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Abstract

This paper studies optimal income taxation when different job types exist for workers of

different skills. Each job type has some feasible range of incomes from which workers choose

by varying labour supply. Workers are more productive than others in the jobs that suit

them best. The model combines features of the classic optimal tax literature with labour

variability along the intensive margin with the extensive-margin approach where workers

make discrete job choices and/or participation decisions. We find that first-best maximin

utility can be achieved in the second-best, and marginal tax rates below the top can be

negative or zero.

Keywords: optimal income tax, job choice, intensive margin, extensive margin

JEL classification: H21, H23, H24

————

∗ We are grateful to Laurent Simula for careful comments on an earlier version of this

paper. Research support was provided by the Social Sciences and Humanities Research

Council of Canada.



1 Introduction
In models of optimal income taxation, the focus has been largely on the labour supply side.

The nature of jobs offered has not been explicitly modeled. Two extreme cases have been

studied. The standard intensive-margin approach, following Mirrlees (1971), effectively

assumes that workers of different skills are perfect substitutes in production. The amounts

of effective labour per hour of work reflects skills, and workers receive a fixed wage rate

equal to their skill. In extensive-margin models, jobs are offered that are suited for each

type of skill, and that pay a fixed wage for a given amount of effort (Diamond 1980). In

some versions of the extensive-margin model, workers of a given skill can choose the job

suited for a less-skilled worker, but if they do they receive the same fixed wage (Saez 2002).

These two approaches have led to important insights into the structure of optimal

income taxes and how they are affected by the nature of labour supply decisions, but

they have set aside characteristics of jobs that are potentially relevant for income tax

design. For one thing, workers have different job-specific skills, which may make them

more productive than others in the job that suits them best. Given the division of labour

in a modern economy and the specialization that entails, a worker tends to perform a

narrow set of tasks within a work unit. Each set of tasks requires a corresponding set of

special skills that workers possess in different degrees, such as innate ability, education and

training, and work experience. Workers will have different comparative advantages at jobs

requiring different sets of skills. Moreover, some workers may have an absolute advantage

over workers with different skills at those jobs that suit them best. This may be the case

even if some jobs require higher skills than others in some aggregate sense. Workers who

are most suited for higher skill jobs may be less productive in jobs requiring lesser skills.

For another thing, the assumption used in extensive-margin models that hours worked

and incomes are absolutely fixed seems a bit restrictive, while that used in intensive-margin

models that workers can choose any income by freely varying their labour supply may also

be restrictive. The spirit of extensive-margin models can be captured in less inflexible ways,

while at the same time offering workers some flexibility of effort, by assuming that different

jobs allow different income ranges. This possibility seems clear in comparing high-income

and low-income jobs. One expects that these will differ at least in their lower income bound
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and perhaps also in their upper bound. Even between jobs that belong to a similar broad

income category, income ranges available from them may still differ. For example, sales

jobs in agency/brokerage firms can be said to belong to the same broad income category

but often offer different minimum, guaranteed salaries. In this case, the income ranges

of different jobs differ at least in their lower bounds. More generally, it is reasonable to

suppose that some minimum discrete quantity of work-time per day is necessary just to

settle into the required routine in a given job, and beyond some maximum, concentration

or strength may deteriorate significantly.

In this paper, we explore the consequences for optimal nonlinear income taxation of

these two features of jobs: the absolute advantage workers have in jobs suited to them,

and the fact that different jobs may have different feasible income ranges. These features

are incorporated in a stylized way into the discrete-types model of Stiglitz (1982) and

Guesnerie and Roberts (1982). Workers are assumed to differ in a single characteristic,

which we refer to as skill. There are different jobs in the economy, each one most suited

for a given skill level, and at least the lower limits of the income ranges of the jobs differ.

Workers obtain the highest wage rate in the job matching their skill. They can choose other

jobs, but will earn a lower wage. As well, each job pays the highest wage to the worker

with the matching skill, and jobs requiring higher skill levels pay higher wage rates. Note

the important feature that a worker with a higher skill level who chooses a job requiring

lower skills will earn a lower wage rate than the worker with the matching skills.

We first analyze a basic model with two worker types, high- and low-skilled, and two

job types, also high- and low-skilled. Workers in this model make two sequential decisions.

They choose one of the jobs, and then they decide how much labour to supply, subject

to the income bounds associated with the job. The government is assumed to have non-

negative aversion to inequality, so it redistributes from the higher skilled to the lower

skilled workers. We then extend the model to allow for more worker- and job-types, albeit

restricting their numbers to be the same.

The results in our basic model contrast sharply to those in the standard Mirrlees-

Stiglitz model. The marginal tax rate for workers below the top will be negative if the

incentive constraint is binding and if both workers are in the job that matches their skills,

2



unless one of the income bounds is binding. The marginal tax rate at the top will be

zero unless an income constraint is binding at the upper bound. With maximin social

preferences, first-best levels of utility can be achieved through nonlinear income taxation

in the second-best, and that may be true with less redistributive social welfare functions

as well. With utilitarian social preferences, outcomes in both the first- and the second-

best involve more redistribution than under maximin preferences. Moreover, a higher

government revenue requirement and a lower redistributive preference tend to result in the

low-skilled worker working at the high-skilled job, which does not match his skill level.

When we extend the model to multiple types, we find that negative marginal tax rates for

workers below the top again obtain under similar conditions as in the basic model.

The intuition for the possibility of a negative marginal tax rate below the top is

straightforward. A higher skilled worker mimicking a lower skilled worker may have to

choose the lower skilled job. If so, the mimicking high skilled worker will be earning a lower

wage than the lower skilled worker. This effectively makes the incentive constraint upward-

binding. Relaxing the incentive constraint to facilitate redistribution involves distorting

the labour supply of the low skilled worker upwards, which requires a negative marginal

tax rate.

This paper is related to several strands of literature. The seminal paper in the optimal

income tax literature is Mirrlees (1971), who assumes workers are drawn from a continuous

skill distribution. (See also Tuomala (1990) and Ebert (1992) for useful elaborations.) We

follow the discrete skill-type case, proposed initially by Stern (1982) and Stiglitz (1982)

for the two-type case, and Guesnerie and Seade (1982) for multiple types, and pursued

subsequently by Weymark (1986), Homburg (2001) and Hellwig (2007), among others.

Negative marginal tax rates have been shown to arise in various intensive-margin

settings. They can result from general equilibrium effects as in Stiglitz (1982), who argued

that by stimulating high-skilled labour supply, a negative marginal tax rate at the top can

improve relative wages for the low-skilled. Negative marginal tax rates can also arise if

individuals differ both in skills and in preferences for leisure, so upward-binding incentive

constraints apply if the government wants to redistribute from those with high skills and

preferences for leisure to those with low skills and preferences for leisure (Boadway et al
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2000; Choné and Laroque 2010). Beaudry, Blackorby and Szalay (2009) assume workers

have differing productivities in market and non-market activities, and show that when

the government cannot observe non-market activities, marginal tax rates at the bottom

will be negative. Krause (2009) obtains the possibility of negative marginal tax rates in a

two-period model where second-period wages depend on first-period labour supply, via a

learning-by-doing effect. It may be optimal to subsidize low-skilled labour supply in the

first period, since this will increase the low-skilled wage rate in the second period which

both improves redistribution and weakens the second-period incentive constraint.

The rest of the paper is organized as follows. Section 2 sets up the model by introduc-

ing job-specific wage rates and job-specific income ranges into a standard, discrete-type

model of optimal income taxation. Section 3 analyzes this model in the 2-worker-2-job

basic case. Section 4 generalizes the basic model by allowing for more worker types and

more jobs. In the concluding section, we briefly discuss how the model could be extended

to include a fixed cost of participation as well as job-specific disutility-of-work.

2 Basic Setting
The model combines features of the classic optimal income tax literature with labour

variability along the intensive margin (Mirrlees 1971; Stiglitz 1982) with those of the

extensive-margin approach where workers make discrete job choice and/or participation

decisions (Diamond 1980; Saez 2002). There are a given number of types of jobs, indexed

by the superscript j = 1, · · · , N , each matching a given level of skills. By convention, job

j matches more productive skills than job j − 1, and offers a higher wage rate if the job is

filled with the most suitable worker. There is a population of workers who differ in their

aptitude and ability to fill jobs of different skills. For simplicity, we assume that there are

also N worker types, which will be indexed by a subscript i = 1, · · · , N . Workers can in

principle fill any type of job. However, they will earn the highest wage rate if they choose

the job for which they are most suited, which by convention is the job for which j = i.

The wage rates reflect worker productivities and are fixed for a given type of worker in a

given job. Let wj
i be the wage of a type-i worker in a type-j job. The pattern of wage

rates satisfies the following assumption:
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Assumption 1. Wage rates satisfy:

(i) wj
j > wk

j for all k 6= j

(ii) wj
j > wj

k for all k 6= j

(iii) wj
j > wj−1

j−1

Assumption 1(i) states that a worker makes the highest wage in the job for which he is

best suited. It applies whether a worker of given skill (worker j, say) chooses a job suited

for a lower-skilled worker (job k, with k < j) or for a higher-skilled worker (job k, with

k > j). Assumption 1(ii) says that a worker most suited for any job will earn a higher wage

in that job than any other type of worker (including those suited for higher skilled jobs).

Assumption 1(iii) indicates that workers of higher skills earn higher wages than those of

lower skills if both are employed in their most suited job. These assumptions do not fully

characterize all possible wage patterns, but are the most relevant ones for our purposes.1

Workers can choose jobs at will, and can change jobs without cost. They can also

choose how much labour to supply, which is determined both by their preferences and

by some restrictions we impose below on permissible earnings in each type of job. (They

may also choose whether to participate in the labour market, but we defer consideration

of that until later.) All workers share the same preferences, represented by the utility

function U(C,L), where C is aggregate consumption and L is labour supply. We assume

that U(C,L) is increasing in C and decreasing in L, and is strictly concave. Moreover,

leisure is assumed to be non-inferior, and leisure and consumption are gross substitutes.

Utility does not depend directly on the type of job, but the wage rate does.

Let Y j
i ≡ wj

i L
j
i be income of a type-i worker in a type-j job. Following standard

practice, it is useful to rewrite utility in terms of consumption and income as follows:

V j
i (Cj

i , Y j
i ) ≡ U

(
Cj

i ,
Y j

i

wj
i

)
1 For example, these assumptions do not fully specify the relation between wages of workers

who are not in jobs for which they are best suited (i.e., wj
j+1 R wj+1

j ). In our base case, we
consider two types of jobs, j = 1, 2, and two types of workers i = 1, 2, where worker 2 is high-
skilled and worker 1 is low-skilled. Assumption 1 implies that either w2

2 > w1
1 > w2

1 > w1
2 or

w2
2 > w1

1 > w1
2 > w2

1.
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If j = i, the worker is working in the most-suited job. A worker of a given type could

mimic the consumption-income bundle of a different type of worker. For a worker of type

i who mimics a worker of type k when the latter is in a type−k job, utility will be written

V̂ k
i (Ck

k , Y k
k /wk

i ). Note that this expression assumes that mimicking involves choosing the

job of the other type, though that need not be the case depending on the permissible levels

of income that can be earned in each job, to which we now turn.

We assume that for each job-type, income is restricted to be within a given range.

Let Y
j

and Y j be the upper and lower limits of income that can be earned in job j. We

generally assume that Y
j

> Y
j−1

and Y j > Y j−1, so it is possible that the two ranges

are disjoint or partially overlap. We consider both cases below, as well as the case where

there is no upper bound. We assume that all workers can reach all income levels in jobs

that they might be tempted to take. This simplifies the analysis, and can be relaxed to

some extent without affecting our main insights. The assumption that feasible incomes are

bounded in each job can be viewed as a reasonable generalization of the pure extensive-

margin job choice model of Saez (2002), where incomes are completely fixed. It allows us

to combine features of the extensive and intensive margins of labour supply, albeit at the

cost of keeping track of these constraints. If there were no bounds on incomes, workers

would always choose the job-type in which they are most productive.

The assumptions of the basic setting are illustrated in Figure 1, which depicts the

preferences for a given type of worker, assumed to be type 2, who chooses among three

job-types: one for which he is most suited (type 2), one for a lesser-skilled worker (type

1) and one for a more-skilled worker (type 3). The feasible income ranges for the three

jobs are assumed to be disjoint for illustrative purposes. The wage rate paid to the type-2

worker in job 2 exceeds that in both other jobs, w2
2 > w1

2, w
3
2. This implies that if a worker

works in jobs of type 1 or type 3, more effort is required to earn a given level of income,

so indifference curves will be steeper for any given income. This is reflected in the three

indifference curves shown in the figure in each job. Those labeled i represent the same

level of utility in all jobs, indifference curves ii represents a lower level of utility, and those

labeled iii represent an even lower level. If Y
1

is sufficiently close to Y 2, indifference curves

in job 1 at Y
1

will be steeper than those in job 2 at Y 2 and vertically higher. Similarly,
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for Y
2

sufficiently close to Y 3, the indifference curves in job 2 will be flatter at Y
2

than

those for job 3 at Y 3 and vertically lower. This is the case shown in the figure.

Figure 1 shows two more things. First, in the laissez-faire situation, workers must

choose a point on a budget constraint that is at 45o to the origin. In the circumstances of

Figure 1, worker 2 will choose the indifference curve i in job 2, the most-suited job. We

assume in what follows that workers always choose their most suited job in the laissez-

faire.2 Second, the figure shows expansion paths for the worker in jobs 1 and 2 from

lump-sum changes in income. Note in particular that such changes will eventually lead to

a corner solution at an income bound (unless preferences are quasilinear in consumption so

expansion paths are vertical). Thus, for some levels of utility, a worker’s indifference curve

may have a slope everywhere below unity or above unity in the income range of some job.

This will have implications for optimal marginal tax rates below.

Figure 2 allows for both type 1’s and type 2’s on the same diagram, and considers three

types of jobs, 1, 2 and 3, that each of the two workers can choose. Three indifference curves

labeled i, ii and iii are shown for the type-1 worker, while those for type-2’s are labeled i,

ii and iii. These curves are drawn on the assumption that worker 1 obtains a lower wage

rate in job 3 than in job 2 (w2
1 > w3

1), and worker 2 earns a higher wage in job 3 than

does worker 1 (w3
2 > w3

1). This figure can be used to illustrate some important properties

of the model that are relevant for the optimal income tax structure. The first is that if

there were only two workers and two jobs, say, jobs 1 and 2, the single-crossing property

applies for these disjoint indifference curves. That is, if indifference curves of worker 1 and

worker 2 intersect in the range of job 1, these same indifference curves cannot intersect

in the income range of job 2.3 However, this single-crossing property does not hold more

generally. For example, in Figure 2, indifference curves for workers 1 and 2 can intersect

in both income ranges 1 and 3 (or in both 2 and 3). The second is that the single-crossing

2 It is possible that workers might choose a job for which they are not best suited in the laissez-
faire. This can occur for certain configurations of preferences and feasible income ranges.
For simplicity, we assume this case away.

3 To see this, suppose that indifference curves i and i intersect twice, once in income range 1
and again in income range 2. By Assumption 1(ii), the former intersection implies that worker
1 is better off than worker 2, while the latter implies the opposite. This is a contradiction.
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property works in the opposite direction in different income ranges. In the income range of

job 1, type 1’s have flatter indifference curves than type 2’s at an intersection point since

they have higher wages. At the same time, at intersections in job 2’s income range, type

2’s have flatter indifference curves than type 1’s for the same reason.

Finally, in the laissez-faire, higher-skilled workers are better off than lower-skilled

ones, given that we have assumed that the laissez-faire is not income-constrained. This is

illustrated by the points `1 and `2 in Figure 2 for the case of workers 1 and 2 when both are

assumed to choose points within the feasible income ranges of their preferred jobs. Worker

2 has a higher wage rate than worker 1, and they are both on 45o budget lines. As in the

standard case, worker 2 is better off than worker 1. The implication is that a government

with non-negative aversion to inequality will want to redistribute from type 2’s to type 1’s.

We now turn to government policy in the simplest case where there are only two types of

workers and two types of jobs.

3 Optimal Income Taxation in the Two-Type Case
There are two types of workers, i = 1, 2, and two types of jobs, j = 1, 2. For simplicity,

assume there is one worker of each type. The government levies a non-linear income

tax on workers, or equivalently chooses consumption-income bundles for the two types

of workers, to maximize a weighted utilitarian social welfare function, subject to a) the

requirement of raising a given level of revenue, b) the workers’ incentive constraints, and c)

the income bounds associated with each job. The incentive constraints reflect the fact that

the government cannot observe worker types, only the income they earn. We also assume

the government does not observe the workers’ jobs, although in the case where income

ranges are distinct this can be inferred. We assume from the outset that the optimum

involves a separating equilibrium. It is straightforward to show that this will be optimal

unless revenue requirements are so high that both workers pool at the upper bound of the

income range of job 2. However, unlike in the laissez-faire and in a first-best allocation,

we cannot assume that it is optimal for each type of worker to be in their most-suited job.

To allow for different possibilities, we drop the job superscript from consumption-income

bundles for the two types for the time being.
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More formally, we write the social welfare function as γ1V1(C1, Y1) + γ2V2(C2, Y2),

where γ1 and γ2 are the social welfare weights for the low-skilled and high-skilled workers.

We assume that γ1 ≥ γ2 ≥ 0 given that the government is averse to inequality. Under

utilitarianism, we have γ1 = γ2 > 0, while with maximin, γ1 > γ2 = 0.4 The government

maximizes social welfare subject to several constraints. One is the resource or budget

constraint, (Y1 − C1) + (Y2 − C2) ≥ K, where K ≥ 0 by assumption. Next, there are

incentive constraints on the two types of workers, V2(C2, Y2) ≥ V̂2(C1, Y1) and V1(C1, Y1) ≥

V̂1(C2, Y2), which ensure that each worker prefers his own consumption-income bundle to

that of the other worker. Unlike in the standard case, mimicking may require workers

changing jobs, for example, when the income ranges are disjoint and workers are in different

income ranges in the optimum. Finally, optimal incomes may be constrained by the bounds

on income ranges in the two jobs: Y j ≤ Yi ≤ Y
j

for i, j = 1, 2. The specific form these

take will depend on whether income ranges are disjoint or overlap.5

We focus below on the case where the income ranges of the two job-types are disjoint.

The case with overlapping income ranges gives similar results, and details can be found

Boadway, Song, and Tremblay (2013).

Let A1 ≡ (C1, Y1) and A2 ≡ (C2, Y2) denote the allocations intended for type-1

and type-2 workers respectively. The income ranges are assumed to be disjoint and non-

contiguous, so Y
1

is strictly less than Y 2.6 In principle, both A1 and A2 can be in either

job, so there are four possibilities: (i) A1 is in income range 1 and A2 is in income range 2,

(ii) both A1 and A2 are in income range 2, (iii) A1 is in income range 2 and A2 is in income

range 1, and (iv) both A1 and A2 are in income range 1. In fact, case (iii) cannot arise

4 We could instead have used a quasi-concave social welfare function. Using the weighted
utilitarian form simplifies the notation slightly without affecting the results.

5 In principle, we should also impose non-negativity constraints on consumption, Ci ≥ 0 for
i = 1, 2. These can become binding when the revenue requirements of the government are
sufficiently large. Although this can lead to some unusual results, they would take us too far
afield, so we assume the non-negative consumption constraints are always slack.

6 If income ranges were disjoint but contiguous, so Y
1

= Y 2, a discontinuity would arise leading

to the possibility of non-existence of the optimum. Because the income level Y = Y
1

= Y 2

could be earned at both jobs 1 and 2 and each worker has different wage rates at different

jobs, each worker’s utility would change discontinuously with income around Y = Y
1

= Y 2.
In this case, the existence of an optimum would not be guaranteed.
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since the two incentive constraints cannot both be satisfied in this case.7 As well, case

(iv) cannot arise because it will be possible to move A2 to job 2 so as to keep worker 2 as

well off while increasing government revenue without violating any incentive constraint.8

Cases (i) and (ii) are possible and we consider them in turn.

3.1 Case (i): Both Workers in Most-Suited Jobs

In this case, we can show that, in contrast to the standard intensive-margin case, when

the optimal bundles A1 and A2 are in the interior of the income ranges of jobs 1 and 2

and the incentive constraint on the high-skilled worker is binding, the marginal tax rate

on the low-skilled worker is negative, while that on the high-skilled worker is zero. In this

case, the high-skilled worker is worse off than the low-skilled one. If the upper income

bound becomes binding on worker 1, his marginal tax rate can take any sign. If it becomes

binding on worker 2, his marginal tax rate is positive. Moreover, unlike in the standard

case, the incentive constraint on type-2 workers need not be binding in the optimum, even

though the government is averse to inequality. In this case, the optimum will be first-best.

The following analysis demonstrates these results.

We continue to suppress job superscripts. We know that type-1 will never mimic

type-2 in the optimum since as we have seen, in the laissez-faire the type-1 worker is worse

off than the type-2, so a government with non-negative aversion to inequality will want

to redistribute from the type-2 to the type-1 as in the standard model. The government

then maximizes γ1V1(C1, Y1) + γ2V2(C2, Y2) subject to its budget constraint, (Y1 − C1) +

(Y2 − C2) ≥ K, the incentive constraint on the high-skilled, V2(C2, Y2) ≥ V̂2(C1, Y1), and

7 Proof: By the single-crossing property, indifference curves for workers 1 and 2 intersect

at most once. Suppose worker 2’s incentive constraint is satisfied, so U(C1
2 , Y 1

2 /w1
2) ≥

U(C2
1 , Y 2

1 /w2
2). Also, w1

1 > w1
2 implies U(C1

2 , Y 1
2 /w1

1) > U(C1
2 , Y 1

2 /w1
2) and w2

2 > w2
1 im-

plies U(C2
1 , Y 2

1 /w2
1) < U(C2

1 , Y 2
1 /w2

2). Therefore, U(C1
2 , Y 1

2 /w1
1) > U(C2

1 , Y 2
1 /w2

1), so worker
1’s incentive constraint is violated. The same reasoning implies that if worker 1’s incentive
constraint is satisfied, worker 2’s will be violated.

8 The reason is that in this case, indifference curves will intersect in income range 1 when
incentive constraints are satisfied. In range 2, the indifference curve for worker 1 will be
everywhere above that for worker 2, and the 45o line tangent to the indifference curve of
worker 2 in job 1, say, I1

2 , is above the 45o line tangent to that in job 2, I2
2 . Therefore, a

movement of A2 from some point on I1
2 to the unit-slope point of I2

2 is a movement of less
than 45os and will increase government revenue without violating an incentive constraint.
This is so even if the optimum is such that there is no unit-slope point on I2

2 .

10



the income bounds, Y 1 ≤ Y1 ≤ Y
1

and Y 2 ≤ Y2 ≤ Y
2
.

The Lagrange expression can be written:

L = γ1V1(C1, Y1)+γ2V2(C2, Y2)+λ[(Y1−C1)+(Y2−C2)−K]+µ[V2(C2, Y2)− V̂2(C1, Y1)]

+δ1(Y1 − Y 1) + δ
1
(−Y1 + Y

1
) + δ2(Y2 − Y 2) + δ

2
(−Y2 + Y

2
)

The first-order conditions on C1 and Y1 for worker 1, and C2 and Y2 for worker 2 are:

γ1
∂V1

∂C1
− λ− µ

∂V̂2

∂C1
= 0; γ1

∂V1

∂Y1
+ λ + (δ1 − δ

1
)− µ

∂V̂2

∂Y1
= 0 (1)

γ2
∂V2

∂C2
− λ + µ

∂V2

∂C2
= 0; γ2

∂V2

∂Y2
+ λ + (δ2 − δ

2
) + µ

∂V2

∂Y2
= 0 (2)

The interpretation of these results will differ depending on whether the income constraints

are binding. Consider first the case where they are not, which corresponds with the

standard case.

Income Constraints not Binding

In this case, δj = δ
j

= 0 for j = 1, 2, so (1) and (2) reduce to the first-order conditions

of the standard case (Stiglitz 1982). However, there are three important differences here

compared with the standard case.

First, it is possible that the incentive constraint is slack in the optimum, and related to

this, the first-best maximin outcome can be achieved in the second-best. In the standard

case, the incentive constraint on high-skilled workers must bind in an optimum when the

social welfare function has non-negative aversion to inequality. The reason is that when the

incentive constraint is satisfied, type-2’s must be better off than type-1’s.9 In our model,

the mimicking type-2 need not be better off than the type-1 worker for the incentive

constraint to be satisfied. That is because the mimicker earns a lower wage rate in job 1

than does the type-1 worker by Assumption 1(ii) (i.e., w1
1 > w1

2). Therefore, it is possible

that the incentive constraint is not binding in the optimum, depending on the relative

wage rates w1
1 and w1

2 and the relative values of social welfare weights γ1 and γ2.

9 That is, V2(C2, Y2) ≥ V̂2(C1, Y1) > V1(C1, Y1) since the mimicker supplies less labour to
earn the same income as a type-1 person.
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This outcome can be pictured by starting from the laissez-faire outcome given by

points `1 and `2 in Figure 2, and redistributing income lump-sum from the type-2 to the

type-1 worker. The 45o budget line of the type-2 falls and that of the type-1 rises, and both

segments of their indifference curves shift as well. The optimum might be achieved without

the incentive constraint becoming binding as illustrated in Figure 3, where now Ij
i denotes

the indifference curve of a type-i worker in job j. In this case, the Lagrange multiplier on

the incentive constraint µ is zero, implying by (1) and (2) that (∂V1/∂Y1)/(∂V1/∂C1) =

(∂V2/∂Y2)/(∂V2/∂C2) = 1. Thus, marginal tax rates are zero and a first-best social

outcome is achieved.

Note in particular that a maximin outcome can be achieved as long as revenue require-

ment is not too extreme, making the maximin technologically infeasible. This is because,

when the two types have the same level of utility, I1
2 is above I1

1 and I2
1 is above I2

2

due to Assumption 1(ii). In fact, since these indifference curves are some distance apart,

first-best outcomes “near” the equal-utility maximin outcome can also be achieved in the

second best.

Second, when the incentive constraint is binding, so µ > 0, the optimal marginal tax

rate on the type-1 worker will be negative. Figure 4 illustrates this case. For the high-

skilled worker, (2) implies that (∂V2/∂Y2)/(∂V2/∂C2) = 1 when income constraints are

not binding, so the marginal tax rate at the top is zero as in the standard case. For the

low-skilled worker, (1) can be written:

− ∂V1/∂Y1

∂V1/∂C1
=

λ− µ(∂V̂2/∂Y1)

λ + µ(∂V̂2/∂C1)
=

1− k(∂V̂2/∂Y1)/(∂V̂2/∂C1)
1 + k

(3)

where k = (µ∂V̂2/∂C1)/λ > 0. As Figure 4 shows, −(∂V̂2/∂Y1)/(∂V̂2/∂C1) > 1, implying

that −(∂V1/∂Y1)/(∂V1/∂C1) > 1. Therefore, the marginal tax rate for the type-1 worker

is negative, contrary to the standard case.10

Third, whether or not the incentive constraint is binding, the type-1 worker can be

better off than the type-2 worker in an optimum. If the incentive constraint binds, type-2

10 More formally, rewrite (3) as x = (1+ky)/(1+k), or x−1 = k(y−x), where x and y are the
marginal rates of substitution at (C1, Y1) of workers 1 and 2. By the single-crossing property
in the feasible income range for job 1, y > x. Therefore, x > 1, which implies a negative
marginal tax rate.
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worker earns a lower wage than type-1 when he is mimicking the latter’s income. Therefore,

V1(C1, Y1) > V̂2(C1, Y1) = V2(C2, Y2).

The intuition for the negative marginal tax rate for worker 1 is clear. When each

worker works at his most productive job, worker 2 has a higher wage rate than worker 1.

However, by Assumption 1(ii) worker 2 has a lower wage rate when he mimics worker 1

by working in job 1. Since the incentive constraint prevents a less-productive worker from

mimicking a more-productive worker, it is optimal for the tax system to encourage, rather

than discourage, worker 1’s labour supply, as long as his income remains in the income

range for job 1. Clearly, it is important that worker 1 is more productive in job 1 than

is the more highly skilled worker 2. If that were not the case, the standard result of a

positive marginal tax rate at the bottom would apply.

Income Constraints Binding

The fact that incomes are bounded for each type of job leads to the possibility that in an

optimum, income constraints will be binding. To explore the possibilities, assume that in

the laissez-faire both worker-types are in the interior of the income range for their most-

suited job as in Figure 2. Redistribution from type-2’s to type-1’s will initially cause the

allocation for the type-2’s to move in a southeast direction, and for the type 1’s to move

northwest. That implies that if the income constraint binds for type-2’s, it will be at Y
2
,

while for type-1’s it will be at Y 1, at least as long as the government is purely redistributive.

If the government requires positive revenue, it is possible that Y1 ≤ Y
1

becomes binding

if revenue requirements are large enough. The following cases are then possible.

i) Y2 ≤ Y
2

is binding: If the income of the type-2 worker is strictly constrained by the

type-2 job upper bound, δ
2

> 0,11 while δ2 = 0. First-order conditions (2) then yield:

− ∂V2/∂Y2

∂V2/∂C2
=

λ− δ
2

λ
< 1 (4)

Therefore, the marginal tax rate at the top will be positive. This reflects the fact that

type-2’s indifference curve will have a slope less than unity everywhere in the income

range [Y 2, Y
2
].

11 Technically, it is possible for δ
2

= 0 and Y2 = Y
2

simultaneously. For simplicity, we ignore
all such boundary cases in what follows.
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ii) Y1 ≥ Y 1 is binding: Similar reasoning applies if the type-1 worker is strictly income-

constrained at Y 1. Then, the multipliers satisfy δ1 > 0 and δ
1

= 0, and first-order

conditions (1) reduce to:

− ∂V1/∂Y1

∂V1/∂C1
=

λ + δ1 − µ(∂V̂2/∂Y1)

λ + µ(∂V̂2/∂C1)
=

1 + δ1/λ− k(∂V̂2/∂Y1)/(∂V̂2/∂C1)
1 + k

(5)

The additional term in the numerator makes the marginal tax rate on the type-1’s

even more negative.

iii) Y1 ≤ Y
1

is binding: With positive revenue requirements, both workers may pay

positive taxes and the maximum income constraint on type-1 may bind (and that on

type-2 may as well). In this case, first-order condition (1) becomes:

− ∂V1/∂Y1

∂V1/∂C1
=

λ− δ
1 − µ(∂V̂2/∂Y1)

λ + µ(∂V̂2/∂C1)
=

1− δ
1
/λ− k(∂V̂2/∂Y1)/(∂V̂2/∂C1)

1 + k
(6)

The presence of −δ
1
/λ in the numerator implies that worker 1’s marginal tax rate

may take either sign.

Note that, as in the case without binding income constraints, the incentive constraint

may still be slack. First-best maximin utility levels and those near the maximin can still

be achieved in the second-best, even when some worker is income constrained. The only

difference is that the marginal tax rates of the income-constrained worker is no longer zero,

as shown for the three possible cases above.

Also note that, when preferences are quasilinear-in-consumption, the type-1 worker’s

marginal tax rate will always be negative as long as the incentive constraint is binding,

whether or not Y
1

binds. Because we assumed that each worker works at his most pro-

ductive job and is not income-constrained in the laissez-faire, the slope at Y
1

of the type-1

worker’s indifference curve through his laissez-faire allocation is greater than unity. With

quasilinear-in-consumption preferences, this will also be true for any of his indifference

curves, including the one through his optimal allocation.

3.2 Case (ii): Both Workers in Job 2

This case is similar to the standard model if no income constraints are binding, and the

standard government problem applies. The type-2 worker is more productive than type-1
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in job 2, and redistribution also goes from type-2 to type-1. Figure 5 depicts an optimum

at bundles A1 and A2 in this case. Standard results apply, with zero marginal tax rates

at the top and positive ones at the bottom.

The existence of separate jobs with income bounds, however, leads to two modifica-

tions of the standard model. First, if A1 is in the interior of income range 2 but is close

enough to the lower income bound Y 2, moving it into income range 1 may increase rev-

enue without violating any constraint, so the proposed Case (ii) optimum is not globally

optimal. Figure 5 illustrates this possibility. If A1 were on the dotted segment, it may

be dominated by some allocations on the same indifference curve near or at the upper

bound of income range 1. This occurs when the movement from A1 to such allocations is

at more than 45 degrees and therefore can increase government revenue without violating

any constraint.

Second, if one or both of the optimal bundles A1 and A2 hits the upper income

bound Y
2
, both types’ marginal tax rate will be positive. To see this, note first that

A2 cannot hit the lower income bound. Our assumptions that each worker works at his

most productive job and is not income-constrained in the laissez faire, together with a

non-negative revenue requirement, imply that the slopes of type-2 worker’s indifference

curves at the lower income bound Y 2 are always less than unity in an optimum. So

moving A2 up the indifference curve increases revenue without violating any constraint.

It is, however, possible for A2 to be located at the upper income bound Y
2
. In that case,

type-2’s indifference curve has a slope less than unity at that bound.

By the same token, A1 may also be located at the upper income bound, where the

slope of type-1’s indifference curve is less than unity. When this is the case, pooling will

occur if type-2’s incentive constraint binds in an optimum.12 A1 may also be at the lower

bound, where type-1’s indifference curve has a slope less than unity. Thus, no matter

where A1 is in income range 2, type-1’s marginal tax rate is positive. When A2 is at the

upper bound, type-2’s marginal tax rate is positive.

12 For the standard reason, pooling cannot occur in the interior of income range 2.
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3.3 Tax Implementation

Let us now briefly discuss the implementation of optimal allocations with a tax function

T (Y ), or equivalently, a consumption function C(Y ). Since Case (ii) is similar to a standard

model, we only discuss Case (i), focusing on the interior case where the incentive constraint

binds, depicted in Figure 4. For convenience, we assume that indifference curves never

touch the horizontal axis.

Following the literature (e.g., Homburg 2002), one can focus on the lower envelope of

the indifference curves through optimal allocations when finding the relevant consumption

function C(Y ). Then, to implement the optimum allocation (A1, A2) in Figure 4, the

C(Y ) will coincide with I1
2 up to A1, kink at that point, coincide with or run below I1

1

to reach the lower endpoint of I2
2 , rise along I2

2 up to A2, and then go below or coincide

with I2
2 afterwards. Note that the kink at A1 remains as long as A1 does not hit the upper

income bound Y
1
. This pattern is obviously more complicated than in the standard case.

In particular, we can make the following two observations about C(Y ).

First, unlike in the standard case, as the type-distribution becomes dense and eventu-

ally continuous, a continuous consumption function may still not become smooth. As can

be seen from Figure 4, consumption at the upper end of I1
2 may be higher or lower than

that at the lower end of I2
2 . If A1 is near or at Y 1, a continuous consumption function

implementing the optimal allocations needs to have a decreasing segment between Y = Y
1

and Y = Y 2, in order to extend from A1 to the lower end of I2
2 . Thus, optimal consumption

levels may not monotonically increase with income, depending on the shape of indifference

curves, differences in job-specific wage rates of a given worker, the sizes of gaps between

income ranges, the government revenue requirement, and the welfare weights.

Second, in a standard model, optimal tax structures exist for which the left derivative

of the tax function is equal to one minus the marginal rate of substitution (Homburg 2002),

which is the definition of the marginal tax rate we used. However, in our model, this may

not be the case. In Figure 4, for example, it is the right derivative of such tax functions

that is equal to the marginal tax rate for worker 1, which as we have seen is negative.
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3.4 Utility Possibilities Frontier (UPF)

The second-best UPF for Case (i) has an interesting feature: a utilitarian optimum is more

redistributive than a maximin optimum in terms of utility levels. That is, starting from

the laissez-faire, there is more redistribution from the type-2 worker to the type-1 worker

under utilitarianism than under maximin. Figure 6 illustrates. The first- and second-best

UPF’s are the lighter curves labeled AMfNUf and AMsNUsN
′, respectively.

The reason for this result is the following. First, for the same reason as in the standard

model, a first-best utilitarian optimum involves worker 1 having higher utility than worker

2. Second, as shown in section 3.1.1, incentive constraints are still slack in or “near” a

maximin optimum. Thus, starting from a maximin, further redistribution toward worker 1

along the first-best UPF is still possible. Therefore, a second-best utilitarian optimum will

be more redistributive than a maximin optimum in terms of the relative level of utility.

This contrasts with the second-best outcome in a standard model, where a utilitarian

optimum is always less redistributive than a maximin one because worker 2 can never be

made worse off than worker 1.

3.5 Comparing Case (i) and Case (ii) Optima

It is instructive to characterize the circumstances in which each case is globally optimal.

This involves a comparison between discretely different allocations, which is difficult to do

analytically. However, graphical and numerical approaches suffice to suggest the following

finding. When the income range of job 1 is not too small relative to that of job 2, Case

(i) typically dominates Case (ii), for various levels of revenue requirement and degrees of

intended redistribution.13 However, when income range 1 is small compared to income

range 2, Case (i) is no longer always superior. It is more likely to be overall optimal, the

lower is the revenue requirement and the more redistributive is the government objective.

Conversely, Case (ii) is more likely to be optimal when the revenue requirement is very

13 A higher degree of intended redistribution here means a higher γ1/γ2 ratio, that is, steeper
social indifference curves of the weighted utilitarian social welfare function. In our model, in
both the first-best and the second-best solutions for Case (i), utilitarianism turns out to be
more redistributive in terms of relative utility levels than maximin. So “more redistributive”
does not correspond to higher aversion-to-inequality or more concavity in a social welfare
function.
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high and redistribution is less important.

Begin with the graphical approach and refer to the laissez-faire in Figure 2 (points `1

and `2), and to Cases (i) and (ii) in Figures 4 and 5, respectively. First, we can show that

a purely redistributive optimum necessarily belongs to Case (i) rather than Case (ii).

To see this, recall the single-crossing property of the two workers’ indifference curves.

In the laissez-faire, I1 and I2 either intersect in income range 2 or do not intersect at all,

and in the latter case, I2
1 lies above I2

2 . Also note that, in a purely redistributive optimum,

A1 must be on an I1 that is higher than the laissez-faire allocation `1. Next, for those I1’s

lying above the laissez-faire I1, a movement from any point on I2
1 to the upper endpoint of

I1
1 — that is, the point where indifference curve I1

1 hits the income bound Y
1

— is more

than 45 degrees.14 Finally, by the single-crossing property, I1
1 lies below I1

2 in any Case

(ii) optimum when the incentive constraint is binding and I2
1 and I2

2 are intersecting.

With these observations, we deduce that starting from a Case (ii) purely redistribu-

tive optimum, moving A1 to income range 1 will increase revenue without violating any

constraint and will thus allow for further redistribution. Moreover, starting from a Case

(i) optimum, one cannot find a movement of A1 into income range 2 that allows for further

redistribution. By the single-crossing property, I2
1 lies above I2

2 in a Case (i) optimum

when the incentive constraint is binding. So moving A1 up I1 into income range 2 will

violate both worker 2’s incentive constraint and the government budget constraint. Thus,

an overall optimum must belong to Case (i) when the revenue requirement is zero so the

government problem is a purely redistributive one. This is the case no matter how redis-

tributive the government’s preferences are. Therefore, a Case (i) optimum will tend to be

overall optimal when the revenue requirement is not too high.

On the other hand, the effects of other configurations of parameter values are difficult

to derive analytically, so we resort to simulations. The following simulations are represen-

14 To see this, imagine a figure similar to Figure 5 but drawn for the purely redistributive case.

First, note that w1
1 > w2

1 according to Assumption 1(i). So if we extend I2
1 into income range

1, it will be above the upper endpoint of I1
1 . By our assumptions that both workers works

in their most suited jobs and are not income-constrained in the laissez-faire, for those I1’s
lying above the laissez-faire one, the slope at the upper end point of I1

1 and the slope at the
lower end point of I2

1 are both greater than unity, and the latter is greater than the former.
Therefore, the above movement is more than 45 degrees.
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tative. The utility function takes the Cobb-Douglas form, U(C,L) = C0.64(H − L)0.36,

where C is consumption, H = 1.00001 is time endowment, and L is labour supply. Job-

specific wage rates are w1
1 = 0.6, w2

1 = 0.45, w1
2 = 0.5, and w2

2 = 1. The income bounds

are Y 1 = 0.1, Y
1

= 0.3999, Y 2 = 0.4, and Y
2

= 1, and for comparison, we also used other

values. Revenue requirement increases from the purely redistributive level of zero to 1.15.

We used grid search to compute the utility possibilities frontiers for both cases in both the

first- and the second-best.

Figure 6 shows an example. Under this model specification, the highest technologically

possible revenue is around 1.3, so a revenue requirement of 0.5 is in the lower middle range.

As can be seen in the figure, Case (i) second-best UPF, AMsNUsN
′, dominates Case (ii)

second-best UPF, amsn
′, except at the upper left segment. A pure utilitarian social welfare

function corresponds to γ1/γ2 = 1 and has contour lines with slopes of minus one. So a

Case (i) utilitarian outcome will be at Us, while a Case (ii) one will be at us. Clearly, social

welfare is higher in Case (i). A similar argument applies in the maximin case. In fact, for

all values of γ1/γ2 in the range from (minus) the slope of line aA in Figure 6 to close to

infinity, social welfare under a weighted utilitarian social welfare function will be higher in

Case (i) than in Case (ii).

As revenue requirement increases, the UPF’s shrink towards the origin. However, the

Case (i) UPF’s may or may not shrink more quickly than the Case (ii) ones, depending on

the relative size of income ranges 1 and 2. We considered three sets of income ranges. In

all three, Y 1 = 0.1 and Y
2

= 1. However, the division points are (Y
1

= 0.1999, Y 2 = 0.2),

(Y
1

= 0.2999, Y 2 = 0.3), and (Y
1

= 0.3999, Y 2 = 0.4), respectively. In the latter two,Case

(i) UPF’s largely maintain the same relative position to Case (ii) UPF’s as that in Figure

6. So, Case (i) typically dominates Case (ii). However, in the first case, where income

range 1 is relatively small as compared to income range 2, Case (i) UPF’s shrink faster

than Case (ii) ones and eventually become dominated. Then, Case (ii) will be the global

optimum.
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3.6 Summary of Results in the Two-Type Case

The following summarizes the main results obtained in the two-type case.

i) In both the first-best and the second-best, the utilitarian optimum is more redistribu-

tive than the maximin optimum.

ii) It is possible that first-best levels of utilities be achieved with a non-linear income tax

schedule in the second-best, in which case the incentive constraint is not binding.

iii) If the incentive constraint binds in the second-best, an optimum may be one with

each worker working in his most suited job (Case i) or one with both workers in the

high income job (Case ii). A lower revenue requirement and a higher redistributive

preference tend to favour Case (i), and vice versa.

iv) In the Case (i) optimum, the low-skilled worker’s marginal tax rate is negative if his

upper income bound is not binding; otherwise, it may take either sign. The high-

skilled worker’s marginal tax rate is zero if his upper income bound does not bind;

otherwise, it is positive. Moreover, the low-skilled worker’s optimum consumption

may be higher than the high-skilled worker’s, implying that consumption may not

increase with income.

v) The Case (ii) optimum is qualitatively the same as that of a standard model, with

the exception that if the upper income bound binds for the high-skilled worker, his

marginal tax rate will be positive.

4 Extension to Multiple Types
In this section, we extend the basic model to allow for multiple types of workers and jobs.

Suppose there are N worker-types and N job-types. To facilitate discussion, we again

consider only disjoint income ranges and focus on optima where each worker works at

his most productive job.15 All other assumptions are retained. We show that the main

result of the basic model generalizes: A worker’s marginal tax rate will be negative under

15 Needless to say, the latter assumes away the possibility of occupational distortions by the tax
system and removes potentially interesting optima from our consideration. However, when
N is not small, there can be many ways in which workers’ occupational choices are distorted
away from their most productive ones, and as we have seen, making discrete comparisons
when occupations can be distorted is difficult. Exploring properties of an optimum when
this restriction is dropped is left for future research.
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conditions similar to those in the basic model. As well, marginal tax rates can be zero

below the top.

As in the previous section, suppose for simplicity that there is one representative

worker of each type. The government objective is the weighted utilitarian social welfare

function,
∑N

i=1 γiVi(Ci, Yi), where γ1, · · · , γN are positive weights. The government max-

imizes social welfare subject to the budget constraint
∑N

i=1(Yi − Ci) ≥ K, the incentive

constraints, Vi(Ci, Yi) ≥ V̂i(Ci′ , Yi′), ∀i, i′ 6= i, and the income bounds, Y i ≤ Yi ≤ Y
i
, ∀i.

The Lagrange expression for the government problem can be written:

L =
N∑

i=1

γiVi(Ci, Yi) + λ
[ N∑

i=1

(Yi − Ci)−K
]

+
N∑

i=1

∑
i′ 6=i

µi→i′

[
Vi(Ci, Yi)− V̂i(Ci′ , Yi′)

]

+
N∑

i=1

δi(Yi − Y i) +
N∑

i=1

δ
i
(−Yi + Y

i
)

where µi→i′ is the multiplier for the incentive constraint that prevents worker i from mim-

icking worker i′. Note that both upward and downward incentive constraints are included,

because no restriction has been imposed on the social welfare weights. Also, global as well

as local ones are included. We shall write µd
i→i′ when the relevant incentive constraint is

a downward one and µu
i→i′ when it is an upward one. To simplify notation, we denote

Vi(Ci, Yi) by Vi and V̂k(Ci, Yi) by V̂k in what follows.

The first-order conditions on Ci and Yi are(
γi +

∑
k>i

µu
i→k +

∑
k<i

µd
i→k

) ∂Vi

∂Ci
− λ−

∑
k<i

µu
k→i

∂V̂k

∂Ci
−

∑
k>i

µd
k→i

∂V̂k

∂Ci
= 0 (7)

(
γi +

∑
k>i

µu
i→k +

∑
k<i

µd
i→k

)∂Vi

∂Yi
+ λ + δi − δ

i −
∑
k<i

µu
k→i

∂V̂k

∂Yi
−

∑
k>i

µd
k→i

∂V̂k

∂Yi
= 0 (8)

These can be rearranged to give

− ∂Vi/∂Yi

∂Vi/∂Ci
= 1 +

1
λ

(δi − δ
i
) +

1
λ

∑
k<i

µu
k→i

∂V̂k

∂Ci

[
− ∂V̂k/∂Yi

∂V̂k/∂Ci

+
∂Vi/∂Yi

∂Vi/∂Ci

]

+
1
λ

∑
k>i

µd
k→i

∂V̂k

∂Ci

[
− ∂V̂k/∂Yi

∂V̂k/∂Ci

+
∂Vi/∂Yi

∂Vi/∂Ci

]
(9)
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Except for −δ
i
, all other terms on the right-hand side are non-negative; in particular, the

two differences in marginal rates of substitution in square brackets are positive because of

Assumption 1(ii) that worker i is more productive at job i than other workers k 6= i.

We can infer from (9) that the slope of worker i’s indifference curve at his optimal

allocation will be strictly greater than unity and his marginal tax rate will be negative, if

the following two conditions are satisfied:

(1) the constraint on income Yi ≤ Y
i

is slack so that δ
i
= 0, or does not bind too much

so that δ
i

is sufficiently small, and

(2) at least one incentive constraint preventing some other type k from mimicking type i

is binding (or, roughly equivalently, there is some redistribution towards type i).

When condition (2) holds but condition (1) does not, δ
i
> 0 may be large enough to make

type i’s marginal tax rate positive. As noted in the basic model, this is likely to occur

when revenue requirement is high and the tax system is set to encourage more work by

worker i. An exception is when preferences are quasilinear-in-consumption, in which case

the marginal tax rate will always be negative.

In any case, a negative marginal tax rate comes from Assumption 1(ii) that a worker

is more productive than others at the job that suits him best. With this assumption,

redistribution towards any type of worker calls for an upward distortion of his labour

supply in order to provide an incentive to, and extract revenue from, the types from which

the tax system redistributes.

In this model with multiple types, global as well as local incentive constraints may

bind in an optimum. The derivation above does not allow one to determine which incentive

constraints will bind. In Boadway, Song, and Tremblay (2013), we explored this issue

using the ‘utility curve’ tool of Matthews and Moore (1987) and analyzed a simple 3-by-3

example. One result of that analysis is that the marginal tax rate below the top may be

zero, due to a binding global incentive constraint.

5 Other Extensions and Concluding Remarks
This paper characterized optimal income taxation in a setting where workers of different

skills are better suited for different jobs. It was shown that, relative to more standard
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settings, optimal taxation may involve more redistribution if jobs differ in the range of

available income they offer and if individuals are more productive than others at the jobs

that suit them best. For those to whom the tax system redistributes, negative marginal

tax rates can often arise, because mimickers are locally less productive than these workers.

For those from whom the tax system redistributes, even those who are not the most skilled

may also face zero marginal tax rates. Moreover, first-best maximin outcomes may be

attained using second-best nonlinear income tax policies. Analogous results on marginal

tax rates obtain when there are multiple types.

A key assumption of the paper, Assumption 1(ii) on absolute advantage in workers’

job-specific productivity, may not always hold. Some workers may be more/less productive

than others at all jobs and therefore do not have an absolute advantage. In fact, the pattern

of individuals’ comparative advantage and absolute advantage can be complex. Some may

do very well at any job. Others may be experts in certain jobs only. Still others may be

able to do many jobs but are not the most productive at any job. This does not necessarily

affect our main results. For example, it does not necessarily mean that negative marginal

tax rates cannot arise below the top. Consider the case where there is a worker who is

more productive than others at any job. As long as some worker below the top is more

productive than his potential mimickers and the top worker is not among those potential

mimickers, the former still faces a negative marginal tax (as long as his upper income

bound does not bind too much). In this sense, Assumption 1(ii) can be relaxed to some

extent.

In reality, different workers may also have different disutilities-of-work in different

jobs. In Boadway, Song, and Tremblay (2013), we explored the consequence of introducing

this feature into our model. As in Diamond (2006) and, more closely, Boadway et al

(2002), suppose that the utility function is U(C,L) = u(C) − αj
i L = u(C) − αj

i Y/wj
i ,

where αj
i is worker i’s job-specific disutility parameter at job j. Thus, workers differ in

both productivities and preferences. Optimal income taxation in such a model has been

analyzed by Boadway et al (2002), and their focus was on the consequences of giving

various welfare weights to individuals with different preferences.

For our purpose, having job-specific disutility beside job-specific productivity makes
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our model more flexible. By varying parameter values, the standard model and our basic

model above can emerge as special cases. Following Boadway et al (2002), define ŵj
i ≡

wj
i /αj

i . Then we have V j
i (C, Y ) = u(C) − Y/ŵj

i . If ŵj
i satisfy Assumption 1, the model

will be equivalent to the basic model in terms of results. Note that only ŵj
i are required

to satisfy Assumption 1, so each worker’s wage rates can actually be constant across jobs

(w1
i = w2

i , i = 1, 2), just as in a standard model. Therefore, introducing job-specific

disutilities gives us an extra degree of freedom that enables us to completely do away with

the assumptions on job-specific productivities. On the other hand, if Assumptions 1(i)

(comparative advantage) and 1(iii) (ordering of highest wage rates) hold for ŵj
i but not

1(ii) (absolute advantage), the model resembles a standard model.

In Boadway, Song, and Tremblay (2013), we also extended the multiple-type model

to include a labour market participation decision, as in Diamond (1980) and, more closely,

Jacquet et al (2013). Two results emerge. First, the participation margin tends to increase

the absolute value of the marginal tax rates for working individuals, whether they are

positive or negative. Second, under some assumptions on welfare weights, the influence of

the extensive margin and the combined influence of the intensive margin and the job-choice

margin tend to have opposite effects on the levels of the participation taxes. For lower-skill

workers, extensive-margin effects call for lower (and possibly negative) participation taxes

while intensive-margin effects call for higher (and possibly positive) ones, and vice versa

for higher-skill workers. This finding is similar to that of Jacquet et al (2013).

These and other possible extensions may be further pursued in future research.
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Figure 1
Three Indifference Curves of Worker 2
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Figure 2
Indifference Curves of Worker 1 and Worker 2
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Figure 3
Case (i): A Fully Revealing Optimum
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Figure 4
Case (i): An Interior Optimum
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Figure 5
Case (ii): Both Workers in Job 2
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AMfNUf : first-best, Case (i) UPF; AMsNUsN
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amfn : first-best, Case (ii) UPF; amsn
′ : second-best, Case (ii) UPF

Uf , uf / Us, us : first-/second-best utilitarian outcome

Mf ,mf / Ms,ms : first-/second-best maximin outcomes

(|slope| of amfn around 45o line greater than 1, due to lower income bound of job 2)

Figure 6
First- and Second-Best UPF’s in Case (i) and Case (ii)

U(C,L) = C0.64(1.00001− L)0.36

w1
1 = 0.6, w2

1 = 0.45

w1
2 = 0.4, w2

2 = 1

Y 1 = 0.1, Y
1

= 0.3999

Y 2 = 0.4, Y
2

= 1

K = 0.5
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