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Abstract

Consider firms that operate platforms matching buyers and sellers while
selling goods themselves. By guiding consumers towards their own products
through algorithmic recommendations, these firms could influence market
outcomes — a regulatory concern. To investigate, we combine novel data
about sales and recommendations on Amazon with a structural model that
captures seller entry. Recommendations are highly price-elastic (-20), and
many consumers (34%) only consider recommended offers. Hence, algorithmic
recommendations raise the demand elasticity (from -8 to -11), intensify price
competition, and increase the purchase rate. However, increased competition
reduces entry (but the missing merchants are the least efficient). Focusing
on self-preferencing: recommendations favor Amazon (equivalent to a 6%
price discount), but this skew does not act as a barrier to entry or otherwise
harm consumers. Indeed, since consumers prefer Amazon’s offers, “self-
preferencing” slightly raises consumer surplus by $9 per product per month

(assuming Amazon’s prices remain constant.)
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1 Introduction

This paper examines the interplay between Amazon’s need to attract merchants
and its ability to guide consumer search. The platform faces a tradeoff between
fostering competition and incentivizing entry. This tradeoff is complicated by the
company’s participation on its platform as a seller. Because profits from sales serve
as an attractive substitute to intermediation fees, economists worry that platforms
in Amazon’s position may be tempted to “self-preference,” i.e., guide consumers
preferentially towards their own offers (Piontek 2019).> This concern has attracted
attention from antitrust agencies (medianama.com) and regulators (U.S. Congress
2021; U.S. Senate Judiciary Committee 2020). In addition to static harm from not
showing consumers their most preferred offers, proposed theories of harm from
self-preferencing focus on a possible stifling of merchant entry and associated
reduction in options available to consumers (Klingler et al. 2020).

Even when firms refrain from participating as merchants on their platforms,
their ability to steer consumer choice raises economic questions: To what extent
can marketplace owners influence market outcomes in their favor? Rigorous
empirical analysis has lagged popular attention for two reasons. First, scant data
tie recommendations directly to demand. Second, evaluating harm from reduced
entry has been stymied by computational intractability: entry and pricing decisions
must be solved for repeatedly, ballooning the search time for supply parameters.

We close this gap in two ways. Firstly, we build a tractable structural model of
intermediation power, i.e., a platform’s ability to influence market outcomes by
steering consumers. We model demand, the platform’s choice of recommendations
(which guide consumer search), pricing, and our key contribution, entry (e.g., Seim
2006). Entry is made tractable by harnessing frontier optimization routines and
algorithmic improvements.>

Secondly, we combine our model with proprietary data that, for the first

2The usual definition of self-preferencing requires demonstrated harm to consumers, e.g., if
Amazon favors itself in its recommendation algorithm and, therefore, consumer welfare is reduced.
We are careful to use quotation marks (“self-preferencing”) to refer to the first half of that statement,
i.e., Amazon favors itself when recommending offers to consumers, given that our results suggest
that Amazon is not self-preferencing (under the usual definition).

3These algorithmic improvements span Nash-Bertrand pricing iterations (Morrow and Skerlos
2011), importance sampling (Ackerberg 2009), and a new derivative-free optimization algorithm
for determinants of fixed and wholesale costs (Cartis et al. 2019).



time, directly links sales and search guidance decisions on Amazon, a setting
of prime regulatory concern. Since we essentially observe the “ground truth”
about who is recommended when a sale is made, we can recover determinants of
recommendations and demand. Still, estimation is challenging: we account for the
potential endogeneity of prices and recommendations while utilizing information
from just one alternative per market as well as proxies of total market sales
(building on Chevalier and Mayzlin 2006). Combined with the entry model, we
speak directly to the dynamic theory of harm from self-preferencing and the
tradeoff between attracting merchants and fostering competition.

Our paper builds on the observation that platforms commonly set defaults
for consumers through their search, ranking (Ursu 2018), and recommendation
algorithms. Economists have increasingly become aware that these defaults can
influence consumer choice (Thaler and Sunstein 2008).* We thus model consumers
as having one of two kinds of consideration sets (Goeree 2008): either they consider
all available options, or they only consider the recommended offer and the outside
option. Through its influence on consideration sets, the platform’s recommendation
algorithm affects seller pricing (as in, e.g., Dinerstein et al. 2018), as well as how
many and which firms enter.

We estimate our model on high-frequency data from Amazon, a critical example
of a firm that participates as a merchant on its own e-commerce platform. Indeed,
we find that the firm has intermediation power: 34% of consumers only consider
offers recommended by the platform, thereby allowing the algorithm to raise the
average price elasticity of demand from 8 to 11. Furthermore, it uses this power
to intensify price competition (recommendations load heavily on price with an
elasticity of 20) and preferentially guide consumers towards its own offers (which
have an advantage equivalent to a 6% price discount).

After recovering the recommendation, demand, and cost parameters, we sim-
ulate market outcomes under two different designs of the recommendation al-
gorithm. In these analyses, we proceed in three steps. Firstly, we compare the
short-term impacts of a change in the algorithm, keeping prices and entry fixed.
This step reflects platform companies’ results when running brief experiments
(“A/B tests”) on their algorithms, as is standard industry practice. Secondly, in

the “medium-run”, we allow merchants to adjust their pricing decisions. Finally,

4As have firms: in 2018, Google paid Apple $12B to be Safari’s default search engine (yahoo.com).
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our innovation on the literature lies in our modeling of entry decisions, which we
allow to vary in the “long-run” counterfactuals.

We start by assessing the equilibrium effects of “self-preferencing,” i.e., Ama-
zon recommending its own offers at an elevated frequency. In the short run,
“self-preferencing” slightly raises consumer welfare because consumers prefer
Amazon’s offers. In the medium and long run, we find a negligible impact of this
alleged anticompetitive practice on prices and entrants. Overall, the platform’s
recommendation advantage increases consumer welfare by $0.7 billion, or $9 per
product per month. A supplemental analysis shows that if Amazon raised prices
by more than 2.0%, “self-preferencing” could harm consumers. Still, our model
does not validate the theory that “self-preferencing” harms consumer welfare by
acting as a barrier to entry.

More stark is the positive overall effect of search guidance on welfare. Con-
sumers enjoy a static welfare gain of $30 billion from Amazon’s recommendation
algorithm. Intuitively, offers on online marketplaces can vary dramatically, and
guiding consumers towards attractive offers is very helpful. However, these gains
rely on the recommendation algorithm’s emphasis on price. Allowing merchants
to adjust their prices, we find that the recommender system decreases the price
of the cheapest offer on a product by, on average, 28% of the Manufacturer’s
Suggested Retail Price (MSRP). This price decrease is a redistribution of surplus
from the producer to the consumer side of the economy (which enjoys an overall
welfare gain of $84 billion in the medium run). However, this redistribution is
not without consequences. In the long run, the presence of recommendations
causes a reduction in entry of 4.4 entrants/market. These “missing merchants”
are primarily on the competitive fringe: with the recommender system, average
wholesale costs decline by 17% of MSRP. Nonetheless, the entry channel constrains
the platform from driving prices down further for fear of the “best” sellers exiting.

The paper proceeds as follows. Section 2 describes the literature. Section 3
introduces the Buybox algorithm on the Amazon Marketplace. To analyze how
Amazon’s recommender system impacts market outcomes, we formulate a model
in Section 4 that we take to data, as described in Section 5. Section 6 displays

results from our counterfactual analysis. We conclude in Section 7.



2 Literature Review

This paper speaks to three strands of literature in Industrial Organization and the
Economics of Digitization.

Firstly, we contribute to a large literature on price competition and search
frictions in online markets. Despite theoretically small search costs, online markets
still see substantial price dispersion (Bailey 1998; Smith and Brynjolfsson 2001;
Baye, Morgan, and Scholten 2004; Einav et al. 2015), possibly because consumers do
not search efficiently (De Los Santos, Hortagsu, and Wildenbeest 2012; Malmendier
and Lee 2011; Stigler 1961) and consider only a subset of the available alternatives
(Goeree 2008). In the presence of these frictions, platforms face a trade-off between
incentivizing sellers to compete on price and guiding consumers to their preferred
products (Dinerstein et al. 2018), sometimes even favoring themselves over other
sellers (Aguiar, Waldfogel, and Waldfogel 2021). With an efficient search tech-
nology (e.g., a product search engine), offer-level elasticities can be very high; in
response, retailers may obfuscate product characteristics to hinder comparison and
raise profits (Ellison and Ellison 2009). While focusing on similar platform-design
problems as us, these papers do not feature a company competing on its own
platform and do not model entry.

In particular, the Amazon marketplace, and specifically its Buybox algorithm,
has been a prime setting for much recent theoretical (e.g., Ciotti and Madio 2023)
and empirical work on price competition and search on platform marketplaces
(Chen and Tsai 2023; Crawford et al. 2022; Gutiérrez 2021; Lam 2021; Raval 2022).
See Etro (2022) for a survey. To this literature we make three contributions. Our key
empirical contribution is to assess the plausibility of Amazon’s “self-preferencing”
through the Buybox, as well as the impact of recommender systems more generally
on merchant entry, pricing, and consumer demand. To this end, we formulate a
new model of entry and Bertrand-Nash competition that features consumers with
limited consideration sets. Finally, this model is taken to unique data that, for the
tirst time, allows us to link recommendation status with sales on the platform.

Secondly, while the interplay between pricing and entry is novel to the platform-
guided search literature, a literature on the value of variety appreciates the impor-
tance of additional draws from the entrant distribution. Online markets benefit

from essentially “infinite shelf space”, raising product variety in many markets



(Brynjolfsson, Hu, and Smith 2003). With improvements in recommender systems,
consumers enjoy the “long tail” of products offered by niche sellers (Brynjolfsson,
Hu, and Smith 2006; Donnelly, Kanodia, and Morozov 2023). However, taste
heterogeneity is not needed for additional sellers to benefit consumers; marginal
entrants may be of high quality when such quality is ex-ante hard to predict
(Aguiar and Waldfogel 2018).> We build on this literature by considering the value
of merchants that would have entered Amazon marketplace had it not been for
the intense price competition induced by the recommender system. Our results
suggest that there is room for the platform to intensify price competition further
to screen out less efficient merchants. The value of the “long tail” lies in more
products rather than more offers on the same product.

Thirdly, we build on the literature on estimating entry costs (Bresnahan and
Reiss 1991; see Berry and Reiss 2007 for a survey) and selective entry into auctions
(see Hendricks and Porter 2007 for a survey, and Bodoh-Creed, Boehnke, and
Hickman 2021 for an example on the eBay marketplace). In the latter series of
papers, bidders decide whether to pay a fixed cost to enter the auction; if they enter,
more private information may be revealed to them, and play proceeds amongst
the entrants as in a typical auction game. We follow Roberts and Sweeting (2010,
2013) and make an intermediate informational assumption: each potential entrant
receives a signal about her value before she decides whether to enter. Although
our simulation-based estimator for costs levies a heavy computational burden,
our entry model remains tractable, and our equilibria can be characterized using
wholesale cost cutoffs. An agent enters if and only if her signal says that entry will
yield positive expected profits.

3 Who does the Amazon Buybox recommend?

Our empirical setting is Amazon Marketplace, a platform permitting third parties
to list their offers among Amazon’s. In 2020, about 1.9 million merchants utilized
this opportunity (aboutamazon.com). Their listings were responsible for 60% of

retail sales, yielding estimated merchant profits of $25 billion (aboutamazon.com).

SFor instance, after the General Data Protection Regulation came into force, consumer surplus
was decreased through this channel as fewer new apps entered the Google Play Store (Janssen et al.
2021).



However, with 28% of purchases on Amazon completed in three minutes or less,
customers seem to use little time to explore their (extensive) options (abouta-
mazon.com). This speed suggests that search, ranking, and recommendation
algorithms play an outsized role in shaping consumers’ choices.

E-commerce platforms typically employ multiple such algorithms. However,
investigating recommendation algorithm behavior is challenging when products
differ on unobserved dimensions. Therefore, while prior literature restricts atten-
tion to a particular product (e.g., Dinerstein et al. 2018), we exploit a unique feature
of our setting to sidestep this issue. Although many platforms (e.g., eBay) do not
distinguish between multiple offers on the same product and offers for different
products, Amazon does. It requires sellers to list their offers on the correct product
page — therefore, a specific product may have multiple offers.

When multiple offers are present, the platform automatically designates at most
one® of the offers as “recommended.” Amazon’s recommendation is vital to sellers
because the recommended offer is placed in the coveted “Buybox”, as depicted
in Figure 1. Merchants and other market participants alike know that the “vast
majority of sales are done through” the Buybox (europa.eu). Indeed, “industry
experts estimate that about 80% of Amazon sales go through the Buy Box” (U.S.
Senate Judiciary Committee 2020).

For econometricians, this algorithm offers an ideal setting to study the impact
of platform-guided consumer search. In particular, a market will be a specific
product — e.g., “Clarks Men’s Bushacre 2 Chukka [Shoes], Dark Brown, Size
8.5.” Once they have decided on this product, consumers must choose between
various offers. For instance, the merchant “Zappos” offers these shoes for US$57.68
and will deliver them via Fulfillment by Amazon (FBA).” Alternatively, “BHFO”
charges only US$54.99 but does not offer Fulfillment by Amazon. Below, we
examine the recommendation’s influence on how consumers choose between these
offers. Crucially, in this choice, all options share all product characteristics. This
feature of our setting obviates the need to estimate complex demand models to
match the observed substitution patterns.

Finally, Amazon Marketplace is also an important setting to evaluate antitrust

6In rare situations, two offers are recommended: one Prime offer, and one non-Prime offer.
Fulfillment by Amazon “is a fulfillment service that allows businesses to use Amazon to store,
pick, pack, and ship customer orders.”



concerns. Economists worry that “defaults can direct a consumer to the choice
that is most profitable to the platform” (Piontek 2019). Indeed, sellers complain
that competing on products that Amazon sells can be challenging as the platform
will frequently assign the Buybox to itself. A Senate investigation into this practice
concluded that “Amazon can give itself favorable treatment relative to competing
sellers. It has done so through its control over the Buy Box” (U.S. Senate Judiciary
Committee 2020). The investigation sparked the introduction into Congress of a
draft bill prohibiting, “in connection with any user interfaces, including search
or ranking functionality offered by the covered platform, treat[ing] the covered
platform operator’s own products, services, or lines of business more favorably
than those of another business user” (U.S. Congress 2021).

There have also been recent allegations about the company modifying its
search algorithms (wsj.com), favoring products from its own retail unit (Farronato,
Fradkin, and MacKay 2023). These allegations suggest the sellers” worries about
the Buybox may be justified. However, when speaking to the Senate, Amazon’s
general counsel Nate Sutton emphasized that “the Buy box is aimed to predict what
customers want to buy” and that “[the platform applies] the same criteria whether
[the merchant is] a third-party seller or Amazon” (thehill.com). Nevertheless,

antitrust authorities worldwide continue to investigate this issue (europa.eu).

3.1 Data

We procured extensive, high-frequency data that is novel to this literature. Our
dataset includes prices, recommendations, and sales on 50,486 products sold by
49,069 distinct merchants from 08/26/2018 until 03/25/2020. We provide summary
statistics and discuss our data in more detail in Appendix A.

Our data are sourced from a company that offers “repricing” services; therefore,
these data arise directly from Amazon’s APIs. As a result, our observations are of
much higher fidelity and frequency than comparable web-scraped data. For each
of the products the repricing company monitors, Amazon automatically notifies
the company when there is any change in the number or content of the offers (e.g.,
a price hike or the entry of a new competitor). Importantly, we see which offer
Amazon recommends just after any such change. However, these recommendations

are in flux, and the company is not notified if the only change on a given product



is which offer was recommended.

We further observe, via a different API, all sales (and their exact time) for a
single merchant in each market — the one using the repricing company’s services.
These data come with their own challenges (such as having to proxy for the market
size), which we address with our model and estimation strategy in Sections 4 and
5. Yet, to our knowledge, no past papers have employed sales data across many
merchants (one per market) to credibly estimate demand on Amazon Marketplace.
In the absence of such data, employing sales ranks as a proxy has become common.
However, one drawback of using sales ranks is that they aggregate sales at the
product-page level. Hence, they do not allow the econometrician to uncover the
relationship between the recommendation status of an offer and its market share.
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(@) Occupied Buybox. (b) Canceled Buybox.
Figure 1: The Buybox.

Notes: The “Amazon Buybox”, through which most sales on Amazon are made. Amazon
chooses which seller is assigned the sale if the buttons inside the rectangle are used. In (a),
a seller has been assigned; while in (b), no seller has been recommended.

3.2 Canceled Recommendations

As a warmup, we investigate the platform’s incentives to make any recommenda-
tion. When the platform does not recommend any offer, the Buybox is left empty,
as in Figure 1b. While an empty Buybox likely lowers sales, the threat of canceled
recommendations can be used to discipline prices: sellers are prompted to lower
their prices to be recommended by the algorithm. Indeed, before 2019, Amazon’s

US marketplace required third-party sellers on its platform to sell their products



for a lower price than on other platforms (theverge.com). These “most-favored
nations clauses” (MFN) were found to be anticompetitive by European antitrust
agencies, leading Amazon to drop them in those markets by 2013.8 Following
similar threats, Amazon also dropped the MEN clauses for its US sellers by March
2019.

20% 30% 40%
1 1 1

Percentage of Asinlds
with a Canceled Recommendation
10%

0%
1

T T T T T
-40% -20% 0% 20% 40%
Percentage Distance to MSRP

Mean recommendation cancellation, by equal-size bins

Predicted recommendation cancellation (local polynomial smoothing)

— — — 90% confidence interval from block bootstrap replications

Figure 2: Evidence on Canceled Recommendations (Binscatter & Lowess).
Notes: This figure illustrates the relationship between canceled recommendations and
uncompetitively priced offers. As the cheapest offer’s markup over MSRP increases
(moving from left to right), canceled recommendations become increasingly likely. More
formally, let p index products and T dates. We regress the cancellation fraction canceled .
for product p on date T on the log difference between the price of the cheapest offer £,
and the MSRP for the product R, (separately for prices larger and smaller than MSRP)
while controlling for product fixed effects a,. The plot shows the estimated relationship
between canceled,; — &, (on y) and log(¢,;) —log(R,r) (on x.) All standard errors are
clustered at the product level.

Nonetheless, canceled recommendations may achieve a similar effect as explicit
MFN’. To demonstrate, we combine!? data on the price of the lowest-priced offer

8 Amazon’s MFN were found to be anticompetitive in Germany (see German Competition Au-
thority 2013 and German Competition Authority 2015) and the United Kingdom (UK Competition
Authority 2013). In the market for e-books, if these MFN were allowed, non-fiction book prices
would be predicted to rise by 9% (De los Santos, O’Brien, and Wildenbeest 2021).

9This issue is currently subject to litigation in American courts (District of Columbia 2021)

1%We collapse our data by product and date; for each product-date pair, we call the Buybox
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on product p at date T with data on Buybox ownership and information!! on the
manufacturer’s suggested retail price (MSRP). Figure 2 illustrates the relationship
between these variables after cleaning out product fixed-effects: the cancellation
fraction is always increasing in the price of the cheapest offer. However, this
increase is much sharper if the offer price exceeds its MSRP. For offers priced
above MSRP, a 1% increase in relative price is associated with a 0.55% higher

probability that the recommendation will be canceled.

3.3 Recommendation Descriptives

If the platform decides to recommend one of the offers, how does it choose between
them? We display some descriptive statistics. Figure 3a illustrates that there is
within-product price variation; meanwhile, Figure 3b suggests that the within-
product price rank is an important determinant of recommendation status. Though
the cheapest offer is recommended almost 50% of the time, the second cheapest is
recommended more than 25% of the time, and even more expensive offers take an
(ever decreasing) share of recommendations.

Why is the lowest-priced offer not always recommended? Table 1 investigates
possible determinants of recommendation status. For instance, the recommended
offer is the cheapest in 41.63% of cases. However, offers Fulfilled by Amazon (FBA)
are recommended in 86.52% of cases, perhaps because FBA offers dispatch much
faster than others. This dispatch time advantage also accrues to Amazon. While
Amazon’s own offers are only recommended in 11.91% of observations, this is
mostly because we observe more data on products without Amazon offers. For
products featuring an Amazon offer (see the rightmost column of Table 1), the
platform recommends its own offer 64.73% of the time. We verified in a prior
version of this paper that, even among products with an Amazon offer, the same
relationship between price and Buybox market share as in Figure 3b persists.

To disentangle the various factors influencing recommendation status, we

estimate a nested logit choice model and report several descriptive facts.!?> To

suppressed if it is suppressed for every observation on that date. Similarly, we say the Buybox is not
suppressed if it is not suppressed for any observation on that date.

We obtain this additional data from Keepa, a price tracker for goods on Amazon.

12We relegate the technical discussion of this model to Section 5 below, including our handling
of potential price endogeneity. For now, we seek to describe, not to ascribe causality.
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facilitate exposition, we transform coefficients to answer questions of the following
form: if a seller were to move from the 1st percentile of feedback count to the 99th,
how much more could she charge while keeping the same probability of being
recommended as before? In Table 2, we show that she could raise her price by
1.28%. The effect of increasing positive feedback is about the same, but dispatch
time matters more: after moving from the 1st to the 99th percentile of the dispatch
time distribution, a merchant would have to decrease her price by 9.91% to maintain
her old recommendation share. In addition, there are benefits to utilizing the
platform’s fulfillment network, above and beyond the benefits to dispatch time:
switching to FBA allows merchants to raise their prices by 12.36% without losing
recommendation share. This benefit naturally also accrues to offers made by the
platform itself. However, these offers benefit by an additional 5.70%, i.e., a total of
18.06%. While this additional benefit may inspire accusations of self-dealing, there
are legitimate reasons to emphasize the platform’s own offers if the customers
prefer these offers. Such a preference may emerge if consumers are worried about
counterfeit goods, or prefer how the platform handles returns.

We illustrate in Figure 4 how the recommendation benefits that accrue to
an offer vary with its features. For instance, the effect of feedback count is
approximately linear in log feedback count. Meanwhile, though there are large
gains from achieving a positive feedback percentage above 90%, as well as further
gains from increasing this percentage to around 97%, eventually these gains level
off. Finally, the effect of price depends on the MSRP of the product: for product-
pages with higher MSRP, the platform is more willing to recommend higher-priced
offers. Indeed, the recommendation effect is approximately linear in price divided
by MSRP, supporting the functional form assumption we make below.

4 Model

Our descriptives reveal determinants of an offer’s recommendation status, and
hint at consumer preferences. However, more structure is needed to examine
how alternative recommender systems affect demand, entry, pricing, and market
power. To this end, we build a model of within-platform competition. Our
goal is to investigate to what extent designers of online marketplaces can derive

power from choosing the algorithms underlying their recommender systems. Our
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Figure 3: Prices & Recommendation Status Vary Substantially with Price Rank.
Notes: The left figure displays the median markup of the n-th lowest-priced offer over the
lowest-priced offer on each product, for various price ranks n. The right figure gives the
fraction of offers at a given price rank that are recommended. Black bars in the left figure
indicate interquartile ranges, while those on the right are 95% confidence intervals from
mean estimation. All ties are broken randomly.

approach focuses on the platform’s ability to guide search by influencing customers’
consideration sets (Goeree 2008). While past literature has employed a similar
approach to investigate platform-guided search on eBay (Dinerstein et al. 2018),
our key modeling contribution is our entry model. By modeling entry, we let the
data speak to the platform’s power by explicitly accounting for its need to attract
agents on both sides of the market.

This section proceeds as follows. First, we specify demand: Consumers have
nested logit preferences with endogenous consideration sets. Next, we consider
how the platform’s recommendation algorithm, also a nested logit, maps offer
characteristics to a recommendation. Finally, we specify supply: on each product,
knowing their marginal costs, sellers enter, observe their opponents, then play a
Bertrand-Nash pricing game.

4.1 Consumer choice

Fix a market ¢, which is a product on the platform marketplace. Where obvious,
we will suppress the market subscript for ease of notation.
Within each market, demand follows a standard (nested) logit framework except
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Figure 4: Non-Price Characteristics Give Recommendation (Dis-)Advantage.
Notes: Panels (a)-(c) answer the following question: suppose a merchant were to move from
the baseline value of a given feature to the value given on the x-axis; by how much could
she raise her price (relative to MSRP) without negatively affecting her recommendation
share? Both feedback count and the percentage of positive feedback matter slightly, but
time until dispatch (measured here in hours) matters a lot more (note the scale of the
y-axis.) Panel (d) (note different y-axis) illustrates how the price coefficient for a product-
page varies with the MSRP of said product, justifying our later use of price divided by
MSRP instead of raw price as an explanatory variable. The solid line in panel (d) illustrates
what a constant coefficient on Price/MSRP implies in terms of price coefficients across
the MSRP bins. All results are computed using an underlying nested logit model of
recommendation choice discussed in Section 5. However, the model estimated for these
graphs differs from that of our mainline specification below. Here, we allow for non-linear
effects of the covariates by including dummies for quantile-spaced bins. All standard
errors are clustered at the product level.

14



Fraction of Notifications
Overall FBA Amazon

FBA Offer Exists 97.31% 100.00% 100.00%
Amazon Offer Exists 18.41%  18.92% 100.00%
Recommended Offer Is ...

Lowest Priced 41.63%  41.32% 45.02%

Second Lowest Priced 26.98%  27.23%  30.84%
Highest Feedback Count | 29.24%  29.39%  64.73%
Highest Feedback Rating | 20.25%  20.22% 9.89%

Fastest Dispatch 26.43%  26.48%  31.70%
Lowest Priced FBA 51.40%  52.83%  64.59%
FBA 86.52%  88.92%  97.12%
Amazon 1191%  12.24%  64.73%

Lowest Fastest Dispatch | 52.95% 53.36%  65.18%

Table 1: Determinants of Recommendation Status.
Notes: Each entry in this table gives the fraction of recommendation observations satisfying
the criteria listed in the first column for various subsets of the data. The second column
(“Overall”) is based on the entire set of observations. The third column (“FBA”) employs
only observations for which there is an offer that is fulfilled by Amazon and the fourth
column (“Amazon”) uses only observations for which there is an offer by Amazon itself.
All ties are broken randomly.

that consumers form endogenous consideration sets as in Goeree (2008). There are
two types of consumers. A fraction p are “sophisticated.” Sophisticated consumers
ignore the recommendation and evaluate all available options J U {0}. The
remaining 1 — p consumers are “unsophisticated.” These consumers only consider
the recommended offer ;" € J and the outside option. Thus, the recommendation
algorithm will choose which offer an unsophisticated consumer evaluates. On
Amazon Marketplace, consumers that do not explicitly click through to the offer
listing are indeed never informed of the availability or characteristics of non-
recommended offers. This feature of our setting supports the applicability of the
consideration set modeling framework.

In each market ¢, both types of consumers have preferences over the alternatives
available to them. Their mean utilities for alternative j depend on its characteristics

Xjt, price pj; and unobserved quality
Sjt = Xt — wtpji + &t
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Rec. R2 on
Mean  Std. Dev. 1st  99th  peels e PR

Is FBA? 0.61 0.49 0 1 12.36% 0.98

(047)

Is Amazon? 0.02 0.14 0 1 5.70% 1.00

(0.25)

Feedback Count | 160,102.72 938,659.14 2 6,506,262 1.28% 1.00

(0.09)

Pos. Feedback % 94.86 10.32 62 100 0.73% 0.90

(0.10)

Dispatch Time 18.15 25.76 0 84 -9.91% 0.97

(0.46)

Table 2: Observable Quality Covariates & Their Effect on Recommendations.
Notes: We provide the distribution of observable quality covariates (columns 2-5). Column
6 reports the amount by which a merchant would have to increase price (as % relative to
MSRP) to keep her recommendation share constant, after moving from the 1st percentile to
the 99th percentile of each covariate. The last column provides the R? from regressing these
covariates on offer fixed-effects, indicating the fraction of variation that can be attributed
to the cross-section. Standard errors (for column 6) are clustered at the product level.

This formulation allows the price coefficient a; to depend on the market ¢; we will
fill in the details of this dependence when we discuss estimation. As in typical
demand estimation, only differences in mean utilities with respect to a “reference
option” are identified. Hence, we normalize the mean utility of the outside option
to zero: ép; = 0.

An important feature of our setting is that the inside options available to
consumers are very similar, and hence plausibly quite substitutable: they all
correspond to getting the same product, albeit delivered via different channels
at varying speed from sellers of varying reputation. Hence, plausibly, the inside
alternatives are more substitutable with each other than with the outside option,
which includes both buying other products on the platform and buying the product
on some other platform or offline. The outside option also includes not buying the
product at all.

To reflect this difference in substitutability, we partition the set of products
as {0} U J; and let ¢ = 1 be the index of the nest of inside options. The utility
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consumer i derives from product j in market ¢ is then
vijt = Ojt + Cig(j)e + (1 — A)é€ijt,

where €;;; is distributed i.i.d. Type-1 Extreme Valued, and gl-g(].)t is common to
all options in the same nest. By Cardell (1997), the distribution of Cig(j)r can be
specified such that Cjq(jy; + (1 —A)eij; has a Generalized Extreme Value distribution.

Each consumer then chooses the option in his consideration set that maximizes
his utility. Therefore, given a recommended offer j", the probability that a consumer
chooses product j # 0 in market f is

[Zkejtexpwkt/)\)]A " exp(djt/A)

di(j') = px
o exp(J;
+(1—p)x1{J=h}X%'

4.2 Recommendation Algorithm

A recommendation algorithm maps characteristics of alternatives to a recommended
alternative j” € J or, if no recommendation is given, the null recommendation
j* = {0}. While, in general, the recommendation may vary by consumer, this is not
the case in our empirical application. Hence, we model the recommender system

as solving exactly one discrete choice problem for each market.!

The mean utility
5;t of each inside alternative includes observable characteristics xj;, price pj; and

the econometrician-unobservable quality ;t:

i = X;Br — aipjt + &y
As with demand, we allow the price coefficient a} to depend on market character-
istics and normalize the utility of the outside option, ) = 0.

Whether due to deliberate randomization or mistakes in evaluation, we will

assume that recommendation decisions are based on a shocked version v]r.t of

I3Formulating the platform recommendation problem in this manner makes it compatible with
our discrete-choice demand model. The main distinction between modeling recommendation and
consumer choices lies in the fact that the platform may only make one discrete choice per market.
In contrast, in typical discrete choice demand models, there are usually multiple consumers, each
making their own choice in each market.
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this mean utility.!* In particular, shocks follow a nested logit structure like with
consumer choice. As the shock structure is perfectly analogous to consumer
choice, we will not repeat the details here. Instead, we skip ahead to the implied

probability of recommendation:

_ [Segep@/]t ep/A)
I 1+ [Zkejt exp(&,tt//\)])‘ Ykez exp(op,/A)

Combining this with our previous result on demand, the market share of offer j is

[Sreq op@u/M]"  exp(8i/A)
1+ [Yres exp(6u/A)]" Lreg xp(0u/A)

Seeqop@ /M) e/ exp(d)
1+ [Yreq exp(6r,/A)]Y Lkeq@xp(6/A) — 1+exp(dir)

Sjt = X

+(1—p) x

4.3 Firm Choices

To close the model, we specify entry and price competition across a set of markets
7. Each market t € T is associated with a fixed cost F; and a set of potential
entrants j € ;. Each putative seller j draws a type w; ~ G(-)."> She then chooses
a pair (xj, p;j), consisting of an entry and a pricing strategy. While x; : Z; — {0,1}
maps a player’s pre-entry information set Z; into her entry decision, p; : Z]’ — R*
maps a player’s post-entry information set Z' into the price she will charge for her
product. Allowing for the possibility that merchants receive only a share ¢ of the
revenue they generate (as in our application), seller j’s payoffs are given by

mi(w,x,p) = Y,  Xjt X [(¢pj — Ct (sjt(w, p), wj)) sip(w, p)Ar — F],
te{FjeNt}
where s;; maps the vectors of types and prices into demand; and A; is the size of
market f, measured in arrivals per month. Our solution concept is Bayes-Nash

Equilibrium. We proceed by stating several assumptions for tractability.

14We provide evidence for randomization on the Amazon platform in Appendix B.2.
15A seller’s type w collects her marginal cost draw, attractiveness to the recommender system
(including £"), and attractiveness to consumers (including £).
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Assumption 1 (Separable Markets). Each firm enters in at most 1 market: Ny N Ns = @
fort #s.

Assumption 2 (Unit Production Costs). Ci(-,w;) = ¢j € R™.

Assumption 3 (Full Information Pricing). After having entered, each seller knows

the identities, cost and quality draws of its opponents when playing the pricing game:
7' = (w,F).

Assumption 4 (Blind Entry). Before entry, each seller only knows its own unit production
cost draw and the (common) fixed cost of entry: T = (c;, F).

Assumption 5 (Symmetric Entry). X;‘(C,F ) = xi(c,F) forall j,k € N and ¢, F € RY.

The separable markets assumption allows us to solve for equilibrium market-
by-market, easing the considerable computational burden of our model. Its validity
hinges on cross-market cannibalization’s role in firms’ pricing strategies. In our
empirical application, firms are small and rarely specialize in a related set of
products (i.e., there is no monopoly of socks on our platform). Thus cross-market
cannibalization considerations are only a secondary concern.

Assuming unit production costs is common in the literature and particularly
plausible in our context as sellers are retailers (not producers). Full information
pricing is standard. These assumptions imply that successful entrants play a
Bertrand-Nash pricing game (Anderson, De Palma, and Thisse 1992). In our simu-
lations, pricing equilibria always exist but are not necessarily unique. Intuitively,
tirms will attempt to differentiate by pursuing either sophisticated or unsophisti-
cated consumers, and different permutations of these roles can create multiple
equilibria. Sellers internalize the effect of recommendations when setting prices:

. asgophisticated 9 ynsophisticuted

or: .

J ] ] _unsophisticated ]
—=p————+(1— =—S. +r;
o T 4= dp; !

. . or; . . .
Thus, through influencing a_;j-/ the recommendation system partially determines
]

the price elasticity that sellers face — exactly where the platform’s power to guide

consumer search manifests in our model.
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Where there are such multiplicities, we select an equilibrium. We initialize our
search for a fixed point in prices by starting the seller with the highest recommender
system attractiveness at a lower price than her competitors.

Given a selection rule for the pricing equilibrium, the last two assumptions
ensure unique, computationally tractable equilibria at the entry stage. In each
market, a set of potential entrants (sellers) N face a fixed cost of entry F. Each
putative entrant independently decides whether to enter after observing informa-
tion set Z; which the blind entry assumption restricts to Z; = {c;, F}. This strong
assumption consists of two parts. Firstly, in the spirit of Roberts and Sweeting
(2013), we deprive sellers of knowledge about offers other than their own. This
is necessary to avoid the classic equilibrium multiplicity problems that emerge
in games of strategic substitutes (e.g., Tamer 2003). It is also innocuous in our
context because most sellers in our sample are small, anonymous merchants who
are mostly unaware of their competitors before entry. Even when they know each
other’s identities, turnover is high. Therefore, merchant entry is best modeled with
tirms expecting to play against random draws from the distribution of potential
opponents.

The second restriction has more bite: before entry, each firm’s only information
about its type is its cost. This is plausible to the extent that the recommendation
algorithm is opaque: entrants are uncertain, ex-ante, about the non-cost factors
that algorithm and consumers value, and only learn about them after entry (e.g.,
Jovanovic 1982). Prima facie, it would be straightforward to dispense with this
assumption. From a game-theoretic view, we could allow entry decisions to depend
on private information about vertical characteristics. However, we require the
assumption to keep the computation tractable.!” The assumption could influence
results as it rules out a possible role of the recommendation algorithm as selecting
entrants on quality. To the extent that selection on quality matters, our analysis
below may overstate the welfare loss due to recommender-inspired exit. However,

given the magnitude of our estimates of quality sensitivity (relative to price

16See Appendix C.1 for details. To assess the robustness of this assumption, we also estimated
stage games and selected equilibria using alternative rules. These are: (1) a random seller starts at
a lower price than others; and (2) the seller with the highest consumer demand attractiveness starts
at a lower price. In either case, our results remain qualitatively unchanged.

7The entry game is solved many times in an inner loop when we search for parameters in our
estimation procedure.
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sensitivity), we believe that this is a second-order concern.

Each firm will enter if and only if its expected profits from entering exceed the
tixed cost F. Given our assumptions, this expectation depends only on a firm’s
own unit cost draw. As its expected profits are declining in its own unit cost
cj, each firm best responds in cutoff strategies: x;(c;) = 1{c; < ¢j}. Thus, an
equilibrium can be characterized by a vector (cj,...,c}). Assumption 5 further
restricts attention to symmetric equilibria. Thus, all (ex-ante identical) firms share
the same (ex-ante) cutoff c*. In an appendix to a previous version of the paper,

conditional on a selection rule for pricing equilibria, we show!®
Proposition 1. The entry game has a unique symmetric equilibrium in cutoff strategies.

This unique cutoff c* exactly balances expected gross profits against fixed costs
if other firms enter according to our putative cutoff rule. That is, each firm enters
if and only if it draws a unit purchase cost weakly below c*. Formally, letting

qj = x;p + &, c* solves
Eq.c ,[mj(c", g5 cj,q9-j,x~;)] = F where xi(c) = 1{cy <"} forall k # j.

(In a slight abuse of notation, we here use 7t as the downstream profits gross of
tixed costs.) This equation is what we exploit in our estimation to implement our

numerical search for equilibria as discussed in Appendix C.2.

5 Estimation

We estimate our model on data covering 50,486 products over a period from
08/26/2018 to 03/25/2020. As we are only informed about which offer is rec-
ommended at certain moments (directly following any change in the number of
competitors or any competitor’s price), and as recommendations potentially vary
at a high-frequency, we use only the first fifteen minutes of data after such a
notification in the estimation to avoid attenuation bias. We discuss why fifteen
minutes in Appendix B.3; the key intuition is that recommendations may vary
at high frequency. For the purposes of demand estimation!”, we hence define a

market ¢ to be a “product page”-15-minute interval pair, (p, T).

18We omit this proof from this version as the result is very intuitive.
YWhen considering pricing and entry, a market will be a “product page”-month.
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In each market, the alternatives J; are the various offers on the same product
page. This market definition allows us to sidestep estimation of potentially complex
preferences over product characteristics: such characteristics do not vary across
offers for the same product, so they cancel out in the discrete choice problem.
Nevertheless, the offers may still differ in characteristics such as dispatch speed.

Traditionally, distinct “markets” are either repeated observations of the same
market at different times (e.g., Berry, Levinsohn, and Pakes 1995) or geographically
distinct markets in which consumers are offered (nearly) the same alternatives (e.g.,
Nevo 2001). By contrast, in our data, the alternatives offered to customers vary
product page by product page. Naturally, preferences over offer characteristics
might depend on what the product is. In theory, we could allow preferences to
freely vary by product page. In practice, this approach is underpowered. While
we observe 64,809 sales, these are distributed across 50,486 products.

To keep estimation tractable, we impose a functional form assumption: when
comparing various offers for a given product, consumers evaluate these offers
relative to the manufacturer’s suggested retail price (MSRP) of said product. As an
example, consider a pen and laptop, costing $10 and $1, 000 respectively. For the
pen, a difference of $0.50 may sway a consumer’s choice from one offer to another.
Yet the relevant price difference for the laptop is typically closer to $50, not $0.50.
Formally speaking, if R, is the MSRP of product p, we assume both consumers
and the recommendation algorithm evaluate offers based on the ratio between the
product’s price and Ry, i.e.

a 4
Xpr R, and  a, ; R,
As we show in Figure 4d, this functional form assumption fits our data well.

Furthermore, it is supported by our conversations with industry experts.

51 The Recommendation Algorithm

We estimate the parameters of the recommendation algorithm by maximum likeli-
hood. Our estimation strategy substantially diverges from prior literature for two
reasons. Firstly, we have access to high-frequency, highly disaggregate data. Thus,
if we were to recover mean utilities by log-transforming the ratio of market shares
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as in Berry (1994), our estimates would suffer from severe zero-share bias (Gandhi,
Lu, and Shi 2023; Quan and Williams 2018). Secondly, our data comes from a
dynamic marketplace characterized by frequent price changes and high merchant
turnover. These features suggest that the time dimension contains more identi-
tying variation than common in the literature. Furthermore, especially given the
delegation of pricing to algorithms reacting to competitors” prices?’, this variation
is plausibly exogenous. The usual strategy to address zero-share bias, aggregation,
would thus smooth precisely over the most informative variation. Worse, in the
absence of a plausible instrument for price, it would introduce measurement error
and attenuate the estimated coefficients.

To avoid these issues, we estimate our parameters via maximum likelihood.
Here, we address potential endogeneity concerns. Since the estimating equation
is non-linear, we cannot pursue an instrumental variable approach. The usual
worry is that the unobserved quality of an alternative may be correlated with its
price. However, in our context, a market is a product page. Thus, unobserved
product quality is the same between offers on the same product and hence cancels.
Instead, 5} refers to the unobserved offer quality. One may argue that unobserved
offer quality is unlikely to matter much because we observe all key determinants
of offer quality. For instance, we see an offer’s time to dispatch, whether Amazon’s
own logistics operation fulfills the offer, whether the offer is listed by Amazon
itself, as well as other measures of seller quality.

This discussion motivates the following identifying assumption:

Assumption 6. Offer qualities are not correlated with price, i.e., (]E[f;t|pjt], E[¢i|pji]) =
(E[¢;], B[E])-

This assumption seems strong, given the usual intuition in differentiated prod-
ucts demand that higher prices could signal higher unobserved quality. Yet, as
there are few dimensions of quality which consumers observe but we do not, we
believe this assumption to be plausible. However, while convincing stories that
violate Assumption 6 are harder to find in our setting, they exist. For instance,
the assumption is violated if consumers use the seller’s name to draw inferences
about seller quality (e.g., based on prior experiences with the seller) that are not

visible to the econometrician.

20 Algorithms that react to demand conditions are not offered by the repricing company that is
our data source.
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Our data on observable offer characteristics motivate a natural strategy to deal
with this potential endogeneity. In Table 2, we exhibit the R? from regressing
various observable offer characteristics on offer fixed effects. These R? are all very
close to one, thus suggesting that essentially all variation in offer characteristics
comes from cross-sectional rather than temporal variation. It is plausible, then, that
unobservable quality is time-invariant as well. Hence, we also build estimators

that rely on the following alternative identifying assumption:
Assumption 7. Offer qualities are time-invariant, i.e. ( ]TPT, ipr) = (gp,g]-p).

This assumption addresses the potential endogeneity of price by employing
offer fixed-effects. The details of introducing these fixed-effects into a maximum
likelihood procedure without causing an incidental parameters problem are rel-
egated to Appendix B.1. Essentially, we apply Chamberlain’s (1980) conditional
logit approach to the conditional logit model itself (see also Rasch 1960, 1961). This
approach yields an estimator that exclusively exploits within-offer price variation
to identify the price coefficient «’.

We exhibit our estimation results in Table 3. While the first column assumes
a (non-nested) logit discrete choice model, the next two specifications employ a
nested logit model. Finally, the last column uses the weaker identifying Assump-
tion 7 which is robust to arbitrary correlation of an offer’s average unobserved
quality with its price.

We begin with a discussion of the effect of our various assumptions on the
estimated coefficient on Price/MSRP. Firstly, the most important factor affecting
our estimate is correlation in the value of the inside goods: moving from a logit
to a nested logit increases the effective inside price coefficient by a factor of
two. Including all observable quality measures by moving from (2) to (3) further
increases our estimate. However, once we condition on observed quality, switching
out our identifying assumption for one robust to arbitrary correlation between
average unobserved quality and price (i.e., moving from (3) to (4)) does not seem
to affect our estimate much: the implied inside price coefficient is, if anything,
lower in (4).

We emphasize a few additional findings.?! Firstly, the implied price elasticity
of the recommendation algorithm is very high, at about -20. This finding is corrob-

2INote that our results here vary slightly from our discussion in the descriptive analysis section
as the effect of quality is modelled less flexibly here.
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orated by our discussions with sellers on the platform. Even more intriguingly,
on its seller interface, Amazon explicitly tells the seller which of her “listings [...]

4

are priced not more than 5% above the Buybox.” This statement is consistent
with our finding that offers priced more than 5% above the cheapest offer receive
(almost) no recommendations. Thirdly, as A ~0.09 < 1, we find strong evidence
that Amazon considers offers more substitutable with each other than with the
outside option. This finding is expected as choices of the outside option do not
yield any intermediation fees.

Finally, not only does price matter for recommendations; quality does too.
Slow shippers are penalized: taking one additional day to dispatch a product is
equivalent to having an offer that is 4.6% more expensive. Similarly, FBA offers
have a 10.55% price advantage, and Amazon’s offers appear to have an (additional)
advantage equivalent to a 4.6% price discount. Does this advantage reflect a quality
difference, or is it merely self-dealing? Below, our counterfactual results in Section

6.1 support the quality hypothesis.

5.2 Consumer Choice

Our demand estimation face the same challenges of endogeneity and high-frequency
data. However, it becomes even more critical not to smooth over short-run tem-
poral variation because of how the fraction of unsophisticated consumers, p, is

identified. Intuitively, p is pinned down by the observed covariance between sales

and recommendation status. As this status varies at high frequency, we would

smooth over this variation if we were to aggregate over time. Indeed, Appendix

B.3 provides evidence that aggregating to time periods longer than 15 minutes

attenuates the estimate of p. Hence, as before, we proceed by MLE and employ a

fixed-effects strategy to address endogeneity.

We face a further complication in estimating demand: partial observability.
For each market, there is precisely one alternative for which we observe how
often consumers choose it. Conditional on knowing the market size, partial
observability raises no identification challenges (Matzkin 2007) and is addressed
with a straightforward modification to the likelihood function. However, partial
observability means we cannot use our previous strategy to condition out offer-

level fixed effects: when one only observes a single merchant’s sales, it is impossible
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@ @ ©) (4)

Price / MSRP -754 -205 -218 -23.55
(0.093) (0.073) (0.070) (1.743)
Dispatch Time (in Days) -0.10
(0.005)
100 x Log(#Feedback+1) 0.39
(0.024)
Fulfilled by Amazon? 0.23
(0.010)
Sold by Amazon? 0.10

(0.005)

Constant (Inside Options) | 9.64 448  4.48

(0.121) (0.075) (0.069)

Nesting Coefficient (1) 0.14  0.09
(0.005) (0.003)
Offer FE? X X X v
Elasticity -6.62 -12.78 -20.40
Inside Price / MSRP -7.54 -14.64 -2422 -2355

Table 3: Recommender System.

Notes: Estimates from maximum-likelihood estimation of the recommender system using
data on 50,486 product pages spanning 49,069 unique merchants between 2018-08-26
01:18:08 and 2020-03-25 23:39:41. Each product page was observed for an average of 390.32
15-minute periods. The reported coefficients measure the effect of price (normalized by
the MSRP), the effect of an extra day of time until dispatch, the effect of a one percent
increase in number of feedback, the effect of an offer being fulfilled by Amazon, and the
mean utility of the inside option (relative to the outside option). A is the nesting coefficient
(with A = 1 corresponding to no nesting). “Elasticity” refers to the average price elasticity
of the recommender system, and “Inside Price/MSRP” refers to the implied coefficient
on Price/MSRP in the choice between inside options (calculated by dividing the Price /
MSRP coefficient by the nesting coefficient.) Our preferred model is (3), which accounts
for observable quality covariates (and hence price endogeneity); models (1) and (2) are
exhibited for illustration and (4) to show that controlling for quality more flexibly using
offer fixed-effects does not impact estimates of the (inside) price coefficient. All standard
errors are clustered at the product level.
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to condition on pairs of periods such that a sale goes to one firm on the first and
another firm on the second.

In Appendix B.1, we show how we can exploit the high-frequency nature of
our data to condition out fixed-effects nonetheless. Still, the alternative estimator
derived there (unlike the previous section) lacks a clean interpretation when
demand has a nesting structure. In particular, we focus on pairs of periods
between which all except the observed merchant’s offer characteristics (including
prices) stay fixed. Then, we compare the sales our observed merchant makes in
periods where her price is high to her sales in periods where her price is low.
However, in doing so, we mostly capture substitution between our merchant and
the outside option (as sales are a rare event).

To estimate the market size, we employ additional data on sales ranks. Since
their introduction into the literature in Chevalier and Mayzlin (2006), sales ranks
on Amazon have frequently proxied for total product-level sales (e.g., Reimers and
Waldfogel 2019, De los Santos, O’Brien, and Wildenbeest 2021). This practice has
diffused from academia to industry, with companies offering ranks-based sales
estimates as a service to merchants. For our mainline results, we utilize data from
one of these companies: we obtain the total estimated sales on a given product
page by plugging sales ranks into the AMZScout Sales Estimator??. Finally, we
translate this figure to a market size by dividing by the percentage of sessions on
Amazon that result in sales: 12.3% (digitalcommerce360.com). In Appendix B.4,
we perform two robustness checks? for this procedure.

Before we discuss results, a final identification concern involves the potential
endogeneity of recommendations. As emphasized by Ursu (2018), recommender
systems typically recommend offers likely to sell. Thus, if Amazon knew an offer’s
unobserved quality ¢;;, the company could be expected to recommend offers with

high ¢;; more frequently. Formally, this would imply E| ;t|€jt] is increasing in

22To be exact, we collapse our data to the product-month level by taking the mean sales rank.
For each product-month, we estimate total sales by interpolating on a dataset that provides the
AMZScout estimates on a separate log-spaced grid for each top-level product category; we are
grateful to Gutiérrez (2021) for sharing these data. Finally, we average across months to form a
final estimate of a product’s total sales.

Z3Firstly, we verify that the AMZScout data agrees with another industry source, JungleScout;
the estimated relationships are not identical but very similar. Secondly, we employ our own
data on sales to estimate a linear relationship between observed log sales and log sales ranks.
The resulting demand estimates utilizing this alternative measure of market size are qualitatively
indistinguishable from those using the industry sources.
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§jt- 1If we do not account for this endogeneity, we could overstate the impact of

recommendations. Indeed, our estimation as discussed so far is based on

Assumption 8. Unobserved offer quality for consumers is independent of unobserved
recommendation offer quality, i.e., E[¢},|¢;] = B[, ].

However, this assumption is testable. In particular, we exploit Buybox rotations
to make progress. Even if offer characteristics remained constant over time,
recommendations (unevenly) rotate frequently between sellers. This rotation
creates situations in which an offer that is very unlikely to be recommended
receives a lucky draw (of e]’.t in our model) and is recommended for a short period.
Intuitively, as long as offer quality is invariant over time (Assumption 7), these
surprise recommendations identify the causal effect of being recommended. In
Appendix B.2, we verify that our model — estimated under Assumption 8 —
successfully matches the increase in sales from recommendation surprises. This
confirms Assumption 8 under the maintained Assumption 7 (i.e., that quality is
time-invariant.)

Our consumer choice estimation results can be found in Table 4. Our preferred
specification (7) incorporates our consideration set model (i.e., does not restrict p)
and observable quality covariates. The overall price elasticity of demand is around
-11. By comparing the price elasticity holding recommendations fixed to the one
where recommendations are allowed to vary, we conclude that the recommendation
algorithm intensifies price competition by increasing the elasticity by 39.87%.

Regarding non-price characteristics, more feedback appears not to affect de-
mand much. However, consumers prefer faster dispatch, valuing a day shorter
time to dispatch about the same as lowering price by 6.90%. Similarly, an FBA offer
is valued the same as a 8.62% decrease in price, and Amazon offers are valued as
being worth a 29.31% discount. We caution, however, that this effect is estimated
exclusively from demand data on offers not listed by Amazon: the demand for
Amazon offers is inferred by observing the “shadow” that Amazon casts in terms
of reduced sales on our third-party merchants.

We now discuss the alternate specifications exhibited in columns (1) to (6)
of Table 4. These models act as robustness checks and help us build intuition
for the data-generating process. The first five columns contain estimates from

models that restrict p = 1; i.e., they assume all consumers are sophisticated. By
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comparing models (1) to (2) and (3) to (4), we conclude that the inclusion of
observed quality covariates only slightly moves the estimated price coefficient.
This finding suggests that there is no or little endogeneity of price with respect to
these observed covariates, suggesting that the correlation of unobserved quality
with price is also likely to be small.

To assess this hypothesis, we compare a specification with offer-level fixed
effects (5) to those without (1-4). Amongst the non-nested models, we find that
(1) and (2) yield higher estimates of price sensitivity than (5). This result goes
opposite to what we would expect with the usual endogeneity concern (where
price is positively correlated with quality). However, as suggested above, our
fixed-effects estimator captures mostly substitution between the inside and outside
good. Hence, we prefer to compare (5) to columns (3) and (4). In these models, the
price coefficient captures the extent of substitution between the inside and outside
option (dividing said coefficient by the estimated A would yield the coefficient that
governs substitution between the inside options.) Our estimate in (5) is between
those of (3) and (4) — a result we would expect if price endogeneity was not a major
concern.

The second set of columns (6-7) drops the restriction that p = 1. When p is
freely estimated, all our models agree that p < 1, i.e., a substantial fraction of
unsophisticated consumers only considers the recommended option. We find that
1 — p = 34% of consumers are “naive”: they only consider the recommended offer
and the outside option.

It is interesting to note that this estimate is similar to the fraction of users who
complete Amazon purchases in three minutes or less: 28% (aboutamazon.com).
By contrast, we caution against comparing p to a common figure that about 80%
of sales go ‘through’ the Buybox. This statistic is purely correlational. Crucially,
a sophisticated consumer may frequently find herself purchasing the offer that
Amazon recommends to her, not because it is recommended, but because it is a
good offer. In fact, this purchase is almost guaranteed because both the recommen-
dation algorithm and the consumer are very price sensitive. Furthermore, consider
estimating what fraction of sales go to offers that are in the Buybox at the time of
the sale. This estimate will be sensitive to the number of offers on a given product.
At the extreme, when a product has only one offer, as long as the recommendation
is not canceled (a rare occurrence), by definition 100% of sales go through the
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Buybox. By contrast, in our data, just under 50% of sales are sales of offers that
are in the Buybox at the time of the sale. Since our data are sourced from a
repricing company, we disproportionately see products with multiple competitors,
which would lead to the discrepancy between the industry figures and ours. Note,
however, that this oversampling of products with multiple merchants does not
bias our estimates of p as long as our model is correctly specified.

5.3 Estimating wholesale and fixed costs

In our model, merchant entry and profits depend on their wholesale and fixed
costs (cj, F) respectively. Since entry is selective on marginal costs, we cannot
invert prices to costs without biasing our mean cost estimates downwards. Instead,
we parametrize the wholesale and fixed cost distributions and estimate our model
via the Simulated Method of Moments (SMM) (McFadden 1989; Pakes and Pol-
lard 1989). Since this procedure is computationally complex, our main technical
contribution to the literature is to render it feasible.

For illustration, fix a market ¢. To ensure there can be no negative realizations

of wholesale costs, we assume they follow a lognormal distribution, i.e.,
Assumption 9 (Unit Costs DGP). ¢y = (65 + x;05)€jr, €t ~ LogN(0, 05).

Here, 0° = (6§, 05, 65) are parameters to be estimated. Due to computational
constraints, in practice we include only the product’s MSRP in x;.

Similarly, we assume fixed costs follow a mixture of lognormal distributions:

Assumption 10 (Fixed Costs DGP). F; ~ LogN(6f + x;6%, 0F) with probability w, and
LogN (65, 6E) otherwise.

Here, 6F = (GF , 95 , 95, w, QP , Qg_) are parameters that can be estimated. In our
data, the distribution of the number of entrants per market appears bimodal: some
markets have very few entrants while others have fifteen or more. This pattern
motivates our bimodal specification for fixed costs. Some products, like Dickies
socks, are easier to source; others, like LG refrigerators, are less so. Since estimating
the distribution of fixed costs is less computationally costly, we allow the mean
of the high fixed cost component to vary with the suggested retail price and the

market size.
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No Rec. Sys. Rec. Sys.
m @ 6 @ 06 |6 O
Price / MSRP -1.37 -142 -0.61 -0.68 -0.63 |-0.51 -0.58
(0.152) (0.161) (0.161) (0.136) (0.182) (0.155) (0.134)
Dispatch Time (in Days) -0.54 -0.05 -0.04
(0.096) (0.013) (0.011)
100 x Log(#Feedback+1) 2.53 -0.79 -0.82
(2.068) (0.187) (0.220)
Fulfilled by Amazon? 0.24 0.05 0.05
(0.177) (0.016) (0.017)
Sold by Amazon? 4.75 0.16 0.17
(0.267) (0.037) (0.045)
Constant (Inside Options) | -3.49 -3.60 -2.60 -2.53 -2.62 -2.53
(0.155) (0.321) (0.126) (0.140) (0.132) (0.142)
Nesting Coefficient (1) 0.06  0.06 0.06  0.05
(0.020) (0.012) (0.021) (0.014)
Sophisticates Fraction (p) 0.60 0.66
(0.018) (0.016)
Offer FE? X X X X v/ X X
Elasticity (Rec. Fixed) -1.44 -150 -821 -10.07 -6.81 -8.36
Elasticity (Rec. Vary) -9.04 -11.33

Table 4: Demand Estimation Results.
Notes: Estimates from maximume-likelihood estimation of demand using data

on 50,486 product pages spanning 49,069 unique merchants between 2018-08-26
01:18:08 and 2020-03-25 23:39:41. Each product page was observed for an average
of 390.32 15-minute periods associated with 64,809 sales. Reported coefficients
measure the effect of price (normalized by the MSRP), the effect of an extra day
of time until dispatch, the effect of a percentage increase in number of feedback,
the effect of an offer being fulfilled by Amazon, and the mean utility of the inside
options (relative to outside option). A is the nesting coefficient for sophisticated
consumers and p is the fraction of consumers that are sophisticated. Elasticity (Rec.
Fixed) refers to the average price elasticity of demand assuming that price does
not influence consideration sets. Elasticity (Rec. Vary) refers to the same using
the earlier estimates of the recommender system according to which it does. All
standard errors clustered at the product level.
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Identification is standard. The entrant distribution allows us to draw con-
clusions about the fixed cost parameters 6f: the mean number of entrants is
informative about 6/ ; its covariance with market characteristics tells us about 6%;
its variance speaks to 6%. Finally, the number of products on which there are
high numbers of entrants speaks to the mixing coefficient w.?* Similarly, the price
distribution contains all the required information about wholesale cost parameters:
the mean price across markets provides a moment that speaks to 6;; its covariance
with the suggested retail price gives us 0}; and the within-market price variance
tells us about 65.

Estimation is computationally challenging. To evaluate the moments for given
parameters 6, we must solve the entry game for each of 50,486 markets. However,
to solve a single entry game, we must find its associated wholesale cost cutoff
c;. Doing so requires us to compute equilibrium profits under many candidate
wholesale cost values. Finally, we must evaluate many candidate parameters 6
during our outer GMM optimization procedure.

We employ several techniques to keep estimation computationally feasible. To
begin with, we speed up computation of the pricing game equilibrium by chaining
distinct fixed-point iterations. While it is conventional to use the fixed-point
algorithm of Berry, Levinsohn, and Pakes (1995, henceforth BLP), we employ
instead the {-markup equation of Morrow and Skerlos (2011, henceforth MS),
which has stronger local convergence properties> (Conlon and Gortmaker 2020).
Moving up to the entry game, since expected gross profits are discontinuous in the
number of entrants, we smooth over these discontinuities via importance sampling
(Ackerberg 2009). Finally, to speed up the outer loop, we concentrate out the
wholesale cost parameters and employ a modern derivative-free?® optimization
algorithm (Cartis et al. 2019, henceforth DFO-LS). This solver separately models
the response of each moment to each parameter, delivering performance superior
to the classic simplex algorithm (Nelder and Mead 1965). Nevertheless, a full run

of our estimation procedure takes about 64 hours on a 24-core machine.

24In practice, for many values of the mean and variance coefficients of the low fixed cost shock
(Qg , Qg), all merchants on said product enter the market. Thus, we calibrate Qg to —5, a very low
value; and constrain 67 = 6F.

2Gee Appendix C.1 for technical details on the BLP and MS fixed point iterations.

26DFO-LS is a derivative-free Gauss-Newton optimization method. It interpolates points to find
an approximate Jacobian, constructs a locally quadratic model, and alternates minimizing the
objective and updating the interpolation set.
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The results from this estimation procedure are available in Table 5. For success-
ful entrants, we find wholesale costs of approximately 87% of the manufacturer’s
suggested retail price, which seems plausible for small retailers.

We estimate an interquartile range for fixed costs of [US$0.49, US$1.63]. While
our fixed costs appear small, they are consistent with the low barriers to entry
on Amazon. For example, 59% of merchants set prices higher than MSRP, with
15% pricing at higher than 1.5 times MSRP. Since the recommender system often
directs consumers to the cheapest offer, these high-pricing merchants take very
little of the buybox (and hence market) share?”. However, to account for the entry
of these merchants on the competitive fringe, our model settles on low fixed costs:
any larger fixed cost would make entry unprofitable for merchants with such high
marginal costs.

Having said this, given the empirical sales frequency, our estimated fixed costs
seem reasonable. In particular, these values are comparable to storage costs on
Amazon. We observe one sale per month for the median offer in our sample.
Assume (admittedly heroically) that this means the median merchant is storing a
single item (per product), and that this item is less than one cubic foot in size. If
this item is stored in an Amazon fulfillment center, the merchant is paying storage

fees of $0.69 per product-month (junglescout.com).

6 Counterfactuals

With our estimates in hand, we investigate two questions. First, is Amazon “self-
preferencing”? To evaluate this effect, we compare factual outcomes to those of a
simulation in which we switch off Amazon’s weight on itself in its recommender
system: g, =0 < BrAmazon. Second, what is the combined effect of the
platform’s search guidance through the Buybox? To answer this question, we
compare realized outcomes to those of a counterfactual in which recommendations
are absent. In this alternate scenario, absent recommendations, naive consumers

have to consider a random offer.

?’This phenomenon of surprisingly high prices is common on e-commerce websites: Dinerstein
et al. (2018, p.1855) discuss a similar finding in the context of eBay, and eventually settle on allowing
their model to infer high marginal costs for these merchants. Similarly, we allow our model to infer
a high variance of marginal cost shocks.
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Parameter Value Description

0 490 mean of log fix cost
(0.021)

0f, 246 . interacted with log market size
(0.048)

0k 1.09 .. interacted with MSRP

(0.010)

65  0.07 variance of log fix cost
(0.010)

w 0.138 mixing parameter for low fix cost shock
(0.001)

05 246.6 coef. of marginal cost on const
(9.320)

0: 097 coef. of marginal cost on MSRP

(0.004)

05 0.343 variance of marginal cost
(0.001)

Table 5: Fixed and Marginal Cost Parameters.
Notes: This table displays wholesale and fixed cost parameter estimates obtained from
our simulated method of moments procedure. The fixed cost parameter estimates imply
an interquartile range for fixed costs of [US$0.49, US$1.63]. The marginal cost estimates
imply a mean wholesale cost of $2.60 + 103% of MSRP for potential entrants, but only
wholesale costs of approximately 87% of MSRP for successful entrants. All standard errors
are clustered at the product level.
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We distinguish three time horizons in our counterfactuals. In the short run, we
disallow sellers from adjusting prices and whether or not to enter. In the medium
run, sellers price optimally but may neither enter nor exit. Finally sellers may
change both their prices and entry decisions in the long run.

All results below refer to an estimation sample of 50,486 products, representing
approximately US$161 million in revenue and 465 million customer arrivals per

4

month. We know that “more than 1.9 million small and medium-sized businesses’
list their products on Amazon, making up “close to 60% of [its] retail sales”
(aboutamazon.com). Furthermore, based on public disclosures, market research
tirms have estimated that the total revenue attributable to third-party sellers on
Amazon Marketplace is $300 billion (marketplacepulse.com). Thus, one could
extrapolate our results to the entirety of Amazon Marketplace by multiplying our
numbers by $300B/$161M ~ 1,863 to highlight the magnitude of the issues at stake.
Where appropriate, we will be explicit when displaying extrapolated findings; the

usual caveats apply.

6.1 “Self-preferencing” can raise consumer welfare

We begin by investigating the overall effects of the recommendation algorithm’s
preference for the platform’s own offers. To this end, we compare factual outcomes
(where g, = = B;‘muzon) to a counterfactual in which we set g, = 0. We
report our results in Table 6, which summarizes our estimates of the causal effect
of self-preferencing on the subset of the market we observe. Thus, when the
table reports, e.g., a $331,632 figure for “A Consumer Surplus” in the “Short-Run”
column, this indicates that total consumer surplus across our 50,486 products
increases by this amount due to self-preferencing, holding pricing and entry fixed.

Starting our discussion with these short-run results, we find that the platform’s
recommendation advantage slightly raises consumer welfare in the short run, by
about US$7 on average per product. We obtain this perhaps counterintuitive result
because consumers prefer the platform’s offers to those of third-party merchants,
maybe because they are worried about counterfeit goods.

Moreover, we find a minimal effect of “self-preferencing” on pricing and entry
by third-party merchants in the medium and long run. While there is entry

displacement, at -0.02 entrants/market, this effect is barely significant enough
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to register. This is because the platform’s offers are already very attractive to
consumers. Consumers prefer Amazon’s offers in general and are also attracted
to them because of their competitive prices. These effects ensure that the average
merchant is already aware that she will only be exposed to a small share of
demand if she competes with the platform’s own offers. Hence, the slight change
in demand she is exposed to due to “self-preferencing” does not tilt the scales.
Accordingly, the results of our counterfactual do not support the most plausible
theory of harm from “self-preferencing”: decreased entry. Instead, extrapolated
as discussed above, the overall consumer welfare gain from “switching on” the
platform advantage is $0.7 billion.

However, we make two cautioning observations. Firstly, these results rely on
our estimates of the extent to which consumers prefer Amazon offers to those of
third-party merchants. As we cannot access sales data for Amazon offers, we must
infer these sales from estimates of market size and sales on other, non-Amazon
offers. Although this procedure yields no formal identification issues, future work
can improve on our estimates with better sales data.

Secondly, our model does not account for the platform’s pricing strategy: we
assume that Amazon’s prices remain fixed in all counterfactuals. This assumption
is necessary as we believe modeling Amazon as maximizing short-run profits from
sales would be inaccurate. To compensate, we investigate in Appendix D.1 to
what extent the platform would have to raise prices due to its “self-preferencing”
to reverse our conclusion that this practice is welfare enhancing. This reversal

happens if Amazon raises prices by more than 2.0%.

6.2 Search guidance benefits consumers

We now consider the combined effect of the search guidance algorithm. To this
end, we compare market outcomes achieved by the estimated recommendation
algorithm to those obtained when naive consumers consider offers uniformly at
random. As these consumers can only consider one offer, this natural benchmark

captures the case in which they are not provided with a recommendation.?®

28We emphasize that this counterfactual implicitly assumes that consumers would not adjust
the size of their consideration sets in response to the absence of recommendations. If this scenario
seems implausible, we note that the platform could always make its recommendations compulsory;
in particular, it could disallow consumers from interacting with unrecommended offers. Other
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Short-Run Medium-Run Long-Run
Prices Adjust? X v 4
Entry Decisions Adjust? X X v
A Consumer Surplus (CS) $331,632 $463,640 $465,899
A Consumer Surplus (Naive) $331,632 $415,989  $422,729
A Consumer Surplus (Soph.) $0 $47,651 $43,170
A Producer Surplus (PS) -$65,504 -$80,290 -$82,862
A Intermediation Fees -$150,152 -$74,094 -$84,689
A Welfare (CS + PS) $266,128 $383,351 $383,037
A 3P Mean # Sales/Month -0.15 -0.07 -0.02
A 3P Mean Price (% MSRP) -0.02% -0.12%
A 3P Mean Min Price (% MSRP) -0.02% -0.02%
A 3P Mean Cost (% MSRP) -0.09%
A 3P Mean # Entrants -0.02

Table 6: A Preference for the Platform’s Own Offers Slightly Raises Welfare.
Notes: This table provides the difference in various outcomes that can be attributed to
turning on the platform advantage. Recall g, _ is the recommendation algorithm’s
coefficient on the dummy that indicates an offer belonging to the platform operator.
Formally speaking, on our sample of 50,486 products, for various outcomes x, we compute
Ay = 2(B'y,..0.) — £(0), where £(-) indicates our model prediction for an outcome as a
function of By, ...,,- In the short run, sellers cannot change their prices or entry decisions.
In the medium run, sellers may set prices optimally, but cannot change their entry decisions.
Finally, the long-run counterfactual allows sellers to change both their prices and their
entry decisions. Outcomes that cannot change (e.g., the mean number of entrants in the
medium-run counterfactual) are omitted from the Table for clarity. 3P refers to “Third-
Party’, i.e., it indicates that the outcome is computed using only non-Amazon offers.
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We exhibit our results in Table 7, reporting the implied impact of the estimated
search guidance algorithm on various market outcomes relative to the counterfac-
tual described above. Beginning our discussion with the short-run results, we note
that search guidance generates a large (extrapolated) static gain to consumers of
1863 x $16 million ~ $30 billion. Furthermore, the platform achieves its triad of
preferred outcomes: consumers benefit, merchants sell more, and the platform
collects more fees. The intuition underlying this result is that offers on online
marketplaces can vary dramatically in their attractiveness. Hence, it is essential to
ensure that the 34% of consumers who can only consider one offer are successfully
guided towards attractive offers.

However, the recommendation algorithm only achieves this matching of con-
sumers to attractive offers by being extremely price-elastic. While this elasticity
allows it to guide consumers towards competitively priced offers, merchants are
also incentivized to attempt to capture a recommendation by underbidding each
other. These incentives cause prices to fall in the medium run by about 70% of
MSRP on average, and by 28% of MSRP for the cheapest offer. The algorithm
redistributes surplus from the producer to the consumer side of the economy.
Consumers enjoy extrapolated marketplace-wide gains of 1863 x $45 million ~
$84 billion from search guidance.

As expected, redistributing surplus in a two-sided market affects entry. Indeed,
the platform’s search guidance is responsible for a reduction of 4.4 entrants/market
in the long run. Given an average of 10 merchants per market, this reduction
indicates a significant dampening effect on entry. Nonetheless, the merchants that
do not enter are on the competitive fringe: with more intense price competition,
the mean wholesale cost of entering merchants falls by 17% of MSRP. On net,
prices on the platform fall by 93% of MSRP on average, but the lowest prices only
tall by 25% of MSRP.

It follows that, relative to what an A/B test would show, the value of the
recommendation algorithm is much higher when pricing and entry are considered.
Indeed, pricing and entry combined raise the (extrapolated) welfare gains from
search guidance technology to 1863 x $46 million ~ $86 billion, much higher than

marketplaces such as ride-hailing services implement such a policy. In this context, our counterfac-
tual world could be understood as one with a random mandatory recommendation only for naive
consumers.
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Short-Run Medium-Run  Long-Run
Prices Adjust? X 4 4
Entry Decisions Adjust? X X v
A Consumer Surplus (CS) $15,631,914 $44,827,255 $49,180,670
A Consumer Surplus (Naive) | $15,631,914 $35,624,925 $42,243 326
A Consumer Surplus (Soph.) $0 $9,202,330 $6,937,344
A Producer Surplus (PS) $1,561,133 -$4,654,287 -$3,650,490
A Intermediation Fees $342,331 $1,476,305 $1,581,494
A Welfare (CS + PS) $17,193,047 $40,172,968 $45,530,180
A 3P Mean # Sales/Month 0.50 3.42 8.53
A 3P Mean Price (% MSRP) -69.54% -93.35%
A 3P Mean Min Price (% MSRP) -28.32% -24.69%
A 3P Mean Cost (% MSRP) -17.32%
A 3P Mean # Entrants -4.44

Table 7: The Value of Recommendations.

Notes: This table provides the difference in various outcomes, on our sample of 50,486
products, that can be attributed to the estimated recommendation algorithm’s performance
relative to a random baseline. Recall that B” is the vector of weights the recommendation
algorithm places on various offer features when making its recommendation decision.
Formally speaking, for various outcomes x, we report A, = (") — £(0). Setting g =
is equivalent to the platform choosing recommendations uniformly at random (we also
forbid the platform from recommending the outside option in this counterfactual). In
the short run, sellers cannot change their prices or entry decisions. In the medium run,
sellers may set prices optimally, but cannot change their entry decisions. Finally, the
long-run counterfactual allows sellers to change both their prices and their entry decisions.
Outcomes that cannot change (e.g., the mean number of entrants in the medium-run
counterfactual) are omitted from the Table for clarity. 3P refers to “Third-Party’, i.e., it
indicates that the outcome is computed using only non-Amazon offers.

the predicted static gains of 1863 x $17 million ~ $32 billion.

Given the gains to price-based search guidance, why does the platform not
make its recommendation algorithm even more price elastic? In Appendix D.2,
we find that compared to a world with more elastic recommendations, the current
algorithm performs better in an A/B test (as over-emphasizing price distracts from
other determinants of demand.) However, this conclusion flips once algorithm-
induced pricing changes are accounted for. Furthermore, while increased price
competition from even more elastic recommendations lowers entry, this entry effect
does not outweigh the competition effect. Hence, our estimates suggest that the

platform could benefit from making its recommendations even more price elastic.
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7 Conclusion

Regulators worry that platforms matching buyers and sellers may influence market
outcomes by guiding consumer search through algorithmic recommendations. We
explore this issue through a model of intermediation power. Our model enables
algorithmic influence on consideration sets, while remaining flexible enough to let
the data speak to the extent of this influence. Our findings demonstrate the power
of defaults. On the Amazon marketplace, 34% of customers only consider the
default option; the recommendation algorithm raises the price elasticity of demand
from 8 to 11. Through their choice of search, ranking, and recommendation algo-
rithms, platforms are indeed able to influence market outcomes, guide consumers
toward their own products and choose the intensity of price competition. In short,
the power of defaults gives platforms a lot of intermediation power.

However, the sheer existence of intermediation power does not necessarily
imply that platforms exploit this power in a way that harms consumers. While we
find that the examined recommendation algorithm advantages the platform, this
“self-preferencing” positively affects consumer welfare as consumers also prefer
Amazon offers. Crucially, our model allows us to assess a theory of harm that has
recently gained increasing attention, i.e., the idea that “self-preferencing” harms
consumers by acting as an effective barrier to entry. Our results do not support
this conclusion.

Nevertheless, entry matters. Compared to a random recommendation baseline,
the recommendation algorithm we examine brings large consumer surplus in the
short and medium run. This surplus derives from the algorithms” ability to show
consumers offers they are likely to purchase and its positive effect on the intensity
of price competition. In the long run, however, higher competitive pressure lowers
entry incentives. While concentrated amongst sellers on the competitive fringe, the
reduction in entry nonetheless constrains the extent to which Amazon can drive
prices down on the platform.

We discuss future directions. On the demand side, richer sales data can speak to
which consumers are helped or hurt by platform steering. Future work could also
help assess the extent to which our attempt to compensate for the shortcomings of
our data by, e.g., proxying for market size has affected our conclusions. On the
supply side, our analysis can be adapted to speak to innovation and the growth
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of platforms over the long-term. In the very long run, merchant quality and
investment matter; how these dynamics interact with recommender systems is
an open question. Finally, while platforms are large, they still have competitors.
While our entry margin implicitly accounts for the ability of merchants to switch
platforms, a richer model could explicitly account for this dimension and allow
both consumers and merchants to multi-home.
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Online Appendix

A Data Description

Our primary data source is a repricing company that administrates offer listings on
behalf of third-party merchants on Amazon Marketplace. The company provides
us with three data sets of interest spanning one and a half years. Firstly, we have
access to the notifications sent to the company programmatically by Amazon.
These notifications are sent if there are any changes on any of the offers on
the listings that the company administrates (e.g., price updates, exits or entries).
Secondly, the company is informed of any sales on its customers’ listings. Finally,
we have regular data on the sales ranks of each product (i.e., market, not offer); we
discuss this last dataset in more detail in Appendix B.4 below.

To begin with, the notifications are our primary source of information about the
alternatives available on any given market at any given time. For each notification
and offer, we observe (i) the recommendation status, (ii) whether the offer belongs
to a “featured” merchant, (iii) whether Amazon fulfills it, (iv) its list price and (v)
shipping price, (vi) the feedback count, (v) the fraction of positive feedback for the
associated seller, and (vi) the time to dispatch. Whenever we refer to price, we
mean the sum of list price and shipping price. The main challenge of this dataset is
its uneven time resolution: a notification is sent whenever any offer characteristic
other than recommendation status changes. Thus, while we have infinite temporal
resolution on, e.g., prices, we lack this precision in recommendation status.

The demand data contain, for each merchant registered with the repricing
company, the exact time of every sale the merchant made during its period of
registration. Though sales data linked to sellers on Amazon are rare, a caveat with
this dataset is that we cannot independently verify when a merchant is registered
with the company.

We combine these datasets using the following procedure. First, we filter the
notification data to list only merchants that are “featured.” Being a “featured
merchant” (FM) is a hard prerequisite for a merchant to become eligible to be
recommended. To become a FM, the seller has to pay $40 a month to Amazon for
a professional seller account. Second, for each product, we need a proxy for the
period that the seller of said product was registered with the repricing company.
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To do so, we find the dates of the first and last observed sale; then, we declare the
product observed on any dates between those two. Third, we subset to notifications
such that there are no additional notifications for the next fifteen minutes on the
same product page; this restriction allows us to avoid taking a stance on how
to aggregate over time by focusing on “stable” markets. Finally, we merge our
data by associating each fifteen-minute post-notification period with the sales we
observe in that period.?’

After merging, we obtain a dataset at the ‘offer x 15m period’-level with
171,005,258 observations. As our data does not contain reliable information about
the feedback count for Amazon, we replace Amazon’s feedback count with the
maximum value in the dataset.’® Summary statistics for our final dataset are
provided in Table 9(a), and further information (e.g., on the number of unique
products) is provided in Table 9(b). For instance, from August 25, 2018 to March
26, 2020, we observe 64,809 sales across 50,486 products which we can attribute to
a notification at most fifteen minutes before the sale.

B Recommendation & Consumer Choice Estimation

B.1 Price Endogeneity

Our mainline estimates make use of identifying Assumption 6 which requires
E[it|pjt] = E[¢j:]. However, a typical worry in demand estimation is that un-
observed quality ¢;; and price p;; may be correlated. Hence, we also develop
estimators that rely on quality merely being time-invariant, i.e., Assumption 7.
These estimators allow for arbitrary correlation of an offer’s unobserved quality
and price, as long as quality and price do not co-move within the same offer

over time. This assumption is plausible because observable offer quality is mostly

2This amounts to taking an extreme stance in a bias-variance tradeoff in favor of ‘no bias’: we
observe many more sales (on the order of two million) than we use in estimation, but these sales
happen in periods where we would have to guess the recommendation status of the offers on the
market. See Appendix B.3 for evidence on how expanding the data used in estimation would yield
attenuation bias.

30This cannot influence our demand or recommendation predictions, as we are controlling for
an Amazon dummy in the relevant models. However, if we are significantly underestimating the
feedback count of Amazon, it could influence the interpretation of the Amazon coefficient in, e.g.,
the recommendation estimation. In such a case, if we were to observe the truth, the estimated
coefficient on Amazon would be reduced.
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N Avg. Std. Dev. Min. 50th Max. # Unique Products igégg
Price/MSRP 171,005,258 1.18 042 038 107 471 # Markers (Product x Time) 19705.784
FBA 171,005258  0.61 049 000 1.00  1.00 #Sales (15m) 64,309
Amazon 171,005,258  0.02 014 000 000 100 Sales (1) 207

ales 7 2
Log (Feedback Count + 1) | 171,005,258  7.38 279 000 722 1569 Ve o Sales (15m) e
Dispatch Time (in Days) 171,005,258 0.76 1.07 0.00 0.00 3.50 # Markets with Sales (1h) 187,348
Recommendation Status 171,005,258 0.11 0.31 0.00 0.00 1.00 # Markets with Sales (24h) 2,224,660
Sales (15m) 19,705,784  0.00 0.08 000 000 3200 Earlest Market 2018-08-26 01:15,08
ates arke -U5-. o Mo )
Sales (1h) 19,705,784 0.01 019 000 000 63.00 Earliest Market w/ Sale  2018-08-26 02:06:39
Sales (24h) 19,705,784  0.34 252 0.00 0.00 471.00 Latest Market w/ Sale 2020-03-25 20:51:41
(a) Offer-Level Summary Statistics. (b) Descriptives

Table 9: Summary Statistics and Descriptives.

Notes: These tables displays summary statistics for the dataset used in recommendation
and consumer choice estimation. For the left table, the unit of observation is an offer on
a given market, so a (merchant, 15m period, product page). As discussed in Appendix
B.3, we are informed about the offer characteristics at time t but observe sales whenever
they happen. Hence, we experiment with different ways of aggregating the data: ‘Sales
(15m)” measures the sales of an offer in the 15 minutes after we receive information about
offer characteristics, ‘Sales (1h)” for the next hour, and ‘Sales (24h)” for the next 24h. If
multiple notifications arrive within 24h, they could be associated with the same later sale;
this problem does not emerge for ‘Sales (15m)” (we condition on notifications at least 15m
apart). The right table displays counts of products, merchants, markets, and sales; as well
as the first and last markets we see, with or without a sale.

time-invariant. Indeed, the last column of Table 2 reports the R? from regressing
the quality measures (one by one) on offer fixed-effects. This R? is never less than
0.90 and typically above 0.97.

Offer FE under Full Observability

We now illustrate how to condition out alternative-specific fixed effects when esti-
mating a multinomial logit discrete choice model. We first consider the case when
the chosen alternative is observed (as for the recommender system estimation).
Subsequently, we extend our results to the case where there is one alternative for
each market, and we only observe whether or not this specific alternative is chosen.
This section generalizes results in Chamberlain (1980) which themselves are based
on Rasch (1960, 1961). See Arellano and Honoré (2001) for a modern treatment.

Recall that the recommender system’s mean utility from alternative j at time T
is given by3!

5;’1' = X;Tﬁr - “rp]"f + &,

31We have fixed some product page p and suppress the relevant subscript. Extending the
estimators from one to multiple product pages is trivial.
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where in contrast to the main text we have imposed Assumption 7, i.e. offer quality
5]7 = ].rT is time invariant.

Mean utilities on each offer are combined with a Type-1 extreme value shock
€jr to yield a utility index v}, = d;; + €}, The recommendation is assigned to the
offer with the highest utility index. If Yj, 1s a dummy for whether an alternative is
recommended, we have

Yir = Hvjr 2 maxvi.}.

Using McFadden (1981), this multinomial logit model can be transformed into a
standard binary logit model by appropriate conditioning. Indeed, consider two
alternatives j and j’ that have a non-zero probability of being recommended. Then,

1
1+exp ((5]2 — 5?’7) .

P (y;T = 1|y]r'r +y;’r = 1) =

But as argued by Chamberlain (1980), a fixed effect in a binary logit model can be
eliminated by (further) conditioning on an appropriate sufficient statistic. Fix two
periods 7, T’ and consider the event C = {vi + Yie = L¥ip + Y = 1}. Then

]P( r _1| r 4 r_q C)_]P(y;T:L]/;T—F]/;T/:l‘C)
Y = Wi T = LS = Ty = 10)

1
1+ eXp[(é}T — 5;7,) - (5;-,1, — 5;/7/)] .

s T r
But neither (5].T ) v

and a” in the presence of {; we can maximize the log likelihood function

nor ‘5;'1 - 5]?,7, contain f}. Thus, to consistently estimate p’

T

r r |j| 1
£(zx,ﬁ)=]§Z )» 1“<1+exp[((5]g_5r )= (@, 7] )]>'

lt=1j7€Zj; it j't

Here, Z;; is the set of all potential offers j/ # j and times T/ # 7 that satisfy
y]r.r + y]r.T, =1, y]r.T + y]r.,T =1 and y]r.T, + y]r.,T, = 1. In practice, we estimate the
model under the restriction " = 0 as there is very little variation in non-price offer

characteristics.
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Offer FE under Partial Observability

We observe sales for exactly one alternative j for each product page. Thus we
cannot exactly follow the previous subsection: forming the required conditioning
set Zj; requires observations on at least two alternatives. However, at the cost of
some power, we can exploit the high-frequency nature of our data to construct an
estimator that is consistent in the presence of arbitrary fixed effects. Recall that a

consumer’s mean utility is given by
/
Sir = x].Tﬁ —apir + &,

where, in contrast to the main text, we have imposed Assumption 7, i.e. that
offer quality ¢; = {;; is time-invariant. Mean utilities on each offer are combined
in the usual fashion with a Type-l Extreme Value shock ¢;j; to yield a utility
index vjj; = Jjr + €;j¢. For now, assume all consumers are sophisticated, so each
consumer simply chooses her preferred option. If y;jr is a dummy indicating

whether consumer i chooses alternative j at time T,
Yijr = Hojjr > max Vikr }-

But note

P(yijc = 1)P(yij = 0)
P(yijr = V)P (yijrr = 0) + P(yijr = 0)P(y;j = 1)
1

L) exp (i)
Zk;éj exp (0 )

]P(yijr = 1|yijT + Yije = 1) =

exp(Jijrr — dijr)

In general, ) .jexp(dir) # Yixjexp(dixr). However, when x; = xj and
Pkr = Piv for all k # j, then equality holds. Thus, we restrict attention to pairs
of periods between which all offers for which we do not observe sales remain

unchanged. This procedure yields the following likelihood function:

1
L(x,p)= ), 6 In <1 + exp(djjr — 51’J'T)) ’

(,7)eX
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Figure 5: Buybox Rotation and Model Predictions.

Notes: The left panel illustrates Buybox rotations by showing periods in which three
distinct sellers of Maxell Lithium Batteries, colored red, green and blue, are recommended.
The right panel shows the increase in sales (dark bars) or model-predicted sales (light
bars) from being recommended as a fraction of mean sales probability, controlling for
offer-fixed effects ("No Controls") or offer-fixed effects and predicted recommendation
probability ("Controls"). Our model matches both (i) the correlational relationship between
recommendations and sales and (ii) the effect of being recommended ‘by surprise’, i.e.,
due to a Buybox rotation.

where

X ={(t,7)|Vk # j : xkx = Xiwr, Pjr = Pjo } N {(T, T)|Yije = Lyijo = 0}

In practice, we estimate the model under the restriction B = 0 as there is very little

variation in non-price offer characteristics.

B.2 Recommendation Endogeneity

As emphasized by Ursu (2018) and Donnelly, Kanodia, and Morozov (2023), a
primary concern when estimating the effects of recommender systems on demand
is that recommended offers are recommended for a reason. For instance, in
our context, offers can be recommended because they are competitively priced
— but competitive pricing itself drives sales. Thus, naively comparing sales of
recommended offers and non-recommended offers will typically overstate the
(causal) power of recommendations: recommended offers sell better not only
because they are recommended, but also because they are better along various

dimensions (e.g., pricing) valued by consumers.
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The preceding discussion suggests a way to disentangle the causal from the cor-
relational effect of being recommended: if we can control for everything consumers
value, then any additional impact of being recommended is causal. Implicitly, our
mainline estimates above assume that no unobserved factors influence both Buybox
status and demand. Therefore, our mainline estimates rely on a “conditioning on
observables” strategy for identification.

Additional identifying variation arises from Buybox rotations. In particular,
we model the platform’s algorithm as solving a discrete-choice problem with
extreme-valued shocks. These shocks are ascribed to deliberate randomization. To
motivate this modeling choice, we select a product — Maxell Lithium Batteries
— sold on the Amazon marketplace. In Figure 5a, we display the identity of the
merchant whose offer was recommended by the platform>? on August 14-15, 2019.
The distinct merchants are colored red, green, and blue, respectively; their prices
are fixed at $2.67, $2.70, and $2.72 throughout the displayed period. We find that
the platform “cycles” between the three sellers, giving each of them one-third
of the share of the platform’s recommendation. This finding is corroborated by
various sites advising sellers on pricing strategies. For instance, (webretailer.com)

notes that

“Amazon does seem to try and rotate the Buy Box between different
sellers [...] but it will weight the rotation more heavily towards the

‘better’ sellers.”

Econometrically speaking, Buybox rotations exogenously shift which offer is
assigned the Buybox. We can thus compare cases where an offer is assigned to
the Buybox for this exogenous reason to cases where an offer was not assigned
to the Buybox for this same reason. Formally, a potential threat to identification
is that E[¢;[¢] # E[¢;]; in particular, the expectation of ¢ could be increasing
in f;t' However, suppose we believe Assumption 7 (i.e., that offer quality is time-
invariant). Then, since the Buybox rotates over time, these rotations generate
exogenous variation in recommendation status. In particular, we can ask: how

much more likely is an offer to sell when it is assigned to the Buybox, compared

32This figure is made using scraped data from Keepa; while these data have many shortcomings
relative to ours, they have the advantage of being sampled independently of price movement. Our
data, by contrast, makes it hard to detect rotations as we only see recommendation status when
some potential input to recommendations changes.
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to when the same offer is not assigned to the Buybox and yet has the same model-
predicted probability of being assigned to the Buybox?

Figure 5b answers this question. The darker bars measure the increase in
sales probability from being recommended as a fraction of mean sales probability,
through regressions of a sales indicator on recommendation status and controls.
In particular, from left to right, we measure this increase using (i) a regression that
controls for offer fixed-effects but nothing else; (ii) a regression like (i), but also
controlling linearly for the predicted probability of being assigned the Buybox;
(iii) a regression like (i), but also nonparametrically controlling® for the predicted
probability of being assigned the Buybox; and (iv) a regression like (iii), but
also controlling for observable offer characteristics directly. Crucially, all of the
regressions above include offer fixed effects.

The picture from the dark bars in Figure 5b is clear: even after controlling for
offer fixed effects, being recommended raises the probability of a sale. However,
the key question is not whether recommendations matter but whether our model
correctly picks how much they matter. Hence, we repeat the same regressions
with predicted sale probabilities as the dependent variable. The results from these
regressions are depicted in the lighter grey bars. Since the dark and light grey
bars generally overlap, we have suggestive evidence that our model correctly
picks up the causal effect of being recommended. Crucially, our model mirrors
the reduction in the impact of recommendations on sales after controlling for
predicted recommendation status, i.e., when moving from ‘No Controls’ to ‘Linear
Controls’. Hence, our model correctly understands both the correlational impact
of recommendations and (assuming quality is time-invariant) the causal impact of

recommendations.

B.3 Aggregation and Attenuation Bias

We only observe the Buybox status of an offer when any offer changes in price
or when an offer is added or removed from the set of available offers. This quirk
introduces a potential attenuation bias into our estimation: if the Buybox status

changes between the last price change and a sale, we may mistakenly conclude

33We implement these controls by including separate dummies for 100 quantiles of predicted
probability.

53



0.5 A * 4
== +0
= =+ =+ == += =
L) 3.5 1
+ . = -
= 3.0 4 ]
=
0.3 A 2.5 — -
2.0
0.2
154
1.0+
0.1
0.5
0.0 T T T T T T T T T T T 0.0 T T T T T T T T T T T
Im 2m 5m 15m 30m 1h 4h  12h  24h 48h 96h Im 2m 5m 15m 30m 1h 4h 12h  24h 48h 96h
(a) Sales Fraction while in Buybox. (b) Sales Probability Ratio.

Figure 6: Attenuation Bias Reduces Estimates of Buybox Importance.
Notes: The figures depict the fraction of a merchant’s sales that happen while she holds the
Buybox (left) and the factor by which an offer’s sales probability is multiplied if is in the
Buybox (right). On the horizontal axis, we vary the time horizon at which we aggregate.
For example, the “1h’ bin forms estimates based on sales from the first hour after we
observe a Buybox change.

that the Buybox does not significantly affect sales. The frequency with which we
make these mistakes depends crucially on the frequency with which the Buybox is
updated without triggering a notification.

The potential attenuation bias presents us with a bias-variance tradeoff: by
concentrating on brief time intervals following notifications, we could reduce or
even eliminate the bias generated by using outdated information. However, this
approach would substantially limit our effective sample size, as it is improbable for
sales to occur within these short periods. Consequently, such a strategy introduces
additional variance® into our estimates.

As depicted in Figure 6, we find evidence of possible attenuation bias: beyond
the initial four points, extending the period after a notification during which
we aggregate sales diminishes our estimate of the correlation between sales and
Buybox status. The first three points correspond to relatively short periods (1m,
2m, and 15m, respectively) during which product page caching may arise®.

Given Figure 6, we use estimates based on a 15m window after notifications for

34This variance is not reflected in Table 10 as it also conditions on periods during which no offer
characteristics change, which is less likely at longer time horizons.

%0ur information on Buybox status reflects the central database, but changes require time to
propagate to Amazon product pages, which are often cached for efficiency.
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the results in the main text, resolving the bias-variance tradeoff in favor of unbiased
estimates. However, in Table 10, we show how our estimates vary as we change
the timeframe over which we are aggregating. We find that coefficients vary in the
expected way across time horizons. In particular, the longer the time horizon, the
larger the estimated fraction p of sophisticated consumers (because the correlation
between recommendations and sales diminishes as we utilize increasingly outdated
recommendation information). However, we also see that the estimates of p are
already quite stable when comparing the 15m and 1h time horizons. Hence, even
if caching did not prevent us from examining even shorter periods, we would
expect our results to remain unchanged.

We address one final point: our estimates of the fraction of a merchant’s sales
that happen while she holds the Buybox are on the lower end compared to industry
estimates, which typically range between 70% and 90% (compared to our 51%).
This discrepancy may be attributed to our mix of products. Since our data source
is a repricing company, products with many merchants are oversampled. Trivially,
if a product has only one merchant (and the Buybox is not suppressed), 100% of
sales go through the Buybox. Similarly, the more merchants a product has, the
fewer sales will go through the Buybox.

B.4 Market Size

For each product page p in our dataset, we only observe sales of one alternative
i°(p) € Jp, the so-called “source” merchant.’® As we are estimating an entry
model, we must recover some measure of the scale of demand. If we only see the
realized number of purchases from one merchant, we may obtain a poor proxy
for the mean number of purchases.’’ To combat this problem, we exploit two
strategies, each based on a finding in Chevalier and Mayzlin (2006), built on in
De los Santos, O’Brien, and Wildenbeest (2021) and Reimers and Waldfogel (2019):
(log) sales ranks are excellent proxies for (log) sales.

Our first strategy utilizes industry data. Merchants frequently need to know

36Because it is through this merchant that we observe the data for this product, i.e., they are
(indirectly) the data source.

37This is essentially the problem discussed in Gandhi, Lu, and Shi (2023), only that it arises for
us mostly because of high-frequency data and partial observability, and that sales rank data allows
us to employ a more tailor-made fix.
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Own Scale AMZScout Scale
1) 2) (©) (4) ©) (6)
Time Horizon 15Min. 1Hour 24 Hours | 15Min. 1 Hour 24 Hours
Price / MSRP -0.77 -0.95 -1.40 -0.58 -0.77 -1.22
(0.158) (0.086) (0.105) (0.134) (0.096) (0.127)
Dispatch Time (in Days) -0.05 -0.07 -0.12 -0.04 -0.06 -0.06
(0.014) (0.011) (0.032) (0.011) (0.010) (0.024)
100 x Log(#Feedback+1) -0.38 -0.32 0.19 -0.82 -0.97 -1.09
(0.167) (0.174) (0.608) (0.220) 0.172) (0.483)
Fulfilled by Amazon? 0.03 0.04 0.18 0.05 0.06 0.22
(0.017) 0.017) (0.044) (0.017) (0.015) (0.054)
Sold by Amazon? 0.18 0.20 0.54 0.17 0.20 0.42
(0.045) (0.027) (0.157) (0.045) (0.032) (0.120)
Constant (Inside Options) -0.58 -0.51 -0.54 -2.53 -2.44 -2.36
(0.163) (0.118) (0.108) (0.142) (0.116) (0.124)
Nesting Coefficient (A) 0.07 0.08 0.23 0.05 0.06 0.18
(0.016) (0.008) (0.059) (0.014) (0.009) (0.049)
Fraction of Sophisticates (o) | 0.65 0.67 0.77 0.66 0.69 0.78
(0.013) (0.009) (0.015) (0.016) (0.012) (0.016)
Elasticity (Rec. Fixed) -8.67 -9.33 -4.49 -8.36 -9.34 -5.03
Elasticity (Rec. Vary) -11.71 - -12.08 -6.41 -11.33  -11.86 -6.85

Table 10: Demand Estimation Results: Robustness to Time Horizon.
Notes: Estimates from maximum-likelihood estimation using data on 50,486 prod-

uct pages spanning unique merchants between 2018-08-26 01:18:08 and 2020-03-25
23:39:41. The estimates are based on 64,809 sales for the 15m columns, 139,267
sales for the 1h columns, and 220,166 sales for the 24h columns. The reported
coefficients measure the effect of price (normalized by the MSRP), the effect of an
extra day of time until dispatch, the effect of a one percent increase in number of
teedback, the effect of an offer being fulfilled by Amazon, and the mean utility of
the outside option (relative to the inside option). A is the nesting coefficient for
sophisticated consumers and p is the fraction of consumers that are sophisticated.
Elasticity (Rec. Fixed) refers to the average price elasticity of demand assuming
that price does not influence consideration sets and Elasticity (Rec. Vary) refers
to the said price elasticity under which it does. Elasticity (Rec. Var) is computed
using the earlier estimates of the recommender system. All standard errors are
clustered at the product level.
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totals for sales on product pages — for instance, because they are considering
entering on a particular product page. To fill this need, companies AMZScout and
JungleScout offer “competitive intelligence” products that estimate the total sales
for a product page using the product’s sales rank within its top-level category.
For each top-level category in our data, we obtained>® sales estimates from both
JungleScout and AMZScout for a log-spaced grid of sales ranks. We use this grid
to linearly interpolate® (in log-log space) the total sales for each product in each
month based on the average sales rank of the product in this month. We then
average across months to estimate the total (monthly) sales for a product. All
results in the main text utilize the AMZScout estimates obtained like this.
Alternatively, as a robustness check, we can use our sales data to estimate a
relationship between log ranks and log sales. Denote by A, r the number of sales
for product p in month*’ 7. Instead of observing A, we observe the sales for our

observed merchant:

S, o

pj°(p)T
Ay io(p) 7 = ——t— X Apr.
pi(p)t = 1= Sp0,c

Here, s,;; refers to the market share of alternative j on product t and time 7 (as in
the main text). We will assume that log sales is affine in log sales ranks:*!

In Apr = 70 + 71 In(rank,;).

This suggests estimating the following Poisson model of observed monthly sales

against sales rank:*?

Spi°(p),T )>

IE[ap’ja(p),’r|X:| = exp <')’0 + 71 ln(rankplr) +In (1 S
p0,T

However, we do not observe the fraction of sales s - that go to j°(p). Instead,

pi°(p),

BWe are grateful to Gutiérrez (2021) who shared the AMZScout data with us.

3For products with very high sales ranks, we have to extrapolate as both competitive intelligence
companies round their daily sales estimates (so that we cannot distinguish e.g. 0.1 sales/day from
0.4 sales/day). We estimate the slope that governs the relationship between log sales ranks and
log sales for the highest sales-rank interval unaffected by rounding. Then, we assume this slope
continues to govern the relationship at higher ranks.

“0We aggregate to the monthly level for this estimation; in the main text, T refers to a day.

#1For ease of exposition, we pretend that there is only one category with respect to which all
products are ranked here; in truth, we perform this estimation separately for each category.

#2We prefer a Poisson model over the linear model in logs as it correctly deals with the frequent
observations of zero sales on a given day.
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we replace In (Sl”_’(;%) with a linear function of the (empirical) fraction of time that
the offer is recommended, 0310g(7, jo(,)), @ plausible proxy.

We further restrict attention to product-months for which our data source
was in the Buybox at least 10% of the time. We also account for the presence of
“variation” products (e.g., a shoe with multiple sizes). For these products, the sales
rank is based on the total number of sales across all variations, but our sales data
is based on the specific variations sold by our seller. Finally, we add product-level
FE to identify the slope of the ‘log rank’ vs. ’log sales’ relationship purely off
within-product time variation in sales.

Having estimated the feasible model, we form an estimate of the number of

sales on a product:

TP
p = T, 2 exp [¥o + %1 1n (rank, ;)] .
Here, we substitute in the sales rank of a given product for each month, then set
r = 1 to predict sales for a merchant on that product in this month. Thus, our
prediction is made as if said merchant were the single merchant on a product;
hence we recover an estimate of total sales. Finally, we average across months.

We illustrate our procedure in Figure 7. The left panel shows a binned scat-
terplot of log sales rank cleaned from product-level fixed effects (on x) against
monthly log sales (on y) for one. The linear model appears to fit the data well.
Figure 7(b) compares our estimates to AMZScout and JungleScout. Both roughly
agree with our estimates, though we slightly underestimate overall sales.

Finally, we need to translate monthly sales into market size for both methods.
Doing so requires taking a stance on the number of consumers contemplating
purchasing a product but ultimately deciding not to pull the trigger (i.e., choosing
the outside option). We consider the “conversion rate,” i.e., the fraction of product
site visits that turn into a sale. While we do not have data on the conversion rates
specifically for the products in our sample, we calibrate the conversion rate to
12.3% as this is the average across products on Amazon (digitalcommerce360.com).
Thus, we infer market size as Mp o 123Ap

As a robustness check, we run demand estimation with our own sales estimates

and compare the results to our mainline estimates (which use AMZScout data)
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—— Own Estimates
10 Jungle Scout
—— AMZ Scout

Daily Log Sales (Cleaned)
-4
Log Sales
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2 4 6 8 10 12 14 16
Log Sales Rank Log Rank

(@) Relationship roughly linear. (b) Industry vs Own Estimates.

Figure 7: Log Sales Ranks Predict Monthly Log Sales

Notes: We use within-product variation in sales ranks and sales for products for which
we observe the majority of demand to infer monthly sales for all products. This figure
illustrates the procedure for the example category “Clothing, Shoes & Jewelry.” As
anticipated by prior literature, panel (a) illustrates that log sales are roughly linear in log
sales ranks on the support of our data. Panel (b) compares our estimates to estimates from
industry experts at AMZScout.com and JungleScout.com. We estimate slightly lower sales
numbers at low sales ranks. Note that our estimates are constant in the tails because they
are winsorized.

in Table 10. Other than a difference in the attractiveness of the outside option
(necessary to reconcile the larger total sales estimates from AMZScout with our
observed sales), we find no qualitative differences between the coefficient estimates
under the two ways of specifying market size.

B.5 Maximum Likelihood Estimation of Consumer Choice

While exactly one alternative (or the outside option) is recommended for each mar-
ket (p, T), our sales data is generated by the arrival of some (generally unknown)
number of customers. These customers either buy one of the alternatives or select
the outside option. We discussed in Section B.4 how we estimate the average mar-
ket size My, i.e., the average number of customers that choose between inside and
outside options on any given date T and product page p. Given this number, we
can form a pseudo-likelihood function*? by assuming that the number of arrivals

#3This function is only a pseudo-likelihood as our predicted number of arrivals M, need not be
an integer.
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is distributed Poisson** with mean equal to M,. Recall that j°(p) denotes the

merchant for whom we observe sales on product page p. Furthermore, a;0(,) ,, -

denotes the total number of sales for the observed merchant on product p and

date 7 in our data, and s jo denotes her market share in our model. Thus, we

PpT
can write the log-likelihood as:

M M) 40
L(a,p) = logHHexp ap)( e /!

(p)pr

°‘ ;; [”J’”(P),m x 10g(Sjo(p) p,r) — S]")(P)'PrTMP]

C Details of Simulated Method of Moments

In this section, we detail the SMM procedure. We first describe how we solve the
pricing and entry games; how we simulate a market; and how we aggregate mar-
kets to moments. Next, we describe concentrating out wholesale cost parameters,
and smoothing out the SMM objective by importance sampling. Finally, we display

measures of model fit.

C.1 Solving the Pricing Game

Fix a market p and entrants 7. Each entrant’s type is (c;, q;, q]’-), where q; = x;,B +§;
and q; = x;ﬁ’ + & measure the attractiveness of the entrant to consumers and
the recommendation system, respectively. Entrants are fully informed about each
other’s types and treat price as a strategic variable. Thus, the first-order condition

associated with seller j’s choice of price is

¢si(p,q) + [pp; — cj]a—p’]', —0. (1)

An equilibrium of the pricing game comprises prices p satisfying Equation (1)
for all entrants j. To ease notation, suppress the dependence of all variables on
q. Following Morrow and Skerlos (2011), we rewrite the previous equation as

a (-markup equation. First, we decompose the Jacobian matrix of market shares:

#By contrast, if we assumed that exactly M, consumers arrived each period, our model would
not be able to rationalize markets with more sales than the average number of consumer arrivals.
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aa—lf/ = A(p) — T'(p), where A(-) contains the diagonal elements of the Jacobian
matrix and I'(-) contains the factors common to both the diagonal and off-diagonal

elements. The {-markup equation is

p=¢ 'c+i(p), Z(p)=Alp) 'T(p)(¢pp—c)—Alp) 's(p), 2)

whenever A(p) is nonsingular.®

Having described Equation (2), we chain iterations based on the {-markup and
BLP-markup equations to find a fixed point. Iterating on the {-markup equation
improves convergence relative to iterating on the BLP-markup equation alone.*®

In our model, an equilibrium exists but is unlikely to be unique. With two
types of consumers, the pricing game is no longer supermodular (with a dominant
diagonal), so the equilibrium we find will depend on starting values. Our estima-
tion procedure gives the entrant with the highest adjusted recommendation system
attractiveness, q]’- — a’cj, a lower starting price than the others. In (unreported)
robustness checks, we find that varying the “privileged” entrant does not change

our qualitative findings.

C.2 Solving the Entry Game

The information set®

of potential entrants j € N is Z; = {cj, F}. As profits are
strictly decreasing in own costs, firms play cutoff entry strategies, i.e. xj = 1{c; <

c]*} From the perspective of prospective entrant j, entry is profitable if and only if

Eq.c_;[mj(cj gj; e~ a-j x-j)] = F.

45Under some technical conditions, Proposition 2.12 in Morrow and Skerlos (2010) tells us that
the {(p) term can be expressed as

() = Qp)p )+ (10 )rip): np) 2~ [ 5] s(p)

where Q = A~!T and #(p) is the standard BLP markup term.

46There are examples for which “iterating on the BLP-markup equation is not necessarily locally
convergent, while iterating on the {-markup equation is superlinearly locally convergent” (Morrow
and Skerlos 2011, p. 329).

47We suppress the fact that fixed cost also enters the information set here as we are already
conditioning on a market and assume that fixed costs do not vary within market.
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We focus on symmetric equilibria, i.e. equilibria where ¢; = ¢* for all j € N. This

c* must satisfy

Eq.c ,[mj(c*, g5 ¢-j,q-j, x~;)] = F where x;(c) = 1{cy < c"} for all k # j.

::\;?c*)

We can understand the LHS of this equation as a function V(c) in one parameter.
For each candidate cutoff ¢, we can approximate V(c) by replacing the expectation

with an average across simulation draws, i.e.

S
V(c) = Z; ”j(C*MI?/’ CS;]'/ qs—er*—j)'
s=

n| -

We can then use standard root-finding techniques on V(c) = F to find c*.

C.3 Simulating a Market

We can now combine Subsections C.1 and C.2 to simulate market-level outcomes.
We employ the algorithm presented in Figure 8b. We begin by drawing a scalar
fixed cost F. Furthermore, we draw S vectors of wholesale costs ¢; € RV ‘,
demand qualities q; € RV and recommender qualities ), € RVI. We employ
the simulation draws and the algorithm of Subsection C.2 to obtain c*. Next, we
fix simulation draw s = 1 and find the set J = {j € N : ¢js < ¢} of successful
entrants. We then calculate their equilibrium prices, profits and market shares
using Subsection C.1.

C.4 Aggregating Markets to Moments

We now aggregate market-level outcomes to moments; our discussion follows
Ackerberg (2009) adapted to our model. Fix a market m. Our model postulates a
relationship f between (market-level) observables®® x,, = (A, Ry,), unobservables

uy, and outcomes y,,. In particular, at the true parameter vector 6y we have

Ym = f(xm/ Um, 90)-

“8Here, A refers to market size and R to the manufacturer’s suggested retail price.
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We begin by defining the outcomes included in y,,. Let the number of successful
entrants ], the average price 7,, and the standard deviation of log prices std,, on
market m be given by

JENm Jom j=1 m =1

Jm = |jm| = Z 1{ij < Cm}r Pm = 7= Zp]mr and stdy, = J ]_ Z[log(p]m) o

The outcomes we want to match are y,, = (y,,,,Y,,,) where

]m
I P
Ymi = | Jm X Am |, YmN = <(1{]m = ﬁ)jﬂp\f\/zj) Ym2 = | Py X Ru
Jm X Ry, std,,
(Ym,N)

If the data {x,, ym }*_, are generated by by our model at the true 6, then

The reverse implication also holds as long as our model parameters are identified
(we argue they are in the main text). As econometricians, we do not observe the
true value of the unobservables u,,. In our model, these shocks include (i) fixed
costs Fy, for each market and (ii) qualities (g;,, qum) as well as wholesale unit costs
cjm for each potential entrant on each market. To proceed, we make parametric
assumptions on the distributions of these quantities. Concretely, we assume that
(@jm/ q]rm) are drawn from the empirical distribution implied by our recommender

system and consumer choice estimation. Fixed costs are drawn following
Fy ~ LogN(65 + x,,65,605) w.p. w, and LogN(8f,6%) otherwise.
Wholesale costs are drawn from

Cjim = (05 + X105 )€jm,  €jm ~ LogN(0,65).
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Given some candidate 6 = (9(1)E ,0L, 08, w, oF, Qg, 6, 0%, 65), the conditional distribu-
tion of unobservables p(u,,|xy, 0) is thus fully specified. In theory, we could use
our model and the moment condition(s) in (3) to estimate 6. However, in practice,
these expectations are hard to compute: they involve not one but two layers of
games for which equilibria must be numerically computed (the entry game and
the pricing game). Instead, we take simulation draws (1,1, . .., tys) ~ p(tm|Xm, 0)

and approximate the expectation by averaging:

IE,fm Zf Xm, Ums, )

As shown in McFadden (1989) and Pakes and Pollard (1989), estimation can pro-
ceed based on the simulated method of moments estimator that sets the simulated

moment vector G(6) close to zero:

/\

0= argrggg Q(0) = G(OYWG(8), G(o ; —Efn(0

for some weight matrix W.

C.5 Concentrating Out Wholesale Cost Parameters

We can partition 8 = (6%, 6°) where 6% = (6],0L, 0, w,85,0%) and 6° = (65,65, 65).
Define

6% (6°) := argn%in Q.((6F,69), and @°:= argn%%n Q. ((6F(6°),6°)).

Then it is easy to see that § = (87 (#¢),H°). Hence, we can ‘concentrate out’ the fixed
cost parameters when searching over possible values of the unit cost parameters.
We employ the algorithm presented in Figure 8a.

Our approach is beneficial for the same reason the linear parameters are
concentrated out in the estimation of Berry, Levinsohn, and Pakes (1995): there is
little computational burden in estimating the parameters that were concentrated
out. In BLP, the linear parameters can be estimated in closed form. For us, 6 (6¢)
can be found without re-solving the pricing game.
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Data: Sg sets N, of pot

entrants
forp=1,...,Pdo for ¢ € grid do
fors=1,...,Srdo fixcp =¢
| simulate entry for (p,s) fors,=1,...,5¢ do
oF — oF J.Z{l}U{je./\/'se:cj<
0 ¢j>1}

while dist > tol do
reweight sim data for of
dist = G(6¢, 0F)

find 711 (J) using

fix-point iter.

update 6F B V() ~ é L. ()
return G(6°,6%) c* SOIV?S V(c*)=F
. j:{]ENllC]'<C*}
(a) SMM Moments G(6°). solve pricing game given J

(b) Simulation of Entry.

Figure 8: Algorithms Used in SMM Estimation.
Notes: We provide the two key algorithms used in the SMM estimation procedure. In the
left panel, we detail how to find the value of the outer SMM objective. In the right panel,
we describe entry simulation.

C.6 Importance Sampling

Computationally, finding 8% (6°) requires a continuous objective. However, the
entry game is discrete. For some markets, as we increase F, there may be exactly
one entrant until we hit some threshold, after which there are two. To avoid
these discontinuities, we employ an importance sampling technique advocated
by Ackerberg (2009). Recall In F,, = 05 + x,,6F + ul,. As 6° is fixed, we will omit
the dependence of outcomes on it in our notation. Thus, we can write outcomes
directly as a function of fixed cost draws rather than as a function of shocks,
ie., f(xm um 60) = f(Fyn). We pursue the following simulation strategy: draw
Fns ~ g(+) where g(+) is a heavy-tailed density. Then use our knowledge of the
distribution of fixed costs implied by our current parameter guess to re-weight the

outcomes at the simulated fixed cost draws. Formally speaking, we compute

Efn(6 = Lf (Fws) Pl 0)

8 (Fns|xm)
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This simulator has two advantages. Firstly, the density for fixed costs we specified
is smooth, ensuring that the simulated outcomes will smoothly depend on oF.
Thus, for instance, as we increase the mean of the fixed cost distribution, the
estimator will smoothly put less and less weight on low fixed cost draws. The
second advantage is that we only need to compute the market-level outcomes
f(Fus) once at the beginning of the procedure. As we vary 6f, the outcomes
employed do not vary but are simply reweighted. The computational savings from
this are usually substantial but are less pronounced here.

Crucially, following this importance sampling procedure could introduce extra
simulation error into our estimates. For this reason, we follow the recommendation
in Ackerberg (2009) and iterate the procedure several times: at each new iteration,
we let g(-|x) equal the density p(-|x, Gf,m,) at the previous iteration’s optimal
value 95,60.

(typically in just three steps).

As in the original paper, this iteration converges extremely fast

C.7 Results

We illustrate the fit of our SMM estimates in Figure 9. The top row compares the
model distributions of product-level outcomes implied by the estimated f (outlined
in blue) to the distribution of these quantities in the data. In particular, Figure
9a illustrates the empirical distribution of mean price across products (in solid
light orange) against the distribution implied by the model (outlined in blue). The
model distribution matches its data analog extremely well. Similarly, Figure 9b
illustrates the distributions of the number of entrants. The fit is also good with one
key exception: the model has a hard time rationalizing the excess mass at the point
where we censor the distribution of the number of entrants. Many products have
more than 15 entrants in the data. We suspect that some of these products may
have “less serious” entrants, such as drop shippers who will try to fulfill an order
by immediately ordering the same product on a different e-commerce platform
(and entering their customer’s address as the delivery address).

Moving to the bottom row, we can evaluate to what extent our model captures
across-product heterogeneity. For example, in 9¢c, we can observe that products
with high prices in the data also have high prices in our model. This is due

primarily to our exploitation of MSRP data, an excellent proxy for costs. By
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contrast, 9d illustrates that our model cannot capture much of the across-product
variation in the number of entrants. This precludes us from making statements
about, e.g., potentially heterogeneous effects of recommendation algorithm design.

Why can our model not match the across-product variation in the number of
entrants? On the one hand, we may just be missing good covariates that determine
tixed costs. For instance, we have allowed fixed costs to vary by market size and
suggested retail price. Perhaps, however, fixed cost varies across brands: this could
occur if some companies refuse to sign deals that they consider “peanuts” while
other companies are happy to supply their product at whatever quantity a retailer
requests. As econometricians, we do not observe this heterogeneity.

This reasoning naturally suggests a plan of attack. We could exploit the
(excellent) information we do have on fixed costs: each product’s observed number
of entrants. However, this approach is dangerous. What if the variation in (effective)
tixed costs is just random? Concretely, it could be that discovering niches to enter is
a fundamentally random process. As already discussed in the main text, turnover
on Amazon is high. This suggests that there are a lot of unmodeled shocks to entry
decisions. Under this line of argument, attempting to “force’ all dots in Figure 9d
to lie on the 45-degree-line would amount to overfitting. Hence, we take the more

cautious approach of restricting ourselves to examining aggregate effects.

D Additional Counterfactuals

D.1 Platform Price Response to “Self-Preferencing”

Our mainline results on the effect of “self-preferencing” do not account for the
platform’s pricing strategy. Indeed, we assume in the main text that the platform’s
prices and entry decisions remain fixed across all counterfactuals. Here, we relax
this assumption. Rather than take a stance on the objective function that the
platform is optimizing, we compute the price change required for our welfare
results to flip. To do so, we progressively raise Amazon’s prices in the factual
world by 1.0% each time, continuing until we have reached the point at which
the overall welfare effect of this platform advantage, net of the price increase, is
(close to) zero. This point is passed once Amazon’s prices are 2.0% higher in the

observed scenario, relative to the counterfactual world. We exhibit the overall
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Figure 9: Fit of Distributions Implied By Marginal & Fixed Cost Parameters 6.
Notes: We exhibit the distributions implied by the values of the marginal and fixed
cost parameters 6 estimated as part of the SMM procedure and compares them to the
corresponding empirical distributions. The fit for the price distribution is good: we not
only match the distribution of prices, our model also predicts high prices for products
for which we observe high prices in the data, and vice-versa. By contrast, the fit for the
number of entrants is less good. While our model can rationalize the distribution of the
number of entrants (though it struggles with the excess mass at the point where we censor
the distribution), it cannot match the across-product variation in the number of entrants.
This is because we do not observe any covariates highly predictive of across-product fixed
costs heterogeneity. Hence, we restrict ourselves to examining aggregate effects.
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Short-Run Medium-Run Long-Run
Prices Adjust? X 4 v
Entry Decisions Adjust? X X v
A Consumer Surplus (CS) -$501,002 -$447,047  -$444,739
A Consumer Surplus (Naive) $51,530 $90,132 $92,986
A Consumer Surplus (Soph.) -$552,532 -$537,179  -$537,726
A Producer Surplus (PS) -$8,318 -$4,633 -$4,985
A Intermediation Fees -$16,655 $25,852 $23,823
A Welfare (CS + PS) -$509,320 -$451,680  -$449,725
A 3P Mean # Sales/Month -0.03 0.02 0.02
A 3P Mean Price (% MSRP) 0.00% -0.02%
A 3P Mean Min Price (% MSRP) 0.00% 0.00%
A 3P Mean Cost (% MSRP) -0.02%
A 3P Mean # Entrants -0.00

Table 11: Self-Preferencing is Welfare Negative if it Raises Platform Prices 2.0%.
Notes: This table displays differences in outcome variables, on our sample of 50,486
products, when the owner of the marketplace advantages its own offers in its recommender
system and raises prices by 2.0%, relative to a counterfactual in which it does not. In
the short run, sellers cannot change their prices or entry decisions. In the medium run,
sellers may set prices optimally, but cannot change their entry decisions. Finally, the
long-run counterfactual allows sellers to change both their prices and their entry decisions.
Outcomes that cannot change (e.g., the mean number of entrants in the medium-run
counterfactual) are omitted from the Table for clarity. 3P refers to “Third-Party’, i.e., it
indicates that the outcome is computed using only non-Amazon offers.

effect of self-preferencing under this pricing difference in Table 11, where, as a
reminder, the ‘3P Mean Price’ line only reflects pricing-changes by third-party
merchants (which barely adjust their price in response to Amazon’s price increase
partially because most products do not feature an Amazon offer.)

In conclusion, the welfare effect of self-preferencing crucially hinges on whether
one believes it is plausible for Amazon to have raised prices by more than 2.0%

relative to the counterfactual world in which no self-preferencing occurs.

D.2 Making Recommendations More Price Elastic

In the main text, we estimate the value of search guidance relative to a counter-
factual in which recommendations are made uniformly at random. However, we
may also be interested in the opposite, i.e., how the estimated algorithm performs
relative to an algorithm that is even more aggressive in its emphasis on price. We

investigate this question by evaluating a counterfactual algorithm which doubles
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Short-Run Medium-Run Long-Run
Prices Adjust? X v v
Entry Decisions Adjust? X X v
A Consumer Surplus (CS) $3,130,577 -$4,441,222 -$3,107,138
A Consumer Surplus (Naive) | $3,130,577 $46,199 $517,806
A Consumer Surplus (Soph.) $0 -$4,487,421 -$3,624,945
A Producer Surplus (PS) $696,236 $917,636 $849,798
A Intermediation Fees $1,431,849 $624,273 $724,115
A Welfare (CS + PS) $3,826,813 -$3,523,586 -$2,257,340
A 3P Mean # Sales/Month 0.34 -0.49 -1.04
A 3P Mean Price (% MSRP) 2.04% 1.98%
A 3P Mean Min Price (% MSRP) 1.89% 0.89%
A 3P Mean Cost (% MSRP) 0.86%
A 3P Mean # Entrants 0.26

Table 12: There May Be Benefits to More Price Elastic Recommendations.
Notes: This table displays differences in outcome variables, on our sample of 50,486

products, when a recommender system is employed on our third-party marketplace,
relative to a counterfactual in which the platform doubles its sensitivity to price. In
the short run, sellers cannot change their prices or entry decisions. In the medium run,
sellers may set prices optimally, but cannot change their entry decisions. Finally, the
long-run counterfactual allows sellers to change both their prices and their entry decisions.
Outcomes that cannot change (e.g., the mean number of entrants in the medium-run
counterfactual) are omitted from the Table for clarity. 3P refers to ‘Third-Party’, i.e., it
indicates that the outcome is computed using only non-Amazon offers.

the estimated price coefficient, and reporting in Table 12 the impact of moving
from such a counterfactual algorithm to the factual algorithm actually employed.

Compared to a heavier emphasis on price, the algorithm employed in practice
performs better in an A/B test but not in the long run. To begin with, the
tirst column of Table 12 indicates that before taking pricing and entry decisions
into account, the current algorithm benefits consumers, producers, and platform
alike: its comparatively weaker (but still substantial) emphasis on price allows
the platform to surface higher quality offers to consumers, which these are more
likely to purchase. However, these benefits do not consider the effect of more
elastic recommendations on pricing. Once we allow pricing to change, the current
algorithm’s weaker emphasis on price leads to 2.04% higher prices. Finally, there
is slightly more entry under the current algorithm, though the difference of 0.26
entrants per market is small.
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