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Abstract

We study an assignment market where multiple heterogenous objects are sold to unit
demand agents who have general preferences that accommodate income effects and market
frictions. The minimum price equilibrium (MPE) is one of the most important equilibrium
notions in such settings. Nevertheless, none of the well-known mechanisms that find the
MPEs in the quasi-linear environment can identify or even approximate the MPEs for
general preferences. We establish novel structural characterizations of MPEs and design
the “Serial Vickrey (SV) mechanism”based on the characterizations. The SV mechanism
finds an MPE for general preferences in a finite number of steps. Moreover, the SV
mechanism only requires agents to report finite-dimensional prices in finitely many times,
and also has nice dynamic incentive properties.
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1 Introduction

1.1 Motivation and main results

In auction and matching theory, quasi-linearity of preferences is commonly assumed. It means
that the payment for a good has no limit and exhibits no income effect for its demand, or
utilities are perfectly transferable among agents. Quasi-linearity simplifies analysis and makes
linear programming techniques applicable to auction and matching problems (Vohra, 2011).1

Nevertheless, there are many important practical applications that lead to the non-quasi-
linearity of preferences. In the spectrum license auctions in OECD countries, private firms
often borrow to pay for the huge winning bids and face non-linear borrowing costs (Klemperer,
2004). Thus their utility derived from spectrum licenses changes non-linearly with respect to
their actual payments. Distortional taxes like transaction taxes are widely seen in practical
transactions. Even if agents have quasi-linear preferences over objects, introducing transaction
taxes that proportionally charge the payments makes agents’utility change non-linearly with
respect to the actual transfers (Fleiner et al. 2019).
The properties of Walrasian equilibria beyond the quasi-linear environment such as its

equivalence to stability notions, lattice properties, and rural hospital theorems gradually attract
more and more attention, see. e.g., Crawford and Knoer (1981), Quinzi (1984), Demange
and Gale (1985), Noldeke and Samuelson (2018), Fleiner et al. (2019), and Schlegel (2021).
However, little progress has been made of how to obtain some desirable Walrasian equilibrium
via mechanisms with nice properties of information revelation and incentives for non-quasi-
linear preferences. We are motivated to fill such a research gap.
This paper builds on the assignment market model where multiple heterogenous objects

are sold to unit demand agents whose preferences are not necessarily quasi-linear, i.e., they
have general preferences. In this setting, a Walrasian equilibrium always exists and there is
a minimum price equilibrium (MPE) whose price (vector) is coordinate-wise minimum among
all equilibrium prices. The MPE plays a central role in the effi cient and incentive-compatible
mechanism design, and the MPE rule, which maps to each preference profile an MPE, is char-
acterized by effi ciency, strategy-proofness, and fairness.2 However, the definition of MPE con-
tains no formula to identify its price or allocation. Moreover, the previous characterizations
of MPE provide no clue to find MPEs for general preferences. We establish novel structural
characterizations of MPEs that provide bases to construct a mechanism that finds an MPE
for general preferences. The mechanism has nice incentive properties and has agents reveal
finite-dimensional information on their preferences in a finite number of times.
When agents have quasi-linear preferences, the MPE is known to be equivalent to the

1The recent development of (discrete) convex analysis and tropical geometry techniques relies on quasi-
linearity, e.g., Murota (2003) and Baldwin and Klemperer (2019).

2See, e.g., Morimoto and Serizawa (2015), Zhou and Serizawa (2018), and Kazumura et al. (2020).
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Vickrey outcomes (Leonard, 1983). The sealed-bid Vickrey auction (Leonard, 1983), the exact
auction of Demange et al. (1986), and the approximate auction of Demange et al. (1986),
originating from the salary adjustment process in Crawford and Knoer (1981), are the well-
known mechanisms to find the MPEs. However, Zhou and Serizawa (2021) exemplify that
none of these mechanisms identify or even approximate the MPEs and fail to be effi cient and
incentive-compatible when agents have general preferences (See also Section 3.2), i.e.:
• The sealed-bid generalized Vickrey auction fails to identify the MPE.
• The exact auction of Demange et al. (1986) can overshoot the MPE price arbitrarily far.
• The approximate auction of Demange et al. (1986) may overshoot or undershoot the MPE

price arbitrarily far.
• The price paths of the continuous versions of the above exact and approximate auctions

may not be well defined.
Zhou and Serizawa (2021) further point out that other mechanisms that find MPEs in

the quasi-linear environment proposed by Mishra and Parkes (2010), Andersson and Erlanson
(2013), and Liu and Bagh (2019), face the similar shortages as the auctions in Demange et
al. (1986). Gul and Stacchett (2000), Ausubel (2006), and Sun and Yang (2006) also propose
auctions that identify the MPEs when agents have multi-unit demand quasi-linear preferences.
However, when applied to the unit-demand settings, their auctions coincide with the exact
auction of Demange et al. (1986), and so face the same problem as pointed above. The salary
adjustment process of Kelso and Crawford (1982) and the cumulative offers process proposed
by Hatfield and Milgrom (2005) coincide with the approximate auction when applied to our
models. Therefore their processes face the same shortage as pointed above.
The above discussion indicates the challenges of our research. Therefore, designing desirable

mechanisms that implement the MPE for general preferences requires novel analysis of the
properties of Walrasian equilibrium and the MPE.
Our main results consist of two parts, which is illustrated in Section 3.3.
The first part analyzes the properties of Walrasisan equilibria and MPE, stated as Propo-

sition 1, Theorems 1 and 2.
Given an arbitrary Walrasian equilibrium, agents and objects can be partitioned via the

“connectedness”property. An object is connected if either it is unassigned or is connected to
an object with zero price via a sequence of distinct agents’demands, each demanding both her
assigned object and the object assigned to the successive agent. An agent is connected if she
either gets a connected object or nothing.
Proposition 1 shows that a Walrasian equilibrium is an MPE if and only if each object is

connected/each agent is connected. Thus, the difference between an MPE and an arbitrary
Walrasian equilibrium is whether all the agents and objects are connected.
We further argue that we can always find an MPE from an arbitrary Walrasian equilibrium,

by employing an adjustment process that makes the unconnected agents and objects at the
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given Walrasian equilibrium eventually become connected. This process is called the “I pay
others’indifference prices process.”We characterize the link between an arbitrary Walrasian
equilibrium to an MPE through this process in Theorems 1 and 2. Theorems 1 and 2 show the
novel and robust structural properties of Walrasian equilibria beyond the quasi-linear settings.
The second part is to use above characterization results (See Table 1 below) to design the

“Serial Vickrey (SV) mechanism.”The SV mechanism obtains an MPE via finite-dimensional
revelation in finitely many times and moreover is dynamically incentive compatible, as stated
in Theorems 3 and 4.
The SV mechanism elicits agents’preference information by asking agents to report “in-

difference prices” in finitely many times. An agent’s indifference price of an object is her
willingness to pay for the object, evaluated from her provisionally assigned bundle (object-
payment pair). In the quasi-linear environment, an agent’s preference is simply presented by
a finite-dimensional vector of valuations. However, revealing the general preference is infinite-
dimensional information revelation.
The SV mechanism introduces objects one by one, and based on an MPE for k objects, it

employs the “SV sub-mechanism,”to find an MPE for k+1 objects. When introducing the first
object, the SV sub-mechanism coincides with the second-price auction. In general, the SV sub-
mechanism contains two stages. Given an MPE for k objects, Stage 1 constructs a Walrasian
equilibrium for k + 1 via the “Equilibrium-generating mechanism.” If there are agents and
objects that are not connected, we further proceed to Stage 2. Stage 2 conducts reassignment
and price adjustment of unconnected objects among unconnected agents via “MPE-assignment
mechanism.”Stage 2 is not a replication of Theorems 1 and 2, and it is a process drawn on
these results that iteratively finds an MPE.

Table 1: The connection between characterization results and SV sub-mechanism
Characterization Implication in the SV sub-mechanism

Prop. 1 Stage 1: Equilibrium-generating mechanism (Def. 5)
Thms 1 & 2 Stage 2: The MPE-assignment mechanism (Def. 7)

Finally, we show that no agent can benefit from misreporting within each SV sub-mechanism
that obtains the MPE with k + 1 objects from the MPE with k objects. Besides, no agent can
benefit from misreporting even in each stage within a given SV sub-mechanism.

1.2 Related literature

The practice-driven and technique-driven investigation of auction and matching theory for gen-
eral preferences attract more and more attention. It roughly goes into the following directions.
The first direction is to study the optimal mechanism design of Myerson (1980)’s framework,

by allowing agents to have non-quasi-linear preferences over alternatives, see, e.g., Baisa (2016,
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2017) and Gershkov et al. (2021). They develop new techniques that substantially improve the
Myersionian approach of analyzing the optimal mechanism.
The second direction is to study effi ciency, strategy-proofness, and fairness properties of rules

such as the generalized Vickrey rules, the MPE rules, the minimum rationing price equilibrium
rule, and the cumulative offer rules when agents have general preferences, see, e.g., Andersson
and Svensson (2014), Afacan (2017), Morimoto and Serizawa (2015), Baisa (2020), Malik and
Mishra (2021), and Hatfield et al. (2021). Although rules are functions/correspondences, these
characterizations help justify the importance of some particular solution concepts like the MPE
and show the possible range/domains that might admit mechanisms with desirable properties.
For example, if we extend our model by allowing agents to have multi-unit demand, there
is no effi cient and strategy-proof rule (Baisa, 2020). Thus, to design effi cient and incentive-
compatible mechanisms in the non-quasi-linear environment, we generally need to focus on the
case where agents have unit demand.
The third direction is to study the properties of Walrasian equilibria and some other solution

concepts from the cooperative game theory like stable outcomes and core outcomes. The main
focus is to establish the equivalence result between Walrasian equilibrium and cooperative game
theoretical solution concepts, the lattice property of Walrasian equilibrium, and rural hospital
theorems for Walrasian equilibrium, see, e.g., Quinzi (1984), Demange and Gale (1985), Fleiner
et al. (2019), and Schlegel (2021). There are also works that study the above properties of
Walraisan equilibria in the matching models with various types of constraints such as price
controls and employment constraints, see, e.g., Herings (2018) and Kojima et al. (2020).
Noldeke and Samuelson (2018) study the duality relationship without quasi-linearity in the
one-to-one two-sided matching model, and characterize the duality of implementable profiles
and assignments via the Galois connection. The Galois connection is a pair of mappings without
any detailed process to identify the stable outcomes.
On the other hand, how to compute or implement some particular equilibrium notion via

mechanisms with socially desirable properties is also of great importance. The above results
are important in understanding the structure and properties of certain equilibrium concepts,
but not very helpful in implementing particular solution concepts.
To proceed the study of equilibrium computation or equilibrium implementation via desir-

able mechanisms, the starting point is to analyze some structural properties of equilibria. Some
attempts have been made in various models with general preferences.
In the same model as ours, Caplin and Leahy (2014) characterize the MPE price via the

graph-allocation structure, which initiates Caplin and Leahy (2020) to employ the homotopy
method to conduct the comparative static analysis of the MPE. They conjecture the possibility
of designing mechanisms for the MPE based on their graph-allocation structure. The graph-
allocation characterization exhausts all connections between all agents and objects via the forest
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formation, which is different from our results.3 This paper instead provides a dynamically
incentive-compatible mechanism that iteratively obtains an MPE.
In the model of Demange and Gale (1985), Alaei et al. (2016) show that one-sided optimal

outcome can be obtained recursively via the optimal outcomes of two sides in all possible sube-
conomies. Their result indicates that in our model, the MPE can be characterized recursively
via the MPE and maximum price equilibrium for all possible subeconomies. In contrast, the
SV mechanism only requires the MPE for the subeconomies with fewer object.4 Besides, the
SV mechanism iteratively finds an MPE and has the dynamic incentive property. Section 7
also details some applications of our results that are not covered by theirs.
In the assignment market with price controls, Andersson and Svensson (2018) construct

a finite ascending-price sequence that finds a “minimum rationing price equilibrium.” This
sequence terminates at an MPE price in our model. It is not clear how to identify two adjacent
prices in the sequence in finitely many steps so their construction is different from the SV
mechanism. Galichon et al. (2019) provide the theoretical model with potential application to
structural estimation of imperfectly transferable utilities in the one-to-one two-sided matching
model. They define an aggregate equilibrium that can be characterized by a system of equations
in terms of matching pairs. Their proposed equilibrium is different from the MPE, and the
corresponding characterization does not hold for the MPE.
Notice that our SV mechanism is also essentially different from the equilibrium existence

proof via the Scarf lemma (Quinzi, 1984) or the tatonnement process in the spirit of Kelso
and Crawford (1982). These approaches in general obtain an approximate equilibrium in the
economies by using the piece-wise utility functions or with discretized payments, and then take
the limit argument. Thus the finite information revelation and incentive property are lost.
Overall, our main contribution is placed on the third direction of existing literature that

develops the auction and matching theory with non-quasi-linear preferences. We provide results
that characterize new structural properties of Walrasian equilibria. These properties provide
novel insights in implementing equilibrium notions via mechanisms with desirable informational
and incentive properties for general preferences.
The remainder is organized as follows: Section 2 defines the model and MPEs. Section

3 illustrates the SV mechanism. Section 4 gives the structural characterizations. Sections 5

3In Caplin and Leahy (2014), objects are nodes and agents’ indifference prices between two objects form
branches. In our language, see, Theorem 1, to generate a price for an arbitrary assignment of m unconnected
agents, the IPOIP process operates at most m rounds. However, they first obtain a price for each forest and
then choose the coordinate-wise price as the price for the given assignment. Notice that the number of forests

that supports the given assignment is
m∑
k=1

Ckm · k ·mm−1−k.

4Suppose that there are more agents than objects, i.e., n > m. In the worst-case scenario, the number of
subeconomies that the SV mechanism deals with is m + 2! + · · · +m!. It is independent of n. The number of

subeconomies that Alaei et al. (2016) deal with is m · n+
m−1∑
k=1

m! · n!\(m− k)! · (n− k)!.
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presents SV mechanism and shows its convergence property. Section 6 shows the incentive
property of the SV mechanism. Section 7 concludes by providing further discussion.

2 The model and minimum price equilibrium

There are finite sets of agents N ≡ {1, . . . , n} and objects M ≡ {1, . . . ,m}. Objects are
allowed to be heterogenous or identical. Receiving nothing is called receiving object 0. Let
L ≡ M ∪ {0}. Each agent has unit demand: She receives at most one object. The bundle
for agent i is a pair zi ≡ (xi, ti) ∈ L×R, consisting of an object xi ∈ L and a payment ti ∈ R.
Each agent i has a complete and transitive preference Ri over L × R. Let Pi and Ii be the
associated strict and indifference relations.
We focus on the general preference Ri that satisfies the following two standard properties:

Money monotonicity: For each xi ∈ L, each pair ti, tj ∈ R, if ti < t′i, (xi, ti)Pi (xi, t
′
i).

Finiteness: For each ti ∈ R, each pair xi, xj ∈ L, there is tj ∈ R such that (xi, ti) Ii (xj, tj).

Money monotonicity states that for a given object, a lower payment makes the agent better
off. Finiteness says that no object is infinitely good or bad. Let R be the set of general
preferences and R ≡ (Ri)i∈N ∈ Rn be a preference profile.
By money monotonicity and finiteness, for each Ri ∈ R, each zi ∈ L × R and each y ∈

L, there is a unique amount Vi(y; zi) ∈ R such that (y, Vi(y; zi)) Ii zi. We call Vi(y; zi) the
indifference price of y at zi for Ri.
An assignment market is summarized by (N,M,R). We fix an assignment market till

we come to analyze the incentives in Section 6.
Let x ≡ (x1, . . . , xn) ∈ Ln be an (object) assignment such that except for object 0,

no two agents get the same object. Let X be the set of assignments. Given x ∈ X, let
t ≡ (t1, . . . , tn) ∈ Rn denote the associated payment. An allocation is a list of bundles
z ≡ (x, t) ≡ (z1, . . . , zn) ∈ [L×R]n such that (x1, . . . , xn) ∈ X. We denote the set of allocations
by Z. Given z ∈ Z and N ′ ⊆ N , let zN ′ ≡ (zi)i∈N ′ and zN\N ′ ≡ (zi)i∈N\N ′ .
Let p ≡ (px)x∈M ∈ Rm+ be a price (vector). Without loss of generality, assume the price

of object 0 and all reserve prices of objects are zero. Agent i′s demand set at price p is
defined as Di(p) ≡ {x ∈ L : (x, px)Ri (y, py), ∀y ∈ L}, i.e., the set of objects that maximizes
the agent’s welfare at the given price.
The solution concept that we use is the standard Walrasian equilibrium.

Definition 1: A pair (z, p) ∈ Z × Rm+ is a Walrasian equilibrium if

for each i ∈ N , xi ∈ Di(p) and ti = pxi , (E-i)

for each y ∈ M , if for each i ∈ N , xi 6= y, then py = 0. (E-ii)
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(E-i) says that each agent i receives a bundle zi consisting of a demanded object xi and a
payment ti equal to the price of xi. (E-ii) says that prices of unassigned objects are zero.
When agents have general preferences as defined above, there is a Walrasian equilibrium

(Alkan and Gale, 1990). In particular, Demange and Gale (1985) show the following result.

Fact 1: The set of Walrasian equilibrium prices is a complete lattice.

Therefore, among all Walrasian equilibrium prices, there is a unique coordinate-wise min-
imum price pmin. A minimum price equilibrium (MPE) is a Walrasian equilibrium sup-
ported by pmin. Since indifferences in preferences are admitted, MPE allocations may not be
unique, but they are welfare-equivalent: each agent i has the same welfare across all the MPEs.

3 An illustrative example

In this section, we illustrate an MPE (Section 3.1), differences between the quasi-linear pref-
erences and general preferences (Section 3.2), and the sketch idea of how the SV mechanism
finds an MPE (Section 3.3).

3.1 The assignment market

There are two objects M = {a, b}, and three agents N = {1, 2, 3}. We use utility functions to
represent the preference profile R.
The utility that an agent obtains by getting object 0 and paying 0 is zero, i.e., for each

i ∈ N , ui(0, 0) = 0. Agent 1 has the quasi-linear utility function:

u1(x, px) =

{
−1− pa
6.1− pb

if x = a

if x = b

where agent 1’s valuation of object a is −1 and that of object b is 6.1.
Agent 2’s utility function is not quasi-linear in the sense that the marginal utility of payment

is non-identical between objects a and b. Her utility function is given by

u2(x, px) =

{
5.8− pa

84.5− 13pb

if x = a

if x = b

where agent 2’s valuation of object a is 5.8 and that of object b is 84.5.
Agent 3’s utility function is in the same manner as agent 2, which is given by

u3(x, px) =

{
5.85− pa
41.7− 6pb

if x = a

if x = b

where agent 2’s valuation of object a is 5.85 and that of object b is 41.7.
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We remark that preferences with different price-slopes for different objects are widely used
in the online position auctions.

The minimum price equilibrium (MPE)

In the above assignment market, the MPE prices of objects a and b are

pmin = (pmin
a , pmin

b ) = (0.6, 6.1).

There is a unique MPE assignment: Agent 1’s assigned object is xmin
1 = 0, agent 2’s assigned

object is xmin
2 = b, and agent 3’s assigned object is xmin

3 = a. Thus the MPE allocation is as
follows:

Agent 1 : zmin
1 = (xmin

1 , 0) = (0, 0).

Agent 2 : zmin
2 = (xmin

2 , pmin
b ) = (b, 6.1).

Agent 3 : zmin
3 = (xmin

3 , pmin
a ) = (a, 0.6).

In the following, we show that (zmin, pmin) is an MPE.
First, we show that (zmin, pmin) is a Walrasian equilibrium. For each agent i, recall that

Di(p) = {x ∈ {0, a, b} : ui(x, px) ≥ ui(y, py), ∀y ∈ {0, a, b}}. For agent 1, since

u1(0, 0) = 0 = u1(b, 6.1) = 6.1− 6.1 > u1(a, 0.6) = −1− 0.6,

it holds that D1(pmin) = {0, b} and so xmin
1 = 0 ∈ D1(pmin). Similarly, for agents 2 and 3,

we have that xmin
2 = b ∈ D2(pmin) = {a, b} and xmin

3 = a ∈ D3(pmin) = {a}. Thus (E-i) in
Definition 1 holds. (E-ii) in Definition 1 holds vacuously.
Second, we show that (zmin, pmin) is an MPE. Let p′ = (p′a, p

′
b) be a Walrasian equilibrium

price. We show that p′a ≥ pmin
a = 0.6 and p′b ≥ pmin

b = 6.1. By contradiction, suppose not,
i.e., p′a < 0.6 or p′b < 6.1. In case of p′a < 0.6 and p′b < 6.1, no agent demands object 0, and
so at least one agent cannot receive a demanded object. In case of p′a < 0.6 and p′b ≥ 6.1,
D2(p′) = D3(p′) = {a}, either agent 2 or agent 3 cannot receive a demanded object. In case of
p′a ≥ 0.6 and p′b < 6.1, D1(p′) = D2(p′) = {b}, either agent 1 or 2 cannot receive a demanded
object. All these three cases lead to the contradiction that p′ is an equilibrium price.

3.2 Quasi-linear preferences versus general preferences

It is worth discussing the points on which non-quasi-linearity drastically alters the results ob-
tained for quasi-linear preferences. The first point is on the assignment. Note that a Walrasian
assignment for quasi-linear preferences is also an MPE assignment for the same preferences.
This is not true for non-quasi-linear preferences. For instance, in the assignment market of
Section 3.1, (z, p) where z1 = (0, 0), z2 = (a, 5.8), z3 = (b, 6.5), and p = (pa, pb) = (5.8, 6.5) is
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a Walrasian equilibrium where agent 2 gets a and 3 gets b. However, at the unique MPE as-
signment, agents 2 and 3 obtain object b and a respectively. Thus, non-quasi-linear preferences
complicate the analysis of the MPE assignment.
The second point is that standard mechanisms such as the VCG mechanism, the exact and

approximate auctions of Demange et al. (1986), which are designed for quasi-linear preferences,
fail to work in non-quasi-linear environments (See also the discussion in the introduction). The
VCG mechanism uses agents’valuations on objects to compute assignments and payments.
However, for non-quasi-linear preferences, since agents’ valuations on objects are not well-
defined, the VCG mechanism cannot be applied. Morimoto and Serizawa (2015) demonstrate
that a natural generalization of the VCG mechanism for non-quasi-linear preferences no longer
generates the MPE, and fails to satisfy effi ciency and strategy-proofness.
To discuss two auctions of Demange et al. (1986), consider the assignment market in

Section 3.1 and assume the unit price increment. The exact auction generates an outcome
price (p′a, p

′
b) = (6, 7). The approximate auction generates an outcome price (p′′a, p

′′
b ) = (5, 6).5

For the outcome of exact auction, the price p′a = 6 of object a largely deviates from its
MPE price pmin

a = 0.6. Zhou and Serizawa (2021) demonstrate that even though an increment
is fixed, the outcome price of the exact auction can deviate from the MPE price arbitrarily large,
which may cause arbitrarily large ineffi ciency and incentives to misreport.
For quasi-linear preferences, Demange et al. (1986) show that the approximate auction

generates an outcome price that deviates from the MPE price at most by min{|M | , |N |}.
However, pmin

a = 0.6 and the deviation (5−0.6) is larger than the upper boundmin{|M | , |N |} =

2. Thus, in non-quasi-linear environments, the outcome price of the approximate auction may
deviate from the MPE price more than the upper bound. Indeed, Zhou and Serizawa (2021)
demonstrate that in non-quasi-linear environments, even though an increment is fixed, the
outcome price of the approximate auction can deviate from the MPE price arbitrarily large,
which may cause arbitrarily large incentives to misreport.
Zhou and Serizawa (2021) further demonstrate that for some non-quasi-linear preferences,

the price paths of continuous versions of above two auctions are not be well defined. Thus, the
problematic implications of above two auctions in non-quasi-linear settings are not due to the
discreteness of price increments, but due to the non-quasi-linearity of preferences.

3.3 The Serial Vickrey (SV) mechanism: an illustration

The SV mechanism introduces objects one by one, and consists of m steps, i.e., each step
introduces one additional object. Step k finds an MPE for k objects by employing the “SV
sub-mechanism,”which consists of two stages:

5See Online Appendix for computation details of these two outcomes. The bidding order we use in the
approximate auction is agents 1, 2, and 3. Given a bidding order, there is some utility profile whose outcome
price of the approximate auction is arbitrarily far from its MPE price (Zhou and Serizawa, 2021).
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• Stage 1 constructs a Walrasian equilibrium with k objects from the MPE with k− 1 objects.
• Stage 2 finds an MPE by reassigning objects and adjusting prices of the Walrasian equilibrium
constructed in Stage 1.

Finite dimensionality of transmitted information: indifference price

In the SV mechanism, agents report their indifference prices defined in Section 2 to transmit
information of their preference. For example, agent i’s indifference price of object b at bundle
(a, pa) is Vi(b; (a, pa)) such that

ui(b, Vi(b; (a, pa))) = ui(a, pa).

Note that since there is only a finite number of objects and agents, the transmitted information
in each stage of each step is always finite-dimensional. The SV mechanism transmits such
information in a finite number of times. This is an important feature of the SV mechanism.

Illustration of the SV mechanism for the assignment market in Section 3.1

Step 1: Initially we assign the null bundle (0, 0) to each agent. We introduce an object, say,
object a, and obtain an MPE for the assignment market with only object a.

Each agent reports her indifference price of object a at (0, 0). That is, agent 1 reports
V1(a; (0, 0)). Since

0 = u1(0, 0) = u1(a, V1(a; (0, 0))) = −1− V1(a; (0, 0)),

V1(a; (0, 0)) = −1. Similarly, agent 2 reports V2(a; (0, 0)) = 5.8, and agent 3 reports V3(a; (0, 0)) =

5.85. We treat the reported indifference prices as agents’bids and conduct the second-price
auction. Since V3(a; (0, 0)) > V2(a; (0, 0)) > V1(a; (0, 0)), we assign (a, pa) to agent 3 with
pa = V2(a; (0, 0)) = 5.8, the second highest indifference price. We assign (0, 0) to agents 1 and
2. The outcome of SV mechanism at Step 1 is ((0, 0), (0, 0), (a, pa), pa), which is an MPE for
the assignment market with only object a.

Step 2: Each agent starts with the bundle assigned in Step 1. We introduce object b and obtain
an MPE for the assignment market with objects a and b in two stages. Stage 1 constructs a
Walrasian equilibrium for the assignment market with objects a and b. If the constructed
equilibrium is not an MPE, we proceed to Stage 2 and reassign objects and adjust prices.

Stage 1: Construction of a Walrasian equilibrium for objects a and b

Each agent reports her indifference price of object b at the bundle assigned in Step 1. For
example, agent 3 gets (a, 5.8) in Step 1 and she reports V3(b; (a, 5.8)). Since

5.85− 5.8 = u3(a, 5.8) = u3(b, V3(b; (a, 5.8))) = 41.7− 6× V3(b; (a, 5.8)),

V3(b; (a, 5.8)) = 6.94. Accordingly, agents 1 and 2 are assigned (0, 0) in Step 1, and they report
V1(b; (0, 0)) = 6.1 and V2(b; (0, 0)) = 6.5.
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We treat the reported indifference prices as agents’bids and conduct a variant of the second-
price auction. Since V3(b; (a, 5.8)) > V2(b; (0, 0)) > V1(b; (0, 0)), we assign (b, pb) to agent 3 with
pb = V2(b; (0, 0)) = 6.5, the second highest indifference price. We assign to agent 1 the null
bundle (0, 0), but assign to agent 2 (a, pa), agent 3’s bundle in Step 1. It is easy to confirm
that ((0, 0), (a, pa), (b, pb)) with pa = 5.8 and pb = 6.5 is a Walrasian equilibrium. This stage
generalizes the standard second-price auction.
We examine whether the obtained Walrasian equilibrium is an MPE or not by checking a

condition, which we call demand connectedness. Note that agent 2 demands both objects a and
b at (pa, pb). In this sense, objects a and b are “connected”by agent 2’s demand. If an object
is connected to object 0 or an object whose price is zero by a sequence of agents’demands, we
say such an object is “connected.”Unless all objects are connected, a Walrasian equilibrium
is not an MPE.6 In the Walrasian equilibrium constructed above, both objects a and b are
unconnected, and so it is not an MPE. Therefore, we proceed to Stage 2.

Stage 2: The object reassignment and price adjustment

The price of a connected object in a Walrasian equilibrium is equal to its price at the MPE.7

Thus, we adjust only the prices of unconnected objects. By definition, the MPE price is less
than or equal to a Walrasian equilibrium price. If pmin

a < V1(a; (0, 0)) or pmin
b < V1(b; (0, 0)),

then no agent demands object 0, leading to an infeasible assignment, and so V1(a; (0, 0)) ≤
pmin
a ≤ pa = 5.8, and V1(b; (0, 0)) ≤ pmin

b ≤ pb = 6.5. Thus, we start price adjustment process
with p0

a = max{0, V1(a; (0, 0))} = 0 and p0
b = max{0, V1(b; (0, 0))} = 6.1.

Different from the quasi-linear settings, with non-quasi-linearity, a Walrasian equilibrium
assignment may not be an MPE assignment, as illustrated in Section 3.2. This fact necessitates
reassigning objects to find an MPE in Stage 2, complicating the adjustment process.
If an agent is assigned an connected object or object 0, we say the agent is “connected.”In

the Walrasian equilibrium constructed in Stage 1, agent 1 is connected while agents 2 and 3

are unconnected. Notice that the numbers of unconnected agents and objects are equal and an
unconnected agent in a Walrasian equilibrium is assigned a unconnected object in the MPE.8

Thus, we only reassign objects a and b among agents 2 and 3, keeping agent 1 assigned (0, 0).
There are two candidates of the assignments at the MPE to agents 2 and 3: µ1 ≡ (µ1

2, µ
1
3) =

(a, b) (assigning a to 2 and b to 3) or µ2 ≡ (µ2
2, µ

2
3) = (b, a) (assigning a to 3 and b to 2) In

the following, we conduct a process, which we call “IPOIP (I-pay-others’-indifference-prices)
process,”to examine the two candidates.

IPOIP process

The IPOIP process for µ1 We initialize the price of object a as p0
a = max{0, V1(a; (0, 0))} =

0, and that of object b as p0
b = max{0, V1(b; (0, 0))} = 6.1. Along with µ1, we assign (µ1

2, p
0
a) =

6See Proposition 1 in Section 4.
7See Theorem 1 (i) in Section 4.
8See Lemma 1 in Section 4.
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(a, 0) and (µ1
3, p

0
b) = (b, 6.1) to agent 2 and 3 respectively as their initial bundles for µ1. In

IPOIP process, each agent reports her indifference prices of the objects assigned to others by
µ1 at her own initial bundle.
Agent 2 reports her indifference price V2(b; (a, p0

a)) = 6.05 of b at (a, 0), and agent 3 reports
her indifference price V3(a; (b, 6.1)) = 0.75 of a at (b, 6.1). Then, we update the prices of objects
a and b as

p1
a = max{p0

a, V3(a; (b, 6.1))} = 0.75, and

p1
b = max{p0

b , V2(b; (a, 0))} = 6.1.

We update the prices of the two agents’bundles to p1 ≡ (p1
a, p

1
b), that is, we assign the bundles

(µ1
2, p

1
a) = (a, 0.75) and (µ1

3, p
1
b) = (b, 6.1) to agent 2 and 3 respectively. Notice that only prices

are updated and agents’assignments remain same.
Then, each agent reports her indifference prices of the objects assigned to others by µ1 at

her updated bundle. Agent 2 reports her indifference price V2(b; (a, p1
a)) = V2(b; (a, 0.75)) =

6.11 of b at her updated bundle (a, p1
a) = (a, 0.75), and agent 3 reports her indifference price

V3(a; (b, p1
b)) = V3(a; (b, 6.1)) = 0.75 of a at her updated bundle (b, p1

b) = (b, 6.1). Again, we
update the prices of objects a and b as

p2
a = max{p1

a, V3(a; (b, p1
b))} = 0.75, and

p2
b = max{p1

b , V2(b; (a, p1
a))} = 6.11.

We stop price adjustment for µ1 at p2 ≡ (p2
a, p

2
b). µ

1 is the MPE assignment if and only if
p1 = p2.9 Since p1

b < p2
b , µ

1 is not an MPE assignment.
The IPOIP process for µ2 Along with µ2, we assign (µ1

2, p
0
a) = (b, 0) and (µ2

3, p
0
b) = (a, 6.1)

to agent 2 and 3 respectively as their initial bundles for µ2.
Agent 2 reports her indifference price V2(a; (b, p0

b)) = 0.6 of a at (b, p0
b) = (b, 6.1). Agent 3

reports her indifference price V3(b; (a, p0
a)) = V3(b; (a, 0)) = 5.975 of b at (a, p0

a) = (a, 0). We
update the prices of objects a and b as

p′1a = max{p0
a, V2(a; (b, 6.1))} = 0.6, and

p′1b = max{p0
b , V3(b; (a, 0))} = 6.1.

We update the prices of the two agents’bundles to p′1 ≡ (p′1a , p
′1
b ), that is, we assign the bundles

(µ2
2, p
′1
b ) = (b, 6.1) and (µ2

3, p
′1
a ) = (a, 0.6) to agent 2 and 3 respectively.

Then, agent 2 reports her indifference price V2(a; (b, p′1b )) = V2(a; (b, 6.1)) = 0.6 of a at
(b, p′1b ) = (b, 6.1), and agent 3 reports her indifference price V3(b; (a, p′1a )) = V3(b; (a, 0.6)) =

9See Theorem 2 in Section 4.
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6.075 of a at her updated bundle (a, p′1a ) = (a, 0.6). Again, we update the prices of objects a
and b as

p′2a = max{p′1a , V3(a; (b, p′1b ))} = 0.6, and

p′2b = max{p′1b , V2(b; (a, p′1a ))} = 6.1.

Since p′1 = p′2, µ2 ≡ (µ2
2, µ

2
3) = (b, a) is an MPE assignment.10 Indeed, (µ2, p′1) coincide with

the MPE assignment and price illustrated in Section 3.1.
Thus, Stage 2 finds an MPE. It is worth repeating that the SV mechanism transmits only

finite dimensional information in finitely many times.

Table 2 summarizes the main concepts and their usages.

Table 2: The summary of main concepts and usages
Main concept Main usage

Demand connected path (DCP, Def.2) Def. 5
Connected object (Def. 2): MC(= M\MU) Prop. 1 & Thm. 1
Connected agent (Def. 3): NC(= N\NU) Prop. 1 & Thm. 1
Unconnected object: MU(= M\MC) Def. 4, Thm. 1, & Thm. 2
Unconnected agent: NU(= N\MU) Def. 4, Thm. 1, & Thm. 2

Assignments of unconnected agents: Ω(3 µ) (above Def. 4) Def. 4, Thm.1, & Def. 7
k − th highest indifference prices of x Defs. 4, 6 & Fact 3

reported by agents in N ′ at z: Ck(x; zN ′) (above Ex. 3)
I-pay-others’-indifference-prices (IPOIP) process (Def. 4) Thms. 1, 2, & Defs. 6, 7

pk(µ): price of IPOIP process for µ at round k (above Fact 2) Facts 2, 3, & 4

4 The structural characterizations

Before presenting the SV mechanism in Section 5, this section provides a systematic investiga-
tion of the structural properties of MPEs. Proposition 1 shows the connected property of an
MPE, for the use of Stage 1 in the SV sub-mechanism (Section 5.1). Theorems 1 and 2 disclose
a dynamic relation between an arbitrary Walrasian equilibrium and an MPE, for the use of
Stage 2 in the SV sub-mechansim (Section 5.2).

4.1 The connectedness characterization

First, we introduce two concepts: “connected object”and “connected agent.”

10See Theorem 2 in Section 4.
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Definition 2: An object x ∈M is connected at (z, p) ∈ Z ×Rm+ if (i) x is unassigned or (ii)
there is a sequence {iλ}Λ

λ=1 of Λ distinct agents (Λ > 1) that forms a demand connectedness
path (DCP) such that
(ii-1) xi1 = 0 or pxi1 = 0,
(ii-2) xiΛ = x,
(ii-3) for each λ ∈ {2, · · · ,Λ}, xiλ 6= 0 and pxiλ > 0, and
(ii-4) for each λ ∈ {1, · · · ,Λ− 1}, {xiλ , xiλ+1

} ∈ Diλ(p).

Definition 2 says that an object x is connected in two cases. In Case (i), object x is
unassigned. In Case (ii), there is a sequence of distinct agents such that the first agent receives
an object with zero price (ii-1); the last agent receives object x (ii-2); each agent who is not
the first agent gets an object with a positive price (ii-3); each agent who is not the last agent
demands both her assigned object and the object assigned to her successive agent (ii-4). These
agents form a demand connected path to object x. Definition 2 is more general than necessary,
and in the following, we only require that (z, p) is a Walrasian equilibrium.
Example 1 illustrates a DCP.

Example 1: Consider the MPE (zmin, pmin) illustrated in Section 3.1.
Object a is connected by a DCP formed by agents 3, 2, and 1 where i1 = 1, i2 = 2, and

i3 = iΛ = 3: (i) xmin
1 = 0, (ii) xmin

2 = b, (iii) xmin
3 = a, pmin

a = 0.6 > 0, and xmin
2 = b,

pmin
b = 6.1 > 0, and (iv) {0, b} ∈ D1(pmin) and {a, b} ∈ D2(pmin). (i) to (iv) corresponds to
(ii-1) to (ii-4) in Definition 2.

Definition 3: An agent i ∈ N is connected at z ∈ Z if xi is connected or xi = 0.

Definition 3 says that an agent is connected if she gets either a connected object or object 0.
In Example 1, agent 3 gets a connected object a so she is connected. Agent 1 is also connected
since she gets object 0.
In the following, we let MC and MU(≡ M\MC) denote the sets of connected objects and

unconnected objects, NC and NU(≡ N\NC) the sets of connected agents and unconnected
objects at some given allocation, respectively
Example 2 illustrates the connected and unconnected agents and objects.

Example 2: Consider theWalrasian equilibrium (z, p) obtained in Stage 1 of the SVmechanism
in Section 3.3.
Agent 1 gets z1 = (0, 0) and so agent 1 is a connected agent. Agent 2 gets z2 = (a, pa)

and agent 3 gets z3 = (b, pb). Since V1(a; (0, 0)) < pa and V1(b; (0, 0)) < pb, agents 2 and 3 are
unconnected and objects a and b are unconnected, either.

Remark 1: By Definition 2(ii-1), an agent who gets an object with zero price is connected.
Moreover, there is a connected agent if and only if some agent gets an object with zero price.11

11“Only if” is easy to see. For “if part”, by contradiction, suppose that for each i ∈ N , pxi > 0. Since a
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Proposition 1 characterizes the MPE by connected agents and objects.

Proposition 1: Let (z, p) be a Walrasian equilibrium. Then the following statements are
equivalent:
(i) p is an MPE price,
(ii) all the agents are connected at (z, p), and
(iii) all the objects are connected at (z, p).

The proof of Proposition 1 is relegated to Appendix A.1. Proposition 1 gives three equivalent
conditions to judge whether a Walrasian equilibrium is an MPE.

4.2 The I-pay-others’-indifference-prices characterizations

Given an object x, an allocation z and a group N ′ of agents, let C1(x; zN ′) and C2(x; zN ′) be
the highest and second highest indifference prices of x reported by agents in N ′ at
z. Let C1

+(x; zN ′) ≡ max{C1(x; zN ′), 0}, and C2
+(x; zN ′) ≡ max{C2(x; zN ′), 0}. If N ′ = N , we

write z instead of zN . If N ′ = ∅, let C1
+(x; zN ′) = C2

+(x; zN ′) ≡ 0. Example 3 illustrates these
notations.

Example 3: Consider Step 1 in Section 3.3.
Let N = N ′ = {1, 2, 3}, x = a, and z = (z1, z2, z3) = ((0, 0), (0, 0), (0, 0)). Recall that

V3(a; (0, 0)) > V2(a; (0, 0)) > 0 > V1(a; (0, 0)). Thus C1(a; z) = V3(a; (0, 0)) and C2(a; z) =

C2
+(a; z) = V2(b; (0, 0)).

The following result shows the connection between a Walrasian equilibrium and an MPE.

Lemma 1: Let (z, p) be a Walrasian equilibrium and (zmin, pmin) be an MPE. Let NU and MU

be the set of unconnected agents and unconnected objects at (z, p).
(i) There are equal numbers of unconnected agents and unconnected objects, i.e., |NU | = |MU |.
(ii-1) The MPE price of a connected object is equal to the given equilibrium price, i.e., for each
x ∈MC , pmin

x = px.
(ii-2) The MPE price of an unconnected object is bounded above by the given equilibrium price
and below by the highest indifference price reported by the connected agents (N\NU), i.e., for
each x ∈MU , C1

+(x; zN\NU ) ≤ pmin
x < px.

(iii) Each unconnected agent gets an unconnected object at the MPE, i.e., for each i ∈ NU ,
xmin
i ∈MU .

The proof of Lemma 1 is relegated to Appendix A.2. Lemma 1(i) and 1(iii) say that to
obtain an MPE from a given Walrasian equilibrium, we only need to reallocate unconnected

connected agent exists, for each connected agent i, we have that pxi > 0. Thus for an arbitrary connected agent
i, there is a sequence {iλ}Λλ=1 of distinct agents satisfying Definition 2, with xi1 = 0 or pxi1 = 0, contradicting
that for each i ∈ N , pxi > 0.
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objects among unconnected agents at the given equilibrium. Lemma 1(ii) shows the boundary
of the MPE price of an unconnected object. Example 4 illustrates Lemma 1.

Example 4: Consider theWalrasian equilibrium (z, p) obtained in Stage 1 of the SVmechanism
in Section 3.3.
As shown in Example 2, NU = {2, 3} and MU = {a, b}. Thus Lemma 1(i) holds. Agent 1 is

the only connected agent, and so

C1
+(a; zN\NU ) = C1

+(a; z{1}) = max{0, V1(a; (0, 0))} = 0.

C1
+(b; zN\NU ) = C1

+(b; z{1}) = max{0, V1(b; (0, 0))} = 6.1.

It is easy to see that Lemma 1(ii) holds. As shown in Section 3.1, agent 2 gets a at (z, p), but
b at the MPE while agent 3 gets b at (z, p), but a at the MPE. Thus Lemma 1(iii) holds.

As shown in Example 4, when agents have general preferences, a Walrasian equilibrium
assignment may not be an MPE assignment, which increases the diffi culty in obtaining the
MPE. We propose the following process that generates a candidate price for each possible
assignment among unconnected agents.
Let µ be an assignment or bijection, from the set of unconnected objects MU to the set of

unconnected agents NU , and µi be accordingly the associated object assigned to agent i ∈ NU .
Let Ω be the set of all such assignments.

Definition 4: Let (z, p) be a Walrasian equilibrium and NU andMU be the set of unconnected
agents and objects at (z, p). Let µ ∈ Ω. The k−round I-pay-others’-indifference-prices
(IPOIP) process for µ is defined as follows:
For each x ∈MU and each i ∈ NU ,

(i) p0
x ≡ C1

+(x; zN\NU ) and z0
i ≡ (µi, p

0
µi

), and
(ii) for each s = 1, · · · , k,

psx ≡ C1(x; zs−1
NU

) and zsi ≡ (µi, p
s
µi

).

The k−round IPOIP process for a given assignment updates the prices of unconnected
objects and unconnected agents’bundles recursively: First, set the starting price of each un-
connected object x as p0

x = C1
+(x; zN\NU ), the maximum value of the indifference prices reported

by the connected agents N\NU . Notice that connected agents do not participate in the process.
Each unconnected agent i is assigned an unconnected object µi and gets the bundle z

0
i =

(µi, p
0
µi

). Each unconnected agent i reports her indifference price of each unconnected object x at
z0
i , i.e., Vi(x; z0

i ). Then the price of x is updated to the maximum value of reported indifference
prices reported by the unconnected agents NU , i.e., p1

x = C1
+(x; z0

NU
). Each unconnected agent

i keeps the same object µi but pays an updated price p
1
µi
, i.e., z1

i = (µi, p
1
µi

). In the same
manner, the price of each unconnected object x is updated to p2

x = C1
+(x; z1

NU
) and so forth.
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The formation of agent’s tentative payment psx is in the spirit of the Vickrey payment. Stage
2 in Step 2 of the SV mechanism in Section 3.3 illustrate two 2−round IPOIP process for two
candidate assignments of agents 2 and 3, respectively.
Let ps(µ) be the price generated in round s(≤ k) in a k−IPOIP process for µ. It is easy to

see that generated prices in the process are non-decreasing. Formally, we have:

Fact 2: The price generated by a k−round IPOIP process for a given assignment µ is non-
decreasing, i.e., for each s = 1, · · · , k, p0(µ) ≤ p1(µ) ≤ · · · ≤ ps(µ).

Now we give the characterizations of MPEs in terms of IPOIP processes.

Theorem 1: Let (z, p) be a Walrasian equilibrium, and NC , MC , NU , and MU be the sets
of connected agents, connected objects, unconnected agents and unconnected objects at (z, p).
Let pmin be the MPE price. Then the following holds.
(i) For each x ∈MC , pmin

x = px, and for each i ∈ NC , zi is an MPE bundle.
(ii) Let p|MU |−1(µ′) be the price generated in round |MU | − 1 in a |MU | −IPOIP process for
µ′ ∈ Ω. There is µ ∈ Ω such that
(ii-1) µ is an MPE assignment among unconnected agents, and
(ii-2) for each x ∈MU , pmin

x = p|MU |−1
x (µ) = min

µ′∈Ω
p|MU |−1
x (µ′).

Here we only sketch the proof of Theorem 1 and relegate the formal proof to Appendix A.3.

Sketch of Proof of Theorem 1: First, we show Theorem 1(i). We argue that if the prices
of connected objects are lower than p, these objects will be “overdemanded”at the MPE price.
Thus, their MPE price should be equal to p. Then by Lemma 1(ii), connected agents could
keep the same equilibrium bundles as their MPE bundles.
Second, we show Theorem 1(ii). For (ii-1), by Fact 1 and Theorem 1(i), there must exist an

MPE assignment that assign the unconnected objects to the unconnected agents. The proof of
(ii-2) consists of two steps.
Step 1 shows that if µ is an MPE assignment, then at each round of the IPOIP process, at

least one unconnected object’s price reaches its MPE price, and it never increases in the later
round. Since there are |MU | unconnected objects, starting from round 0, the IPOIP process
for µ finds the MPE price for unconnected objects at most by |MU | − 1 rounds. Thus, for each
unconnected object x, pmin

x = p|MU |−1
x (µ). Step 2 shows that for any non-MPE assignment µ′,

at each round of the IPOIP process, at least one unconnected object’s price exceeds its MPE
price and by Fact 2, it never decreases in the later round. Since there are |MU | unconnected
objects, for each unconnected object x, pmin

x ≤ p|MU |−1
x (µ′). Q.E.D.

We illustrate Theorem 1 by using Stage 2 of Step 2 in Section 3.3. Agent 1 is connected
and she simply keeps (0, 0). Thus Theorem 1(i) holds. Agents 2 and 3 are unconnected and
objects a and b are unconnected either (See also Example 2). We run the IPOIP process for
two assignments of agents 2 and 3. We can also verify pmin

a = min{p1
a, p
′1
a } = p′1a = 0.6, and
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pmin
b = min{p1

b , p
′1
b } = p′1b = 6.1. Since (p′1a , p

′1
b ) is generated by the second candidate assignment

µ2 and so at the MPE, agent 2 gets b and 3 gets a, as desired. Thus Theorem 1(ii) holds.
Theorem 1 goes beyond Proposition by dealing with the case where there are unconnected

agents at the given Walrasian equilibrium.

Remark 2: The outcome of (|MU | − 1)−round IPOIP process for a given assignment µ′, i.e.,
p|MU |−1(µ′) is generally not an equilibrium price for unconnected objects. Thus, Theorem 1(ii-
2) is different from the meet operation of equilibrium prices that generates a new equilibrium
price, by their lattice property (Fact 1).

Note that if we conduct |MU | −IPOIP process for each µ ∈ Ω, since |Ω| = |MU |!, it will
take long to obtain an MPE. Fortunately, it is possible to obtains MPEs without conducting
|MU | −IPOIP process for all assignments in Ω. Theorem 2 below provide some way to detect
an MPE assignment without exhausting all possible candidate assignments.
Intuitively, if µ is an MPE assignment and ps obtained at some round s in the IPOIP process

for µ is an MPE price, then in the later rounds, the price remains unchanged, i.e., ps = · · · = pk.
Theorem 2 surprisingly shows that for any assignment µ, if the prices in two adjacent rounds
s− 1 and s of the IPOIP process for µ remain unchanged, i.e., ps−1 = ps, then ps−1 is an MPE
price and µ is an MPE assignment of unconnected objects and agents.

Theorem 2: LetNU andMU be sets of unconnected agents and objects at some givenWalrasian
equilibrium (z, p). In the |MU | −round IPOIP process for µ ∈ Ω, the following are equivalent:
(i) There is some round s ≤ |MU | in the IPOIP process such that the price in the precedent
round remains unchanged, i.e., ps−1(µ) = ps(µ);
(ii) µ is an MPE assignment and ps−1(µ) is the MPE price of unconnected agents and objects.

Here we only sketch the proof of Theorem 2 and relegate the formal proof to Appendix A.4.

Sketch of Proof of Theorem 2: First (ii) ⇒ (i). As argued in Step 1 of the proof Theorem
1(ii-2), when ps−1(µ) is the MPE price of unconnected objects and µ is an MPE assignment
of unconnected agents, ps−1 remain unchanged in the later round of the IPOIP process so
ps−1(µ) = ps(µ).
Next, (i)⇒ (ii). Since the outcome of the IPOIP process may not assign unconnected agents

bundles in their demand sets, we define weak connected objects and agents by relaxing (ii-4)
in Definition 2: Agents on the path are indifferent between their bundles and the successive
agents’bundles. The proof contains five steps. Step 1 shows that all the unconnected objects
are weakly connected at (µ, ps−1). Steps 2 and 3 show that the price of unconnected objects
generated by the IPOIP process is bounded above by their MPE price. Step 4 shows that each
unconnected agent i weakly prefer (µi, p

s−1
µi

) to the bundles consisting of connected objects
paired with their MPE price. Step 5 concludes that (ii) holds. Q.E.D.

In Stage 2 of Step 2 in Section 3.3, the IPOIP process for µ2 illustrates Theorem 2(ii).
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5 Serial Vickrey mechanism

In this section, we present the “Serial Vickrey (SV) mechanism,”that finds an MPE in a finite
number of steps via agents’reports of indifference prices in finitely many times.
In short, the SV mechanism works in the following way. Each agent is initially assigned

(0, 0). Introduce objects sequentially by its index, 1, 2, · · · . In Step k(≥ 1), suppose that the
MPE for the market with k − 1 objects is given. We introduce object k and run the SV
sub-mechanism consisting of the following two stages.
In Stage 1, we construct a Walrasian equilibrium with k objects via “Equilibrium-

generating mechanism.” If the resulting Walrasian equilibrium is shown to be an MPE, by
verifying that all the agents are connected, we stop. Otherwise, we go to Stage 2 and reas-
sign objects and adjust prices for the unconnected agents and objects via “MPE-
adjustment mechanism,”to obtain the MPE.
Section 5.1 defines the Equilibrium-generating mechanism (Definition 5) and studies its

property (Proposition 2). Section 5.2 defines the “MPE-adjustment mechanism,” (Definition
7) and studies its property (Proposition 3). Section 5.3 gives a formal definition of the Serial
Vickrey mechanism (Definition 8) and shows its convergence property (Theorem 3).

5.1 Implication of Proposition 1: Stage 1 of SV sub-mechanism

First, we define the equilibrium-generating mechanism, which constructs a Walrasian equilib-
rium for k + 1 objects from an MPE for k objects.

Definition 5: Equilibrium-generating mechanism Let (zmin, pmin) be an MPE of k ob-
jects. Introduce a new object y. Each agent i reports Vi(y; zmin

i ), and then compute C1(y; zmin).
Phase 1: If C1(y; zmin) < 0, set (z, p) as
(a) py = 0, and p = (pmin, py), and (b) for each i ∈ N , zi = zmin

i .
Otherwise, go to Phase 2.
Phase 2: Arbitrarily select an agent i with the highest indifference price of y at zmin

i , i.e.,
Vi(y; zmin

i ) = C1(y; zmin). Identify a demand connectedness path (DCP, Def. 2) for xmin
i , i.e.,

the sequence of agents {iλ}Λ
λ=1. Set (z, p) as

(a) py = C2
+(y; zmin), and p = (pmin, py),

(b) ziΛ = (y, py),
(c) for each il ∈ {iλ}Λ−1

1 , zil = zmin
il+1
, and

(d) for each j ∈ N\{iλ}Λ
1 , zj = zmin

j .

By Proposition 1, at the MPE for k objects, each object is connected and so we can always
identify a DCP for each object. This idea is essential in Phase 2 to update agents’bundles. The
process of identifying a DCP for the given object can be referred to Corollary 1 in Morimoto
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and Serizawa (2015). For the completeness, we provide a process that identifies the DCP via
agents’reported indifference prices in finitely many times in the Online Appendix.
The essence part of the above mechanism is Phase 2: When object y is introduced, each

agent reports her indifference of y at zmin
i , i.e., Vi(y; zmin

i ). We assign the new object to an
arbitrary agent i whose has the highest indifference, but ask her to pay the second highest
indifference price C2

+(y; zmin). We identify a DCP for agent i′s assignment xmin
i at (zmin, pmin).

After agent i is assigned object y, we alternate the bundles of agents on the identified DCP
from the object with zero price. All other agents keep their bundles at zmin.
Example 5 illustrates the Phase 2.

Example 5: Consider Stage 1 in Step 2 of the SV mechanism in Section 3.3.
The MPE with only object a is zmin such that that agent 1 gets (0, 0), 2 gets (0, 0), and 3

gets (a, 5.8). When object b is introduced, agent 3 has the highest indifference price and she
gets object b, but pays pb = C2

+(b; zmin) = 6.5. Thus (a) and (b) of Phase 2 holds. Object a’s
DCP is formalized by agents 2 and 3, and so agent 2 takes 3’s previously assigned bundle, i.e.,
(a, 5.8). Thus (c) of Phase 2 holds. Agent 1 remains (0, 0). Thus (d) of Phase 2 holds.

Proposition 2: Given an MPE with k objects, the equilibrium-generating mechanism finds
a Walrasian equilibrium for k + 1 objects via agents’reports of indifference prices in finitely
many times.

The proof of Proposition 2 is relegated to Appendix B.1.

5.2 Implication of Theorems 1 and 2: Stage 2 of SV sub-mechanism

Theorem 1 implies that by conducting an IPOIP process for each possible assignment of un-
connected agents, we can find an MPE from an arbitrary Walrasian equilibrium. On the other
hand, Theorem 2 implies that if the price pr(µ) generated in round r ≤ |MU | in IPOIP process
for µ stops increasing, i.e., pr(µs) = pr−1(µs), then µ is confirmed to be an MPE assignment.
Thus, we can obtain an MPE assignment without conducting all possible assignments of un-
connected agents except for the worst case. Thus, Theorem 2 enables us to find an MPE
assignment faster.
In the following, we argue that it is possible to find an MPE even faster by excluding some

undesirable assignments of unconnected agents.

Fact 3: Let (z, p) be a Walrasian equilibrium and NU and MU be the sets of unconnected
agents and objects at (z, p). For each x ∈ MU , p0

x = C1
+(x; zNC ). For each i ∈ NU , let

Γi = {x ∈MU : (x, p0
x)Ri (y, p

0
y),∀y ∈MU}.

(i) Let p = (p0
MU
, pM\MU

). If there is µ ∈ Ω such that for each i ∈ NU , µi ∈ Γi, then (µ, p) is an
MPE.
(ii) Let N1 and N2 be a partition of NU , andM1 andM2 be a partition ofMU such that |N1| =
|M1|, |N2| = |M2|. Assume for each i ∈ N1, each x ∈ M1 and each y ∈ M2, (x, p0

x)Pi (y, p
0
y),
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and for each i ∈ N2, each x ∈M2 and each y ∈M1, (x, p0
x)Pi (y, p

0
y). Then, at any MPE, agent

i ∈ N1 receives object x ∈M1, and agent i ∈ N2 receives object x ∈M2.
(iii) Let i ∈ NU and x ∈MU . Agent i never gets x at any MPE if Vi(x; zi) ≤ p0

x.

The proof of Fact 3 is relegated to Appendix B.2. Fact 3(i) says that at the starting price
p0
MU
, if there is an assignment µ among unconnected agents such that each agent weakly prefers

her assigned bundle (µi, p
0
µi

) to any other bundle assigned to other unconnected agents, then
(µ, p) is an MPE. Fact 3(ii) partitions unconnected agents into two parts, and objects into two
parts. It shows that any assignment such that some agent in N1 gets some object fromM2 will
not be the MPE assignment. Fact 3(iii) is a direct outcome of Lemma 1.
Let DQ0(ii) be the set of assignments in Ω such that the condition of Fact 3(ii) holds for

N1, N2, M1 andM2, but some agents in N1 are assigned objects inM2. Let DQ0(iii) be the set
of assignments in Ω such that the condition of Fact 3(ii) holds for some i ∈ NU and x ∈ MU .
We exclude the set DQ0(ii) ∪ DQ0(iii) as the disqualified candidates of MPE assignments.
In other words, we only need to conduct IPOIP process for Ω∗0 ≡ Ω\{DQ0(ii) ∪DQ0(iii)}.

Fact 4: Let (z, p) be a Walrasian equilibrium and NU and MU be the sets of unconnected
agents and objects at (z, p). Let i ∈ NU and x ∈MU , and p0

x = C1
+(x; zNC ). Agent i never gets

x at any MPE if for some µ ∈ Ω, Vi(x; zi(µ)) < p0
x where zi(µ) = (µi, p

|MU |−1
µi

(µ)).

By using Fact 4, we might be able to exclude assignments even from Ω∗0. After operat-
ing the (|MU | − 1)-round IPOIP process for an assignment µ ∈ Ω∗0, we obtain its outcome
z(µ) ≡ (µ, p|MU |−1(µ)). At this point, we ask each i ∈ NU to report her indifference prices
Vi(x; zi(µ)), x ∈ MU , where zi(µ) = (µi, p

|MU |−1
µi

(µ)). Fact 4 says that if Vi(x; z
|MU |−1
i (µ)) < p0

x

for some i ∈ NU , then any µ′ ∈ Ω such that µ′i = x cannot be an MPE assignment. Thus, we
also exclude the set of such assignments as well. Let

DQ(µ) ≡ {µ′ ∈ Ω∗0 : ∃i ∈ NU s.t. Vi(µ′i; z
|MU |−1
i (µ)) < p0

x}.

DQ(µ) is the set of disqualified assignments after the IPOIP process for µ. We also
remove DQ(µ) from Ω∗0. Whenever we conduct IPOIP process for some µ ∈ Ω∗0, we remove
DQ(µ) from the current candidate set of MPE assignments.
We also consider the possibilities to disqualify an assignment µ ∈ Ω∗0 while conducting the

IPOIP process for µ itself. An assignment µ ∈ Ω∗0 departs at round s ≤ |MU |−1 (in IPOIP
process from p0 ≡ (C1

+(x; zN\NU ))x∈MU
) if for each x ∈ MU , psx(µ) > p0

x. Since p
s(µ) is non-

decreasing in s during the IPOIP process (Fact 2), if µ departs at some round s ≤ |MU | − 1,
then µ also departs at round |MU | − 1, which implies that no x ∈ MU is connected in z(µ).
Thus, by Proposition 1, if an assignment µ ∈ Ω∗0 departs at some round s ≤ |MU | − 1, then
µ cannot be an MPE assignment. Thus, an assignment µ ∈ Ω∗0 is disqualified as soon as it
departs at some round s ≤ |MU | − 1.
By Lemma 1(ii) and Theorems 1 and 2, we have Fact 5 below:
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Fact 5: Let (z, p) be a Walrasian equilibrium. Let NU and MU be the sets of unconnected
agents and unconnected objects at (z, p). Let µ ∈ Ω∗0. Let p′ = p or p′ = p|MU |−1(µ). An
assignment µ is not an MPE assignment of NU if for some x ∈MU , p|MU |−1

x (µ) > p′x.

We refer to µ and p′ of Fact 5 as reference assignment and reference price respectively.
Since ps(µ) is non-decreasing in s during the IPOIP process (Fact 2), Fact 5 implies that an
assignment µ ∈ Ω∗0 is disqualified as soon as its price of some x ∈ MU exceeds the reference
price at some round s ≤ |MU | − 1.
The above argument motivates the following concept.

Definition 6: Let (z, p) be aWalrasian equilibrium. LetNU andMU be the sets of unconnected
agents and unconnected objects at (z, p). For each x ∈ MU , let p0

x ≡ C1
+(x; zN\NU ). Let

p′ ∈ RMU be a reference price. An assignment µ is disqualified at round s ≤ |MU | − 1 (in
IPOIP process) by p′ if (i) for some x ∈ MU , psx(µ) > p′x, or (ii) for each x ∈ MU , psx(µ) > p0

x.
An assignment µ survives (in IPOIP process) against p′ if neither of (i) and (ii) holds.

Now we are ready to show the following mechanism.

Definition 7: MPE-adjustment mechanism Let (z, p) be a Walrasian equilibrium, and
NU and MU be the set of unconnected agents and objects at (z, p). If conditions in Fact 3(i)
hold, stop at (µ, p) defined in Fact 3(i). Otherwise, let Ω∗1 ≡ Ω∗0 and conduct the following
procedure.
Session 1: Set the Walrasian equilibrium p∗1 ≡ (px)x∈MU

be a reference price and conduct the
|MU | −round IPOIP process for the Walrasian equilibrium assignment µ∗1 ≡ (xi)i∈NU .
If pr(µ∗1) = pr−1(µ∗1) at some round r ≤ |MU | (Case 1 ), stop the process, and µ∗1 is an

MPE assignment and p∗ ≡ pr(µ∗1) is the MPE price of MU .
If not (Case 1 fails), but µ∗1 survives against p∗1 (Case 2 ), set µ∗2 ≡ µ∗1 and p∗2 ≡

p|MU |−1(µ∗1) as reference assignment and price. Set Ω∗2 ≡ DQ(µ∗1) ∪ {µ∗1}. Go to Session 2.
If both Cases 1 and 2 fail, keep reference assignment and price, i.e., µ∗2 ≡ µ∗1, p∗2 ≡ p∗1,

and set Ω∗2 ≡ Ω∗1\{µ∗1}. Go to Session 2.
Session s(≥ 2): Choose µs ∈ Ω∗s ≡ Ω∗s and conduct the |MU | −round IPOIP process for µs.
If pr(µs) = pr−1(µs) at some round r ≤ |MU | (Case 1 ), stop the process, and µs is an MPE

assignment and p∗ ≡ pr(µs) is the MPE price of MU .
If Case 1 fails, but µs survives against p

∗s (Case 2 ), set µ∗s+1 ≡ µs and p
∗s+1 ≡ p|MU |−1(µs)

as reference assignment and price. Set Ω∗s+1 ≡ Ω∗s\(DQ(µs) ∪ {µs}). Go to Session s+ 1.
If both Cases 1 and 2 fail, keep reference assignment and price, i.e., µ∗s+1 ≡ µ∗s, p∗s+1 ≡ p∗s,

and set Ω∗s+1 ≡ Ω∗s\{µs}. Go to Session s+ 1.

In Session 1 of MPE-adjustment mechanism, the given Walrasian equilibrium price p∗1 =

(px)x∈MU
plays a reference price to examine the Walrasian equilibrium assignment µ∗1 ≡

(xi)i∈NU . If µ∗1 is diagnosed as an MPE assignment (Case 1), then the mechanism stops
at Session 1.
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Note that in Session s, if µs survives, then p
∗s = pr(µs) ≤ p∗s−1. Thus, p∗s is non-increasing

in s. Moreover, by disqualification conditions, an MPE assignment always survives until an
IPOIP process is conducted for it. Thus, the mechanism ends up with finding an MPE assign-
ment and its price.
Example 6 illustrates the MPE-adjustment mechanism.

Example 6: Consider Stage 2 in Step 2 of the SV mechanism in Section 3.3.
The set of initial disqualified assignments is empty, i.e., Ω∗0 = Ω. In Session 1, we check

the first possible assignment of agents 2 and 3 that coincides with their Walrasian equilibrium
assignment constructed at Stage 1. The outcome falls into Case 3. Then we proceed to the
second possible assignment of agents 2 and 3, the outcome of which falls into Case 1.

By the above analysis, we can establish the following result.

Proposition 3: The MPE-adjustment mechanism generates a finite sequence {(µ∗t, p∗t}Tt=0 via
agents’reports of indifference prices in finitely many times such that
(i) T < +∞, and for each t = 1, · · · , T , p∗t ≤ p∗t−1.
(ii) µ∗T and p∗T are MPE assignment and price of unconnected agents and objects.

5.3 Definition and convergence of Serial Vickrey mechanism

We now present the formal definition of SV mechanism.

Definition 8: The SV mechanism is defined as follows. Each agent is initially assigned
(0, 0). Introduce object sequentially by its index, 1, 2, · · · .
Step k(≥ 1): Given the MPE for the market with k − 1 objects, introduces object k and run
the following SV sub-mechanism:

Stage 1: Construct a Walrasian equilibrium with k objects via Equilibrium-generating
mechanism. If all the agents are connected, stop at the constructed equilibrium. Otherwise,
identify the unconnected agents and objects. Then go to Stage 2.

Stage 2: Reassign objects and adjust prices for the unconnected agents and objects via
MPE-adjustment mechanism, and obtain an MPE with k objects. If k = m, stop. Otherwise,
go to Step k + 1.

To identify the set of connected agents for a given Walrasian equilibrium, we could first
identify the DCP for each object (Def. 2) if there is any, and then obtain the set of connected
agents. In the Online Appendix, we provide a process with the use of DCP to identify the set
of connected agents at the constructed Walrasian equilibrium via agents’reports of indifference
prices in finitely many times.
By Fact 1, the MPE price for the assignment market with the whole set of objects is unique

so the outcome of the SV mechanism is independent of the order that we introduce objects to
the market. By Propositions 2 and 3, we can establish the following results:
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Proposition 4: Given an MPE for k objects, the SV sub-mechanism finds an MPE for k + 1

objects via agents’reports of indifference prices in finitely many times.

By Propositions 2, 3, and 4, the convergence of the SV mechanism follows.

Theorem 3: The SV mechanism finds an MPE in a finite number of steps via agents’reports
of indifference prices in finitely many times.

6 Incentive properties

In this section, we investigate the incentive properties of the SV mechanism. A rule f is a
mapping from the set of general preference profiles Rn to the set of allocations Z. It assigns
each agent i with a bundle fi(R) at each preference profile R. A rule f is strategy-proof if no
agent can gain from misreporting her preference, i.e., for each R ∈ Rn, each i ∈ N , and each
R′i ∈ R, fi(Ri, R−i)Ri fi(R

′
i, R−i).

In our model, theMPE rule that assigns to each general preference profile an MPE allocation
is strategy-proof (Demange and Gale, 1985; Morimoto and Serizawa, 2015). Let fSV be the
rule that selects the outcome of the SV mechanism. By Theorem 3, fSV coincides with the
MPE rule and so we have the following result.

Fact 6: The rule fSV is strategy-proof on the set of general preference profiles.

The SV mechanism is decomposed into m steps, i.e., m SV sub-mechanisms. Each SV sub-
mechanism is decomposed into two stages, i.e., the equilibrium-generating andMPE-adjustment
mechanisms. We show that these sub-mechanisms are also incentive compatible. In other words,
even if agents are not fully rational and their perspectives are limited to step-wise or stage-wise,
agents still have no incentives to misreport. Step-wise and stage-wise incentive compatibilities
are remarkable properties of the SV mechanism, as shown below.
We first study the cases in which agents’perspectives are limited to stages, and analyze

the incentive properties of the equilibrium-generating and MPE-adjustment mechanisms. Note
that the outcomes of these mechanisms depend both on the revealed preferences and allocations
obtained from previous steps or stages. Thus, we need to introduce some notations.
For each k ∈ N+, let Zk ≡ {z ∈ Z : ∀i ∈ N, xi ∈ {0, 1, . . . , k}} be the set of allocations for

the assignment market with k objects. If k = m, then Zk = Z.
An augmented rule, gk→k

′
: Rn × Zk → Zk′ , associates to each pair of preference profile R

and an allocation z with k objects an allocation gk→k
′
(R, z) with k′ objects, where gk→k

′
i (·; ·)

denotes the bundle assigned to agent i. Given an allocation z ∈ Zk, (gk→k
′
(·; z), R) forms a

(normal-form) revelation game: agents report their preferences R and the outcome of their
reports is selected by gk→k

′
(·; z).

Definition 9: Let k, k′ ∈ N+ and z ∈ Zk. An augmented rule gk→k
′
(·; z) is strategy-proof

from z if for each i ∈ N , each R′i ∈ R, and each R−i ∈ Rn−1, gk→k
′

i (R; z)Ri g
k→k′
i (R′i, R−i; z).
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Now we consider the incentive properties of the following augmented rules:

• SV sub-rule SV k→k+1(·; z) : Given a preference profile R, SV k→k+1(R; z) is the outcome of
the SV sub-mechanism for k + 1 objects based on an allocation z ∈ Zk.12

• Equilibrium-generating rule SV k→k+1
E (·; z) : Given a preference profile R, SV k→k+1

E (R; z)

is the outcome of equilibrium-generating mechanism in the SV sub-mechanism for k+1 objects
based on an allocation z ∈ Zk.13

• MPE-adjustment rule SV k+1→k+1
M (·; z) : Given a preference profile R, SV k→k+1

M (R; z) is
the outcome of the SV sub-mechanism for k + 1 objects based on an allocation z ∈ Zk+1.14

Notice that SV sub-rule can be decomposed into Equilibrium-generating rule and MPE-
adjustment rule. Now we propose the following result.

Theorem 4: Let 0 ≤ k < |M | and R ∈ Rn.
(i) (Stage-wise) For each z ∈ Zk, if z is an MPE allocation for R, then SV k→k+1

E (·; z) is
strategy-proof from z.
(ii) (Stage-wise) For each z ∈ Zk+1, if z is a Walrasian equilibrium allocation for R, then
SV k+1→k+1

M (·; z) is strategy-proof from z.
(iii) (Step-wise) For each z ∈ Zk, if z is an MPE allocation for R, then SV k→k+1(·; z) is
strategy-proof from z.

The proof of Theorem 4 is relegated to Appendix C. Theorem 4(i) and 4(ii) state “stage-wise
strategy-proofness”of the SV sub-mechanism. In Stage 1, when a new object is introduced, no
agent can gain by misreporting. In Stage 2, at the Walrasian equilibrium constructed in stage
1, no agent can gain by misreporting. Theorem 4(iii) states “step-wise strategy-proofness”of
the SV sub-mechanism. When a new object is introduced, to obtain an MPE for the assignment
market with additional one object, no agent has incentive to misreport her preference. Thus,
even if agents’ perspectives are myopic and limited to the stages where they are currently
interacting, agents have incentives to reveal their true preferences.
It is worth noting that Theorem 4(iii) is not implied by Fact 6, since at each step, the

SV sub-mechanism involves a different number of objects. It is not implied by Theorem 4(i)
and 4(ii) either since there is no guarantee that the aggregation of two incentive compatible
mechanisms still preserves the incentive property.

12SV k→k+1(·; z) depends not only on the preferences revealed in the SV sub-mechanism for k+1 objects and
z ∈ Zk but also on the information on DCPs at z that are revealed in the previous step.
13SV k→k+1

E (·; z) depends not only on the preferences revealed in the equilibrium-generating mechanism and
z ∈ Zk but also on the information on DCPs at z that are revealed in the previous step.
14SV k+1→k+1

M (·; z) depends not only on the preferences revealed in the MPE-adjustment mechanism and
z ∈ Zk+1 but also on the information of connected and unconnected agents and objects at z that are revealed
in the previous stage.
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7 Concluding remarks

We conclude by providing some further discussions of the SV mechanism.

• The welfare property of the SV mechanism
First, an agent’s welfare is non-decreasing with the number of introduced objects in the SV

mechanism. This result follows Proposition 2 and Fact 1. It is in line with the comparative
static analysis of the agents’welfare regarding the number of objects in Demange and Gale
(1985). Second, agents’welfare is non-decreasing stage-wise within the SV sub-mechanism. By
construction, agents’welfare at the outcome of Stage 1 is bounded below by that at the given
MPE. By Lemma 1, agents’welfare at the outcome of Stage 2 is bounded below by that at the
Walrasian equilibrium constructed in Stage 1.

• Quasi-linear preferences and assortative-matching preferences
As illustrated in Section 3.2, there are significant differences between quasi-linear environ-

ment and general environment. If we apply the SV mechanism to the quasi-linear environment,
then any Walrasian equilibrium assignment can be an MPE assignment. Although this fact
cannot simplify the characterizations of Theorems 1 and 2, but it largely simplifies the Stage
2 of the SV sub-mechanism: we only run a one-round IPOIP process for the assignment at the
constructed equilibrium in Stage 1 and then obtain an MPE.
The Alonso-type housing market is well-studied in the urban economics where agents have

positive-assortative preferences: they have common ranking over houses and preferences ex-
hibits positive income effects. As a consequence, all the Walrasian equilibrium assignments
share the same shape, i.e., agents with higher incomes obtain houses closer to the city center.15

The insight of how quasi-linear preferences simplifies the SV mechanism also carries over here.

• The assignment market without outside option
In the assignment market without outside option, there is no object 0 and each agent gets

one object (|N | ≤ |M |). This model is also called the task-assignment model analyzed by, e.g.,
Sun and Yang (2003), Andersson (2007), and Noldeke and Samuelson (2018).
In such settings, Walrasian equilibria and MPEs are defined as “envy-free allocations,”

and “fair and optimal allocations” (Sun and Yang, 2003). Theorems 1 and 2, together with
MPE-adjustment mechanism, identify a fair and optimal allocation.
We remark that the structural result in Alaei et al. (2016) depends on the existence of

object 0, so it fails to characterize the fair and optimal allocation.

• Other incentive notions
Li (2017) introduces a notion of “obvious strategy-proofness,”which requires that in the

game form induced by the mechanism, along the equilibrium path, by comparing the maximum

15Houses are identical but different in locations. Agents have the same utility functions and at each payment,
agents commonly prefer houses with shorter distance to the city center than those with longer distance. See
Zhou and Serizawa (2018) for details.
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payoff among all deviations with the minimum payoffby following the truth-telling strategy, no
agent has any incentive to deviate. The obvious strategy-proofness is stronger than our incentive
notions. It is demanding and some well-know mechanisms fail to be obviously strategy-proof,
e.g., the deferred-acceptance mechanism (Ashlagi and Gonczarowski, 2018). The SVmechanism
is not obviously strategy-proof, but still incentivizes agents with limited perspectives to reveal
their true preferences (step-wise and stage-wise strategy-proofness).
Ausubel (2006) and Sun and Yang (2014) study the multi-object auction mechanisms and

show that sincere bidding forms an ex-post perfect equilibria (EXPE). We conjecture that
truthfully reporting the indifference prices is an EXPE in the SV mechanism although we have
not enabled to prove it since the SV mechanism is extremely complex.
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Appendix

Part A gives the proofs of results in Section 4. Part B gives the proofs of results in Section
5. Part C gives the proofs of results in Section 6.
In the following, Let NC and MC be the sets of connected agents and objects. Let NU ≡

N\NC and MU ≡ M\MC be the sets of unconnected agents and objects at the equilibria we
investigate. Let W be the set of Walrasian equilibria, and let Wmin ⊆ W be the corresponding
set of MPEs. Given p ∈ Rm+ and M ′ ⊆M , let pM ′ ≡ (px)x∈M ′ and pM\M ′ ≡ (px)x∈M\M ′ .

Appendix A: Proofs of Proposition 1, Lemma 1, Theorem 1, and Theorem 2

Definition A.1: (i) A non-empty set M ′ ⊆M of objects is overdemanded at p if

|{i ∈ N : Di(p) ⊆M ′}| > |M ′| .

(ii) A non-empty set M ′ ⊆M of objects is (weakly) underdemanded at p if

[∀x ∈M ′, px > 0]⇒ |{i ∈ N : Di(p) ∩M ′ 6= ∅}| (≤) < |M ′| .
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Fact A.1 (Mishra and Talman, 2010; Morimoto and Serizawa, 2015). p is an equilibrium price
vector if and only if no set is overdemanded and no set is underdemanded at p.

Fact A.2 (Alkan and Gale, 1990; Morimoto and Serizawa, 2015). p is an MPE price if and
only if no set is overdemanded and no set is weakly underdemanded at p.

Fact A.3: Let (z, p) ∈ W and MC be defined at (z, p). Let M ′ ⊆ MC be such that M ′ 6= ∅
and for each x ∈ M ′, px > 0. Then, (i) |{i ∈ N : Di(p) ∩M ′ 6= ∅}| > |M ′|, and (ii) for each
x ∈MC , pmin

x ≤ px.

Proof of (i): Since (z, p) ∈ W , and for each x ∈M ′, px > 0, then by Fact A.1,
|{i ∈ N : Di(p) ∩M ′ 6= ∅}| ≥ |M ′|. To show “>”, we proceed by contradiction. Suppose that
|{i ∈ N : Di(p) ∩M ′ 6= ∅}| = |M ′|. Then, by M ′ ⊆MC ,

for each i ∈ N such that Di(p) ∩M ′ 6= ∅, xi ∈M ′ and i ∈ NC . (∗)

Let i ∈ N such that xi ∈M ′. Then by (∗), i ∈ NC . By xi ∈M ′, pxi > 0. By Definition 2,
there is a sequence {iλ}Λ

λ=1 of Λ distinct agents such that
(a) xi1 = 0 or pxi1 = 0,
(b) for each λ ∈ {2, · · · ,Λ}, xiλ 6= 0 and pxiλ > 0,
(c) xiΛ = xi, and
(d) for each λ ∈ {1, · · · ,Λ− 1}, {xiλ , xiλ+1

} ∈ Diλ(p).
Claim: Let l = 1, · · · ,Λ− 1 and N(l) ≡ {iΛ−1, · · · , iΛ−l}. Then, for each j ∈ N(l), xj ∈M ′.
Step 1: The Claim holds for l = 1.
By (c), xiΛ = xi ∈M ′. By (d), DiΛ−1

(p) ∩M ′ 6= ∅. Thus by (∗), xiΛ−1
∈M ′.

Induction hypothesis: The Claim holds for s such that 1 ≤ s < Λ− 1.
Step 2: The Claim holds for l = s+ 1.
By induction hypothesis, xiΛ−s ∈M ′. By (d), xiΛ−s ∈ DiΛ−(s+1)

(p). Thus DiΛ−(s+1)
(p)∩M ′ 6=

∅. Thus by (∗), xiΛ−(s+1)
∈M ′.

Thus Claim holds.
Let l = Λ − 1. Then, Claim implies that for each j ∈ {i1, · · · , iΛ−1}, xj ∈ M ′. By Λ ≥ 1,

xi1 ∈M ′. Thus, pxi1 > 0 and (a) is violated. Thus |{i ∈ N : Di(p) ∩M ′ 6= ∅}| = |M ′| does not
hold.
Proof of (ii): By (z, p) ∈ W , for each x ∈ MC , pmin

x ≤ px. Let M ′ ≡ {x ∈ MC : pmin
x < px}.

We proceed by contradiction. Suppose M ′ 6= ∅.
Then, byM ′ ⊆MC , (z, p) ∈ W , by Fact A.3, |{i ∈ N : Di(p) ∩M ′ 6= ∅}| > |M ′|. Note that

for each i ∈ N such that Di(p) ∩M ′ 6= ∅, by pmin
M ′ < pM ′ , Di(p

min) ⊆M ′. Thus∣∣{i ∈ N : Di(p
min) ⊆M ′}

∣∣ > |M ′| .

Thus M ′ is overdemanded at pmin, violating Fact A.2. Thus p = pmin. Q.E.D.

A.1 Proof of Proposition 1
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Proof : We prove Proposition 1 by showing (i)=⇒(ii)=⇒(iii)=⇒(i).
Step 1: (i)=⇒(ii), i.e., p = pmin =⇒ N = NC

ObviouslyNC ⊆ N . For each i ∈ N , if pxi = 0, by Definition 3 and Remark 1, xi is connected
so i ∈ NC . If pxi > 0, by Corollary 2 in Morimoto and Serizawa (2015) and Definition 3, i ∈ NC .
Thus N ⊆ NC . Thus N = NC .
Step 2: (ii)=⇒(iii), i.e., N = NC =⇒M = MC .
Obviously MC ⊆ M . For each x ∈ M , if x is assigned, by N = NC and Definition 3,

x ∈MC . If x is unassigned, by Definition 2, x ∈MC . Thus M ⊆MC . Thus M = MC .
Step 3: (iii)=⇒(i), i.e., M = MC =⇒ p = pmin.
By M = MC , Fact A.3 (ii): implies p = pmin. Q.E.D.

A.2 Proof of Lemma 1

Proof : Part (i): Let x ∈ MU . Then, by Definition 2, px > 0. Thus, by (z, p) ∈ W , for each
x ∈ MU , there is i ∈ N such that xi = x. By Definition 3, i ∈ N\NC = NU . Thus, for each
x ∈MU , there is i ∈ NU such that xi = x. This implies |MU | ≤ |NU |.
Let i ∈ NU . If xi = 0, then by Definition 3 and Remark 1, i ∈ NC , a contradiction. Thus,

xi ∈ M , and by Definition 2, xi /∈ MC , ie, xi ∈ M\MC = MU . Thus, for i ∈ NU , xi ∈ MU ,
which implies |NU | ≤ |MU |. Thus |MU | = |NU |.
Part (ii-1): It follows from Fact A.3 (ii).

Part (ii-2): Step 1: For each x ∈MU , pmin
x < px.

Let M ′ ≡ {x ∈MU : pmin
x = px}. We proceed by contradiction. Suppose M ′ 6= ∅.

By contradiction, suppose that there is i ∈ NC such that Di(p) ∩ M ′ 6= ∅. Then any
x ∈ Di(p) ∩ M ′ is connected to xi ∈ MC , and so for any x ∈ Di(p) ∩ M ′, x ∈ MC . This
contradicts M ′ ⊆MU . Thus,

for each i ∈ NC , Di(p
min) ∩M ′ = ∅. (∗)

Since pmin
MU\M ′ < pMU\M ′ and p

min
M ′ = pM ′ , then

for each i ∈ NU such that xi ∈MU\M ′, Di(p
min) ∩M ′ = ∅. (∗∗)

Thus, ∣∣{i ∈ N : Di(p
min) ∩M ′ 6= ∅}

∣∣
=

∣∣{i ∈ N\NC : Di(p
min) ∩M ′ 6= ∅}

∣∣ by (∗)
=

∣∣{i ∈ NU : Di(p
min) ∩M ′ 6= ∅}

∣∣
≤ |NU | − |{i ∈ NU : xi ∈MU\M ′}| by (∗∗)
= |{i ∈ NU : xi ∈M ′}| = |M ′| .
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Thus M ′ is weakly underdemanded, violating Fact A.2.
Step 2: For each x ∈MU , pmin

x ≥ C1
+(x; zNC ).

We proceed by contradiction. Suppose that there is a non-empty set M ′ ⊆ MU such that
for each x ∈M ′, 0 ≤ pmin

x < C1
+(x; zNC ).

For each i ∈ NU and each x ∈MC ∪ {0},

zmin
i Ri

Def of Equilibrium
(xi, p

min
xi

) Pi
Step 1

zi Ri
Def of Equilibrium

(x, px) = (x, pmin
x ).

Thus, for each i ∈ NU , Di(p
min) ∩ (MC ∪ {0}) = ∅ and thus Di(p

min) ⊆MU .
Since for each x ∈ M ′, 0 ≤ pmin

x < C1
+(x; zNC ), then there is i ∈ NC such that Vi(x; zi) =

C1
+(x; zNC ) > 0, and so by pMC

= pmin
MC

(ii-C), Di(p
min) ⊆MU . Thus,∣∣{i ∈ N : Di(p

min) ⊆MU}
∣∣ ≥ 1 + |NU | >

(i)
|MU | .

Thus M ′ is overdemanded, violating Fact A.2.

Part (iii): For each i ∈ NU and each x ∈MC ∪ {0},

zmin
i Ri

Def of Equilibrium
(xi, p

min
xi

) Pi
Step 1 in (ii)

zi Ri
Def of Equilibrium

(x, px) =
(ii-C)

(x, pmin
x ) .

Thus, for each i ∈ NU , xmin
i ∈MU . Q.E.D.

A.3 Proof of Theorem 1

First, we propose two lemmas.

Lemma A.1: Let (z, p) ∈ W , and (zmin, pmin) ∈ Wmin. LetNC andMU be defned at (z, p).Then
there is x ∈MU such that pmin

x = C1
+(x; zNC ).

Proof : Let MC and NU be the sets of connected objects and unconnected agents at (z, p), re-
spectively. We proceed by contradiction. Suppose that for each x ∈MU , pmin

x > C1
+(RNC , x; z).

Then, for each i ∈ NC , Di(p
min) ∩MU = ∅. Thus,∣∣{i ∈ N : Di(p

min) ∩MU 6= ∅}
∣∣

=
∣∣{i ∈ NU : Di(p

min) ∩MU 6= ∅}
∣∣

≤ |NU | =
Lemma 1(i)

|MU | .

Thus, MU is weakly underdemanded, contradicting Fact A.2. Thus there is x ∈MU such that
pmin
x = C1

+(RNC , x; z). Q.E.D.

Lemma A.2: Let µ be an MPE assignment. In the IPOIP process for µ,
(i) for each x ∈MU and each s = 1, · · · , psx(µ) ≤ pmin

x , and
(ii) for each x ∈MU and each s = 1, · · · , if ps−1

x (µ) = pmin
x , then psx(µ) = ps−1

x (µ).
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Proof : Part (i) First, we show the following claim:

Claim: For each s = 1, · · · , if for each x ∈ MC , psx(µ) ≤ pmin
x , then for each x ∈ MC ,

ps+1
x (µ) ≤ pmin

x .
Let s = 1, · · · , and let psx(µ) ≤ pmin

x for each x ∈ MC . Then, for each x ∈ MU and each
j ∈ NU ,

Vj(x; zsj(µ)) ≤
ps
µ(j)
≤pmin

µ(j)

Vj(x; (µ(j), pmin
µ(j))) ≤

Def of Equilibrium
pmin
x .

Thus, for each x ∈MU , ps+1
x (µ) = C1

+(x; zsNU (µ)) ≤ pmin
x . Thus, Claim holds.

For each x ∈ MU , by Lemma 1(ii), p0
x ≡ C1

+(RNC , x; z0) ≤ pmin
x . Thus, by Claim, p1

x(µ) ≤
pmin
x . Assume that for s ≥ 1, and for each x ∈ MU , ps−1

x (µ) ≤ pmin
x . Then, by Claim,

psx(µ) ≤ pmin
x . Thus Part (i) holds.

(ii) Let x ∈ MU and s ∈ N+ be such that ps−1
x (µ) = pmin

x . By Part (i) and Fact 2, ps−1
x (µ) ≤

psx(µ) = pmin
x . Thus, psx(µ) = ps−1

x (µ). Q.E.D.

Part (i) of Theorem 1: By Lemma 1, we only show that for each i ∈ NC , zi is an MPE
bundle. Let i ∈ NC . For each each x ∈MU ,

ziRi (x,C
1
+(x; zNC )) Ri

Lemma 1(ii)
(x, pmin

x ),

and for each x ∈MC ∪ {0},

zi Ri
Def of Equilibrium

(x, px) = (x, pmin
x ).

Thus for each x ∈ L, ziRi (x, p
min
x ) and thus ziRi z

min
i . Note that

zmin
i Ri

Def of Equilibrium
(xi, p

min
xi

) Ii
Lemma 1(ii)

(xi, pxi) = zi.

Thus zi Ii zmin
i .

Let x′ be such that for each i ∈ NU , x′i = xmin
i , and for each i ∈ NC , x′i = xi. By

Lemma 1(iii), for each i ∈ NU , xmin
i ∈ MU , and for each i ∈ NC , xmin

i ∈ MC ∪ {0}. Thus,
x′ is an assignment. Let z′ be such that for each i ∈ NU , z′i = zmin

i , and for each i ∈ NC ,
z′i = zi. Then, since x′ is an assignment, and since for each i ∈ NC and each for each x ∈ L,
zi Ii z

min
i Ri (x, p

min
x ), (z′, pmin) is an MPE. Thus, for each i ∈ NC , zi = z′i is an MPE bundle.

Part (ii) of Theorem 1: Step 1: Let µ be an MPE assignment. Then p|MU |−1(µ) = pmin
MU
.

First, we show Claim A.2.
Claim A.2: For each s = 0, 1, · · · , letMs ≡ {x ∈MU : psx(µ) = pmin

x } and Ns ≡ {i ∈ NU : µi ∈
Ms}. Then, for each s = 0, 1, · · · ,
(a) |Ms| = |Ns|, and (b) if MU\Ms 6= ∅, then Ms+1 )Ms.
By Definition, for each s = 0, 1, · · · , (a) holds. Thus, we show only (b).
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Let MU\Ms 6= ∅. By Lemma A.2(ii), Ms+1 ⊇ Ms. Suppose that Ms+1 = Ms. By Lemma
A.2(i), for each x ∈ MU\Ms, pmin

x > psx(µ) ≥ p0
x. Thus, by Ms+1 = Ms, for each x ∈ MU\Ms,

p0
x ≤ ps+1

x (µ) < pmin
x . By Lemma 1(ii), for each i ∈ NC , Di(p

min) ∩ (MU\Ms) = ∅.
If i ∈ Ns, then for each x ∈MU\Ms,

Vi(x, z
min
i ) =

i∈Ns
Vi(x, z

s
i (µ)) ≤ C1

+(x; zsNU (µ)) = ps+1
x (µ) < pmin

x .

Thus, for each i ∈ Ns, Di(p
min) ∩ (MU\Ms) = ∅.

Since for each i ∈ NC ∪Ns, Di(p
min) ∩ (MU\Ms) = ∅, then

{i ∈ N : Di(p
min) ∩ (MU\Ms) 6= ∅} = {i ∈ NU\Ns : Di(p

min) ∩ (MU\Ms) 6= ∅}.

and so ∣∣{i ∈ N : Di(p
min) ∩ (MU\Ms) 6= ∅}

∣∣ ≤ |NU\Ns| =
Lemma 1(i) and (a)

|MU\Ms| .

Thus MU\Ms is weakly underdemanded, contradicting Fact A.2.
Thus, Claim A.2 holds.

Now we complete the proof of Step 1. If MU\M0 = ∅, then for each x ∈ MU , p0
x(µ) =

pmin
x , and so Lemma A.2(ii) implies that for each x ∈ MU , p|MU |−1

x (µ) = pmin
x . Thus, assume

MU\M0 6= ∅. Then, Claim A.2 says that as s increases, Ms expands strictly until {x ∈ MU :

psx(µ) = pmin
x } = MU . Since Lemma A.1 implies M0 6= ∅, Ms expands strictly at most |MU | − 1

times. Thus, {x ∈MU : pmin
x = p|MU |−1

x (µ)} = MU , i.e., for x ∈MU , p|MU |−1
x (µ) = pmin

x .

Step 2: Let µ′ ∈ Ω be a non-MPE assignment. Then, pmin
MU
≤ p|MU |−1(µ′).

Definition A.2: Let xmin
NU

be an MPE assignment, µ′ ∈ Ω, and i ∈ NU . A sequence {σl(i)}dl=1

of distinct agents (1 ≤ d ≤ n) is called a trading cycle from i in µ′ if (i) σ1(i) = i, and (ii)
for each l ∈ {1, · · · , d− 1}, µ′

σl+1(i)
= xmin

σl(i)
and µ′σ1(i) = xmin

σd(i)
.

Step 2-1: Let i ∈ NU , and {σl(i)}dl=1 be a trading cycle from i in µ′ and s ≥ 0. If psµ′i(µ
′) ≥ pmin

µ′i
,

then for each j ∈ {σ1(i), · · · , σd(i)}, ps+d
xmin
j

(µ′) ≥ pmin
xmin
j
.

If d = 1, then since {σl(i)}dl=1 = {i}, Step 2-1 follows from Fact 2. Thus, let d ≥ 2. Without
loss of generality, we assume that i = σ1(i) = 1, σ2(i) = 2, · · · , σd(i) = d. Then, µ′2 = xmin

1 ,
µ′3 = xmin

2 , · · · , µ′d = xmin
d−1, µ

′
1 = xmin

d and psµ′1(µ′) ≥ pmin
µ′1
.

Let j ∈ {1, · · · , d} and assume ps+j
xmin
j−1

(µ′) ≥ pmin
xmin
j−1
. Then,

ps+j+1

xmin
j

(µ′) = C1
+(xmin

j ; zs+jNU
(µ′))

≥ Vj(x
min
j , zs+jj (µ′)) by j ∈ NU

= Vj(x
min
j , (xmin

j−1, p
s+j

xmin
j−1

(µ′))) by µ′j = xmin
j−1

≥ Vj(x
min
j , (xmin

j−1, p
min
xmin
j−1

(µ′))) by ps
xmin
d

(µ′) ≥ pmin
xmin
d

(µ′)

≥ pmin
xmin
j
. Def of Equilibrium
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Thus, it inductively holds that for each k ∈ {1, · · · , d}, ps+k
xmin
k

(µ′) ≥ pmin
xmin
k
. Thus, by Fact 2, for

each j ∈ {1, · · · , d}, ps+d
xmin
j

(µ′) ≥ pmin
xmin
j
.

Step 2-2: Let xmin
NU

be an MPE assignment and µ′ ∈ Ω. Let {Nl(µ
′)}l∈K be a partition of NU

such that K ≡ {1, · · · , k}, and for each l ∈ K, agents in Nl(µ
′) form a trading cycle.16 Let

L0 ≡ {l ∈ K : there is i ∈ Nl(µ
′) s.t. pmin

xmin
i

= p0
xmin
i
} and M0 ≡ {x ∈MU :there is i ∈ ∪

r∈L0

Nr(µ
′)

s.t. µ′i = x}. For each s = 1, 2, · · · , let Ls ≡ {l ∈ K :there are i ∈ Nl(µ
′) and j ∈ ∪

r∈Ls−1

Nr(µ
′)

s.t. zmin
j Ij z

min
i } and Ms ≡ {x ∈ MU :there is i ∈ ∪

r∈Ls
Nr(µ

′) s.t. µ′i = x}. Then, for each
s = 0, 1, · · · ,

(a)

∣∣∣∣ ∪r∈LsNr(µ
′)

∣∣∣∣ = |Ms| , and (b) if K\Ls 6= ∅, then Ls+1 ! Ls.

By definition, for each s = 0, 1, · · · , (a) holds. Thus, we show only (b).
Let K\Ls 6= ∅. By Definition, Ls+1 ⊇ Ls. Suppose that Ls+1 = Ls. By K\Ls 6= ∅, and

Lemma 1(i), MU\Ms 6= ∅. For each x ∈ MU\Ms, by Ls+1 = Ls, x /∈ M0 and so by Lemma
1(ii), pmin

x > p0
x. Thus, by Lemma 1(ii), for each i ∈ NC , Di(p

min) ∩ (MU\Ms) = ∅.
Let i ∈ ∪

r∈Ls
Nr(µ

′) and x ∈MU\Ms. Let j ∈ NU be such that µ′(j) = x, i.e., zmin
j = (x, pmin

x ).

By x ∈MU\Ms and Ls+1 = Ls, j /∈ ∪
r∈Ls+1

Nr(µ
′). Thus, by i ∈ ∪

r∈Ls
Nr(µ

′), zmin
i Ii z

min
j does not

hold. By the definition of equilibrium, zmin
i Ri z

min
j and so zmin

i Pi z
min
j , i.e., x /∈ Di(p

min). Thus
for each i ∈ ∪

r∈Ls
Nr(µ

′), Di(p
min) ∩ (MU\Ms) = ∅.

Since for each i ∈ ∪
r∈Ls

Nr(µ
′) ∪NC , Di(p

min) ∩ (MU\Ms) = ∅, then

{i ∈ N : Di(p
min) ∩ (MU\Ms) 6= ∅} = {i ∈ NU\ ∪

r∈Ls
Nr(µ

′) : Di(p
min) ∩ (MU\Ms) 6= ∅},

and so ∣∣∣∣{i ∈ NU\ ∪
r∈Ls

Nr(µ
′) : Di(p

min) ∩ (MU\Ms) 6= ∅}
∣∣∣∣

≤
∣∣∣∣NU\ ∪

r∈Ls
Nr(µ

′)

∣∣∣∣ =
Lemma 1(i) and (a)

|MU\Ms| .

Thus, MU\Ms is weakly underdemanded, contradicting Fact A.2. Thus, (b) Ls+1 ! Ls holds.

Now we complete the proof of Step 2. By the finiteness of NU , Step 2-2 implies that
there is q ∈ {0, · · · , k} such that Lq = K. Let d0 ≡ max

l∈L0

|Nl(µ
′)| and for each r = 1, · · · , q,

dr ≡ max
l∈Lr\Lr−1

|Nl(µ
′)|. By Fact B.4, L0 6= ∅.

16Precisely, there is i ∈ Nl(µ′) such that there is a sequence {σl(i)}
|Nl(µ

′)|
l=1 of distinct agents forming a trading

cycle from i in µ′
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If q = 0, then d0 ≤ |NU | = |MU |. Thus, by Step 2-1 and Fact 2, at round d0 − 1, for
each x ∈ MU , pmin

x ≤ pd0−1
x (µ′) ≤ p|MU |−1

x (µ′). If q > 0, by Step 2-1, at round d0 − 1, for each
x ∈ M0, pmin

x ≤ pd0−1
x (µ′) and there is y ∈ M1\M0 such that pmin

y ≤ pd0−1
y (µ′). By Step 2-1,

at round d0 + d1 − 1, for each x ∈ M1\M0, pmin
x ≤ pd0+d1−1

x (µ′). By Fact 2, for each x ∈ M0,
pmin
x ≤ pd0+d1−1

x (µ′). Thus for each x ∈ M1, pmin
x ≤ pd0+d1−1

x (µ′). By induction argument, at

round D ≡
q∑
i=0

di − 1, for each x ∈ MU , pmin
x ≤ pDx (µ′). Since D ≡

q∑
i=0

di ≤ |NU | = |MU |, then

for each x ∈MU , pmin
x ≤ pd0−1

x (µ′) ≤ p|MU |−1
x (µ′). Thus Step 2 holds.

Step 3: Completion of the proof
By Fact 1, there is µ ∈ Ω such that µ is an MPE assignments. By Step 1, for each x ∈MU ,

pmin
x = p|MU |−1

x (µ). By Step 2, for each µ′ ∈ Ω\{µ} and each x ∈MU , pmin
x ≤ p

|MU |−1
x (µ′). Thus

Theorem 1(ii-2) holds. Q.E.D.

A.4 Proof of Theorem 2

By Lemma A.2(ii), (ii) implies (i). Thus, we only show that (i) implies (ii). Let µ ∈ Ω and
s ≤ |MU | be such that ps−1

MU
(µ) = psMU

(µ).
First, we introduce a weak variant of connectedness.

Definition A.3: Let (z, p) ∈ Z × Rm. An agent i ∈ N is weakly connected at p if there is
a sequence {iλ}Λ

λ=1 of Λ distinct agents such that
(i) xi1 = 0 or pxi1 = 0,
(ii) for each λ ∈ {2, · · · ,Λ}, xiλ 6= 0 and pxiλ > 0,
(iii) xiΛ = xi, and
(iv) for each λ ∈ {1, · · · ,Λ− 1}, ziλ Iiλ ziλ+1

.

Definition A.3 is weaker than Definition 3 since the weak connectedness does not require
that for each λ ∈ {1, · · · ,Λ− 1}, {xiλ , xiλ+1

} ⊆ Diλ(p), but instead only ziλ Iiλ ziλ+1
.

Definition A.4: Let (z, p) ∈ Z × Rm. An object x ∈M is weakly connected at p if (i) x is
assigned to a weakly connected agent or (ii) x is unassigned.

Let (z, p) ∈ W , and NC andMC be defined at (z, p). Then agents in NC and objects inMC

are all weakly connected.

Step 1: For each x ∈MU , x is a weakly connected object at (ps−1(µ), pMC
).

LetM ′ be the set of weakly connected objects inMU at (ps−1(µ), pMC
). To proveM ′ = MU ,

we proceed by contradiction. Suppose that MU\M ′ 6= ∅. Let N ′ ≡ {i ∈ NU : µi ∈ M ′}. Then,
N ′ is the set of weakly connected agents in NU at (ps−1(µ), pMC

), and |M ′| = |N ′|. Then by
Lemma 1(i) and |M ′| = |N ′|, NU\N ′ 6= ∅.
If there is x ∈ MU\M ′ such that ps−1

x (µ) = C1
+(x; zNC ), then either ps−1

x (µ) = 0 or there is
some j ∈ NC such that (x, ps−1

x (µ)) Ij zj, contradicting x ∈MU\M ′. Thus, for each x ∈MU\M ′,
ps−1
x (µ) 6= C1

+(x; zNC ). Thus, by Fact 2, for each x ∈ MU\M ′, ps−1
x (µ) ≥ C1

+(x; zNC ) and so
ps−1
x (µ) > C1

+(x; zNC ) ≥ 0.
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Let x ∈MU\M ′. Note that ps−1
x (µ) ≡ C1

+(x; zs−1
NU

(µ)) ≥ C1(x; zs−1
N ′ (µ)). Suppose ps−1

x (µ) =

C1(x; zs−1
N ′ (µ)). Then, there is i ∈ N ′ such that ps−1

x (µ) = Vi(x; zs−1
i (µ)). By i ∈ N ′ and

ps−1
x (µ) = Vi(x; zs−1

i (µ)), x is a weakly connected object at (ps−1(µ), pMC
), contradicting x ∈

MU\M ′. Thus, for each x ∈MU\M ′, ps−1
x (µ) > C1(x; zs−1

N ′ (µ)).
Let s′ be the earliest round in the IPOIP process such that there is x ∈ MU\M ′ such that

ps
′
x (µ) = ps−1

x (µ). Then, by Fact 2 and s′ ≤ s− 1,

for each s′′ < s′ and each y ∈MU\M ′, ps
′′

y (µ) < ps
′

y (µ) ≤ ps−1
y (µ). (∗)

Since for each y ∈MU\M ′, ps−1
y (µ) > C1

+(x; zNC ), then s′ ≥ 1.
To derive a contradiction to (∗), we first show the following claim.

Claim A.3: Let i ∈ NU , x ∈ MU , s′ ≤ s − 1, and Vi(x, zs
′−1
i (µ)) = ps−1

x (µ). Then ps
′−1
µi

(µ) =

ps−1
µi

(µ).
Note that

ps−1
x (µ) = Vi(x, z

s′−1
i (µ)) ≤

Fact2 & s′≤s−1
Vi(x, z

s−1
i (µ)) ≤

i∈NU
C1

+(x; zs−1
NU

(µ)) = psx(µ).

Thus, by ps−1(µ) = ps(µ), Vi(x, zs
′−1
i (µ)) = Vi(x, z

s−1
i (µ)). Since zs

′−1
i (µ) = (µi, p

s′−1
µi

(µ)) and
zs−1
i (µ) = (µi, p

s−1
µi

(µ)), then ps
′−1
µi

(µ) = ps−1
µi

(µ).
By the definition of IPOIP process and s′ ≥ 1, there is i ∈ NU such that Vi(x, zs

′−1
i (µ)) =

ps
′
x (µ) = ps−1

x (µ). Note that for each x ∈MU\M ′, ps−1
x (µ) > C1(x; zs

′′
N ′(µ)). By Fact 2, for each

s′′ ≤ s − 1, ps−1
x (µ) > C1(x; zs

′′
N ′(µ)). Thus, i /∈ N ′ and so i ∈ NU\N ′, and µi ∈ MU\M ′. By

Claim A.3, ps
′−1
µi

(µ) = ps−1
µi

(µ), contradicting (∗).
Thus MU\M ′ 6= ∅ fails to hold, i.e., MU = M ′.

Step 2: Let M0 ≡ {x ∈MU : ps−1
x (µ) = C1

+(x; zNC )}. Then M0 6= ∅.
By Definitions A.3 and A.4 and Step 1, there is no x ∈ MU\M0 that is weakly connected

to some y ∈MC at (ps−1(µ), pMC
). Thus, M0 6= ∅ just follows Step 1.

Step 3: For each x ∈MU , ps−1
x (µ) ≤ pmin

x .
If MU = M0, by Lemma 1(ii), Step 3 trivially holds. Thus, let MU\M0 6= ∅.
Let M ′ ≡ {x ∈ MU : ∀ x ∈ M ′, ps−1

x (µ) > pmin
x }. To show M ′ = ∅, we proceed by

contradiction. Suppose that M ′ 6= ∅.
Let N ′ ≡ {i ∈ NU : µi ∈M ′}. By Definition, |N ′| = |M ′|. By Lemma 1(i) and |M ′| = |N ′|,

|NU\N ′| = |MU\M ′| 6= ∅. By Step 2, MU\M ′ ⊇M0 6= ∅ and so NU\N ′ 6= ∅.
For each i ∈ NU and each x ∈ L\MU ,

zmin
i Ri (xi, p

min
xi

) Pi
Lemma 1(ii)&(iii)

(xi, pxi) = zi Ri
Def of Equilibrium

(x, px) =
Theorem 1(i)

(x, pmin
x ).

and so Di(p
min) ⊆MU .
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For each i ∈ NU and each y ∈MU\M ′,

zs−1
i (µ) Ri (y, ps−1

y (µ)) by ps−1
y (µ) = psy(µ) ≥ Vi(y, z

s−1
i (µ))

Ri (y, pmin
y ). by ps−1

y (µ) ≤ pmin
y

For each i ∈ N ′ and each y ∈MU\M ′,

zmin
i Ri

Def of Equilibrium
(µi, p

min
µi

) Pi
pmin
µi

<ps−1
µi

(µ)

zs−1
i (µ) Ri

N ′⊆NU
(y, pmin

y ).

Thus, for each i ∈ N ′, by Di(p
min) ⊆MU , Di(p

min) ⊆M ′. Thus,∣∣{i ∈ NU : Di(p
min) ⊆M ′}

∣∣ ≥ |N ′| = |M ′| .

By Step 1, for each x ∈M ′, x is weakly connected at (ps−1(µ), pMC
) and ps−1

x (µ) > pmin
x ≥ 0.

Then by NU\N ′ 6= ∅, there is i ∈ NU\N ′ and x′ ∈ M ′ such that zs−1
i (µ) Ii (x

′, ps−1
x′ (µ)). Thus

for each y ∈MU\M ′,

zmin
i Ri

Def of Equilibrium
(x′, pmin

x′ ) Pi
pmin
x′ <p

s−1
x′ (µ)

(x′, ps−1
x′ (µ)) Ii z

s−1
i (µ) Ri

i∈NU\N ′
(y, pmin

y ).

Thus y /∈ Di(p
min). By Di(p

min) ⊆MU , Di(p
min) ⊆M ′ so

|M ′| < |N ′|+ 1 ≤
∣∣{i ∈ NU : Di(p

min) ⊆M ′}
∣∣ ,

contradicting Fact A.2.

Step 4: For each i ∈ NU and each x ∈ L\MU , Vi(x; zs−1
i (µ)) ≤ pmin

x .
Let i ∈ NU and x ∈ L\MU . By Lemma 1(iii), xmin

i ∈MU . Thus,

Vi(x
min
i ; zs−1

i (µ)) ≤ C1
+(xmin

i ; zs−1(µ)) = psxmin
i

(µ) =
ps−1(µ)=ps(µ)

ps−1
xmin
i

(µ).

Thus, zs−1
i (µ)Ri (x

min
i , ps−1

xmin
i

(µ)). Note

(xmin
i , ps−1

xmin
i

(µ)) Ri
Step 3

(xmin
i , pmin

xmin
i

) = zmin
i Ri

Def. of Equilibrium
(x, pmin

x ).

Thus, by zs−1
i (µ)Ri (x

min
i , ps−1

xmin
i

(µ)), zs−1
i (µ)Ri (x, p

min
x ), i.e., Vi(x; zs−1

i (µ)) ≤ pmin
x .

Step 5: ((zs−1(µ), zNC ), (ps−1(µ), pMC
)) ∈ Wmin

By Lemma 1(ii) and Theorem 1(i), for each i ∈ NC , (E-i) holds. For each i ∈ NU and each
x ∈MU , Vi(x; zs−1

i (µ)) ≤ C1
+(x; zs−1(µ)) = psx(µ) = ps−1

x (µ), and for each x ∈ L\MU ,

Vi(x; zs−1
i (µ)) ≤

Step 5
pmin
x =

Theorem 1(i)
px.
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Thus (E-i) holds. (E-ii) holds obviously. Thus ((zs−1
NU

(µ), zNC ), (ps−1
MU

(µ), pMC
)) ∈ W . By Theo-

rem 1(i), Step 3, and Fact 1, pmin = (ps−1
MU

(µ), pMC
). Thus Step 5 holds. Q.E.D.

Appendix B: Proofs of Proposition 2 and Fact 3

B.1 Proof of Proposition 2

Proof : Let (zmin, pmin) be an MPE for k objects. Let (z, p) be the output of the equilibrium-
generating mechanism. We prove that (z, p) is an equilibrium. LetM(k) be the set of k objects
and let L(k) = M(k) ∪ {0}.
Mechanism stops at Phase 1: In this case, C1(y; zmin) ≤ 0 and z = zmin. Since z = z∗,
then for each i ∈ N and each x ∈ L(k),

zi = zmin
i Ri

Def of Equilibrium
(x, pmin

x ) = (x, px)

and for y, by C1(y; zmin) ≤ 0 and py = 0, zi = zmin
i Ri (y, C

1(y; zmin))Ri (y, py). Thus, (z, p)

satisfies (E-i). It is straightforward that (z, p) satisfies (E-ii).
Mechanism stops at Phase 2: In this case, C1(y; zmin) > 0, and there is i ∈ N ′ such that
z∗i = (y, C2

+(y; zmin)). For each x ∈ L(k) ∪ {y},

zi Ri
C2

+(y;zmin)≤C1
+(y;zmin)

zmin
i Ri

Def of Equilibrium
(x, pmin

x ) = (x, px).

For each j ∈ N\{i} and each x ∈ L(k), by Definition 8

zj Rj z
min
j Rj

Def of Equilibrium
(x, pmin

x ) = (x, px),

and for y, by Vj(y; zmin
j ) ≤ C2

+(y; zmin) = py, zj Rj z
min
j Rj (y, py).

Thus, (z, p) satisfies (E-i). Unassigned objects atM(k) remain unassigned with zero prices,
and pxi1 = pmin

xi1
= 0. Thus (z, p) satisfies (E-ii). Q.E.D.

B.2 Proof of Fact 3

(i): Let µ ∈ Ω be such that for each i ∈ NU , µi ∈ Γi. Then, for each i ∈ NU , Di(p). Thus,
p is an equilibrium price. Moreover, by Lemma 1, it is an MPE price. Thus, µ is an MPE
assignment.
(ii): Suppose that there is i ∈ N1 such that xmin

i ∈M2. Then by |N1| = |M1| and |N2| = |M2|,
there is j ∈ N2 such that xmin

j ∈M2. Note that there is y ∈MU such that pmin
y = p0

y. If y ∈M2,
then

(y, pmin
y ) = (y, p0

y) Pj
by j∈N2

(xmin
j , p0

x) Ri
by p0

xmin
j

≤pmin

xmin
j

(xmin
j , pmin

y ),
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which implies xmin
j /∈ Dj(p

min), a contradiction. Thus, y ∈M1. Thus,

(y, pmin
y ) = (y, p0

y) Pi
by i∈N1

(xmin
i , p0

x) Ri
by p0

xmin
i

≤pmin

xmin
i

(xmin
i , pmin

y ),

which also implies xmin
i /∈ Di(p

min), a contradiction. Thus, for each i ∈ N1, xmin
i ∈M1.

Similarly we can show that for each i ∈ N2, xmin
i ∈M2.

(iii): It follows from Lemma 1. Q.E.D.

Appendix C: Proof Theorem 4

Let r ∈ Rm+ be the reserve price vectors. A pair (z, p) ∈ Z × Rm+ is an equilibrium with
reserve price r if (i) (E-i) holds and (ii) for each y ∈M , py ≥ ry, and if py > ry then there is
some agent i ∈ N such that y = xi.
By Demange and Gale (1985), there is an equilibrium with reserve price r and the set of

equilibrium prices with reserve price r is a complete lattice. Thus, there is an MPE with reserve
price r. Let the MPE rule with reserve price r be a mapping from each preference profile to an
MPE with reserve price r.

Fact C.1 (Demange and Gale, 1985): The MPE rule with reserve price r is strategy-proof on
the set of general preference profiles.

For each R ∈ Rn, let W (R) and Wmin(R) be the set of equilibria and that of MPEs for
R. For each 0 ≤ k ≤ m, let W (k,R) and Wmin(k,R) be the corresponding notions and M(k)

be the set of objects in the assignment market with k objects. Fact C.2 follows Definition 6 of
equilibrium-generating mechanism.

Fact C.2: Let R ∈ Rn and (zmin, pmin) ∈ Wmin(k,R). Let i ∈ N , R′i ∈ R, and R′ = (R′i, R−i) ∈
Rn. Let (z′, p′) be the outcome of equilibrium-generating mechanism for R′. Let i∗ ∈ N\{i}
be such that x′i∗ = y. Then
(i) z′i∗ Ri∗ z

min
i∗ and for each j ∈ N\{i∗}, z′j Ij zmin

j ,
(ii) p′M(k) = pmin, and
(iii) for each x ∈M(k) such that pmin

x > 0, there is j ∈ N\{i∗} such that x′j = x.

Proof of Theorem 4(i)

Let R ∈ Rn, (zmin, pmin) ∈ Wmin(k,R), and i ∈ N . Let (z, p) and (z′, p′) be the outcomes
of equilibrium-generating mechanism for R and R′ = (R′i, R−i), i.e, z = gsub1(R; zmin) and
z′ = gsub1(R′; zmin). We show ziRi z

′
i.

By contradiction, suppose that z′i Pi zi. By Fact C.2(i), x
′
i = y and so p′k+1 = C1

+(y; zmin
N\{i}).

In case of xi = y, by Vi(y; zmin
i ) = C1

+(y; zmin), pk+1 = C2
+(y; zmin) = C1

+(; zmin
N\{i}). Thus z

′
i = zi,

contradicting z′i Pi zi. In case of xi ∈ M(k), by Vi(y; zmin
i ) ≤ C2

+(y; zmin) ≤ C1
+(; zmin

N\{i}) = p′k+1,
zi Ii z

min
i Ri (y, p

′
y) = z′i, contradicting z

′
i Pi zi. Thus, ziRi z

′
i.

Proof of Theorem 4(ii)
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Let R ∈ Rn and z ∈ Zk+1 be an equilibirum allocation. Let NC and NU be defined at z for
R. If i ∈ NC , then agent i does not participate in the MPE-adjustment mechansim and keeps
the same allocation as zi, and so incentive property holds trivially. Thus, let i ∈ NU .
Let zNU = gsub2(R; z) and z′NU = gsub2(R′; z) be outcomes of MPE-adjustment mechanism

for R and R′ = (R′i, R−i). Since zNU is an MPE for (NU ,MU , RNU ) with r′ = (C1
+(x; zmin

NC
))x∈MU

,
and that z′NU is an MPE for (NU ,MU , R

′
NU

) with r′, by Fact C.1, ziRi z
′
i.

Proof of Theorem 4(iii)

The proof contains three steps. Step 1 gives additional four facts. Step 2 establishes three
lemmas based on the above facts, together with Facts C.1 and C.2. Step 3 completes the proof.

Step 1: Construction of Facts C.3 to C.6

Fact C.3: Let R ∈ Rn, (z, p) ∈ W (R), N ′ ⊆ N , and M ′ ⊆M . Let NC be defined at (z, p).
(i) Let (zN ′ , pM ′) be an MPE in (N ′,M ′, RN ′). Then N ′ ⊆ NC .
(ii) Let i ∈ N , R′i ∈ R, R′ = (R′i, R−i) ∈ Rn and (z, p) ∈ Wmin(R′). Then i ∈ NC .

Proof : (i) Let x ∈ M ′ be such that px > 0 for (N ′,M ′, RN ′). Since (zN ′ , pM ′) is an MPE
in (N ′,M ′, RN ′), there is a DCP {iλ}Λ

λ=1 of agents to x in (N ′,M ′, RN ′). Note that for each
λ = 1, . . . ,Λ,

{y ∈M ′ : ∀y′ ∈M ′, (y, py)Rλ (y′, py′)} ⊆ {y ∈M : ∀y′ ∈M, (y, py)Rλ (y′, py′)}.

Thus, the DCP {iλ}Λ
λ=1 of agents to x is also a DCP in (N,M,R). Thus x ∈ NC . Thus,

M ′ ⊆MC and so N ′ ⊆ NC .
(ii) If xi = 0 or pxi = 0, by definition, i ∈ NC . Thus, let pxi > 0. By (z, p) ∈ Wmin(R′), there
is a DCP {iλ}Λ

λ=1 of agents to xi at (z, p) in (N,M,R′). By R−i = R′−i and i /∈ {iλ}Λ−1
λ=1 , the

agents in {iλ}Λ−1
λ=1 have the same demands at p in (N,M,R) as in (N,M,R′). Thus, {iλ}Λ

λ=1 is
also a DCP to xi at the same pair (z, p) in (N,M,R). Thus i ∈ NC . Q.E.D.

Fact C.4 follows the definition of DCP (Definition 2).

Fact C.4: For x ∈MC such that px > 0 and each DCP {iλ}Λ
λ=1 of agents to x, {iλ}Λ

λ=1 ⊆ NC .

GivenN ′ ⊆ N ,M ′ ⊆M , R′N ′ ∈ Rn and r ∈ R|M
′|

+ , let Z(N ′,M ′, R′N ′ , r) and Z
min(N ′,M ′, R′N ′ , r)

denote the sets of equilibrium and MPE allocations for (N ′,M ′, R′N ′) with reserve price r, re-
spectively. LetW (·, ·, ·, ·) andWmin(·, ·, ·, ·) be the sets of equilibria and MPEs similarly defined
for (N ′,M ′, R′N ′) with reserve price r. When r = 0 or N ′ = N orM ′ = M , we just omit writing
r or N ′ or M ′. Recall that Z(R) is the set of equilibrium allocations for (N,M,R) with r = 0.
Given N ′ ⊆ N , denote

Zmin
N ′ (R) ≡ {zN ′ : ∃zN\N ′ such that (zN ′ , zN\N ′) ∈ Zmin(R)}.

The following fact is easy to see.
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Fact C.5: Let R ∈ Rn and (z, p) ∈ W (R). Let NC be defined at (z, p) for R. Let N ′ ⊆ NC ,
N ′′ = N\N ′ and M ′′ = {xi : i ∈ N ′′}. Then

Zmin
N ′′ (R) = Zmin(N ′′,M ′′, RN ′′ , r) where rx = C1

+(R, x; zN ′) for each x ∈M ′′.

Fact C.6: Let R ∈ Rn and (z, p) ∈ W (R). Let NU be defined at (z, p). Let N ′ ⊆ {i ∈ N :

xi ∈M and pxi > 0}. If for each j ∈ N\N ′, Dj(p) ∩ {xi : i ∈ N ′} = ∅, then N ′ ⊆ NU .

Proof : By contradiction, suppose that there is k ∈ N ′ ∩ NC . Then, by xk ∈ MC , pxk > 0

and Definition 2, there is a DCP of agents {iλ}Λ
λ=1 to xk satisfying (a) pxi1 = 0, iΛ = k, and

xiΛ = xk, and (b) for each λ ∈ {1, · · · ,Λ − 1}, {xiλ , xiλ+1
} ⊆ Diλ(p). By (b), for agent iΛ−1,

{xk, xiΛ−1
} ⊆ DiΛ−1

(p). Since k ∈ N ′, xk ∈ DiΛ−1
(p) and Dj(p) ∩ {xi : i ∈ N ′} = ∅ for each

j ∈ N\N ′, we have iΛ−1 /∈ N\N ′, ie., iΛ−1 ∈ N ′. Repeating the same argument, we can show
{iλ : λ = 1, ...,Λ} ⊆ N ′. By (a), we have pxi1 = 0, contradicting that for each i ∈ N ′, xi ∈ M
and pxi > 0. Q.E.D.

Step 2: Construction of Lemmas C.1 to C.3

Lemma C.1: Let R ∈ Rn and (z∗, pmin) ∈ Wmin(k,R). Let (z, p) be the outcome of
equilibrium-generating mechanism for R. Let NC , NU , MC , and MU be defined at (z, p) for R.
Let i∗ ∈ N be such that xi∗ = k + 1.
(i) (zNC\{i∗}, pMC\{k+1}) ∈ W (NC\{i∗},MC\{k+1}, RNC\{i∗}) and (zNC , pMC

) ∈ Wmin(NC ,MC , RNC ).
(ii) If (a) C1

+(R, k + 1; z∗) > C2
+(R, k + 1; z∗), or

(b)
∣∣{j ∈ NC\{i∗} : Vj(k + 1; z∗j ) = C2

+(R, k + 1; z∗)}
∣∣ ≤ 1,

then (zNC\{i∗}, pMC\{k+1}) ∈ Wmin(NC\{i∗},MC\{k + 1}, RNC\{i∗}).

Proof : Part (i): By Facts C.2(i) and C.2(ii), (E-i) holds for (NC\{i∗},MC\{k+1}, RNC\{i∗}).
By Fact C.2(iii), (E-ii) holds for (NC\{i∗},MC\{k+ 1}, RNC\{i∗}). Thus (zNC\{i∗}, pMC\{k+1}) ∈
W (NC\{i∗},MC\{k + 1}, RNC\{i∗}). By the same reasoning, (zNC , pMC

) ∈ W (NC ,MC , RNC ).
Let x ∈MC be such that px > 0 and {iλ}Λ

λ=1 be a DCP {iλ}Λ
λ=1 of agents to x. Then by Fact

C.4, {iλ}Λ
λ=1 ⊆ NC . Thus, each x ∈ MC such that px > 0 is also connected in (NC ,MC , RNC ).

Thus by Proposition 1, (zNC , pMC
) ∈ Wmin(NC ,MC , RNC ).

Part (ii) Let x ∈ MC\{k + 1} be such that px > 0 and {iλ}Λ
λ=1 be a DCP {iλ}Λ

λ=1 of agents
to x. Then by Fact C.4, {iλ}Λ

λ=1 ⊆ NC . Note that to establish that (zNC\{i∗}, pMC\{k+1}) ∈
Wmin(NC\{i∗},MC\{k + 1}, RNC\{i∗}), by Proposition 1 and Part (i), we only need to show
i∗ /∈ {iλ}Λ

λ=1, which implies {iλ}Λ
λ=1 ⊆ NC\{i∗}, in each of Case (a) and Case (b). In the

following, we show {iλ}Λ
λ=1 ⊆ NC\{i∗} in Case (a).

Assume C1
+(R, k + 1; z∗) > C2

+(R, k + 1; z∗). Then by Vi∗(k + 1; z∗i∗) = C1
+(R, k + 1; z∗) and

xi∗ = k + 1, we have: Vi∗(k + 1; z∗i∗) > C2
+(R, k + 1; z∗) = ti∗ and zi∗ = (k + 1, ti∗)Pi∗ z

∗
i∗ . Thus,

Di∗(p) = {k + 1}. By Definition 2(ii-4), i∗ /∈ {iλ}Λ
λ=1.

For Case (b), if
∣∣{j ∈ NC\{i∗} : Vj(k + 1; z∗j ) = C2

+(R, k + 1; z∗)}
∣∣ = 0. it is straightforward

to see i∗ /∈ {iλ}Λ
λ=1. For the other case, the same reasoning of Case (a) works. Q.E.D.
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Lemma C.2: Let R ∈ Rn and (z∗, pmin) ∈ Wmin(k,R). Let i ∈ N , R′i ∈ R and R′ =

(R′i, R−i) ∈ (RG)n. Let (z, p) and (z′, p′) be the outcomes of equilibrium-generating mechanism
for R and R′. Let NC , NU , MC , and MU be defined at (z, p) for R. Let i∗ ∈ N be such that
xi∗ = k + 1.
(i) For each j ∈ NC\{i∗}, x′j ∈MC ∪ {0, k + 1}.
(ii) For each x ∈MU\{k + 1}, there is j ∈ NU ∪ {i∗} such that x′j = x.
Proof : Part (i): Let j ∈ NC\{i∗}. By contradition, suppose that x′j /∈ MC ∪ {0, k + 1}. By
x′j 6= k+ 1, we have x′j ∈MU\{k+ 1}. By x′j 6= k+ 1 and Fact C.2(ii), px′j = pmin

x′j
= p′x′j

. Thus,

by Lemma 1(ii), and x′j ∈ MU , we have Vj(x′j; z
∗
j ) < px′j = p′x′j

. On the other hand, by Fact

C.2(i), (x′j, p
′
x′j

) = z′j Rj z
∗
j . Thus, Vj(x

′
j; z
∗
j ) ≥ p′x. This is a contradiction.

Part (ii): Let x ∈ MU\{k + 1}. By Lemma 1(ii) and x ∈ MU , px > 0. By Fact C.2(ii) and
x 6= k + 1, px = pmin

x = p′x. Thus, p
′
x > 0. By Fact C.2(iii) and Part (i), there is j ∈ NU ∪ {i∗}

such that x′j = x. Q.E.D.

Lemma C.3: Let R ∈ Rn and (z∗, pmin) ∈ Wmin(k,R). Let i ∈ N , R′i ∈ RG and R′ =

(R′i, R−i) ∈ Rn. Let (z, p) and (z′, p′) be respectively the outcomes of some equilibrium-
generating mechanisms for R and R′. Let NC , NU , MC , and MU be defined at (z, p) for R. Let
N ′C , N

′
U , M

′
C , and M

′
U be defined at (z′, p′) for R′. Let i∗ ∈ N be such that xi∗ = k + 1.

(i) Let i∗ 6= i, k + 1 ∈MC and pk+1 = C1
+(R, k + 1; z∗) > 0. Then (z, p) ∈ Wmin(M(k + 1), R).

(ii) Let i ∈ NC and i∗ 6= i.
(ii-1) Let V ′i (k + 1; z∗i ) = C1

+(R, k + 1; z∗) > 0. Then

V ′i (k + 1; z∗i ) = p′k+1 = C1
+(R, k + 1; z∗) = C1

+(R′, k + 1; z∗) = Vi∗(k + 1; z∗i∗) > 0.

(ii-2) Let V ′i (k + 1; z∗i ) = C1
+(R, k + 1; z∗) > 0. Then (z′, p′) ∈ Wmin(N,M(k + 1), R′).

(ii-3) Let V ′i (k + 1; z∗i ) > C1
+(R, k + 1; z∗) > 0. Let R′′i ∈ RG be such that for each x ∈ M(k),

V ′′i (x; ·) = V ′i (x; ·) and V ′′i (k + 1; z∗i ) = C1
+(R, k + 1; z∗). Let R′′ ≡ (R′′i , R−i). Then (z′, p′) ∈

Wmin(N,M(k + 1), R′′).
(iii) Let i∗ ∈ NU and p′k+1 > C1

+(RNC , k + 1; z∗). Then NC = N ′C , MC = M ′
C , MU = M ′

U , and
NU = N ′U .

Proof : Part (i-1) By Proposition 2, (z, p) ∈ W (M(k + 1), R). To establish (z, p) ∈
Wmin(M(k + 1), R), by Proposition 1, we only need to show NC = N .
By Fact C.2(ii), we have: (1) pM(k) = pmin. Since z is generated by equilibrium-generating

mechanism for R and xi∗ = k + 1, there is a sequence {iλ}Λ
λ=1 to x

∗
i∗ such that (2) iΛ = i∗,

(3) x∗i1 = 0 or pmin
x∗i1

= 0, and (4) for each λ ∈ {1, ...,Λ − 1}, {x∗iλ , x
∗
iλ+1
} ∈ Diλ(pmin) and

xiλ = x∗iλ+1
. By xi∗ = k + 1, Vi∗(k + 1; z∗i∗) = C1

+(R′, k + 1; z∗) = pk+1. Thus by (2), we have:
(5) xi∗ = xiΛ = k + 1 and (6) ViΛ(k + 1; z∗iΛ) = pk+1. In the next two paragraphs, we show that
{iλ}Λ

λ=1 ⊆ NC .
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By k + 1 ∈MC , iΛ ∈ NC , and there is a DCP {i′λ}Λ′
λ=1 to k + 1 in (z, p). Note

(k + 1, pk+1) IiΛ
(6)
z∗iΛ = (x∗iΛ , p

min
x∗iΛ

) =
(1) & (4)

(xiΛ−1
, pxiΛ−1

).

Thus, by (1), (4) and (5), we have {xiΛ−1
, xiΛ} ⊆ DiΛ(p). Thus, {i′λ}Λ′

λ=1 ∪ {iΛ−1} is a DCP to
xiΛ−1

= x∗i∗ in (z, p). Thus, iΛ−1 ∈ NC .
By (4), we have: {x∗iΛ−1

, x∗iΛ} ⊆ DiΛ−1
(pmin), x∗iΛ−1

= xiΛ−2
and x∗iΛ = xiΛ−1

. Thus, by (1),
{xiΛ−2

, xiΛ−1
} ∈ DiΛ−1

(p). Thus, {i′λ}Λ′
λ=1∪{iΛ−1, iΛ−2} is a DCP to xiΛ−2

= x∗iΛ−1
in (z, p). Thus,

iΛ−2 ∈ NC . Similarly, we have that for each λ = Λ− 3, . . . , 1, iλ ∈ NC . Thus, {iλ}Λ
λ=1 ⊆ NC .

Finally, we show that for each j /∈ {iλ}Λ
λ=1, j ∈ NC . Let j /∈ {iλ}Λ

λ=1. Note that xj = x∗j ,
and so by (z∗, pmin) ∈ Wmin(k,R) and Proposition 1, there is a DCP {i′′λ}Λ′′

λ=1 to xj = x∗j in
(z∗, pmin). If {i′′λ}Λ′′

λ=1 ∩ {iλ}Λ
λ=1 = ∅, since for each λ, xi′′λ = x∗i′′λ

6= k+ 1, by (1), {i′′λ}Λ′′
λ=1 is also a

DCP to xj = x∗j in (z, p) and so j ∈ NC . Thus, assume {i′′λ}Λ′′
λ=1 ∩ {iλ}Λ

λ=1 6= ∅. Then, there is
λ′ ∈ {1, . . . ,Λ′′} such that i′′λ′ ∈ {iλ}Λ

λ=1 and for any λ
′′ > λ′, i′′λ′′ /∈ {iλ}Λ

λ=1. Let λ
′′ be such that

iλ′′ = i′′λ′ . Note that for any λ
′′′ > λ′, xi′′

λ′′′
= x∗i′′

λ′′′
, and that xiλ′′ = xi′′

λ′
Ii′′
λ′
x∗i′′
λ′
Ii′′
λ′
x∗i′′
λ′+1

= xi′′
λ′+1
,

and {xi′′
λ′+1

, xiλ′′} ⊆ Di′
λ′

(p). Thus, the sequence {i′λ}Λ′
λ=1 ∪{iλ}Λ

λ=λ′′ ∪{i′′λ}Λ′

λ=λ′+1 is a DCP to xj
in (z, p) and so j ∈ NC .

Part (ii-1): By xi∗ = k + 1, Vi∗(k + 1; z∗i∗) = C1
+(R, k + 1; z∗). By V ′i (k + 1; z∗i ) = C1

+(R, k +

1; z∗) > 0,

V ′i (k + 1; z∗i ) = C1
+(R′, k + 1; z∗) = C1

+(R, k + 1; z∗) = Vi∗(k + 1; z∗i∗) > 0,

and so by i 6= i∗, p′k+1 = C2
+(R′, k + 1; z∗) = C1

+(R, k + 1; z∗). Thus, we have:

V
′

i (k + 1; z∗i ) = p′k+1 = C1
+(R, k + 1; z∗) = C1

+(R′, k + 1; z∗) = Vi∗(k + 1; z∗i∗) > 0.

Part (ii-2): By Proposition 2, (z′, p′) ∈ Z(N,M(k + 1), R′). Thus, if p′ is an MPE price for
(N,M(k+ 1), R′), (z′, p′) ∈ Wmin(N,M(k+ 1), R′). Let z′′ be such that z′′i∗ = (k+ 1, p′k+1) and
for each j ∈ N\{i∗}, z′′j = zj. We show (z′′, p′) ∈ Wmin(N,M(k + 1), R′).
First, we show (z′′, p′) ∈ W (N,M(k + 1), R′). By Part (ii-1) and Fact C.2(ii), we have: (1)

p′M(k) = pmin = pM(k) and p′k+1 ≥ pk+1. By construction, unassigned objects at (z, p) remain
unassigned at (z′′, p′). Thus (E-ii) holds. By (1), for each j ∈ N\{i∗}, x′′j = xj ∈ Dj(p

′). By
Part (ii-1) and z′′i∗ = (k + 1, p′k+1), z′′i∗ Ii∗ z

∗
i∗. Thus x

′′
i∗ = k + 1 ∈ Di∗(p

′). Thus (E-i) holds.
Thus, (z′′, p′) ∈ W (N,M(k + 1), R′).
Next, we show that (z′′, p′) ∈ Wmin(N,M(k+ 1), R′). Let N ′′C , N

′′
U , M

′′
C , and M

′′
U be defined

at (z′′, p′) for R′. Note that we only need to show x′′i∗ = k + 1 ∈ M ′′
C , which, by Part (i) and

Part (ii-1), implies (z′′, p′) ∈ Wmin(N,M(k + 1), R′).
By i ∈ NC , there is a DCP {iλ}Λ

λ=1 of agents to xi at (z, p) for R. By i∗ ∈ N\{i} and iΛ = i,
i∗ 6= iΛ. Thus, there are the two cases below.
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Case 1: i∗ /∈ {iλ}Λ−1
λ=1 Since R′−i = R−i, iΛ = i 6= i∗, i∗ /∈ {iλ}Λ−1

λ=1 , and z
′′
j = zj for each

j ∈ N\{i∗}, by (1), {iλ}Λ
λ=1 is also a DCP to xi at (z′′, p′) for R′. Thus i ∈ M ′

C . By i 6= i∗,
zi I
′
i z
∗
i . Thus, by Part (ii-1), z

′′
i = zi I

′
i z
∗
i I
′
i (k + 1, p′k+1) = z′′i∗. Thus, {x′′i , x′′i∗} ∈ DiΛ(p′), and

{iλ}Λ
λ=1 ∪ {i∗} is a DCP to k + 1 at (z′′, p′) for R′. Thus k + 1 ∈M ′′

C .
Case 2: i∗ ∈ {iλ}Λ−1

λ=1 Let Λ′ ≤ Λ− 1 be such that i∗ = iΛ′ . Then, the subsequence {iλ}Λ′
λ=1

of {iλ}Λ
λ=1 is a DCP to xi∗ = k + 1 at (z, p) for R. For each λ ∈ {1, . . . ,Λ′ − 1}, by iλ 6= i∗,

z′′iλ = ziλ. Thus by (1), {iλ}Λ′
λ=1 is also a DCP to x

′′
i∗ = xi∗ = k + 1 at (z′′, p′) for R′. Thus

k + 1 ∈M ′′
C .

Part (ii-3): By V ′′i (k+ 1; z∗i ) = C1
+(R, k+ 1; z∗), there is an outcome (z′′, p′′) of equilibrium-

generating mechanism for R′′ such that x′′i = k + 1. By V ′′i (k + 1; z∗i ) = C1
+(R, k + 1; z∗) > 0

and Part (ii-2), (z′′, p′′) ∈ Wmin(N,M(k + 1), R′′). To show (z′, p′) ∈ Wmin(N,M(k + 1), R′′),
we need to show that p′ = p′′, z′′i = z′i, and for each j ∈ N\{i}, z′j Ij z′′j .
By i 6= i∗ and V ′i (k + 1; z∗i ) > C1

+(R, k + 1; z∗) > 0,

p′k+1 = C2
+(R′, k + 1; z∗) = C1

+(R, k + 1; z∗).

By Part (ii-1) and V ′′i (k+ 1; z∗i ) = C1
+(R, k+ 1; z∗), p′′k+1 = C1

+(R, k+ 1; z∗). Thus, p′k+1 = p′′k+1.
By Fact C.2(ii), p′M(k) = pmin = p′′M(k). Thus, p

′ = p′′.
By V ′i (k + 1; z∗i ) > C1

+(R, k + 1; z∗) = C2
+(R′, k + 1; z∗), x′i = k + 1 = x′′i . Thus, z

′
i = z′′i . By

Fact C.2(i), for each j ∈ N\{i}, z′j Ij z∗j Ij z′′j .
Part (iii): By Fact C.2(ii), pM(k) = pmin = p′M(k). Since p

′
k+1 > C1

+(RNC , k + 1; z∗), we have:
(1) there is some i′ ∈ NU such that x′i′ = k + 1.
By Lemma C.2(i), i∗ ∈ NU , and (1), we have: (2) for each j ∈ NC , x′j ∈MC ∪ {0}.
By Lemma C.1(i), i∗ ∈ NU , and xi∗ = k + 1, (zNC , pMC

) ∈ Wmin(NC ,MC , RNC ). By pMC
=

p′MC
, (2), Fact C.2(i) and C.2 (iii), (z′NC , p

′
MC

) ∈ Wmin(NC ,MC , R
′
NC

). Thus, by Proposition 1
and Fact C.3, we have: (3) NC ⊆ N ′C and MC ⊆M ′

C .
By Fact C.2(ii), Lemma 1(ii), and Lemma C.2(ii), for each x ∈ MU , p′x > 0 and x is

assigned to some j ∈ NU at (z′, p′) for R′. Since p′k+1 > C1
+(RNC , k + 1; z∗) and p′M(k) = pM(k),

{i ∈ N : Di(p
′) ∩MU 6= ∅)} = NU . Thus, NU ⊆ N ′U and MU ⊆ M ′

U . By (3), NC = N ′C ,
MC = M ′

C , MU = M ′
U , and NU = N ′U . Q.E.D.

Step 3: Completion of the proof

Let R ∈ Rn, (z∗, pmin) ∈ Wmin(k,R), and i ∈ N . Let (z, p) and (z′, p′) be the outcomes of
equilibrium-generating mechanism for R and R′ ≡ (R′i, R−i). Let NC , NU , MC , and MU be
defined at (z, p) for R, and N ′C , N

′
U , M

′
C , and M

′
U be defined at (z′, p′) for R′. Let (ẑ, p̂) and

(z̃, p̃) be the outcomes of MPE-adjustment mechanism for R and R′ from (z, p) and (z′, p′),
respectively. Thus ẑ = fSV (R; z; k + 1) and z̃ = fSV (R′; z; k + 1).
Assume for each j ∈ N , Vj(k + 1; z∗j ) ≤ 0. Then pk+1 = 0 and (z∗, p) ∈ Wmin(M(k + 1), R)

where p = (pmin, 0). In case V ′i (k + 1; z∗i ) ≤ 0, z′i = z∗i = zi holds. By Theorem 1(i) and
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Definition 11, z̃i = z′i = zi = ẑi. In case V ′i (k + 1; z∗i ) > 0, z′i = (k + 1, 0) and i ∈ N ′C hold.
Thus, by Vi(k + 1; z∗i ) ≤ 0, ẑi = ziRi z

′
i = z̃i. In the following, assume C1

+(R, k + 1; z∗) > 0.
Then there is i∗ ∈ N such that xi∗ = k + 1. We show ẑiRi z̃i by considering two cases where
i ∈ NC in Case I and i ∈ NU in Case II.

Case I: i ∈ NC

By Theorem 1(i) and Definition 11, for agent i, ẑi = zi. We conclude that i ∈ N ′C at
(z′, p′) for R′ for each subcase. This implies that i does not participate the MPE-adjustment
mechanism from (z′, p′) so that by ẑi = zi and Fact C.2(i), ẑi = ziRi z

∗
i Ii z

′
i = z̃i.

Case I-1: i 6= i∗.

Case I-1-1: V ′i (k + 1; z∗i ) < C1
+(R, k + 1; z∗)

Case I-1-1-1-1: C1
+(R, k + 1; z∗) > C2

+(R, k + 1; z∗) or∣∣{j ∈ NC\{i∗, i} : Vj(k + 1; z∗j ) = C2
+(R, k + 1; z∗)}

∣∣ = 0.

Since V ′i (k + 1; z∗i ) < C1
+(R, k + 1; z∗) and since C1

+(R, k + 1; z∗) > C2
+(R, k + 1; z∗) or∣∣{j ∈ N\{i, i∗} : Vj(k + 1; z∗j ) = C2

+(R, k + 1; z∗)}
∣∣ = 0, we have: (1) for each j ∈ NC\{i∗},

x′j 6= k + 1. By Lemma C.1(ii), we have: (2) (zNC\{i∗}, pMC\{k+1}) ∈ Wmin(NC\{i∗},MC\{k +

1}, RNC\{i∗}). By Lemma C.2(ii) and (1), we have: (3) for each j ∈ NC\{i∗}, x′j ∈ (MC\{k +

1}) ∪ {0}.
By Fact C.2(i) and (ii), pMC\{k+1} = p′MC\{k+1} and for each j ∈ NC\{i∗}, z′j Ij zj. By

RNC\{i∗} = R′NC\{i∗}, (2), (3), and Fact C.2(iii), (z′NC\{i∗}, p
′
MC\{k+1}) ∈ Wmin(NC\{i∗},MC\{k+

1}, R′NC\{i∗}). Thus, by i 6= i∗, Proposition 1 and Fact C.3, i ∈ N ′C at (z′, p′) for R′.

Case I-1-1-2: C1
+(R, k + 1; z∗) = C2

+(R, k + 1; z∗) and∣∣{j ∈ NC\{i∗, i} : Vj(k + 1; z∗j ) = C2
+(R, k + 1; z∗)}

∣∣ ≥ 1.

Since pk+1 = C2
+(R, k + 1; z∗) = C1

+(R, k + 1; z∗) > 0, i∗ ∈ NC , and xi∗ = k + 1, by Lemma
C.3(i), (z, p) ∈ Wmin(M(k + 1), R). Thus, by Proposition 1, N = NC .
By

∣∣{j ∈ N\{i, i∗} : Vj(k + 1; z∗j ) = C2
+(R, k + 1; z∗)}

∣∣ ≥ 1, there is j ∈ NC = N\{i, i∗}
such that Vj(k + 1; z∗j ) = C2

+(R, k + 1; z∗). Thus, p′k+1 = C2
+(R′, k + 1; z∗) = C2

+(R, k + 1; z∗).
By Fact C.2(i) and (ii), p′M(k) = pM(k). Thus p = p′. By V ′i (k + 1; z∗i ) < C1

+(R, k + 1; z∗),
x′i 6= k + 1. Since for each j ∈ N\{i}, z′j Ij zj, by p′ = p, (z′, p′) ∈ Wmin(M(k + 1), R). Since
(z′, p′) ∈ W (M(k + 1), R), by Fact C.3, i ∈ N ′C at (z′, p′) for R′.

Case I-1-2: V ′i (k + 1; z∗i ) = C1
+(R, k + 1; z∗)

Since i 6= i∗, i ∈ NC , and V ′i (k + 1; z∗i ) = C1
+(R, k + 1; z∗) > 0, by Lemma C.3(ii-2),

(z′, p′) ∈ Wmin(N,M(k + 1), R′). Thus, i ∈ N ′C at (z′, p′) for R′.

Case I-1-3: V ′i (k + 1; z∗i ) > C1
+(R, k + 1; z∗)

Let R′′i be such that for each x ∈ M(k), V ′′i (x; ·) = V ′i (x; ·) and V ′′i (k + 1; z∗i ) = C1
+(R, k +

1; z∗). Let R′′ ≡ (R′′i , R−i). Since i 6= i∗, i ∈ NC , and V ′i (k + 1; z∗i ) > C1
+(R, k + 1; z∗) > 0, by

Lemma C.3(ii-3), (z′, p′) ∈ Wmin(N,M(k+ 1), R′′). Thus, by (z′, p′) ∈ Z(R′), and Fact C.3(ii),
i ∈ N ′C at (z′, p′) for R′.
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Case I-2: i = i∗ ∈ NC .

Assume C2
+(R, k + 1; z∗) = 0. If V ′i (k + 1; z∗i ) ≤ 0, by Definition 8, z′ = z∗ = z̃. Since

Vi(k + 1; z∗i ) > 0, then ẑi = zi Pi z
′
i = z̃i. If V ′i (k + 1; z∗i ) > 0, then z′i = zi = (k + 1, 0). Thus

i ∈ N ′C at (z′, p′) for R′.
In the following, assume C2

+(R, k + 1; z∗) > 0. Then there is j ∈ NC\{i} such that Vj(k +

1; z∗j ) = C2
+(R, k + 1; z∗).

Case I-2-1: V ′i (k + 1; z∗i ) > C2
+(R, k + 1; z∗)

Case I-2-1-1: Vi(k + 1; z∗i ) = C2
+(R, k + 1; z∗)

Since xi = k + 1, Vi(k + 1; z∗i ) = C1
+(R, k + 1; z∗) = C2

+(R, k + 1; z∗) > 0. Since j ∈ NC , by
Lemma 3(ii-2), (z, p) ∈ Wmin(R).
Next we show (z′, p′) ∈ Wmin(R). By Proposition 2, (z′, p′) ∈ W (R′). Since V ′i (k + 1; z∗i ) >

C2
+(R, k + 1; z∗), p′k+1 = C2

+(R, k + 1; z∗) = pk+1. By Fact C.2(ii), p′M(k) = pmin = pM(k).
Thus p′ = p. By Fact C.2(i), for each j ∈ N\{i}, zj Ij z′j. Together with z′i = zi, we have
(z′, p′) ∈ W (R). Since p = p′ is an MPE price for R, (z′, p′) ∈ Wmin(R).
By (z′, p′) ∈ Wmin(R), (z′, p′) ∈ W (R), and Fact C.3(ii), i ∈ N ′C at (z′, p′) for R′.

Case I-2-1-2: Vi(k + 1; z∗i ) > C2
+(R, k + 1; z∗)

Since V ′i (k + 1; z∗i ) > C2
+(R, k + 1; z∗), we have: (1) x′i = k + 1. By xi = k + 1, j ∈ NC\{i},

and Lemma C.1(i), we have: (2) (zNC\{i∗}, pMC\{k+1}) ∈ Wmin(NC\{i∗},MC\{k+ 1}, RNC\{i∗}).
By Lemma C.2(i) and (1), we have: (3) for each j ∈ NC\{i}, x′j ∈ (MC\{k + 1}) ∪ {0}.
By Fact C.2(i) and (ii), pMC\{k+1} = p′MC\{k+1} and for each j ∈ NC\{i}, z′j Ij z∗j Ij zj.

By RNC\{i} = R′NC\{i}, (2), (3), Fact C.2(iii), (z′NC\{i}, p
′
MC\{k+1}) ∈ Wmin(NC\{i},MC\{k +

1}, R′NC\{i}). By Fact C.3(i), NC\{i} ⊆ N ′C . Thus j ∈ N ′C . By j ∈ N ′C , Vj(k + 1; z∗j ) =

C2
+(R, k + 1; z∗), and z′j Ij z

∗
j , i ∈ N ′C at (z′, p′) for R′.

Case I-2-2: V ′i (k + 1; z∗i ) = C2
+(R, k + 1; z∗)

In this case, Vj(k + 1; z∗j ) = C2
+(R, k + 1; z∗) = C1

+(R′, k + 1; z∗). Since j 6= i, j ∈ NC , and
xi = k + 1 at (z, p) for R, by Lemma C.3(ii-2), (z′, p′) ∈ Wmin(N,M(k + 1), R′). Thus i ∈ N ′C
at (z′, p′) for R′.

Case I-2-3: V ′i (k + 1; z∗i ) < C2
+(R, k + 1; z∗)

Let R′′i be such that for each x ∈ M(k), V ′′i (x; ·) = Vi(x; ·) and V ′′i (k + 1; z∗i ) = C2
+(R, k +

1; z∗). Let R′′ ≡ (R′′i , R−i).
First we show that (z, p′′) ∈ Z(R′′) where p′′k+1 = C2

+(R′′, k + 1; z∗) and p′′M(k) = pM(k).
Since V ′′i (k + 1; z∗i ) = Vj(k + 1; z∗j ) = C2

+(R, k + 1; z∗), we have p′′k+1 = C2
+(R′′, k + 1; z∗) =

C2
+(R, k + 1; z∗) = pk+1. Thus p′′ = p. Since R−i = R′′−i and j ∈ NC , then j is connected at

(z, p′′) for R′′. By Vj(k+1; z∗j ) = C2
+(R, k+1; z∗) and xi = k+1, i and k+1 are also connected at

(z, p′′) for R′′. Since V ′′i (k+1; z∗i ) = C1
+(R′′, k+1; z∗), by Lemma C.3(ii-3), (z, p′′) ∈ Wmin(R′′).

Then we consider the following two scenarios.

Case I-2-3-1:
∣∣{k ∈ N\{i, j} : Vk(k + 1; z∗k) ≥ C2

+(R, k + 1; z∗)}
∣∣ ≥ 1

48



We show (z′, p′) ∈ Wmin(R′′). By Vj(k+ 1; z∗j ) = C2
+(R, k+ 1; z∗), V ′i (k+ 1; z∗i ) < C2

+(R, k+

1; z∗), and
∣∣{k ∈ N\{i, j} : Vk(k + 1; z∗k) ≥ C2

+(R, k + 1; z∗)}
∣∣ ≥ 1, p′k+1 = C2

+(R′, k + 1; z∗) =

C2
+(R, k + 1; z∗). Thus p′k+1 = pk+1. By Fact C.2(ii) and p = p′′, p′M(k) = pM(k) = p′′M(k). Thus,

p′ = p′′. By Proposition 2, (z′, p′) ∈ W (R′). Thus for each k ∈ N\{i}, x′k ∈ Dk(p
′). Since

V ′i (k + 1; z∗i ) < C2
+(R, k + 1; z∗), x′i 6= k + 1 and by Fact C.2(i), z′i Ii z

∗
i . By the construction

of R′′i , x
′
i ∈ D′′i (p

′). Thus, (z′, p′) ∈ W (R′′). Since p′′ is an MPE price for R′′ and p′′ = p′,
(z′, p′) ∈ Wmin(R′′). Since (z′, p′) ∈ W (R′), by Fact C.3(ii), i ∈ N ′C at (z′, p′) for R′.

Case I-2-3-2:
∣∣{k ∈ N\{i, j} : Vk(k + 1; z∗k) ≥ C2

+(R, k + 1; z∗)}
∣∣ = 0

Let ẑ′′ such that ẑ′′j = (k+1, p′′k+1) and for each i′ ∈ N\{j}, ẑ′′i′ = z′i′ . By Fact C.2(i), for each
i′ ∈ N\{j}, z∗i Ii z′i′ = ẑ′′i′ . Since Vj(k+1; z∗j ) = C2

+(R, k+1; z∗) = p′′k+1, (ẑ′′, p′′) ∈ W (R′′). Thus,
(ẑ′′, p′′) ∈ Wmin(R′′). Note that for each i′ ∈ N\{i, j}, Vi′(k + 1; z∗i′) < C2

+(R, k + 1; z∗) = p′′k+1.
By Lemma C.1(ii) and (1), (ẑ′′N\{j}, p

′′
M(k)) = (z′N\{j}, p

′
M(k)) ∈ Wmin(N\{j},M(k), R′′N\{j}). By

the construction of R′′i , (z′N\{j}, p
′
M(k)) ∈ Wmin(N\{j},M(k), R′N\{j}). By Fact C.3(ii), i ∈ N ′C

at (z′, p′) for R′.

Case II: i ∈ NU

Case II-1: i∗ ∈ NC

By i ∈ NU and i∗ ∈ NC , i 6= i∗. Thus, by Vi∗(k + 1; z∗i ) = C1
+(R, k + 1; z∗), we have: (∗1)

Vi(k + 1; z∗i ) ≤ C2
+(R, k + 1; z∗). By i∗ ∈ NC and z∗i∗ = (k + 1, C2

+(R, k + 1; z∗)), we have: (∗2)

there is j ∈ NC such that Vj(k+ 1; z∗j ) = C2
+(R, k+ 1; z∗). By i ∈ NU and R−i = R′−i, we have:

RNC = R′NC and R
′
NU

= (R′i, RNU\{i}).
By contradiction, suppose C2

+(R, k + 1; z∗) = C1
+(R, k + 1; z∗). Then pk+1 = C1

+(R, k +

1; z∗) > 0. By i∗ ∈ NC , k + 1 ∈MC . Thus, by i 6= i∗ and Lemma C.3(i), (z, p) ∈ Wmin(M(k +

1), R) and so by Proposition 1, N = NC , contradicting i ∈ NU . Thus we have: (∗3) C2
+(R, k +

1; z∗) < C1
+(R, k + 1; z∗) = Vi∗(k + 1; z∗i∗).

Case II-1-1: V ′i (k + 1; z∗i ) ≤ C2
+(R, k + 1; z∗)

By Fact C.5 and Theorem 1, we have ẑNU ∈ Zmin(NU ,MU , RNU , r̂) where for each x ∈
MU , r̂x = C1

+(RNC , x; z∗), and z̃N ′U ∈ Zmin(N ′U ,M
′
U , R

′
NU
, r̃) where for each x ∈ M ′

U , r̃x =

C1
+(RN ′C

, x; z∗).
Thus if NU = N ′U and MU = M ′

U , then NC = N ′C and r̂ = r̃, and so by i ∈ NU = N ′U ,
R′NU = (R′i, RNU\{i}), and Fact C.1, ẑiRi z̃i. Thus we need to show NU = N ′U and MU = M ′

U .
By i ∈ NU , (∗1), (∗2) and V ′i (k + 1; z∗i ) ≤ C2

+(R, k + 1; z∗),

p′k+1 = C2
+(R′, k + 1; z∗) = C2

+(R, k + 1; z∗) = pk+1.

Thus, by (∗3), x′i∗ = xi∗ = k + 1 ∈ MC and z′i∗ = zi∗. By Fact C.2(ii), p′M(k) = pmin
M(k) = pM(k).

Thus, by p′k+1 = pk+1, we have: (1) p = p′.
By Lemma C.2(i) and x′i∗ = k + 1 ∈ MC , we have: (2) {x′j}j∈NC ⊆ MC ∪ {0}. By zi∗ = z′i∗

and Fact C.2(i), we have: (3) for each j ∈ NC , z′j Ij z
∗
j Ij zj. Thus, by (1), we have: (4) for each
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j ∈ NC , {xj, x′j} ⊆ Dj(p) = Dj(p
′). Thus,

Lemma C.1(i) ⇒ (zNC , pMC
) ∈ Wmin(NC ,MC , RNC )

⇒ (zNC , p
′
MC

) ∈ Wmin(NC ,MC , R
′
NC

) by (1), RNC = R′NC
⇒ (z′NC , p

′
MC

) ∈ Wmin(NC ,MC , R
′
NC

) by (2), (4)

Thus, by NC ⊆ N , MC ⊆M and Fact C.3(i), we have: NC ⊆ N ′C , which implies (5) NU ⊇ N ′U .
In the following, we show NU ⊆ N ′U .
By Lemma C.2(ii) and xi∗ = x′i∗ = k + 1 ∈ MC , we have MU ⊆ {x′j}j∈NU . Thus, by

|MU | = |NU | (Lemma 1(i)), we have: (6) MU = {x′j}j∈NU .
Let j ∈ NC . By Lemma 1(ii), for each x ∈ MU , zj Pj (x, px). By (1) and (3), for each

x ∈MU , z′j Ij zj Pj (x, px) = (x, p′x). Thus, we have: (7) for each j ∈ NC , Dj(p
′) ∩MU = ∅.

For each j ∈ NU , by (1) and (6), p′x′j = px′j > 0. Thus, by (6), (7) and Fact C.6, we have

NU ⊆ N ′U .
Thus, by (5), NU = N ′U , and so by (6), MU = M ′

U .

Case II-1-2: V ′i (k + 1; z∗i ) > C2
+(R, k + 1; z∗)

By i∗ ∈ NC , k + 1 ∈ MC , Fact C.5, and Theorem 1, ẑNU∪{i∗} ∈ Zmin(NU ∪ {i∗},MU ∪
{k + 1}, RNU∪{i∗}, r̂) where r̂x = C1

+(RNC\{i∗}, x; z∗) for each x ∈ MU ∪ {k + 1}, and z̃N ′U ∈
Zmin(N ′U ,M

′
U , R

′
NU
, r̃) where r̃x = C1

+(RN ′C
, x; z∗) for each x ∈M ′

U .
Thus if NU ∪ {i∗} = N ′U and MU ∪ {k + 1} = M ′

U , then NC\{i∗} = N ′C and r̂ = r̃, and so
by i ∈ NU ∪ {i∗} = N ′U , R

′
NU∪{i∗} = (R′i, RNU ), and Fact C.1, ẑiRi z̃i. Thus we need to show

NU ∪ {i∗} = N ′U and MU ∪ {k + 1} = M ′
U .

By (∗3), and V ′i (k + 1; z∗i ) > C2
+(R, k + 1; z∗),

p′k+1 = C2
+(R′, k + 1; z∗) ≥ min{V ′i (k + 1; z∗i ), Vi∗(k + 1; z∗i∗)} > C2

+(R, k + 1; z∗) = pk+1.

Thus we have: (1) for each j ∈ NC\{i∗}, Vj(k + 1; z∗j ) ≤ pk+1 < p′k+1. Thus, by Fact C.2(ii),
we have: (2) p′k+1 > pk+1 and p′M(k) = pmin = pM(k).
By Lemma C.2(i), for each j ∈ NC\{i∗}, x′j ∈MC ∪ {0, k+ 1}. By (1) and Definition 8, for

each j ∈ NC\{i∗}, x′j 6= k+ 1. Thus we have: (3) {x′j}j∈NC\{i∗} ⊆ (MC\{k+ 1})∪{0}. By Fact
C.2(i), we have: (4) for each j ∈ NC\{i∗}, z′j Ij z∗j Ij zj. Thus, by (2) and (4), we have: (5) for
each j ∈ NC\{i∗}, {xj, x′j} ⊆ Dj(p

′) ⊆ Dj(p). Recall RNC\{i∗} = R′NC\{i∗}. Thus,

Lemma C.1(ii) (by (∗3), condition (a) holds)

⇒ (zNC\{i∗}, pMC\{k+1}) ∈ Wmin(NC\{i∗},MC\{k + 1}, RNC\{i∗})

⇒ (zNC\{i∗}, p
′
MC\{k+1}) ∈ Wmin(NC\{i∗},MC\{k + 1}, R′NC\{i∗}) by (2)

⇒ (z′NC\{i∗}, p
′
MC\{k+1}) ∈ Wmin(NC\{i∗},MC\{k + 1}, R′NC\{i∗}) by (3), (5)

Thus, by NC\{i∗} ⊆ N , MC\{k + 1} ⊆ M and Fact C.3(i), we have: NC\{i∗} ⊆ N ′C , which
implies (6) NU ∪ {i∗} ⊇ N ′U .
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In the following, we show NU ∪ {i∗} ⊆ N ′U .
By p′k+1 > pk+1, k + 1 must be assigned. Thus by (3) and Lemma C.2(ii), for each x ∈

MU ∪{k+ 1}, there is j ∈ NU ∪{i∗} such that x′j = x, which impliesMU ∪{k+ 1} ⊆ {x′j}j∈NU .
Thus, by |MU | = |NU | (Lemma 1(i)), i∗ ∈ NC , and k + 1 ∈MC , |MU ∪ {k + 1}| = |NU ∪ {i∗}|.
Thus we have: (7) MU ∪ {k + 1} = {x′j}j∈NU∪{i∗}.
Let j ∈ NC\{i∗}. Then by Lemma 1(ii), for each x ∈ MU , zj Pj (x, px). Thus, by (2) and

(3), for each x ∈ MU ⊆ M(k), z′j Ij zj Pj (x, px) = (x, p′x) and by (1), z
′
j Pj (k + 1, p′k+1). Thus,

we have: (8) for each j ∈ NC\{i∗}, Dj(p
′) ∩ (MU ∪ {k + 1}) = ∅.

For each j ∈ NU ∪ {i∗}, by (2) and (7), p′x′j = px′j > 0. By (7), (8) and Fact C.6, we have

NU ∪ {i∗} ⊆ N ′U .
Thus, by (6), NU ∪ {i∗} = N ′U , and so by (7), MU ∪ {k + 1} = M ′

U .

Case II-2: i∗ ∈ NU .

By i∗ ∈ NU and xi∗ = k + 1, there is i′ ∈ NU\{i∗} such that

Vi′(k + 1; z∗i′) = C2
+(R, k + 1; z∗) ≤ Vi∗(k + 1; z∗i∗) (∗4)

By i∗ ∈ NU and xi∗ = k + 1, we have: (∗5) C2
+(R, k + 1; z∗) > C1

+(RNC , k + 1; z∗). To see (∗5),
by contradiction, suppose not, i.e., C2

+(R, k+ 1; z∗) = C1
+(RNC , k+ 1; z∗). In case of C2

+(R, k+

1; z∗) = 0, by Definition 3, i∗ ∈ NC , contradicting i∗ ∈ NU . In case of C2
+(R, k + 1; z∗) > 0,

there is j ∈ NC such that Vj(k+ 1; z∗j ) = C1
+(RNC , k+ 1; z∗). Thus, k+ 1 is connected by agent

j’s demand and so by j ∈ NC , i∗ ∈ NC , contradicting i∗ ∈ NU . By (∗4) and (∗5), we have:
(∗6) Vi∗(k + 1; z∗i∗) ≥ Vi′(k + 1; z∗i′) > C1

+(RNC , k + 1; z∗).
The proof are divided into four cases, Cases II-2-1, II-2-2, II-2-3, and II-2-4. We group them

in two parts. Part A treats Cases II-2-1, II-2-2, and II-2-3. Part B treats Case II-2-4.
Part A: By Fact C.5 and Theorem 1, ẑNU ∈ Zmin(NU ,MU , RNU , r̂) where r̂x = C1

+(RNC , x; z∗)

for each x ∈MU , and z̃N ′U ∈ Z
min(N ′U ,M

′
U , R

′
NU
, r̃) where r̃x = C1

+(RN ′C
, x; z∗) for each x ∈M ′

U .
Thus if NU = N ′U and MU = M ′

U , then NC = N ′C and r̂ = r̃, and so by i ∈ NU = N ′U ,
R′NU = (R′i, RNU\{i}), and Fact C.1, ẑiRi z̃i. Thus we need to show NU = N ′U and MU = M ′

U .
By i∗ ∈ NU and xi∗ = k+1, if p′k+1 > C1

+(RNC , k+1; z∗), then by Lemma C.3(iii), NU = N ′U
andMU = M ′

U . Thus, in Cases II-2-1, II-2-2, and II-2-3, we show that p
′
k+1 > C1

+(RNC , k+1; z∗),
respectively.
Case II-2-1: i 6= i∗ and i 6= i′

By i′ ∈ NU\{i∗}, i′ 6= i∗. Thus,

p′k+1 = C2
+(R′, k + 1; z∗) ≥

i′ 6=i∗,i 6=i∗, i 6=i′
min{Vi′(k + 1; z∗i′), Vi∗(k + 1; z∗i∗)}

>
(∗6)

C1
+(RNC , k + 1; z∗).

Case II-2-2: (a) i = i∗ or i = i′, and
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(b)
∣∣{j ∈ NU\{i′, i∗} : Vj(k + 1; z∗j ) > C1

+(RNC , k + 1; z∗)}
∣∣ ≥ 1

By (b), there is j ∈ NU\{i′, i∗} such that (1) Vj(k + 1; z∗i∗) > C1
+(RNC , k + 1; z∗). In case of

i = i∗, by i′ ∈ NU\{i∗}, we have i 6= i′, and

p′k+1 = C2
+(R′, k + 1; z∗) ≥

j 6=i′,i′ 6=i, j 6=i
min{Vi′(k + 1; z∗i′), Vj(k + 1; z∗i∗)}

>
(1),(∗6)

C1
+(RNC , k + 1; z∗).

We can treat the case of i = i′ by the same way, and so we omit it.
Case II-2-3: (a) and (c) V ′i (k + 1; z∗i ) > C1

+(RNC , k + 1; z∗).
In case of i = i∗, by i′ ∈ NU\{i∗}, we have i 6= i′ and i′ 6= i∗, and

p′k+1 = C2
+(R′, k + 1; z∗) ≥

i′ 6=i∗,i 6=i∗,i 6=i′
min{Vi′(k + 1; z∗i′), Vi∗(k + 1; z∗i )}

>
(c),(∗6)

C1
+(RNC , k + 1; z∗).

We can treat the case of i = i′ by the same way, and so we omit it.
Part B: This part treats Case II-2-4.
Case II-2-4: (a), (d)

∣∣{j ∈ NU\{i′, i∗} : Vj(k + 1; z∗j ) > C1
+(RNC , k + 1; z∗)}

∣∣ = 0,
and (e) V ′i (k + 1; z∗i ) ≤ C1

+(RNC , k + 1; z∗).
By (a), i = i′ or i = i∗. We consider only the case of i = i′ here. We can treat the case of

i = i∗ by the same way, and so we omit it.
By Fact C.5 and Theorem 1, ẑNU ∈ Zmin(NU ,MU , RNU , r̂) where for each x ∈ MU , r̂x =

C1
+(RNC , x; z∗), and if i∗ ∈ N ′C and x′i∗ = k + 1, then z̃N ′U∪{i∗} ∈ Z

min(N ′U ∪ {i∗},M ′
U ∪ {k +

1}, R′N ′U∪{i∗}, r̃) where for each x ∈M
′
U ∪ {k + 1}, r̃x = C1

+(RN\[N ′U∪{i∗}], x; z∗).
Thus if i∗ ∈ N ′C , x

′
i∗ = k + 1, NU = N ′U ∪ {i∗} and MU = M ′

U ∪ {k + 1}, then NC =

N\[N ′U ∪ {i∗}] and r̂ = r̃, and so by i ∈ NU = N ′U ∪ {i∗}, R′N ′U∪{i∗} = (R′i, RN ′\{i}), and Fact
C.1, ẑiRi z̃i. Thus, we show that i∗ ∈ N ′C , x′i∗ = k+1, NU = N ′U ∪{i∗} andMU = M ′

U ∪{k+1}.
By (d), we have: (1) Vj(k + 1; z∗j ) ≤ C1

+(RNC , k + 1; z∗) for each j ∈ NU\{i′, i∗}. By
i′ ∈ N\{i∗}, i = i′ 6= i∗. Thus,

V ′i (k + 1; z∗i ) ≤
(e)
C1

+(RNC , k + 1; z∗) <
(∗6),i 6=i∗

Vi∗(k + 1; z∗i∗),

and so by (1),

Vi∗(k + 1; z∗i∗) = C1
+(R′, k + 1; z∗) > C1

+(RNC , k + 1; z∗) = C2
+(R′, k + 1; z∗).

By Vi∗(k + 1; z∗i∗) = C1
+(R′, k + 1; z∗) > C2

+(R′, k + 1; z∗), we have: (2) xi∗ = x′i∗ = k + 1.
By C2

+(R′, k + 1; z∗) = C1
+(RNC , k + 1; z∗), p′k+1 = C1

+(RNC , k + 1; z∗). Thus by (2), we have:
(3) i∗ ∈ N ′C and k + 1 ∈M ′

C . By p
′
k+1 = C1

+(RNC , k + 1; z∗),

p′k+1 = C1
+(RNC , k + 1; z∗) <

(∗5)
C2

+(R, k + 1; z∗) = pk+1.
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Thus, by Fact C.2(ii), we have: (4) p′M(k) = pmin = pM(k) and p′k+1 < pk+1.

By (2), (3), and Lemma C.2(i), we have: (5) {x′j}j∈NC ⊆ MC ∪ {0}. By i∗ ∈ NU and Fact
C.2(i), we have: (6) for each j ∈ NC , z′j Ij z

∗
j Ij zj. Thus, by (4), we have: (7) for each j ∈ NC ,

{xj, x′j} ⊆ Dj(p) ⊆ Dj(p
′). By i ∈ NU , RNC = R′NC . By i

∗ ∈ NU , xi∗ = k + 1 ∈ MU and (4),
pMC

= p′MC
. Thus,

Lemma C.1(i)

⇒ (zNC , pMC
) ∈ Wmin(NC ,MC , RNC )

⇒ (zNC , p
′
MC

) ∈ Wmin(NC ,MC , R
′
NC

) pMC
= p′MC

, RNC = R′NC
⇒ (z′NC , p

′
MC

) ∈ Wmin(NC ,MC , R
′
NC

) (5), (7)

Thus, by NC ⊆ N , MC ⊆M(k) and Fact C.3(i), we have: NC ⊆ N ′C . Thus by (3), NC ∪{i∗} ⊆
N ′C , which implies (8) N

′
U ∪ {i∗} ⊆ NU .

In the following we show NU\{i∗} ⊆ N ′U , which implies N
′
U ∪ {i∗} ⊇ NU .

By Lemma C.2(ii) and (2), we have MU\{k + 1} ⊆ {x′j}j∈NU\{i∗}. Thus, by |MU | = |NU |
(Lemma 1(i)), i∗ ∈ NU , and xi∗ = k + 1 ∈MU , we have: (9) MU\{k + 1} = {x′j}j∈NU\{i∗}.
Note that for each j ∈ NC and each x ∈MU\{k + 1},

z′j Ij
(6)
zj Pj
Lemma 1(ii)

(x, px) =
(4)

(x, p′x).

Also note that for each x ∈MU\{k + 1},

z′i∗ =
(2)

(k + 1, p′k+1)Pi∗
(4)

(k + 1, pk+1) =
xi∗=k+1

zi∗ Ri∗ (x, px) =
(4)

(x, p′x).

Thus we have: (10) for each j ∈ NC ∪ {i∗}, Dj(p
′) ∩ (MU\{k + 1}) = ∅.

By (2), (4) and (9), for each j ∈ NU\{i∗}, p′x′j = px′j > 0. Thus, by (9), (10) and Fact C.6,

NU\{i∗} ⊆ N ′U . Thus by (8), NU = N ′U ∪ {i∗}, and so by (9), MU = M ′
U ∪ {k + 1}. Q.E.D.
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Online Appendix (Not for publication)

OA.1: The exact and approximate auction of Demange et al. (1986)

A set of objects M ′ is minimally overdemanded at p if M ′ is overdemanded at p, and no
proper subset of M ′ is overdemanded at p.

Definition OA.1: The exact ascending auction is defined as follows. Let the increment
ε = 1 be given.
Starting with reserve prices, agents report their demand sets at the current price. If there

is a set of objects that are minimally overdemanded, then the auctioneer raises the prices of
those objects by 1. Otherwise, the auctioneer stops the auction at the current price.

In the assignment market in Section 3.1, the reserve prices are (0, 0). Then all three agents
demand b so b is minimally overdemanded and the price of b increases by 1. At this moment,
the market price is (0, 1). Both agents 1 and 2 will only demand b till the price of b reaches 6.
At the market price (0, 6), b is minimally overdemanded and the price of b increases by 1. Thus
at the price (0, 7), agent 1 exits the auction and both agents 2 and 3 only demands a. Both
agents 2 and 3 will only demand a till the price of a reaches 5. At the market price (5, 7), a is
minimally overdemanded and the price of a increases by 1. Therefore the market price is (6, 7)

at which all the agents exit the auction and demand object 0.

Definition OA.2: The approximate ascending auction is defined as follows.
Let some increment ε > 0 be given. Initially all the agents are uncommitted and stand

in a given queue. Agents are called to bid one by one. When agent i is to make a bid, she
encounters one of the three cases.
Case 1: If agent i bids for an unassigned object, she becomes committed to getting that object
at its reserve price.
Case 2: If agent i bids for an object x that is tentatively assigned to agent j at price px, the
price of object x is increased by ε and agent i becomes committed to getting object l by paying
px + ε. Meanwhile, agent j becomes uncommitted and stands in the first position in the queue
of remaining uncommitted agents.
Case 3: Agent i drops out by bidding the dummy.
The auction terminates when all uncommitted agents drop out.

In the assignment market in Section 3.1, the reserve prices are (0, 0). The order of agents
to bid is 1, 2, and 3. Agents 1 and 2 compete for object b. Agent 1 tentatively gets b at price
0, then agent 2 competes with agent 1 and gets b at price 1. Later on, agent 1 competes with
agent 2 and gets b at 2. The competition continues till agent 1 gets b at 6. At this moment,
the price of a remains 0 and that of b is 6.
For agent 2, if she gets b, agent 2 needs to pay 7, which brings a negative utility to her

so agent 2 gets object a at 0. Then agent 3 enters the market. Notice that if agent 3 gets b,
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agent 3 needs to pay 7, which also brings a negative utility to her so agent 3 will compete with
agent 2 for object a. Then agent 3 gets a at 1, and agent 2 competes and gets a at 2. The
competition continues till agent 3 gets a at 5. If agent 2 gets competes and gets a at 6, she has
a negative utility so agent 2 drops. The final price is (5, 6).

OA.2: Demand-connectedness-path-finding (DCP-finding) process

Let x ∈M be a connected object that is assigned to agent i, i.e., xi = x, at (z, p) ∈ Z×Rm+ .
Phase 1: Round 1: Set N1 ≡ {i}.
If px = 0, stop the process.
If px > 0, set N2 ≡ {j ∈ N\N1 : x ∈ Dj(p)} and go to Round 2.
Round s(≥ 2): Set Ls ≡ {y ∈ L : xj = y for some j ∈ Ns}.
If there is y ∈ Ls s.t. y = 0 or py = 0, stop Phase 1 and go to Phase 2.
Otherwise, set Ns+1 ≡ {j ∈ N\ ∪sk=1 Nk : Dj(p) ∩ Ls 6= ∅} and go to Round s+ 1.17

Phase 2: Let S be the final round of the process. Then, construct a sequence {is}Ss=1 of
distinct agents as follows: (i) Choose i1 ∈ NS such that xi1 = 0 or pxi1 = 0, and (ii) for each
j ∈ {2, · · · , S}, choose ij ∈ NS+1−j such that xij ∈ LS+1−j and xij ∈ Dij−1

(p).

The DCP-finding process works as follows: pick a connected object x that is assigned agent
i. In Phase 1, if the price of x is zero, we are done and it contains a trivial DCP. If not, i.e.,
px > 0, we collect the demanders N2 of x by excluding agent i. Since x is connected and px > 0,
N2 6= ∅. If there is some agent in N2, say, agent j, who obtains an object xj with zero price,
then agent j is connected to x by her demand, i.e., {x, xj} ∈ Dj(p) and we are done. Otherwise,
we collect the set L2 of objects assigned to agents in N2, and repeat the process till some agent
obtains an object with zero price. In Phase 2, we trace back from the agent who gets an object
with zero price to object x via the DCP.

Proposition OA.1: Let (z, p) ∈ Z × Rm+ . Let x ∈M be an assigned connected object.
(i) Phase 1 of DCP-finding process stops in a finite number of rounds.
(ii) The sequence {is}Ss=1 of distinct agents of Phase 2 is a DCP for object x.

By the finiteness of N , (i) holds. By construction, the sequence {is}Ss=1 in Lemma (ii)
satisfies (ii-1) to (ii-4) in Definition 2. The demand sets used to identify the DCPs can be
derived from the agents’reported indifference prices at the given allocation.

OA.3 Connected-agent-identifying process

Let (z, p) be a Walrasian equilibrium.
Round 1: Let N1 ≡ {i ∈ N : pxi = 0}. If N1 = ∅, set N∗ = ∅ and stop the process.
Otherwise, go to Round 2.
Round s(≥ 2): Let

M s−1 ≡ {y ∈M\{xi : i ∈ ∪s−1
k=1Nk} : py > 0, y ∈ Di(p)\{xi} for some i ∈ Ns−1}.

17In such a case, since for each y ∈ Ls, y is connected and py > 0, Ns+1 6= ∅.
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If M s−1 = ∅, set N∗ = ∪s−1
k=1Nk and stop the process.

Otherwise, let Ns ≡ {i ∈ N : xi = y for some y ∈M t−1}, and go to Round s+ 1.

The above mechanism works as follows: at a given Walrasian equilibrium (z, p), we collect a
set of the agents N1 who get objects with zero prices. Then we collect a set of objectsM1 in the
demand sets of agents in N1 with positive prices, except for their assigned objects. Since objects
in M1 have positive prices, they must be assigned to some agents. Then we identify the set of
agents N2 who are assigned objects from M1, and collect a set of objects M2 in the demand
sets of agents in N2 with positive prices, except for their assigned objects. We repeat such a
process. The collection of the identified agents in N1, N2,..., are connected agents. Formally,
we get the result below.

Proposition OA.2: The connected-agent-identifying mechanism identifies all the connected
agents N∗ at the given Walrasian equilibrium (z, p) in a finite number of rounds via agents’
reports of indifference prices in finitely many times.

Proof: Let T be the final round of the process. By the finiteness of agents and objects,
T < +∞.
In the following, we show N∗ = NC . If NC = ∅, by Remark 1, there is no agent i ∈ N such

that pxi = 0. Thus, the mechanism stops at N ′1 = ∅, i.e., NC = ∅. Let NC 6= ∅.
First, we show that

T
∪
k=1

N ′k ⊆ NC . By Remark 1, there is some i ∈ N such that pxi = 0.

Thus, N ′1 6= ∅ and N ′1 ⊆ NC . If T = 2, i.e., N ′T = ∅, then
2
∪
k=1

N ′k ⊆ NC . Let T > 2. Thus

N ′2 6= ∅. By the definition of N ′2, for each i ∈ N ′2, pxi > 0 and there is j ∈ N1 such that
xi ∈ Dj(p). By Definition 3, N ′2 ⊆ NC . By induction argument, for each t = 1, · · · , T − 1,

N ′t 6= ∅ and N ′t ⊆ NC . Recall that N ′T = ∅. Thus
T
∪
k=1

N ′k ⊆ NC .

Then, we show that
T
∪
k=1

N ′k = NC . We proceed by contradiction. Suppose that there is

i ∈ NC\
T
∪
k=1

N ′k. Then i /∈ N ′1 and pxi > 0. By Definition 2, there is a sequence {iλ}Λ
λ=1 of

Λ(Λ ≥ 2) distinct agents such that (a) xi1 = 0 or pxi1 = 0, (b) for each λ ∈ {2, · · · ,Λ}, xiλ 6= 0

and pxiλ > 0, (c) xiΛ = xi, and (d) for each λ ∈ {1, · · · ,Λ− 1}, {xiλ , xiλ+1
} ∈ Diλ(p).

By Definition 6, (a) implies i1 ∈ N ′1. By (d), there is i ∈ {i2, · · · , iΛ} such that xi ∈ Dj(p)

for some j ∈ N ′1, e.g., i = i2. Thus, i ∈ N ′2 and N ′2 6= ∅. Let il1 ∈ {i2, · · · , iΛ} be such that there
is no l′ > l1 such that il′ ∈ N ′2, i.e., agent il1 is the agent who belongs to N ′2 with the largerst
index in {iλ}Λ

λ=2. By (d), there i ∈ {il1+1, · · · , iΛ} such that xi ∈ Dj(p) for some j ∈ N ′2, e.g.,
i = il1+1. Thus i ∈ N ′3 and N

′
3 6= ∅. By same reasoning, we can select il2 ∈ {il1+1, · · · , iΛ}

such that il2 ∈ N ′3 with the largest index in {iλ}Λ
λ=l1+1. Repeating such argument, we can show

i = iΛ ∈
T
∪
k=1

N ′k, contradicting i ∈ NC\
T
∪
k=1

N ′k. Q.E.D.
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