Testing for Non-nested Conditional Moment Restrictions via Conditional Empirical Likelihood*

Taisuke Otsu ${ }^{\dagger}$
Yale University

Yoon-Jae Whang ${ }^{\ddagger}$
Seoul National University

November 14, 2006

Abstract

We propose non-nested tests for competing conditional moment restriction models using a method of conditional empirical likelihood, recently suggested by Kitamura, Tripathi and Ahn (2004) and Zhang and Gijbels (2003). We use the implied conditional probabilities to define our test statistics, which take into account the full implications of conditional moment restrictions. We develop three types of non-nested tests: the moment encompassing, Cox-type, and efficient score encompassing tests. We derive the asymptotic null distributions and investigate their power properties against a sequence of local alternatives and a fixed global alternative. Our tests have power proerties that are very distinct from some of the existing tests based on finite-dimensional unconditional moment restrictions and are consistent against alternatives that cannot be detected by the latter type tests. In particular, if the support of the moment function is bounded, our Cox-type test is consistent against all departures from the null hypothesis toward the non-nested alternative hypothesis under very mild conditions. On the other hand, the moment encompassing and efficient score encompassing tests require some additional assumptions for consistency which guarantee the non-centrality parameters to be non-zero. Simulation experiments show that our tests have reasonable finite sample properties.

Keywords: Empirical likelihood; Non-nested test; Encompassing test; Cox-type test; Conditional moment restriction

JEL Codes: C12, C13, C14, C22

[^0]
1 Introduction

Econometric models are often written in the forms of conditional moment restrictions. While researchers derive and estimate their conditional moment restriction models, those models are typically non-nested and should be evaluated by some formal tests. This paper proposes non-nested tests for competing conditional moment restriction models using a method of empirical likelihood. Our tests are based on the method of conditional empirical likelihood (CEL) developed by Kitamura, Tripathi and Ahn (2004) and Zhang and Gijbels (2003). ${ }^{1}$ By using the implied conditional probabilities from CEL, we develop three CEL-based non-nested tests: the moment encompassing, Cox-type, and efficient score encompassing tests. Compared to the existing non-nested tests which mainly focus on testing parametric models or unconditional moment restrictions, our approach tests conditional moment restrictions which imply an infinite number of unconditional moment restrictions. Our tests are asymptotically equivalent to some unconditional moment-based tests under the null and local alternative hypotheses. However, their global power properties under the alternative hypothesis are significantly different. In particular, if support of the moment function is bounded, the Cox-type test is consistent against all departures from the null hypothesis toward the non-nested alternative hypothesis under very mild conditions. On the other hand, the moment encompassing and efficient score encompassing tests require some additional assumptions for consistency which guarantee the non-zero noncentrality parameters, as is true with some of the existing non-nested tests.

Since Cox $(1961,1962)$, non-nested testing for competitive statistical models has become a standard technique to evaluate specification of a statistical model against specific alternative models. ${ }^{2}$ Singleton (1985), Ghysels and Hall (1990), and Smith (1992) proposed non-nested testing procedures for unconditional moment restriction models. Those procedures are extended by Smith (1997) and Ramalho and Smith (2002) to the generalized empirical likelihood (GEL) context. ${ }^{3}$ Ramalho and Smith (2002) focused on the implied unconditional probabilities from the null unconditional moment restrictions, and derived GEL analogues of the moment encompassing, Cox-type, and parametric encompassing tests. We extend the approach by Smith (1997) and Ramalho and Smith (2002) to deal with conditional moment restriction models as the null hypotheses, where an infinite number of unconditional moment restrictions is implied. In particular, we employ the method of CEL to obtain the implied conditional probabilities from conditional moment restrictions and develop non-nested test statistics

[^1]based on the implied probabilities. Since the CEL-based implied conditional probabilities contain all information from the null conditional moment restrictions, we can evaluate the specification of the null model against some specific alternatives.

Since Owen (1988) and Qin and Lawless (1994), the method of empirical likelihood has become an attractive alternative against the conventional generalized method of moments (GMM) approach. ${ }^{4}$ Kitamura (2001) and Newey and Smith (2004) showed desirable properties of empirical likelihood for testing and estimating unconditional moment restriction models, respectively. To deal with conditional moment restriction models, Kitamura, Tripathi and Ahn (2004) and Zhang and Gijbels (2003) developed the method of CEL and showed that the CEL estimator is asymptotically normal and efficient. Tripathi and Kitamura (2003) proposed CEL-based consistent specification tests for conditional moment restrictions. This paper extends the CEL approach to non-nested testing problems. Compared to Tripathi and Kitamura's (2003) specification tests, our tests check the validity of the null model against some specific alternatives, and our test statistics converge at the parametric rate, i.e., \sqrt{n}-rate. However, as a cost of the parametric convergence rate, our tests have the implicit null hypothesis, i.e., the set of distributions where the tests do not have non-trivial power. Kitamura (2003) employed CEL as a model selection criterion and proposed a Vuong (1989) type discrimination test for conditional moment restriction models, which tests whether two competing models have the same distance or divergence (in terms of the Kullback-Leibler information criterion) from the true model. Our non-nested testing approach sets one of the competing models as the null hypothesis and checks the validity of the null model.

This paper is organized as follows. Section 2 introduces our basic set-up and test statistics. In Sections 3.1 and 3.2, we derive the null distributions and local power properties of the test statistics. Section 3.3 discusses the consistency of our tests. We provide sufficient conditions for the consistency of the Cox-type test and compare with the existing unconditional moment-based tests. Section 4 reports simulation results. Section 5 concludes.

We use the following notation. The abbreviations "a.s." and "w.p.a.1" mean "almost surely" and "with probability approaching one," respectively. $\|\cdot\|$ is the Frobenius norm. $A^{-}, \lambda_{\min }(A)$, and $\lambda_{\max }(A)$ are a g -inverse, the minimum eigenvalue, and the maximum eigenvalue of a matrix A, respectively. $I\{A\}$ is the indicator function for an event A. $\operatorname{int}(A)$ is the interior of a set A. $a^{(i)}$ means the i-th component of a vector a.

2 Set-up and Test Statistics

2.1 Non-nested Hypotheses

Suppose that we observe a random sample $\left\{x_{i}, z_{i}\right\}_{i=1}^{n}$, where $x \in \mathcal{X} \subset R^{s}$ and $z \in R^{d_{z}}$. Assume that $\mathcal{F}_{z} \nsubseteq \mathcal{F}_{x}$, where \mathcal{F}_{z} and \mathcal{F}_{x} are the σ-algebra for z and x, respectively. Consider the two competing

[^2]conditional moment restrictions:
\[

$$
\begin{array}{rll}
\mathbf{H}_{g} & : E\left[g\left(z, \beta_{0}\right) \mid x\right]=0 & \text { a.s. } x, \tag{1}\\
\mathbf{H}_{h} & : E\left[h\left(z, \gamma_{0}\right) \mid x\right]=0 & \text { a.s. } x,
\end{array}
$$
\]

where $g: R^{d_{z}} \times \mathcal{B} \rightarrow R^{d_{g}}$ and $h: R^{d_{z}} \times \Gamma \rightarrow R^{d_{h}}$ are known functions, and $\beta_{0} \in \mathcal{B} \subset R^{d_{\beta}}$ and $\gamma_{0} \in \Gamma \subset R^{d_{\gamma}}$ are unknown parameters. ${ }^{5}$ Let $\mathcal{M}_{z \mid x}$ be the space of all conditional measures of z given x. The spaces of conditional measures that satisfy \mathbf{H}_{g} and \mathbf{H}_{h} are written as

$$
\begin{align*}
& \mathcal{G}_{z \mid x}=\cup_{\beta \in \mathcal{B}}\left\{\left(\mu_{z \mid x}\right)_{x \in \mathcal{X}} \in \mathcal{M}_{z \mid x}: \int g(z, \beta) d \mu_{z \mid x}=0 \quad \text { a.s. } x\right\}, \tag{2}\\
& \mathcal{H}_{z \mid x}=\cup_{\gamma \in \Gamma}\left\{\left(\mu_{z \mid x}\right)_{x \in \mathcal{X}} \in \mathcal{M}_{z \mid x}: \int h(z, \gamma) d \mu_{z \mid x}=0 \quad \text { a.s. } x\right\},
\end{align*}
$$

respectively. Let $\left(\mu_{z \mid x}^{0}\right)_{x \in \mathcal{X}}$ be the true conditional measure of z given x. The hypotheses \mathbf{H}_{g} and \mathbf{H}_{h} in (1) are alternatively written as

$$
\begin{aligned}
\mathbf{H}_{g} & :\left(\mu_{z \mid x}^{0}\right)_{x \in \mathcal{X}} \in \mathcal{G}_{z \mid x}, \\
\mathbf{H}_{h} & :\left(\mu_{z \mid x}^{0}\right)_{x \in \mathcal{X}} \in \mathcal{H}_{z \mid x} .
\end{aligned}
$$

We assume that the models \mathbf{H}_{g} and \mathbf{H}_{h} are non-nested, i.e.,

$$
\begin{equation*}
\mathcal{G}_{z \mid x} \nsubseteq \mathcal{H}_{z \mid x} \text { and } \mathcal{H}_{z \mid x} \nsubseteq \mathcal{G}_{z \mid x} \tag{3}
\end{equation*}
$$

Note that the conditional moment restrictions \mathbf{H}_{g} and \mathbf{H}_{h} imply the following unconditional moment restrictions

$$
\begin{align*}
\mathbf{H}_{g}^{U} & : E\left[Q_{g}(x) g\left(z, \beta_{0}\right)\right]=0 \tag{4}\\
\mathbf{H}_{h}^{U} & : E\left[Q_{h}(x) h\left(z, \gamma_{0}\right)\right]=0
\end{align*}
$$

for any matrices of measurable functions Q_{g} and Q_{h}, respectively. Several papers such as Singleton (1985), Smith (1992), and Ramalho and Smith (2002) proposed non-nested tests between the unconditional moment restrictions \mathbf{H}_{g}^{U} and \mathbf{H}_{h}^{U} for some specific choices of Q_{g} and Q_{h}. However, if we are interested in the validity of the original conditional moment restriction \mathbf{H}_{g} or \mathbf{H}_{h}, the conventional non-nested tests for \mathbf{H}_{g}^{U} or \mathbf{H}_{h}^{U} may not be appropriate. For example, suppose that the true joint measure satisfies $E\left[Q_{g}(x) g\left(z, \beta_{0}\right)\right]=0$ but $E\left[\tilde{Q}_{g}(x) g\left(z, \beta_{0}\right)\right] \neq 0$ for some \tilde{Q}_{g}. Then although the original null hypothesis \mathbf{H}_{g} is violated, the existing non-nested tests based on \mathbf{H}_{g}^{U} cannot reject the null hypothesis \mathbf{H}_{g}.

[^3]To be precise, consider the spaces of conditional measures that satisfy \mathbf{H}_{g}^{U} and \mathbf{H}_{h}^{U}, i.e.,

$$
\begin{align*}
& \mathcal{G}_{z \mid x}^{U}=\cup_{\beta \in \mathcal{B}}\left\{\left(\mu_{z \mid x}\right)_{x \in \mathcal{X}} \in \mathcal{M}_{z \mid x}: \iint Q_{g}(x) g(z, \beta) d \mu_{z \mid x} d \mu_{x}=0 \text { for some } \mu_{x}\right\}, \tag{5}\\
& \mathcal{H}_{z \mid x}^{U}=\cup_{\gamma \in \Gamma}\left\{\left(\mu_{z \mid x}\right)_{x \in \mathcal{X}} \in \mathcal{M}_{z \mid x}: \iint Q_{h}(x) h(z, \gamma) d \mu_{z \mid x} d \mu_{x}=0 \text { for some } \mu_{x}\right\},
\end{align*}
$$

respectively. Since \mathbf{H}_{g} and \mathbf{H}_{h} imply \mathbf{H}_{g}^{U} and \mathbf{H}_{h}^{U}, respectively, we have $\mathcal{G}_{z \mid x} \subset \mathcal{G}_{z \mid x}^{U}$ and $\mathcal{H}_{z \mid x} \subset \mathcal{H}_{z \mid x}^{U}$. Suppose $\left(\mu_{z \mid x}^{0}\right)_{x \in \mathcal{X}} \in \mathcal{G}_{z \mid x}$, i.e., \mathbf{H}_{g} holds true. We will see that our non-nested test statistics are asymptotically normal if $\left(\mu_{z \mid x}^{0}\right)_{x \in \mathcal{X}} \in \mathcal{G}_{z \mid x}$ and generally diverge if $\left(\mu_{z \mid x}^{0}\right)_{x \in \mathcal{X}} \in \mathcal{G}_{z \mid x}^{U} \backslash \mathcal{G}_{z \mid x}$. However, non-nested test statistics based on \mathbf{H}_{g}^{U} are always asymptotically normal if $\left(\mu_{z \mid x}^{0}\right)_{x \in \mathcal{X}} \in \mathcal{G}_{z \mid x}^{U} \backslash \mathcal{G}_{z \mid x}$. Although it may look plausible to construct some adequate matrix Q_{g} based on the asymptotic linear forms of our non-nested test statistics, those asymptotic linear forms are available only under $\left(\mu_{z \mid x}^{0}\right)_{x \in \mathcal{X}} \in \mathcal{G}_{z \mid x}\left(\operatorname{not} \mathcal{G}_{z \mid x}^{U} \backslash \mathcal{G}_{z \mid x}\right)$ and local alternatives. See Section 3.3 for a detailed discussion. This paper proposes three CEL-based non-nested tests for the conditional moment restrictions \mathbf{H}_{g} against \mathbf{H}_{h}.

2.2 Conditional Empirical Likelihood

This subsection introduces the CEL approach. CEL is nonparametric likelihood constructed by the conditional moment restrictions in (1). Let $p_{j i}^{g}$ for $i, j=1, \ldots, n$ be multinomial conditional weights under the null hypothesis \mathbf{H}_{g}, and $w_{j i}=\frac{K\left(\frac{x_{i}-x_{j}}{b_{n}}\right)}{\sum_{j=1}^{n} K\left(\frac{x_{i}-x_{j}}{b_{n}}\right)}$ be Nadaraya-Watson kernel weights, where K : $R^{s} \rightarrow R$ is a kernel function and b_{n} is a bandwidth parameter. We consider the following maximization problem using $p_{j i}^{g}$: ${ }^{6}$

$$
\begin{gather*}
\max _{\left\{p_{j i}^{g}\right\}_{i, j=1}^{n}} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{j i} \log p_{j i}^{g} \tag{6}\\
\text { s.t. } \quad \sum_{j=1}^{n} p_{j i}^{g}=1, \quad \sum_{j=1}^{n} p_{j i}^{g} g\left(z_{j}, \beta\right)=0, \quad \text { for } \quad i=1, \ldots, n .
\end{gather*}
$$

The conditional moment restriction \mathbf{H}_{g} is incorporated in the constraints $\sum_{j=1}^{n} p_{j i}^{g} g\left(z_{j}, \beta\right)=0$. This problem can be solved by the Lagrange multiplier method. Let $\left\{\mu_{i}^{g}\right\}_{i=1}^{n}$ and $\left\{\lambda_{i}^{g}\right\}_{i=1}^{n}$ be the Lagrange multipliers. The Lagrangian is written as

$$
\mathcal{L}=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{j i} \log p_{j i}^{g}-\sum_{i=1}^{n} \mu_{i}^{g}\left(\sum_{j=1}^{n} p_{j i}^{g}-1\right)-\sum_{i=1}^{n} \lambda_{i}^{g \prime}\left(\sum_{j=1}^{n} p_{j i}^{g} g\left(z_{j}, \beta\right)\right) .
$$

The solution for $p_{j i}^{g}$ (i.e., the implied conditional probability) is:

$$
\begin{equation*}
\hat{p}_{j i}^{g}(\beta)=\frac{w_{j i}}{1+\lambda_{i}^{g}(\beta)^{\prime} g\left(z_{j}, \beta\right)}, \tag{7}
\end{equation*}
$$

[^4]for $i, j=1, \ldots, n$, where $\lambda_{i}^{g}(\beta)$ satisfies:
\[

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{w_{j i} g\left(z_{j}, \beta\right)}{1+\lambda_{i}^{g}(\beta)^{\prime} g\left(z_{j}, \beta\right)}=0 \tag{8}
\end{equation*}
$$

\]

for $i=1, \ldots, n .^{7}$ If we do not impose the conditional moment restriction $\sum_{j=1}^{n} p_{j i}^{g} g\left(z_{j}, \beta\right)=0$ in (6), the solution of the unrestricted maximization problem is $\hat{p}_{j i}^{N}=w_{j i}$ for $i, j=1, \ldots, n$. Using the implied conditional probabilities $\left\{\hat{p}_{j i}^{g}(\beta)\right\}_{i, j=1}^{n}$, the profile CEL function based on \mathbf{H}_{g} is defined as:

$$
\begin{equation*}
\ell_{g}(\beta)=\sum_{i=1}^{n} I_{i} \sum_{j=1}^{n} w_{j i} \log \hat{p}_{j i}^{g}(\beta)=\sum_{i=1}^{n} I_{i} \sum_{j=1}^{n} w_{j i} \log \left(\frac{w_{j i}}{1+\lambda_{i}^{g}(\beta)^{\prime} g\left(z_{j}, \beta\right)}\right), \tag{9}
\end{equation*}
$$

where $I_{i}=I\left\{x_{i} \in \mathcal{X}_{*}\right\}$ is a trimming term on a fixed subset $\mathcal{X}_{*} \subset \mathcal{X}$. This trimming term allows us to focus on specification testing over regions in \mathcal{X} which are empirically more relevant. It also avoids the boundary problem associated with the kernel estimators, see Tripathi and Kitamura (2003, p.2062).

The CEL estimator is defined as $\hat{\beta}_{C E L}=\arg \max _{\beta \in \mathcal{B}} \ell_{g}(\beta)$. Under $\mathbf{H}_{g}, \hat{\beta}_{C E L}$ is consistent and asymptotically normal (see Kitamura, Tripathi and Ahn (2004)). ${ }^{8}$ In the same manner, we can define CEL $\ell_{h}(\gamma)$ based on \mathbf{H}_{h} and the CEL estimator $\hat{\gamma}_{C E L}$ for γ_{0}. Kitamura (2003) showed that if \mathbf{H}_{g} is misspecified, $\hat{\beta}_{C E L}$ converges to the pseudo-true value $\beta_{C E L}^{*}$, that is

$$
\begin{equation*}
\beta_{C E L}^{*}=\arg \min _{\beta \in \mathcal{B}} E\left[I_{i} \max _{\lambda^{g} \in R^{d g}} E\left[\log \left(1+\lambda^{g^{\prime}} g\left(z_{i}, \beta\right)\right) \mid x_{i}\right]\right] . \tag{10}
\end{equation*}
$$

The pseudo-true value $\gamma_{C E L}^{*}$ for $\hat{\gamma}_{C E L}$ is defined in the same manner.
To construct the non-nested test statistics, we employ some \sqrt{n}-consistent estimators $\hat{\beta}$ and $\hat{\gamma}$ for β_{0} and γ_{0}, respectively. $\hat{\beta}$ and $\hat{\gamma}$ may be the CEL estimators or other \sqrt{n}-consistent estimators such as the GMM estimators based on the unconditional moment restrictions in (4). Let β_{*} and γ_{*} be the pseudo-true values for $\hat{\beta}$ and $\hat{\gamma}$, respectively. Given $\hat{\beta}$, the implied conditional probabilities from \mathbf{H}_{g} are obtained as $\left\{\hat{p}_{j i}^{g}(\hat{\beta})\right\}_{i, j=1}^{n}$ in (7). By comparing $\hat{p}_{j i}^{g}(\hat{\beta})$ and $\hat{p}_{j i}^{N}$, we develop three non-nested tests: the moment encompassing, Cox-type, and efficient score encompassing tests.

2.3 Test Statistics

2.3.1 Moment Encompassing Test Statistic

We first define the CEL-based moment encompassing test statistic, which focuses on moment indicators in the form of $\tilde{m}\left(x_{i}, z_{i}, \beta, \gamma\right)=\hat{M}\left(x_{i}, \beta, \gamma\right)^{\prime} m\left(z_{i}, \beta, \gamma\right)$, where $\hat{M}\left(x_{i}, \beta, \gamma\right)$ is a $d_{m} \times d_{M}$ possibly random matrix of functions of $\left\{x_{i}, z_{i}\right\}_{i=1}^{n}$ and $m\left(z_{i}, \beta, \gamma\right)$ is a $d_{m} \times 1$ vector of functions of z_{i}. A typical choice of $m\left(z_{i}, \beta, \gamma\right)$ is $h\left(z_{i}, \gamma\right)$, which is based on the alternative conditional moment restrictions \mathbf{H}_{h} in (1). We

[^5]assume that $\hat{M}\left(x_{i}, \hat{\beta}, \hat{\gamma}\right)$ converges to $M\left(x_{i}, \beta_{0}, \gamma_{*}\right)$ uniformly on $x_{i} \in \mathcal{X}_{*}$ (Assumption 3.2 (iv)). For each element of $\hat{M}\left(x_{i}, \beta, \gamma\right)$, we allow these cases: (i) constant or function of (β, γ), (ii) function of x_{i} or $\left(x_{i}, \beta, \gamma\right)$, and (iii) weighted sum in the form of $\sum_{j=1}^{n} w_{j i} f\left(z_{j}, \beta, \gamma\right)$ or function of the weighted sums. For brevity, we use the same notation $\hat{M}\left(x_{i}, \beta, \gamma\right)$ and omit some arguments such as $\left\{x_{j}\right\}_{j \neq i}$ and $\left\{z_{j}\right\}_{j=1}^{n}$. By using the implied conditional probability $\hat{p}_{j i}^{g}(\hat{\beta})$ and the unrestricted conditional probability $\hat{p}_{j i}^{N}$, we consider the following contrast of estimators for $E\left[\tilde{m}\left(x_{i}, z_{i}, \beta_{0}, \gamma_{*}\right)\right]$:
\[

$$
\begin{equation*}
T_{M}=\frac{1}{n} \sum_{i=1}^{n} I_{i} \sum_{j=1}^{n} \hat{p}_{j i}^{g}(\hat{\beta}) \tilde{m}\left(x_{i}, z_{j}, \hat{\beta}, \hat{\gamma}\right)-\frac{1}{n} \sum_{i=1}^{n} I_{i} \sum_{j=1}^{n} \hat{p}_{j i}^{N} \tilde{m}\left(x_{i}, z_{j}, \hat{\beta}, \hat{\gamma}\right) \tag{11}
\end{equation*}
$$

\]

where the first term is a nonparametric sample analog of $E_{x}\left[E_{z \mid x}^{g}\left[\tilde{m}\left(x_{i}, z_{i}, \beta_{0}, \gamma_{*}\right)\right]\right]$ using the conditional probability $\hat{p}_{j i}^{g}(\hat{\beta})$ implied from \mathbf{H}_{g}, and the second term is a nonparametric sample analog of $E_{x}\left[E_{z \mid x}\left[\tilde{m}\left(x_{i}, z_{i}, \beta_{0}, \gamma_{*}\right)\right]\right]$ using the (unrestricted) kernel weights $\hat{p}_{j i}^{N}$, where $E_{z \mid x}^{g}$ denotes the conditional expectation taken under \mathbf{H}_{g}. If the null hypothesis \mathbf{H}_{g} is correct, these nonparametric analogues have the same probability limit and hence we expect that T_{M} converges to zero. On the other hand, if \mathbf{H}_{g} is incorrect, the two terms in (11) converge to different probability limits and hence T_{M} converges to some non-zero constant. The moment indicator $\tilde{m}\left(x_{i}, z_{j}, \beta, \gamma\right)$ determines the direction of misspecification. Let

$$
\hat{J}_{i}(\beta, \gamma)^{\prime}=\sum_{j=1}^{n} w_{j i} m\left(z_{j}, \beta, \gamma\right) g\left(z_{j}, \beta\right)^{\prime}, \hat{V}_{i}(\beta)=\sum_{j=1}^{n} w_{j i} g\left(z_{j}, \beta\right) g\left(z_{j}, \beta\right)^{\prime}, \hat{G}_{i}(\beta)=\sum_{j=1}^{n} w_{j i} \frac{\partial g\left(z_{j}, \beta\right)}{\partial \beta^{\prime}} .
$$

The CEL-based moment encompassing test statistic for \mathbf{H}_{g} is defined as

$$
\begin{equation*}
M_{g}=n T_{M}^{\prime} \hat{\Phi}_{M}^{-} T_{M}, \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
\hat{\Phi}_{M} & =\frac{1}{n} \sum_{i=1}^{n} \hat{\psi}_{i}^{M}(\hat{\beta}, \hat{\gamma}) \hat{\psi}_{i}^{M}(\hat{\beta}, \hat{\gamma})^{\prime} \\
\hat{\psi}_{i}^{M}(\beta, \gamma) & =-I_{i} \hat{M}\left(x_{i}, \beta, \gamma\right)^{\prime} \hat{J}_{i}(\beta, \gamma)^{\prime} \hat{V}_{i}(\beta)^{-1} g\left(z_{i}, \beta\right)+\hat{H}_{M}(\beta, \gamma) \Delta \psi\left(x_{i}, z_{i}, \beta\right), \\
\hat{H}_{M}(\beta, \gamma) & =\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{M}\left(x_{i}, \beta, \gamma\right)^{\prime} \hat{J}_{i}(\beta, \gamma)^{\prime} \hat{V}_{i}(\beta)^{-1} \hat{G}_{i}(\beta) .
\end{aligned}
$$

Δ and $\psi\left(x_{i}, z_{i}, \beta\right)$ are defined in Assumption 3.1 (ii), which assumes the asymptotic linear form for $\hat{\beta}$:

$$
\begin{equation*}
n^{1 / 2}\left(\hat{\beta}-\beta_{0}\right)=-n^{-1 / 2} \Delta \sum_{i=1}^{n} \psi\left(x_{i}, z_{i}, \beta_{0}\right)+o_{p}(1) \tag{13}
\end{equation*}
$$

The CEL-based moment encompassing test statistic for \mathbf{H}_{h} is defined in the same manner.

2.3.2 Cox-type Test Statistic

We next define the CEL-based Cox-type test statistic, which focuses on the probability limit of the GMM-type (or Euclidean) nonparametric likelihood. Let

$$
\hat{h}_{i}(\gamma)=\sum_{j=1}^{n} w_{j i} h\left(z_{j}, \gamma\right), \hat{h}_{i}^{g}(\gamma)=\sum_{j=1}^{n} \hat{p}_{j i}^{g}(\hat{\beta}) h\left(z_{j}, \gamma\right), \hat{V}_{i}^{h}(\gamma)=\sum_{j=1}^{n} w_{j i} h\left(z_{j}, \gamma\right) h\left(z_{j}, \gamma\right)^{\prime} .
$$

Note that $\hat{h}_{i}(\gamma), \hat{h}_{i}^{g}(\gamma)$, and $\hat{V}_{i}^{h}(\gamma)$ are non-parametric sample analogues of $E_{z \mid x}\left[h\left(z_{i}, \gamma\right)\right], E_{z \mid x}^{g}\left[h\left(z_{i}, \gamma\right)\right]$, and $E_{z \mid x}\left[h\left(z_{i}, \gamma\right) h\left(z_{i}, \gamma\right)^{\prime}\right]$ respectively. By using $\hat{p}_{j i}^{g}(\hat{\beta})$ and $\hat{p}_{j i}^{N}=w_{j i}$, we consider the following contrast of Euclidean likelihood: ${ }^{9}$

$$
\begin{equation*}
T_{C}=\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{h}_{i}^{g}(\hat{\gamma})^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1} \hat{h}_{i}^{g}(\hat{\gamma})-\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{h}_{i}(\hat{\gamma})^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1} \hat{h}_{i}(\hat{\gamma}) . \tag{14}
\end{equation*}
$$

Under the null hypothesis \mathbf{H}_{g}, we expect that T_{C} converges to zero because both of the two terms in T_{C} converge to the same probability limit $E\left\{E_{z \mid x}^{g}\left[h\left(z_{i}, \gamma_{*}\right)\right]^{\prime} V^{h}\left(\gamma_{*}\right)^{-1} E_{z \mid x}^{g}\left[h\left(z_{i}, \gamma_{*}\right)\right]\right\}$. On the other hand, under the alternative hypothesis \mathbf{H}_{h}, T_{C} will converge to the probability limit $E\left\{E_{z \mid x}^{g}\left[h\left(z_{i}, \gamma_{0}\right)\right]^{\prime} V^{h}\left(\gamma_{0}\right)^{-1} E_{z \mid x}^{g}\left[h\left(z_{i}, \gamma_{0}\right)\right]\right\}$ which is non-zero by the non-nestedness assumption (3). Let $\hat{J}_{i}^{h}(\beta, \gamma)^{\prime}=\sum_{j=1}^{n} w_{j i} h\left(z_{j}, \gamma\right) g\left(z_{j}, \beta\right)^{\prime}$. The CEL-based Cox-type test statistic for \mathbf{H}_{g} is defined as

$$
\begin{equation*}
C_{g}=\frac{\sqrt{n} T_{C}}{\sqrt{\hat{\phi}_{C}}} \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
\hat{\phi}_{C} & =\frac{1}{n} \sum_{i=1}^{n} \hat{\psi}_{i}^{C}(\hat{\beta}, \hat{\gamma})^{2}, \\
\hat{\psi}_{i}^{C}(\beta, \gamma) & =-2 I_{i} \hat{h}_{i}(\gamma)^{\prime} \hat{V}_{i}^{h}(\gamma)^{-1} \hat{J}_{i}^{h}(\beta, \gamma)^{\prime} \hat{V}_{i}(\beta)^{-1} g\left(z_{i}, \beta\right)+\hat{H}_{C}(\beta, \gamma) \Delta \psi\left(x_{i}, z_{i}, \beta\right), \\
\hat{H}_{C}(\beta, \gamma) & =\frac{2}{n} \sum_{i=1}^{n} I_{i} \hat{h}_{i}(\gamma)^{\prime} \hat{V}_{i}^{h}(\gamma)^{-1} \hat{J}_{i}^{h}(\beta, \gamma)^{\prime} \hat{V}_{i}(\beta)^{-1} \hat{G}_{i}(\beta) .
\end{aligned}
$$

Δ and $\psi\left(x_{i}, z_{i}, \beta\right)$ are defined in (13). The CEL-based Cox-type test statistic for \mathbf{H}_{h} is defined in the same manner.

2.3.3 Efficient Score Encompassing Test Statistic

We finally introduce the CEL-based efficient score encompassing test statistic, which focuses on the probability limit of the asymptotic linear form of asymptotically efficient estimators for γ_{0} under \mathbf{H}_{h}

$$
\begin{aligned}
& { }^{9} \text { Although we may focus on the contrast of CEL based on } \hat{p}_{j i}^{h}(\hat{\gamma}) \text { : } \\
& \qquad \sum_{i=1}^{n} I_{i} \sum_{j=1}^{n} \hat{p}_{j i}^{h}(\hat{\beta}) \log \hat{p}_{j i}^{h}(\hat{\gamma})-\sum_{i=1}^{n} I_{i} \sum_{j=1}^{n} \hat{p}_{j i}^{N} \log \hat{p}_{j i}^{h}(\hat{\gamma}),
\end{aligned}
$$

the asymptotic representation of the Lagrange multiplier $\lambda_{i}^{h}(\hat{\gamma})$ in $\hat{p}_{j i}^{h}(\hat{\gamma})$ is less tractable under \mathbf{H}_{g} (see Kitamura (2003)). Therefore, for its simplicity, we analyze the contrast of Euclidean likelihood.
(i.e., the efficient score for estimating γ_{0}): ${ }^{10}$

$$
n^{1 / 2}\left(\hat{\gamma}-\gamma_{0}\right)=-n^{-1 / 2} I^{h}\left(\gamma_{0}\right)^{-1} \sum_{i=1}^{n} I_{i} G_{i}^{h}\left(\gamma_{0}\right)^{\prime} V_{i}^{h}\left(\gamma_{0}\right)^{-1} h\left(z_{i}, \gamma_{0}\right)+o_{p}(1),
$$

where

$$
V_{i}^{h}(\gamma)=E\left[h\left(z_{i}, \gamma\right) h\left(z_{i}, \gamma\right)^{\prime} \mid x_{i}\right], G_{i}^{h}(\gamma)=E\left[\left.\frac{\partial h\left(z_{i}, \gamma\right)}{\partial \gamma^{\prime}} \right\rvert\, x_{i}\right], I^{h}(\gamma)=E\left[I_{i} G_{i}^{h}(\gamma)^{\prime} V_{i}^{h}(\gamma)^{-1} G_{i}^{h}(\gamma)\right] .
$$

Let $\hat{G}_{i}^{h}(\gamma)=\sum_{j=1}^{n} w_{j i} \partial h\left(z_{j}, \gamma\right) / \partial \gamma^{\prime}$. By using $\hat{p}_{j i}^{g}(\hat{\beta})$ and $\hat{p}_{j i}^{N}=w_{j i}$, we consider the following contrast of the efficient score:

$$
\begin{equation*}
T_{S}=\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{G}_{i}^{h}(\hat{\gamma})^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1} \hat{h}_{i}^{g}(\hat{\gamma})-\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{G}_{i}^{h}(\hat{\gamma})^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1} \hat{h}_{i}(\hat{\gamma}) . \tag{16}
\end{equation*}
$$

The CEL-based efficient score encompassing test statistic is defined as

$$
\begin{equation*}
S_{g}=n T_{S}^{\prime} \hat{\Phi}_{S}^{-} T_{S}, \tag{17}
\end{equation*}
$$

where

$$
\begin{aligned}
\hat{\Phi}_{S} & =\frac{1}{n} \sum_{i=1}^{n} \hat{\psi}_{i}^{S}(\hat{\beta}, \hat{\gamma}) \hat{\psi}_{i}^{S}(\hat{\beta}, \hat{\gamma})^{\prime} \\
\hat{\psi}_{i}^{S}(\beta, \gamma) & =-I_{i} \hat{G}_{i}^{h}(\gamma)^{\prime} \hat{V}_{i}^{h}(\gamma)^{-1} \hat{J}_{i}^{h}(\beta, \gamma)^{\prime} \hat{V}_{i}(\beta)^{-1} g\left(z_{i}, \beta\right)+\hat{H}_{S}(\beta, \gamma) \Delta \psi\left(x_{i}, z_{i}, \beta\right), \\
\hat{H}_{S}(\beta, \gamma) & =\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{G}_{i}^{h}(\gamma)^{\prime} \hat{V}_{i}^{h}(\gamma)^{-1} \hat{J}_{i}^{h}(\beta, \gamma)^{\prime} \hat{V}_{i}(\beta)^{-1} \hat{G}_{i}(\beta) .
\end{aligned}
$$

The CEL-based efficient score encompassing test statistic for \mathbf{H}_{h} is defined in the same manner.

2.3.4 Special Case: Test Statistics with the CEL Estimator

Suppose that we use the CEL estimator $\hat{\beta}_{C E L}$ for β_{0}. Then from Kitamura, Tripathi and Ahn (2004), we can show that under certain regularity conditions, the asymptotic linear form of $\hat{\beta}_{C E L}$ is written as

$$
n^{1 / 2}\left(\hat{\beta}_{C E L}-\beta_{0}\right)=-n^{-1 / 2} I\left(\beta_{0}\right)^{-1} \sum_{i=1}^{n} I_{i} G_{i}\left(\beta_{0}\right)^{\prime} V_{i}\left(\beta_{0}\right)^{-1} g\left(z_{i}, \beta_{0}\right)+o_{p}(1),
$$

where

$$
G_{i}(\beta)=E\left[\left.\frac{\partial g\left(z_{i}, \beta\right)}{\partial \beta^{\prime}} \right\rvert\, x_{i}\right], V_{i}(\beta)=E\left[g\left(z_{i}, \beta\right) g\left(z_{i}, \beta\right)^{\prime} \mid x_{i}\right], I(\beta)=E\left[I_{i} G_{i}(\beta)^{\prime} V_{i}(\beta)^{-1} G_{i}(\beta)\right] .
$$

By setting $\Delta=I\left(\beta_{0}\right)^{-1}$ and $\psi\left(x_{i}, z_{i}, \beta_{0}\right)=I_{i} G_{i}\left(\beta_{0}\right)^{\prime} V_{i}\left(\beta_{0}\right)^{-1} g\left(z_{i}, \beta_{0}\right)$ in (12), (15), and (17), the CEL-based non-nested test statistics are defined by the following simpler forms,

[^6](i) the moment encompassing test statistic:
\[

$$
\begin{gather*}
M_{g, C E L}=n T_{M}^{\prime} \hat{\Phi}_{M, C E L}^{-} T_{M} \tag{18}\\
\hat{\Phi}_{M, C E L}=\mathrm{RSS} \text { from regression of } I_{i} \hat{V}_{i}(\hat{\beta})^{-1 / 2} \hat{J}_{i}(\hat{\beta}, \hat{\gamma}) \hat{M}\left(x_{i}, \hat{\beta}, \hat{\gamma}\right) \text { on } I_{i} \hat{V}_{i}(\hat{\beta})^{-1 / 2} \hat{G}_{i}(\hat{\beta}),
\end{gather*}
$$
\]

(ii) the Cox-type test statistic:

$$
\begin{gather*}
C_{g, C E L}=\frac{\sqrt{n} T_{C}}{\sqrt{\hat{\phi}_{C, C E L}}} \tag{19}\\
\hat{\phi}_{C, C E L}=\mathrm{RSS} \text { from regression of } 2 I_{i} \hat{V}_{i}(\hat{\beta})^{-1 / 2} \hat{J}_{i}^{h}(\hat{\beta}, \hat{\gamma}) \hat{V}_{i}^{h}(\hat{\gamma})^{-1} \hat{h}_{i}(\hat{\gamma}) \text { on } I_{i} \hat{V}_{i}(\hat{\beta})^{-1 / 2} \hat{G}_{i}(\hat{\beta}),
\end{gather*}
$$

(iii) the efficient score encompassing test statistic:

$$
\begin{gather*}
S_{g, C E L}=n T_{S}^{\prime} \hat{\Phi}_{S, C E L}^{-} T_{S} \tag{20}\\
\hat{\Phi}_{S, C E L}=\mathrm{RSS} \text { from regression of } I_{i} \hat{V}_{i}(\hat{\beta})^{-1 / 2} \hat{J}_{i}^{h}(\hat{\beta}, \hat{\gamma}) \hat{V}_{i}^{h}(\hat{\gamma})^{-1} \hat{G}_{i}^{h}(\hat{\gamma}) \text { on } I_{i} \hat{V}_{i}(\hat{\beta})^{-1 / 2} \hat{G}_{i}(\hat{\beta}),
\end{gather*}
$$

where RSS denotes the residual sum of squares.
The asymptotic properties obtained in the next section hold for the above test statistics as well. The above formulae are also applicable to other semiparametric efficient estimators by Newey (1990) and Donald, Imbens and Newey (2003) for example.

3 Asymptotic Properties

3.1 Null Distributions

In this subsection, we derive the asymptotic distributions of the CEL-based non-nested test statistics under the null hypothesis \mathbf{H}_{g}. We impose the following assumptions.

Assumption 3.1

(i) $\left\{x_{i}, z_{i}\right\}_{i=1}^{n}$ is an i.i.d. sample on $\mathcal{X} \times R^{d_{z}}$, x is continuously distributed with density f, \mathcal{X}_{*} is compact and contained $\operatorname{in} \operatorname{int}(\mathcal{X})$, and $\inf _{x \in \mathcal{X}_{*}} f(x)>0$.
(ii) $\beta_{0} \in \operatorname{int}(\mathcal{B})$, and $\hat{\beta}$ satisfies $n^{1 / 2}\left(\hat{\beta}-\beta_{0}\right)=-n^{-1 / 2} \Delta \sum_{i=1}^{n} \psi\left(x_{i}, z_{i}, \beta_{0}\right)+o_{p}(1)$, where Δ is a $d_{\beta} \times d_{\beta}$ non-stochastic matrix, $E\left[\psi\left(x, z, \beta_{0}\right)\right]=0$, and $E\left[\left\|\psi\left(x, z, \beta_{0}\right)\right\|^{\xi}\right]<\infty$ for some $\xi>2$.
(iii) $\left\|\hat{\gamma}-\gamma_{*}\right\|=O_{p}\left(n^{-1 / 2}\right)$.
(iv) $K(x)=\Pi_{i=1}^{s} \kappa\left(x^{(i)}\right)$, where κ is a continuously differentiable pdf with support $[-1,1]$, symmetric around the origin, and $\inf _{x \in[-\bar{k}, \bar{k}]} \kappa(x)>0$ for some $\bar{k} \in(0,1)$.
(v) b_{n} satisfies $b_{n} \rightarrow 0$ and $b_{n}=O\left(n^{-\alpha}\right)$ for some $0<\alpha<\frac{1}{3 s}$.

Assumption 3.2

(i) $E\left[\sup _{\beta \in \mathcal{B}}\|g(z, \beta)\|^{\zeta}\right]<\infty$ for some $\zeta \geq 6$.
(ii) $f(x)$ and $E\left[g\left(z, \beta_{0}\right) g\left(z, \beta_{0}\right)^{\prime} \mid x\right]$ are twice continuously differentiable on $\mathcal{X}, E\left[\partial g\left(z, \beta_{0}\right) / \partial \beta^{\prime} \mid x\right]$ is continuous on $\mathcal{X}, f(x)$ and $E\left[\left\|g\left(z, \beta_{0}\right)\right\|^{\zeta} \mid x\right] f(x)$ are uniformly bounded on \mathcal{X}, and $\inf _{x \in \mathcal{X}_{*}} \lambda_{\min }\left(E\left[g\left(z, \beta_{0}\right) g\left(z, \beta_{0}\right)^{\prime} \mid x\right]\right)>0$.
(iii) $g(z, \beta)$ is twice continuously differentiable a.s. on a neighborhood \mathcal{B}_{0} around β_{0}, for $i=1, \ldots, d_{g}$ and $j=1, \ldots, d_{\beta}, \sup _{\beta \in \mathcal{B}_{0}}\left|\partial g^{(i)}(z, \beta) / \partial \beta^{(j)}\right| \leq d_{1}(z)$ holds a.s. for a real-valued function $d_{1}(z)$ with $E\left[d_{1}(z)^{\eta}\right]<\infty$ for some $\eta \geq 6$, and for $i=1, \ldots, d_{g}$ and $j, k=1, \ldots, d_{\beta}$, $\sup _{\beta \in \mathcal{B}_{0}}\left|\partial^{2} g^{(i)}(z, \beta) / \partial \beta^{(j)} \partial \beta^{(k)}\right| \leq d_{2}(z)$ holds a.s. for a real-valued function $d_{2}(z)$ with $E\left[d_{2}(z)^{\eta_{2}}\right]<$ ∞ for some $\eta_{2} \geq 2$.
(iv) $\sup _{x \in \mathcal{X}_{*}}\left\|\hat{M}(x, \hat{\beta}, \hat{\gamma})-M\left(x, \beta_{0}, \gamma_{*}\right)\right\| \xrightarrow{p} 0, M\left(x, \beta_{0}, \gamma_{*}\right)$ is uniformly bounded on \mathcal{X}_{*}, $E\left[\sup _{\beta \in \mathcal{B}, \gamma \in \Gamma}\|m(z, \beta, \gamma)\|^{\zeta_{m}}\right]<\infty$ for some $\zeta_{m} \geq 6$, $m(z, \beta, \gamma)$ is continuously differentiable a.s. on a neighborhood $\mathcal{B}_{0} \times \Gamma_{*}$ around $\left(\beta_{0}, \gamma_{*}\right)$, and for $i=1, \ldots, d_{m}$ and $j=1, \ldots, d_{\beta}+d_{\gamma}$, $\sup _{(\beta, \gamma) \in \mathcal{B}_{0} \times \Gamma_{*}}\left|\partial m^{(i)}(z, \beta, \gamma) / \partial\left(\beta^{\prime}, \gamma^{\prime}\right)^{(j)}\right| \leq d_{m}(z)$ holds a.s. for a real-valued function $d_{m}(z)$ with $E\left[d_{m}(z)^{\eta_{m}}\right]<\infty$ for some $\eta_{m} \geq 6$.
(v) For the moment encompassing test, the probability limit of $\hat{\Phi}_{M}$ under \mathbf{H}_{g} (denote Φ_{M} defined below (48)) is non-null. For the Cox-type test, the probability limit of $\hat{\phi}_{C}$ under \mathbf{H}_{g} (denote ϕ_{C} defined below (50)) is positive. For the efficient score encompassing test, the probability limit of $\hat{\Phi}_{S}$ under \mathbf{H}_{g} (denote Φ_{S} defined below (51)) is non-null.
(vi) $\inf _{x \in \mathcal{X}_{*}} \lambda_{\min }\left(E\left[h\left(z, \gamma_{*}\right) h\left(z, \gamma_{*}\right)^{\prime} \mid x\right]\right)>0$ and $\sup _{x \in \mathcal{X}_{*}} \lambda_{\max }\left(E\left[h\left(z, \gamma_{*}\right) h\left(z, \gamma_{*}\right)^{\prime} \mid x\right]\right)<\infty$.

In Assumption 3.1 (i), although x should be continuous, z can be continuous, discrete, or mixed. ${ }^{11}$ Assumption 3.1 (ii) assumes the asymptotic linear form for $\hat{\beta}$ that implies the asymptotic normality of $\hat{\beta}$. This assumption holds for a number of parametric and semiparametric estimators. Assumption 3.1 (iii) imposes the \sqrt{n}-consistency of $\hat{\gamma}$ to the pseudo-true value γ_{*}. Depending on the estimation method, γ_{*} may be different. Assumption 3.1 (iv) and (v) are conditions for the kernel function K and the bandwidth b_{n}, respectively. Assumption 3.1 (iv) assumes that the kernel function K is secondorder. Assumption 3.1 (v) implies that the bandwidth b_{n} can vanish arbitrarily slowly. Tripathi and Kitamura (2003) and Kitamura, Tripathi and Ahn (2004) employ similar assumptions. Assumption 3.2 (i)-(iii) are conditions for the moment function $g(z, \beta)$, which are mainly used to derive the uniform convergence of nonparametric components such as $\hat{V}_{i}(\hat{\beta})$ and $\hat{G}_{i}(\hat{\beta})$. Assumption 3.2 (iv) is a set of conditions for the moment indicator $\tilde{m}(x, z, \beta, \gamma)$. For the Cox-type and efficient score encompassing

[^7]tests, we take $m(z, \beta, \gamma)=h(z, \gamma)$. Assumption 3.2 (v) is required to obtain non-degenerate limiting distributions of test statistics. Assumption 3.2 (vi) guarantees that $V_{i}^{h}(\hat{\gamma})$ is invertible uniformly on $x_{i} \in \mathcal{X}_{*}$ w.p.a.1. Let
$$
\hat{g}_{i}(\beta)=\sum_{j=1}^{n} w_{j i} g\left(z_{j}, \beta\right), J_{i}^{h}(\beta, \gamma)^{\prime}=E\left[h\left(z_{i}, \gamma\right) g\left(z_{i}, \beta\right)^{\prime} \mid x_{i}\right] .
$$

The null distributions of the CEL-based non-nested test statistics are obtained as follows.

Theorem 3.1 (Null Distributions)

(i) Suppose that Assumptions 3.1 and 3.2 (i)-(v) hold. Then under the null hypothesis \mathbf{H}_{g},

$$
M_{g} \xrightarrow{d} \chi_{\operatorname{rank}\left(\Phi_{M}\right)}^{2} .
$$

(ii) Suppose that Assumptions 3.1 and 3.2 (i)-(iii), (v), and (vi) hold. Furthermore, Assumption 3.2 (iv) holds for $m\left(z_{i}, \beta, \gamma\right)=h\left(z_{i}, \gamma\right), \hat{M}\left(x_{i}, \beta, \gamma\right)^{\prime}=\left\{2 \hat{h}_{i}(\gamma)-J_{i}^{h}(\beta, \gamma) \hat{V}_{i}(\beta)^{-1} \hat{g}_{i}(\beta)\right\}^{\prime} \hat{V}_{i}^{h}(\gamma)^{-1}$, and $M\left(x_{i}, \beta, \gamma\right)^{\prime}=2 E\left[h\left(z_{i}, \gamma\right) \mid x_{i}\right]^{\prime} V_{i}^{h}(\gamma)^{-1} .{ }^{12}$ Then under the null hypothesis \mathbf{H}_{g},

$$
C_{g} \xrightarrow{d} N(0,1) .
$$

(iii) Suppose that Assumptions 3.1 and 3.2 (i)-(iii), (v), and (vi) hold. Furthermore, Assumption 3.2 (iv) holds for $m\left(z_{i}, \beta, \gamma\right)=h\left(z_{i}, \gamma\right), \hat{M}\left(x_{i}, \beta, \gamma\right)^{\prime}=\hat{G}_{i}^{h}(\gamma)^{\prime} \hat{V}_{i}^{h}(\gamma)^{-1}$, and $M\left(x_{i}, \beta, \gamma\right)^{\prime}=$ $G_{i}^{h}(\gamma)^{\prime} V_{i}^{h}(\gamma)^{-1}$. Then under the null hypothesis \mathbf{H}_{g},

$$
S_{g} \xrightarrow{d} \chi_{\operatorname{rank}\left(\Phi_{S}\right)}^{2} .
$$

Therefore, these non-nested test statistics follow the standard limiting distributions. Compared to the CEL-based specification test statistics by Tripathi and Kitamura (2003), our non-nested test statistics show the parametric convergence rate. Actually, the proof of Theorem 3.1 indicates that under the null hypothesis \mathbf{H}_{g} the non-nested test statistics M_{g}, C_{g}, and S_{g} are asymptotically equivalent to test statistics of the unconditional moment restrictions $E\left[\psi_{i}^{a}\left(\beta_{0}, \gamma_{*}\right)\right]=0$ for $a=M, C$, and S (defined in (48), (50), and (51)), respectively. The main effort of the proof is devoted to establish these asymptotic equivalence results. However, if $E\left[\psi_{i}^{a}\left(\beta_{0}, \gamma_{*}\right)\right]=0$ holds but \mathbf{H}_{g} do not hold, our non-nested test statistics and the unconditional moment-based test statistics are asymptotically different. See Section 3.3 for a detailed discussion. For (ii) and (iii) of this theorem, the assumptions on $m(z, \beta, \gamma)$ and $\hat{M}(x, \beta, \gamma)$ can be replaced with more primitive conditions, such as the conditions obtained by replacing $g(z, \beta), \beta_{0}, \mathcal{B}$, and \mathcal{B}_{0} in Assumption 3.2 (i)-(iii) with $h(z, \gamma), \gamma_{*}, \Gamma$, and Γ_{*}, respectively.

[^8]
3.2 Local Power

This subsection studies the power properties of the CEL-based non-nested test statistics. We assume that the joint distribution of (x, z) is fixed, and that there exists a non-stochastic sequence $\beta_{0 n} \in \mathcal{B}$ such that

$$
\begin{equation*}
\mathbf{H}_{g n}: E\left[g\left(z, \beta_{0 n}\right) \mid x\right]=n^{-1 / 2} \delta_{h}(x) \tag{21}
\end{equation*}
$$

holds a.s. for some $\delta_{h}: \mathcal{X} \rightarrow R^{d_{g}}$. The null hypothesis \mathbf{H}_{g} is satisfied if $\delta_{h}(x)=0 .{ }^{13}$ To obtain the local power properties, we impose the following assumptions.

Assumption 3.3

(i) $\delta_{h}(x)$ is continuous on $\mathcal{X}, E\left[\left\|\delta_{h}(x)\right\|^{\zeta}\right]<\infty,\left\|\beta_{0 n}-\beta_{0}\right\| \rightarrow 0$ as $n \rightarrow \infty, \beta_{0} \in \operatorname{int}(\mathcal{B})$, and $n^{1 / 2}\left(\hat{\beta}-\beta_{0 n}\right)=-n^{-1 / 2} \Delta \sum_{i=1}^{n} \psi\left(x_{i}, z_{i}, \beta_{0 n}\right)+o_{p}(1)$, where Δ is a $d_{\beta} \times d_{\beta}$ non-stochastic matrix, $E\left[\psi\left(x, z, \beta_{0 n}\right) \mid x\right]=n^{-1 / 2} \delta_{\psi}(x), \delta_{\psi}(x)$ is continuous on \mathcal{X}, and $E\left[\left\|\delta_{\psi}(x)\right\|^{\xi}\right]<\infty$ for some $\xi>2$.
(ii) $f(x)$ and $E\left[g(z, \beta) g(z, \beta)^{\prime} \mid x\right]$ are twice continuously differentiable on \mathcal{X} for each $\beta \in \mathcal{B}_{0}, E\left[g(z, \beta) g(z, \beta)^{\prime} \mid x\right]$ and $E\left[\partial g(z, \beta) / \partial \beta^{\prime} \mid x\right]$ are continuous on $\mathcal{X} \times \mathcal{B}_{0}, f(x)$ and $\sup _{\beta \in \mathcal{B}_{0}} E\left[\|g(z, \beta)\|^{\zeta} \mid x\right] f(x)$ are uniformly bounded on \mathcal{X}, $\inf _{(x, \beta) \in \mathcal{X}_{*} \times \mathcal{B}_{0}} \lambda_{\min }\left(E\left[g(z, \beta) g(z, \beta)^{\prime} \mid x\right]\right)>0$, and $\sup _{(x, \beta) \in \mathcal{X}_{*} \times \mathcal{B}_{0}} \lambda_{\max }\left(E\left[g(z, \beta) g(z, \beta)^{\prime} \mid x\right]\right)<$ ∞.
(iii) $\sup _{x \in \mathcal{X}_{*}}\left\|\hat{M}(x, \hat{\beta}, \hat{\gamma})-M\left(x, \beta_{0 n}, \gamma_{*}\right)\right\| \xrightarrow{p} 0, \sup _{\beta \in \mathcal{B}_{0}} M\left(x, \beta, \gamma_{*}\right)$ is uniformly bounded on \mathcal{X}_{*}, $E\left[\sup _{\beta \in \mathcal{B}, \gamma \in \Gamma}\|m(z, \beta, \gamma)\|^{\zeta_{m}}\right]<\infty$ for some $\zeta_{m} \geq 6, m(z, \beta, \gamma)$ is continuously differentiable a.s. on a neighborhood $\mathcal{B}_{0} \times \Gamma_{*}$ around $\left(\beta_{0}, \gamma_{*}\right)$, and for $i=1, \ldots, d_{m}$ and $j=1, \ldots, d_{\beta}+d_{\gamma}$, $\sup _{(\beta, \gamma) \in \mathcal{B}_{0} \times \Gamma_{*}}\left|\partial m^{(i)}(z, \beta, \gamma) / \partial\left(\beta^{\prime}, \gamma^{\prime}\right)^{(j)}\right| \leq d_{m}(z)$ holds a.s. for a real-valued function $d_{m}(z)$ with $E\left[d_{m}(z)^{\eta_{m}}\right]<\infty$ for some $\eta_{m} \geq 6$.

Assumption 3.3 (i), (ii), and (iii) are extensions of Assumptions 3.1 (ii) and 3.2 (ii) and (iv), respectively. Let $J_{i}(\beta, \gamma)^{\prime}=E\left[m\left(z_{i}, \beta, \gamma\right) g\left(z_{i}, \beta\right)^{\prime} \mid x_{i}\right]$ and $\chi_{d}^{2}(v)$ be the noncentral chi-squared distribution with the degree of freedom d and the noncentrality parameter v. The local power properties of the CEL-based non-nested test statistics are obtained as follows.

Theorem 3.2 (Local Power)

[^9](i) Suppose that Assumptions 3.1 (i) and (iii)-(v), 3.2 (i), (iii), and (v), and 3.3 hold. Then under the local alternative hypothesis $\mathbf{H}_{g n}$,
$$
M_{g} \xrightarrow{d} \chi_{\operatorname{rank}\left(\Phi_{M}\right)}^{2}\left(\mu_{M}^{\prime} \Phi_{M}^{-} \mu_{M}\right),
$$
where
\[

$$
\begin{gathered}
\mu_{M}=-E\left[I_{i} M\left(x_{i}, \beta_{0}, \gamma_{*}\right)^{\prime} J_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} V_{i}\left(\beta_{0}\right)^{-1} \delta_{h}\left(x_{i}\right)\right]+H_{M}\left(\beta_{0}, \gamma_{*}\right) \Delta E\left[\delta_{\psi}\left(x_{i}\right)\right], \\
H_{M}(\beta, \gamma)=E\left[I_{i} M\left(x_{i}, \beta, \gamma\right)^{\prime} J_{i}(\beta, \gamma)^{\prime} V_{i}(\beta)^{-1} G_{i}(\beta)\right] .
\end{gathered}
$$
\]

(ii) Suppose that Assumptions 3.1 (i) and (iii)-(v), 3.2 (i), (iii), (v), and (vi), and 3.3 (i) and (ii) hold. Furthermore, Assumption 3.3 (iii) holds for $m\left(z_{i}, \beta, \gamma\right)=h\left(z_{i}, \gamma\right), \hat{M}\left(x_{i}, \beta, \gamma\right)^{\prime}=$ $\left\{2 \hat{h}_{i}(\gamma)-J_{i}^{h}(\beta, \gamma) \hat{V}_{i}(\beta)^{-1} \hat{g}_{i}(\beta)\right\}^{\prime} \hat{V}_{i}^{h}(\gamma)^{-1}$, and $M\left(x_{i}, \beta, \gamma\right)^{\prime}=2 E\left[h\left(z_{i}, \gamma\right) \mid x_{i}\right]^{\prime} V_{i}^{h}(\gamma)^{-1}$. Then under the local alternative hypothesis $\mathbf{H}_{g n}$,

$$
C_{g} \xrightarrow{d} N\left(\phi_{C}^{-1 / 2} \mu_{C}, 1\right),
$$

where

$$
\begin{gathered}
\mu_{C}=-2 E\left[I_{i} E\left[h\left(z_{i}, \gamma_{*}\right) \mid x_{i}\right]^{\prime} V_{i}^{h}\left(\gamma_{*}\right)^{-1} J_{i}^{h}\left(\beta_{0}, \gamma_{*}\right)^{\prime} V_{i}\left(\beta_{0}\right)^{-1} \delta_{h}\left(x_{i}\right)\right]+H_{C}\left(\beta_{0}, \gamma_{*}\right) \Delta E\left[\delta_{\psi}\left(x_{i}\right)\right], \\
H_{C}(\beta, \gamma)=2 E\left[I_{i} E\left[h\left(z_{i}, \gamma\right) \mid x_{i}\right]^{\prime} V_{i}^{h}(\gamma)^{-1} J_{i}^{h}(\beta, \gamma)^{\prime} V_{i}(\beta)^{-1} G_{i}(\beta)\right] .
\end{gathered}
$$

(iii) Suppose that Assumptions 3.1 (i) and (iii)-(v), 3.2 (i), (iii), (v), and (vi), and 3.3 (i) and (ii) hold. Furthermore, Assumption 3.3 (iii) holds for $m\left(z_{i}, \beta, \gamma\right)=h\left(z_{i}, \gamma\right), \hat{M}\left(x_{i}, \beta, \gamma\right)^{\prime}=$ $\hat{G}_{i}^{h}(\gamma)^{\prime} \hat{V}_{i}^{h}(\gamma)^{-1}$, and $M\left(x_{i}, \beta, \gamma\right)^{\prime}=G_{i}^{h}(\gamma)^{\prime} V_{i}^{h}(\gamma)^{-1}$. Then under the local alternative hypothesis $\mathbf{H}_{g n}$,

$$
S_{g} \xrightarrow{d} \chi_{\operatorname{rank}\left(\Phi_{S}\right)}^{2}\left(\mu_{S}^{\prime} \Phi_{S}^{-} \mu_{S}\right),
$$

where

$$
\begin{gathered}
\mu_{S}=-E\left[I_{i} G_{i}^{h}\left(\gamma_{*}\right)^{\prime} V_{i}^{h}\left(\gamma_{*}\right)^{-1} J_{i}^{h}\left(\beta_{0}, \gamma_{*}\right)^{\prime} V_{i}\left(\beta_{0}\right)^{-1} \delta_{h}\left(x_{i}\right)\right]+H_{S}\left(\beta_{0}, \gamma_{*}\right) \Delta E\left[\delta_{\psi}\left(x_{i}\right)\right], \\
H_{S}(\beta, \gamma)=E\left[I_{i} G_{i}^{h}(\gamma)^{\prime} V_{i}^{h}(\gamma)^{-1} J_{i}^{h}(\beta, \gamma)^{\prime} V_{i}(\beta)^{-1} G_{i}(\beta)\right] .
\end{gathered}
$$

For (ii) and (iii) of this theorem, we can replace the assumptions on $m(z, \beta, \gamma)$ and $\hat{M}(x, \beta, \gamma)$ with more primitive conditions, such as the conditions obtained by replacing $g(z, \beta), \beta_{0}, \mathcal{B}$, and \mathcal{B}_{0} in Assumptions 3.2 (i) and (iii) and 3.3 (ii) with $h(z, \gamma), \gamma_{*}, \Gamma$, and Γ_{*}, respectively. Similar to the existing non-nested tests, the local power functions are obtained from the standard noncentral distributions. While the CEL-based specification test by Tripathi and Kitamura (2003) has non-trivial power against local alternatives with a nonparametric rate (i.e., $n^{-1 / 2} b_{n}^{-s / 4} \delta_{h}(x)$), our CEL-based non-nested tests have non-trivial power against local alternatives with the parametric rate (i.e., $n^{-1 / 2} \delta_{h}(x)$). However,
at the cost of the parametric rate, our non-nested tests require additional conditions that guarantee non-zero noncentrality parameters.

The proof of Theorem 3.2 implies that under the local alternative hypothesis $\mathbf{H}_{g n}$, the test statistics M_{g}, C_{g}, and S_{g} are asymptotically equivalent to test statistics of the unconditional moment restrictions $E\left[\psi_{i}^{a}\left(\beta_{0}, \gamma_{*}\right)\right]=0$ for $a=M, C$, and S (defined in (48), (50), and (51)), respectively. Thus, we can apply the results of Singleton (1985) and Ramalho and Smith (2002) to analyze the local power optimality. We can show that the non-nested tests by M_{g}, C_{g}, and S_{g} have asymptotic local optimal power against local alternatives (or choices of $\delta_{h}(x)$ and $\delta_{\psi}(x)$) such that $\mu_{M}=\Phi_{M} a, \mu_{C}=\phi_{C} a$, and $\mu_{S}=\Phi_{S} a$, respectively, for some vector or constant a.

3.3 Consistency

We now derive the consistency of the CEL-based non-nested tests under the alternative hypothesis \mathbf{H}_{h}. Assume that under \mathbf{H}_{h} the estimators $\hat{\beta}$ and $\hat{\gamma}$ converge to the pseudo-true values β_{*} and γ_{0}, respectively. Define

$$
\begin{equation*}
\lambda_{*}^{g}(x, \beta)=\underset{\lambda \in R^{d} g}{\arg \max } E\left[\log \left(1+\lambda^{\prime} g(z, \beta)\right) \mid x\right], \tag{22}
\end{equation*}
$$

which is interpreted as the pseudo-true value of the Lagrange multiplier $\lambda_{i}^{g}(\beta)$. From Kitamura (2003), we can show that $\max _{i \in\left\{i: x_{i} \in \mathcal{X}_{*}, 1 \leq i \leq n\right\}}\left\|\lambda_{i}^{g}(\hat{\beta})-\lambda_{*}^{g}\left(x_{i}, \beta_{*}\right)\right\| \xrightarrow{p} 0$ under \mathbf{H}_{h}. Note that under \mathbf{H}_{h}, $\lambda_{*}^{g}\left(x, \beta_{*}\right)$ is generally non-zero. Let

$$
\begin{aligned}
J_{i *}(\beta, \gamma)^{\prime} & =E\left[\left.\frac{m\left(z_{i}, \beta, \gamma\right) g\left(z_{i}, \beta\right)^{\prime}}{1+\lambda_{*}^{g}\left(x_{i}, \beta\right)^{\prime} g\left(z_{i}, \beta\right)} \right\rvert\, x_{i}\right], J_{i *}^{h}(\beta, \gamma)^{\prime}=E\left[\left.\frac{h\left(z_{i}, \gamma\right) g\left(z_{i}, \beta\right)^{\prime}}{1+\lambda_{*}^{g}\left(x_{i}, \beta\right)^{\prime} g\left(z_{i}, \beta\right)} \right\rvert\, x_{i}\right], \\
\hat{J}_{i *}^{h}(\beta, \gamma)^{\prime} & =\sum_{j=1}^{n} w_{j i} \frac{h\left(z_{j}, \gamma\right) g\left(z_{j}, \beta\right)^{\prime}}{1+\lambda_{i}^{g}(\beta)^{\prime} g\left(z_{j}, \beta\right)} .
\end{aligned}
$$

Let \mathcal{B}_{*} and Γ_{0} be neighborhoods around β_{*} and γ_{0}, respectively. The consistency results are obtained as follows.

Theorem 3.3 (Consistency)

(i) Suppose that for $\beta_{*}, \gamma_{0}, \mathcal{B}_{*}$, and Γ_{0} instead of $\beta_{0}, \gamma_{*}, \mathcal{B}_{0}$, and Γ_{*}, respectively, Assumptions 3.1 and 3.2 (i)-(iv) hold. Furthermore, assume that the probability limit of $\hat{\Phi}_{M}$ under \mathbf{H}_{h} (denote $\Phi_{h M}$) is non-null. Then under the alternative hypothesis \mathbf{H}_{h}, the CEL-based moment encompassing test by M_{g} is consistent if $\mu_{h M}^{\prime} \Phi_{h M}^{-} \mu_{h M}>0$, where

$$
\mu_{h M}=-E\left[I_{i} M\left(x_{i}, \beta_{*}, \gamma_{0}\right)^{\prime} J_{i *}\left(\beta_{*}, \gamma_{0}\right)^{\prime} \lambda_{*}^{g}\left(x_{i}, \beta_{*}\right)\right] .
$$

(ii) Suppose that for $\beta_{*}, \gamma_{0}, \mathcal{B}_{*}$, and Γ_{0} instead of $\beta_{0}, \gamma_{*}, \mathcal{B}_{0}$, and Γ_{*}, respectively, Assumptions 3.1 and 3.2 (i)-(iii) and (vi) hold. Furthermore, assume that the probability limit of $\hat{\phi}_{C}$ under \mathbf{H}_{h} (denote $\phi_{h C}$) is positive, and Assumption 3.2 (iv) holds for $m\left(z_{i}, \beta, \gamma\right)=h\left(z_{i}, \gamma\right), \hat{M}\left(x_{i}, \beta, \gamma\right)=$
$\sum_{j=1}^{n} w_{j i} \frac{h\left(z_{j}, \gamma\right)}{1+\lambda_{i}^{g}(\beta)^{\prime} g\left(z_{j}, \beta\right)}$, and $M\left(x_{i}, \beta, \gamma\right)=E\left[\left.\frac{h\left(z_{i}, \gamma\right)}{1+\lambda_{*}^{g}\left(x_{i}, \beta\right)^{\prime} g\left(z_{i}, \beta\right)} \right\rvert\, x_{i}\right]$. Then under the alternative hypothesis \mathbf{H}_{h}, the CEL-based Cox-type test by C_{g} is consistent if $\mu_{h C} / \sqrt{\phi_{h C}} \neq 0$, where

$$
\mu_{h C}=E\left[I_{i} E\left[\left.\frac{h\left(z_{i}, \gamma_{0}\right)}{1+\lambda_{*}^{g}\left(x_{i}, \beta_{*}\right)^{\prime} g\left(z_{i}, \beta_{*}\right)} \right\rvert\, x_{i}\right]^{\prime} V_{i}^{h}\left(\gamma_{0}\right)^{-1} E\left[\left.\frac{h\left(z_{i}, \gamma_{0}\right)}{1+\lambda_{*}^{g}\left(x_{i}, \beta_{*}\right)^{\prime} g\left(z_{i}, \beta_{*}\right)} \right\rvert\, x_{i}\right]\right] .
$$

(iii) Suppose that for $\beta_{*}, \gamma_{0}, \mathcal{B}_{*}$, and Γ_{0} instead of $\beta_{0}, \gamma_{*}, \mathcal{B}_{0}$, and Γ_{*}, respectively, Assumptions 3.1 and 3.2 (i)-(iii) and (vi) hold. Furthermore, assume that the probability limit of $\hat{\Phi}_{S}$ under \mathbf{H}_{h} (denote $\Phi_{h S}$) is non-null, and Assumption 3.2 (iv) holds for $m\left(z_{i}, \beta, \gamma\right)=h\left(z_{i}, \gamma\right), \hat{M}\left(x_{i}, \beta, \gamma\right)^{\prime}=$ $\hat{G}_{i}^{h}(\gamma)^{\prime} \hat{V}_{i}^{h}(\gamma)^{-1}$, and $M\left(x_{i}, \beta, \gamma\right)^{\prime}=G_{i}^{h}(\gamma)^{\prime} V_{i}^{h}(\gamma)^{-1}$. Then under the alternative hypothesis \mathbf{H}_{h}, the CEL-based efficient score test by S_{g} is consistent if $\mu_{h S}^{\prime} \Phi_{h S}^{-} \mu_{h S}>0$, where

$$
\mu_{h S}=-E\left[I_{i} G_{i}^{h}\left(\gamma_{0}\right)^{\prime} V_{i}^{h}\left(\gamma_{0}\right)^{-1} J_{i *}^{h}\left(\beta_{*}, \gamma_{0}\right)^{\prime} \lambda_{*}^{g}\left(x_{i}, \beta_{*}\right)\right] .
$$

The noncentrality parameters $\mu_{h M}, \mu_{h C}$, and $\mu_{h S}$ depend on $\lambda_{*}^{g}\left(x_{i}, \beta_{*}\right)$, the limit of the Lagrange multiplier $\lambda_{i}^{g}(\hat{\beta})$. Since $\lambda_{i}^{g}(\hat{\beta})$ does not converge to zero under \mathbf{H}_{h} in general, the asymptotic relation $\lambda_{i}^{g}(\hat{\beta})=\hat{V}_{i}(\hat{\beta})^{-1} \hat{g}_{i}(\hat{\beta})+o_{p}(1)$ no longer holds under \mathbf{H}_{h}. Thus, it is generally difficult to obtain an explicit form (or approximation) for the noncentrality parameters in terms of the moment function $g\left(z_{i}, \beta_{*}\right)$ instead of $\lambda_{*}^{g}\left(x_{i}, \beta_{*}\right)$.

We now discuss when these tests become consistent against \mathbf{H}_{h}. First, consider the moment encompassing and efficient score encompassing tests. Even if the true conditional measure satisfies the alternative hypothesis \mathbf{H}_{h}, these two tests are inconsistent (i.e., do not have non-trivial asymptotic power) when $\mu_{h M}^{\prime} \Phi_{h M}^{-} \mu_{h M}=0$ or $\mu_{h S}^{\prime} \Phi_{h S}^{-} \mu_{h S}=0$. Although $\lambda_{*}^{g}\left(x_{i}, \beta_{*}\right)$ is generally non-zero, we cannot exclude the cases where the noncentrality parameters $\mu_{h M}^{\prime} \Phi_{h M}^{-} \mu_{h M}$ and $\mu_{h S}^{\prime} \Phi_{h S}^{-} \mu_{h S}$ become zero. In particular, it is possible that the marginal measure for x_{i} satisfies $\mu_{h M}=0$ or $\mu_{h S}=0$. This drawback, called the implicit null hypothesis, is common in non-nested and encompassing tests. Using the notation of Section 2.1, this inconsistency problem can be interpreted as the discrepancy between $\mathcal{H}_{z \mid x}$ (the set of conditional measures satisfying $\left.\mathbf{H}_{h}\right)$ and $\mathcal{H}_{z \mid x}^{M}=\left\{\left(\mu_{z \mid x}\right)_{x \in \mathcal{X}} \in \mathcal{M}_{z \mid x}: \mu_{h M}^{\prime} \Phi_{h M}^{-} \mu_{h M}=0\right.$ for some $\left.\mu_{x}\right\}$ or $\mathcal{H}_{z \mid x}^{S}=\left\{\left(\mu_{z \mid x}\right)_{x \in \mathcal{X}} \in \mathcal{M}_{z \mid x}: \mu_{h S}^{\prime} \Phi_{h S}^{-} \mu_{h S}=0\right.$ for some $\left.\mu_{x}\right\}$.

Next, we analyze the conditions when the Cox-type test becomes consistent. Since $\phi_{h C}$ is finite under very mild conditions, we focus on the conditions for $\mu_{h C} \neq 0$. If $V_{i}^{h}\left(\gamma_{0}\right)=E\left[h\left(z_{i}, \gamma_{0}\right) h\left(z_{i}, \gamma_{0}\right)^{\prime} \mid x_{i}\right]$ is positive definite (a.s. x_{i}) under \mathbf{H}_{h}, a sufficient condition for $\mu_{h C} \neq 0$ is

$$
\begin{align*}
E\left[\left.\frac{h\left(z, \gamma_{0}\right)}{1+\lambda_{*}^{g}\left(x, \beta_{*}\right)^{\prime} g\left(z, \beta_{*}\right)} \right\rvert\, x\right] & =\int \frac{h\left(z, \gamma_{0}\right)}{1+\lambda_{*}^{g}\left(x, \beta_{*}\right)^{\prime} g\left(z, \beta_{*}\right)} d \mu_{z \mid x}^{0} \\
& =\int h\left(z, \gamma_{0}\right) d P_{z \mid x}^{*} \neq 0 . \tag{23}
\end{align*}
$$

over some subset of \mathcal{X}, where the conditional measure $\left(P_{z \mid x}^{*}\right)_{x \in \mathcal{X}}$ is defined by

$$
\frac{d P_{z \mid x}^{*}}{d \mu_{z \mid x}^{0}}=\frac{1}{1+\lambda_{*}^{g}\left(x, \beta_{*}\right)^{\prime} g\left(z, \beta_{*}\right)}
$$

Suppose that β_{*} is the pseudo-true value of the CEL estimator $\hat{\beta}_{C E L}$ and the support of $g(z, \beta)$ is bounded for all $\beta \in \mathcal{B}$. Then Kitamura (2003) showed that $\left(P_{z \mid x}^{*}\right)_{x \in \mathcal{X}}$ becomes the best approximation (or projection) of the true conditional measure $\mu_{z \mid x}^{0}$ to the space of conditional measures $\mathcal{G}_{z \mid x}$ by the conditional relative entropy, and it satisfies $\left(P_{z \mid x}^{*}\right)_{x \in \mathcal{X}} \in \mathcal{G}_{z \mid x}$. For simplicity, assume that \mathbf{H}_{g} and \mathbf{H}_{h} are globally nonnested (i.e., $\left.\mathcal{G}_{z \mid x} \cap \mathcal{H}_{z \mid x}=\phi\right) .{ }^{14}$ Then $\left(P_{z \mid x}^{*}\right)_{x \in \mathcal{X}} \in \mathcal{G}_{z \mid x}$ implies $\left(P_{z \mid x}^{*}\right)_{x \in \mathcal{X}} \notin \mathcal{H}_{z \mid x}$ and hence (23) holds. This result is summarized as follows.

Corollary 3.1 (Sufficient condition for the consistency of the Cox-type test) Suppose that $\mathcal{G}_{z \mid x} \cap$ $\mathcal{H}_{z \mid x}=\phi$ and the same assumptions as Theorem 3.3 (ii) hold for the CEL estimator $\hat{\beta}_{C E L}$. Furthermore, assume that (i) $\phi_{h C}<\infty$; (ii) $V_{i}^{h}\left(\gamma_{0}\right)$ is positive definite (a.s. x_{i}); and (iii) the support of $g(z, \beta)$ is bounded for all $\beta \in \mathcal{B}$. Then the Cox test is consistent against \mathbf{H}_{h}.

Observe that this corollary does not require somewhat artificial assumptions such as $\mu_{h M}^{\prime} \Phi_{h M}^{-} \mu_{h M} \neq$ 0 and $\mu_{h S}^{\prime} \Phi_{h S}^{-} \mu_{h S} \neq 0$ in the moment encompassing and efficient score encompassing tests, respectively. Although the bounded support assumption for $g(z, \beta)$ may be restrictive in some contexts, this assumption is very easy to check. ${ }^{15}$ Another important point is that we must use the CEL estimator $\hat{\beta}_{C E L}$ to obtain the above corollary. If we employ a different estimator, its pseudo-true value β_{*} may differ from that of the CEL estimator and the result of Kitamura (2003) is not applicable. ${ }^{16}$

Finally, we clarify the difference between the Cox-type test and the existing non-nested tests based on unconditional moment restrictions. Under the null hypothesis $\mathbf{H}_{g}:\left(\mu_{z \mid x}^{0}\right)_{x \in \mathcal{X}} \in \mathcal{G}_{z \mid x}$, the asymptotic linear form of T_{C} in (14) is written as (see (49) in Appendix A.1)

$$
\begin{equation*}
n^{1 / 2} T_{C}=n^{-1 / 2} \sum_{i=1}^{n} \psi_{i}^{C}\left(\beta_{0}, \gamma_{*}\right)+o_{p}(1) . \tag{24}
\end{equation*}
$$

Based on (24), we may consider the unconditional moment-based test for

$$
\begin{equation*}
\mathbf{H}_{g}^{U}: E\left[\psi_{i}^{C}\left(\beta_{0}, \gamma_{*}\right)\right]=0 \tag{25}
\end{equation*}
$$

If $\hat{\beta}$ is set as the CEL estimator $\hat{\beta}_{C E L}$, (25) is written in the form of

$$
\mathbf{H}_{g}^{U}: E\left[Q_{g}^{C}\left(x, \beta_{0}, \gamma_{*}\right) g\left(z, \beta_{0}\right)\right]=0
$$

for certain matrix $Q_{g}^{C}\left(x, \beta_{0}, \gamma_{*}\right)$ (set $\Delta=I\left(\beta_{0}\right)^{-1}$ and $\psi\left(x_{i}, z_{i}, \beta_{0}\right)=I_{i} G_{i}\left(\beta_{0}\right)^{\prime} V_{i}\left(\beta_{0}\right)^{-1} g\left(z_{i}, \beta_{0}\right)$ for (48) in Appendix A.1). As Smith (1997) and Ramalho and Smith (2002) discussed, the unconditional moment restriction \mathbf{H}_{g}^{U} can be tested by using the sample analog $T_{C}^{U}=n^{-1} \sum_{i=1}^{n} \psi_{i}^{C}(\hat{\beta}, \hat{\gamma})$ or

[^10]$n^{-1} \sum_{i=1}^{n} Q_{g}^{C}\left(x_{i}, \hat{\beta}, \hat{\gamma}\right) g\left(z_{i}, \hat{\beta}\right)$. Under the original null hypothesis $\mathbf{H}_{g}:\left(\mu_{z \mid x}^{0}\right)_{x \in \mathcal{X}} \in \mathcal{G}_{z \mid x}, T_{C}$ and T_{C}^{U} are asymptotically equivalent, i.e.,
$$
n^{1 / 2} T_{C}=n^{1 / 2} T_{C}^{U}+o_{p}(1) \xrightarrow{d} N\left(0, \phi_{C}\right) .
$$

Also, under the local alternative hypothesis $\mathbf{H}_{g n}, T_{C}$ and T_{C}^{U} are asymptotically equivalent. However, T_{C} and T_{C}^{U} show different properties under the alternative hypothesis $\mathbf{H}_{h}:\left(\mu_{z \mid x}^{0}\right)_{x \in \mathcal{X}} \in \mathcal{H}_{z \mid x}$. Suppose that the assumptions for Corollary 3.1 hold, and let

$$
\mathcal{G}_{z \mid x}^{C}=\cup_{\beta \in \mathcal{B}}\left\{\left(\mu_{z \mid x}\right)_{x \in \mathcal{X}} \in \mathcal{M}_{z \mid x}: \iint Q_{g}^{C}(x) g(z, \beta) d \mu_{z \mid x} d \mu_{x}=0 \text { for some } \mu_{x}\right\}
$$

If $\left(\mu_{z \mid x}^{0}\right)_{x \in \mathcal{X}} \in \mathcal{G}_{z \mid x}^{C} \backslash \mathcal{G}_{z \mid x}$ (i.e., the original null \mathbf{H}_{g} is violated but \mathbf{H}_{g}^{U} holds), then T_{C} and T_{C}^{U} are different even asymptotically, i.e.,

$$
\begin{align*}
& T_{C} \xrightarrow{p} \text { constant (in general) }, \tag{26}\\
& n^{1 / 2} T_{C}^{U} \xrightarrow{d} N\left(0, \phi_{C}\right) .
\end{align*}
$$

Although the null hypothesis \mathbf{H}_{g} is not satisfied in the region $\mathcal{G}_{z \mid x}^{C} \backslash \mathcal{G}_{z \mid x}$, the asymptotic distribution of T_{C}^{U} does not change from the one under \mathbf{H}_{g}. On the other hand, under $\mu_{z \mid x}^{0} \in \mathcal{G}_{z \mid x}^{C} \backslash \mathcal{G}_{z \mid x}$, we cannot obtain the asymptotic linear form in (24) nor the results in Lemma A.4. The limit of T_{C} in (26) can be obtained in the same manner as the proof of Theorem 3.3 (i). Moreover, by the same reason, T_{C} and T_{C}^{U} have different probability limits under \mathbf{H}_{h}, i.e.,

$$
\begin{aligned}
& T_{C} \xrightarrow{p} \mu_{h C} \\
& T_{C}^{U} \xrightarrow{p} E\left[\psi_{i}^{C}\left(\beta_{*}, \gamma_{0}\right)\right] \text { or } E\left[Q_{g}^{C}\left(x_{i}, \beta_{*}, \gamma_{0}\right) g\left(z_{i}, \beta_{*}\right)\right] .
\end{aligned}
$$

Under the assumptions for Corollary 3.1, the limit $\mu_{h C}$ is always non-zero, but the limit $E\left[\psi_{i}^{C}\left(\beta_{*}, \gamma_{0}\right)\right]$ or $E\left[Q_{g}^{C}\left(x_{i}, \beta_{*}, \gamma_{0}\right) g\left(z_{i}, \beta_{*}\right)\right]$ is not necessary non-zero.

In summary, if the support of $g(z, \beta)$ is bounded for all $\beta \in \mathcal{B}$, the CEL-based Cox-type test is consistent against the alternative \mathbf{H}_{g} under mild conditions, but the CEL-based moment encompassing test and the efficient score encompassing test require additional conditions that guarantee the noncentrality parameters to be non-zero. In any case, all of our CEL based tests have power properties that are very distinct from the existing unconditional moment-based tests and are consistent against alternatives that cannot be detected by the latter type tests.

4 Simulations

This section examines the finite sample properties of our tests against some of the existing non-nested tests using Monte-Carlo methods.

4.1 Experimental Design

We consider two simulation designs. In Design I, we consider two competing linear regression models: for $i=1, \ldots, n$,

$$
\begin{align*}
& \mathbf{H}_{g}: \tag{27}\\
& \mathbf{H}_{h}=\beta_{01}+\beta_{02} x_{1 i}+u_{g i} \\
& y_{i}=\gamma_{01}+\gamma_{02} x_{2 i}+u_{h i}
\end{align*}
$$

where $x_{1 i}=c_{0} x_{2 i}+e_{i}$ for $c_{0} \in\{1,2\},\left\{x_{2 i}\right\}$ and $\left\{e_{i}\right\}$ are i.i.d. $N(0,1),\left\{u_{g i}\right\}$ and $\left\{u_{h i}\right\}$ are i.i.d. $N(0,4)$, and the true parameters are given by $\beta_{0}=\left(\beta_{01}, \beta_{02}\right)^{\prime}=(1,1)^{\prime}$ and $\gamma_{0}=\left(\gamma_{01}, \gamma_{02}\right)^{\prime}=(1,1)^{\prime}$. Note that the hypotheses (27) correspond to the conditional moment restrictions in (1) with $g\left(z, \beta_{0}\right)=$ $y-\beta_{01}-\beta_{02} x_{1}$ and $h\left(z, \gamma_{0}\right)=y-\gamma_{01}-\gamma_{02} x_{2}$, where $z=\left(y, x_{1}, x_{2}\right)^{\prime}$ and $x=\left(x_{1}, x_{2}\right)^{\prime}$.

On the other hand, in Design II, we consider the following regression models: for $i=1, \ldots, n$,

$$
\begin{align*}
& \mathbf{H}_{g}: \tag{28}\\
& \mathbf{H}_{h}: \\
& y_{i}=\beta_{0} x_{i}+u_{g i} \\
& x_{i}^{3}+u_{h i}
\end{align*},
$$

where $\left\{x_{i}\right\},\left\{u_{g i}\right\}$ and $\left\{u_{h i}\right\}$ are i.i.d. $N(0,1)$ and $\beta_{0}=\gamma_{0}=1$. The hypotheses (28) correspond to (1) with $g\left(z, \beta_{0}\right)=y-\beta_{0} x$ and $h\left(z, \gamma_{0}\right)=y-\gamma_{0} x^{3}$, where $z=(y, x)^{\prime}$.

As benchmarks for our simulation experiments, we consider the non-nested tests of Singleton (1985, eqn. (33), p.404), labelled S, and Ramalho and Smith (2002, Simplified Cox test in Eqn. (4.4), p.108), labelled $S C$, respectively. We compute S and $S C$ from the following unconditional moment restrictions implied by (27) and (28): for Design I,

$$
\begin{align*}
\mathbf{H}_{g}^{U} & : E\left[\left(1, x_{1 i}, x_{2 i}\right)^{\prime}\left(y_{i}-\beta_{01}-\beta_{02} x_{1 i}\right)\right]=0 \tag{29}\\
\mathbf{H}_{h}^{U} & : E\left[\left(1, x_{1 i}, x_{2 i}\right)^{\prime}\left(y_{i}-\gamma_{01}-\gamma_{02} x_{2 i}\right)\right]=0
\end{align*}
$$

and, for Design II,

$$
\begin{align*}
\mathbf{H}_{g}^{U} & : E\left[\left(1, x_{i}\right)^{\prime}\left(y_{i}-\beta_{0} x_{i}\right)\right]=0 \tag{30}\\
\mathbf{H}_{h}^{U} & : E\left[\left(1, x_{i}^{3}\right)^{\prime}\left(y_{i}-\gamma_{0} x_{i}^{3}\right)\right]=0 .
\end{align*}
$$

As another benchmark, we also consider the over-identifying test of Hansen (1982), labelled J, that tests the validity of \mathbf{H}_{g}^{U} in (29) and (30) against general alternatives.

We consider two sample sizes $n \in\{100,200\}$ and fix the number R of Monte Carlo repetitions to be 1000. Because of very long computing time required for nonlinear optimizations, we do not consider larger n and R. We use the Gaussian kernel for our CEL-based tests M_{g}, C_{g}, and S_{g}. For the bandwidth b_{n}, we consider $b_{n} \in[0.1,0.2, \ldots, 1.0]$ in our simulations.

4.2 Simulation Results

Tables 1-3 present the rejection probabilities for the tests with nominal size of 5%. The simulation standard errors are approximately 0.007 . Tables 1 and 2 give the results for Design I with $c_{0}=1$ and
$c_{0}=2$, respectively. In both cases, our tests have reasonable size performance if the bandwidth is in a suitable range. The performance improves generally as n increases. The competitors J and $S C$ also have little size distortions, though the Singleton's test S under-rejects in many cases we consider. In terms of size-corrected powers, the efficient score encompassing test S_{g} dominates M_{g} and C_{g} in Design I. When $c_{0}=1$, the test S which is known to have an optimality property against some local alternatives, has relatively very good (size-corrected) power performance. However, when $c_{0}=2$, the power performance of S deteriorates and is significantly dominated by that of S_{g}. To explain the latter phenomenon, notice that if the alternative hypothesis \mathbf{H}_{h} in (27) is true, then the GMM estimator $\widehat{\beta}=\left(\widehat{\beta}_{1}, \widehat{\beta}_{2}\right)^{\prime}$ converges (in probability) to the pseudo-true value $\beta_{*}=\left(1, c_{0} /\left(1+c_{0}^{2}\right)\right)^{\prime}$. This implies that the sample analogue of the unconditional expectation in (29) converges

$$
\begin{equation*}
\frac{1}{n} \sum_{i=}^{n}\left[\left(1, x_{1 i}, x_{2 i}\right)^{\prime}\left(y_{i}-\widehat{\beta}_{1}-\widehat{\beta}_{2} x_{1 i}\right)\right] \xrightarrow{p}\left(0,0, \frac{1}{1+c_{0}^{2}}\right)^{\prime} . \tag{31}
\end{equation*}
$$

Therefore, since the limit in (31) degenerates to zero as c_{0} increases, we can see that a test based on the sample average in (31) will have low power if c_{0} is large.

Table 3 reports the simulation results for Design II. In this design, we expect that the tests based on the unconditional moments in (30) will be inconsistent. It is because, under \mathbf{H}_{h}, the estimator $\widehat{\beta}$ converges in probability to the pseudo-true value $\beta_{*}=3$ and hence the sample average converges to

$$
\begin{equation*}
\frac{1}{n} \sum_{i=}^{n}\left[\left(1, x_{i}\right)^{\prime}\left(y_{i}-\widehat{\beta} x_{i}\right)\right] \xrightarrow{p} E_{H}\left[\left(1, x_{i}\right)^{\prime}\left(y_{i}-\beta_{*} x_{i}\right)\right]=(0,0)^{\prime}, \tag{32}
\end{equation*}
$$

where E_{H} is the expectation taken under \mathbf{H}_{h}. This is precisely what happens to the powers of the tests J, S, and $S C$ in Design II. On the other hand, our tests have non-trivial powers even in this case. Among the latter tests, M_{g} and C_{g} appear to have better (size-corrected) power performance than S_{g} in this design.

5 Conclusion

We propose three types of non-nested tests for competing conditional moment restriction models: the moment encompassing, Cox-type, and efficient score encompassing tests. The test statistics are based on the conditional probabilities implied by conditional empirical likelihood. We investigate the asymptotic properties of the tests under the null and alternative hypotheses. Our tests have power properties that are very distinct from some of the existing unconditional moment-based tests and are consistent against alternatives that cannot be detected by the latter tests. In particular, if the support of the moment function is bounded and a mild regularity condition hold, we show that the Cox-type test is consistent against all departures from the null hypothesis toward the non-nested alternative hypothesis. Simulation results illustrate that our tests have reasonable finite sample properties and, in some cases, dominate some of the existing tests based on unconditional moment restrictions.

A Mathematical Appendix

Notation. Denote

$$
\begin{aligned}
I_{*} & =\left\{i: x_{i} \in \mathcal{X}_{*}, 1 \leq i \leq n\right\}, c_{n}=\sqrt{\frac{\log n}{n b_{n}^{s}}}, \\
g_{j}(\beta) & =g\left(z_{j}, \beta\right), h_{j}(\gamma)=h\left(z_{j}, \gamma\right), m_{j}(\beta, \gamma)=m\left(z_{j}, \beta, \gamma\right), \\
\hat{M}_{i}(\beta, \gamma) & =\hat{M}\left(x_{i}, \beta, \gamma\right), M_{i}(\beta, \gamma)=M\left(x_{i}, \beta, \gamma\right), \\
K_{j i} & =K\left(\frac{x_{i}-x_{j}}{b_{n}}\right), \hat{f}_{i}=\frac{1}{n b_{n}^{s}} \sum_{j=1}^{n} K_{j i}, \hat{g}_{i}(\beta)=\sum_{j=1}^{n} w_{j i} g_{j}(\beta), \\
V_{i}(\beta) & =E\left[g_{i}(\beta) g_{i}(\beta)^{\prime} \mid x_{i}\right], \bar{V}_{i}(\beta)=E\left[\left.\frac{1}{n b_{n}^{s}} \sum_{j=1}^{n} K_{j i} g_{j}(\beta) g_{j}(\beta)^{\prime} \right\rvert\, x_{i}\right], \\
J_{i}(\beta)^{\prime} & =E\left[m_{i}(\beta, \gamma) g_{i}(\beta)^{\prime} \mid x_{i}\right], \bar{J}_{i}(\beta)^{\prime}=E\left[\left.\frac{1}{n b_{n}^{s}} \sum_{j=1}^{n} K_{j i} m_{j}(\beta, \gamma) g_{j}(\beta)^{\prime} \right\rvert\, x_{i}\right], \\
G_{i}(\beta) & =E\left[\left.\frac{\partial g_{i}(\beta)}{\partial \beta^{\prime}} \right\rvert\, x_{i}\right], \bar{G}_{i}(\beta)=E\left[\left.\frac{1}{n b_{n}^{s}} \sum_{j=1}^{n} K_{j i} \frac{\partial g_{j}(\beta)}{\partial \beta^{\prime}} \right\rvert\, x_{i}\right] .
\end{aligned}
$$

A. 1 Proof of Theorem 3.1

Proof of (i)

An expansion of $\hat{p}_{j i}^{g}(\hat{\beta})$ around $\lambda_{i}^{g}(\hat{\beta})=0$ yields

$$
\begin{equation*}
\hat{p}_{j i}^{g}(\hat{\beta})=\frac{w_{j i}}{1+\lambda_{i}^{g}(\hat{\beta})^{\prime} g_{j}(\hat{\beta})}=w_{j i}\left(1-\lambda_{i}^{g}(\hat{\beta})^{\prime} g_{j}(\hat{\beta})+r_{j i}\right), \tag{33}
\end{equation*}
$$

where $r_{j i}=\frac{\lambda_{i}^{g}(\hat{\beta})^{\prime} g_{j}(\hat{\beta}) g_{j}(\hat{\beta})^{\prime} \lambda_{i}^{g}(\hat{\beta})}{\left(1+\tilde{\lambda}_{i}^{g g^{\prime}} g_{j}(\hat{\beta})\right)^{3}}$, and $\tilde{\lambda}_{i}^{g}$ is a point on the line joining $\lambda_{i}^{g}(\hat{\beta})$ and 0 . Since $\hat{p}_{j i}^{g}(\hat{\beta})-\hat{p}_{j i}^{N}=$ $w_{j i}\left(-\lambda_{i}^{g}(\hat{\beta})^{\prime} g_{j}(\hat{\beta})+r_{j i}\right)$, the definition of T_{M} in (11) implies

$$
\begin{align*}
T_{M} & =-\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{M}_{i}(\hat{\beta}, \hat{\gamma})^{\prime} \hat{J}_{i}(\hat{\beta}, \hat{\gamma})^{\prime} \lambda_{i}^{g}(\hat{\beta})+\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{M}_{i}(\hat{\beta}, \hat{\gamma})^{\prime}\left(\sum_{j=1}^{n} w_{j i} r_{j i} m_{j}(\hat{\beta}, \hat{\gamma})\right) \tag{34}\\
& =T^{(1)}+R^{(1)} .
\end{align*}
$$

$R^{(1)}$ satisfies

$$
\begin{equation*}
\left\|R^{(1)}\right\| \leq \max _{i \in I_{*}}\left\|\hat{M}_{i}(\hat{\beta}, \hat{\gamma})\right\| \max _{1 \leq j \leq n}\left\|m_{j}(\hat{\beta}, \hat{\gamma})\right\|\left(\max _{i \in I_{*}}\left\|\lambda_{i}^{g}(\hat{\beta})\right\|\right)^{2}\left\|\frac{1}{n} \sum_{i=1}^{n} I_{i} \sum_{j=1}^{n} w_{j i} \frac{g_{j}(\hat{\beta}) g_{j}(\hat{\beta})^{\prime}}{\left(1+\tilde{\lambda}_{i}^{g \prime} g_{j}(\hat{\beta})\right)^{3}}\right\| \tag{35}
\end{equation*}
$$

Assumption 3.2 (iv) implies

$$
\begin{equation*}
\max _{i \in I_{*}}\left\|\hat{M}_{i}(\hat{\beta}, \hat{\gamma})\right\|=O_{p}(1) \tag{36}
\end{equation*}
$$

$>$ From Assumption 3.2 (i) and (iv) and Tripathi and Kitamura (2004, Lemma C.4),

$$
\begin{equation*}
\max _{1 \leq j \leq n}\left\|g_{j}(\hat{\beta})\right\|=o\left(n^{1 / \zeta}\right), \quad \max _{1 \leq j \leq n}\left\|m_{j}(\hat{\beta}, \hat{\gamma})\right\|=o\left(n^{1 / \zeta_{m}}\right) \tag{37}
\end{equation*}
$$

$>$ From Lemmas A. 1 and A.4,

$$
\begin{equation*}
\max _{i \in I_{*}}\left\|\lambda_{i}^{g}(\hat{\beta})\right\|=O_{p}\left(c_{n}\right)+o_{p}\left(n^{-\frac{1}{2}+\frac{1}{\eta}}\right) . \tag{38}
\end{equation*}
$$

Since (37) and (38) imply that $\max _{i \in I_{*}, 1 \leq j \leq n}\left|\tilde{\lambda}_{i}^{g \prime} g_{j}(\hat{\beta})\right|=o_{p}$ (1), we have $\left\|\frac{1}{n} \sum_{i=1}^{n} I_{i} \sum_{j=1}^{n} w_{j i} \frac{g_{j}(\hat{\beta}) g_{j}(\hat{\beta})^{\prime}}{\left(1+\tilde{\lambda}_{i}^{\prime \prime} g_{j}(\widehat{\beta})\right)^{3}}\right\| \leq O_{p}(1)$ by Lemma A.1. Thus, from (35)-(38),

$$
\begin{equation*}
\left\|R^{(1)}\right\| \leq O_{p}(1) o\left(n^{1 / \zeta_{m}}\right)\left\{O_{p}\left(c_{n}\right)+o_{p}\left(n^{-\frac{1}{2}+\frac{1}{\eta}}\right)\right\}^{2} O_{p}(1)=o_{p}\left(n^{-1 / 2}\right) \tag{39}
\end{equation*}
$$

where the equality follows from $\alpha<\frac{1}{3 s} \leq \frac{1}{s}\left(1-\frac{4}{\zeta_{m}}\right)$ and $\frac{1}{\zeta_{m}}+\frac{2}{\eta} \leq \frac{1}{2}$. From (34) and Lemma A.4,

$$
\begin{align*}
T_{M} & =-\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{M}_{i}(\hat{\beta}, \hat{\gamma})^{\prime} \hat{J_{i}}(\hat{\beta}, \hat{\gamma})^{\prime} \hat{V}_{i}(\hat{\beta})^{-1} \hat{g}_{i}(\hat{\beta})-\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{M}_{i}(\hat{\beta}, \hat{\gamma})^{\prime} \hat{J_{i}}(\hat{\beta}, \hat{\gamma})^{\prime} r_{i}^{g}+o_{p}\left(n^{-1 / 2}\right) \\
& =T^{(2)}+R^{(2)}+o_{p}\left(n^{-1 / 2}\right) \tag{40}
\end{align*}
$$

$>$ From (36) and Lemmas A. 2 and A.4, $R^{(2)}$ satisfies

$$
\begin{align*}
\left\|R^{(2)}\right\| & \leq \max _{i \in I_{*}}\left\|\hat{M}_{i}(\hat{\beta}, \hat{\gamma})\right\| \max _{i \in I_{*}}\left\|r_{i}^{g}\right\|\left\|\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{J}_{i}(\hat{\beta}, \hat{\gamma})\right\| \\
& =O_{p}(1) o_{p}\left(n^{1 / \zeta}\right)\left\{O_{p}\left(c_{n}^{2}\right)+o_{p}\left(n^{-1+\frac{2}{\eta}}\right)\right\} O_{p}(1)=o_{p}\left(n^{-1 / 2}\right) \tag{41}
\end{align*}
$$

where the last equality follows from $\alpha<\frac{1}{3 s} \leq \frac{1}{s}\left(1-\frac{4}{\zeta}\right)$ and $\frac{1}{\zeta}+\frac{2}{\eta} \leq \frac{1}{2}$. Thus, from (40),

$$
\begin{align*}
T_{M} & =-\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{M}_{i}(\hat{\beta}, \hat{\gamma})^{\prime} \hat{J_{i}}(\hat{\beta}, \hat{\gamma})^{\prime} \hat{V}_{i}(\hat{\beta})^{-1} \hat{g}_{i}(\hat{\beta})+o_{p}\left(n^{-1 / 2}\right) \\
& =-\frac{1}{n} \sum_{i=1}^{n} I_{i} M_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} \hat{J}_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} \hat{V}_{i}\left(\beta_{0}\right)^{-1} \hat{g}_{i}(\hat{\beta})+R^{(3)}+o_{p}\left(n^{-1 / 2}\right) . \tag{42}
\end{align*}
$$

$R^{(3)}$ is implicitly defined and satisfies

$$
\begin{aligned}
\left\|R^{(3)}\right\| \leq & \left\|\frac{1}{n} \sum_{i=1}^{n} I_{i}\left\{\hat{M}_{i}(\hat{\beta}, \hat{\gamma})-M_{i}\left(\beta_{0}, \gamma_{*}\right)\right\}^{\prime} \hat{J}_{i}(\hat{\beta}, \hat{\gamma})^{\prime} \hat{V}_{i}(\hat{\beta})^{-1} \hat{g}_{i}(\hat{\beta})\right\| \\
& +\left\|\frac{1}{n} \sum_{i=1}^{n} I_{i} M_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime}\left\{\hat{J}_{i}(\hat{\beta}, \hat{\gamma})-\hat{J}_{i}\left(\beta_{0}, \gamma_{*}\right)\right\}^{\prime} \hat{V}_{i}(\hat{\beta})^{-1} \hat{g}_{i}(\hat{\beta})\right\| \\
& +\left\|\frac{1}{n} \sum_{i=1}^{n} I_{i} M_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} \hat{J}_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime}\left\{\hat{V}_{i}(\hat{\beta})^{-1}-\hat{V}_{i}\left(\beta_{0}\right)^{-1}\right\} \hat{g}_{i}(\hat{\beta})\right\| \\
= & \left\|R_{a}^{(3)}\right\|+\left\|R_{b}^{(3)}\right\|+\left\|R_{c}^{(3)}\right\| .
\end{aligned}
$$

$>$ From Assumption 3.2 (iv) and a similar argument to derive (47) shown below, we have $\left\|R_{a}^{(3)}\right\|=$ $o_{p}\left(n^{-1 / 2}\right)$. Assumption 3.2 (iv) and Lemmas A.1, A.2, and A. 4 yield

$$
\begin{aligned}
\left\|R_{b}^{(3)}\right\| & \leq \max _{i \in I_{*}}\left\|M_{i}\left(\beta_{0}, \gamma_{*}\right)\right\| \max _{i \in I_{*}}\left\|\hat{J}_{i}(\hat{\beta}, \hat{\gamma})-\hat{J}_{i}\left(\beta_{0}, \gamma_{*}\right)\right\| \max _{i \in I_{*}}\left\|\hat{V}_{i}(\hat{\beta})^{-1}\right\|\left\|\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{g}_{i}(\hat{\beta})\right\| \\
& =O_{p}(1)\left\{o_{p}\left(n^{-\frac{1}{2}+\frac{1}{\zeta_{m}}+\frac{1}{\eta}}\right)+o_{p}\left(n^{-\frac{1}{2}+\frac{1}{\zeta}+\frac{1}{\eta_{m}}}\right)\right\} O_{p}(1)\left\{O_{p}\left(c_{n}\right)+o_{p}\left(n^{-\frac{1}{2}+\frac{1}{\eta}}\right)\right\}=o_{p}\left(n^{-1 / 2}\right),
\end{aligned}
$$

where the last equality follows from $\frac{1}{\zeta_{m}}+\frac{2}{\eta} \leq \frac{1}{2}, \frac{1}{\zeta}+\frac{1}{\eta_{m}}+\frac{1}{\eta} \leq \frac{1}{2}$, and Assumption 3.1 (v). Similarly, Assumption 3.2 (iv) and Lemmas A.1, A.2, and A. 4 imply that $\left\|R_{c}^{(3)}\right\|=o_{p}\left(n^{-1 / 2}\right)$. Thus, from (42),

$$
\begin{align*}
T_{M}= & -\frac{1}{n} \sum_{i=1}^{n} I_{i} M_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} \hat{J}_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} \hat{V}_{i}\left(\beta_{0}\right)^{-1} \hat{g}_{i}(\hat{\beta})+o_{p}\left(n^{-1 / 2}\right) \\
= & -\frac{1}{n} \sum_{i=1}^{n} I_{i} M_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} \hat{J}_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} \hat{V}_{i}\left(\beta_{0}\right)^{-1}\left\{\hat{g}_{i}\left(\beta_{0}\right)+\hat{G}_{i}(\tilde{\beta})\left(\hat{\beta}-\beta_{0}\right)\right\}+o_{p}\left(n^{-1 / 2}\right) \\
= & -\frac{1}{n} \sum_{i=1}^{n} I_{i} M_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} \hat{J}_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} \hat{V}_{i}\left(\beta_{0}\right)^{-1} \hat{g}_{i}\left(\beta_{0}\right)+\hat{H}_{M}\left(\beta_{0}, \gamma_{*}\right) \Delta \frac{1}{n} \sum_{i=1}^{n} \psi\left(x_{i}, z_{i}, \beta_{0}\right) \\
& +R^{(4)}+o_{p}\left(n^{-1 / 2}\right) \\
= & T_{M a}+T_{M b}+R^{(4)}+o_{p}\left(n^{-1 / 2}\right) \tag{43}
\end{align*}
$$

where the second equality follows from an expansion of $\hat{g}_{i}(\hat{\beta})$ around $\hat{\beta}=\beta_{0}$, and $\tilde{\beta}$ is a point on the line joining $\hat{\beta}$ and $\beta_{0} . R^{(4)}$ is implicitly defined and satisfies

$$
\begin{aligned}
\left\|R^{(4)}\right\| \leq & \left\|\frac{1}{n} \sum_{i=1}^{n} I_{i} M_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} \hat{J}_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} \hat{V}_{i}\left(\beta_{0}\right)^{-1}\left\{\hat{G}_{i}(\tilde{\beta})-\hat{G}_{i}\left(\beta_{0}\right)\right\}\right\|\left\|\hat{\beta}-\beta_{0}\right\| \\
& +\left\|\frac{1}{n} \sum_{i=1}^{n} I_{i} M_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} \hat{J}_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} \hat{V}_{i}\left(\beta_{0}\right)^{-1} \hat{G}_{i}\left(\beta_{0}\right)\right\| o_{p}\left(n^{-1 / 2}\right) \\
\leq & \max _{i \in I_{*}}\left\|M_{i}\left(\beta_{0}, \gamma_{*}\right)\right\| \max _{i \in I_{*}}\left\|\hat{J}_{i}\left(\beta_{0}, \gamma_{*}\right)\right\| \max _{i \in I_{*}}\left\|\hat{V}_{i}\left(\beta_{0}\right)^{-1}\right\|\left\|\frac{1}{n} \sum_{i=1}^{n} I_{i}\left\{\hat{G}_{i}(\tilde{\beta})-\hat{G}_{i}\left(\beta_{0}\right)\right\}\right\|\left\|\hat{\beta}-\beta_{0}\right\| \\
& +\max _{i \in I_{*}}\left\|M_{i}\left(\beta_{0}, \gamma_{*}\right)\right\| \max _{i \in I_{*}}\left\|\hat{J}_{i}\left(\beta_{0}, \gamma_{*}\right)\right\| \max _{i \in I_{*}}\left\|\hat{V}_{i}\left(\beta_{0}\right)^{-1}\right\| \max _{i \in I_{*}}\left\|\hat{G}_{i}\left(\beta_{0}\right)\right\| o_{p}\left(n^{-1 / 2}\right) \\
= & o_{p}\left(n^{-1+\frac{1}{\eta_{2}}}\right)+o_{p}\left(n^{-1 / 2}\right)=o_{p}\left(n^{-1 / 2}\right),
\end{aligned}
$$

where the equality follows from Assumption 3.2 (iv) and Lemmas A.1, A.2, and A.3. Thus, from (43), we have $T_{M}=T_{M a}+T_{M b}+o_{p}\left(n^{-1 / 2}\right) . T_{M a}$ is written as

$$
\begin{align*}
T_{M a} & =-\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} I_{i} E\left[\hat{f}_{i} \mid x_{i}\right]^{-1} M_{i}\left(\beta_{0}, \gamma^{*}\right)^{\prime} \bar{J}_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} \bar{V}_{i}\left(\beta_{0}\right)^{-1} \frac{1}{n b_{n}^{s}} K_{j i} g_{j}\left(\beta_{0}\right)+R_{a}^{(5)} \\
& =\bar{T}_{M a}+R_{a}^{(5)}, \tag{44}
\end{align*}
$$

where $R_{a}^{(5)}$ is implicitly defined and satisfies

$$
\begin{aligned}
\left\|R_{a}^{(5)}\right\| \leq & \left\|\frac{1}{n} \sum_{i=1}^{n} I_{i} M_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime}\left\{\hat{J}_{i}\left(\beta_{0}, \gamma_{*}\right)-E\left[\hat{f}_{i} \mid x_{i}\right]^{-1} \bar{J}_{i}\left(\beta_{0}, \gamma_{*}\right)\right\}^{\prime} \hat{V}_{i}\left(\beta_{0}\right)^{-1} \hat{g}_{i}\left(\beta_{0}\right)\right\| \\
& +\left\|\frac{1}{n} \sum_{i=1}^{n} I_{i} E\left[\hat{f}_{i} \mid x_{i}\right]^{-1} M_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} \bar{J}_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime}\left\{\hat{V}_{i}\left(\beta_{0}\right)^{-1}-E\left[\hat{f}_{i} \mid x_{i}\right] \bar{V}_{i}\left(\beta_{0}\right)^{-1}\right\} \hat{g}_{i}\left(\beta_{0}\right)\right\| \\
& +\left\|\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} I_{i}\left\{\hat{f}_{i}^{-1}-E\left[\hat{f}_{i} \mid x_{i}\right]^{-1}\right\} M_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} \bar{J}_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} \bar{V}_{i}\left(\beta_{0}\right)^{-1} \frac{1}{n b_{n}^{s}} K_{j i} g_{j}\left(\beta_{0}\right)\right\| \\
= & \left\|R_{a a}^{(5)}\right\|+\left\|R_{a b}^{(5)}\right\|+\left\|R_{a c}^{(5)}\right\| .
\end{aligned}
$$

$>$ From Assumption 3.2 (iv), Lemmas A. 1 and A.2, and Tripathi and Kitamura (2004, Lemma C.1), we have $\left\|R_{a a}^{(5)}\right\| \leq O_{p}\left(c_{n}^{2}\right)=o_{p}\left(n^{-1 / 2}\right)$ from $\alpha<\frac{1}{3 s}$. Similarly, we have $\left\|R_{a b}^{(5)}\right\| \leq O_{p}\left(c_{n}^{2}\right)=o_{p}\left(n^{-1 / 2}\right)$. Moreover, Assumption 3.2 (iv), Lemmas A. 1 and A.2, and Tripathi and Kitamura (2004, eqn. (C.1)) imply $\left\|R_{a c}^{(5)}\right\| \leq O_{p}\left(c_{n}^{2}\right)=o_{p}\left(n^{-1 / 2}\right)$. Thus, from (44), we have $T_{M a}=\bar{T}_{M a}+o_{p}\left(n^{-1 / 2}\right)$. By applying the U-statistic arguments of Kitamura, Tripathi and Ahn (2004, pp.1696-1698) and Powell, Stock and Stoker (1989, Lemma 3.1), we have the asymptotic linear forms for $\bar{T}_{M a}$:

$$
\begin{equation*}
n^{1 / 2} \bar{T}_{M a}=-n^{-1 / 2} \sum_{i=1}^{n} I_{i} M_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} J_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} V_{i}\left(\beta_{0}\right)^{-1} g_{i}\left(\beta_{0}\right)+o_{p}(1) \tag{45}
\end{equation*}
$$

$>$ From Lemmas A.1, A.2, and A.3, and a weak law of large numbers, we can show that $\hat{H}_{M}\left(\beta_{0}, \gamma_{*}\right) \xrightarrow{p}$ $E\left[I_{i} M_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} J_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime} V_{i}\left(\beta_{0}\right)^{-1} G_{i}\left(\beta_{0}\right)\right]=H_{M}\left(\beta_{0}, \gamma_{*}\right)$. Therefore, $T_{M b}$ satisfies

$$
\begin{equation*}
n^{1 / 2} T_{M b}=n^{-1 / 2} \sum_{i=1}^{n} H_{M}\left(\beta_{0}, \gamma_{*}\right) \Delta \psi\left(x_{i}, z_{i}, \beta_{0}\right)+o_{p}(1) \tag{46}
\end{equation*}
$$

From (43), (45), and (46), a central limit theorem yields

$$
\begin{align*}
n^{1 / 2} T_{M}= & n^{1 / 2} \bar{T}_{M a}+n^{1 / 2} T_{M b}+o_{p}(1)=n^{-1 / 2} \sum_{i=1}^{n} \psi_{i}^{M}\left(\beta_{0}, \gamma_{*}\right)+o_{p}(1) \\
& \xrightarrow{d} N\left(0, \Phi_{M}\right) \tag{47}
\end{align*}
$$

where

$$
\begin{equation*}
\psi_{i}^{M}(\beta, \gamma)=-I_{i} M_{i}(\beta, \gamma)^{\prime} J_{i}(\beta, \gamma)^{\prime} V_{i}(\beta)^{-1} g\left(z_{i}, \beta\right)+H_{M}(\beta, \gamma) \Delta \psi\left(x_{i}, z_{i}, \beta\right) \tag{48}
\end{equation*}
$$

and $\Phi_{M}=E\left[\psi_{i}^{M}\left(\beta_{0}, \gamma_{*}\right) \psi_{i}^{M}\left(\beta_{0}, \gamma_{*}\right)^{\prime}\right] .>$ From Lemmas A.1, A.2, and A.3, we can show that $\hat{\Phi}_{M} \xrightarrow{p}$ Φ_{M}. Therefore, we have

$$
M_{g}=n T_{M}^{\prime} \hat{\Phi}_{M}^{-} T_{M} \xrightarrow{d} \chi_{\operatorname{rank}\left(\Phi_{M}\right)}^{2} .
$$

Proof of (ii)

$>$ From (33) and Lemma A.4, T_{C} in (??) is written as

$$
\begin{aligned}
& T_{C}=\frac{1}{n} \sum_{i=1}^{n} I_{i}\left\{\sum_{j=1}^{n}\left(\hat{p}_{j i}^{g}(\hat{\beta})+\hat{p}_{j i}^{N}\right) h_{j}(\hat{\gamma})\right\}^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1}\left\{\sum_{j=1}^{n}\left(\hat{p}_{j i}^{g}(\hat{\beta})-\hat{p}_{j i}^{N}\right) h_{j}(\hat{\gamma})\right\} \\
= & -\frac{1}{n} \sum_{i=1}^{n} I_{i}\left\{\sum_{j=1}^{n}\left(2 w_{j i}-w_{j i} \lambda_{i}^{g}(\hat{\beta})^{\prime} g_{j}(\hat{\beta})\right) h_{j}(\hat{\gamma})\right\}^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1}\left\{\sum_{j=1}^{n}\left(w_{j i} \lambda_{i}^{g}(\hat{\beta})^{\prime} g_{j}(\hat{\beta})\right) h_{j}(\hat{\gamma})\right\}+R^{(1 c)}
\end{aligned}
$$

where $R^{(1 c)}$ is implicitly defined. From a similar argument to derive (39), $R^{(1 c)}$ satisfies

$$
\begin{aligned}
\left\|R^{(1 c)}\right\| \leq & \left\|\frac{1}{n} \sum_{i=1}^{n} I_{i}\left\{\sum_{j=1}^{n}\left(2 w_{j i}-w_{j i} \lambda_{i}^{g}(\hat{\beta})^{\prime} g_{j}(\hat{\beta})\right) h_{j}(\hat{\gamma})\right\}^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1}\left\{\sum_{j=1}^{n} w_{j i} r_{j i} h_{j}(\hat{\gamma})\right\}\right\| \\
& +\left\|\frac{1}{n} \sum_{i=1}^{n} I_{i}\left\{\sum_{j=1}^{n} w_{j i} r_{j i} h_{j}(\hat{\gamma})\right\}^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1}\left\{\sum_{j=1}^{n}\left\{w_{j i} \lambda_{i}^{g}(\hat{\beta})^{\prime} g_{j}(\hat{\beta})\right\} h_{j}(\hat{\gamma})\right\}\right\| \\
& +\left\|\frac{1}{n} \sum_{i=1}^{n} I_{i}\left\{\sum_{j=1}^{n} w_{j i} r_{j i} h_{j}(\hat{\gamma})\right\}^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1}\left\{\sum_{j=1}^{n} w_{j i} r_{j i} h_{j}(\hat{\gamma})\right\}\right\| \\
\leq & o\left(n^{1 / \zeta_{m}}\right)\left\{O_{p}\left(c_{n}\right)+o_{p}\left(n^{-\frac{1}{2}+\frac{1}{\eta}}\right)\right\}^{2}+o\left(n^{1 / \zeta_{m}}\right)\left\{O_{p}\left(c_{n}\right)+o_{p}\left(n^{-\frac{1}{2}+\frac{1}{\eta}}\right)\right\}^{3} \\
& +o\left(n^{2 / \zeta_{m}}\right)\left\{O_{p}\left(c_{n}\right)+o_{p}\left(n^{-\frac{1}{2}+\frac{1}{\eta}}\right)\right\}^{4} \\
= & o o_{p}\left(n^{-1 / 2}\right) .
\end{aligned}
$$

Thus, from Lemma A.4, we have

$$
\begin{aligned}
T_{C}= & -\frac{1}{n} \sum_{i=1}^{n} I_{i}\left\{\sum_{j=1}^{n}\left(2 w_{j i}-w_{j i} \lambda_{i}^{g}(\hat{\beta})^{\prime} g_{j}(\hat{\beta})\right) h_{j}(\hat{\gamma})\right\}^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1}\left\{\sum_{j=1}^{n}\left(w_{j i} \lambda_{i}^{g}(\hat{\beta})^{\prime} g_{j}(\hat{\beta})\right) h_{j}(\hat{\gamma})\right\} \\
& +o_{p}\left(n^{-1 / 2}\right) \\
= & -\frac{1}{n} \sum_{i=1}^{n} I_{i}\left\{2 \hat{h}_{i}(\hat{\gamma})-J_{i}^{h}(\hat{\beta}, \hat{\gamma})^{\prime} \hat{V}_{i}(\hat{\beta})^{-1} \hat{g}_{i}(\hat{\beta})\right\}^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1}\left\{\hat{J}_{i}^{h}(\hat{\beta}, \hat{\gamma})^{\prime} \hat{V}_{i}(\hat{\beta})^{-1} \hat{g}_{i}(\hat{\beta})\right\} \\
& +R^{(2 c)}+o_{p}\left(n^{-1 / 2}\right),
\end{aligned}
$$

where $R^{(2 c)}$ is implicitly defined. A similar argument to show (41) yields that $\left\|R^{(2 c)}\right\|=o_{p}\left(n^{-1 / 2}\right)$. By setting

$$
\begin{aligned}
& \hat{M}_{i}(\beta, \gamma)^{\prime}=\left\{2 \hat{h}_{i}(\gamma)-J_{i}^{h}(\beta, \gamma)^{\prime} \hat{V}_{i}(\beta)^{-1} \hat{g}_{i}(\beta)\right\}^{\prime} \hat{V}_{i}^{h}(\gamma)^{-1} \\
& M_{i}(\beta, \gamma)^{\prime}=2 E\left[h\left(z_{i}, \gamma\right) \mid x_{i}\right]^{\prime} V_{i}^{h}(\gamma)^{-1}, m\left(z_{j}, \beta, \gamma\right)=h\left(z_{j}, \gamma\right)
\end{aligned}
$$

we can apply the same argument as the proof of Theorem 3.1 (i). Thus,

$$
\begin{equation*}
n^{1 / 2} T_{C}=n^{-1 / 2} \sum_{i=1}^{n} \psi_{i}^{C}\left(\beta_{0}, \gamma_{*}\right)+o_{p}(1) \xrightarrow{d} N\left(0, \phi_{C}\right), \tag{49}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{i}^{C}(\beta, \gamma)=-I_{i} M_{i}(\beta, \gamma)^{\prime} J_{i}^{h}(\beta, \gamma)^{\prime} V_{i}(\beta)^{-1} g\left(z_{i}, \beta\right)+H_{C}(\beta, \gamma) \Delta \psi\left(x_{i}, z_{i}, \beta\right) \tag{50}
\end{equation*}
$$

$\phi_{C}=E\left[\psi_{i}^{C}\left(\beta_{0}, \gamma_{*}\right)^{2}\right]$, and $H_{C}(\beta, \gamma)=E\left[I_{i} M_{i}(\beta, \gamma)^{\prime} J_{i}^{h}(\beta, \gamma)^{\prime} V_{i}(\beta)^{-1} G_{i}(\beta)\right]$. From Lemmas A.1, A.2, and A.3, we can show that $\hat{\phi}_{C} \xrightarrow{p} \phi_{C}$. Therefore, we have

$$
C_{g}=\frac{\sqrt{n} T_{C}}{\sqrt{\hat{\phi}_{C}}} \xrightarrow{d} N(0,1)
$$

Proof of (iii)

$>$ From (33) and Lemma A.4, we have

$$
\begin{aligned}
T_{S} & =\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{G}_{i}^{h}(\hat{\gamma})^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1}\left\{\sum_{j=1}^{n}\left\{\hat{p}_{j i}^{g}(\hat{\beta})-\hat{p}_{j i}^{N}\right\} h_{j}(\hat{\gamma})\right\} \\
& =-\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{G}_{i}^{h}(\hat{\gamma})^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1}\left\{\sum_{j=1}^{n}\left\{w_{j i} \lambda_{i}^{g}(\hat{\beta})^{\prime} g_{j}(\hat{\beta})\right\} h_{j}(\hat{\gamma})\right\}+R^{(1 s)} \\
& =-\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{G}_{i}^{h}(\hat{\gamma})^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1}\left\{\hat{J}_{i}^{h}(\hat{\beta}, \hat{\gamma})^{\prime} \hat{V_{i}}(\hat{\beta})^{-1} \hat{g}_{i}(\hat{\beta})\right\}+R^{(1 s)}+R^{(2 s)},
\end{aligned}
$$

where $R^{(1 s)}$ and $R^{(2 s)}$ are implicitly defined. Similar arguments to derive (39) and (41) yield $\left\|R^{(1 s)}\right\|=$ $o_{p}\left(n^{-1 / 2}\right)$ and $\left\|R^{(2 s)}\right\|=o_{p}\left(n^{-1 / 2}\right)$, respectively. By setting

$$
\hat{M}_{i}(\beta, \gamma)^{\prime}=\hat{G}_{i}^{h}(\gamma)^{\prime} \hat{V}_{i}^{h}(\gamma)^{-1}, M_{i}(\beta, \gamma)^{\prime}=G_{i}^{h}(\gamma)^{\prime} V_{i}^{h}(\gamma)^{-1}, m\left(z_{j}, \beta, \gamma\right)=h\left(z_{j}, \gamma\right),
$$

we can apply the same argument as the proof of Theorem 3.1 (i). Thus,

$$
n^{1 / 2} T_{S}=n^{-1 / 2} \sum_{i=1}^{n} \psi_{i}^{S}\left(\beta_{0}, \gamma_{*}\right)+o_{p}(1) \xrightarrow{d} N\left(0, \Phi_{S}\right),
$$

where

$$
\begin{equation*}
\psi_{i}^{S}(\beta, \gamma)=-I_{i} M_{i}(\beta, \gamma)^{\prime} J_{i}^{h}(\beta, \gamma)^{\prime} V_{i}(\beta)^{-1} g\left(z_{i}, \beta\right)+H_{S}(\beta, \gamma) \Delta \psi\left(x_{i}, z_{i}, \beta\right) \tag{51}
\end{equation*}
$$

$\Phi_{S}=E\left[\psi_{i}^{S}\left(\beta_{0}, \gamma_{*}\right) \psi_{i}^{S}\left(\beta_{0}, \gamma_{*}\right)^{\prime}\right]$, and $H_{S}(\beta, \gamma)=E\left[I_{i} M_{i}(\beta, \gamma)^{\prime} J_{i}^{h}(\beta, \gamma)^{\prime} V_{i}(\beta)^{-1} G_{i}(\beta)\right]$. From Lemmas A.1, A.2, and A.3, we can show that $\hat{\Phi}_{S} \xrightarrow{p} \Phi_{S}$. Therefore, we have

$$
S_{g}=n T_{S}^{\prime} \hat{\Phi}_{S}^{-} T_{S} \xrightarrow{d} \chi_{\operatorname{rank}\left(\Phi_{S}\right)}^{2} .
$$

A. 2 Proof of Theorem 3.2

Proof of (i)

Assume that n is large enough so that $\hat{\beta} \in \mathcal{B}_{0}$ and $\beta_{0 n} \in \mathcal{B}_{0}$. Note that Lemmas A.1-A. 3 remain valid when β_{0} is replaced by $\beta_{0 n}$. Thus, from the proof of Tripathi and Kitamura (2003, Lemma B.1),

$$
I_{i} \lambda_{i}^{g}(\hat{\beta})=I_{i} \hat{V}_{i}(\hat{\beta})^{-1} \hat{g}_{i}(\hat{\beta})+I_{i} \tilde{r}_{i}^{g}
$$

where $\left\|\tilde{r}_{i}^{g}\right\|=o_{p}\left(n^{1 / \zeta}\right)\left\{\left(\max _{i \in I_{*}}\left\|\sum_{j=1}^{n} w_{j i} g_{j}\left(\beta_{0 n}\right)\right\|\right)^{2}+\left\|\hat{\beta}-\beta_{0 n}\right\|^{2} \sum_{j=1}^{n} w_{j i} d_{1}\left(z_{j}\right)^{2}\right\}$, and the $o_{p}\left(n^{1 / \zeta}\right)$ term does not depend on $i \in I_{*}$. From the continuity of $\delta_{h}(x)$ and $f(x)$, and the compactness of \mathcal{X}_{*}, an adapted version of Tripathi and Kitamura (2003, Lemma C.1) yields
$\max _{i \in I_{*}}\left\|\sum_{j=1}^{n} w_{j i} g_{j}\left(\beta_{0 n}\right)\right\|=O_{p}\left(c_{n}\right)$. Thus, Lemma A. 4 also remains valid when β_{0} is replaced by $\beta_{0 n}$. Since the adapted versions of Lemmas A.1-A. 4 are valid, we can proceed as in the proof of Theorem 3.1 (i) by replacing β_{0} with $\beta_{0 n}$. Therefore, under $\mathbf{H}_{g n}$,

$$
\begin{aligned}
n^{1 / 2} T_{M}= & n^{-1 / 2} \sum_{i=1}^{n} \psi_{i}^{M}\left(\beta_{0 n}, \gamma_{*}\right)+o_{p}(1) \\
= & n^{-1 / 2} \sum_{i=1}^{n}\left\{\psi_{i}^{M}\left(\beta_{0 n}, \gamma_{*}\right)-E\left[\psi_{i}^{M}\left(\beta_{0 n}, \gamma_{*}\right)\right]\right\} \\
& +\left\{-E\left[I_{i} M_{i}\left(\beta_{0 n}, \gamma_{*}\right)^{\prime} J_{i}\left(\beta_{0 n}, \gamma_{*}\right)^{\prime} V_{i}\left(\beta_{0 n}\right)^{-1} E\left[g\left(z_{i}, \beta_{0 n}\right) \mid x_{i}\right]\right]\right. \\
& \left.+E\left[H_{M}\left(\beta_{0 n}, \gamma_{*}\right) \Delta E\left[\psi\left(x_{i}, z_{i}, \beta_{0 n}\right) \mid x_{i}\right]\right]\right\}+o_{p}(1) \\
= & n^{-1 / 2} \sum_{i=1}^{n}\left\{\psi_{i}^{M}\left(\beta_{0 n}, \gamma_{*}\right)-E\left[\psi_{i}^{M}\left(\beta_{0 n}, \gamma_{*}\right)\right]\right\}+\mu_{M}+o_{p}(1) \\
& \xrightarrow{d} N\left(\mu_{M}, \Phi_{M}\right) .
\end{aligned}
$$

$>$ From adapted versions of Lemmas A.1-A.3, we can show that $\hat{\Phi}_{M} \xrightarrow{p} \Phi_{M}$ under $\mathbf{H}_{g n}$. Therefore, the conclusion is obtained.

Proof of (ii)
A similar argument to the proof of Theorem 3.2 (i) yields that under $\mathbf{H}_{g n}$,

$$
\begin{aligned}
n^{1 / 2} T_{C}= & n^{-1 / 2} \sum_{i=1}^{n} \psi_{i}^{C}\left(\beta_{0 n}, \gamma_{*}\right)+o_{p}(1) \\
= & n^{-1 / 2} \sum_{i=1}^{n}\left\{\psi_{i}^{C}\left(\beta_{0 n}, \gamma_{*}\right)-E\left[\psi_{i}^{C}\left(\beta_{0 n}, \gamma_{*}\right)\right]\right\} \\
& +\left\{-2 E\left[I_{i} E\left[h\left(z_{i}, \gamma_{*}\right) \mid x_{i}\right]^{\prime} V_{i}^{h}\left(\gamma_{*}\right)^{-1} J_{i}^{h}\left(\beta_{0 n}, \gamma_{*}\right)^{\prime} V_{i}\left(\beta_{0 n}\right)^{-1} E\left[g\left(z_{i}, \beta_{0 n}\right) \mid x_{i}\right]\right]\right. \\
& \left.+E\left[H_{C}\left(\beta_{0 n}, \gamma_{*}\right) \Delta E\left[\psi\left(x_{i}, z_{i}, \beta_{0 n}\right) \mid x_{i}\right]\right]\right\}+o_{p}(1) \\
= & n^{-1 / 2} \sum_{i=1}^{n}\left\{\psi_{i}^{C}\left(\beta_{0 n}, \gamma_{*}\right)-E\left[\psi_{i}^{C}\left(\beta_{0 n}, \gamma_{*}\right)\right]\right\}+\mu_{C}+o_{p}(1) \\
& \xrightarrow{d} N\left(\mu_{C}, \phi_{C}\right) .
\end{aligned}
$$

$>$ From adapted versions of Lemmas A.1-A.3, we can show that $\hat{\phi}_{C} \xrightarrow{p} \phi_{C}$ under $\mathbf{H}_{g n}$. Therefore, the conclusion is obtained.

Proof of (iii)

A similar argument to the proof of Theorem 3.2 (i) yields that under $\mathbf{H}_{g n}$,

$$
\begin{aligned}
n^{1 / 2} T_{S}= & n^{-1 / 2} \sum_{i=1}^{n} \psi_{i}^{S}\left(\beta_{0 n}, \gamma_{*}\right)+o_{p}(1) \\
= & n^{-1 / 2} \sum_{i=1}^{n}\left\{\psi_{i}^{S}\left(\beta_{0 n}, \gamma_{*}\right)-E\left[\psi_{i}^{S}\left(\beta_{0 n}, \gamma_{*}\right)\right]\right\} \\
& \left\{-E\left[I_{i} G_{i}^{h}\left(\gamma_{*}\right)^{\prime} V_{i}^{h}\left(\gamma_{*}\right)^{-1} J_{i}^{h}\left(\beta_{0 n}, \gamma_{*}\right)^{\prime} V_{i}\left(\beta_{0 n}\right)^{-1} E\left[g\left(z_{i}, \beta_{0 n}\right) \mid x_{i}\right]\right]\right. \\
& \left.+E\left[H_{S}\left(\beta_{0 n}, \gamma_{*}\right) \Delta E\left[\psi\left(x_{i}, z_{i}, \beta_{0 n}\right) \mid x_{i}\right]\right]\right\}+o_{p}(1) \\
= & n^{-1 / 2} \sum_{i=1}^{n}\left\{\psi_{i}^{S}\left(\beta_{0 n}, \gamma_{*}\right)-E\left[\psi_{i}^{S}\left(\beta_{0 n}, \gamma_{*}\right)\right]\right\}+\mu_{S}+o_{p}(1) \\
& \xrightarrow{d} N\left(\mu_{S}, \Phi_{S}\right) .
\end{aligned}
$$

$>$ From adapted versions of Lemmas A.1-A.3, we can show that $\hat{\Phi}_{S} \xrightarrow{p} \Phi_{S}$ under $\mathbf{H}_{g n}$. Therefore, the conclusion is obtained.

A. 3 Proof of Theorem 3.3

Proof of (i)

Let $\tilde{J}_{i}(\beta, \gamma)^{\prime}=\sum_{j=1}^{n} w_{j i} \frac{m_{j}(\beta, \gamma) g_{j}(\beta)^{\prime}}{1+\lambda_{i}^{g}(\beta)^{\prime} g_{j}(\beta)}$. By the definitions of $\hat{p}_{j i}^{g}(\beta)$ in (7) and T_{M} in (11),

$$
\begin{aligned}
T_{M} & =-\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{M}_{i}(\hat{\beta}, \hat{\gamma})^{\prime} \tilde{J}_{i}(\hat{\beta}, \hat{\gamma})^{\prime} \lambda_{i}^{g}(\hat{\beta}) \\
& =-\frac{1}{n} \sum_{i=1}^{n} I_{i} M_{i}\left(\beta_{*}, \gamma_{0}\right)^{\prime} \tilde{J}_{i}(\hat{\beta}, \hat{\gamma})^{\prime} \lambda_{i}^{g}(\hat{\beta})+o_{p}(1) \\
& =-\frac{1}{n} \sum_{i=1}^{n} I_{i} M_{i}\left(\beta_{*}, \gamma_{0}\right)^{\prime} \tilde{J_{i}}(\hat{\beta}, \hat{\gamma})^{\prime} \lambda_{*}^{g}\left(x_{i}, \beta_{*}\right)+o_{p}(1) \\
& =-\frac{1}{n} \sum_{i=1}^{n} I_{i} M_{i}\left(\beta_{*}, \gamma_{0}\right)^{\prime} J_{i *}\left(\beta_{*}, \gamma_{0}\right)^{\prime} \lambda_{*}^{g}\left(x_{i}, \beta_{*}\right)+o_{p}(1) \\
& =\mu_{h M}+o_{p}(1),
\end{aligned}
$$

under \mathbf{H}_{h}, where the second equality follows from Assumption 3.2 (iv), the third equality follows from $\max _{i \in I_{*}}\left\|\lambda_{i}^{g}(\hat{\beta})-\lambda_{*}^{g}\left(x_{i}, \beta_{*}\right)\right\| \xrightarrow{p} 0$, and the fourth equality follows by applying similar arguments as Lemma A. 2 and Newey (1994, Lemma B.3). Therefore, we have $M_{g} / n \xrightarrow{p} \mu_{h M}^{\prime} \Phi_{h M}^{-} \mu_{h M}$ under \mathbf{H}_{h}, and the conclusion is obtained.

Proof of (ii)

Observe that under $\mathbf{H}_{h}: E\left[h_{i}\left(\gamma_{0}\right) \mid x_{i}\right]=0$,

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{h}_{i}(\hat{\gamma})^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1} \hat{h}_{i}(\hat{\gamma}) \\
\leq & \left(\sup _{x_{i} \in \mathcal{X}_{*}}\left\|\hat{h}_{i}(\hat{\gamma})-E\left[h_{i}\left(\gamma_{0}\right) \mid x_{i}\right]\right\|\right)^{2} \sup _{x_{i} \in \mathcal{X}_{*}}\left\|\hat{V}_{i}^{h}(\hat{\gamma})^{-1}\right\|\left(\frac{1}{n} \sum_{i=1}^{n} I_{i}\right)=o_{p}(1),
\end{aligned}
$$

where the equality follows from the same argument as Lemmas A. 1 and A. 4 (replace $g_{i}(\beta)$ with $h_{i}(\gamma)$), and $\frac{1}{n} \sum_{i=1}^{n} I_{i}=O_{p}(1)$ (by a law of large numbers). Also, from the definitions of $\hat{p}_{j i}^{g}(\beta)$ in (7),

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{h}_{i}^{g}(\hat{\gamma})^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1} \hat{h}_{i}^{g}(\hat{\gamma}) \\
= & \frac{1}{n} \sum_{i=1}^{n} I_{i}\left\{\sum_{j=1}^{n} \frac{w_{j i} h_{j}(\hat{\gamma})}{1+\lambda_{i}^{g}(\hat{\beta})^{\prime} g_{j}(\hat{\beta})}\right\}^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1}\left\{\sum_{j=1}^{n} \frac{w_{j i} h_{j}(\hat{\gamma})}{1+\lambda_{i}^{g}(\hat{\beta})^{\prime} g_{j}(\hat{\beta})}\right\} \\
= & \frac{1}{n} \sum_{i=1}^{n} I_{i} E\left[\left.\frac{h\left(z_{i}, \gamma_{0}\right)}{1+\lambda_{*}^{g}\left(x_{i}, \beta_{*}\right)^{\prime} g\left(z_{i}, \beta_{*}\right)} \right\rvert\, x_{i}\right]^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1} E\left[\left.\frac{h\left(z_{i}, \gamma_{0}\right)}{1+\lambda_{*}^{g}\left(x_{i}, \beta_{*}\right)^{\prime} g\left(z_{i}, \beta_{*}\right)} \right\rvert\, x_{i}\right]+o_{p}(1) \\
= & \frac{1}{n} \sum_{i=1}^{n} I_{i} E\left[\left.\frac{h\left(z_{i}, \gamma_{0}\right)}{1+\lambda_{*}^{g}\left(x_{i}, \beta_{*}\right)^{\prime} g\left(z_{i}, \beta_{*}\right)} \right\rvert\, x_{i}\right]^{\prime} V_{i}^{h}\left(\gamma_{0}\right)^{-1} E\left[\left.\frac{h\left(z_{i}, \gamma_{0}\right)}{1+\lambda_{*}^{g}\left(x_{i}, \beta_{*}\right)^{\prime} g\left(z_{i}, \beta_{*}\right)} \right\rvert\, x_{i}\right]+o_{p}(1) \\
= & \mu_{h C}+o_{p}(1),
\end{aligned}
$$

where the second equality follows from Assumption 3.2 (iv) and the third equality follows from the same argument as Lemma A.1. Combining these results, we have $T_{C}=\mu_{h C}+o_{p}(1)$ and thus $C_{g} / \sqrt{n} \xrightarrow{p}$ $\mu_{h C} / \sqrt{\phi_{h C}}$ under \mathbf{H}_{h}. The conclusion is obtained.

Proof of (iii)
By the definitions of $\hat{p}_{j i}^{g}(\beta)$ in (7) and T_{S} in (16),

$$
\begin{aligned}
T_{S} & =-\frac{1}{n} \sum_{i=1}^{n} I_{i} \hat{G}_{i}(\hat{\gamma})^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1} \hat{J}_{i *}^{h}(\hat{\beta}, \hat{\gamma})^{\prime} \lambda_{i}^{g}(\hat{\beta}) \\
& =-\frac{1}{n} \sum_{i=1}^{n} I_{i} G_{i}^{h}\left(\gamma_{0}\right)^{\prime} V_{i}^{h}\left(\gamma_{0}\right)^{-1} \hat{J}_{i *}^{h}(\hat{\beta}, \hat{\gamma})^{\prime} \lambda_{i}^{g}(\hat{\beta})+o_{p}(1) \\
& =-\frac{1}{n} \sum_{i=1}^{n} I_{i} G_{i}^{h}\left(\gamma_{0}\right)^{\prime} V_{i}^{h}\left(\gamma_{0}\right)^{-1} J_{i *}^{h}\left(\beta_{*}, \gamma_{0}\right)^{\prime} \lambda_{*}^{g}\left(x_{i}, \beta_{*}\right)+o_{p}(1) \\
& =\mu_{h S}+o_{p}(1),
\end{aligned}
$$

under \mathbf{H}_{h}, where the second equality follows from Assumption 3.2 (iv), and the third equality follows from $\max _{i \in I_{*}}\left\|\lambda_{i}^{g}(\hat{\beta})-\lambda_{*}^{g}\left(x_{i}, \beta_{*}\right)\right\| \xrightarrow{p} 0$ and similar arguments to Lemma A. 2 and Newey (1994, Lemma B.3). Therefore, we have $S_{g} / n \xrightarrow{p} \mu_{h S}^{\prime} \Phi_{h S}^{-} \mu_{h S}$ under \mathbf{H}_{h}, and the conclusion is obtained.

A. 4 Auxiliary Lemmas

Lemma A. 1 Suppose that Assumptions 3.1 (i), (ii), and (iv) and 3.2 (i)-(iii) hold. If $\frac{\log n}{n^{1-4 / / 6 b_{n}^{s}}} \rightarrow 0$, then

$$
\begin{gathered}
\sup _{x_{i} \in \mathcal{X}_{*}}\left\|\hat{V}_{i}(\hat{\beta})-\hat{V}_{i}\left(\beta_{0}\right)\right\|=o_{p}\left(n^{-\frac{1}{2}+\frac{1}{\zeta}+\frac{1}{\eta}}\right), \quad \sup _{x_{i} \in \mathcal{X}_{*}}\left\|\hat{V}_{i}(\hat{\beta})^{-1}-\hat{V}_{i}\left(\beta_{0}\right)^{-1}\right\|=o_{p}\left(n^{-\frac{1}{2}+\frac{1}{\zeta}+\frac{1}{\eta}}\right), \\
\sup _{x_{i} \in \mathcal{X}_{*}}\left\|\hat{V}_{i}\left(\beta_{0}\right)-E\left[\hat{f}_{i} \mid x_{i}\right]^{-1} \bar{V}_{i}\left(\beta_{0}\right)\right\|=O_{p}\left(c_{n}\right), \quad \sup _{x_{i} \in \mathcal{X}_{*}}\left\|\hat{V}_{i}\left(\beta_{0}\right)^{-1}-E\left[\hat{f}_{i} \mid x_{i}\right] \bar{V}_{i}\left(\beta_{0}\right)^{-1}\right\|=O_{p}\left(c_{n}\right) .
\end{gathered}
$$

Proof. See the proof of Tripathi and Kitamura (2003, Lemma C.2).

$$
\begin{gathered}
\sup _{x_{i} \in \mathcal{X}_{*}}\left\|\hat{J}_{i}(\hat{\beta}, \hat{\gamma})-\hat{J}_{i}\left(\beta_{0}, \gamma_{*}\right)\right\|=o_{p}\left(n^{-\frac{1}{2}+\frac{1}{\zeta_{m}}+\frac{1}{\eta}}\right)+o_{p}\left(n^{-\frac{1}{2}+\frac{1}{\zeta}+\frac{1}{\eta_{m}}}\right), \\
\sup _{x_{i} \in \mathcal{X}_{*}}\left\|\hat{J}_{i}\left(\beta_{0}, \gamma_{*}\right)-E\left[\hat{f}_{i} \mid x_{i}\right]^{-1} \bar{J}_{i}\left(\beta_{0}, \gamma_{*}\right)\right\|=O_{p}\left(c_{n}\right) .
\end{gathered}
$$

Proof. (First part) An expansion of $\hat{J_{i}}(\hat{\beta}, \hat{\gamma})^{\prime}$ around $(\hat{\beta}, \hat{\gamma})=\left(\beta_{0}, \gamma_{*}\right)$ and Assumption 3.2 (iii) and (iv) yield

$$
\begin{aligned}
& \sup _{x_{i} \in \mathcal{X}_{*}}\left\|\hat{J}_{i}(\hat{\beta}, \hat{\gamma})^{\prime}-\hat{J}_{i}\left(\beta_{0}, \gamma_{*}\right)^{\prime}\right\| \\
= & \sup _{x_{i} \in \mathcal{X}_{*}} \| \sum_{j=1}^{n} w_{j i}\left(m_{j}\left(\beta_{0}, \gamma_{*}\right)+\frac{\partial m_{j}(\tilde{\beta}, \tilde{\gamma})}{\partial\left(\beta^{\prime}, \gamma^{\prime}\right)}\left(\hat{\beta}-\beta_{0}\right)\right)\left(g_{j}\left(\beta_{0}\right)+\frac{\partial g_{j}(\tilde{\beta})}{\partial \beta^{\prime}}\left(\hat{\beta}-\beta_{*}\right)\right)^{\prime} \\
& -\sum_{j=1}^{n} w_{j i} m_{j}\left(\beta_{0}, \gamma_{*}\right) g_{j}\left(\beta_{0}\right)^{\prime} \| \\
\leq & \left\|\hat{\beta}-\beta_{0}\right\| \max _{1 \leq j \leq n}\left\|m_{j}\left(\beta_{0}, \gamma_{*}\right)\right\| \sup _{x_{i} \in \mathcal{X}_{*}}\left\|\sum_{j=1}^{n} w_{j i} d_{1}\left(z_{j}\right)\right\|+\left\|\hat{\beta}-\beta_{0}\right\| \max _{\hat{\gamma}-\gamma_{*}}\left\|g_{j \leq j \leq n}\left(\beta_{0}\right)\right\| \sup _{x_{i} \in \mathcal{X}_{*}}\left\|\sum_{j=1}^{n} w_{j i} d_{m}\left(z_{j}\right)\right\| \\
& +\left\|\hat{\beta}-\beta_{0}\right\|\left\|\hat{\beta}-\beta_{0}\right\| \sup _{\hat{\gamma}-\gamma_{*}}\left\|\sum_{x_{i} \in \mathcal{X}_{*}}^{n} w_{j i} d_{1}\left(z_{j}\right) d_{m}\left(z_{j}\right)\right\| \\
= & R_{a}^{J}+R_{b}^{J}+R_{c}^{J},
\end{aligned}
$$

where $(\tilde{\beta}, \tilde{\gamma})$ is a point on the line joining $(\hat{\beta}, \hat{\gamma})$ and $\left(\beta_{0}, \gamma_{*}\right)$. From (37), Assumption 3.1 (ii) and (iii), and Tripathi and Kitamura (2003, Lemma C.6), we have

$$
R_{a}^{J}=o_{p}\left(n^{-\frac{1}{2}+\frac{1}{\zeta_{m}}+\frac{1}{\eta}}\right), \quad R_{b}^{J}=o_{p}\left(n^{-\frac{1}{2}+\frac{1}{\zeta}+\frac{1}{\eta_{m}}}\right), \quad R_{c}^{J}=o_{p}\left(n^{-1+\max \left\{2 / \eta, 2 / \eta_{m}\right\}}\right) .
$$

$>$ From $\eta \geq 6$ and $\eta_{m} \geq 6, R_{c}^{J}$ is negligible. Therefore, the first part is obtained.
(Second part) The second part is obtained from the proof of Newey (1994, Lemma B.3).

Lemma A. 3 Suppose that Assumptions 3.1 (i), (ii), and (iv) and 3.2 (i)-(iii) hold. If $\frac{\log n}{n^{1-2 / \eta b_{n}^{s}}} \rightarrow 0$, then

$$
\begin{gathered}
\sup _{x_{i} \in \mathcal{X}_{*}}\left\|\hat{G}_{i}(\hat{\beta})-\hat{G}_{i}\left(\beta_{0}\right)\right\|=o_{p}\left(n^{-\frac{1}{2}+\frac{1}{\eta_{2}}}\right), \\
\sup _{x_{i} \in \mathcal{X}_{*}}\left\|\hat{G}_{i}\left(\beta_{0}\right)-E\left[\hat{f}_{i} \mid x_{i}\right]^{-1} \bar{G}_{i}\left(\beta_{0}\right)\right\|=O_{p}\left(c_{n}\right) .
\end{gathered}
$$

Proof. (First part) An expansion of $\partial g_{j}^{(k)}(\hat{\beta}) / \partial \beta^{(\ell)}$ around $\hat{\beta}=\beta_{0}$ and Assumption 3.2 (iii) yield

$$
\begin{aligned}
& \sup _{x_{i} \in \mathcal{X} *}\left\|\sum_{j=1}^{n} w_{j i} \frac{\partial g_{j}^{(k)}(\hat{\beta})}{\partial \beta^{(\ell)}}-\sum_{j=1}^{n} w_{j i} \frac{\partial g_{j}^{(k)}\left(\beta_{0}\right)}{\partial \beta^{(\ell)}}\right\| \leq \sup _{x_{i} \in \mathcal{X}}\left\|\sum_{j=1}^{n} w_{j i} d_{2}\left(z_{j}\right)\right\|\left\|\hat{\beta}-\beta_{0}\right\| \\
= & o\left(n^{1 / \eta_{2}}\right) O_{p}\left(n^{-1 / 2}\right),
\end{aligned}
$$

where the equality follows from Assumption 3.1 (ii) and Tripathi and Kitamura (2003, Lemma C.6). Therefore, the first part is obtained.
(Second part) The second part is obtained from the proof of Newey (1994, Lemma B.3).

Lemma A. 4 Suppose that Assumptions 3.1 (i), (ii), and (iv) and 3.2 (i)-(iii) hold. If $b_{n}=n^{-\alpha}$ for $0<\alpha<\frac{1}{s}\left(1-\frac{4}{\zeta}\right)$, then under \mathbf{H}_{g}

$$
\max _{i \in I_{*}}\left\|\hat{g}_{i}(\hat{\beta})\right\|=O_{p}\left(c_{n}\right)+o_{p}\left(n^{-\frac{1}{2}+\frac{1}{\eta}}\right)
$$

and

$$
I_{i} \lambda_{i}^{g}(\hat{\beta})=I_{i} \hat{V}_{i}(\hat{\beta})^{-1} \hat{g}_{i}(\hat{\beta})+I_{i} r_{i}^{g},
$$

where

$$
\max _{i \in I_{*}}\left\|r_{i}^{g}\right\|=o_{p}\left(n^{1 / \zeta}\right)\left\{O_{p}\left(c_{n}^{2}\right)+o_{p}\left(n^{-1+\frac{2}{\eta}}\right)\right\} .
$$

Proof. See the proof of Tripathi and Kitamura (2003, Lemma A.1). Note that Assumptions 3.1 (i), (ii), and (iv) and 3.2 (i)-(iii) imply Tripathi and Kitamura (2003, Assumptions 3.1-3.7).

References

[1] Borwein, J. M. and A. S. Lewis (1993): "Partially-finite programming in L_{1} and the existence of maximum entropy estimates," Siam Journal of Optimization, 3, 248-267.
[2] Chen, Y. and C. Kuan (2002): "The pseudo-true score encompassing test for non-nested hypotheses," Journal of Econometrics, 106, 271-295.
[3] Cox, D. R. (1961): "Tests of separate families of hypotheses," Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. I, 105-123, University of California Press.
[4] Cox, D. R. (1962): "Further results on tests of separate families of hypotheses," Journal of the Royal Statistical Society, B, 24, 406-424.
[5] CsiszÁr, I. (1995): "Generalized projections for non-negative functions," Acta Math. Hungar., $68,161-185$.
[6] Davidson, R. and J. MacKinnon (1981): "Several tests for model specification in the presence of alternative hypothesis," Econometrica, 49, 781-793.
[7] Dhaene, G. (1997): Encompassing: Formulation, Properties and Testing, Springer.
[8] Donald, S. G., Imbens, G. W. and W. K. Newey (2003): "Empirical likelihood estimation and consistent tests with conditional moment restrictions," Journal of Econometrics, 117, 55-93.
[9] Fisher, G. and M. McAleer (1981): "Alternative procedures and associated tests of significance for non-nested hypotheses," Journal of Econometrics, 16, 103-119.
[10] Ghysels, E. and A. Hall (1990): "Testing nonnested Euler conditions with quadrature-based methods of approximation," Journal of Econometrics, 46, 273-308.
[11] Godfrey, L. G. (1998): "Tests of non-nested regression models: some results on small sample behaviour and the bootstrap," Journal of Econometrics, 84, 59-74.
[12] Gourieroux, C. and A. Monfort (1994): "Testing non-nested hypotheses," in: R. F. Engle and D. L. McFadden, eds., Handbook of Econometrics, vol. IV, 2583-2637, Elsevier, Amsterdam.
[13] Gourieroux, C., A. Monfort and A. Trognon (1983): "Testing nested or non-nested hypotheses," Journal of Econometrics, 21, 83-115.
[14] Hansen, L. P. (1982): "Large sample properties of generalized method of moments estimators," Econometrica, 50, 1029-1054.
[15] Kitamura, Y. (2001): "Asymptotic optimality of empirical likelihood for testing moment restrictions," Econometrica, 69, 1661-1672.
[16] Kitamura, Y. (2003): "A likelihood-based approach to the analysis of a class of nested and non-nested models," manuscript.
[17] Kitamura, Y., Tripathi, G. and H. Ahn (2004): "Empirical likelihood-based inference in conditional moment restriction models," Econometrica, 72, 1667-1714.
[18] Loh, W. (1985): "A new method for testing separate families of hypotheses," Journal of the American Statistical Association, 80, 362-368.
[19] Mizon, G. and J. Richard (1986): "The encompassing principle and its application to testing non-nested hypotheses," Econometrica, 54, 657-678.
[20] Newey, W. K. (1990): "Efficient instrumental variables estimation of nonlinear models," Econometrica, 58, 809-837.
[21] Newey, W. K. (1994): "Kernel estimation of partial means and a general variance estimator," Econometric Theory, 10, 233-253.
[22] Newey, W. K. and R. J. Smith (2004): "Higher Order Properties of GMM and Generalized Empirical Likelihood Estimators," Econometrica, 72, 219-255.
[23] Owen, A. B. (1988): "Empirical likelihood ratio confidence intervals for a single functional," Biometrika, 75, 237-249.
[24] Owen, A. B. (2001): Empirical Likelihood, Chapman and Hall.
[25] Pesaran, M. and M. Weeks (2001): "Non-nested hypothesis testing: an overview," in B. Baltagi, ed., A Companion to Econometric Theory, Ch. 13, 279-309, Blackwell Publishers, Oxford.
[26] Powell, J. L., Stock, J. L. and T. M. Stoker (1989): "Semiparametric estimation of index coefficients," Econometrica, 57, 1403-1430.
[27] Qin,J. and J. Lawless (1994): "Empirical likelihood and general estimating equations," Annals of Statistics, 22, 300-325.
[28] Ramalho, J. J. S. and R. J. Smith (2002): "Generalized empirical likelihood non-nested tests," Journal of Econometrics, 107, 99-125.
[29] Schennach, S. M. (2006): "Point estimation with exponentially tilted empirical likelihood," forthcoming in Annals of Statistics.
[30] Singleton, K. J. (1985): "Testing specifications of economic agents' intertemporal optimum problems in the presence of alternative models," Journal of Econometrics, 30, 391-413.
[31] Smith, R. J. (1992): "Non-nested tests for competing models estimated by generalized method of moments," Econometrica, 60, 973-980.
[32] Smith, R. J. (1997): "Alternative semi-parametric likelihood approaches to generalized method of moments estimation," Economic Journal, 107, 503-519.
[33] Tripathi, G. and Y. Kitamura (2003): "Testing conditional moment restrictions," Annals of Statistics, 31, 2059-2095.
[34] Vuong, Q. H. (1989): "Likelihood ratio tests for model selection and non-nested hypotheses," Econometrica, 57, 307-333.
[35] White, H. (1982): "Maximum likelihood estimation of misspecified models," Econometrica, 50, 1-26.
[36] Wooldridge, J. (1990): "An encompassing approach to conditional mean tests with application to testing nonnested hypotheses," Journal of Econometrics, 45, 331-350.
[37] Zhang, J. and I. Gijbels (2003): "Sieve empirical likelihood and extensions of the generalized least squares," Scandinavian Journal of Statistics, 30, 1-24.

Table 1. Estimated Sizes and Powers of the tests with nominal size of $5 \%{ }^{17}$

(Design I, $c_{0}=1$)							
Test	b_{n}	$n=100$			$n=200$		
		Size	A-P	S-P	Size	A-P	S-P
M_{g}	0.7	. 170	. 778	. 528	. 135	. 936	. 878
	0.8	. 100	. 777	. 678	. 090	. 947	. 923
	0.9	. 064	. 775	. 749	. 060	. 966	. 961
	1.0	. 046	. 781	. 796	. 029	. 960	. 969
C_{g}	0.7	. 070	. 500	. 399	. 038	. 600	. 703
	0.8	. 030	. 389	. 581	. 023	. 462	. 848
	0.9	. 010	. 281	. 684	. 007	. 343	. 889
	1.0	. 005	. 202	. 726	. 001	. 211	. 899
S_{g}	0.7	. 329	. 970	. 823	. 174	. 989	. 978
	0.8	. 244	. 968	. 905	. 110	. 996	. 992
	0.9	. 164	. 982	. 945	. 070	. 997	. 995
	1.0	. 123	. 989	. 971	. 045	. 999	. 999
J		. 041	. 926	. 934	. 052	. 999	. 998
S		. 008	. 911	. 972	. 007	. 997	1.00
SC		. 055	. 935	. 934	. 054	. 999	. 999

[^11]Table 2. Estimated Sizes and Powers of the tests with nominal size of $5 \%{ }^{18}$

(Design I, $c_{0}=2$)							
Test	b_{n}	$n=100$			$n=200$		
		Size	A-P	S-P	Size	A-P	S-P
M_{g}	0.7	. 176	. 537	. 262	. 138	. 752	. 517
	0.8	. 104	. 500	. 357	. 084	. 745	. 644
	0.9	. 071	. 460	. 415	. 057	. 732	. 711
	1.0	. 039	. 442	. 473	. 038	. 716	. 748
C_{g}	0.7	. 064	. 272	. 221	. 036	. 244	. 327
	0.8	. 029	. 165	. 309	. 021	. 147	. 467
	0.9	. 013	. 095	. 390	. 008	. 076	. 584
	1.0	. 003	. 046	. 403	. 001	. 036	. 601
S_{g}	0.7	. 325	. 953	. 807	. 175	. 986	. 971
	0.8	. 230	. 957	. 876	. 117	. 987	. 981
	0.9	. 164	. 965	. 908	. 071	. 988	. 985
	1.0	. 126	. 958	. 931	. 039	. 992	. 994
J		. 044	. 563	. 572	. 056	. 868	. 865
S		. 021	. 554	. 666	. 023	. 863	. 906
SC		. 055	. 589	. 582	. 053	. 878	. 876

[^12]Table 3. Estimated Sizes and Powers of the tests with nominal size of $5 \%^{19}$

(Design II)							
Test	b_{n}	$n=100$			$n=200$		
		Size	A-P	S-P	Size	A-P	S-P
M_{g}	0.1	. 062	. 624	. 502	. 043	. 635	. 696
	0.2	. 018	. 604	. 913	. 015	. 608	. 959
	0.3	. 009	. 538	. 967	. 008	. 568	. 984
	0.4	. 007	. 452	. 984	. 004	. 471	. 981
C_{g}	0.1	. 164	. 685	. 428	. 112	. 670	. 454
	0.2	. 061	. 660	. 639	. 040	. 675	. 675
	0.3	. 029	. 664	. 803	. 027	. 680	. 883
	0.4	. 018	. 644	. 897	. 017	. 707	. 948
S_{g}	0.1	. 095	. 292	. 140	. 078	. 334	. 234
	0.2	. 053	. 356	. 339	. 040	. 414	. 486
	0.3	. 034	. 412	. 589	. 027	. 427	. 729
	0.4	. 020	. 433	. 791	. 017	. 489	. 837
J		. 048	. 027	. 027	. 053	. 040	. 034
S		. 011	. 021	. 158	. 009	. 031	. 172
SC		. 008	. 075	. 174	. 004	. 070	. 165

[^13]
[^0]: *We would like to thank Yuichi Kitamura and two anonymous referees for helpful comments.
 ${ }^{\dagger}$ Cowles Foundation for Research in Econonmics, Yale University, New Haven CT 06520, U.S.A. E-mail address: taisuke.otsu@yale.edu.
 ${ }^{\ddagger}$ Department of Economics, Seoul National University, Seoul 151-742, Korea. E-mail address:whang@snu.ac.kr. This work was financially supported by the Korea Science and Engineering Foundation.

[^1]: ${ }^{1}$ Kitamura, Tripathi and Ahn's (2004) smoothed empirical likelihood and Zhang and Gijbels' (2003) sieve empirical likelihood are quite similar concepts. To avoid confusion, we follow Kitamura (2003) and adopt a new terminology, conditional empirical likelihood.
 ${ }^{2}$ Examples include Davidson and MacKinnon (1981), Fisher and McAleer (1981), White (1982), Gourieroux, Monfort and Trognon (1983), Loh (1985), Mizon and Richard (1986), Wooldridge (1990), Godfrey (1998), and Chen and Kuan (2002), to mention only a few. See also Gourieroux and Monfort (1994), Pesaran and Weeks (2001), and Dhaene (1997) for a review of non-nested and encompassing tests.
 ${ }^{3}$ GEL is originally proposed by Smith (1997), and its higher order properties are investigated by Newey and Smith (2004).

[^2]: ${ }^{4}$ See Owen (2001) for a comprehensive review of the empirical likelihood approach.

[^3]: ${ }^{5}$ The hypotheses \mathbf{H}_{g} and \mathbf{H}_{h} should be restrictions on the same conditional distribution $z \mid x$. If the conditioning variables are different, i.e., $\mathbf{H}_{g}: E\left[g\left(z, \beta_{0}\right) \mid x_{g}\right]=0\left(\right.$ a.s. $\left.x_{g}\right)$ and $\mathbf{H}_{h}: E\left[h\left(z, \gamma_{0}\right) \mid x_{h}\right]=0$ (a.s. x_{h}), our approach does not work. However, when we are interested in testing $\mathbf{H}_{g}: E\left[g\left(z, \beta_{0}\right) \mid x_{g}, x_{h}\right]=0\left(\right.$ a.s. $\left.x_{g}, x_{h}\right)$ and $\mathbf{H}_{h}: E\left[h\left(z, \gamma_{0}\right) \mid x_{g}, x_{h}\right]=0$ (a.s. x_{g}, x_{h}), our approach is applicable. See Design I in Section 4 for an example.

[^4]: ${ }^{6}$ Under misspecification, the solution of (6) with respect to $p_{j i}^{g}$ can be (even asymptotically) negative. Thus, we do not add non-negativity constraints $p_{j i}^{g} \geq 0$ here. See Schennach (2006).

[^5]: ${ }^{7}$ Note that μ_{i}^{g} satisfies $\mu_{i}^{g}=1$ for $i=1, \ldots, n$.
 ${ }^{8}$ If the trimming term is replaced with $I\left\{x_{i} \in \mathcal{X}_{n}\right\}$, where \mathcal{X}_{n} converges to \mathcal{X} in an adequate manner, then the CEL estimator is asymptotically efficient. Since this paper concerns with specification testing, we consider the fixed trimming term I_{i}.

[^6]: ${ }^{10}$ Although it requires a lengthy mathematical argument, we can consider the CEL-based parametric encompassing test statistic, which focuses on the probability limit of the CEL estimator $\hat{\gamma}_{C E L}$ for γ_{0}. Let

 $$
 \tilde{\gamma}_{C E L}=\arg \max _{\gamma \in \Gamma} \sum_{i=1}^{n} I_{i} \sum_{j=1}^{n} \hat{p}_{j i}^{g}\left(\hat{\beta}_{C E L}\right) \log \hat{p}_{j i}^{h}(\gamma) .
 $$

 Since we can expect that $\tilde{\gamma}_{C E L}$ is a consistent estimator for the pseudo-true value γ_{*} under \mathbf{H}_{g}, the CEL-based parametric encompassing test statistic can be constructed by a quadratic form of $\left(\hat{\gamma}_{C E L}-\tilde{\gamma}_{C E L}\right)$.

[^7]: ${ }^{11}$ We conjecture that it would be possible to allow discrete regressors by applying the trimming argument of Andrews (1995) and Kitamura, Tripathi and Ahn (2003). In this case, we need to redefine the CEL weight as $w_{j i}=$ $K\left(\frac{x_{j}^{c}-x_{i}^{c}}{b_{n}}\right) I\left\{x_{i}^{d}=x_{j}^{d}\right\} /\left(\sum_{j=1}^{n} K\left(\frac{x_{j}^{c}-x_{i}^{c}}{b_{n}}\right) I\left\{x_{i}^{d}=x_{j}^{d}\right\}\right)$, where x_{j}^{c} are continuous regressors and x_{i}^{d} are discrete ones.

[^8]: ${ }^{12}$ Since $\hat{g}_{i}(\hat{\beta}) \xrightarrow{p} E\left[g\left(z_{i}, \beta_{0}\right) \mid x_{i}\right]=0$ uniformly on $x_{i} \in \mathcal{X}_{*}$ under \mathbf{H}_{g} (Lemma A.4), the second term of $\hat{M}\left(x_{i}, \hat{\beta}, \hat{\gamma}\right)^{\prime}=$ $2 \hat{h}_{i}(\hat{\gamma})^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1}-\hat{g}_{i}(\hat{\beta})^{\prime} \hat{V}_{i}(\hat{\beta})^{-1} J_{i}^{h}(\hat{\beta}, \hat{\gamma})^{\prime} \hat{V}_{i}^{h}(\hat{\gamma})^{-1}$ converges to zero uniformly on $x_{i} \in \mathcal{X}_{*}$ under \mathbf{H}_{g} with suitable assumptions.

[^9]: ${ }^{13}$ Another way to formulate the local alternatives in the spirit of Singleton (1985, p.402) would be

 $$
 \mathbf{H}_{g n}^{*}:\left(1-\frac{\eta}{\sqrt{n}}\right) E\left[g\left(z, \beta_{0}\right) \mid x\right]+\frac{\eta}{\sqrt{n}} E[h(z, \gamma) \mid x]=0
 $$

 where $\eta \in R$ is a constant. This case can be treated similarly because $\mathbf{H}_{g n}^{*}$ now corresponds to $\mathbf{H}_{g n}$ with $\delta_{h}(x)=$ $\eta\left\{E\left[g\left(z, \beta_{0}\right) \mid x\right]-E[h(z, \gamma) \mid x]\right\}$ and $\beta_{0 n}=\beta_{0}$.

[^10]: ${ }^{14}$ Our result can be generalized to partly non-nested models (i.e., $\mathcal{G}_{z \mid x} \cap \mathcal{H}_{z \mid x}$ is non-empty). In this case, we need to modify the definition of non-nested alternatives to guarantee that $\left(P_{z \mid x}^{*}\right)_{x \in \mathcal{X}} \notin \mathcal{H}_{z \mid x}$ holds.
 ${ }^{15}$ By extending the results of Borwein and Lewis (1993) and Csiszár (1995) to the conditional moment setup, we conjecture that this boundedness assumption can be reasonably weakened.
 ${ }^{16}$ We expect that this corollary might be extended to the generalized empirical likelihood (GEL) setup. Then, the GEL criterion functions for estimating the parameters and obtaining the implied conditional probabilities would coincide.

[^11]: ${ }^{17}$ Tests M_{g}, C_{g}, and S_{g} refer to the moment encompassing, Cox-type, and efficient score encompassing tests, repectively. Also, tests J, S, and $S C$ refer to Hansen's (1982) overidentifying test, Singleton's (1985) test, and Ramalho and Smith's (2002) simplified Cox test, respectively. A-P and S-P denote Actual Power and Size-Corrected Power, respectively.

[^12]: ${ }^{18}$ Tests M_{g}, C_{g}, and S_{g} refer to the moment encompassing, Cox-type, and efficient score encompassing tests, repectively. Also, tests J, S, and $S C$ refer to Hansen's (1982) overidentifying test, Singleton's (1985) test, and Ramalho and Smith's (2002) simplified Cox test, respectively. A-P and S-P denote Actual Power and Size-Corrected Power, respectively.

[^13]: ${ }^{19}$ Tests M_{g}, C_{g}, and S_{g} refer to the moment encompassing, Cox-type, and efficient score encompassing tests, repectively. Also, tests J, S, and $S C$ refer to Hansen's (1982) overidentifying test, Singleton's (1985) test, and Ramalho and Smith's (2002) simplified Cox test, respectively. A-P and S-P denote Actual Power and Size-Corrected Power, respectively.

