top-Coding and wage = $108: Green = Confi-

dence Region for Identifiable Parameters, Red = Confidence Region for Identified Set,

Blue = Wald-style Confdience Region, Black = Identified Set

Θ0(P ) = {(2.047, .042)}. As one would expect, in this instance all three confidence re-

gions are of similar shape and size. The largest is the confidence region for the identified

set and the smallest is the Wald-style confidence region. The confidence region for iden-

tifiable parameters is contained strictly within the confidence region for the identified

set.

Next, we consider a case in which there is some amount of top-coding and repeat the

exercise above. For concreteness, we choose wage = $41000, which corresponds to 5% of

the population beign subject to top-coding. Algorithm 2.1 converged after 12 steps and

the confidence region for the identified set is given by

Cn = S12 = {θ ∈ R2 : Q̂n(θ) ≤ .0182} .

The resulting confidence regions are displayed in Figure 2. Again, we may also calculate

the identified set, which is no longer a singleton due to top-coding. It is given by

{θ ∈ R2 : E{Y1,i|Di = 0} ≤ θ1 ≤ E{Y2,i|Di = 0},

E{Y1,i|Di = 1} ≤ θ1 + θ2 ≤ E{Y2,i|Di = 1}}
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Figure 3: Confidence Regions with 10% Top-Coding and wage = $108: Green = Confi-

dence Region for Identifiable Parameters, Red = Confidence Region for Identified Set,

Blue = Wald-style Confdience Region, Black = Identified Set

and is therefore a parallelogram. This set is also displayed in Figure 2. Both the confi-

dence region for the identified set and the confidence region for identifiable parameters

contain the identified set, but, as before, the confidence region for identifiable parameters

is contained strictly within the confidence region for the identified set. The Wald-style

confidence region, though still the smallest, covers only a small portion of the identified

set. As a result, inferences based on the Wald-style confidence region might be very

misleading if the assumptions used to achieve identification are not correct.

In order to make this point more forcefully, we carry out the same exercise for the

case in which there is even more top-coding. Specifically, we reduce wage to $35000,

which corresponds to 10% of the population begin subject to top-coding. Algorithm 2.1

converged after 9 steps and the confidence region for the identified set is given by

Cn = S9 = {θ ∈ R2 : Q̂n(θ) ≤ .0361} .

The resulting confidence regions along with the identified set are displayed in Figure 3.

The qualitative features of this figure are the same as before, except now the Wald-style
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Figure 4: Confidence Regions with 5% Top-Coding and wage = $106: Green = Confi-

dence Region for Identifiable Parameters, Red = Confidence Region for Identified Set,

Blue = Wald-style Confdience Region, Black = Identified Set

confidence region covers an even smaller portion of the identified set, and so inferences

based upon it may be even more misleading.

Of course, so far we have assumed a very generous upper bound on annual wages

and salaries of wage = $108. In order to assess how sensitive the qualitative results

described above are to the value of wage, we reexamine the previous case in which 10%

of the population is subject to top-coding with the much lower value of wage = $106.

Algorithm 2.1 converged after 12 steps and the confidence region for the identified set

is then given by

Cn = S12 = {θ ∈ R2 : Q̂n(θ) ≤ .0094} .

The confidence regions from this exercise along with the identified set are displayed in

Figure 4. Again, the qualitative features of this figure are the same as before, but, as one

would expect, the identified set is smaller than before. This suggests that in applications

the choice of wage is an important one, as it will impact the sharpness of inferences in

such a setting noticeably.
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4 Conclusion

This paper has provided computationally intensive, yet feasible methods for inference for

a large class of partially identified models. The class of models we have considered are

defined by a population objective function Q(θ, P ). The main problem we have studied

is the construction of random sets that contain the entire identified set with at least some

prespecified probability asymptotically. We have also extended these constructions to

situations in which the object of interest is the image of the identified set under a known

function. We have verified that these constructions can be applied in several examples

of interest.

Our results build upon earlier work by Chernozhukov et al. (2004), who also consider

the problem of inference for the same class of partially identified models. An important

feature of our procedure for constructing confidence regions for the identified set relative

to theirs is that it avoids the need for an initial estimate of the identified set. Moreover,

our results provide a justification for iterating their procedure to produce ever smaller

confidence regions until a stopping criterion is met while still maintaining the coverage

requirement.

For each of our constructions, we have also provided conditions under which our

confidence regions are uniformly consistent in level. In the context of confidence regions

for identifiable parameters, this issue has been considered earlier by Imbens and Manski

(2004), but to the best of our knowledge, we are the first in the literature to consider

uniform consistency in level for confidence regions for the identified set.

We have illustrated the use of our methods with an empirical study of the impact of

top-coding of outcomes on inferences about the parameters of a linear regression. When

confronted with this problem, researchers have typically made strong assumptions about

the unobserved values of top-coded outcomes to achieve identification. We have shown

that by using the techniques presented in this paper it is possible to weaken these

assumptions dramatically and still make meaningful inferences about the parameters

of the linear regression. This conclusion, of course, applies more generally to inferences

about the parameters of a linear regression when the outcome is interval-censored, which

includes top-coded outcomes as a special case.
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5 Appendix: Justification of Remark 4.1.2

Theorem 5.1 Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with dis-

tribution P . Let ϑ(P ) be a real-valued parameter and let ϑ̂n be some estimator of ϑ(P ).

Denote by Jn(·, P ) the distribution of the root τn(ϑ̂n − ϑ(P )), where τn is a sequence of

known constants, and suppose Jn(·, P ) converges to a limiting distribution J(·, P ). Let

b = bn < n be a sequence of positive integers tending to infinity, but satisfying b/n→ 0.

Let Nn =
(

n
b

)
and

Ln(x) =
1

Nn

∑
1≤i≤Nn

I{τb(ϑ̂n,b,i − ϑ(P )) ≤ x} , (37)

where ϑ̂n,b,i denotes the estimate ϑ̂n evaluated at the ith subset of data of size b. Finally,

let L−1
n (1 − α) = inf{x ∈ R : Ln(x) ≥ 1 − α}. Then, for any ε > 0, the following are

true:

(i) lim infn→∞ P{τn(ϑ̂n − ϑ(P )) ≤ L−1
n (1− α) + ε} ≥ 1− α.

(ii) lim infn→∞ P{τn(ϑ̂n − ϑ(P )) ≥ L−1
n (α)− ε} ≥ 1− α.

(iii) lim infn→∞ P{L−1
n (α

2
)− ε ≤ τn(ϑ̂n − ϑ(P )) ≤ L−1

n (1− α
2
) + ε} ≥ 1− α.

Proof: We will only prove (i). The proofs of (ii) and (iii) are similar. Notice that for

any δ > 0, L−1
n (1− α) ≥ L−1

n (1− α− δ). Note further that there exists δ > 0 such that

J(·, P ) is continuous at its 1− α− δ quantile and J−1(1− α− δ) is arbitrarily close to

J−1(1−α). It is worth pointing out that such a δ may not be close to zero. From Theorem

2.1.1 of Politis et al. (1999), we have for such δ that L−1
n (1−α−δ) P→ J−1(1−α−δ). To

complete the proof, note that there is η > 0 arbitrarily small so that J(·, P ) is continuous

at J−1(1− α) + η. Thus, by choosing η < ε and Slutsky’s Theorem, we have that

lim inf
n→∞

P{τn(ϑ̂n − ϑ(P )) ≤ L−1
n (1− α) + ε}

≥ lim inf
n→∞

P{τn(ϑ̂n − ϑ(P )) ≤ J−1
n (1− α) + η} ≥ 1− α ,

as desired.
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