Conceptual Analysis of the Centipede Paradox and its Practical Resolution
 by M. Kaneko \& R. Ishikawa, 09 April 2024

1) The centipede game with $n=100$.

2) The paradox is an antagonism between the (seemingly) well founded theory (BI theory) and its implication strange from practical point of view.
3) We conduct a conceptual study of the centipede paradox. Does the BI theory include drawbacks?
4) Our study leads to a practical recommendation such as $c^{\ell} \cdot d^{100-\ell}(100-\ell \leq 2)$. In what sense?
5) Identification of the centipede paradox

- the centipede games - Individual Motive (IM) \& Cooperative Motive (CM)
- the paradox - based on a paragraph from Selten ('78, TD).

2) The BI (backward induction) theory is modified to the CIB (conscious/inertial behavior) theory based on Kaneko's ('20) EU theory with probability grids.

- In BI theory, IM makes CM ineffective.
- In CIB theory, IM may become inactive, and then CM would be effective with inertia.

3) Resulting outcome from the CIB theory:

$$
\sigma= \begin{cases}c^{\ell} \cdot d^{n-\ell} & \text { if cognitive ability is low } \\ d^{n} & \text { if cognitive ability is high }\end{cases}
$$

ℓ is close to n, e.g., $n-\ell=0,1$ or 2 .
5) We argue that these form a resolution of the centipede game.

Selten (‘78), 132-133: Chain-Store Paradox
${ }^{*}$) ... If I had to play the game in the role of the chain-store, I would follow deterrence theory, ...

- I get the impression that most people share this inclination.
- My experiences suggest that mathematically trained persons recognize the logical validity of the induction argument, but they refuse to accept it as a guide to practical behavior.
i. He explains the BI argument to his people
ii. They are mathematical trained people
iii. How does he explain his theory to them?

The full theory? Or an algorithm?
iv. But they are not "completely rational people", yet ordinary people

Questions:

- Q-o: What are the classes of centipede games and variants?

Some hints may be hidden? Germ and germination of cooperation.

- Q-i: What is the conceptual bases of the BI theory? What are wrong?

Two bases are wrong.

- Q-ii: What is our modification, the CIB theory, of the BI theory?

The above two are weakened.

- Q-iii: Is Selten's question about refusal of the BI theory meaningful?

How about the CIB theory?
A drawback suggested in Q-i nullifies his question.

- Q-iv: How do we evaluate the resulting outcomes?

Explanation of $c^{\ell} \cdot d^{n-\ell}$ by the behavioral algorithm with the oracle Incidentally, P1 makes Selten's question about practical behavior almost empty

Q-iv Is behavioral divide $n-\ell(n)$ small such as $0,1,2$?
Yes, it is. O 2 is satisfied

Identification of the centipede games

A centipede game G_{n} : the decision nodes x_{1}, \ldots, x_{n}, end nodes z_{1}, \ldots, z_{n+1}, and the payoff functions $\left(g_{1}, g_{2}\right)$ satisfy
(i) Individual Motive (IM): $\quad g_{\pi(t)}\left(z_{t}\right)>g_{\pi(t)}\left(z_{t+1}\right)$ for all $t=1, \ldots, n$;
(ii) Cooperative Motive (CM): $g_{\pi(t)}\left(z_{t}\right)<g_{\pi(t)}\left(z_{t+2}\right)$ for all $t=1, \ldots, n-1$.

We say that G_{n} is a pre-centipede game if it satisfies IM.
\checkmark We always assume that monetary payoffs and all distinct.
\checkmark The above game is a centipede game, which has the BI solution $\sigma=d^{100}$.

Centipede and pre-centipede games

The initial segment, of length 2 , of G_{100}

Pre-centipede games without CM

The above is an sk-convex centipede game

- IM is quickly increasing;
- CM is effective only in the beginning of the game, but IM is dominant later.
$>$ We focus on the class of sk-linear and skconcave centipede games.

BI solutions

- A pair of plans $\sigma=\left(\sigma_{1}, \sigma_{2}\right):\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{c, d\}$.
- $r\left(\sigma_{x_{t} \|}\right)$ is the realization of σ, conditional upon that x_{t} is reached.
$>\sigma$ is a BI solution of G_{n} iff σ satisfies

$$
\sigma\left(x_{t}\right)=\left\{\begin{array}{l}
c \text { if } g_{\pi(t)}\left(r\left(\sigma_{x_{t+1} \|}\right)\right)>g_{\pi(t)}\left(z_{t}\right) \\
d \text { if } g_{\pi(t)}\left(z_{t}\right)>g_{\pi(t)}\left(r\left(\sigma_{x_{t+1} \|}\right)\right) .
\end{array}\right.
$$

Lemma 2.2. There is a unique BI solution in G_{n}, without assuming IM \& CM.

Theorem 2.1. G_{n} is a pre-centipede game, i.e., IM holds, if and only if the d-solution d^{n} is a BI solution.

2): Conceptual bases of the BI theory

P0E (evaluation of outcomes): decision making requires evaluation of future outcomes. P0M (mathematical induction): the principle of mathematical induction.

- We do not modify these postulates.
$>$ P0E motivates to define "reversed causality degree".
$>$ P0M is used because a game involves some generality. In this paper, we use P 0 M as a method but not study it as an object.

P1: (Perfect comparability): Payoffs are perfectly comparable.
P2: (Forget the bygones): The past is ignored and the future is only taken into account.
$>\mathrm{P} 1$ is modified based on Kaneko's ('20, ET) EU theory with probability grids.
$>\mathrm{P} 2$ is modified by introducing "inertia"; at x_{t} with some distance from x_{1}, he would choose c again unless his preference asserts to choose d.

Wishful thinking in a centipede game

- Cooperative Motive implies the following

Lemma 2.1 (Germ for Cooperation). Let G_{n} be a centipede game. Let $\ell \leq n$.
$>g_{\pi(\ell)}\left(z_{t}\right)<g_{\pi(\ell)}\left(z_{\ell}\right) \quad$ if $t<\ell$ or $t=\ell+1$
$>g_{\pi(\ell-1)}\left(z_{t}\right)<g_{\pi(\ell-1)}\left(z_{\ell+1}\right)$ if $t<\ell+1$.

- Here, CM revives.

EU Theory with probability grids

- The payoff ruler consists of scale grids (simple lotteries)
$>\underline{\alpha}_{i}<\min _{z_{t}} g_{i}\left(z_{t}\right)<\max _{z_{t}} g_{i}\left(z_{t}\right)<\bar{\alpha}_{i}$.
$>\rho_{i}$ is the cognitive ability of payoffs, where $\rho_{i}=0,1, \ldots$
$>$ A scale grid is expressed as a simple lottery

$$
\frac{v}{2^{\rho_{i}}} \cdot \bar{\alpha}_{i}+\left(1-\frac{v}{2^{\rho_{i}}}\right) \cdot \underline{\alpha}_{i}=\bar{\alpha}_{i}+v \cdot \frac{\bar{\alpha}_{i}-\underline{\alpha}_{i}}{2^{\rho_{i}}}
$$

Using the payoff ruler, we define the bounded preferences:
\checkmark Given ρ_{i}, this is a purely finite construct.
When ρ_{i} goes $+\infty$, the theory tends to the classical EU theory.

- In this sense, this differs from "similarity" (e.g., Rubinstein ('88)).
\bullet But our concern is finite ρ_{i}.
- Payoff ruler consists of scale grids.

Using the payoff ruler, we define the bounded preferences:
$\bullet z_{t \prime} \nabla_{i} \quad z_{t} \Leftrightarrow_{d e f} g_{\pi(k)}\left(z_{t \prime}\right) \geq \underline{\alpha}_{i}+v \cdot \frac{\bar{\alpha}_{i}-\underline{\alpha}_{i}}{2^{\rho_{i}}} \geq g_{\pi(k)}\left(z_{t}\right)$ for some v.

- (Strict preference): z_{t}, and z_{t} are separated by a scale grid.
- (Incomparability): $z_{t}, \bowtie_{i} z_{t} \Leftrightarrow_{d e f}$ neither $z_{t} \triangleright_{i} z_{t}$ nor $z_{t} \triangleright_{i} z_{t}$
$\bullet z_{t} \unrhd_{i} z_{t} \Leftrightarrow_{d e f} z_{t}, \triangleright_{i} z_{t}$ or $z_{t} \bowtie_{i} z_{t}$.
Lemma 4.1. \unrhd_{i} is a complete preordering with incomparability.
- Cooperative Motive implies the following

Lemma 2.1 (Germ for Cooperation). Let G_{n} be a centipede game. Let $\ell \leq n$.
$>g_{\pi(\ell)}\left(z_{t}\right)<g_{\pi(\ell)}\left(z_{\ell}\right) \quad$ if $t<\ell$ or $t=\ell+1$
$>g_{\pi(\ell-1)}\left(z_{t}\right)<g_{\pi(\ell-1)}\left(z_{\ell+1}\right)$ if $t<\ell+1$.

- But this is nullified by IM.

Theorem 3.1 (Germination of cooperation) Let $G_{n}(\Sigma, b)$ be a centipede game, and let x_{ℓ} be a decision node. Then,
(1) if $x_{\ell+1} \bowtie_{\pi(\ell)} x_{\ell}$, then $x_{\ell+1} \unrhd_{\pi(t)} x_{t}$ for all $t \leq \ell$;
(2) If $x_{\ell+1} \triangleright_{\pi(t)} x_{t}$, then $x_{\ell+1} \triangleright_{\pi\left(t^{\prime}\right)} x_{t^{\prime}}$ for all $t^{\prime} \leq t$ with $\pi(t)=\pi\left(t^{\prime}\right)$.
(1) Germination is ready in $G_{n}(\Sigma, b)$.
(2) Inertia helps start germination.

The CIB theory

The consciousness boundary $b_{i}\left(1 \leq b_{i} \leq n, \pi\left(b_{i}\right)=i\right)$:

- Within this boundary, PLi makes a decision consciously.
- Beyond b_{i}, he follows the inertia c, unless he has a strict preference z_{t} over the realized node $r\left(\sigma_{x_{t+1} \|}\right)$ conditional upon x_{t+1}.
- he takes d, if he does.

$>\sigma$ is a CBI solution of $G_{n}(\Sigma, b)$ iff σ is defined by

$$
\sigma\left(x_{t}\right)=\left\{\begin{array}{cl}
d & \text { if } z_{t} \triangleright_{\pi(t)} r\left(\sigma_{x_{t+1} \|}\right) \quad \text { (conscious choice) } \\
c \text { or } d & \text { if } r\left(\sigma_{x_{t+1} \|}\right) \bowtie_{\pi(t)} z_{t} \& t \leq b_{\pi(t)} \\
c & \text { if } r\left(\sigma_{x_{t+1} \|}\right) \triangleright_{\pi(t)} z_{t} \& t \leq b_{\pi(t)} \quad \text { (conscious choice) } \\
c & \text { if } r\left(\sigma_{x_{t+1} \|}\right) \unrhd_{\pi(t)} z_{t} \& t>b_{\pi(t)} \quad \text { (inerial behavor) }
\end{array}\right.
$$

Canonical CIB solution

- Compare the adjacent endnodes, $z_{t} \triangleright_{\pi(t)} z_{t+1}$ or $z_{t} \bowtie_{\pi(t)} z_{t+1}$.
- Let ℓ be the number satisfying
(a): $z_{\ell} \bowtie_{\pi(\ell)} z_{\ell+1}$ and (b) it is the maximum among such ℓ 's.

Theorem 4.1: Let $G_{n}(\Sigma, b)$ be a centipede game, and let $\ell=\ell(n)$ be given above. Then,
(i): $\sigma=c^{\ell} d^{n-\ell}$ is a CIB solution.
(ii): $\sigma=c^{\ell} d^{n-\ell}$ is a unique CIB-solution if and only if

$$
\ell>\max \left(b_{1}, b_{2}\right) \text { and } z_{\ell+1} \triangleright_{i} z_{b_{i}} \text { for } i=1,2
$$

$>$ We call $\sigma=c^{\ell} d^{n-\ell}$ is the canonical CIB solution.
$>$ It is used as the representative of CIB solutions.

- Strong tendencies for cooperation for low cognitive abilities;
- d-solution for high cognitive abilities.
$>$ Are the above examples typical? - - more examples and results in the paper.

Selten people's response and the reversed causality degree

1)) The payoffs in the last area of G_{100} are much larger than those in the beginning.
2) The cause-and-effect for decision making:
$>$ the cause around $z_{101} \Rightarrow$ the realization of σ.
Define the reversed causality degree $R C_{n}(\sigma)$ in G_{n} by

$$
R C_{n}(\sigma)=(n+1)-r_{T}(\sigma) .
$$

- For the canonical CIB solution $\sigma=c^{\ell} d^{n-\ell}$,

$$
R C_{n}(\sigma)=n-\ell(n) .
$$

$>$ if $\sigma=d^{n}$, then $R C_{n}(\sigma)=n$;
$>$ if $\sigma=c^{n}$, then $R C_{n}(\sigma)=0$;
$>$ if $\sigma=c^{n-1} d^{1}$, then $R C_{n}(\sigma)=1$.

$$
R C_{k}(\sigma)=k-\ell \text { in } G_{k}(\Sigma, b) \text { for } \sigma=c^{\ell} d^{k-\ell}, k=1, \ldots, n
$$

$$
R C_{k}(\sigma)=k-\ell \text { in } G_{k}(\Sigma, b) \text { for } \sigma=c^{\ell} d^{k-\ell}, k=1, \ldots, 100
$$

$$
\rho_{1}=5 \rho_{2}=8
$$

Summary of the calculation results

Three cases of cognitive abilities ρ_{1} and ρ_{2} in a centipede game $G_{n}(\Sigma, b)$
(a): Both ρ_{1} and ρ_{2} are high; the resulting outcome is d^{n};

- the reversed causality degree is the highest $R C_{n}\left(d^{n}\right)=n$;
- this is compatible with the Selten people's complaints, yet the cognitive abilities are high.
(b): Both are low; the resulting outcome is $\sigma=c^{\ell} d^{n-\ell}$ for ℓ colse to n;
- the reversed causality degree is $R C_{n}(\sigma)=n-\ell$, small, e.g., $R C_{n}\left(c^{n}\right)=0$;
- this is compatible with what the Selten people want.
(c): ρ_{1} is high and ρ_{2} is low;
- This case is similar to (b).

Al suggests that at a decision node x_{t} from the last decision node x_{n}, you make a comparison between z_{t} and z_{t+1}, until you find $z_{\ell} \bowtie_{\pi(\ell)} z_{\ell+1}$.
These comparisons are based on your own inner feeling.
A) If you do not find such a pair, you are recommended to take the strategy taking d always.
B) If you find $z_{\ell} \bowtie_{\pi(\ell)} z_{\ell+1}$, then you should jump to the first decision node x_{1} to take the strategy taking c and then d up to the end of the game.
B) is based on your knowledge on the CIB theory - - Oracle.

In Selten's $\left(^{*}\right.$), his colleague were taught his theory including PC (perfect comparability), requiring no his own comparisons.

A Resolution of the Centipede Paradox.

(1) The antagonism faced by the Selten people
(2) Identification of the BI argument.
(3) Modification of the BI theory to the CIB (consciousness-inertial behavior) theory

- Full cognitive separability - - the BI theory (d-solution)
- Partial cognitive inseparability - - the CIB theory (canonical CIB solution).
(4) Thought experiments on the Selten people's responses in terms of $R C_{n}(\sigma)$.
- When the PL's have high cognitive abilities of payoffs, $R C_{n}(\sigma)$ is large. \checkmark This expresses the Selten people's responses in (*).
- When at least one of them has a small low ability, $R C_{n}(\sigma)$ is small. \checkmark The Selten people's have no complaints.
$>$ After all, in what sense is it a resolution of the centipede paradox? In what sense, not?
- It is for the Selten people to whom the CIB theory is explained.
- Not to fresh people without such knowledge, i.e., not in the sense of standard experiments.

