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CHAPTER 1

CONFIDENCE NETS FOR CURVES

Tore Schweder

Department of Economics
University of Oslo, Oslo, NORWAY

E-mail: tore.schweder@econ.uio.no

A confidence distribution for a scalar parameter provides confidence in-
tervals by its quantiles. A confidence net represents a family of nested
confidence regions indexed by degree of confidence. Confidence nets are
obtained by mapping the deviance function into the unit interval. For
high-dimensional parameters, product confidence nets, represented as
families of simultaneous confidence bands, are obtained from bootstrap-
ping utilizing the abc-method. The method is applied to Norwegian per-
sonal income data.

Key words: Abc-method; bootstrapping; confidence cure; likelihood;
simultaneous confidence; quantile regression; personal income.

1. Introduction

Confidence intervals, confidence regions and p-values are the prevalent con-
cepts for reporting inferential results in applications, although Bayesian
posterior distributions are increasingly used. In 1930, R.A. Fisher chal-
lenged the Bayesian paradigm of the time, and proposed fiducial distribu-
tions to replace posterior distributions based on flat priors. When pivots
are available, fiducial distributions follow, and are usually termed confi-
dence distributions (Efron 1998, Schweder and Hjort 2002). The cdf of a
confidence distribution could also be termed a p-value function. Neyman
(1941) showed the connection between his confidence intervals and fiducial
distributions. Exact confidence distributions are only available in simple
models, but approximate confidence distributions might be found through
simulation.
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The general concept of confidence distribution is difficult in higher di-
mension. For vector parameters one must therefore settle for a less ambi-
tious construct to capture the inferential uncertainty. I propose to use the
confidence net. A confidence net is a stochastic function from parameter
space to the unit interval with level sets representing simultaneous con-
fidence regions. One important method to construct a confidence net is
to map the deviance function into the probability interval such that the
distribution of the transformed deviance at the true value is uniformly dis-
tributed. That the confidence net evaluated at the true value is uniformly
distributed is actually the defining property of confidence nets.

Confidence net for a scalar parameter was introduced by Birnbaum
(1961) under the name ‘confidence curve’. The method has been been re-
peatedly proposed under different names (Bender, Berg and Zeeb 2005) but
has only found sporadic use in applied work. I will use the term ‘confidence
net’ to keep it apart from the estimated curve.

Curves such as correlation curves (Bjerve and Doksum 1993) are often
represented by its ordinate values at a finite number of argument values,
and with a method to connect neighboring values by a piece of continuous
curve. I regard the set of values defining the curve as a parameter, usually
of high but finite dimension. A simultaneous confidence band for the curve
is a product confidence region for the vector parameter. It has the shape
of a box or a rectangle in parameter space. A nested family of product
confidence regions indexed by their coverage probabilities, constitutes the
level sets of a confidence net for the curve. Such confidence nets can be
constructed from families of point-wise confidence bands by adjusting the
nominal levels to be simultaneous coverage probabilities. Beran (1988) de-
veloped this construction into a theory of balanced simultaneous confidence
sets. My confidence nets for curves are essentially variants of his method.

Confidence nets for curves might be hard to develop analytically except
in special cases. Bootstrapping or other simulation techniques are generally
more useful. The abc-method of Efron (1987) leads to confidence nets for
scalar parameters which are easily combined to a product confidence net
for the curve.

In the next section I discuss confidence nets in general, and give some
examples. Then I discuss confidence nets for curves, and show how they
might be found by bootstrapping and the abc-method. In the final sec-
tion I study personal income in Norway by quantile regression curves with
associated confidence nets. I am particularly interested in the 5% upper
quantile of income on capital as a function of wage for given age. I will use
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the abc-method on a vector of 29 components.

2. Confidence distributions and confidence nets

The setup is the familiar, with data X being distributed over a measurable
space according to a parameterized distribution Pθ. The parameter space
is Euclidean of finite dimension.

Assume first θ to be scalar, and that a pivot piv(θ, X), increasing in θ

and with continuous cdf F, is available. The probability transformed pivot
C(θ; X) = F (piv(θ, X)) is then the cdf of a confidence distribution for
θ. For any observed value of the data X, C(θ;X) is in fact a cdf in θ

representing the confidence distribution inferred from the data, and for any
value of θ, C(θ; X) is uniformly distributed on the unit interval when X ∼
Pθ. These two properties are basic for confidence distributions (Schweder
and Hjort (2002)).

Let C−1(p; X) be the confidence quantile. Since C is uniformly dis-
tributed at the true value, Pθ(C(θ;X) ≤ p) = Pθ(θ ≤ C−1(p;X)) = p. The
interval

(
C−1(α; X); C−1(β; X)

)
is thus a confidence interval of degree

β − α for all choices of 0 ≤ α ≤ β ≤ 1 . The distribution represented by C

therefore distributes confidence over interval statements concerning θ. This
is the reason for the name confidence distribution.

To ease notation, X will often be suppressed. Whether C(θ) is a stochas-
tic element or a realization, and whether it is a function of θ or a value,
should be clear from the context. Similarly, L(θ), D(θ), and N(θ) denotes
likelihood function, deviance function, and confidence net (to be defined
below) respectively.

Let

N(θ) = 1− 2min {C(θ), 1− C(θ)} = |1− 2C(θ)|. (1)

At each level 1 − α, the level set
(
C−1(α/2); C−1(1− α/2)

)
of N is a

tail-symmetric confidence interval. I will call N a tail-symmetric confidence
net for θ. The concept of confidence net is not confined to scalar parame-
ters. Confidence nets share with pivots the property of having a constant
distribution at the true value of the parameter:

Definition 1: A stochastic function N from parameter space to the unit
interval is a confidence net if for each θ, N(θ;X) is uniformly distributed
on the unit interval when X ∼ Pθ.

The level sets {θ : N (θ; X) ≤ α} are clearly confidence regions for θ.



May 10, 2006 12:15 WSPC/Trim Size: 9in x 6in for Review Volume Schweder-final

4 T. Schweder

N is called a confidence net since its level sets constitute a net in the
mathematical sense.

A confidence distribution is only partially characterized by a related
confidence net. This is the case in one dimension, and even more so
in higher dimensions. There are actually many confidence nets stem-
ming from the same confidence distribution. In the scalar case for ex-
ample, there are various tail-asymmetric confidence nets such as Ns(θ) =
1−min {C(θ)/s, (1− C(θ)) / (1− s)} for s between zero and one. Here Ns

has level sets
(
C−1(s (1− α)); C−1(1− (1− s) (1− α))

)
which are tail-

asymmetric for s 6= 1/2.

Note that C(θ) = N0(θ) and 1−C(θ) = N1(θ) both are confidence nets
with extreme tail skewness. They are one-sided confidence nets.

A confidence distribution in one dimension might be displayed by its
cdf, its density c(θ) = C ′(θ), or often preferably by a confidence net which
usually would be tail-symmetric. Other distributions such as Bayesian pos-
teriors might also be displayed by (confidence) nets rather than by their
densities.

Example 1: Let X > 0 be exponentially distributed with mean θ > 0.
Then Y = −X/θ is exponentially distributed on the negative half-axis, and
is thus a pivot with cdf exp(y), y < 0. The probability transformed pivot
is the confidence cdf C(θ) = exp (−θX). Figure 1 shows representations
of the confidence distribution. The five realizations of the confidence net
in the lower right panel cross the vertical line at the true value θ = 1 at
uniformly distributed levels.

With θ̂ the maximum likelihood estimator,

D(θ) = −2 ln(L (θ) /L(θ̂)) (2)

is the deviance function. The deviance gives rise to confidence nets, also
when θ is a vector parameter. So do other suitable objective functions,
such as the profile deviance. The following proposition is trivial.

Proposition 1: If the (profile) deviance evaluated at the true value, D (θ) ,

has continuous cumulative distribution function Fθ, then

N (θ) = Fθ (D (θ))

is a confidence net.

In regular cases the null distribution Fθ is asymptotically independent
of the parameter, and it is approximately the chi-square distribution with
degrees of freedom equal to the dimension of θ.
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Fig. 1. Confidence density (upper left), confidence cdf (upper right), tail-symmetric
confidence net (lover left) for data X = 1.12 drawn from the standard exponential dis-
tribution, and also four other realizations of N based on data from the same distribution
(lower right).

Since the deviance is invariant, the confidence net based on the deviance
is invariant. But the deviance might be biased in the sense that the maxi-
mum likelihood estimator θ̂ is biased. I prefer to define bias in terms of the
median rather than the mean, to make the notion of no bias invariant to
monotonous transformations.

Monotonicity and median might be defined in several ways when the
dimension is higher than one. For vector parameters representing curves it
is natural to define these notions component-wise, as we shall do.

Definition 2: A confidence net N is unbiased when the point estimator
θ̃ = arg min N (θ) is median unbiased in each component.

Writing m for the vector of component medians, let b (θ) = m
(
θ̂
)

for

the maximum likelihood estimator θ̂. With b invertible θ̃ = b−1
(
θ̂
)

is
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median-unbiased and it minimizes D (b(θ)) . With Fθ the cdf of D (b(θ)),
N (θ) = Fθ (D (b(θ))) is a bias-corrected confidence net.

Example 2: The maximum likelihood estimator σ̂ of σ is badly bi-
ased in the Neyman-Scott example of highly stratified normal data. Let
Xij ∼ N

(
µi, σ

2
)

i = 1, · · · , n j = 1, 2. The maximum likelihood esti-
mator is σ̂2 = 1

4n

∑n
i=1 (Xi1 −Xi2)

2 and the profile deviance is D(σ) =
2n

(
σ̂2/σ2 − ln

(
σ̂2/σ2

)− 1
)
. σ2/σ̂2 ∼ 2n/χ2

n is a pivot yielding a con-
fidence distribution and a confidence net. From the pivotal distribution,
b(σ) = m (σ̂) = σ

√
m(χ2

n)/ (2n). The null distribution of D(b(σ)) is that
of 2n

(
χ2

n/m
(
χ2

n

)− ln
(
χ2

n/m
(
χ2

n

))− 1
)
, which is free of σ and is easily

obtained by simulation. The null distribution is actually very nearly that of
2χ2

1 rather than that of χ2
1. Figure 2 shows both the confidence net based

on the bias-corrected profile deviance and the tail-symmetric confidence
net from the confidence distribution based on the pivot, for n = 20 and
σ̂ = 0.854. The null distribution of the bias-corrected profile deviance was
based on a sample from the χ2

n of size only 500 to enable the dashed line
to be seen. The two nets are practically identical when using the exact
distribution of D(b(σ)).

Example 3: Consider a situation with two variance parameters, σ2
1 and

σ2
2 , with independent estimators distributed proportional to chi-square dis-

tributions with 9 and 4 degrees of freedom respectively. We are primarily
interested in ψ = σ2/σ1. The maximum likelihood estimator ψ̂ has median
0.95ψ while σ̂1 has median 0.96σ1. Applying median bias-correction to each
component separately, the deviance function yields the confidence net that
is contoured in Figure 3. The maximum likelihood estimates behind this
net are σ̂1 = 1 and ψ̂ = 2. The distribution of the two-parametric null
deviance is independent of the parameter, and is found by simulation. It
is nearly chi-square 2. The confidence net based on the bias-corrected pro-
file deviance for ψ, with null distribution nearly that of 1.08χ2

1, is shown
in the lower panel. The exact tail-symmetric confidence net based on the
F-distribution is also plotted, but is practically identical to that based on
the profile deviance.

My experience is that confidence nets in one dimension based on median
bias-corrected profile deviances almost perfectly agree with exact confidence
nets based on the same statistic when the latter exist.
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Fig. 2. Exact tail-symmetric confidence net for σ in the Neyman-Scott example (dashed
line), and approximate confidence net based on the bias-corrected deviance (solid line,
500 simulation replicates), n = 20 and bσ = 0.854.

3. Confidence nets for curves

For non-parametric curves, represented by a vector of ordinates θ, simulta-
neous confidence bands are product confidence regions for θ. Product con-
fidence nets are therefore desirable for capturing the inferential uncertainty
in curve estimates.

For parametric curves, the confidence bands might be obtained from si-
multaneous confidence regions for the basic parameter. In the linear normal
model for example, the method of Scheffé (1959) for multiple comparison is
based on elliptical confidence nets. A curve constructed as an indexed set
of linear parameters, is obtained from the elliptical confidence net dating
back to Working and Hotelling (1929). If the curve represents all the linear
functions that can be constructed from an r-dimensional linear parameter,
the product confidence net for the curve is equivalent to the r-dimensional
elliptical confidence net for the parameter.
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Fig. 3. Confidence net for (ψ = σ2/σ1, σ1) (upper panel) for two normal samples. In
lower panel, confidence net for ψ based on the bias-corrected profile deviance. The median
unbiased estimates are indicated by dotted lines. Null distributions found by simulation
with 100,000 replicates.

Tukey’s method of simultaneous inference for pair-wise differences
(Scheffé 1959) might be regarded as a problem of developing a product
confidence net for the vector of pair-wise differences, and could be solved
by simulation as outlined below when the Studentized range distribution is
of questionable validity.

Nair (1984) constructed simultaneous confidence bands for survival
functions by suitably expanding the set of point-wise intervals. Beran (1988)
went a step further by constructing simultaneous product confidence sets
from what he called a root. The root is essentially a collection of confi-
dence nets for the components of the vector parameter. For given nominal
confidence coefficient for all the point-wise intervals, their product set is
a box-shaped confidence set of a degree that depends on the dependence
structure and other particulars. This simultaneous confidence degree is of-
ten found by simulation. Beran’s method is then simply to chose nominal
degree to obtain the desired simultaneous degree. It leads to balance in the
sense that the simultaneous confidence set has the same marginal coverage
probability for each component of the parameter seen in isolation.

My product confidence net for a vector parameter is simply representing
the collection of Beran’s balanced product sets. Let the curve be represented
by the vector parameter θ of dimension T and with generic component
θt. Let Nt (θt) be the one dimensional confidence net for θt. This point-
wise confidence net is typically found from a confidence distribution, or
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from a marginal, conditional or profile deviance function. Nt is uniformly
distributed at the true value of the parameter. The confidence net for θ

I am looking for is the product net (K (Nt (θt)) t = 1, · · · , T ) , written
(K (Nt (θt))) , for a suitable transformation K : (0, 1) → (0, 1) called the
adjustment function.

Definition 3: An increasing transform K turns a set of point-wise con-
fidence nets Nt (θt) into a balanced product confidence net for θ =
(θ1, · · · , θT ) ,

N(θ) = (K (Nt (θt))) ,

if

Pθ (K (Nt (θt)) ≤ α for t = 1, · · · , T ) = Pθ

(
max

t=1···T
Nt (θt) ≤ K−1(α)

)
= α

for all θ and 0 < α < 1.

Analogous to Tukey’s problem, which is solved by the Studentized range
distribution, my problem is to find the distribution with cdf K of the max-
imum null net maxt=1···T Nt (θt). Only in rare cases is it possible to solve
this problem analytically.

The net N(θ) is balanced in the sense of Beran (1988) since each of its
confidence regions is the product of intervals with the same nominal degree
of confidence across the coordinates.

Example 4: Continue the previous example. With ψ = σ2/σ1, θ = (ψ, σ1)
is not much of a curve, but is used to illustrate the Chinese box struc-
ture of product confidence nets. A product confidence net has rectangu-
lar level sets shown in Figure 4. The root for this product net consists
of the two confidence nets N (σ1) = |1 − 2Fν1

(
ν1σ̂

2
1/σ2

) | and N (ψ) =

|1− 2Fν2ν1

((
ψ̂/ψ

)2
)
|. Here, Fν1 and Fν2ν1 are the cdfs of the appropri-

ate chi-square distribution and the F-distribution respectively. The adjust-
ment function K is now the cdf of max {|1− 2Fν1 (X) |, |1− 2Fν2ν1 (Y/X) |}
where X and Y are independent chi square distributed with ν1 and ν2 de-
grees of freedom respectively. Figure 4 shows also the adjustment function
K together with the approximate adjustment function determined by the
simple Bonferroni method.

Balance is not always desirable for product confidence nets. Some com-
ponents of the parameter might be of more interest than others, and, for
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Fig. 4. Level sets of a product confidence net for ψ = σ2/σ1 and σ1 (left panel), and
K (solid line, right panel) with the diagonal and also the simple Bonferroni adjustment
function (dashed line). ν1 = 9 and ν2 = 4. 100,000 simulations.

these, narrower projected nets are required on the expense of wider pro-
jected nets for less interesting components. A practical weighting scheme is
provided by component-specific transformations of the form

Kt (c) = K
(
c1/wt

)
.

Here, wt is a weight of interest in component θt. With K being the cdf of
maxt=1···T Nt (θt)

1/wt , N(θ) = (Kt (Nt (θt))) is indeed a confidence net for
θ.

I return to a balanced product confidence net based on a root of point-
wise confidence nets. When the latter is obtained by way of simulation, the
adjustment function K can be estimated from the same set of simulated
data sets. Let N∗

t be the one dimensional confidence net for θt based on a
random set of data simulated with θ = θ0. When the simulation is done by
non-parametric bootstrapping, the estimate θ̂ based on the observed data
serves as reference value, θ0 = θ̂. Maximizing the value of the net at the



May 10, 2006 12:15 WSPC/Trim Size: 9in x 6in for Review Volume Schweder-final

Confidence nets for curves 11

reference value, across components, leaves us with maxt=1···T N∗
t

(
θ0

t

)
. The

adjustment function K is then simply the cdf of this random variable.
Since the point-wise confidence nets are transformed to a common scale,

e.g. to have uniform null distribution, the distribution of the maximum null
net will be independent of the true value of θ0 to a good approximation when
the correlation structure in the null nets varies little with the parameter.

Exact confidence nets are available for the individual components only
if pivots are available. Unfortunately, models with exact pivots are rare.
Under regularity conditions, approximate pivots are however available for
large data. Beran (1988) suggests to use bootstrapping to obtain such ap-
proximate pivots as input to his construction, and he develops first order
asymptotic results which apply to the direct simulation approach and the
bootstrapping approach based on Efron’s adjusted percentile method for
constructing confidence intervals.

Efron (1987) introduced acceleration and bias corrected percentile in-
tervals for one dimensional parameters, see also Schweder and Hjort (2002)
who term them abc intervals. The idea is that on some transformed
but monotonous scale Γ, γ̂ = Γ

(
θ̂
)

is normally distributed with mean

γ− b (1 + aγ) and variance (1 + aγ)2 , and with γ = Γ(θ). With a value for
the acceleration constant a, which might take some effort to find, and for
the bias constant b = Φ−1

(
H(θ̂)

)
, the tail-symmetric abc-net is

Nabc(θ; θ̂) = |1− 2Cabc(θ)|, (3)

Cabc(θ; θ̂) = Φ
(

Φ−1 (H(θ))− b

1 + a (Φ−1 (H(θ))− b)
− b

)
,

where H is the cdf of the bootstrap distribution for the estimator θ̂ assumed
here to be based on B = ∞ replicates. The scale transformation is related
to H as

Γ(s) = (1 + aγ̂)
{
Φ−1 (H(s))− b

}
+ γ̂. (4)

The confidence adjustment of the product of these point-wise abc-nets
is easily obtained, as explained in the following proposition.

Proposition 2: The balanced product confidence net for θ = (θ1, · · · , θT )
obtained from point-wise abc-nets N t

abc(θt; θ̂t) given by (3) from non para-
metric bootstrapping of the data, is

Nabc(θ) =
(
K

(
N t

abc (θt)
))
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where K is the cdf of

V = max
t
|1− 2Ht(θ∗t )|, (5)

and Ht is the cdf of the bootstrapped component estimates θ∗t .

Proof: The basis for non parametric bootstrapping is that the boot-
strapped curve estimate θ∗ has nearly distribution Pbθ when θ̂ has distribu-
tion Pθ. The max null-net distribution of the unadjusted product net is thus
found from the joint distribution of Cabc(θ̂t; θ∗t ). Consider a given compo-
nent t. Using (4) for Γt and utilizing the invariance property of confidence
distributions,

Cabc(θ̂t; θ∗t ) = Cabc(γ̂t; γ∗t ) = Φ
(

γ̂t − Γt(θ∗t )
1 + atγ̂

− bt

)
= 1−Ht (θ∗t ) .

This proves that the adjustment function K indeed is given by (5).

As mentioned, the same set of bootstrapped curve estimates can be
used to calculate the point-wise abc-nets and the adjustment function K.
This is correct to first order when the curve is of finite dimension and the
assumptions behind the abc method holds for each component.

For non-parametric curves, or parameters of infinite dimension, the
transformation K is not directly available. Beran (1988) showed however
that sampling from the infinite index set solves the problem, at least asymp-
totically. For regression curves over compact support, Claeskens and Van
Keilegom (2003) found asymptotically correct simultaneous confidence sets
based on bootstrapping.

4. Application to Norwegian income data

Statistics Norway surveyed income and wealth for a random sample of in-
dividuals in 2002. I consider males 18 years and above, and only look at
yearly income on capital Y by yearly income from all other sources X, con-
trolled for age A. Income is measured in Norwegian crowns, and all figures
are before tax. Sample size is 22496. I am interested in the upper quantiles
in the conditional distribution of Y given X and A, particularly in how the
95% quantile varies with X when controlling for the effect of age. I assume
an additive quantile regression function of the form

Qp(Y |X,A) = h(X) + g(A) + error.

Qp is the p-quantile function, here acting on the conditional distribution
of Y given X and A. The smooth curve h is represented by the vector



May 10, 2006 12:15 WSPC/Trim Size: 9in x 6in for Review Volume Schweder-final

Confidence nets for curves 13

(h (x1) , · · · , h (x29)) for xt the t/30 quantile in the marginal distribution of
X. Similarly, g is represented by a 29-dimensional vector.

The model is fitted by a simplified version of the backfitting algo-
rithm of Yu and Lu (2004) as follows. Let bin(xt) be the bin for X

containing the value xt. Similarly for bin(at). The iteration alternates
between updating h and g by taking quantiles of adjusted values of Y

for values in appropriate bins, and starts with g = g0 = 0. In the i-
th iteration, first hi(xt) = Qp (Y − gi−1(A)|X ∈ bin(xt)) t = 1, · · · , 29.
Then g1

i (at) = Qp (Y − hi(X)|A ∈ bin(at)), which is median shifted to
gi(at) = g1

i (at) − Q.5

(
g1

i

)
, also for t = 1, · · · , 29. Since the sample size

is large, I used no smoothing across bins in this simplified algorithm.
Using p = .95 the backfitting algorithm converges quickly, see Figure 5.

I thus settle for 6 iterations in the estimation. The curve estimator to be
bootstrapped is h = s(h6) where s is the smoothing spline with 10 degrees
of freedom found by gam in Splus. This degree of smoothing was chosen to
allow the rather sharp bend in h come through (Figure 5).

A non-parametric bootstrap experiment with 1000 replicates was carried
out. The bootstrap results were first studied for each component separately
to see whether there seems to be acceleration in the standard deviation
on the transformed scale on which the bootstrap values are normally dis-
tributed. If, on the other hand, the assumption a = 0 can be made, the
level sets of the abc-confidence nets are particularly simple to compute.

After some trial and error I found that 10
√

ĥ(xt) is reasonably normally
distributed for each component. The question is then whether the stan-
dard deviation in bootstrap estimates transformed to this scale is close to
constant when plotted against the transformed estimate across the compo-
nents.

The lower right panel of Figure 6 shows the scatter over the 29 val-
ues of x of marginal standard deviation in bootstrapped samples versus
curve estimate, both at the 10th root scale. On this scale, standard devia-
tion increases only slightly with curve estimate. From simple regression the
slope is estimated to be 0.06. This small value allows the acceleration to
be neglected, and a = 0 is assumed in (3). Figure 6 also shows that little
bias correction is needed (upper left panel), and that the variance on the
transformed scale indeed is relatively stable (lower left panel). The normal

probability plot of the bootstrapped 10
√

ĥ(332000) in the upper right panel
shows that this bootstrap distribution is close to normal. This is the case
also at the other values of x.
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Income on capital controlled for age effect

Fig. 5. Points are 95% quantiles of capital income in bins by other income, regardless
of age. The iterates of the algorithm of Yu and Lu (2004) are shown by different line
types. They converge quickly to the rugged curve appearing to be solid. The smooth
solid curve is the smooth of the 6th iteration, df = 10.

Table 1. Nominal pointwise confidence needed to obtain the abc net and the
simple Bonferroni net at given simultaneous confidence. The default smoothing
by gam in Splus is denoted by default df.

.50 .75 .90 .95 .99

abc : K−1 (α) df = 10 .908 .964 .988 .994 .998
abc : K−1 (α) default df .816 .926 .976 .990 .998
Bonferroni : 1− (1− α)/29 .983 .991 .997 .998 1.00

The max null net (5) has distribution with cdf K found from the same
set of 1000 bootstrap replicates as that used for the point-wise abc-nets.

Bjerve and Doksum (1993) used the Bonferroni method to construct
a simultaneous confidence band. This construction leads to a competing
confidence net. Figure 7 compares the Bonferroni adjustment with the abc
product net adjustment. The latter method is more conservative, as is well
known, and by a considerable degree. Table 1 spells this out numerically. It
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Fig. 6. Curve estimate, bias corrected by the abc method (solid line) and uncorrected es-
timate (dotted line) in upper left panel. Standard deviation of 10th root of bootstrapped
estimates in lower left panel. Upper right panel: normal probability plots of tenth root
of curve estimator at a typical level of other income. Lower right panel shows the scatter
of marginal standard deviation in the bootstrap samples versus curve estimate, both at
the 10th root scale.

also shows adjustment results under more smoothing of the non-parametric
quantile regression curve. The smoothed curve in Figure 5 has 10 degrees
of freedom. With heavier smoothing there is more autocorrelation in the
curve estimator, and the adjustment curve is lifted up.

The resulting confidence net is shown in Figure 8. One conclusion is that
the 95% quantile regression of capital income on other income, controlling
for the effect of age, is nearly flat up to other income 400000 crowns (slightly
less than a professor’s wage), and is then nearly linearly increasing. I cannot
explain this strong signal in the data, and will pass the question to the
economists.
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Fig. 7. Adjustment function K for the abc product net (solid curve) and the simple
Bonferroni adjustment (dashed line).
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Fig. 8. Level sets for the abc product confidence net for the quantile regression curve
of income on capital by other income, controlling for age. Levels given in the legend.
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11. Scheffé, H. 1959. The Analysis of Variance. Wiley
12. Schweder, T. and Hjort, N.L. 2002. Confidence and likelihood. Scandinavian

Journal of Statistics. 29: 309-332.
13. Working, H. and Hotelling, H. 1929. Application of the theory of error to

the interpretation of trends. J. Amer. Stat. Assoc., Mar. Suppl.: 73-85.
14. Yu, K. and Lu, Z. 2004. Local linear additive quantile regression. Scandina-

vian Journal of Statistics. 31: 333-346.


