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Abstract

The random utility model is one of the most fundamental models in eco-

nomics. Falmagne (1978) provides an axiomatization but his axioms can be

applied only when choice frequencies of all alternatives from all subsets are ob-

servable. In reality, however, it is often the case that we do not observe choice

frequencies of some alternatives. For such a dataset, we obtain a finite system

of linear inequalities that is necessary and sufficient for the dataset to be ra-

tionalized by a random utility model. Moreover, the necessary and sufficient

condition is tight in the sense that none of the inequalities is implied by the

other inequalities, and dropping any one of the inequalities makes the condition

not sufficient.

Keywords: Random utility, axiom, network flow, polytope

1 Introduction

Consider a population of individuals choosing an alternative across choice sets. It is

often the case that we do not observe choice frequencies of some alternatives. For ex-
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ample, consider the set of transportation methods that consists of bus, train, walking,

and driving. We may be able to estimate the market share of public transportation

methods (bus or train) based on the revenues of bus or train companies. However, it

may be difficult for us to know whether a person drives or walks (unless we conduct a

survey); thus, choice frequencies of walking and driving may not be available. There

are many other economically important examples in which we do observe choice fre-

quencies of some but not all alternatives.1 In this paper we investigate a necessary

and sufficient condition on the observable choice frequencies under which they are

rationalized by a random utility model.

Falmagne (1978) provided an axiomatization of the random utility model, but

datasets we consider are outside his framework because he requires that frequencies of

choices of all alternatives from all subsets of the set of alternatives must be observed.

Not so much is known about the characterization when a dataset fails to meet this

requirement. (See our discussion on related literature for details.) One exception is

McFadden and Richter (1990), who have a characterization for such cases, but their

condition involves infinitely many inequalities and contains redundant inequalities. In

fact, it is known that obtaining a tight characterization of the random utility model

is very difficult in many cases. In fact, when choice frequencies are observed only on

binary choice sets, it has been unknown how to obtain a tight characterization of a

random utility since the 1980s.2 See Mart́ı and Reinelt (2011) for a survey. A more

recent paper by Sprumont (2022) also mentions the difficulty of the problem.

We focus on a setup in which choice frequencies of some alternatives are always

missing but those for the others are observable. Given such a dataset, we obtain

a finite system of linear inequalities that is necessary and sufficient for the dataset

to be rationalized by a random utility model. Moreover, the necessary and sufficient

condition is tight in the sense that none of the inequalities is implied by any other, and

dropping one of them makes the condition insufficient.3 Thus, our characterization

extends Falmagne (1978) and is useful in practice compared with that of McFadden

1For another example, consider school choice among private schools. The government can often
obtain students’ choice data from public schools but not from private schools. In this situation,
choice frequencies over public schools are observable but those over private schools are not. See
Section 2.1 for details.

2Tight characterization has been obtained only for the case where the number of alternatives is
less than eight. See Reinelt (1993).

3Falmagne (1978)’s characterization is also almost tight. Suck (2002) and Fiorini (2004) prove
that omitting just a few inequalities from Falmagne (1978) gives a tight characterization.
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and Richter (1990).

Our necessary and sufficient conditions consist of two types of conditions. The

first condition is the classical nonnegativity of the Block-Marschak polynomials, which

appear in Falmagne (1978)’s characterization. The second condition is novel: it

consists of inequalities obtained by the summation and subtraction of the Block-

Marschak polynomials. This novel condition means that the nonnegativity of the

Block-Marschak polynomials is not enough for the dataset to be rationalized by a

random utility model; balances across the values of Block-Marschak polynomials are

essential for the case of incomplete datasets.

To prove our result, we translate our problem into a network flow problem.

This approach is originally developed by Fiorini (2004), who gives a shorter proof of

the result of Falmagne (1978). Our methodological innovation is to use a feasibility

theorem in a network, which provides a necessary and sufficient condition for the

existence of a desirable network flow. This novel tool gives us a clear insight even in

the presence of some missing alternatives.

Our results have two practical implications. First, in the empirical literature,

researchers often put all unobservable alternatives together and treat them as an

aggregated alternative, called an outside option, even when they know which elements

are unobservable. Our result implies that this approach may ignore some features of

the random utility restriction; more precisely, it does not consider the second condition

(i.e., the balances across the values of the Block-Marschak polynomials). Second, we

demonstrate that our approach to the problem using of network flows not only is

useful for axiomatization but also provides efficiency when we test our conditions

with given datasets.

Once the dataset has turned out to be consistent with a random utility model,

another important question is “What can we say about missing parts in the dataset?”

To answer this question, we provide an efficient algorithm to obtain a tight bound

for the missing choice frequencies. This algorithm makes the most of the network

structure of our problem. Without the network formulation, the efficiency of the

algorithm is not guaranteed. See section 4 for details.

We now briefly discuss the related literature. As mentioned above, little is known

about the characterization of the random utility model in the case of incomplete

data. Our result differs from that of McFadden and Richter (1990) in that their

characterization involves infinitely many inequalities and entails redundancy, while
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ours consists of finite inequalities and contains no redundant ones. In Section 5, we

will explain that the theorem obtained by McFadden and Richter (1990) is based on

the nonnegativity of some polynomials; and the polynomials contain redundancy in

an essential way, unlike BM polynomials. Thus, removing some redundancy from the

theorem of McFadden and Richter (1990) is possible but removing all redundancy

would be difficult.

Other than the papers mentioned so far, only a few papers have studied the

random utility characterization with incomplete data. McFadden (2006) considers

a nested structure of choice sets: if choice frequencies are observable in a set D of

alternatives, then choice frequencies are observable in any larger set E (i.e., E ⊇ D).

In this paper, we discuss the random utility characterization under this restriction

of available choice sets. Suck (2016) addresses the truncated complete choice envi-

ronment, in which only choice sets with at least k ≥ 2 alternatives are observable.

Nevertheless, to the best of our knowledge, our setup, in which choice frequencies of

some alternatives are missing, is novel in the literature. Moreover, these results are

special cases of our theorem–cases in which there are no unobservable alternatives.

As mentioned, we use the network-flow theory to prove our results. Since the

publication of Fiorini (2004), some more recent papers have used the network-flow

theory to investigate different topics on random utility models. Turansick (2022)

characterizes the condition for the identification of random utility models. Chambers,

Masatlioglu, and Turansick (2021) provide a new model of random utility with more

than one agent. Doignon and Saito (2022) characterize the adjacency of vertices and

facets of a mulitiple-choice polytope, which corresponds to the set of random utility

models. None of these papers studies incomplete datasets.

2 Model

Let X be a finite set of alternatives. Let X∗ be a subset of X. We assume that

the choice frequencies of the elements of X∗ are not observable (even if a choice set

includes the alternatives).

Let D ⊆ 2X \ ∅ be the set of choice sets. Unlike Falmagne (1978), we do not

assume that D = 2X \ ∅. Note that (D,⊆) is a partially ordered set, where ⊆ is

the set inclusion. Like McFadden (2006), we assume that D is an upper set (i.e., D
satisfies the following: D ∈ D, E ⊇ D =⇒ E ∈ D). To make our notation simple,
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let M := {(D, x) ∈ D ×X | x ∈ D} and M∗ := {(D, x) ∈ 2X ×X | x ∈ D and [x ∈
X∗ or D ̸∈ D]}. Note that for any (D, x) ∈ M, the choice frequency over (D, x) is

unobservable if and only if (D, x) ∈ M∗.

Definition 2.1. A nonnegative vector ρ ∈ R
M\M∗

+ is called an incomplete dataset if

it satisfies the following conditions: for any D ∈ D,

(i) if D ∩X∗ = ∅, then
∑

x∈D ρ(D, x) = 1; and

(ii) if D ∩X∗ ̸= ∅, then
∑

x∈D∩(X∗)c ρ(D, x) ≤ 1.

When the context is clear, we will simply call ρ a dataset instead of an incomplete

dataset. If ρ is an incomplete dataset, ρ is not defined on (D, x) ∈ M∗, i.e., ρ(D, x)

is not observeable for (D, x) ∈ M∗. This does not mean that we cannot know

anything about the choice frequencies of elements in X∗. When x∗ ∈ X∗ is the only

one unobservable alternative in the choice set D (i.e., when D ∩X∗ = {x∗}), we can

calculate ρ(D, x∗) as

ρ(D, x∗) = 1−
∑

y∈D\x∗

ρ(D, y).4

Definition 2.2. A nonnegative vector ρ̂ ∈ R
{(D,x)|x∈D∈2X}
+ is called a complete dataset

if, for any D ∈ 2X ,
∑

x∈D ρ̂(D, x) = 1.

2.1 Examples

Example 1 (Transportation): An analyst is often able to estimate the mar-

ket share of public transportation methods (i.e., bus or train) based on the rev-

enues of bus or train companies. However, it is sometimes difficult for the ana-

lyst to know separately the percentages of people who drive or walk. In this case,

X = {walk, drive, bus, train} and X∗ = {walk, drive}. An example of the set of

choice sets is D =
{
{w, b, t}, {w, d, b}, {w, d, t}, {w, d, b, t}

}
, where w, d, b, and t stand

for walk, drive, bus, and train, respectively. This set D can be obtained from the as-

sumption that depending on the location of homes, some transportation methods are

4We often omit braces for singletons. Here, D \ x∗ means D \ {x∗}.
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not available.5

Example 2 (Market Shares of Private Companies): One definition of market

share is the percentage of a company’s total sales divided by the market’s total sales.

The market’s total sales can be estimated by consumer surveys. However, private

companies occasionally do not disclose their financial information, including their to-

tal sales; thus the market shares of private companies are sometimes unobservable.

For example, suppose that there are four companies (i.e., X = {a, b, c, d}). If compa-

nies c and d are private companies, then we do not know their sales (i.e., X∗ = {c, d}).
Other companies {a, b} are public and the information from these companies is dis-

closed. In addition, the availability of products may vary across stores, which would

give a variation of choice sets (i.e., D).

Example 3 (School Choice for Private Schools): Applicants submit their choices

among public schools so the government knows the percentage of students choosing

each public school. However, it might not have access to information on how many

students choose each private school. For example, suppose that there are four schools

(i.e., X = {a, b, c, d}). Among them, c and d are private schools for which we do

not know the choice frequencies (i.e., X∗ = {c, d}). The availability of schools may

depend on the location of homes, which would give a variation of choice sets (i.e., D).

2.2 Random-Utility Rationalization

Let L be the set of rankings or strict preference relations on X, i.e., binary relations

that are irreflexive, asymmetric, transitive, and weakly complete.6

Definition 2.3. An incomplete dataset ρ is random-utility (RU) rationalizable if there

exists µ ∈ ∆(L) such that, for any (D, x) ∈ M \M∗,

ρ(D, x) = µ( ≻∈ L | x ≻ y for all y ∈ D \ x).

We then say that µ rationalizes ρ.
5Assuming that the analyst believes that the distribution of preferences is independent of the

location of homes, it would make sense to find a single distribution over ranking that describes the
choice frequencies across D.

6A binary relation is weakly complete if, for any distinct elements x, y ∈ X, either x ≻ y or
y ≻ x.
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Definition 2.4. Let p ∈ R{(D,x)|x∈D∈2X}. For any (D, x) such that x ∈ D, define

K(p,D, x) =
∑

E:E⊇D

(−1)|E\D|p(E, x).

K(p,D, x) is called a Block-Marschak (BM) polynomial.7

Note that, given an incomplete dataset ρ ∈ R
M\M∗

+ , the BM polynomialK(ρ,D, x)

can be calculated if and only if (D, x) ̸∈ M∗ (i.e., x ̸∈ X∗ and D ∈ D).

3 Theorem

Recall that (2X
∗
,⊆) is a partially ordered set with the set inclusion ⊆ . Consider a

collection E of subsets of X∗; we assume that E is an upper set.8 The complement Ec

is a lower set (i.e., Ec satisfies the following: E ∈ Ec, D ⊆ E =⇒ D ∈ Ec).9

To characterize the RU-rationalizability of incomplete data, the class of choice

set defined in the following is fundamental.

Definition 3.1. A nonempty collection C of subsets of X is called a test collection if

there exist A ⊆ X \X∗ and a nonempty upper set E ⊆ 2X
∗
such that C = {A ∪ E |

E ∈ E}. Moreover, the test collection is said to be essential if ∅ ≠ A ̸= X \X∗ and

E ̸= 2X
∗
.

The following is our main theorem.

Theorem 3.2. (a) An incomplete dataset ρ ∈ R
M\M∗

+ is RU-rationalizable if and

only if the following two conditions hold:

• (i) for any (D, x) ∈ M\M∗ such that 1 < |D| < |X|, the polynomial K(ρ,D, x)

is nonnegative; and

• (ii) for any essential test collection C ⊆ D,

7As we will explain below, BM polynomial is crucial concept to characterize random utility
models. BM polynomial appears in other contexts. For example, Brady and Rehbeck (2016) observe
that one of their axiom is equivalent to a multiplicative version of the BM polynomial.

8Recall the property of an upper set: if D ∈ E , D ⊆ E =⇒ E ∈ E . In the example in which
X∗ = {d, e}, all upper sets in 2X

∗
are ∅, {{d, e}}, {{d, e}, {d}}, {{d, e}, {e}}, {{d, e}, {d}, {e}}, and

{{d, e}, {d}, {e}, ∅}.
9We use the concept of lower set in the proof.
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( ∑
(D,x):D∈C,D∪x ̸∈C

K(ρ,D ∪ x, x)−
∑

(F,y):F ̸∈C,F∪y∈C,y ̸∈X∗

K(ρ, F ∪ y, y)

)
≥ 0 (1)

(b) Moreover, the inequality conditions in (i) and (ii) are independent: for any in-

equality condition in (i) or (ii), there exists an incomplete dataset ρ̂ ∈ R
M\M∗

+ that

violates the inequality but satisfies all the other conditions in (i) and (ii).

We first make comments on statement (a) of the theorem. Recall that for any

(D, x) ∈ M, the BM polynomial K(ρ,D, x) is computable based on the observable

data if and only if (D, x) ̸∈ M∗. Thus, condition (i) is testable. Also, when C is a test

collection, D ∈ C and D ∪ x /∈ C imply that x /∈ X∗.10 Thus, the first term as well as

the second term in condition (ii) can also be tested based on the available data.

The necessity of condition (i) in Theorem 3.2 follows from Falmagne (1978)

and McFadden (2006), who show that a complete dataset is RU-rationalizable if and

only if all BM polynomials are nonnegative. In fact, when X∗ = ∅, our theorem

reduces to the statement of Falmagne (1978) and McFadden (2006), although our

proof does not rely on their proofs. Novel conditions appear in (ii), which mean

that the nonnegativity of the Block-Marschak polynomials is in sufficient for the

dataset to be RU-rationalizasble because balances across the values of Block-Marschak

polynomials is essential for RU-rationalizability when the dataset is incomplete. For

example, one Block-Marschak polynomial being too large may not be a good sign for

RU-rationalizability. In Remark 3.10, we provide a further explanation of condition

(ii) in terms of network flows.

Statement (b) is an essential part of Theorem 3.2; not only does the theorem

give a necessary and sufficient condition, but it is also minimal in the sense of (b).11

This is in contrast to the approach taken by McFadden and Richter (1990). As

we will explain in Section 5, the conditions in McFadden and Richter (1990) are

redundant in an essential way. Statement (b) in Theorem 3.2 may be surprising given

the known difficulty of obtaining a tight characterization of the random utility model

when datasets are incomplete. For instance, when choice frequencies are observed

only on binary choice sets, obtaining a tight characterization of a random utility has

10Since C is a test collection, C = {A∪E|E ∈ E} for some A ⊆ X \X∗ and an upper set E ⊆ 2X
∗
.

If x ∈ X∗, then D ∈ C implies D ∪ x ∈ C by the definition of test collections (especially by the fact
that E is an upper set).

11Geometrically speaking, our theorem identifies the set of all facet-defining inequalities of the
random utility polytope. (See B.1 for the definition of the polytope.)
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been an open question since the 1980s, despite continuous effort across mathematics,

psychology, and economics. See Chapter 6 of Mart́ı and Reinelt (2011) for a survey.

Finally, we mention two important implications of our results for applied work

as follows. In the existing empirical literature on industrial organization (IO), it

is common practice for researchers to aggregate all unobservable alternatives into

a single category, commonly referred to as the outside option. This aggregation is

undertaken even when there is clarity on the constituents of X∗.

Our theorem posits that this outside option approach might overlook certain

facets of the random utility restriction. Specifically, it neglects the stipulations in (ii)

of Theorem 3.2. One central implication of our work is elucidating this discrepancy

clearly. We achieve this by providing a minimal set of testable conditions for observed

choice probabilities to be consistent with a random utility model.

Upon establishing that a dataset adheres to a random utility model, a pertinent

inquiry emerges: ”What insights can be gleaned about unobserved choice frequen-

cies?” In Section 4, we identify sets of possible values of unobservable choice frequen-

cies given Theorem 3.2. In Remark 4.4, we observe that the outside option approach

yields rather basic identified sets, while our method results in more insightful and

refined identified sets.

3.1 Sketch of the proof

In this subsection, we outline the proof of Theorem 3.2. All formal proofs are in

the appendix. Given an incomplete dataset ρ, RU-rationalizability is rewritten as

follows:12

(P1) ∃ µ ∈ ∆(L)
12An alternative way of formulating the problem would be as follows: there exists a complete

dataset ρ̂ that conincides on ρ on (D,x) ∈ M \ M∗ and all BM polynomials are nonnegative for
any (D,x) ∈ M. Given such ρ̂, Falmagne (1978) and McFadden and Richter (1990) guarantee the
existence of a desirable random utility model. An earlier verion of our paper adopt the formulation.
Aguiar, Kashaev, Gauthier, and Plavala (2023) also adopt such a formulation to obtain an axiom-
atization of random utility model in a dynamic setup. Unlike this approach, our approach directly
show the existence of a desirable random utility model without using the results by Falmagne (1978)
and McFadden and Richter (1990).
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such that for any (D, x) ∈ M \M∗,

ρ(D, x) = µ( ≻∈ L | x ≻ y for all y ∈ D \ x). (2)

Based on Fiorini (2004), we can show the rationalization is possible if and only

if there exists a nonnegative solution r to the following problem:

(P2) ∃ r ∈ R
{(D\x,D)|x∈D∈2X}
+ (3)

such that∑
x∈X

r(X \ x,X) = 1, (4)∑
x∈D

r(D \ x,D) =
∑
y ̸∈D

r(D,D ∪ y) for all D ∈ 2X such that 1 ≤ |D| ≤ |X| − 1, (5)

r(D \ x, x) = K(ρ,D, x) for all (D, x) ∈ M \M∗. (6)

Remember that for all (D, x) ∈ M, K(ρ,D, x) can be calculated based on the incom-

plete dataset if and only if (D, x) ̸∈ M∗.

We first review Fiorini (2004)’s result:

Lemma 3.3 (Fiorini (2004)). Given a complete dataset ρ̂ ∈ R
{(D,x)|x∈D∈2X}
+ , there

exists µ ∈ ∆(L) satisfying (2) for any (D, x) such that x ∈ D ∈ 2X if and only if

there exists r ∈ R
{(D\x,D)|x∈D∈2X}
+ satisfying (4), (5) and r(D \ x, x) = K(ρ̂, D, x) for

all (D, x) such that x ∈ D ∈ 2X .

Based on the result by Fiorini (2004), we prove the following equivalence for

incomplete datasets:

Lemma 3.4. Given an incomplete dataset ρ ∈ R
M\M∗

+ , a solution µ exists to (P1)

if and only if a solution r exists to (P2).

Now, we can focus on the new problem (P2) instead of (P1). The advantage of

this translation is that (P2) can be seen as a feasibility problem on a network flow.

To see this, we review basic notions of the network-flow theory. Recall that a network
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is a pair of a node set N and a set of edges A ⊆ N × N . 13 Two nodes s (source)

and t (terminal) play special roles as explained below.

Consider a function f : A → R. For any node D ∈ N , let f(D,N ) ≡∑
E∈N f(D,E); f(N , D) ≡

∑
E∈N f(E,D)14. f(D,N ) is the sum of outflows from

D; f(N , D) is the sum of inflows to D.

A function f : A → R is called a flow on a network (N ,A) if it satisfies the

following conditions:

f(s,N )− f(N , s) = 1, (7)

f(D,N )− f(N , D) = 0 ∀D ∈ N \ {s, t}, (8)

f(N , t)− f(t,N ) = 1. (9)

(7) means the net outflows from s is one; (8) means the inflows equal to outflows at

each node D ̸∈ {s, t}; (9) means the net inflows to t is one.

The following lemma provides a necessary and sufficient condition for the exis-

tence of a nonnegative flow satisfying some capacity constraints. For each arc (D,E),

let l(D,E) and u(D,E) be exogenously given lower and upper bounds of the flow

f(D,E) of the arc. We prove the result using maximum-flow theorem from Ford Jr

and Fulkerson (2015).15

Lemma 3.5. Let l, u : A → R+ be such that l(D,E) ≤ u(D,E) for (D,E) ∈ A.

There exists a flow f : A → R+ such that

l(D,E) ≤ f(D,E) ≤ u(D,E) ∀(D,E) ∈ A (10)

if and only if the following condition holds for all C ⊆ N

∑
(D,E)∈C×Cc

u(D,E)−
∑

(D,E)∈Cc×C

l(D,E) ≥


1 if t ̸∈ C, s ∈ C,
−1 if t ∈ C, s ̸∈ C,
0 otherwise.

(11)

We now interpret equation (11): for any collection C ⊆ N , f(D,E) is called

13We define a specific network flow in the next page.
14We define f(D,N ) = 0 if (D,E) ̸∈ A for any E ∈ N ; Similarly, f(N , D) = 0 if (E,D) ̸∈ A for

any E ∈ N .
15We appreciate prof. Ui who pointed out a similar result appears in Rockafellar (1998).
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an outflow from C if D ∈ C and E ̸∈ C; f(D,E) is called an inflow to C if D ̸∈ C

and E ∈ C. Thus the left-hand side is the sum of the upper bounds of outflows

from C minus the sum of the lower bounds of inflows to C.16 On the other hand, the

right-hand side is the net outflow from C.
By applying Lemma 3.5 to the network flow defined by (P2), we can obtain a

necessary and sufficient condition that is testable for the existence of a solution r

to (P2). Note that (4) corresponds to (7) ; (5) corresponds to (8); and (4) and (5)

implies
∑

x∈X r(∅, x) = 1, which corresponds to (9). To incorporate our problem into

the framework of Lemma 3.5, let

N = 2X ,

A = {(D,D ∪ x) | D ⊆ X, x ̸∈ D},
s = ∅,
t = X,

l(D,D ∪ x) = u(D,D ∪ x) = K(ρ,D ∪ x, x) if (D ∪ x, x) ̸∈ M∗,

l(D,D ∪ x) = 0 if (D ∪ x, x) ∈ M∗,

u(D,D ∪ x) = +∞ if (D ∪ x, x) ∈ M∗.

(12)

In the following, we say an arc (D,D ∪ x) is observable if (D ∪ x, x) ̸∈ M∗17;

(D,D ∪ x) is unobservable if (D ∪ x, x) ∈ M∗.18 In the above formulation, we

set the values of flows on observable arcs by BM polynomials (i.e., l(D,D ∪ x) =

K(ρ,D ∪ x, x) = u(D,D ∪ x)), which correponds to constraint (6). For unobservable

arcs, we just require the nonnegativity (i.e., u(D,D ∪ x) = +∞; l(D,D ∪ x) = 0).

See Figure 1 for the case |X| = 4.

Remark 3.6. Given the setup (12), we can provide an intuition behind Lemma 3.3.

See Fiorini (2004) for details.

• In the setup, each ∅ −X directed path corresponds to a unique ranking ≻. For

example, in the figure, the directed path ∅−{a}−{a, b}−{a, b, c}−X corresponds

to the ranking: d ≻ c ≻ b ≻ a. For each ranking ≻, let Π≻ be the corresponding

∅ −X directed path.

16In network-flow theory, this value is called residual capacity of a cut (C, Cc).
17Equivalently, D ∪ x ∈ D and x ̸∈ X∗.
18Equivalently, D ∪ x ̸∈ D or x ∈ X∗.
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a, b, c, d

a, b, c a, b, d a, c, d b, c, d

a, b a, c a, d b, c b, d c, d

a b c d

∅

Figure 1: Network Flow. The figure shows the Boolean lattice of degree four, which
corresponds to the network defined by (12) for the case in which X = {a, b, c, d} and
X∗ = {c, d} and D = 2X \ ∅. The solid arrows correspond to observable arcs: the
dotted arrows correspond to unobservable arcs.

• For each random utility model µ ∈ ∆(L), we can construct a flow r ∈ R
{(D,D∪x)|x∈D∈2X}
+

on the network as follows: for each raking ≻, assign the value µ(≻) on the di-

rected path Π≻.

• Given the construction of the network flow, the values of an arc (D,D ∪ x)

becomes µ({≻| Dc ≻ x ≻ D \ x}) = K(ρ,D, x), where the equality holds by the

Möbius inversion. Note the constructed flow r satisfies all constraints in (4)

and (5) as well as (6) for all x ∈ D ∈ 2X .

Definition 3.7. A collection C ⊆ 2X is said to be complete if

D ∈ C =⇒ ∀x ∈ X∗, D ∪ x ∈ C.

To apply Lemma 3.5, for C ⊆ 2X , define

δρ(C) =

 ∑
(D,x):D∈C,D∪x ̸∈C,

(D∪x,x)̸∈M∗

K(ρ,D ∪ x, x)−
∑

(E,y):E ̸∈C,E∪y∈C,
(E∪y,y) ̸∈M∗

K(ρ, E ∪ y, y)


+1{X ∈ C, ∅ ̸∈ C} − 1{∅ ∈ C, X ̸∈ C}. (13)

Remark 3.8.
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• For any C ⊆ 2X , δρ(C) is the net observable outflows from C. To see this notice

that the first term is the values of the observable outflows from C and the second

term is the values of the observable inflows to C.

• δ can also be defined with D = 2X \ ∅ and X∗ ̸= ∅. That is, for any complete

dataset ρ̂, define

δρ̂(C) =

 ∑
(D,x)

D∈C,D∪x ̸∈C

K(ρ̂, D ∪ x, x)−
∑
(E,y)

E ̸∈C,E∪y∈C

K(ρ̂, E ∪ y, y)


+1{X ∈ C, ∅ ̸∈ C} − 1{∅ ∈ C, X ̸∈ C}

We will use this definition later.

Now, we can state our first feasibility result using Lemma 3.5.

Proposition 3.9. Given an incomplete dataset ρ, a solution to (P2) exists if and

only if δρ(C) ≥ 0 for any complete collection C such that ∅ ̸∈ C.

The condition given in Proposition 3.9 uses only the observable choice data to

characterize a solution to (P2) since the above value (13) of δρ depend only on the

values of ρ on M\M∗.

Remark 3.10. We now can provide an intuition behind Proposition 3.9 by using

Figure 2 in which X = {a, b, c, d}, X∗ = {c, d}, and D = 2X \ ∅.

• Let C = {{a, c}, {a, d}, {a, c, d}}. Then C is a complete collection.

• Red flows are observable outflows from C; yellow flows are unobservable inflows

to C; blue flows are observable inflows to C. Note that there are no unobservable

outflows. This is because C is complete.

• By the equality between inflows and outflows, we have (Red outflows)=(Yellow

inflows) + (Blue inflows).

• Note also that (Red outflows)=
∑

(D,x):D∈C,D∪x ̸∈C,(D∪x,x)̸∈M∗ K(ρ,D∪x, x); (Blue
inflows)=

∑
(E,y):E ̸∈C,E∪y∈C,(E∪y,y)̸∈M∗ K(ρ, E ∪ y, y). Thus, δρ(C) ≡ (Red out-

flows) − (Blue inflows).
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a, b, c, d

a, b, c a, b, d a, c, d b, c, d

a, b a, c a, d b, c b, d c, d

a b c d

∅

Figure 2: Outflows from C and inflows to C. In the figure X = {a, b, c, d} and
X∗ = {c, d} andD = 2X\∅ and C = {{a, c}, {a, d}, {a, c, d}}. Red flows are observable
outflows from C; yellow flows are unobservable inflows to C; blue flows are observable
inflows to C. Note that green flows are flows contained in C and are not relevant to
the value of δρ(C), which is net observable outflows from C.

• Although yellow flows are unobserbables we know they are nonnegative Thus we

have δρ(C) = (Red outflows) − (Blue inflows) ≥ 0. This explains the necessity

of our conditions (ii).

Although Proposition 3.9 together with Lemma 3.5 successfully characterizes

RU-rationalizability based only on the available data, the condition has some redun-

dancy. In the following, we will obtain a tight characterization.

First, we show checking all essential test collections belong to D, rather than all

complete collections, is enough (i.e., statement (a-ii) of Theorem 3.2);

Lemma 3.11. If δρ(C) ≥ 0 is for any test collection C ⊆ D, then δρ(Ĉ) ≥ 0 for any

complete collection Ĉ such that ∅ ̸∈ Ĉ.

This lemma reduces the number of conditions to be checked because any test

collection is complete and it allows us to focus only on D. The next lemma shows that

we do not have to check the nonnegativity of δρ for the nonessential test collections.

Lemma 3.12. Let C ≡ {A ∪ E | E ∈ E} be a test collection with A ⊆ X \ X∗

and E ⊆ 2X
∗
. Assume that C ⊆ D. (i) If E = 2X

∗
, then δρ(C) = 0; (ii) Suppose

K(ρ,D, x) ≥ 0 for all (D, x) ∈ M \M∗. If A = X \X∗ or A = ∅, then δρ(C) ≥ 0.
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Combining Proposition 3.9, Lemmas 3.11 and 3.12 immediately imply that check-

ing the essential collections belonging to D, rather than all test collections, is enough.

This is stated formally in the following corollary, which proves statement (a) of The-

orem 3.2.

Corollary 3.13. A solution to (P2) exists if and only if K(ρ,D, x) ≥ 0 for all

(D, x) ∈ M \M∗ and δρ(C) ≥ 0 for any essential test collection C ⊆ D

Finally, we explain the outline of the proof of statement (b) of Theorem 3.2, which

claims the nonredundancy of conditions appear in (i) and (ii). This proof is the most

intricate part of our proofs. In the proof, we first obtain the the nonredundancy

results assuming D = 2X \ ∅; then translate the results into the given incomplete

datasets. To explain the outline of the proof of the nonredundancy of inequality

condition (ii), fix an essential test collection C∗. It suffices to show that there exists

an incomplete dataset ρ that satisfies all inequalities in (i) and all inequalities in (ii)

except the one for C∗.

We first provide a preliminary lemma that allows us to convert a flow from ∅ to

X into a complete dataset:

Lemma 3.14. Let D = 2X \ ∅. If there exists r ∈ R{(D\x,D)|x∈D∈2X} satisfying the

following three conditions: (i)
∑

x∈X r(X \ x,X) = 1; (ii) for any D ∈ D such that

1 ≤ |D| ≤ |X| − 1,
∑

x∈D r(D \ x,D) =
∑

y ̸∈D r(D,D ∪ y); (iii) for any x ∈ D ∈ D,∑
E:E⊇D r(E \ x,E) ≥ 0, then there exists an complete dataset ρ̂ ∈ R

{(D,x)|x∈D∈2X}
+

such that
∑

x∈D ρ̂(D, x) = 1 for all D ∈ D and K(ρ̂, D, x) = r(D \ x,D) for any

(D, x) such that x ∈ D ∈ 2X .

For any C ⊆ N , define

δr(C) ≡
∑
(D,x):

D∈C,D∪x ̸∈C,x ̸∈X∗

r(D,D ∪ x)−
∑
(E,y):

E ̸∈C,E∪y∈C,y ̸∈X∗

r(E,E ∪ y)

+1{X ∈ C, ∅ ̸∈ C} − 1{∅ ∈ C, X ̸∈ C}. (14)

Given Lemma 3.14, we will construct a flow r ∈ R{(D\x,D)|(D,x)∈M} that satisfies

conditions (i)–(iii) in the lemma and the following two conditions: (a) r(D\x,D) ≥ 0

for all x ̸∈ X∗; (b) δr(C∗) < 0 and δr(C) ≥ 0 for any essential test collection C except

C∗. (See Lemma A.3 in the appendix for the complete statements.) By using Lemma
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3.14, we translate the flow r into a complete data set ρ̂ ∈ R
{(D,x)|x∈D∈2X}
+ ; then convert

ρ̂ to a incomplete dataset ρ ∈ R
M\M∗

+ . (See Corollary A.4 in the appendix.) The

most difficult part is the construction of the flow r. The difficulty comes from the fact

that we need to change the value of δr only on one particular essential test collection

C∗ but not the others; the values of δr(C) across test collections C are interdependent

through the conservation law of the network flow; and essential test collections exist

across the network. We overcome this difficulty by constructing several flows and

combine them into one desirable flow r in an intricate way.

4 Bounds for Unobservable Choice Probabilities

In the previous section, we established a necessary and sufficient condition for an

incomplete dataset to be RU-rationalizable. Given this result, in this section we

obtain bounds for unobservable choice probabilities.

In practice, predicting unobservable choice probabilities is important. Recall, for

instance, the transportation example (Example 1) in Section 2.1. In this example,

how people commute is not observable unless they use public transportation (i.e.,

X = {bus, train, walk, drive} andX∗ = {walk, drive}). Suppose that the government

is considering introducing a new tax on gasoline to encourage people to commute by

public transportation. To assess the potential impact of the new policy, it is crucial

for the government to know the percentage of people who commute by private car.

The most naive approach is merely to bound the fraction below by zero and

above by the percentage of people who did not use public transportation. We will

observe that this naive approach corresponds to the outside option approach, in which

the analyst aggregates all unobservable alternatives into a singular category, termed

the outside option.

A more careful way, which is the main object of interest here, is to character-

ize the upper and lower bounds of missing choice frequencies, assuming the choices

are consistent with the random utility model. While the naive approach, which cor-

responds to the outside option approach, is almost uninformative, the more careful

approach that we are proposing in this section is likely to produce a finer prediction

and to be helpful in policy making.

In this section, we will propose a method to compute the upper and lower bounds

of missing choice frequencies assuming that the dataset is RU-rationalizable. We ap-
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ply the method to a rich dataset obtained by McCausland, Davis-Stober, Marley,

Park, and Brown (2020).19 We then compare the bounds we obtain with the bounds

the naive approach implies. By doing so, we clarify the difference between the naive

approach and our approach and demonstrate the practical importance of our ap-

proach.

4.1 Computation of Bounds

Let ρ ∈ R
M\M∗

+ be a given incomplete dataset.

Definition 4.1. Assume that ρ is RU-rationalizable. A complete dataset ρ̂ ∈ R
{(D,x)|x∈D∈2X}
+

is RU-consistent with ρ if (i) ρ = ρ̂ on M\M∗, and (ii) there exists µ ∈ ∆(L) such
that for any (D, x) with x ∈ D ∈ 2X , ρ̂(D, x) = µ(≻∈ L | x ≻ y for all y ∈ D \ x).

Let Γ be the set of ρ̂ ∈ R
{(D,x)|x∈D∈2X}
+ that is RU-consistent with the given

incomplete dataset ρ. Remember that ρ(D, x) is undefined (i.e., unobservable) if and

only if (D, x) ∈ M∗. With (D, x) ∈ M∗ fixed, the goal in this section is to obtain

bounds of ρ̂(D, x) for some ρ ∈ Γ. Note that by using (P1) in section 3.1, Γ can be

written as follows:

{
ρ̂ ∈ R

{(D,x)|x∈D∈2X}
+

∣∣∣∣ There exists a solution µ ∈ ∆(L) to (P1) that satisfies

the condition (i) and (ii) in Definition 4.1

}
(15)

By Lemma 3.4, (P1) and (P2) are equivalent. Moreover, by the Möbius inversion,

the condition (ii) in Definition 4.1 can be written as follows: for all (D, x) such that x ∈
D ∈ 2X , µ({≻∈ L|Dc ≻ x ≻ D \ x}) = K(ρ̂, D, x). Since µ({≻∈ L|Dc ≻ x ≻
D \ x}) = r(D \ x,D), where µ is a solution to (P1); and r is a solution to (P2), the

condition (ii) is equivalent to

r(D \ x, x) = K(ρ̂, D, x) for all (D, x) such that x ∈ D ∈ 2X . (16)

19The dataset is rich and unique in the sense that the authors collected all choice frequencies from
all subsets of alternatives to test the random utility model. The dataset is available through the
journal webpage.
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Thus we can rewrite the set Γ (i.e., (15)) as follows:{
ρ̂ ∈ R

{(D,x)|x∈D∈2X}
+

∣∣∣∣ There exists a solution r ∈ R
{(D\x,D)|x∈D∈2X}
+ to (P2) that

satisfies (16) and ρ̂ = ρ on M\M∗.

}
(17)

By eliminating observable flows r (i.e., r(D \ x,D) = K(ρ,D, x) for all (D, x) ∈
M \ M∗) in (P2), it can be verified that the conditions (4) and (5) of (P2) are

equivalent to20∑
(D,y)∈M∗:y∈D

r(D \ y,D)−
∑

(D∪y,y)∈M∗:y/∈D

r(D,D ∪ y) = δρ(D) for all D ⊆ X, (18)

where δρ(·) is defined by (13). Note that M∗ is the set where BM polynomials are

not computable based on the observable dataset. The left-hand side is based on

unobservable r, while the right-hand side δρ(D) is based on the observed incomplete

choice data ρ.

Using the Möbius inversion formula, we also can rewrite (16) into the following:

for all (D, x) such that x ∈ D ∈ 2X , we have

ρ̂(D, x) =
∑

E:E⊇D

r(E \ x,E), (19)

where r(E \ x,E) = K(ρ, E, x) for all (E, x) ̸∈ M \M∗. These observations imply

that we can rewrite the set (17) into the following set:

Proposition 4.2. Γ is equal to{
ρ̂ ∈ R

{(D,x)|x∈D∈2X}
+

∣∣∣∣ ρ̂ = ρ on M\M∗ and there exists r ∈ R
{(D\x,D)|x∈D∈2X}
+

that satisfies (18) and (19).

}
.

(20)

For each (D, x) ∈ M∗, we are interested in the set of possible values ρ̂(D, x) for

some ρ̂ ∈ Γ. As is pointed out in Manski (2007), since Γ is convex and all conditions

in (20) are linear, the identified set is an interval, and its upper and lower bounds are

given by ρ(D, x) ≡ maxρ̂∈Γ ρ̂(D, x) and ρ(D, x) ≡ minρ̂∈Γ ρ̂(D, x), respectively.

20Condition (6) in (P2) is implied by (16) and ρ̂ = ρ on M\M∗.
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Corollary 4.3. For any (D, x) ∈ M∗, the upper bound is obtained by

ρ(D, x) = max
r∈R{(D,x)|x∈D∈2X}

+

∑
E:E⊇D

r(E \ x,E) (21)

subject to (18), where r(E \ x,E) = K(ρ, E, x) for all (E, x) ̸∈ M \M∗. The lower

bound ρ(D, x) solves a similar problem with a min replacing the max.

Compared with the original formulation (15) based on (P1), the derivation of

bounds in Corollary 4.3 is computationally more efficient. This is because this prob-

lem can be seen as a minimum-cost transshipment problem, which is well known in

the network-flow theory literature. (See, for example, Ahuja, Magnanti, and Orlin

(1988) and Ford Jr and Fulkerson (2015) for details.) One of the key properties of

this problem is that it is a linear program with a constraint that has an incidence

matrix as its coefficient. An incidence matrix is a matrix-form representation of net-

work structure, which is defined as a matrix consisting only of 0, 1 and −1 with each

column having exactly one element of 1 and −1. For this specific problem, a practi-

cal polynomial time algorithm, called the network simplex algorithm, can be applied.

Since this algorithm relies heavily on the fact that the coefficient of the constraint

is an incidence matrix, the original form (P1) does not have its benefit in terms of

computational efficiency. We refer readers to Orlin, Plotkin, and Tardos (1993) and

Orlin (1997) for further computational aspects of the algorithm. When D = 2X \ ∅,
the bound (21) can be further simplified as shown in online appendix B.2.

In the following remark, we formalize the outside option approach. We observe

that in the outside option approach, the constraint of the random utility model does

not have any implication other than the naive constraint that the probabilities must

sum up to one.

Remark 4.4. Consider the naive approach in which we assume one outside option x0

that represents all unobservable alternatives. Let X̂ = (X \X∗) ∪ x0. For simplicity,

we consider the choice sets which do not contain any elements in X∗ or which contain

all elements in X∗. (In other words, we ignore the data on choice sets that contain

only some (but not all) element(s) of X∗.) For any D ∈ D such that D ∩ X∗ or
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X∗ ⊆ D, define D̂ as follows:

D̂ =

{
D if D ∩X∗ = ∅;
(D \X∗) ∪ x0 if X∗ ⊆ D.

Define D̂ = {D̂|D ∈ D and [D ∩X∗ = ∅ or X∗ ⊆ D]}. Note that for any D̂ ∈ D̂, (i)

if x0 ̸∈ D̂, then D ∈ D; and (ii) if x0 ∈ D̂, then (D̂ \ x0) ∪X∗ ∈ D.

For any D̂ ∈ D̂, (i) if x0 ̸∈ D̂, then define ρ̂(D̂, x) = ρ(D, x) for any x ∈ D̂; and

(ii) if x0 ∈ D̂, then define

ρ̂(D̂, x) =


1−

∑
y∈D̂\x0

ρ((D̂ \ x0) ∪X∗, y) if x = x0;

ρ((D̂ \ x0) ∪X∗, x) if x ̸= x0.

Then ρ̂ is a complete dataset with the reduced choice sets D̂ ⊆ 2X̂ .

The question is how much the requirement of ρ̂ being RU-rationalizable restricts

the identification bound for ρ(D, x) for some x ∈ X∗.21 With the outside option

approach, it turns out the RU-rationalizability does not have any implications beyond

the fact that the probabilities must sum up to one; that is, the identified set is[
0, 1−

∑
y∈D̂\x0

ρ((D̂ \ x0) ∪X∗, y)

]
. (22)

To see this, notice that if the complete data ρ̂ is RU-rationalizable, then the identified

set will become (22). If ρ̂ is not RU-rationalizable, then the identified set will become

the empty set.

4.2 Application to Lottery Data

We now apply this method to a stochastic-choice dataset from the experiment con-

ducted by McCausland et al. (2020). In the experiment, the authors fixed a set

X = {0, 1, 2, 3, 4} of five lotteries and asked 141 participants to choose one from each

subset of X. Each participant made decision six times for each choice set. See Mc-

Causland et al. (2020) for further details. We aggregate these choice frequencies to

21It is easy to see that if the incomplete data ρ is RU-rationalizable, then the complete data ρ̂ is
RU-rationalizable.
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construct a complete dataset denoted by ρobs.

In this exercise, we mask the choice probabilities of lotteries 0 and 1 and pretend

not to observe them; in other words, we set X∗ = {0, 1} and D = 2X \ ∅. Let D∗ be

the set of choice sets that contain at least two unobservables. Then, it follows that

D∗ = {{0, 1}, {0, 1, 2}, {0, 1, 3}, {0, 1, 4}, {0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 3, 4}, {0, 1, 2, 3, 4}}.

Under this setup, we will compute two types of bounds of the probability of lottery

0 being chosen in a given choice set D that contains both lotteries 0 and 1. One of

them is the trivial bound (22) that is calculated by0, 1− ∑
x∈D∩{2,3,4}

ρ(D, x)

 .

As explained in Remark 4.4, this bound corresponds to the outside option approach

that treats all unobservable alternatives as one aggregated alternative.

The other bound is the one that takes RU-rationalizabity into account and is

computed by the linear program (21).22 The goal here is to examine how much the

random utility assumption shrinks the identified set and improves the prediction of

unobservable choice probabilities.

The lottery dataset is nearly but not exactly RU-rationalizable. As our method

can be applied only to RU-rationalizable datasets, we will first fit a multinomial logit

model to the dataset to get a calibrated dataset that is close to the original one but

is RU-rationalizable.23

We will then solve the linear programs described above for the calibrated dataset

and obtain the bounds of the probability of lottery 0 being chosen. Specifically, for

a given choice set that contains both lotteries 0 and 1, we compute the identified set

of the probability of lottery 0 being chosen by applying our method to the calibrated

22In the dataset, we have D = 2X \ ∅. Under this setup, we can further simplify the bound (21)
into (27), as shown in the online appendix B.2. We use (27) to calculate the values.

23The detail is as follows: To find a RU-rationalizable dataset that approximates the original one,
we consider a multinomial logit model with parameter (a1, . . . , a4) ∈ R4 ρ(D,x) = eax∑

y∈D eay ,where

a0 = 0. We search for a parameter (a1, . . . , a4) that minimizes the least square loss; that is,

(a∗1, . . . , a
∗
4) ∈ argmin(a1,...,a4)∈R4

∑
D∈D\D∗

∑
x∈D

(
eax∑

y∈D eay − ρobs(D,x)
)2

. We define the cali-

brated (incomplete) dataset as the choice data induced by the multinomial logit model with the
minimizer (a∗1, . . . , a

∗
4).
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RU-rationalizable dataset. The result is presented in Figure 3, which reports the

two types of bounds and the actual choice probabilities in the data. Overall, the

identified sets of the random utility model, shown in red, are much smaller than the

naive bounds, shown in blue, especially when the choice set is large. Notice that

some data points are outside the identified sets because the original dataset is not

RU-rationalizable. However, even in such cases, they are sufficiently close to the

identified sets, and we believe that the drastic shrinkage of the intervals due to the

random utility assumption outweighs the risk of misspecification.

Figure 3: Comparison of identified sets of probabilities of choosing lottery 0 when
lotteries 0 and 1 are unobservable. The identified sets for the random utility model
are shown in red while those calculated in the naive way are shown in blue. The stars
represent the actual probabilities in the dataset.

5 Relationship with McFadden and Richter (1990)

McFadden and Richter (1990) provide a characterization of the random utility model.

Unlike the characterization of Falmagne (1978), the characterization of McFadden and

Richter (1990) holds even for the case in which the dataset is incomplete. On the

other hand, the conditions of McFadden and Richter (1990) involve an infinite number

of sequences and some of the conditions are redundant. These features result from the

fact that their characterization is obtained as a dual of the existence of rationalizing
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random utility model through the Farkas’s lemma; and the dual condition, in general,

involves an infinite number of inequalities. In this section, we further clarify the

relationship between our approach and the approach taken by McFadden and Richter

(1990). The main message is that the approach by McFadden and Richter (1990)

is based on the nonnegativity of polynomials, which we call McFadden and Richter

polynomials; and the polynomials contain redundancy in an essential way, unlike BM

polynomials. Thus, one can improve the results obtained by McFadden and Richter

(1990) by removing some redundancy; however it would be difficult to remove all

redundancy from the approach.24

To clarify whether or not the dataset is incomplete, let M̂ be the set of pairs

(D, x) such that x ∈ D ∈ 2X and ρ(D, x) is well defined (i.e., ρ(D, x) is observable to

the analysts). We write the set of datasets as P(M̂).25 In the previous section, we

assumed M̂ ≡ M \M∗.26

Definition 5.1. Let M̂ ⊆ {(D, x) | x ∈ D ∈ 2X} and ρ ∈ P(M̂). For any sequence

(Di, xi)
n
i=1 in M̂ define

R((Di, xi)
n
i=1, ρ) = max

≻∈L

n∑
i=1

1{xi ≻ Di \ xi} −
n∑

i=1

ρ(Di, xi).

We call R((Di, xi)
n
i=1, ρ) a McFadden and Richter (MR) polynomial.

Theorem 5.2. (McFadden and Richter (1990)) Let M̂ ⊆ {(D, x) | x ∈ D ∈ 2X}
and ρ ∈ P(M̂). There exists µ ∈ ∆(L) such that for any (D, x) ∈ M̂

ρ(D, x) = µ
(
{≻∈ L | x ≻ y for all y ∈ D \ x}

)
(23)

if and only if R((Di, xi)
n
i=1, ρ) ≥ 0 for any sequence (Di, xi)

n
i=1 in M̂.

Notice that same (D, x) ∈ M̂ appears arbitrary many times in the sequence

(Di, xi)
n
i=1. Thus, the number of sequences to be tested is infinite, although there are

finitely many pairs (D, x) ∈ M̂,

24In other words, if one removes all redundancy from the results by McFadden and Richter (1990),
such results should reduce to Falmagne (1978) for the case of complete datasets and our results for
the case of incomplete datasets (in our sense).

25Formally, P(M̂) = {ρ ∈ RM̂
+ | (i) if (D,x) ∈ M̂ for any x ∈ D, then

∑
x∈D ρ(D,x) =

1; (ii) if there exists x ∈ D such that (D,x) ̸∈ M̂, then
∑

x∈D ρ(D,x) ≤ 1}.
26In Falmagne (1978), M̂ is assumed to be {(D,x) ∈ D ×X | x ∈ D ∈ 2X}.
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To clarify the relationship between the result in McFadden and Richter (1990)

and ours, we will prove their result for the case when M̂ = {(D, x) | x ∈ D ∈ 2X} by

using the result in Falmagne (1978). Moreover, as shown in Proposition 5.7, we will

show that (i) checking the nonnegativity of MR polynomials for sequences (Di, xi) in

which each (D, x) appears at most twice is enough for RU-rationalilzability; and (ii)

however, even such an improved result would contain redundant inequalities. Then,

for incomplete datasets, in Remark 5.8 below, we observe that it is necessary to check

the nonnegativity of MR polynomials for sequences in which each (D, x) appears more

than twice, but some of such sequences would be redundant.

Definition 5.3. A sequence (Di, xi)
n
i=1 in M is called redundant if there exists D ∈

{Di}ni=1 such that

∀y ∈ D, ∃i such that (D, y) = (Di, xi).

Remark 5.4.

• Consider a sequence {(Di, xi)}ni=1. If there exists D = {y1, . . . , yn} with yi ̸= yj

such that xi = yi for each i ∈ {1, . . . , n}, then the sequence is redundant and

R((D, yi)
n
i=1, ρ) = 0 for any ρ.

• If an original sequence contains a redundant subsequence (D, yi)
n
i=1 like the one

above, removing the subsequence does not affect the value of the MR polynomial.

In this sense, it is without loss to focus on nonredundant sequences.

Definition 5.5. Let M̂ ⊆ {(D, x) | x ∈ D ∈ 2X}. Define

PMR(m|M̂) =

{
ρ ∈ P(M̂)

∣∣∣∣ R((Di, xi)
n
i=1, ρ) ≥ 0 for any non-redundant sequence (Di, xi)

n
i=1

in which no (D,x) ∈ M̂ appears more than m times

}
.

PMR(m + 1|M̂) ⊆ PMR(m|M̂) for any m. As m increases, the number of se-

quences to be tested increases and, the number of stochastic choice functions that sat-

isfy the condition therefore becomes smaller. Let Pr(M̂) be the set of random utility

models. That is Pr(M̂) ≡ {ρ ∈ P(M̂) | there exist µ ∈ ∆(L) such that (23) holds

for any (D, x) ∈ M̂}.

Remark 5.6. Let M̂ ⊆ {(D, x) | x ∈ D ∈ 2X}. The result in McFadden and Richter

(1990) can be written as follows: For any ρ ∈ P(M̂), ρ ∈ PMR(m|M̂) for any positive
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integer m if and only if ρ ∈ Pr(M̂).27 That is, ∩+∞
m=1PMR(m|M̂) = Pr(M̂).28

McFadden and Richter (1990) discuss the difficulty of providing an upper bound

on m. They prove that repetition is necessary in general. In other words, they have

proved that PMR(1|M̂) is too big (i.e., PMR(1|M̂) ⊋ Pr(M̂)). Our next result shows

that considering m = 2 is enough for the case in which there are no missing data.

Proposition 5.7. Suppose that M̂ = {(D, x) | x ∈ D ∈ 2X}. Then (i) PMR(2|M̂) =

Pr(M̂); but (ii) some of sequences considered in PMR(2|M̂) are redundant.

In the appendix, we prove this result by using the result of Falmagne (1978).

This result not only clarifies the mathematical relationship between McFadden and

Richter (1990) and Falmagne (1978), but also refines the result of McFadden and

Richter (1990) for the case of complete datasets. The proof is based on the observation

that (a) a BM polynomial can be written as a MR polynomial; (b) but not all MR

polynomials can be written as BM polynomials. Observation (a) together with the

result by Falmagne (1978) proves statement (i) in Proposition 5.7; Observation (b)

implies statement (ii) in Proposition 5.7.

The remaining question is how large should m be for the case of general incom-

plete datasets. Our theorem implies the following:

Remark 5.8. If M̂ = M\M∗, then PMR(2|M̂) ⊋ Pr(M̂).

To see how Remark 5.8 is implied by Theorem 3.2, notice that for each test

collection, each inequality condition (ii) in Theorem 3.2 involves multiple BM poly-

nomials and each BM polynomial corresponds to a sequence (Di, xi)
n
i=1 in which some

(D, x) ∈ M̂ appears twice. Thus, each inequality condition (ii) would correspond to

a sequence in which some (D, x) ∈ M̂ appears more than twice. It would be possible

to obtain a nontrivial upper bound m for which we have Pr(M̂) ⊆ PMR(m|M̂) given

Theorem 3.2. However, unlike our theorem, even such a result would contain re-

dundant conditions, as some of MR polynomials are redundant even for the complete

datasets, unlike BM polytnomials. In this way, our approach based on BS polynomials

provides a more tight characterization than the approach based on MR polynomials.

27McFadden and Richter (1990) allow redundant sequences as explained above.
28PMR(m|M̂) becomes smaller and “converges” to Pr(M̂) as m increases.
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A Proofs

A.1 Proof of Lemma 3.4

We first prove that (P1) implies (P2). Fix a solution µ to (P1). Define a complete

dataset ρ̂ ∈ R
{(D,x)|x∈D∈2X}
+ by ρ̂(D, x) = µ({≻∈ L | x ≻ y for all y ∈ D \ x}) for

all x ∈ D ∈ 2X . Then ρ̂ = ρ on M \ M∗. Moreover, by Lemma 3.3, we have

r ∈ R
{(D\x,D)|x∈D∈2X}
+ that satisfies (4), (5) and r(D \x, x) = K(ρ̂, D, x) for all (D, x)

such that x ∈ D ∈ 2X . Since ρ̂ = ρ on M\M∗, thus we have r(D\x, x) = K(ρ,D, x)

for all (D, x) ∈ M such that x ̸∈ X∗. Thus, r is a solution to (P2).

Next we prove that (P2) implies (P1). Fix a solution r to (P2). For any (D, x) ∈
M∗, ρ̂(D, x) ≡

∑
E:E⊇D r(E \ x,E). Define ρ̂ = ρ on {(D, x) | x ∈ D ∈ 2X} \M∗,

where ρ is the given incomplete dataset. Thus, we obtain a complete dataset ρ̂ ∈
R

{(D,x)|x∈D∈2X}
+ . Then by the Möbius inversion, we have r(D \ x, x) = K(ρ̂, D, x) for

all (D, x) such that x ∈ D ∈ 2X . Then r satisfies (4), (5), and (6). Then by Lemma

3.3, there exists µ ∈ ∆(L) such that ρ̂(D, x) = µ({≻∈ L | x ≻ y for all y ∈ D \ x})
for all (D, x) such that x ∈ D ∈ 2X . Since ρ = ρ̂ on M \ M∗, (2) holds for any

(D, x) ∈ M \M∗. Thus, µ is a solution to (P1).

A.2 Proof of Lemma 3.5

To prove the lemma we prove the following general result:

Theorem A.1. Let T, S ⊆ N such that S ∩ T = ∅, a : S → R+, b : T → R+ such

that
∑

s∈S a(s) = 1 =
∑

t∈T b(t). There exists f : A → R+ such that

f(s,N )− f(N , s) = a(s) ∀s ∈ S,

f(D,N )− f(N , D) = 0 ∀D ∈ N \ (S ∪ T ),

f(N , t)− f(t,N ) = b(t) ∀t ∈ T,

l(D,E) ≤ f(D,E) ≤ u(D,E) ∀(D,E) ∈ A,

if and only if the following conditions hold for any C ⊆ N :∑
(D,E)∈C×Cc

u(D,E)−
∑

(D,E)∈Cc×C

l(D,E) ≥
∑

t∈Cc∩T

b(t)−
∑

s∈Cc∩S

a(s). (24)

27



Proof.

Necessity: Suppose a feasible flow f exists.∑
t∈Cc∩T

b(t)−
∑

s∈Cc∩S

a(s) ≤ f(C, Cc)−f(Cc, C) ≤
∑

(D,E)∈C×Cc

u(D,E)−
∑

(D,E)∈Cc×C

l(D,E).

Sufficiency: Define an extended network with lower bound by N ∗ = N ∪ {s∗, t∗}
and A∗ = A ∪ {(s∗, s) | s ∈ S} ∪ {(t, t∗) | t ∈ T} and

u∗(s∗, s) = a(s), l∗(s∗, s) = 0 for all s ∈ S,

u∗(t, t∗) = b(t), l∗(t, t∗) = 0 for all t ∈ T,

u∗(D,E) = u(D,E), l∗(D,E) = l(D,E) for all other arcs.

We first define the residual capacity function e in the augmented network as

follows: for any C∗ ⊆ N ∗

e(C∗,N ∗ \ C∗) =
∑

(D,E)∈C∗×(N ∗\C∗)

u∗(D,E)−
∑

(D,E)∈(N ∗\C∗)×C∗

l∗(D,E).29

(Similarly, we define the residual capacity function in the original network as follows:

for any C ⊆ N e(C,N \ C) =
∑

(D,E)∈C×(N\C) u
∗(D,E)−

∑
(D,E)∈(N\C)×C l

∗(D,E).)

Then we will prove that (N ∗ \ {t∗}, t∗) is a minimum s∗-t∗ cut. Let be any

C∗ ⊆ N ∗ such that s∗ ∈ C∗ and t∗ ̸∈ C∗. That is, (C∗,N ∗ \ C∗) be an arbitrary cut

separating s∗ and t∗. Let C = C∗ ∩N . Then by the structure of network,

e(C∗,N ∗ \ C∗)− e(N ∗ \ {t∗}, t∗)

= e(s∗,N ∗ \ C∗) + e(C,N ∗ \ C∗)− e(N ∗ \ {t∗}, t∗) (∵ s∗ ∈ C∗)

= e(s∗,N ∗ \ C∗) + e(C,N \ C) + e(C, t∗)− e(N ∗ \ {t∗}, t∗) (∵ t∗ ∈ N ∗ \ C∗)

= e(s∗, (N \ C) ∩ S) + e(C,N \ C) + e(C ∩ T, t∗)− e(T, t∗)

= e(s∗, (N \ C) ∩ S) + e(C,N \ C)− e((N \ C) ∩ T, t∗)

=
∑

s∈(N\C)∩S

a(s) + e(C,N \ C)−
∑

t∈(N\C)∩T

b(t)

29We write N ∗ \ C∗ instead of (C∗)c to clarify the underling space is N ∗ not N .
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=
∑

s∈(N\C)∩S

a(s) +

 ∑
(D,E)∈C×(N\C)

u(D,E)−
∑

(D,E)∈(N\C)×C

l(D,E)

−
∑

t∈(N\C)∩T

b(t),

which is nonnegative by (24). Thus e(C∗,N ∗ \ C∗) ≥ e(N ∗ \ {t∗}, t∗) for any cut

(C∗,N ∗ \ C∗) separating s∗ and t∗ if and only (24) holds for any C ⊆ N .

It follows from the maximum-flow theorem with lower bounds (Theorem 6.1

Ahuja, Magnanti, and Orlin (1988)) that (24) implies the existence of a flow f ∗ from

s∗ to t∗ that saturates all arcs of (T, t∗), that is, f ∗(t, t∗) = b(t) for all t ∈ T . Since∑
s∈S a(s) = 1 =

∑
t∈T b(t), we must have f ∗(s∗, s) = a(s) for all s ∈ S. These

equalities imply that f ∗(S,N ) = 1 and f ∗(N , T ) = 1 and f ∗(D,N ) = f ∗(N , D) for

all D ∈ N \ (T ∪ S). Now define f as a restriction of f ∗ on (N ,A). Then f satisfies

all desired conditions. □

By the theorem, we obtain the lemma by letting both T and S singletons.

A.3 Proof of Proposition 3.9

Under the setup (12), there exists a solution to (P2) ⇔ there exists a flow f that

satisfies the conditions in Lemma 3.5 ⇔ the condition (11) holds for any C ⊆ N ,

where the first equivalence holds by the setup and the second equivalence holds by

Lemma 3.5. Thus, to show the proposition, it suffices to prove that the condition

(11) holds for any C ⊆ N if and only if δρ(C) ≥ 0 for any complete collection C such

that ∅ ̸∈ C.
Step 1: Suppose that (11) holds for any Ĉ ⊆ N . For any C ⊆ N such that all outflow

from C is observable, then δρ(C) ≥ 0.

Proof. Fix any C ⊆ N . Note that
∑

(D,E)∈Cc×C l(D,E) =
∑

(E,y):E ̸∈C,E∪y∈C,(E∪y,y)̸∈M∗ K(ρ, E∪
y, y). Assume that any outflow from C is observable. Then u does not take the value of

+∞. Thus we have
∑

(D,E)∈C×Cc u(D,E) =
∑

(D,x):D∈C,D∪x ̸∈C,(D∪x,x)̸∈M∗ K(ρ,D∪x, x).
Thus the left-hand side minus the right-hand side of (11) equals to the value of

δρ(C). By the suppostion of the statement that (11) holds for any Ĉ ⊂ N , we have

δρ(C) ≥ 0. ■

We use Step 1 to prove the following:

Step 2: If the condition (11) holds for any Ĉ ⊆ N , then δρ(C) ≥ 0 for any complete

collection C ⊆ N such that ∅ ̸∈ C.
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Proof. Fix any complete collection C ⊆ N such that ∅ ̸∈ C. By the disjoint addi-

tivity, we have δρ(C) = δρ(C ∩ D) + δρ(C \ D).

SinceD is an upper set and C is complete, there are no unobservable outflows from

C ∩D. Thus by the supposition of this step, it follows from Step 1 that δρ(C ∩D) ≥ 0.

Since ∅ /∈ C \D and C \D has no observable inflows, by the definition of δρ, there

are no negative terms in δρ(C \ D). Thus, we have δρ(C \ D) ≥ 0. It follows that

δρ(C) ≥ 0. ■

Step 2 proves one way of the proposition. In the following, we show the other

way.

Step 3: If δρ(Ĉ) ≥ 0 for any complete collection Ĉ ⊆ N such that ∅ ̸∈ Ĉ, then the

condition (11) holds for any C ⊆ N .

Proof. Fix any C ⊆ N . If C has an unobservable outflow, then the left-hand side

of (11) becomes infinite and (11) holds as desired. In the following consider the case

where C has no unobservable outflows (i.e., all outflows are observable), which implies

C is complete. As in the proof of Step 1, this implies that the left-hand side minus

the right-hand side of (11) equals to δρ(C).
If ∅ ̸∈ C, by the supposition of this step, δρ(C) ≥ 0 because C is complete. Thus,

(11) holds.

Assume ∅ ∈ C in the following. Since C is complete, 2X
∗ ⊆ C. Remember, by the

assumption of the case, there exist no unobservable arcs (D,D ∪ x) coming out from

C. This means that any arc (D,D ∪ x) coming out from C is observable. Thus, we

have D ∪ x ∈ D. Since D ∪ x ̸∈ C, by the completeness of C, we have x ̸∈ X∗.

Now we build a certain subset of C inductively: initialize G0 = 2X
∗
. At the

first step, take all of the unobservable flows coming out of G0. The collection G0 is

complete so all of these flows are going to a node of Dc (because we are considering

unobservable flows). Call the set of all these nodes F0 ⊆ Dc. Since each of these

nodes is in Dc, all of their subsets are also in Dc because Dc is a lower set.30 In

particular, for each F ∈ F0 we have F \X∗ ∈ Dc.

Notice also that there is an arc from G0 to F \ X∗.31 So we conclude that

F \ X∗ ∈ C (otherwise it contradicts with the fact that all outflows from C are

30Remember E ∈ Dc =⇒ D ∈ Dc for all E ⊇ D.
31From ∅ to F \ X∗ which is a singleton in the first step. In step n, such an arc exists because

we may write F = G ∪ x for G ∈ Gn and x ∈ X \X∗. Notice F \X∗ = (G ∪ x) \X∗. Then by the
construction of Gn we have G \X∗ ∈ Gn and therefore we have the arc (G \X∗, F \X∗) coming out
of Gn
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observable). By the completeness of C, we have {(F \X∗) ∪ E : E ∈ 2X
∗} ⊆ C.

Define H0 =
⋃

F∈F0
{(F \ X∗) ∪ E : E ∈ 2X

∗}. Now define G1 = G0 ∪ H0. At

the nth step, define Hn−1 in the same way as H0 and let Gn = Gn−1 ∪ Hn−1. Since

2X is finite, at some step n the set Gn will have no unobservable outflows. Call this

terminal collection G.
The collection G has no unobservable outflows and contains ∅ by its construction.

It is straightforward to show that G has no inflows, which implies G is a lower set. To

see why, suppose that (D,D ∪ x) ∈ Gc × G. Since D ̸∈ G, by the construction of G,
we have D \X∗ /∈ G. Since D∪x ∈ G we have (D∪x) \X∗ ∈ Dc by the construction

of G again. It follows from that D \ X∗ and all subsets of D \ X∗ belong to Dc.32

Since ∅ ∈ G there must be an arc from G to a subset E of D \ X∗, where E ̸∈ G.
Since E ̸̸∈ D, this means G has an unobservable outflow, which is impossible by its

construction.

Since (i) all the outflows from G are observable; (ii) there are no observable

inflows to G; (iii) and ∅ ∈ G, therefore we conclude that δρ(G) = 0.

Note that C \ G = C ∩Gc is complete because G is a lower set (in particular Gc is

an upper set and thus is complete) and the intersection of complete sets is complete.

Since ∅ ∈ G, C \G does not contain ∅. It follows from the supposition of the step that

δρ(C \ G) ≥ 0.

Since δρ(C) = δρ(C \ G) + δρ(G), we have δρ(C) ≥ 0, which means the inequality

(11) for C. ■

A.4 Disjoint Additivity of δ

Lemma A.2. For any C ⊆ 2X , δρ(C) =
∑

D∈C δρ(D).

Proof. It suffices to show δρ(C ∪ E) = δρ(C) + δρ(E) for any disjoint sets C, E ⊆ 2X .

If there are no arcs connecting C and E , then the result is trivial. Suppose otherwise.

The values of a flow on the connecting arcs will be canceled out in δρ(C) + δρ(E).
Without loss of generality, suppose that there is a connecting arc (D,D ∪ x) and

D ∈ C and D ∪ x ∈ E . Then the value K(ρ,D ∪ x, x) of the flow on the arc is added

to δρ(C) and subtracted from δρ(E). Thus the value is canceled out in δρ(C) + δρ(E).
In the same way, the value K(ρ,D ∪ x, x) of the flow on the connecting connecting

arc (D,D ∪ x) and D ∈ E and D ∪ x ∈ C will be canceled out. ■
32This is because Dc is a lower set.
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A.5 Proof of Lemma 3.11

We will prove the statement by the following two steps.

Step 1: If δρ(Ĉ) ≥ 0 for any test collection Ĉ ⊆ D, then δρ(C) ≥ 0 for any test

collection C such that ∅ ̸∈ C.
Proof. Fix a test collection C such that ∅ ̸∈ C. Assume that C ̸⊆ D.

Case 1: Suppose that C ∩ D = ∅. By the property of D (i.e., D ∈ D & E ⊇ D =⇒
E ∈ D), there are no observable inflow into C. That is, if there exists (E, y) such

taht E ̸∈ C and E ∪ y ∈ C, then E ∪ y ̸∈ D, which shows that δρ(C) does not contain
any −

∑
(E,y):E ̸∈C,E∪y∈C,E∪y∈D,y ̸∈X∗ K(ρ, E ∪ y, y). Moreover, since ∅ ̸∈ C, δρ(C) does

not contain −1{∅ ∈ C, X ̸∈ C} either. This means that δρ(C) does not contain any

negative terms. Thus δρ(C) ≥ 0.

Case 2: Suppose that C ∩ D ≠ ∅. Let C∗ = C ∩ D. By the property of D (i.e.,

D ∈ D & E ⊇ D =⇒ E ∈ D), D is complete. Since C is complete, its union C∗ is

also complete. Since C∗ ⊆ D, it follows from our supposition that δρ(C∗) ≥ 0. By the

disjoint additivity of δρ (Lemma A.2), δρ(C) = δρ(C∗) +
∑

D∈C\C∗ δρ({D}). Since for

any D ∈ C \ C∗ ≡ C ∩ Dc, we have {D} ∩ D = ∅. Since D ̸= ∅, by Case 1, we have

δρ({D}) ≥ 0. Thus, we have δρ(C) ≥ 0. ■

Step 2: If δρ(C) ≥ 0 is for any test collection C such that ∅ ̸∈ C, then δρ(Ĉ) ≥ 0 for

any complete collection Ĉ such that ∅ ̸∈ Ĉ.
Proof. Fix a complete collection Ĉ such that ∅ ̸∈ Ĉ. Decompose Ĉ as follows: for

each A ⊆ X \ X∗ write CA = {D ∈ Ĉ : D \ X∗ = A}. Clearly Ĉ =
⋃

A⊆X\X∗ CA. It

is easy to see that each CA is a test collection and ∅ ̸∈ CA. Thus by the assumption

of the step, δρ(CA) ≥ 0. Notice that for A ̸= B, CA and CB are disjoint. By Lemma

A.2, δρ(C) can be written as δρ(Ĉ) =
∑

A⊆X\X∗ δρ(CA) ≥ 0. ■

A.6 Proof of Lemma 3.12

Let C ≡ {A∪E | E ∈ E} be a test collection with A ⊆ X \X∗ and E ⊆ 2X
∗
. Assume

that C ⊆ D.

Step 1: If E = 2X
∗
, then δρ(C) = 0.

Proof. By the fact that E = 2X
∗
and C ⊆ D, all flows into and out of C are

observable.33 By the equality of inflows and outflows (not necessarily non-negative),

33That is, (i) if there exists (D,x) such taht D ∈ C and (D,x) ̸∈ C, then D ∈ D; and (ii) if there
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it follows that δρ(C) is zero. ■

Step 2: Suppose K(ρ,D, x) ≥ 0 for all (D, x) ∈ M such that x ̸∈ X∗. If A = X \X∗

or A = ∅, then δρ(C) ≥ 0.

Proof. Assume A = X \X∗. Fix any D ∈ C such that D ̸= X. By the supposition,

there is no observable flows coming out from D. Since K(ρ,D, x) ≥ 0 for all x ∈
X \ X∗, it follows from the definition of δρ, δρ(D) ≤ 0 for all D ̸= X. Remember

δρ(C) =
∑

D∈C δρ(D). Since δρ(D) ≤ 0 for all D ∈ C \ x, it suffices to prove δρ(C) = 0

where C is the largest, or C = {(X \ X∗) ∪ E | E ∈ 2X
∗}. By Step 1, we have

δρ({(X \X∗) ∪ E | E ∈ 2X
∗}) = 0.

Assume A = ∅. If ∅ ∈ C, then C = 2X
∗
by the fact that C is complete. Thus,

all inflows into C are not observable and all outflows from C are observable, δρ(C) =∑
(D,x):D\x∈C,D ̸∈C K(ρ,D, x) ≥ 0. ■

A.7 Proof of Lemma 3.14

For any (D, x) such that x ∈ D ∈ 2X , define ρ(D, x) =
∑

E⊇D r(E \ x, x). By

(iii), we have ρ(D, x) ≥ 0 for all (D, x) such that x ∈ D ∈ 2X . Fix any D

to show
∑

x∈D ρ(D, x) = 1. Then we have
∑

x∈D ρ(D, x) =
∑

x∈D
∑

E⊇D r(E \
x,E) =

∑
y∈D r(D \ y,D) +

∑
x∈D

∑
E⊇D

|E|≥|D|+1
r(E \ x,E) =

∑
E⊇D

|E|=|D|+1
r(D,E) +∑

x∈D
∑

E⊇D
|E|≥|D|+1

r(E\x,E) =
∑

E⊇D
|E|=|D|+1

∑
y∈E∩Dc r(E\y, E)+

∑
x∈D

∑
E⊇D

|E|=|D|+1
r(E\

x,E)+
∑

x∈D
∑

E⊇D
|E|≥|D|+2

r(E\x,E) =
∑

y∈E
∑

E⊇D
|E|=|D|+1

r(E\y, E)+
∑

x∈D
∑

E⊇D
|E|≥|D|+2

r(E\

x,E) =
∑

x∈E
∑

E⊇D
|E|≥|D|+1

r(E\x,E), where the third equality holds by appling (ii) for

the first term; the fourth equality is obtained by rewriting the first term and dividing

the second term into the two terms; and the second to the last equality is obtained

by combining the first two terms into one. Note that the last term has the same form

as the term in the first equation but in the last term the summation over E = D

is deleted. By repeating this, we get
∑

x∈D ρ(D, x) =
∑

x∈E
∑

E⊇D
|E|≥|D|+2

r(E \ x,E).

Finally we get
∑

x∈D ρ(D, x) =
∑

y∈X r(X \ y,X), which is equal to 1 by (i).

A.8 Proof of Statement (b)

To prove statement (b) of Theorem 3.2, we prove the following lemma:

exists (E, y) such taht E ̸∈ C and E ∪ y ∈ C, then E ∪ y ∈ D.
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Lemma A.3. Let D = 2X \ ∅.
(i) For each essential test collection C∗, there exists r ∈ R{(D\x,D)|(D,x)∈M} that sat-

isfies conditions (i)–(iii) in Lemma 3.14 and the following two conditions: (a)r(D \
x,D) ≥ 0 for all x ̸∈ X∗; (b) δr(C∗) < 0 and δr(C) ≥ 0 for any essential test collection

C except C∗.

(ii) For each (D, x) ∈ M such that 1 < |D| < |X| and x ̸∈ X∗, there exists

r ∈ R{(D\x,D)|(D,x)∈M} that satisfies conditions (i)–(iii) in Lemma 3.14 and the fol-

lowing two conditions: (a) r(D \ x,D) < 0; r(E \ y, E) ≥ 0 for all (E, y) ∈ M s.t.

y ̸∈ X∗ and (E, y) ̸= (D, x); (b)δr(C) ≥ 0 for any essential test collection C.

Lemma A.3 implies Corollary A.4, which in turn implies statement (b) of Theo-

rem 3.2.

Corollary A.4.

(i) For each (D, x) ∈ M \M∗ such that 1 < |D| < |X|, there exists an incomplete

dataset ρ∗ ∈ RM\M∗
such that (a) K(ρ∗, D, x) < 0; and K(ρ∗, E, y) ≥ 0 for all

(E, y) ∈ M \ (M∗ ∪ {(D, x)}); (b) δρ∗(C) ≥ 0 for all essential test collection C ⊆ D.

(ii) For each essential test collection C∗ ⊆ D, there exists an incomplete dataset

ρ∗ ∈ RM\M∗
such that (a) K(ρ∗, D, x) ≥ 0 for all (D, x) ∈ M \M∗;(b) δρ∗(C∗) < 0

and δρ∗(C) ≥ 0 for all essential test collection C ⊆ D except C∗.

The proofs of the lemma and the corollary are in the following subsections.

A.8.1 Proof of statement (i) in Lemma A.3

Fix an essential test collection C∗. In the following, we will construct a flow r from ∅
to X such that δr(C∗) < 0 and δr(C) ≥ 0 for any other essential test collection C ̸= C∗.

Let A∗ be such that D \ X∗ = A∗ for all D ∈ C∗. (Such A∗ exists because C∗

is a test collection.) Since C∗ is essential, A∗ ̸= ∅ and A∗ ̸= X \ X∗. Let D̂ ≡ {D |
there exists an essential test collection C such that D ∈ C}.

In the following we prove five claims to prove this lemma.

Claim A.5. There exists a ∅ −X directed path Π1 avoiding any nodes in D̂.

Proof. We first construct a directed path ∅ − X \ X∗ that avoids any node in D̂
by adding each element of X \ X∗ one by one. Note that each node A does not

appear in any essential test collection since the only test collection containing A is

the nonessential test collection {A∪E | E ∈ 2X
∗}, which appears in Lemma 3.12 (i).
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In the same way, we next construct a directed path X \X∗ −X that avoids any

node in D̂ by adding each element of X∗ one by one. Note that each such node can

be written as (X \X∗) ∪ E for some E ∈ 2X
∗
and does not appear in any essential

test collection since the only test collection containing the set is the nonessential test

collection {(X \X∗) ∪ E | E ∈ E}, which appears in Lemma 3.12 (ii).

By combining these two directed paths, we obtain a desirable ∅ − X directed

path avoiding any nodes in D̂. ■

X

X \X∗

A∗

D

D \ A∗

∅

+ε

+ε−ε

+ε

+ε

X

A

D

D ∪ (X∗)c

∅

+ε

+ε

+ε

+ε

Note: The left figure shows the construction of a flow r1D in Claim A.4. (Given an incomplete dataset ρ ∈ R
M\M∗

+ ,

solid arrows correspond to observable flows and dotted arrows correspond to unobservalbe flows.) The right figure

shows the construction of a flow r2D in Claim A.5. In the figure (X∗)c means X \X∗.

The next claim shows that for each node D in C∗, there is a flow in which

the value of δ is negative on the node D and the values of δ on the other nodes

in D̂ are zero. For simplicity, we introduce a notation: Fix D,E ⊆ X such that

D ⊊ E. For each directed path Π from D to E in the network defined by (12), define

rΠ ∈ R{(F,F∪x)|x∈F∈2X} by

rΠ(F, F ∪ x) =

{
1 if (F, F ∪ x) is an arc that belongs to Π,

0 otherwise.
(25)

Claim A.6. Fix ε ∈ (0, 1]. For any D in C∗, there exists a flow r1D such that

δ({D}) = −ε and δ({D̂}) = 0 for any D̂ ∈ D̂ \ D. Moreover r1D satisfies the three

conditions in the Lemma 3.14.

Proof. Fix D ∈ C∗. Consider
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• an ∅ −D directed path Π2 containing going through the node D \ A∗,

• an A∗ − X directed path Π3 which avoid any nodes in D̂ (Such a path exists

because we can take the union of any A∗ − X \ X∗ directed path and any

X \X∗ −X directed path as in Claim A.3.),

• The directed path Π4 from A to D which follows the same order as Π3.

Remember the definition (25). Fix ε > 0 and define r1D ≡ (1 − ε)rΠ1 + εrΠ2 +

εrΠ3 − εrΠ4 . Note that r1D satisfies the three conditions in Lemma 3.14. To confirm

the condition (iii) is satisfied it suffices to show that all negative flows are cancelled

in the sum
∑

E:E⊇D r(E \ x,E). (All of the negative flows are in Π4 and are canceled

by some flow in Π3 because Π4 follows the same order as Π3.)

Note also that in the flow, δr1D({A
∗}) = δr1D({D \A∗}) = ε and δr1D({X \X∗}) =

−1. To see δr1D({D}) = −ε note that an arc going into D exists and is observable

because A∗ is not empty and consists of observable alternatives.

Moreover, for all other D̂ ∈ D̂, δr1D({D̂}) = 0. (To see this note that δ is non-zero

only when observable inflows are not equal to observable outflows.34 )

Since A∗, X \ X∗, D \ A∗ /∈ D̂ by Lemma 3.12, we have δ({D̂}) = 0 for any

D̂ ∈ D̂ \D. This completes the proof of the claim. ■

The next claim shows that for each node D in C∗, there is a flow from ∅ to X in

which the value of δ is positive on the node D and the values of δ on the other nodes

in D̂ is zero.

Claim A.7. Fix ε ∈ (0, 1]. For any D in C∗, there exists a flow r2D such that

δr2D({D}) = ε and δr2D({D̂}) = 0 for all D̂ ∈ D̂ \ D. Moreover the flow r2D satisfies

the all conditions in Lemma 3.14.

Proof. Choose any directed path from ∅ − X that goes through nodes A,D, and

(X \X∗) ∪D. We denote the path by Π5. Define r2D ≡ (1− ε)rΠ1 + εrΠ5 . Note that

r2D satisfies the all conditions in Lemma 3.14.

In the flow, δr2D({A
∗}) = δr2D((X \X∗) ∪D) = −ε and δr2D({D}) = ε.

Moreover, for all other D̂ ∈ D̂, δr2D({D̂}) = 0 by the same reaon as the previous

claim. Since A∗, (X \X∗) ∪D ̸∈ D̂, we have δr2D({D̂}) = 0 for all D̂ ∈ D̂ \D. This

completes the proof of the claim. ■
34In the figure, this occurs when a dotted line becomes a solid line or vice-versa in the diagram.
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Claim A.8. Fix ε ∈ (0, 1]. There exists a flow r̂ such that (i) −1/(2|C∗|) = δr̂(C∗) ≤
δr̂(C) for any essential test collection C; (ii) If C ̸⊇ C∗ then δ(C) ≥ 0.

Proof. Define r3 ≡
∑

D∈C∗
1

|C∗|r
1(D).Then, δr3({D}) = − ε

|C∗| for each D ∈ C∗; more-

over, for all D̂ ∈ D̂ \ C∗, δr3({D̂}) = 0. Define r4 ≡ 1
|C∗|r

Π1 + |C∗|−1
|C∗| r2(A∗ ∪ X∗).

Then, δr4({A∗ ∪X∗}) = |C∗|−1
|C∗| ε; moreover, for all D̂ ∈ D̂ \ C∗, δr4({D̂}) = 0.35 Define

r̂ = 1/2r3+1/2r4. In r̂, we have δr̂(C∗) =
∑

D∈C∗ δr̂({D}) = 1
2

(
−1+ |C∗|−1

|C∗|

)
ε = − 1

2|C∗|ε.

Step 1: δr̂(C∗) ≤ δr̂(C) for any essential test collection C.
Proof. Fix any essential test collection C. We consider the following two cases.

Case 1: There exists D ∈ C such that D\X∗ ̸= A∗ . (In fact, in this case, by the

definition of essential test collection, D \X∗ ̸= A∗ for all D ∈ C.) Then, C ∩ C∗ = ∅.
Since D̂ ∈ D̂ \ C∗, δr̂({D̂}) = 0, we have δr̂(C) = 0 ≥ δ(C∗).

Case 2: D \ X∗ = A∗ for all D ∈ C. Since C is complete, C contains A∗ ∪ X∗.

Since C∗ contains all D ∈ D̂ such that δr̂({D}) < 0 it is clear that δr̂(C) ≥ δr̂(C∗). ■

Step 2: If C ̸⊇ C∗ then δ(C) ≥ 0.

Proof. Suppose that C ̸⊇ C∗. Then there exists D∗ ∈ C∗ such that D∗ /∈ C. By

Step 1, δr̂(C ∪ {D∗}) ≥ δ(C∗) = − 1
2|C∗|ε. Also by definition of r̂, δr̂({D∗}) = − 1

2|C∗|ε

so δr̂(C) = δr̂(C ∪ {D∗})− δr̂({D∗}) ≥ 0. ■

□

We finally prove the statement of the lemma:

Claim A.9. There exists a flow r∗ from ∅ to X such that δr∗(C∗) < 0 and δr∗(C) ≥ 0

for any other essential test collection C ̸= C∗.

Proof. For each essential test collection C such that C∗ ̸⊇ C, choose DC ∈ C \ C∗.

Let F be the collection of such DC. (Since the number of test collections is finite, F
is a finite collection.) Define r∗ ≡ αr̂+ (1− α)

∑
DC∈F

1
|F|r

2
DC

. Then for any essential

test collection C, δr∗(C) = αδr̂(C) + (1 − α)
∑

DC∈F
1
|F|δr2DC

(C). Since δr2DC
(DC) > 0,

there exists α small enough such that for any essential test collection C such that

C∗ ̸⊇ C, we have δr∗(C) ≥ 0.

Note that δr∗(C∗) = − α
2|C∗|ε. Note also that r2DC

does not decrease values of δ for

any test collection. Thus by statement (ii) of the previous claim, we have if C ̸⊇ C∗

then δr∗(C) ≥ 0. It follows that δr∗(C∗) < 0 and δr∗(C) ≥ 0 for any other essential

test collection C ̸= C∗. ■
35Note that A∗ ∪X∗ ∈ C∗.
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A.8.2 Proof of statement (ii) in Lemma A.3

Choose any arc (D \ x,D) with x ∈ X \ X∗, D \ x ̸= ∅, D ̸= X. Let D̂ ≡ {D |
there exists an essential test collection C such that D ∈ C}. We will consider two

cases:

Case 1: Dc ∩ (X \X∗) ̸= ∅. Let Π1 be a ∅ to X dipath which avoids any nodes

in D̂. (Such a dipath exists by Claim A.3 in Section A.8.) Let Π2 be a dipath from ∅
to D which passes through D∩ (X \X∗). Let Π3 be a D \x to X dipath which passes

through D ∪ (X \X∗) but not D. Such a dipath exists because Dc ∩ (X \X∗) ̸= ∅
implies that there exists an observable alternative y ∈ Dc ∩ (X \X∗) and there exists

an arc (D \ x,D ∪ y \ x). Fix ε > 0 and define

r∗ ≡ (1− ε)rΠ1 + εrΠ2 − εr(D\x,D) + εrΠ3 .

By definition, r∗(D \ x,D) < 0 and r∗(E \ y, E) ≥ 0 for any (E, y) such that y ̸∈ X∗

and (D, x) ̸= (E, y). Moreover, for any essential test collection C, δr∗(C) ≥ 0. To see

this notice that the flow rΠ1 does not change any value of δr(C) for any essential test

collection. By the definition of r∗, we have δr∗({D \ x}) = 0 and δr∗({D}) ≥ 0.36

For all other nodes E, δr∗({E}) = 0. Thus, we have δr∗(C) ≥ 0 for any essential test

collection C.

X

D ∪ (X∗)c

D \ x

D

D \X∗

∅

+ε

+ε−ε

+ε

+ε

X

D \ x ∪X∗

D \ x

D

D \X∗

∅

+ε

+ε−ε

+ε

+ε

Note: The left figure shows the construction of flows rΠ2 , rΠ3 , and r(D\x,D). Solid arrows correspond to observable

flows and dotted arrows correspond to unobservable flows. The right figure shows the construction of flows rΠ2 , rΠ4 ,

and r(D\x,D). Solid arrows correspond to observable flows and dotted arrows correspond to unobservable flows.

36δr∗({D}) is either 0 or ε.

38



Case 2: Dc ∩ (X \X∗) = ∅. This means that D contains all elements in X∗.

Notice (D \ x) ∩X∗ ̸= X∗ since otherwise D = X. So let Π4 be a D \ x to X dipath

that passes through (D \x)∪X∗. (Note that the last arc is observable arc (X \x,X),

where x ̸∈ X∗.) Define

r∗ ≡ (1− ε)rΠ1 + εrΠ2 − εr(D\x,D) + εrΠ4 .

By definition, r∗(D \ x,D) < 0 and r∗(E \ y, E) ≥ 0 for any (E, y) such that y ̸∈ X∗

and (D, x) ̸= (E, y). Moreover, for any essential test collection C, δr∗(C) ≥ 0. To see

this notice (i) δr∗({D \ x}) = −ε but δr∗({(D \ x) ∪X∗}) = ε; (ii) any test collection

C containing D \ x contains (D \ x)∪X∗. (i) and (ii) implies that the negative value

of δr∗({D \ x}) is cancelled by the positive value of δr∗((D \ x) ∪X∗). For all other

nodes E, δr∗({E}) = 0. Thus, we have δr∗(C) ≥ 0 for any essential test collection C.

A.8.3 Proof of Corollary A.4

Fix C∗ ⊆ D. By Lemma A.3, there exists r ∈ R{(D\x,D)|x∈D∈2X} that satisfies condi-

tions (a) and (b). By Lemma 3.14, there exists a complete dataset ρ̂ ∈ R
{(D,x)|x∈D∈2X}
+

such that
∑

x∈D ρ̂(D, x) = 1 for all D ∈ 2X and K(ρ̂, D, x) = r(D \ x,D) for any

(D, x) such that x ∈ D ∈ 2X . Let ρ∗ be the projection of ρ̂ on M \ M∗. In the

following, we will show that δρ∗(C∗) < 0 and δρ∗(C) ≥ 0 for all essential test collection

C ⊆ D except C∗.

Let δρ̂ be the function defined by (13) with respect to the complete dataset ρ̂

with D = 2X and X∗ = ∅.37 Let δρ∗ be the function defined by (13) with respect

to the incomplete dataset of ρ∗ with given D and X∗. Remember δr is the function

defined by (14). Note that for any test collection C ⊆ D

δr(C) = δρ̂(C) = δρ∗(C),

where the first equality holds becauseK(ρ̂, D, x) = r(D\x,D) and the second equality

holds because the value of δ does not depend on the values of ρ̂ and ρ∗ on M∗. Thus,

we have δρ∗(C∗) < 0 and δρ∗(C) ≥ 0 for all essential test collection C ⊆ D except C∗.

37That is, δρ̂(C) =
(∑

(D,x):D∈C,D∪x ̸∈C K(ρ̂, D ∪ x, x)−
∑

(E,y):E ̸∈C,E∪y∈C K(ρ̂, E ∪ y, y)
)

+ 1{X ∈ C, ∅ ̸∈ C} − 1{∅ ∈ C, X ̸∈ C}.
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A.9 Proof of Proposition 5.7

For each (E, y) such that y ∈ E, define a(E,y) ∈ RD×X by

a(E,y)(D, x) =


−1 if y = x and |D \ E| is even,
+1 if y = x and |D \ E| is odd,
0 otherwise.

For any ρ ∈ P , we have a(E,y) · ρ = −K(ρ, E, y). For each (E, y), define a se-

quence (Di, xi) so that each (D, x) appears −a(E,y)(D, x) + 1 times. Notice that

since a(E,y)(D, x) ∈ {−1, 0, 1}, we have −a(E,y)(D, x) + 1 ∈ {0, 1, 2}. Then we have∑n
i=1 ρ(Di, xi) = (−a(E,y) + 1) · ρ = −K(ρ, E, y) + (2|X| − 1). So

∑n
i=1 ρ

≻(Di, xi) =

−K(ρ≻, E, y) + (2|X| − 1) for each ≻∈ L. Moreover, max≻∈L
∑n

i=1 ρ
≻(Di, xi) =

max≻∈L −K(ρ≻, E, y) + (2|X| − 1) = −min≻∈L K(ρ≻, E, y) + (2|X| − 1) = 2|X| − 1,

where the last equality holds because K(ρ≻, E, y) = 0 if x ≻ y for some x ∈ E and

K(ρ≻, E, y) ≥ 0 for any ≻∈ L. Therefore

K(ρ, E, y) ≥ 0 ⇔ max
≻∈L

n∑
i=1

ρ≻(Di, xi) ≥
n∑

i=1

ρ(Di, xi) ⇔ R((Di, xi)
n
i=1, ρ) ≥ 0,

where the first equivalence holds because ρ≻(Di, xi) = 1(xi ≻ yi∀yi ∈ D \ xi). Since

each (D, x) appears at most twice in the sequence {(Di, xi)}, the nonnegativity of each
BM polynomial corresponds to the nonnegativity of a MR polynomial defined with

sequence where the same (D, x) appears in the sequence at most twice. This implies

statement (i). However, the converse does not hold: Not all of the nonnegativity

conditions of a MR polynomial correspond to the nonnegativity conditions of BM

polynomials as one can see from the construction above. Thus statement (ii) also

holds.
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B Online Appendix

B.1 Random utility polytope

Remark B.1. For each ranking ≻∈ L and (D, x) ∈ M \M∗, define

ρ≻(D, x) =

{
1 if x ≻ y for all y ∈ D \ x;
0 otherwise.

(26)

The stochastic choice function ρ≻ gives probability one to the best alternative x in a

choice set D according to the ranking ≻. The set of RU-rationalizable datasets is a

polytope, that is, co.{ρ≻ |≻∈ L}, where co. denotes the convex hull. Our theorem

characterizes all facet defining inequalities of the polytope.

ρπ1ρπ2

ρπ3

ρπ4 ρπ5

ρπ6

Figure 4: Random utility polytope

The hexagons in Figure 4 illustrates the polytope. Although the geometric intu-

ition is useful, it is important to notice that the figure oversimplifies the reality since

the number (i.e., |X|!) of vertices and the dimension of a random utility function can

be very large.38

B.2 Further simplification of bounds when D = 2X \ ∅

In this section, we assume that D = 2X \∅, we provide further simplification of bounds

of unosbservavle choice frequencies.

38To see why the dimension of a random utility function can be very large, notice that it assigns
a number for each pair of (D,x) ∈ M \M∗.
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Corollary B.2. Let D = 2X \ ∅. For (D, x) ∈ M∗, the upper bound is obtained by

ρ(D, x) = max
{r(D\x,D)}(D,x)∈M∗

∑
A′:A⊆A′⊆X\X∗

∑
E′:E⊆E′⊆X∗

r(A′ ∪ E ′ \ x,A′ ∪ E ′) (27)

subject to∑
y∈E′

r(A′ ∪ E ′ \ y, A′ ∪ E ′)−
∑

y∈X∗\E′

r(A′ ∪ E ′, A′ ∪ E ′ ∪ y) = δρ(A
′ ∪ E ′) (28)

for all A′ ⊆ X \X∗ and E ′ ⊆ X∗. The lower bound ρ(D, x) solves a similar problem

with a min replacing the max.

Remark B.3.

• The form of (28) implies that for A′, A′′ ⊆ X \X∗, E ′, E ′′ ⊆ X∗, and y ∈ E ′, z ∈
E ′′, if A′ ̸= A′′, then variables r(A′∪E ′ \ y, A′∪E ′) and r(A′′∪E ′′ \ z, A′′∪E ′′)

are independent; either of them does not restrict the other via the constraints

(28).

• This means that each constraint can be considered separately.

• Therefore, we can optimize the inner sum of (27) separately. That is, the max-

imum value of the problem is equivalent to the sum of the maximum values of

the following problems for all A′ such that A ⊆ A′ ⊆ X \X∗ :

max
{r(D\x,D)}(D,x)∈M∗

∑
E′:E⊆E′⊆X∗

r(A′ ∪ E ′ \ x,A′ ∪ E ′) (29)

subject to (28) for all E ′ ⊆ X∗.

• A large linear program (27) is now decomposed into smaller problems (29), which

improves the computational efficiency, especially when A is large.
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