Conceptual Analysis of the Centipede Paradox and its Practical Resolution by M. Kaneko & R. Ishikawa, 09 April 2024

1) The centipede game with n = 100.

2) The paradox is an antagonism between the (seemingly) well founded theory (BI theory) and its implication strange from practical point of view.

3) We conduct a conceptual study of the centipede paradox. Does the BI theory include drawbacks?

4) Our study leads to a practical recommendation such as $c^{\ell} \cdot d^{100-\ell}$ (100 – $\ell \leq 2$). In what sense?

1) Identification of the *centipede paradox*

- the centipede games Individual Motive (IM) & Cooperative Motive (CM)
- the paradox based on a paragraph from Selten ('78, TD).
- 2) The BI (backward induction) theory is modified to the CIB (conscious/inertial behavior) theory based on Kaneko's ('20) EU theory with probability grids.
 - In BI theory, IM makes CM ineffective.
 - In CIB theory, IM may become inactive, and then CM would be effective with inertia.
- 3) Resulting outcome from the CIB theory:

$$\sigma = \begin{cases} c^{\ell} \cdot d^{n-\ell} & \text{if cognitive ability is low} \\ d^n & \text{if cognitive ability is high} \end{cases}$$

 ℓ is close to n, e.g., $n - \ell = 0, 1 \text{ or } 2$.

5) We argue that these form a resolution of the centipede game.

Selten ('78), 132-133: Chain-Store Paradox

- (*) ... If I had to play the game in the role of the chain-store, I would follow deterrence theory, ...
- I get the impression that most people share this inclination.
- My experiences suggest that mathematically trained persons recognize the logical validity of the induction argument, but they refuse to accept it as a guide to practical behavior.
 - i. He explains the BI argument to his people
 - ii. They are mathematical trained people
 - iii. How does he explain his theory to them?The full theory? Or an algorithm?
 - iv. But they are not "completely rational people", yet ordinary people

Questions:

- Q-o: What are the classes of centipede games and variants? Some hints may be hidden? Germ and germination of cooperation.
- Q-i: What is the conceptual bases of the BI theory? What are wrong? Two bases are wrong.
- Q-ii: What is our modification, the CIB theory, of the BI theory? The above two are weakened.
- Q-iii: Is Selten's question about refusal of the BI theory meaningful? How about the CIB theory?

A drawback suggested in Q-i nullifies his question.

• Q-iv: How do we evaluate the resulting outcomes?

Q-o:Centipede GameP1 (Indi. Mo.)only P1 is effective
P2 (Coop. Mo.)only P1 is effective
P1 is partial
P1 is partial
P2 revivesQ-i:P1 (Com. Compara.)---+
P2 (For. Bygones)CIBIncom.
P2 revives
CIB sol.
$$c^{\ell} \cdot d^{n-\ell}$$
 with $\ell = \ell(n)$ Q-iiQ-iiiExplanation of $c^{\ell} \cdot d^{n-\ell}$ by the behavioral algorithm with the oracle
Incidentally, P1 makes Selten's question about practical behavior almost empty

Q-iv Is behavioral divide $n - \ell(n)$ small such as 0,1,2? Yes, it is. O2 is satisfied \checkmark

This tendency is confirmed in CIB 5

Identification of the centipede games

A *centipede game* G_n : the *decision nodes* $x_1, ..., x_n$, *end nodes* $z_1, ..., z_{n+1}$, and the payoff functions (g_1, g_2) satisfy

(i) Individual Motive (IM): $g_{\pi(t)}(z_t) > g_{\pi(t)}(z_{t+1})$ for all t = 1, ..., n;

(ii) Cooperative Motive (CM): $g_{\pi(t)}(z_t) < g_{\pi(t)}(z_{t+2})$ for all t = 1, ..., n-1. We say that G_n is a *pre-centipede* game if it satisfies IM.

 \checkmark We always assume that monetary payoffs and all distinct.

✓ The above game is a centipede game, which has the BI solution $\sigma = d^{100}$.

Centipede and pre-centipede games

The initial segment, of length 2, of G_{100}

Pre-centipede games without CM

The above is an *sk-convex* centipede game

- IM is quickly increasing;
- CM is effective only in the beginning of the game, but IM is dominant later.
- We focus on the class of sk-linear and skconcave centipede games.

BI solutions

- A pair of plans $\sigma = (\sigma_1, \sigma_2): \{x_1, \dots, x_n\} \rightarrow \{c, d\}.$
- $r(\sigma_{x_t \parallel})$ is the *realization* of σ , conditional upon that x_t is reached.
- $\succ \sigma$ is a *BI solution* of G_n iff σ satisfies

$$\sigma(x_t) = \begin{cases} c & if \ g_{\pi(t)}\left(r(\sigma_{x_{t+1}\|})\right) > g_{\pi(t)}(z_t) \\ d & if \ g_{\pi(t)}(z_t) > g_{\pi(t)}\left(r(\sigma_{x_{t+1}\|})\right). \end{cases}$$

Lemma 2.2. There is a unique BI solution in G_n , without assuming IM & CM.

Theorem 2.1. G_n is a pre-centipede game, i.e., IM holds, if and only if the *d*-solution d^n is a BI solution.

2): Conceptual bases of the BI theory

POE (evaluation of outcomes): decision making requires evaluation of future outcomes. POM (mathematical induction): the principle of mathematical induction.

 \blacklozenge We do not modify these postulates.

- > P0E motivates to define "reversed causality degree".
- POM is used because a game involves some generality. In this paper, we use POM as a method but not study it as an object.

P1: (Perfect comparability): Payoffs are perfectly comparable.

P2: (Forget the bygones): The past is ignored and the future is only taken into account.

- ≻ P1 is modified based on Kaneko's ('20, ET) EU theory with probability grids.
- > P2 is modified by introducing "inertia"; at x_t with some distance from x_1 , he would choose c again unless his preference asserts to choose d.

Wishful thinking in a centipede game

• Cooperative Motive implies the following

Lemma 2.1 (Germ for Cooperation). Let G_n be a centipede game. Let $\ell \leq n$.

- $▷ g_{\pi(\ell)}(z_t) < g_{\pi(\ell)}(z_\ell)$ if *t* < ℓ or *t* = ℓ + 1
- ► $g_{\pi(\ell-1)}(z_t) < g_{\pi(\ell-1)}(z_{\ell+1})$ if $t < \ell + 1$.
 - Here, CM revives.

EU Theory with probability grids

• The payoff ruler consists of scale grids (simple lotteries)

 $\geq \underline{\alpha}_i < \min_{z_t} g_i(z_t) < \max_{z_t} g_i(z_t) < \overline{\alpha}_i.$

- $\succ \rho_i$ is the cognitive ability of payoffs, where $\rho_i = 0, 1, ...$
- > A scale grid is expressed as a simple lottery

$$\frac{\nu}{2^{\rho_i}} \cdot \overline{\alpha}_i + \left(1 - \frac{\nu}{2^{\rho_i}}\right) \cdot \underline{\alpha}_i = \overline{\alpha}_i + \nu \cdot \frac{\overline{\alpha}_i - \underline{\alpha}_i}{2^{\rho_i}}.$$

Using the payoff ruler, we define the bounded preferences:

• Given ρ_i , this is a purely finite construct.

When ρ_i goes $+\infty$, the theory tends to the classical EU theory.

- ◆In this sense, this differs from "similarity" (e.g., Rubinstein ('88)).
- But our concern is finite ρ_i .

3): From the BI theory to the CIB (*conscious/inertial behavior*) theory

• Payoff ruler consists of scale grids.

Using the payoff ruler, we define the bounded preferences:

• $z_{t'} \triangleright_i z_t \Leftrightarrow_{def} g_{\pi(k)}(z_{t'}) \ge \underline{\alpha}_i + \nu \cdot \frac{\overline{\alpha}_i - \underline{\alpha}_i}{2^{\rho_i}} \ge g_{\pi(k)}(z_t)$ for some ν .

- (Strict preference): z_t , and z_t are separated by a scale grid.
- (Incomparability): z_t , $\bowtie_i z_t \Leftrightarrow_{def}$ neither z_t , $\rhd_i z_t$ nor $z_t \rhd_i z_t$,

$$\bullet \quad z_{t'} \succeq_i z_t \Leftrightarrow_{def} z_{t'} \rhd_i z_t \text{ or } z_t \bowtie_i z_{t'}.$$

Lemma 4.1. \geq_i is a complete preordering with incomparability.

Payoff ruler

Payoffs

 Z_t

 $Z_{t''}$

Cooperative Motive implies the following
Lemma 2.1 (Germ for Cooperation). Let G_n be a centipede game. Let ℓ ≤ n.

g_{π(ℓ)}(z_t) < g_{π(ℓ)}(z_ℓ) if t < ℓ or t = ℓ + 1</p>

g_{π(ℓ-1)}(z_t) < g_{π(ℓ-1)}(z_{ℓ+1}) if t < ℓ + 1.</p>

• But this is nullified by IM.

Theorem 3.1 (Germination of cooperation) Let $G_n(\Sigma, b)$ be a centipede game, and let x_ℓ be a decision node. Then,

(1) if
$$x_{\ell+1} \bowtie_{\pi(\ell)} x_{\ell}$$
, then $x_{\ell+1} \bowtie_{\pi(t)} x_t$ for all $t \le \ell$;

(2) If $x_{\ell+1} \triangleright_{\pi(t)} x_t$, then $x_{\ell+1} \triangleright_{\pi(t')} x_{t'}$ for all $t' \leq t$ with $\pi(t) = \pi(t')$.

(1) Germination is ready in $G_n(\Sigma, b)$.

2) *Inertia* helps start germination.

The CIB theory

The consciousness boundary b_i $(1 \le b_i \le n, \pi(b_i) = i)$:

- Within this boundary, PL*i* makes a decision consciously.
 - Beyond b_i , he follows the inertia *c*, unless he has a strict preference z_t over the realized node $r(\sigma_{x_{t+1}\parallel})$ conditional upon x_{t+1} .
 - he takes d, if he does.

 $\sigma \text{ is a } CBI \text{ solution of } G_n(\Sigma, b) \text{ iff } \sigma \text{ is defined by}$ $\sigma(x_t) = \begin{cases} d & \text{if } z_t \triangleright_{\pi(t)} r(\sigma_{x_{t+1}\parallel}) & (\text{conscious choice}) \\ c & \text{or } d & \text{if } r(\sigma_{x_{t+1}\parallel}) \bowtie_{\pi(t)} z_t \& t \le b_{\pi(t)} \\ c & \text{if } r(\sigma_{x_{t+1}\parallel}) \triangleright_{\pi(t)} z_t \& t \le b_{\pi(t)} & (\text{conscious choice}) \\ c & \text{if } r(\sigma_{x_{t+1}\parallel}) \trianglerighteq_{\pi(t)} z_t \& t > b_{\pi(t)} & (\text{inerial behavor}) \end{cases}$

Canonical CIB solution

- Compare the adjacent endnodes, $z_t \triangleright_{\pi(t)} z_{t+1}$ or $z_t \bowtie_{\pi(t)} z_{t+1}$.
- Let ℓ be the number satisfying

(a): $z_{\ell} \bowtie_{\pi(\ell)} z_{\ell+1}$ and (b) it is the maximum among such ℓ 's.

Theorem 4.1: Let $G_n(\Sigma, b)$ be a centipede game, and let $\ell = \ell(n)$ be given above. Then, (i): $\sigma = c^{\ell} d^{n-\ell}$ is a CIB solution. (ii): $\sigma = c^{\ell} d^{n-\ell}$ is a unique CIB-solution if and only if $\ell > \max(b_1, b_2)$ and $z_{\ell+1} \succ_i z_{b_i}$ for i = 1, 2.

- → We call $\sigma = c^{\ell} d^{n-\ell}$ is the *canonical* CIB solution.
- \succ It is used as the representative of CIB solutions.

- Strong tendencies for cooperation for low cognitive abilities;
- *d*-solution for high cognitive abilities.
- > Are the above examples typical? - more examples and results in the paper.

Selten people's response and the reversed causality degree

1)) The payoffs in the last area of G_{100} are much larger than those in the beginning.

2) The *cause-and-effect* for decision making:

> the cause around z_{101} \implies the realization of σ .

Define the *reversed causality degree* $RC_n(\sigma)$ in G_n by

$$RC_n(\sigma) = (n+1) - r_T(\sigma).$$

• For the canonical CIB solution $\sigma = c^{\ell} d^{n-\ell}$,

$$RC_n(\sigma) = n - \ell(n).$$

$$RC_k(\sigma) = k - \ell$$
 in $G_k(\Sigma, b)$ for $\sigma = c^{\ell} d^{k-\ell}, k = 1, ..., n$

Summary of the calculation results

Three cases of cognitive abilities ρ_1 and ρ_2 in a centipede game $G_n(\Sigma, b)$

(a): Both ρ_1 and ρ_2 are high; the resulting outcome is d^n ;

- the reversed causality degree is the highest $RC_n(d^n) = n$;
- this is compatible with the Selten people's complaints, yet the cognitive abilities are high.

(b): Both are low; the resulting outcome is $\sigma = c^{\ell} d^{n-\ell}$ for ℓ colse to *n*;

- the reversed causality degree is $RC_n(\sigma) = n \ell$, small, e.g., $RC_n(c^n) = 0$;
- this is compatible with what the Selten people want.
- (c): ρ_1 is high and ρ_2 is low;
 - This case is similar to (b).

An algorithm with an oracle - - guide for practical behavior

Al suggests that at a decision node x_t from the last decision node x_n , you make a comparison between z_t and z_{t+1} , until you find $z_{\ell} \bowtie_{\pi(\ell)} z_{\ell+1}$.

These comparisons are based on your own inner feeling.

- A) If you do not find such a pair, you are recommended to take the strategy taking *d* always.
- B) If you find $z_{\ell} \bowtie_{\pi(\ell)} z_{\ell+1}$, then you should jump to the first decision node x_1 to take the strategy taking *c* and then *d* up to the end of the game.

B) is based on your knowledge on the CIB theory - - Oracle.

In Selten's (*), his colleague were taught his theory including PC (perfect comparability), requiring no his own comparisons.

A Resolution of the Centipede Paradox.

- (1) The antagonism faced by the Selten people
- (2) Identification of the BI argument.
- (3) Modification of the BI theory to the CIB (consciousness-inertial behavior) theory
 - Full cognitive separability - the BI theory (*d*-solution)
 - Partial cognitive inseparability - the CIB theory (*canonical* CIB solution).
- (4) Thought experiments on the Selten people's responses in terms of $RC_n(\sigma)$.
 - When the PL's have high cognitive abilities of payoffs, $RC_n(\sigma)$ is large.
 - \checkmark This expresses the Selten people's responses in (*).
 - When at least one of them has a small low ability, $RC_n(\sigma)$ is small.
 - \checkmark The Selten people's have no complaints.
- > After all, in what sense is it a resolution of the centipede paradox? In what sense, not?
 - It is for the Selten people to whom the CIB theory is explained.
 - Not to fresh people without such knowledge, i.e., not in the sense of standard experiments.