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Abstract

We obtain a necessary and sufficient condition under which random-coefficient

discrete choice models such as the mixed logit models are rich enough to approx-

imate any nonparametric random utility models across choice sets. The condition

turns out to be very simple and tractable. When the condition is not satisfied and,

hence, there exists a random utility model that cannot be approximated by any

random-coefficient discrete choice model, we provide algorithms to measure the ap-

proximation errors. After applying our theoretical results and the algorithms to real

data, we find that the approximation errors can be large in practice.
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1 Introduction

Random-coefficient discrete choice models are workhorse models in many empiri-

cal economics applications. These models have been used to approximate various

preferences and capture rich substitution patterns. However, the exact degree of

flexibility and the limitations of the random-coefficient models have not yet been

fully understood. In this paper, we obtain a necessary and sufficient condition under

which parametric random coefficient models can approximate the choice behavior

generated by any nonparametric random utility model. The condition turns out to

be a simple formula of a few primitives.

We consider the following class of models. Let X ⊂ Rk be the set of all alterna-

tives, where k is the number of explanatory variables. In an additive random utility

model (ARUM), the choice probability of an alternative x in a choice set D ⊂ X

is given by ρ(D,x) = µ({ε|u(x) + ε(x) > u(y) + ε(y) ∀y ∈ D \ {x}}), where u is

a deterministic utility and ε is a random utility shock that follows the probability

measure µ.1 The class of the ARUMs is general and includes the probit, logit, and

nested-logit models as special cases. The random-coefficient version of the ARUM

is defined as follows. The choice probability is given by

ρ(D,x) =

∫
µ({ε|u(x)+η(x)+ε(x) > u(y)+η(y)+ε(y)∀y ∈ D \{x}})dm(u), (1)

where m is a probability measure over u and η is a vector of fixed effects. In the stan-

dard interpretation, m captures the heterogeneity of preferences among consumers.

The fixed effects η capture the average preference for unobserved characteristics of

alternatives.2 When µ is a iid extreme-value type-I distribution, then ρ reduces to

a mixed logit model, which is one of the most widely used random-coefficient models

(see Train (2009)). Usually, researchers make a parametric assumption on u(·) in

(1), such as u(x) is a polynomial. In many papers, researchers assume u is linear

(i.e., u(x) = β · x). If u is a polynomial of degree d m-a.s., then the model is called

the degree-d random-coefficient ARUM.

Given the popularity of the model, it is important to understand its exact extent

of flexibility and limitations. For this purpose, we obtain a necessary and sufficient

condition under which the degree-d random-coefficient ARUMs are rich enough to

1In this paper, we assume that µ has a density function f and (i) the set {ε|f(ε) > 0} is convex and
open and (ii) the set includes zero.

2Notice that the roles of u and η are different. The probability measure m is only on u but not on η.
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approximate any choice probabilities generated by nonparametric random utility

models across choice sets. For the approximation target, we choose the random

utility models, which are defined as probability measures over rankings on alterna-

tives. This is because the class of the models is one of the most flexible classes in

the literature. We study approximation across choice sets because many questions

of interest (such as substitution patterns) are possible to answer only if we analyze

behaviors across choice sets.

When the condition is not satisfied, it is important to ask how large the ap-

proximation errors can be. To answer this question, we provide algorithms that

calculate the approximation errors. Moreover, we apply the algorithms to a real

dataset. In the following paragraphs, we will explain the necessary and sufficient

condition. Then, we will describe its empirical application to calculate the minimal

approximation errors..

In main Theorem 1, we state that the necessary and sufficient condition is the

affine-independence of the set {pd(x)|x ∈ X}, where pd(x) is the vector consisting of

monomials of at most degree d of characteristics x.3 One surprising fact about the

condition is that it does not depend on the probability measure µ over the utility

shock ε. This implies that if the condition is violated, there exists some choice

probabilities generated by a random utility model that cannot be approximated by

any degree-d random-coefficient ARUM, no matter which probability measure µ of

ε we use (and no matter which parameters and fixed effects we use).

Although the affine-independence condition is easy to test, the condition is gener-

ically equivalent to a further simpler condition: |X| ≤
(
d+k
k

)
, where |X| is the num-

ber of alternatives, k is the number of characteristics observed for each alternative,

and d is the degree of polynomial utility functions u. The number
(
d+k
k

)
is the

number of ways of choosing k elements out of d + k elements, which is increasing

both in d and k. The condition requires that the degree d of polynomial utility

functions and the number k of coefficients be large enough to satisfy the inequality.

The condition is easy to check. For example, when d = 1, as most papers assume,

the condition reduces to |X| ≤ k + 1.

Remember that the affine-independence condition is for the approximation across

choice sets. In some cases, researchers may be interested only in fitting a model

3For example, if x = (x(1), x(2)), then p2(x) = (x(1), x(2), x(1)2, x(1)x(2), x(2)2) and p1(x) =
(x(1), x(2)). A set Y ≡ {y1, . . . , yn} is affinely independent if for any yi ∈ Y , there exists no real number
{µj}j 6=i such that yi =

∑
j 6=i µjyj and

∑
j 6=i µj = 1. A set Y ≡ {y1, . . . , yn} is affinely independent if

and only if {y2 − y1, . . . , yn − y1} is linearly independent. (y1 can be any yi.)
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to the observed choice probabilities (i.e., market shares) on the fixed choice set

X. In that case, the necessary and sufficient condition reduces to be the convex-

independence of the set {pd(x)|x ∈ X} (i.e., pd(x) 6∈ co.{pd(y)|y ∈ X \ x} for any

x ∈ X), which is weaker than the affine-independence condition.4 (See Proposition

1.)

In many empirical papers, researchers use the linear mixed logit models, that is,

the mixed logit models in which µ in (1) is a iid extreme-value type-I and utility

function u is linear (i.e., d = 1 or u(x) = β · x). In these papers, we find that the

convex-independence condition is usually satisfied. On the other hand, the condition

that |X| ≤ k+ 1 is not satisfied in many papers. This means that the linear mixed-

logit models are rich enough to approximate observed choice probabilities from a

single choice set X; however, the models may not be rich enough to approximate

the true substitution pattern across subsets of X, no matter how one chooses the

parameters and fixed effects.

In the case in which the affine-independence condition is not satisfied, we pro-

pose a method to measure the approximation errors. Our method is based on two

algorithms: one algorithm is a variant of the greedy algorithm proposed in Barron

et al. (2008). The other algorithm is the EM (Expectation-Maximization) algorithm

drawn from Dempster et al. (1977).

We apply our theorem and the two algorithms to a dataset of fishing-site choices

from Thomson and Crooke (1991). In the data set, k = 2 and |X| = 4; the affine-

independence condition with d = 1 is thus violated. We measure the approximation

errors by estimating the best possible linear mixed logit model using the greedy

algorithm and the EM algorithm. Regardless of the method used, we find that

the approximation errors are large and often larger than 10 percentage points on

average. Moreover, we demonstrate that in the data set, it is difficult to capture a

reasonable substitution pattern by using the linear mixed model.

The rest of the paper is organized as follows. In the next subsection, we discuss

the related literature. In section 2, we introduce the models. In section 3, we

provide the main results. In section 4, we provide theoretical results for measuring

approximation errors. In section 5, we provide an empirical illustration.

4Unlike the affine-independence condition, the convex-independence condition does not have such a
simple generic condition. See footnote 15.
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Related Literature

The work most closely related to our paper are Dagsvik (1994) and especially Mc-

Fadden and Train (2000), who show that any given (nonparametric) continuous

random utility model can be approximated by a mixed logit model.5 Nevertheless,

there are important differences to note. In particular, our result holds for a much

more general class of random-coefficient ARUMs, including but not confined to the

mixed logit models. Second, our result is not only sufficient but also necessary.

This is crucial given our purpose of clarifying the exact extent of flexibility and lim-

itations of the random-coefficient ARUMs. Moreover, through our condition, our

results provide a tight bound on how many parameters we need for an arbitrarily

good approximation. Third, the setup of McFadden and Train (2000) and our setup

differ in that McFadden and Train (2000) focus on the case where X is continuous,

while we assume that X is finite. Hence, neither result implies the other. A recent

paper by Lu and Saito (2021a) also studies the extent to which the approximation

of continuous random utility is possible by using mixed-logit models.

Another paper related to ours is Norets and Takahashi (2013). They study

whether ARUMs can represent any stochastic choice on a fixed choice set. The

differences between our paper and their paper come from the fact that they do

not study choices across subsets nor do they allow random coefficients. Athey and

Imbens (2007) also investigate how a rich specification of the unobserved components

(i.e., the fixed effects) is needed to represent any stochastic choice. Their setup is

also different from ours in that they focus on logit models.

Our analysis shares some of its spirit with the growing literature that identifies

and estimates flexible discrete choice models under minimal assumptions. See, for

example, Berry and Haile (2014), Compiani (2022), and Tebaldi et al. (2022). Our

paper is also related in motivation to recent studies that apply machine learning to

specify flexible utility functions in discrete choice models to improve approximation

performance (Bajari et al., 2015; Ruiz et al., 2020; Gillen et al., 2019).

In the decision theory literature, we know of no research that directly relates to

our papers. However, logit models and random utility models have been analyzed

for a long time ever since Luce (1959) and Block and Marschak (1960).

Recent papers in decision theory have considered generalizations of logit models.

These include Gul et al. (2014), Saito (2018) on mixed logit models; Kovach and

5Our result is consistent with their result: heuristically speaking, the result by McFadden and Train
(2000) corresponds to the case when d =∞, which satisfies our condition.

5



Tserenjigmid (2020) on nested logit models; Echenique and Saito (2019), Cerreia-

Vioglio et al. (2022, 2018), and Horan (2018) on logit models with zero probability

choice; and Fudenberg and Strzalecki (2015) on dynamic extensions of logit models.

Chambers et al. (2020) and Chambers et al. (2021a) propose variations of the logit

models. Apesteguia and Ballester (2018) and Frick et al. (2019) point out the

differences in choice behavior between random utility models and logit models.

Gul and Pesendorfer (2006), which axiomatizes the random expected utility

theory, has inspired many works that study the random utility model and its gen-

eralization. These include Ahn and Sarver (2013), Apesteguia, Ballester and Lu

(2017), Lin (2019), and Chambers, and Masatlioglu and Turansick (2021b), as well

as Lu (2016, 2021) on extensions to choice under uncertainty, and Lu and Saito

(2018), Duraj (2018), Frick, Iijima and Strzalecki (2019), and Lu and Saito (2021b)

on dynamic extensions.

2 Model

2.1 Setup

Set of alternatives: The set of all alternatives is denoted by X. X is assumed to

be finite. An alternative x is described by a real vector of explanatory variables of

the alternative. For example, if an alternative is a consumption good, the alternative

is described by its price and its various other characteristics. Hence, we let X be a

finite subset of Rk, where k is the number of the explanatory variables. For each

x ∈ X and l ∈ {1, . . . , k}, we write x(l) to denote the l-th element of x.

This notation may not be common in the empirical literature, where researchers

often use another set J of indices of alternatives. In the standard notation in the

literature, each j ∈ J is an index for each alternative and its characteristic vector

is written as xj ∈ X. To simplify the notation, in this paper, we identify j and xj

and use the vector x ∈ X itself to denote the alternative.

Choice sets: Let D ⊂ 2X \ {∅} be the set of choice sets. Notice that D can be a

proper subset of 2X \ ∅. Unless otherwise noted, throughout the paper we assume

that {x, y} ∈ D and {x, y, z} ∈ D for any x, y, z ∈ X. In some parts of the paper,

however, we drop this assumption and assume that D = {X} when we consider the

case in which an econometrician’s purpose is fitting a model to the observed choice

probabilities from the single choice set.
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The set D may contain both observed choice sets as well as hypothetical choice

sets the econometrician is interested in. For example, even when the econometrician

observes consumers’ choices only over {train,bus, car}, he may also be interested

in choices over {train, bus}, {train, car}, and {bus, car} to learn the consumers’

substitution pattern.

Stochastic choice function: A function ρ : D ×X → [0, 1] is called a stochastic

choice function if
∑

x∈D ρ(D,x) = 1 and ρ(D,x) = 0 for any x 6∈ D. The set of

stochastic choice functions is denoted by P. For each (D,x) ∈ D ×X, the number

ρ(D,x) is the probability that an alternative x is chosen from a choice set D. In a

context of empirical industrial organization, for example, ρ(D,x) can be interpreted

as a market share of product x in a market in which the set of available products is

D. We interpret the stochastic choice function ρ as aggregate choice probabilities

across individuals.

Rankings: Let Π be the set of bijections between X and {1, . . . , |X|}, where |X| is
the number of elements of X. For any element π ∈ Π, if π(x) = i, then we interpret

x to be the |X|+ 1− i-th best element of X with respect to π. If π(x) > π(y), then

x is better than y with respect to π. An element π of Π is called a strict preference

ranking (or simply, a ranking) over X. For all (D,x) ∈ D ×X such that x ∈ D, if

π(x) > π(y) for all y ∈ D \ {x}, then we often write π(x) ≥ π(D). There are |X|!
elements in Π.

2.2 Models

We denote the set of probability measures over Π by ∆(Π). Since Π is finite,

∆(Π) =
{

(ν1, . . . , ν|Π|) ∈ R
|Π|
+

∣∣∑|Π|
i=1 νi = 1

}
, where R+ is the set of nonnegative

real numbers.

We now introduce the definition of random utility models:

Definition 1. A stochastic choice function ρ is called a random utility model if

there exists a probability measure ν ∈ ∆(Π) such that for all (D,x) ∈ D × X, if

x ∈ D, then

ρ(D,x) = ν(π ∈ Π|π(x) ≥ π(D)).

The set of random utility models is denoted by Pr.6

6While the function above is often called a random ranking function, a random utility model is
often defined differently–by using the existence of a probability measure µ over utilities such that for
all (D,x) ∈ D × X, if x ∈ D, then ρ(D,x) = µ(u ∈ RX |u(x) ≥ u(D)). Block and Marschak (1960)’s
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Notice that when D = {X}, the restriction of random utility is vacuous: any

stochastic choice function is a random utility model (i.e., Pr = P).7

To introduce the additive random utility models (ARUMs), we introduce some

notations and definitions. Given a positive integer d and x ∈ X, the vector pd(x)

consists of monomials of at most degree d (i.e., higher order terms such as x(l)n

where n ≤ d, and interaction terms such as
∏k
l=1 x(l)nl , where

∑k
l=1 nl ≤ d).8

Notice that pd(x) = x when d = 1.

Definition 2. A probability measure on the Borel σ-algebra of R|X| is said to be

standard if (i) it is absolute continuous with respect to the Lebesgue measure and

(ii) the set {ε|f(ε) > 0} is convex and open; and (iii) 0 ∈ {ε|f(ε) > 0}, where f is

the density function of µ.9

Definition 3. Let d be a positive integer and η ∈ R|X| be a real vector. A stochastic

choice function ρ is called a degree-d additive-random utility model (ARUM) with

fixed effects η if there exists a standard probability measure µ and real vector β

such that, for all (D,x) ∈ D ×X, if x ∈ D, then

ρ(D,x) = µ({ε|β · pd(x) + η(x) + ε(x) > β · pd(y) + η(y) + ε(y) for all y ∈ D \ {x}}),

where β · pd(x) is a polynomial of x of at most degree d. When d = 1, then we say

the function is linear instead of degree-1. The set of degree-d ARUMs with fixed

effects η and probability measure µ is denoted by Pa(d, η|µ). Let M be the set of

all standard probability measures.

We give two comments on ARUMs. First, we consider the models with fixed

effects given their popularity in empirical applications. Fixed effects are used fre-

quently to capture the average preference for unobserved characteristics of alterna-

tives (Berry et al., 1995).

Second, many probability measures are standard and the class of ARUMs is

rich. For a logit model, µ is a iid extreme-value type-I distribution; for a probit

Theorem 3.1 proves that the two definitions are equivalent.
7To see this, observe that Pr ⊂ P by definition. We show the converse. For any x ∈ X, let πx ∈ Π

such that πx(x) > πx(y) for all y ∈ D. Then ρπx(y) = 1x(y) for any y ∈ X, where 1x(y) = 1 if y = x and
1x(y) = 0 if y 6= x. For any ρ ∈ P, define ρ′ =

∑
x∈X ρ(x)ρπx . Then, ρ′ ∈ Pr and ρ′(x) = ρ(x) for any

x ∈ X, as desired. Hence, P ⊂ Pr.
8We do not include monomials of degree 0 (i.e., constants). For example, if k = 2 and d = 2, then

pd(x) = (x(1), x(2), x(1)2, x(1)x(2), x(2)2) where x = (x(1), x(2)). The order of elements in pd(x) does
not matter.

9The density exists because of (i).
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model, µ is the multivariate standard normal distribution; for a nested logit model,

µ is a generalized extreme value distribution (Train, 2009). On the other hand, the

definition excludes some extreme correlations. The condition that the set {ε|f(ε) >

0} is open and includes zero implies that any shock ε(x) can be greater or less than

another shock ε(y).10 The openness of the set {ε|f(ε) > 0} in R|X| also excludes

extreme correlation such as ε(x) = ε(y) almost surely for some x, y ∈ X.

The next definition is a random-coefficient version of the ARUMs.

Definition 4. Let d be a positive integer and η ∈ R|X| be a real vector. A stochastic

choice function ρ is called a degree-d random-coefficient ARUM with fixed effects η

if there exist a standard probability measure µ and a Borel probability measure m

such that for all (D,x) ∈ D ×X, if x ∈ D, then

ρ(D,x) =

∫
µ({ε|β ·pd(x)+η(x)+ε(x) > β ·pd(y)+η(y)+ε(y)∀y ∈ D\{x}})dm(β).

When m has a finite support, then ρ is called a finite mixture of degree-d ARUMs.

The set of degree-d random-coefficient ARUMs with probability measure µ and fixed

effects η is denoted by Pra(d, η|µ). When the context makes clear which standard

probability measure µ we are considering, we omit the word “with distribution µ.”

A widely used special case of the above models is the mixed logit models.

Definition 5. Let d be a positive integer and η ∈ R|X| be a real vector. A stochastic

choice function ρ is called a degree-d mixed logit model with fixed effects η if there

exists a Borel probability measure m such that for all (D,x) ∈ D × X, if x ∈ D,

then

ρ(D,x) =

∫
exp(β · pd(x) + η(x))∑
y∈D exp(β · pd(y) + η(y))

dm(β). (2)

The set of degree-d mixed logit models with fixed effects η is denoted by Pml(d, η).

When m is degenerate (that is, when m = δβ for some β) in (2), then ρ is called

a logit model. The set of degree-d logit models with fixed effects η is denoted by

Pl(d, η). The set of all logit models (of any degree and with any fixed effects)⋃
(d,η)∈Z+×R|X| Pl(d, η) is denoted by Pl.

As mentioned, if µ is a iid extreme-value type-I distribution, then Pa(d, η|µ) =

Pl(d, η), and Pra(d, η|µ) = Pml(d, η), for any (d, η). Note that in most empirical

10Formally, for any x, y ∈ X, µ({ε|ε(x) > ε(y)}) > 0. We used this property in the proof of Lemma 2.
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applications of the mixed logit models, the mixing distribution is usually a para-

metric distribution like a multivariate normal distribution. In our case, the mixing

distributions of the random coefficients do not come from a particular parametric

family.

Finally, we review essential mathematical concepts. A polytope is a convex hull

of finitely many points. The closure of a set C is denoted by cl.C with respect to

the standard finite dimensional Euclidean topology. The affine hull of a set C is the

smallest affine set that contains C, and it is denoted by aff.C. The convex hull of a

set C is denoted by co.C. The relative interior of a convex set C is the interior of C

in the relative topology with respect to aff.C. The relative interior of C is denoted

by rint.C.

3 Main Result

To state the main result of the paper, we review a basic concept in geometry: A

set Y ⊂ Rn is affinely independent if no element in Y can be written as an affine

combination of the other elements.11 It is easy to see that a set Y ≡ {y1, . . . , yn} is

affinely independent if and only if {y2 − y1, . . . , yn − y1} is linearly independent.12

Theorem 1. Let d be a positive integer.

(i) Let µ be any standard probability measure. If the set {pd(x)|x ∈ X} is affinely

independent, then any random utility model can be approximated by a degree-d

random-coefficient ARUM. Moreover, the approximation can be done with a

finite mixture of degree-d ARUMs without fixed effects (i.e., η = 0). That is,

∀µ ∈M ∀ρ ∈ Pr ∃ρn ∈ co.Pa(d, 0|µ) ∀x ∈ D ∈ D [ρn(D,x)→ ρ(D,x)].

(ii) If the set {pd(x)|x ∈ X} is not affinely independent, then there exists a random

utility model that cannot be approximated by any degree-d random-coefficient

ARUM with any sequence of fixed effects and with any standard probability

measure µ. That is,

∃ρ ∈ Pr ∀µ ∈M, ρ 6∈ cl.
⋃

η∈R|X|
Pra(d, η|µ).

11Formally, for any y ∈ Y , y 6∈ aff.(Y \ {y}). That is, for any y ∈ Y , there exists no real number
{µx}x∈X such that y =

∑
x∈Y \{y} µxx and

∑
x∈Y \{y} µx = 1.

12Instead of subtracting y1 from yi 6=1, we can subtract any yi from yj 6=i.
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Notice that the condition (i.e., the affine-independence of {pd(x)|x ∈ X}) does

not depend on the probability measure µ.footnoteAs we will explain in the sketch

of proof, this independence from the choice of a probability measure is originated

from the fact that the set of random utility model is polytope. This implies that

if the affine-independence condition holds, then the approximation is possible with

any probability measure µ ∈ M. Thus, the econometrician may use any standard

probability measure which is convenient for her.

On the other hand, if the affine-independence condition fails, then there exists

a random utility model that cannot be approximated by any degree-d random-

coefficient ARUM, no matter which fixed effects η and no matter which probability

measure µ we use. For example, the approximation is impossible using any degree-d

mixed logit model nor any degree-d random-coefficient probit-model. In Proposition

2 in Section 4, we will give examples of the random utility models that cannot be

approximated.

Although testing for affine-independence is easy, the condition can be simplified

further to a generically equivalent condition. To see this, note that, for any x ∈ X
and any positive integer d, pd(x) is a

(
d+k
k

)
− 1 dimensional real vector. Remember

this basic fact: for any set Y ⊂ Rn, (i) if |Y | > n + 1, then Y is not affinely

independent; (ii) if |Y | ≤ n+ 1, then Y is generically affinely independent.13 Given

these observations, Theorem 1 implies the following corollary:

Corollary 1. Let d be a positive integer.

(i) If |X| ≤
(
d+k
k

)
, then the statements in Theorem 1 (i) hold generically.

(ii) If |X| >
(
d+k
k

)
, then the statements in Theorem 1 (ii) hold.

We now mention three remarks on the results in order. First, most empirical

applications assume that d = 1. Hence, the generic necessary and sufficient con-

dition becomes |X| ≤ k + 1. We use this condition for our empirical application

in Section 5. Second, note that if X is affinely independent, then it remains to

be affinely independent even with small perturbations. This reflects the fact that

what is important in the generic condition is the number of alternatives (i.e., |X|),
not X itself. Third, even though the generic condition holds, the original condition

13This is a standard concept of genericity in the literature of discrete geometry. Even if a set Y ⊂ Rn is
not affinely independent, then, as long as |Y | ≤ n+ 1, for any ε > 0, there exists an affinely independent
set Y ′, obtained from Y by moving each point by a distance of at most ε (see Section 3 of Matousek
(2013)).
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of the affine independence may not hold when explanatory variables include zeroes

and ones. In that case, one should check the affine-independence of {pd(x)|x ∈ X},
rather than the generic condition.

In the following, we provide a supplemental result for the case in which D = {X}.
Such a case corresponds to a situation in which the econometrician is interested only

in fitting a model with the observed choice probabilities (i.e., market shares) on a

single set X (but not on its subsets).

Proposition 1. Assume that D = {X}. Let d be a positive integer.

(i) Let µ be any standard probability measure. If the set {pd(x)|x ∈ X} is convex-

independent (i.e., if pd(x) 6∈ co.{pd(y)|y ∈ X \ x} for any x ∈ X), then any

random utility model can be approximated by a degree-d random-coefficient

ARUM; moreover, the approximation can be done with a finite mixture of

degree-d ARUMs without fixed effects (i.e., η = 0). That is,

∀µ ∈M ∀ρ ∈ Pr ∃ρn ∈ co.Pa(d, 0|µ) ∀x ∈ X ρn(X,x)→ ρ(X,x).

(ii) (a) If the set {pd(x)|x ∈ X} is not convex-independent, then there exists a

random utility model that cannot be approximated by any degree-d random-

coefficient ARUMs with any probability measure µ and without fixed effects

(i.e., η = 0). That is, ∃ρ ∈ Pr ∀µ ∈M ρ 6∈ cl.Pra(d, 0|µ).

(b) However, if fixed effects are used, any random utility model can be approx-

imated by an ARUM with any standard probability measure µ.

Note that the convex-independence condition is weaker than the affine-independence

condition. This makes sense because the convex-independence condition guaran-

tees the approximation only on the single choice set (i.e., {X}), while the affine-

independence condition guarantees the approximation across all subsets D ∈ D of

X (including X itself).

The implications of Theorem 1 and Proposition 1 are similar. One important

difference arises when the conditions (i.e., the affine-independence condition in The-

orem 1 and the convex-independence condition in Proposition 1) are violated. In

both cases, there exists a random utility model that cannot be approximated with-

out using fixed effects. However, as stated in Proposition 1 (ii)(b), if fixed effects are

used, any random utility model can be approximated. (This result directly follows

from Norets and Takahashi (2013).) This is in contrast to Theorem 1 (ii), which
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claims that there exists a random utility model that cannot be approximated even

using any fixed effects.14

Unlike the affine-independence, the convex-independence does not restrict the

number of elements in a convex-independent set.15 Thus, there exists no counterpart

of Corollary 1.

3.1 Applied Implications

To conclude this section, we mention the implications of the theorem and the propo-

sition to the empirical literature. Most empirical papers use the linear mixed logit

model (i.e., d = 1 and µ is a iid extreme-value type-I distribution). In the pa-

pers, the convex-independence condition is usually satisfied. That is, it is often the

case that any alternative x lies outside the convex hull co.(X \ {x}) of the other

alternatives. In fact, we will see this is the case in a dataset in section 5.

On the other hand, the condition that |X| ≤ k+ 1 is often violated. (Remember

that |X| is the number of alternatives and k is the number of characteristics.) There

are many choice situations in which |X| is very large such as choices of groceries,

hospitals, cars, schools, or restaurants etc. In such a dataset, the condition is likely

to be violated. This means that the linear model is rich enough to describe the

choice data from a single choice set; however, the model may not be rich enough to

approximate the true substitution pattern, no matter how one chooses parameters

and fixed effects.16 Thus, researchers might want to increase the degree of poly-

nomial or the number of characteristic variables to satisfy the affine-independence

condition.17 At least, they might want to be aware of the limitation of the linear

models. In Section 5, we quantify these limitation of the linear models using a real

dataset.

In the next subsection 3.2, we provide a sketch of proof. The sketch gives

geometric insights about our results. Moreover, some concepts (Definitions 6 and

7) will be used in section 5. Readers who may not be interested in the proofs may

skip the following subsection by skimming Definitions 6 and 7.

14This difference originates from the fact that we require approximation on all D ∈ D in Theorem 1,
while in Proposition 1, we require approximation only on X.

15 For example, in three-dimensional space (x, y, z), consider a circumference of radius one whose origin
is (0, 0, 1) on a hyperplane of z = 1. The number of points on the circumference is a continuum. However,
the set of points on the circumference is convex-independent.

16By substitution patterns we mean how choice probabilities change in different choice sets.
17We address possible over-fitting problems in the Online Appendix.
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3.2 Proof Sketch: Lemmas

We prove Theorem 1 and Proposition 1 by using the five lemmas below. We first

consider models without fixed effects (i.e., η = 0). First we define a notation: for

each ranking π ∈ Π, define

ρπ(D,x) =

{
1 if π(x) > π(y) for all y ∈ D \ x;

0 otherwise.
(3)

The function ρπ gives probability one to the best alternative x in a choice set D

according to the strict preference ranking π. The following fact is elementary but

fundamental:

Observation: The set Pr of random utility models is a polytope, that is, Pr =

co.{ρπ|π ∈ Π}.

The observation holds because for any random utility model ρ ∈ Pr, we have

ρ =
∑

π∈Π ν(π)ρπ, where ν is the probability measure rationalizing the random

utility model. The hexagons in Figure 2 further below illustrate the polytope.18

Lemma 1.

1. Let Q be a subset of Pr. Then Pr = cl.co.Q if and only if, for any π ∈ Π,

there exists a sequence {ρn}∞n=1 of Q such that ρn → ρπ.

2. Let Q be a subset of rint.Pr. Then rint.Pr = co.Q if and only if, for any

π ∈ Π, there exists a sequence {ρn}∞n=1 of Q such that ρn → ρπ.

3. Pl ⊂ rint.Pr.

Parts (1) and (2) of Lemma 1 give conditions under which random utility models

can be approximated by a convex combination of elements of Q. We will use the

lemma with Q = Pa(d, 0|µ) for some µ ∈ M (the set of degree-d ARUMs with

probability measure µ and without fixed effects).

The next lemma makes it easier for us to check the conditions of Lemma 1. First

we introduce a definition.

18Although the geometric intuition is useful, it is important to notice that the figure oversimplifies the
reality since the number (i.e., |X|!) of vertices and the dimension of a random utility model can be very
large. To see why the dimension of a random utility model can be very large, notice that it assigns a
number for each pair of (D,x) ∈ D ×X. We calculate the dimension later in Proposition 4.
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Definition 6. For any positive integer d, a ranking π ∈ Π is degree-d-representable

in choice sets D if there exists a real vector β such that, for all D ∈ D and x ∈ D,

π(x) > π(y) for all y ∈ D \ {x} ⇔ β · pd(x) > β · pd(y) for all y ∈ D \ {x}. (4)

Lemma 2. Let d be a positive integer. For any ranking π ∈ Π, the following

statements hold:

1. If π is degree-d-representable, then for any µ ∈ M, there exists a sequence

{ρn}∞n=1 of Pa(d, 0|µ) such that ρn → ρπ.

2. If π is not degree-d-representable, then there exists no probability measure µ ∈
M such that there exists a sequence {ρn}∞n=1 of co.Pa(d, 0|µ) such that ρn →
ρπ.

Notice that for any ranking, checking the degree-d-representability is easy.19

Thus, Lemma 1 and Lemma 2 provide a testable condition under which the degree-d

random-coefficient ARUMs without fixed effects are flexible enough to approximate

any random utility model.

Although checking the representability of a particular ranking is easy, checking

the representability of all rankings may be computationally prohibitive. This is

because the number of rankings equals |X|! and can be large. To overcome this

problem, we obtain a simple necessary and sufficient condition for any ranking

π ∈ Π to be degree-d representable:

Lemma 3. Let d be a positive integer.

1. Any ranking is degree-d-representable in D if and only if the set {pd(x)|x ∈ X}
is affinely independent.

2. Any ranking is degree-d-representable in {X} if and only if the set {pd(x)|x ∈
X} is convex-independent.

To understand Lemma 3 (1) geometrically, see Figure 1. In the figure, we assume

that k = 2; we consider linear models (i.e., pd(x) = x) in Figure 1 (a) and (b), and

quadratic models (i.e., d = 2) in Figure 1 (c), respectively. In Figure 1 (a), the

set X = {x, y, z} is affinely independent. Thus, by Lemma 3 (1) (the “if” part),

any ranking is degree-1-representable. For example, the ranking π(x) > π(y) >

19By definition, checking the representability condition is equivalent to finding a solution to a system
of finite linear inequalities defined by (4).
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π(z) is degree-1-representable by β ∈ R2, which defines the parallel hyperplanes

(indifference curves) in Figure 1 (a).

On the other hand, in Figure 1 (b), the set X = {x, y, z, w} is not affinely inde-

pendent. The ranking π(x) > π(w) > π(z) > π(y) is not degree-1-representable. As

the figure shows, no matter how one chooses β ∈ R2 and draws parallel hyperplanes

as indifference curves, it does not hold that β ·x > β ·w > β ·z > β ·y. The existence

of such a unrepresentable ranking is implied by the “only if” part of Lemma 3 (1).20

If we use ellipses as indifference curves, however, we can represent the ranking

π(x) > π(w) > π(z) > π(y) as in Figure 1 (c). The existence of such curves is

again implied by the “if” part of Lemma 3 (1) since ellipses can be defined with at

most degree-2 polynomials and the generic condition with d = 2 is satisfied (i.e.,

|X| = 4 ≤ 6 =
(

4
2

)
=
(
d+k
k

)
) in this example.21

y

x

z

(a)

z w

y
x

(b)

z w

y
x

(c)

Figure 1: Illustration of the affine-independence condition.

Lemma 3 (2) is more straightforward. To see this, consider d = 1 for simplicity

and notice that when D = {X}, any π ∈ Π is degree-1 representable in {X} if and

only if, for any x ∈ X, there exists β such that β · x > β · y for all y ∈ X \ x, which

means that X is convex-independent. By using Lemmas 1, 2, and 3, we obtain parts

(i) of Theorem 1 and Proposition 1.

Remember that so far we have assumed no fixed effects (i.e., η = 0). In the fol-

lowing, we analyze the extent to which random utility models can be approximated

by using fixed effects. In particular, we show that if the affine independence con-

dition fails then there exists a random utility model that cannot be approximated

even with using fixed effects.

20The slope of the “indifference” line must be steeper than the slope of the line segment (z, y) (because
π(z) > π(y)) and less steep than the slope of the line segment (z, x) (because π(x) > π(w)), which
together imply that β · z > β · w.

21In fact, we verified that the affine-independence condition is satisfied with d = 2.
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First, we will see the usefulness of the fixed effects. It is easy to observe that

when D = {X}, any stochastic choice can be approximated by using fixed effects.22

Even for general D, the following holds:

Observation: For any ranking π, ρπ can be approximated by an ARUM with fixed

effects.23

However, this may not be enough to approximate any random utility model.

As an illustration, consider two fixed effects, η1 and η2, and see Figure 2 below.

Remember that in the heuristic figure, the hexagon represents Pr = co.{ρπ|π ∈ Π}.
Given a degree d, the two convex sets in the hexagon correspond to Pra(d, η1|µ) and

Pra(d, η2|µ) shaded orange and blue, respectively.24 Notice that all vertices in the

figure can be approximated by elements of Pra(d, η1|µ) or Pra(d, η2|µ). However,

some areas of the hexagon are not covered by either Pra(d, η1|µ) or Pra(d, η2|µ).

ρπ1ρπ2

ρπ3

ρπ4 ρπ5

ρπ6

Figure 2: Illustration of Pra(d, η1|µ) and Pra(d, η2|µ)

In reality, the problem is more complicated since we need to consider the union

of all possible values of fixed effects, and thus the union of the continuum of convex

sets Pra(d, η|µ) across all values of η ∈ R|X|.25 Moreover, we need to consider all

possible standard probability measure µ ∈ M. Nevertheless, Lemma 4 provides a

clear answer and state that if there exists a degree-d unrepresentable ranking, then

22This is intuitive since we can choose |X| parameters (i.e., {η(x)}x∈X) to fit |X| data points (i.e.,
{ρ(X,x)}x∈X).

23To see this fix π and choose η ∈ RX such that η(x) > η(y) if and only if π(x) > π(y). Then, it can
be shown that an ARUM ρn defined by ρn(D,x) = µ({ε|nη(x)+ε(x) ≥ nη(y)+ε(y) for all y ∈ D \{x}})
converges to ρπ(D,x) as n→∞.

24To see this notice that Pra(d, η|µ) is a random utility model and convex.
25More formally, the difficulty arises because the set of all degree-d ARUMs with probability measure

µ and with any fixed effects (i.e.,
⋃
η∈RX co.Pa(d, η|µ)) may not be convex, although given η, each

set co.Pa(d, η|µ) is convex. This is because mixtures can be taken only over β but not over η. Thus
approximating vertices is not enough for approximation over the polytope of random utility models.
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there exists a random utility model that cannot be approximated, no matter which

fixed effects and probability distribution we use.

First we introduce a new notation.

Definition 7. For any ranking π ∈ Π, define π− ∈ Π such that π(x) > π(y) if

and only if π−(y) > π−(x) for any x, y ∈ X. The ranking π− is called the reverse

ranking of π.

Lemma 4. Let µ be a standard probability measure. For any α ∈ (0, 1) and

any ranking π that is not degree-d-representable, there exists a neighborhood U of

αρπ + (1 − α)ρπ
−

such that any random utility model that belongs to U cannot be

approximated by any degree-d random-coefficient ARUM with any fixed effects. That

is, ∀ρ ∈ Pr ∩ U, ρ 6∈ cl.
⋃
η Pra(d, η|µ).

To prove the lemma, we need to prove the following two statements: (a) any

strict convex combination between ρπ and ρπ
−

cannot be approximated by a de-

generate ARUM with fixed effects; and (b) moreover it cannot be approximated by

a nondegenerate random-coefficient ARUM even with any fixed effects. We prove

statement (a) in the appendix. To show statement (b), we introduce the following

concept:

Definition 8. The two rankings π and π′ are adjacent if there exists t ∈ RD×X

and a ∈ R such that (i) ρπ · t = a = ρπ
′ · t, and (ii) for any π̂, if π 6= π̂ 6= π′, then

ρπ̂ · t > a.26

For example, in Figure 2, ρπi and ρπi+1 are adjacent for each i ≤ 5. Since π

and π− are reversed with each other, ρπ and ρπ
−

seem very different. It turns out,

however, that they are adjacent:27

Lemma 5. For any ranking π ∈ Π, ρπ and ρπ
−

are adjacent.

The characterization of adjacency of vertices for the case D = 2X \ ∅ appears

in Doignon and Saito (2022). Lemma 5 holds even for the case in which D 6=
2X \ ∅ as long as D contains all binary and trinary sets.28 The lemma allows us to

complete the proof of Lemma 4 as follows. If π is not degree-d representable, then

26t ∈ RD×X is a vector that gives a real number for each pair of (D,x) ∈ D × X. For any ρ ∈ P,
ρ · t =

∑
(D,x)∈D×X ρ(D,x)t(D,x).

27Our discussions with Jean-Paul Doignon and Haruki Kono were very helpful for obtaining this result.
28We are grateful to Haruki Kono for pointing out this fact.
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π− is also not degree-d representable. Although fixed effects are powerful enough

to approximate each vertex ρπ, we will prove that it is not powerful enough to

approximate both ρπ and ρπ
−

by using the same fixed effects, intuitively because

ρπ and ρπ
−

are reversed. Thus, no strict convex combination of ρπ and ρπ
−

can be

approximated by the degree-d random-coefficient ARUMs with probability measure

µ, no matter which fixed effects we use. Notice that this conclusion does not follow

if ρπ and ρπ
−

are not adjacent since a strict convex combination of ρπ and ρπ
−

may be represented in a different way. This proves statement (b) and thus, Lemma

4. Lemmas 1, 2, 3, and 4 prove statement (ii) of Theorem 1, as the proof in the

appendix formalizes.

4 Measuring Approximation Errors

In this section, we study the following question: When the condition in the theorem

is not satisfied, how large are the approximation errors?

We first define the distance function as follows: For any ρ, ρ̂ ∈ P, define

d(ρ, ρ̂) = ‖ρ − ρ̂‖/|D|, where ‖ · ‖ is the Euclidean norm.29 In our analysis, ρ̂ is

a given stochastic choice function; ρ is a random-coefficient ARUM by which we

approximate ρ̂. The distance d(ρ, ρ̂) captures the average distance between ρ and ρ̂.

For example, d(ρ, ρ̂) = 0.1 means that on average across choice sets, the estimated

stochastic choice function ρ is distant from the given stochastic choice function ρ̂

by 10 percentage points.

Given an approximation target ρ̂ ∈ Pr and a standard probability measure µ,

when researchers use degree-d random-coefficient ARUMs with fixed effects η, the

approximation error is defined as:

inf
ρ∈Pra(d,η|µ)

d(ρ, ρ̂). (5)

We call (5) the approximation error to ρ̂ by degree-d random-coefficient ARUMs

with fixed effects η. To calculate the maximal approximation error, we need to

specify a random utility model ρ̂ that cannot be approximated. Proposition 2 gives

an idea about how to choose ρ̂.

Proposition 2. Let µ be any standard probability measure. Let d be a positive

29Remember ‖ρ̂− ρ‖ =
√∑

(x,D)∈X×D(ρ̂(D,x)− ρ(D,x))2.
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integer. If {pd(x)|x ∈ X} is not affinely independent, then for each ranking π that

is not degree-d-representable, the following statements hold:30

(i) There exists a neighborhood U of ρπ such that any random utility model that

belongs to U cannot be approximated by any degree-d random-coefficient ARUM

without fixed effects. That is, ∀ρ ∈ Pr ∩ U, ρ 6∈ cl.Pra(d, 0|µ).

(ii) For each α ∈ (0, 1), there exists a neighborhood U of αρπ + (1 − α)ρπ
−

such

that any random utility model that belongs to U cannot be approximated by any

degree-d random-coefficient ARUMs with any sequence of fixed effects. That

is, ∀ρ ∈ Pr ∩ U, ρ 6∈ cl.
⋃
η Pra(d, η|µ).

Note that the proposition holds with any standard probability measure. As for

the second statement (ii), remember that by using fixed effects, we can approximate

any ρπ. However, approximating a mixture between ρπ and ρπ
−

is impossible even

using fixed effects when π is not representable.

Given ρ̂, we use two algorithms to solve (5) and compute the approximation

errors. The first is the standard EM (Expectation-Maximization) algorithm. The

second algorithm is a greedy algorithm. We provide an explanation of these algo-

rithyms in section A in the appendix.

5 Application to Data

In this section, we quantify approximation errors with and without fixed effects, by

using data on fishing-site choices from Thomson and Crooke (1991).31 The data

have been used by Herriges and Kling (1999) and Cameron and Trivedi (2005)

(p.464). In the data set, 1182 individuals choose among 4 alternative fishing modes,

namely, X = {xbeach, xboat, xcharter, xpier}, which denote fishing from the beach, a

private boat, a charter boat or a pier, respectively. Each alternative x ≡ (x(1), x(2))

is described by two characteristics (i.e., k = 2). The first characteristic x(1) is the

fishing mode’s price, while the other characteristic x(2) is the catch rate, defined as

a per-hour-fished basis for each major species by fishing mode.32

Throughout this section, we will focus on the mixed logit models (i.e., let µ be a

iid extreme-value type-I distribution) since they are the most widely used models.

30If {pd(x)|x ∈ X} is not affinely independent, then such a ranking exists.
31The dataset is taken directly from the R package ‘mlogit’ by Croissant (2020).
32In the original study, the values of x(1) and x(2) depend on each individual. For our analysis, we

aggregate them by taking the average over individuals. The Online Appendix provides more details.
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We also assume that D = 2X \∅. Thus dimPr =
∑

D∈D(|D|−1) = 3+2×4+1×6 =

17 by Proposition 4 in section A.1. It is therefore without loss of generality to assume

that the number M of mixtures is less than or equal to 18.

5.1 Application of Theorem 1

By Theorem 1, X is affinely independent if and only if the class of linear (degree-1)

mixed logit models with fixed effects is flexible enough to approximate any random

utility model. In the data set, we have |X| = 4 alternatives and k = 2 characteristics.

Thus, the condition in Corollary 1 is violated (i..e, |X| = 4 6≤ k + 1 = 3) and X is

not affinely independent. This observation motivates us to compute approximation

errors of the linear mixed logit models without fixed effects (in subsection 5.2) and

the errors with fixed effects (in subsection 5.3).

On the other hand, with d = 2, the generic condition for representability in

Corollary 1 is satisfied, since 4 = |X| ≤
(

2+2
2

)
= 6. In fact, we verified that

{pd(x)|x ∈ X} is affinely independent when d = 2. Thus, by Theorem 1, the

degree-2 mixed logit models should be flexible enough to approximate any random

utility model. This theoretical implication is also empirically verified below.

5.2 Approximation Errors without Fixed Effects

In this section, we obtain approximation errors without fixed effects. By Proposition

2, there exists a ranking π that is not degree-1-representable and corresponding

deterministic choice functions ρπ that are not approximated by any linear mixed

logit model without fixed effects. Since there are four alternatives, there are twenty

four rankings. Among them, twelve rankings are not degree-1 representable, and

thus cannot be approximated by linear mixed logit models, as shown in Table 1.

The table shows the approximation errors of the degree-1 or degree-2 mixed logit

models obtained by the greedy algorithm and the EM algorithm. In both algorithms,

the approximation errors for degree-1-unrepresentable rankings π are almost always

larger than 0.1, which means that even the best possible linear mixed logit model

deviates from the corresponding choice probabilities ρπ by 10 percent or more on

average. Some errors are much larger. For example, the approximation errors of

the two rankings π(1) > π(2) > π(3) > π(4) and π(1) > π(2) > π(4) > π(3) by the

linear mixed logit models are more than 0.2. Notice that these two rankings are the

only rankings in which the alternative 1 (i.e., beach) is the best and the alternative
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Table 1: Approximation errors to preference rankings ρπ

Ranking π
d = 1 d = 2

Greedy EM Greedy EM
(1) (2) (3) (4) (5)

Degree-1-Unrepresentable Rankings
π(1) > π(2) > π(3) > π(4) 0.218 0.227 0.000 0.000
π(1) > π(2) > π(4) > π(3) 0.202 0.211 0.000 0.000
π(1) > π(3) > π(2) > π(4) 0.128 0.115 0.000 0.000
π(1) > π(4) > π(2) > π(3) 0.126 0.165 0.000 0.000
π(2) > π(1) > π(3) > π(4) 0.138 0.147 0.000 0.000
π(2) > π(1) > π(4) > π(3) 0.118 0.123 0.000 0.000
π(3) > π(2) > π(4) > π(1) 0.091 0.096 0.000 0.000
π(3) > π(4) > π(1) > π(2) 0.121 0.128 0.000 0.000
π(3) > π(4) > π(2) > π(1) 0.149 0.160 0.000 0.000
π(4) > π(2) > π(3) > π(1) 0.113 0.115 0.000 0.000
π(4) > π(3) > π(1) > π(2) 0.157 0.155 0.000 0.000
π(4) > π(3) > π(2) > π(1) 0.182 0.185 0.000 0.000

Degree-1-Representable Rankings 0.000 0.000 0.000 0.000

Note: The numbers in the table show the approximation errors to each ρπ , where each preference ranking π is defined in

Column (1). Alternative numbers 1, 2, 3, 4 denote beach, boat, charter, pier, respectively. For each ranking, columns (2)

and (3) show the approximation errors of the linear mixed logit models computed by the greedy algorithm and the EM

algorithm, respectively. Columns (4) and (5) show the approximation errors of the degree-2 (quadratic) mixed logit models

calculated by each algorithm. All numbers are rounded to three decimal places. For the greedy algorithm we set the number

of iterations to 1000. For the EM algorithm we set the number of random initial points to 10.

2 (i.e., private boat) is the second-best. This means that as long as we use the

linear mixed logit models, no matter how we choose parameters, it is difficult to

capture the substitution patterns from the alternative 1 to the alternative 2 (i.e, the

change of consumer’s choices from the alternative 1 to the alternative 2) when the

alternative 1 is removed from the set of alternatives.

Add new results

On the other hand, the approximation error for a degree-1-representable ranking

π is almost always zero, as the theorem predicts, as shown in the bottom row of

the table. Also, the approximation errors by degree-2 mixed logit models are also

almost zero, as the theorem again predicts (column (4) and (5) in the table).
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Table 2: Approximation errors to random utility models 1
2
ρπ + 1

2
ρπ−

Ranking π
d = 1 d = 2

Greedy EM Greedy EM
(1) (2) (3) (4) (5)

Degree-1-Unrepresentable Rankings
π(1) > π(2) > π(3) > π(4) 0.069 0.077 0.000 0.000
π(1) > π(2) > π(4) > π(3) 0.069 0.079 0.000 0.000
π(1) > π(3) > π(2) > π(4) 0.049 0.077 0.000 0.000
π(1) > π(4) > π(2) > π(3) 0.049 0.052 0.000 0.000
π(2) > π(1) > π(3) > π(4) 0.058 0.075 0.000 0.000
π(2) > π(1) > π(4) > π(3) 0.058 0.060 0.000 0.000

Degree-1-Representable Rankings 0.000 0.000 0.000 0.000

Notes: The numbers in the table show the approximation errors to 1
2
ρπ + 1

2
ρπ

−
, where π is defined in Column (1). All

numbers are rounded to three decimal places. For the greedy algorithm we set the number of iterations to 1000. For the

EM algorithm we set the number of random initial points to 10.

5.3 Approximation Errors with Fixed Effects

In this section, we obtain the approximation errors with fixed effects. By using fixed

effects, we can approximate ρπ for any ranking π. By Proposition 2, however, for

each degree-1-unrepresentable ranking π and each α ∈ (0, 1), any random utility

model in a neighborhood of αρπ + (1−α)ρπ
−

cannot be approximated by the linear

mixed logit models with fixed effects. In Table 2, we show the approximation error

to 1
2ρ
π + 1

2ρ
π− for each degree-1-unrepresentable ranking.

In both algorithms, the approximation errors to 1
2ρ
π + 1

2ρ
π− are always larger

than around 5 percent if π is not degree-1-representable. This means that even the

best possible linear mixed logit model deviates from 1
2ρ

π + 1
2ρ

π− by 5 percentage

points or more on average.

On the other hand, the approximation errors to 1
2ρ

π + 1
2ρ

π− are almost zero,

if π is representable, as the theorem predicts. Also, the approximation errors by

degree-2 mixed logit models are also almost zero, as the theorem again predicts.

Overall, the widely-used linear mixed logit models fail to approximate random

utility models in this data set. The approximation errors are also substantial. This

result demonstrates how the affine-independence condition in Theorem 1 provides a

simple way to check whether a random-coefficient model can provide a good approx-

imation of random utility models. A more practical implication is that researchers
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might want to increase the degree of polynomial or the number of characteristic

variables to satisfy the affine-independence condition. (Given this implication of

increasing the degree of polynomial or the number of characteristic variables, a

natural concern is the overfitting problem. We address this concern in the Online

Appendix.) The researchers at least might want to be aware of this limitation of

the linear models.
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A Appendix: Algorithms

A.1 EM Algorithm

We use the EM algorithm to estimate random-coefficient ARUM that maximizes the

likelihood taking ρ̂ as the observed choice probabilities. The Online Appendix shows

that the resulting model is indeed a solution to (5) when the affine-independence

condition is satisfied. One difficulty to use the EM algorithm in our problem is

that it is not clear how many mixtures to include. To overcome this difficulty, in

this subsection, we provide a theoretical result that simplifies the set of random-

coefficient ARUMs and provides guidance about how many mixtures we need to

use.

The first result (Proposition 3) shows that any (continuous) mixture model can

be represented as a finite mixture as long as the set of alternatives is finite. The

second result (Proposition 4) characterizes the affine hull of the random utility

models, which allows us to calculate the dimension of the set of random utility

models. This, in turn, gives us an upper bound on the number of mixtures through

Caratheodory’s theorem.

Proposition 3. Let Q be a subset of the set of stochastic choice functions. Then{ ∫
ρdm(ρ)|m ∈ ∆(Q)

}
= co.Q, where ∆(Q) denotes the set of probability measures

over Q.

The proof is in the Online Appendix. This proposition implies that focusing on

finite mixtures is without loss of generality as long as X is finite. In particular, it
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implies that the set Pra(d, η|µ) = co.Pa(d, η|µ) for any d, η, µ.33 Although Proposi-

tion 3 reduces Pra(d, η|µ) to co.Pa(d, η|µ), the set co.Pa(d, η|µ) is still big since it

contains any (finite) number of mixtures of degree-d ARUMs. By Caratheodory’s

theorem, however, there turn out to be at most dimPr + 1 elements.

Corollary 2. Let µ ∈M . For any positive integer d and any η ∈ R|X|, Pra(d, η|µ) =

co.Pa(d, η|µ) =
{∑M

m=1 λmρm

∣∣∣ρm ∈ Pa(d, η|µ), λm ≥ 0∀m = 1, . . . ,M,
∑M

m=1 λm =

1
}

, where M = dimPr + 1.

To obtain the number dimPr, we characterize the affine hull of the set Pr of

random utility models.

Proposition 4. The affine hull of Pr is P± ≡
{
q ∈ RD×X

∣∣(i)
∑

x∈D q(D,x) =

1∀D ∈ D; (ii) q(D,x) = 0 ∀x 6∈ D ∈ D
}

. Hence dimPr ≡ dimP± =
∑

D∈D(|D| −
1).

The proof is in Section B.8. Corollary 2 and Proposition 4 imply that in order

to obtain the closest random-coefficient model to the observed choice probabilities,

it is sufficient to consider finite mixture models with at most 1 +
∑

D∈D(|D| − 1)

mixtures. For example, in section 5, we analyze a choice data with |X| = 4. These

results imply that it is enough to consider the finite mixture models with at most

18 mixtures if one considers the whole choice sets (i.e., D = 2X \ ∅).

A.2 Greedy Algorithm

Even with the modification proposed in the previous subsection, the EM algorithm

may converge only to a local minimum (Dempster et al., 1977).34 This concern

motivates us to propose a second algorithm, the greedy algorithm, which is inspired

by Barron et al. (2008). This algorithm has the useful feature that, given the setup

of our problem, it will always return a global minimum (up to small approximation

errors which can be made arbitrarily small by increasing the number of steps).

The algorithm takes a stochastic choice function ρ̂ and a fixed effects vector η

as input and returns a solution to (5). The algorithm is iterative: each step seeks

to optimize based on the results of previous steps:

• Step 1: Given ρ̂, choose ρ1 such that ρ1 = arg infρ∈cl.Pa(d,η|µ) ||ρ̂− ρ||2.

33This result may not hold when X is continuous. See Lu and Saito (2021).
34To alleviate this problem, in the empirical illustration, we run the EM algorithm multiple times, each

time with a random initial value.
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• Step n, n ≥ 2:

– Consider a set of grids αn = { 2
k+1}

n
k=1.

– Find (α∗n, ρ
∗
n) = arg inf(α,ρ)∈αn×cl.Pa(d,η|µ) ||ρ̂− (1− α)ρn−1 − αρ||2.

– Define ρn = (1− α∗n)ρn−1 + α∗nρ
∗
n and let ρout = ρn.

• Stop if a terminating criterion is reached.

• Return ρout at the final step.

The next proposition shows that the algorithm will converge quickly.

Proposition 5. Let ρ̂ ∈ P be any stochastic function and d be a positive integer,

η ∈ R|X|, and µ ∈M. Define d∗ = infρ∈Pra(d,η|µ) d(ρ, ρ̂). Let n denote the number of

steps and ρn denote the output after the completion of the n-th step of the algorithm.

Then there exists a T such that

d(ρn, ρ̂)− d∗ ≤
√

T

n+ 1
, (6)

where T can be chosen to depend only on |D|.

The proof is in Section B.9. For our implementation, the terminating criterion

is when the number of steps taken reaches 1000. With 1000 steps, (6) implies the

margin of error is within 0.026.35 When we approximate ρ̂ without fixed effects, we

let η = 0. When we approximate ρ̂ with fixed effects, we couple the algorithm with

a grid of fixed effects to search for the minimum.

B Appendix: Proofs

B.1 Proof of Theorem 1

Lemma 1,2, and 3 –(1) imply statements (i) of Theorem 1 and Proposition 1. State-

ments (ii) of Theorem 1 and Proposition 1 follow from Lemma 1,2, 3–(1), and 4.

B.2 Proof of Proposition 1

Lemma 1,2, and 3 –(2) imply statement (i) and parts of statement (ii) of Proposition

1. The last statement of statement (ii) can be proved as follows. Consider any

35This is calculated by computing the constant T in Proposition 5. In our case, the T is equal to
88/121, so the margin of error is

√
88/(121× 1001) ≈ 0.026. See footnote 45 for the full calculation.
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stochastic choice function ρ. Then there exists a sequence of stochastic choice

functions {ρn} such that ρn → ρ and ρn(X,x) > 0 for any x ∈ X. Fix µ ∈M. Note

that our assumption of the convexity of the support implies the connectedness. By

Corollary 1 of Norets and Takahashi (2013), ρn can be represented as the ARUMs.

B.3 Proof of Lemma 1

B.3.1 Statement (1)

If direction is obvious, we prove only if direction. By assumption, Pr = cl.co.Q =

co.cl.Q, where the last equality holds because Q is bounded and by Theorem 17.2 of

Rockafellar (2015). Since Pr = co.cl.Q, for any π ∈ Π, there exist positive numbers

{λi}mi=1 such that
∑m

i=1 λi = 1 and a convergent sequence {ρin}∞n=1 of Q for each

i ∈ {1, . . . ,m} such that
∑m

i=1 λiρ
i
n →

∑m
i=1 λiρ

i = ρπ as n → ∞, where ρin → ρi.

Since ρπ is a vertex of Pr and thus an exposed point36, ρi = ρπ for all i.

B.3.2 Statement (2)

Let Q be any subset of rint.Pr. We will show that rint.Pr = co.Q if and only if for

any π ∈ Π there exists a sequence {ρn}∞n=1 of Q such that ρn → ρπ as n→∞.

Step 1: We will show the if part of the statement. Suppose by way of contradic-

tion that there exists ρ ∈ rint.Pr \co.Q. Because co.Q 6= ∅, we obtain rint.co.Q 6= ∅.
Since ρ 6∈ co.Q, by the proper separating hyperplane theorem (Theorem 11.3 of

Rockafellar (2015)), there exist t ∈ RD×X \ {0} and a ∈ R such that

ρ · t ≥ a ≥ ρ′ · t for any ρ′ ∈ co.Q and a > ρ′′ · t for some ρ′′ ∈ co.Q. (7)

We obtain a contradiction by two substeps.

Step 1.1: We show there exists ρ̂ ∈ Pr such that ρ̂ · t > ρ · t. To prove the

step, remember that there exists ρ′′ ∈ co.Q such that ρ′′ · t < ρ · t. Moreover, since

Q ⊂ Pr and Pr is convex, it follows that ρ′′ ∈ co.Q ⊂ Pr. Since ρ ∈ rint.Pr, there

exists λ > 1 such that λρ + (1 − λ)ρ′′ ∈ Pr. Moreover, (λρ + (1 − λ)ρ′′) · t =

λρ · t + (1− λ)ρ′′ · t = ρ · t + (λ− 1)(ρ · t− ρ′′ · t) > ρ · t, where the last inequality

holds because λ > 1 and ρ′′ · t < ρ · t. So λρ+ (1− λ)ρ′′ ∈ Pr.
36A point of a convex set is an exposed point if there is a supporting hyperplane which contains no

other points of the set (Rockafellar (2015), Page 162)

30



Step 1.2: There exists ρ′ ∈ co.Q such that ρ′ ·t > ρ·t, which contradicts with (7).

To prove the step, let ρ̂ be as in Substep 1.1. Since ρ̂ ∈ Pr, there exist nonnegative

numbers {λ̂π}π∈Π such that ρ̂ =
∑

π∈Π λ̂πρ
π and

∑
π∈Π λ̂π = 1.

By the supposition of the lemma, for any π ∈ Π, there exists a sequence {ρ′n}∞n=1

of Q such that ρ′n → ρπ as n→∞. Therefore, for any π ∈ Π and any positive num-

ber ε, there exists ρ′π ∈ {ρ′n}∞n=1 such that ‖ρ′π − ρπ‖ < ε. Define ρ′ =
∑

π∈Π λ̂πρ
′
π.

Then ρ′ ∈ co.Q and ‖ρ′ − ρ̂‖ =
∥∥∑

π∈Π λ̂π(ρ′π − ρπ)
∥∥ ≤ ∑

π∈Π λ̂π‖ρ′π − ρπ‖ ≤∑
π∈Π λ̂πε = ε. Therefore, |ρ′ · t− ρ̂ · t| ≤ ‖t‖‖ρ′ − ρ̂‖ ≤ ‖t‖ε. Since t · ρ̂ > t · ρ, then

by choosing ε small enough, we obtain ρ′ · t > ρ · t.
Step 2: We will show the only if part of the statement. Since rint.Pr = co.Q,

we have Pr = cl.Pr = cl.rint.Pr = cl.co.Q = co.cl.Q, where the first equality

holds because Pr is closed, the second equality holds by Theorem 6.3 of Rockafellar

(2015), and the last equality holds because Q is bounded and by Theorem 17.2 of

Rockafellar (2015). The rest of the proof goes through exactly the same way as in

the only if part of Statement (1).

B.3.3 Statement (3)

Fix ρ ∈ Pl. Let β and η be the coefficients and fixed effects associated with ρ.

Since ρ ∈ Pr, there exists ν ∈ ∆(Π) such that ν rationalizes ρ. Moreover, in the

construction of ν in Block and Marschak (1960), they obtain that for any π ∈ Π,

ν(π) =
∏|X|
n=1

exp(β·pd(xn)+η(xn))∑|X|
l=n exp(β·pd(xl)+η(xl))

> 0, where X = {x1, x2, . . . , x|X|} and π(x1) >

π(x2) > · · · > π(x|X|). Since ν(π) > 0 for all π ∈ Π, it follows from Theorem 6.9

in Rockafellar (2015) that ρ ∈ rint.co.{ρπ|π ∈ Π} = rint.Pr, where the last equality

holds because Pr = co.{ρπ|π ∈ Π}.

B.4 Proof of Lemma 2

Step 1: For any π ∈ Π and any µ ∈ M, if a ranking π is degree-d-representable,

then there exists a sequence {ρn} of Pa(d, 0|µ) such that ρn → ρπ.

Proof. Assume that a ranking π is degree-d-representable. Without loss of gener-

ality, assume that X = {x1, . . . , x|X|} and π(x1) > π(x2) > · · · > π(x|X|). Then

there exists β such that for any D ∈ D, π(x) > π(y) for all y ∈ D \ {x} if and

only if β · pd(x) > β · pd(y) for all y ∈ D \ {x}. For any positive integer n and any
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(D,x) ∈ D ×X such that x ∈ D, let

ρnβ(D,x)

≡ µ({ε|nβ · pd(x) + ε(x) ≥ maxy∈D\x{nβ · pd(y) + ε(y)}})
≥ µ({ε|nβ · pd(x) + ε(x) ≥ maxy∈D\x nβ · pd(y) + maxy∈D\x ε(y)})
= µ({ε|n(β · pd(x)−maxy∈D\x β · pd(y)) ≥ maxy∈D\x ε(y)− ε(x)})
=
∫

1{n(β · pd(x)−maxy∈D\x β · pd(y)) ≥ maxy∈D\x ε(y)− ε(x)}dµ,

where 1 is the indicator function. By the dominated convergence theorem,

lim
n→∞

ρnβ(D,x) ≥
∫

lim
n

1
{
n(β · pd(x)− max

y∈D\x
β · pd(y)) ≥ max

y∈D\x
ε(y)− ε(x)

}
dµ.

Now suppose that π(x) > π(y) for all y ∈ D {x}, then β · pd(x)−maxy∈D\x β ·
pd(y) > 0. Thus for any given value of ε, the indicator function is one. It follows

that limn→∞ ρnβ(D,x) = 1. By taking a complement, if π(x) < π(D \ {x}), then

limn→∞ ρnβ(D,x) = 0 . Hence, ρnβ → ρπ as n→∞. �

Step 2: If there exists µ ∈ M and a sequence {ρn} of Pa(d, 0|µ) such that

ρn → ρπ, then π is degree-d-representable.

Proof. Let βn be the coefficient vector of ρn. Consider a particular binary choice

set {x, y}. Without loss of generality, assume π(x) > π(y). We have µ({ε|βn ·
pd(x) + ε(x) > βn · pd(y) + ε(y)}) → ρπ({x, y}, x) = 1 as n → ∞. This implies

that there exists a Nx,y such that for all n ≥ Nx,y we have βn · pd(x) > βn · pd(y).

To see this, suppose the previous claim is not true: we have a subsequence of nk

such that βnk · pd(x) ≤ βnk · pd(y). Then we must have µ({ε|βnk · pd(x) + ε(x) >

βnk ·pd(y)+ε(y)}) = 1−µ({ε|βnk ·pd(x)−βnk ·pd(y) ≤ ε(y)−ε(x)}) ≤ 1−µ({ε|0 <
ε(y) − ε(x)}) < 1 uniformly in nk. This contradicts with our hypothesis that

ρn → ρπ. Finally, although Nx,y depend on a particular binary choice sets, we have

a finite number of binary choice sets. Taking the maximum of Nx,y among all binary

choice sets we have the desired result. �

Step 3: If there exists µ ∈ M and a sequence {ρn} of co.Pa(d, 0|µ) such that

ρn → ρπ, then there exists a sequence {ρ′n} of Pa(d, 0|µ) such that ρ′n → ρπ.

Proof. Fix a positive integer d and π ∈ Π. Suppose that there exists a sequence

ρn of co.Pa(d, 0|µ) such that ρn → ρπ as n → ∞. Let M = dim co.Pa(d, 0|µ).

Then for each ρn, by Caratheodory’s theorem, there exist {ρin}M+1
i=1 ⊂ Pa(d, 0|µ)

and nonnegative numbers {αin}M+1
i=1 such that ρn =

∑M+1
i=1 αinρ

i
n and

∑M+1
i=1 αin = 1.
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Denote (αin)M+1
i=1 by αn. Then αn belongs to a compact set (i.e., M -dimensional

simplex). There exists a convergent subsequence {αn′}. Thus ρ′n ≡
∑M+1

i=1 αin′ρ
i
n′ is

a subsequence of {ρn}. For each i, let αi∗ be the limit of {αin′}. Since
∑M+1

i=1 αin′ = 1

for all n′, we have
∑M+1

i=1 αi∗ = 1, so that there must exist i∗ such that αi
∗
∗ 6= 0.

In the following, we will show that ρi
∗
n′ → ρπ as n′ → ∞. To show the claim,

we prove that if ρi
∗
n′ 6→ ρπ, then αi

∗
n′ → 0, which is a contradiction. Assume that

ρi
∗
n′ 6→ ρπ. Then there exist D ∈ D, x ∈ D, and ε > 0 such that for any in-

teger N there exists n > N such that |ρi∗n (D,x) − ρπ(D,x)| > ε. This implies

that for any N there exists n > N such that
∣∣∣∑M+1

i=1 αin′ρ
i
n′(D,x) − ρπ(D,x)

∣∣∣ =∑M+1
i=1 αin′ |ρin′(D,x) − ρπ(D,x)| ≥ αi

∗
n′ε, where the first equality holds because if

π(x) ≥ π(D) then ρin′(D,x) − ρπ(D,x) ≤ 0 for all i; if not π(x) ≥ π(D) then

ρin′(D,x) − ρπ(D,x) ≥ 0 for all i. Since
∑M+1

i=1 αin′ρ
i
n′(D,x) → ρπ(D,x), it must

hold that αi
∗
n′ → 0, which completes the proof of Step 3. �

Steps 2 and 3 show that if there exists a sequence {ρn} of co.Pa(d, 0|µ) such that

ρn → ρπ, then π is degree-d-representable. The contraposition of this statement is

the second statement of Lemma 2.

B.5 Proof of Lemma 3

B.5.1 Proof of Statement (1)

We use the following lemma:

Lemma 6. Let A be an r × n real matrix, B be an l × n real matrix, and E be an

real m× n matrix. Exactly one of the following alternatives is true.

1. There is u ∈ Rn such that Au = 0, Bu ≥ 0, Eu� 0.

2. There is θ ∈ Rr, η ∈ Rl, and π ∈ Rm such that θA + ηB + λE = 0, λ > 0

and η ≥ 0,

where � 0 means all entries are positive, > 0 means all entries are nonnegative and

positive for some entry, and ≥ means all entries are nonnegative.

See Theorem 1.6.1 of Stoer and Witzgall (2012) for the proof. In the following by

using Lemma 6, we prove statement (i).

For any ranking π ∈ Π and a positive integer d, consider the following condition:

if λ1pd(π
−1(|X|)) +

∑|X|−1
i=2 (λi − λi−1)pd(π

−1(|X|+ 1− i))− λ|X|−1pd(π
−1(1)) = 0
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and λi ≥ 0 for all i ∈ {1, . . . , |X| − 1}, then λi = 0 for all i ∈ {1, . . . , |X| − 1}. We

call this Condition (∗).
Step 1: For each π ∈ Π and a positive integer d, Condition (∗) holds if and only

if π is degree-d-representable.

Proof. Since D contains all binary sets, π ∈ Π is representable if and only if there

exists β such that for any x, y ∈ X, π(x) > π(y)⇔ β · x > β · y. Fix π ∈ Π.

∃β
[
β · pd(π−1(|X|)) > β · pd(π−1(|X| − 1)) > · · · > β · pd(π−1(2)) > β · pd(π−1(1))

]
⇐⇒ ∃β

[
β · (pd(π−1(|X|))− pd(π−1(|X| − 1))) > 0, . . . , β · (pd(π−1(2))− pd(π−1(1))) > 0

]
⇐⇒ ∃β [Eβ � 0]

⇐⇒6 ∃λ ∈ R|X|−1 [λ > 0, λE = 0]

⇐⇒6 ∃λ ∈ R|X|−1
[
λ > 0,

∑|X|−1
i=1 λi(pd(π

−1(|X|+ 1− i))− pd(π−1(|X| − i))) = 0
]

⇐⇒6 ∃λ ∈ R|X|−1
[
λ > 0,

λ1pd(π
−1(|X|)) +

∑|X|−1
i=2 (λi − λi−1)pd(π

−1(|X|+ 1− i))− λ|X|−1pd(π
−1(1)) = 0

]
⇐⇒ Condition(∗),

where λ ≡ (λ1, ..., λ|X|−1) and the third equivalence is obtained by using Lemma

6 with A,B = 0 and E> ≡ (pd(π
−1(|X|)) − pd(π

−1(|X| − 1)), . . . , pd(π
−1(2)) −

pd(π
−1(1))). �

Step 2: For a given positive integer d, the set {pd(x)|x ∈ X} is affinely indepen-

dent if and only if Condition (∗) holds for d and any π ∈ Π.

Proof. We first show that the only if part. Fix any π ∈ Π. Without loss of

generality assume that π(xi) = |X| + 1 − i for all i ∈ {1, . . . , |X|}. Suppose that

λ1pd(π
−1(|X|))+

∑|X|−1
i=2 (λi−λi−1)pd(π

−1(|X|+1− i))−λ|X|−1pd(π
−1(1)) = 0 and

λi ≥ 0 for all i. Then, λ1pd(x1) +
∑|X|−1

i=2 (λi − λi−1)pd(xi) − λ|X|−1pd(x|X|) = 0.

Define µ1 = λ1, µi = λi − λi−1 for all i ∈ {2, . . . , |X| − 1}, and µ|X| = −λ|X|−1.

Then
∑|X|

i=1 µipd(xi) = 0. Moreover,
∑|X|

i=1 µi = λ1 +
∑|X|−1

i=2 (λi−λi−1)−λ|X|−1 = 0.

If {pd(x)|x ∈ X} is affinely independent, then µi = 0 for all i ∈ {1, . . . , |X|}. Hence,

λi = 0 for all i ∈ {1, . . . , |X| − 1}. This implies Condition (∗).
Next we will show the if part. Choose any real numbers {µi}|X|i=1 such that∑|X|
i=1 µipd(xi) = 0 and

∑|X|
i=1 µi = 0 to show µi = 0 for all i ∈ {1, . . . , |X|}. Without

loss of generality, order µi by its value so that µ1 ≥ µ2 ≥ · · · ≥ µ|X|. Let µ ≡
(µ1, ..., µ|X|). For each xi ∈ X, define π(xi) = |X| + 1 − i. Then π ∈ Π. Define

λ1 = µ1 and λi =
∑i

j=1 µj for all i ∈ {2, . . . , |X| − 1}.
First we will show that λi ≥ 0 for all i ∈ {1, . . . , |X| − 1}. Suppose by way
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of contradiction that λi < 0 for some i ∈ {1, . . . , |X| − 1}. Then µi < 0 because

µ1 ≥ · · · ≥ µi. Since 0 > µi ≥ µj for all j ≥ i, we have
∑|X|

j=i+1 µj < 0. It follows

that
∑|X|

j=1 µj = λi+
∑|X|

j=i+1 µj < 0. This contradicts that
∑|X|

j=1 µj = 0. Therefore,

λi ≥ 0 for all i ∈ {1, . . . , |X| − 1}.
In the following, we will show µ = 0 by using λi ≥ 0 for all i ∈ {1, . . . , |X| − 1}.

Notice that λ1pd(π
−1(|X|))+

∑|X|−1
i=2 (λi−λi−1)pd(π

−1(|X|+1−i))−λ|X|−1pd(π
−1(1)) =

λ1pd(x1)+
∑|X|−1

i=2 (λi−λi−1)pd(xi)−λ|X|−1pd(x|X|) = µ1pd(x1)+
∑|X|−1

i=2 µipd(xi)−∑|X|−1
i=1 µipd(x|X|) =

∑|X|
i=1 µipd(xi) = 0,where the second to the last equality holds

because
∑|X|

i=1 µi = 0. Therefore, by Condition (∗), λi = 0 for all i ∈ {1, . . . , |X|−1}.
This implies µ = 0. �

B.5.2 Proof of Statement (2)

For any x ∈ X, pd(x) 6∈ co.({pd(y)|y ∈ X \ {x}}) ⇔ pd(x) is an extreme point of

co.({pd(y)|y ∈ X}) ⇔ pd(x) is an exposed point of co.({pd(y)|y ∈ X}) ⇔ ∃β ∀y ∈
X \ {x}[β · pd(x) > β · pd(y)]⇔ all raking π, which best alternative is x, is degree-

d-representable. The first and third equivalences are by the definitions of extreme

points and exposed points, respectively, while the second equivalence is by the fact

that co.({pd(y)|y ∈ X}) is a polytope.

B.6 Proof of Lemma 5

Let |X| = n and write X = {x1, . . . , xn}. Let πn be a ranking over Xn such that

πn(xi) > πn(xi+1) for any i ≤ n− 1. We will prove that ρπn and ρπ
−
n are adjacent.

In particular, we will find tn ∈ RDn×Xn such that ρπn · tn = ρπ
−
n · tn = 0, and

ρσn · tn > 0 for any σn ∈ Πn \ {πn, π−n }. The proof is by induction on n.

Induction Base: Let us consider the case of n = 3. For b > a > 0, let

t3({x1, x2}, x1) = a, t3({x2, x3}, x2) = −b, t3({x1, x3}, x1) = b−a, and t3({x1, x2, x3}, x2) =

a + b. For all other (D,x) ∈ D × X, t3(D,x) = 0. Then t3 is defined on

D ×X and satisfies the conditions. By a direct calculation, it can be shown that

ρπ3 · t3 = ρπ
−
3 · t3 = 0, and ρπ · t3 > 0 for any σ3 ∈ Π3 \ {π3, π

−
3 }.

Assume that n ≥ 4. For each i such that 3 ≤ i ≤ n, define Xi = {x1, x2, . . . , xi}
and let Πi be the set of rankings over Xi. For each i such that 3 ≤ i ≤ n − 1, let

Di ⊂ 2Xi \ ∅ be such that (i) Di ⊂ Di+1 and Dn = D; (ii) for each i, {x, y} ∈ Di
and {x, y, z} ∈ Di for any x, y, z ∈ Xi.

Induction Hypothesis: Let πn−1 be the ranking overXn−1 such that πn−1(xi) >
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πn−1(xi+1) for any i ≤ n − 2. Suppose that there exists tn−1 ∈ RDn−1×Xn−1

such that ρπn−1 · tn−1 = ρπ
−
n−1 · tn−1 = 0, and ρσn−1 · tn−1 > 0 for σn−1 ∈

Πn−1 \ {πn−1, π
−
n−1}. Choose a positive number εn−1 such that 0 < εn−1 <

minσn−1∈Πn−1\{πn−1,π
−
n−1}

ρσn−1 · tn−1. We define tn ∈ RDn×Xn as follows: For each

(D,x) ∈ Dn ×Xn

tn(D,x) =



tn−1(D,x) if (D,x) ∈ (Dn−1 ×Xn−1) \ {({x1, x2}, x1)},
tn−1(D,x) + εn−1 if (D,x) = ({x1, x2}, x1),

−εn−1/(n− 1) if (D,x) = ({xi, xn}, xi) for some i ∈ {1, · · · , n− 1},
2εn−1 if (D,x) = ({xn−2, xn−1, xn}, xn−1),

0 otherwise.

It is clear that ρπn · tn = ρπ
−
n · tn = 0. Let σn ∈ Πn \ {πn, π−n }. Let j ∈

{1, · · · , n} be such that the element xn be jth best element in σn. There exists

σn−1 ∈ Πn−1 such that the ranking σn can be written as (σ−1
n−1(n−1), · · · , σ−1

n−1(n−
(j − 1)), xn, σ

−1
n−1(n− j), · · · , σ−1

n−1(1)) in decreasing order of the ranking if 2 ≤ j ≤
n− 1.37

First notice that by the definition of tn and ρσn−1 = ρσn on {x1, x2}, ρσn · tn =

ρσn−1 ·tn−1+εn−1ρ
σn−1({x1, x2}, x1)− εn−1

n− 1
(j−1)+2εn−1ρ

σn({xn−2, xn−1, xn}, xn−1),

where the second term of the right hand side is (εn−1/(n − 1))(j − 1) since in σn,

there are j − 1 elements that are better than n.

Case 1: σn−1 = πn−1. Note that ρσn−1({x1, x2}, x1) = ρπn−1({x1, x2}, x1) = 1.38

Also ρσn({xn−2, xn−1, xn}, xn−1) = 0 since ρσn coincide with ρσn−1 = ρπn−1 on Xn−1

and xn−2 is better than xn−1 in the ranking πn−1. Thus, ρσn · tn = 0 + εn−1 −
εn−1

n− 1
(j− 1) + 0 > 0, where the last inequality holds because j < n. (If j = n, then

σn−1 = πn−1 implies that σn = πn, which is a contradiction.)

Case 2: σn−1 = π−n−1. Note that ρσn−1 ·tn−1 = ρπ
−
n−1 ·tn−1 = 0 and ρσn−1({x1, x2}, x1) =

ρπ
−
n−1({x1, x2}, x1) = 0. Note also that ρσn({xn−2, xn−1, xn}, xn−1) = 1 since (i)

ρσn({xn−2, xn−1, xn}, xn−2) = 0; (ii) ρσn({xn−2, xn−1, xn}, xn) = 0. (i) holds be-

cause σn−1 = π−n−1 and (ii) holds because σn 6= π−n and σn−1 = π−n−1. Thus,

ρσn · tn = 0 + 0− εn−1

n− 1
(j − 1) + 2εn−1 > 0.

Case 3: σn−1 6∈ {πn−1, π
−
n−1}. Thus, ρσn · tn > εn−1 −

εn−1

n− 1
(j − 1) ≥ 0, where

the first inequality holds by ρσn−1 · tn−1 > εn−1 and the second inequality holds by

37If j = 1, then xn is the best element in σn. If j = n, then xn is the worst element in σn.
38Remember that πn−1(xi) > πn−1(xi+1) for any i ≤ n− 1
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j ≤ n.

B.7 Proof of Lemma 4

To prove the lemma, we prove the following lemmas. Fix a ranking π that is not

degree-d-representable. For any α ∈ (0, 1), define ρπα ≡ αρπ + (1− α)ρπ
−

. We first

will show statement (a) mentioned after Lemma 4 in Section 3.2.

Lemma 7. Let µ ∈M. For any α ∈ (0, 1), ρπα 6∈ cl.
⋃
η Pa(d, η|µ).

Proof. Choose any x, y, z ∈ X such that π(x) > π(y) > π(z). Suppose by way of

contradiction that ρπα ∈ cl.
⋃
η Pa(η|µ). This implies there exists ρn ∈

⋃
η Pa(d, η|µ)

such that ρn → ρπα. Let (ηn, βn) be corresponding to ρn. Consider the sequence

{βn · (pd(x)− pd(y)) + ηn}.
Step 1: There exists a convergent subsequence {βn′ · (pd(x)− pd(y)) + ηn′}.

Proof. To see this notice the indices of the original sequence βn ·(pd(x)−pd(y))+ηn

must be bounded. If not, for each large number N , there exists |βn ·(pd(x)−pd(y))+

ηn| > N for some n. This implies ρn({x, y}, x) will be close to either 0 or 1 infinitely

often, violating the convergence assumption. Since βn · (pd(x)− pd(y)) + ηn lies in a

bounded set, we can extract a convergent subsequence {βn′ ·(pd(x)−pd(y))+ηn′}. �

Given Step 1, we fix one convergent subsequence {βn′ · (pd(x) − pd(y)) + ηn′}.
We consider corresponding stochastic choice functions ρn′ . Note that, by definition,

limn′ ρn′ = ρπα. To make our notation simple, in the following, we write ρn and βn

instead of ρn′ and βn′ .

For any s, t ∈ {x, y, z} and n ∈ N , define En,st = {ε|βn · pd(s) + ηn(s) + ε(s) >

βn · pd(t) + ηn(t) + ε(t)}; Est = {ε| limn(βn · pd(s) + ηn(s)) + ε(s) ≥ limn(βn · pd(t) +

ηn(t)) + ε(t)}; and E′st = {ε| limn(βn · pd(s) + ηn(s)) + ε(s) > limn(βn · pd(t) +

ηn(t))+ε(t)}. Since µ is absolutely continuous with respect to the Lebesgue measure,

µ{ε| limn(βn · pd(x) + ηn(x)) + ε(x) = limn(βn · pd(y) + ηn(y)) + ε(y)} = 0. Thus

µ(Est) = µ(E′st) and Est is the event that alternative s is preferred to alternative t

ignoring measure zero events.

Step 2: (i) Exy = Exz and Ezy = Ezx up to a measure zero set; (ii) µ(Exy∩Exz) =

α and µ(Ezy ∩ Ezx) = 1− α.

Proof. By Fatou’s lemma α = ρπα({x, y, z}, x) = lim sup ρn({x, y, z}, x) = lim sup

µ(En,xy ∩ En,xz) ≤ µ(lim sup(En,xy ∩ En,xz)) = µ(Exy ∩ Exz). Moreover, α =

ρπα({x, y}, x) = lim inf µ(En,xy) ≥ µ(lim inf En,xy), where the inequality holds by
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Fatou’s lemma. By the definition that lim inf En,xy ≡
⋃∞
n=1

⋂∞
i=nEn,xy, we have

lim inf En,xy ⊂ Exy and E′xy ⊂ lim inf En,xy. Since µ(E′xy) = µ(Exy), it follows that

α ≥ µ(lim inf En,xy) = µ(Exy). In the same way, we have α ≥ µ(Exz). Thus we

have µ(Exy ∩ Exz) ≥ α ≥ µ(Exy) = µ(Exz). It follows that Exy = Exz up to a

measure zero set and µ(Exy ∩ Exz) = α. By symmetry, we obtain Ezy = Ezx up to

a measure zero set and µ(Ezy ∩ Ezx) = 1− α. �

Define A =
{
ε
∣∣U(ε(x), ε(y), ε(z)) ≥ c

}
and B =

{
ε
∣∣U(ε(x), ε(y), ε(z)) ≤ c.

}
,

where

U =

[
1 −1 0

0 1 −1

]
, c =

[
lim(βn · (pd(y)− pd(x)) + ηn(y)− ηn(x))

lim(βn · (pd(z)− pd(y)) + ηn(z)− ηn(y))

]
. (8)

Step 3: µ(A) = α, µ(B) = 1− α, and µ(A ∪B) = 1.

Proof. By Step 2, µ(Exy ∩ Exz) = α and µ(Ezy ∩ Ezx) = 1 − α. Remember Est

is the event that s is chosen over t in the binary set {s, t}. Notice Exy ∩ Exz and

Ezy∩Ezx have measure zero intersections by the transitivity of rankings, so the two

events partition the probability space (ignoring measure zero events).

Now notice that α = ρπα({y, z}, y) = µ(Eyz). Since the event Eyz is incompatible

with the event Ezy∩Ezx it must completely lie within the event Exy∩Exz. Moreover,

since µ(Eyz) = α = µ(Exy ∩Exz), the event Eyz coincides with the event Exy ∩Exz
(ignoring measure zero events). Finally notice the event A is the intersection of

Exy ∩Exz and Eyz, up to a measure zero events. Thus, µ(A) = α. In a similar way,

we can show that µ(B) = 1− α. Thus we have µ(A ∪B) = 1.39 �

Let f be a density function of µ. Fix εa ∈ A∩{ε|f(ε) > 0} and εb ∈ B∩{ε|f(ε) >

0}. Define a ≡ Uεa and b ≡ Uεb. Without loss of generality, we suppose there

does not exist t ∈ R such that (a − c) = t(b − c), where c is defined as in (8).

This can be achieved by the open support condition.40 For any λ ∈ (0, 1), define

ελ ≡ λεa + (1− λ)εb.

Step 4: There exists some λ∗ ∈ (0, 1) such that ελ∗ 6∈ A ∪B.

Proof. First notice that for any λ ∈ (0, 1), Uελ 6= c. This is because if Uελ = c

39First we can show that notice that 1 − α = ρπα({x, y}, y) = µ(Eyx). Since the event Eyx is not
compatible with the event Exy ∩ Exz, Eyx must coincide the event Ezy ∩ Ezx (ignoring measure zero
events). Finally notice that the event B is the intersection of Ezy ∩ Ezx and Eyx, up to a measure zero
events. Thus µ(B) = 1− α.

40Notice first U has full column rank. If such t exists, we can perturb the points εa and εb so that such
t does not exist.
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for some λ, then Uελ = λUεa + (1 − λ)Uεb = λa + (1 − λ)b = c implies λ(a −
c) = −(1 − λ)(b − c), which contradicts the non existence of t above. By the

above argument, to show Step 4, it suffices to prove that there exists some λ∗ ∈
(0, 1) such that ελ∗ 6∈ A′ ∪ B′, where A′ = {ε |U(ε(x), ε(y), ε(z)) > c} and B′ =

{ε |U(ε(x), ε(y), ε(z)) < c}, where U and c are defined as in (8).

Suppose by way of contradiction that the desired λ∗ does not exist. Then, this

implies {ελ}λ∈(0,1) ⊂ A′ ∪ B′, which is a contradiction. This is because the set

{ελ}λ∈(0,1) is connected, and A′ and B′ are disjoint open sets. �

Since {ε|f(ε) > 0} is convex, ελ∗ ∈ {ε|f(ε) > 0}. Moreover, {ε|f(ε) > 0} is open

and (A∪B)c is open, it follows from Step 4 that there exists an event around ελ∗ that

is outside A ∪B and is not measure zero. This contradicts with µ(A ∪B) = 1. �

Given Lemma 7, in order to show Lemma 4, it suffices to show that even with

using mixtures, it is impossible to approximate ρπα. For this purpose, we need two

more lemma.

Lemma 8. (i)For any ρ ∈ cl.
⋃
η Pa(d, η|µ), if ρ 6∈ {ρπ, ρπ−} then ρ 6∈ {ρπα|α ∈

[0, 1]}; (ii) Let (t, a) be as in Definition 8 with a pair (ρπ, ρπ−) of adjacent rankings.

For any ρ ∈ cl.
⋃
η Pa(d, η|µ), if ρ 6∈ {ρπ, ρπ−} then ρ · t > a.

Proof. To show (i), suppose by way of contradiction that ρ ∈ {ρπα|α ∈ [0, 1]}.
Since ρ 6∈ {ρπ, ρπ−}, ρ = ρπα for some α ∈ (0, 1). By Lemma 7, ρ 6∈ cl.

⋃
η Pa(d, η|µ),

which is a contradiction.

Now we will show (ii) by using (i). Since ρ ∈ Pr, it can be written as a convex

combination of ρπs: ρ =
∑

σ∈Π µ(σ)ρσ = µ(π)ρπ+µ(π−)ρπ
−

+
∑

σ∈Π\{π,π−} µ(σ)ρσ.

By (i), ρ ∈ cl.
⋃
η Pa(d, η|µ) and ρ 6∈ {ρπ, ρπ−} implies that ρ 6∈ {ρπα|α ∈ [0, 1]}.

Thus, we must have one of the µ(σ) in the third term positive. Moreover, by

definition and the fact that ρπ and ρπ
−

are adjacent, for any σ 6∈ {π, π−}, ρσ · t >
a = ρπ · t = ρπ

− · t. Thus we can conclude that ρ · t > a. �

Lemma 9. Let µ ∈ M. If there exists a sequence of degree-d random-coefficient

ARUMs with fixed effects ηn converging to ρπα for some α ∈ (0, 1), then there exists

two sequences ρ(ηn,βn) and ρ(ηn,β′n) of degree-d ARUMs with fixed effects ηn that

converges to ρπ and ρπ
−

, respectively.

Proof. Since
⋃
η Pra(d, η|µ) =

⋃
η co.Pa(d, η|µ), there exists

∑M+1
i=1 µn(i)ρ(βn(i),ηn) →

ρπα, where M = dimPr + 1 (allowing µn(i) = 0 for some i). For all i, we first extract

converging subsequences µm(i) and ρ(βm(i),ηm) of µn(i) and ρ(βn(i),ηn), respectively.
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We can do this sequentially. Notice that for each i, µm(i) is a bounded sequence in

a compact set: thus, it has a convergent subsequence. We denote the limit by µ∗(i).

Similarly, ρ(βn(i),ηn) belongs to a compact set of random utility models:thus it has

a convergent subsequence. We denote the limit ρ∗(i). A diagonal argument gives

us desirable subsequences such that for all i, µm(i)→ µ∗(i) and ρ(βm(i),ηm) → ρ∗(i)

as m → ∞. Thus,
∑

i µn(i)ρ(βn(i),ηn) →
∑

i µ
∗(i)ρ∗(i) = ρπα. Moreover, since

ρ(βm(i),ηm) ∈
⋃
η Pa(d, η|µ), we have ρ∗(i) ∈ cl.

⋃
η Pa(d, η|µ).

In the following, we will argue that there exists some i, j such that ρ∗(i) = ρπ

and ρ∗(j) = ρπ
−

. By way of contradiction and without loss of generality, suppose

that ρ∗(i) 6= ρπ for any i.41

Let (t, a) be as in Definition 8 with a pair (ρπ, ρπ
−

) of adjacent rankings.

We will consider two cases.

Case 1: ρ∗(i) 6= ρπ
−

for any i. For all i, ρ∗(i) ∈ cl.
⋃
η Pa(d, η|µ) and ρ∗(i) 6∈

{ρπ, ρπ−}. Then, by Lemma 8 (ii), ρ∗(i) · t > a for all i. Thus,
(∑

i µ
∗(i)ρ∗(i)

)
· t =∑

i µ
∗(i)ρ∗(i) · t > a. On the other hand by Definition 8,

(∑
i µ
∗(i)ρ∗(i)

)
· t =

ρπα · t = a. This is a contradiction.

Case 2: ρ∗(i) = ρπ
−

for some i. Define J = {i ∈ {1, . . . ,M + 1}|ρ∗(i) = ρπ
−}.

First notice that there exists i ∈ {1, . . . ,M + 1} \ J such that µ∗(i) > 0. (If such i

does not exist, then ρπ
−

=
∑

i µ
∗(i)ρ∗(i) = ρπα, which contradicts with α 6∈ {0, 1}.)

Then, a = ρπα · t =
∑

i µ
∗(i)ρ∗(i) · t =

∑
i∈J µ

∗(i)ρπ
− · t +

∑
i 6∈J µ

∗(i)ρ∗(i) · t > a,

where the last inequality holds since as in Case 1, by Lemma 8 (ii), ρπ
− · t = a and

ρ∗(i) · t > a for all i 6∈ J . �

B.7.1 Main Proof of Lemma 4 by Using Lemma 7, 8, 9

As mentioned, given Lemma 7, it suffices to show that even with using mixtures, it

is impossible to approximate ρπα.

Let π be a raking that is not degree-d-representable. By Lemma 5, ρπ and ρπ
−

are adjacent. Now suppose by way of contradiction that there exists a sequence of

degree-d ARUMS with fixed effects that approximates ρπα for some α ∈ (0, 1). Then

by Lemma 9, there exist sequences {(ηn, βn, β′n)} such that (i) ρ(ηn,βn) → ρπ and (ii)

ρ(ηn,β′n) → ρπ
−

. Given (i), by exactly the same way as Step 2 of Lemma 2, we can

prove that there exists largeN1 such that for any n ≥ N1, we have βn·pd(x)+ηn(x) >

βn · pd(y) + ηn(y) for any x, y ∈ X such that π(x) > π(y). Similarly by (ii), there

41The proof for the other case is exactly the same after changing ρπ
−

to ρπ and ρπ to ρπ
−

.
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exists large N2 such that for any n ≥ N2, we have β′n·pd(x)+ηn(x) > β′n·pd(y)+ηn(y)

for any x, y ∈ X such that π−(x) > π−(y).

Fix any x, y ∈ X such that π(x) > π(y). Fix any number nx,y ≥ max{N1, N2}.
Then for nay n ≥ nxy, we have βn · pd(x) + ηn(x) > βn · pd(y) + ηn(y). Since

π−(y) > π−(x), we have −β′n · pd(x) − ηn(x) > −β′n · pd(y) − ηn(y). Summing the

two inequalities, we have (βn − β′n) · pd(x) > (βn − β′n) · pd(y). Because the number

of binary choice sets is finite, we can find n∗ > nx,y for any x, y ∈ X. Thus, for any

x, y ∈ X such that π(x) > π(y), we have (βn∗ − β′n∗) · pd(x) > (βn∗ − β′n∗) · pd(y).

This contradicts with the fact that π is not degree-d-representable.

B.8 Proof of Proposition 4

To prove Proposition 4, we prove one lemma.

Lemma 10. For any t ∈ RD×X , ρπ · t = ρπ
′ · t for all π, π′ ∈ Π if and only if

t(D,x) = t(D, y) for all D ∈ D and x, y ∈ D.42

Proof. For notational convenience, for any π ∈ Π andD ∈ D withD = {x1, . . . , x|D|},
we write ρπ(D) =

(
ρπ(D,x1), . . . , ρπ(D,x|D|)

)
. To prove the if part, assume t(D,x) =

t(D, y) for all D ∈ D and x, y ∈ D. Define t(D) = t(D,x) for any x ∈ D. Then for

any π ∈ Π, ρπ · t =
∑

D∈D
∑

x∈D ρ
π(D,x)t(D,x) =

∑
D∈D t(D)

∑
x∈D ρ

π(D,x) =∑
D∈D t(D), completing the proof of the if part.

The only if part is obvious for any D such that |D| = 1. Consider any D such

that |D| ≥ 2. Let l be the maximal integer such that |D| ≥ l + 1 for any D ∈ D.

Then l ≥ 1.43

Claim: For any D ∈ D such that |D| = l + 1 and any x, y ∈ D, t(D,x) = t(D, y).

Proof. To prove the claim, denote D by {x, y, w1, . . . , wl−1}. (If l ≤ 1, then wi’s

are not included in D and remove wi’s in the following proof.) Choose any π, π′ ∈ Π

such that for any z ∈ X\{x, y, w1, . . . , wl−1} and any i ∈ {1, . . . , l−1}, π(z) = π′(z),

π(z) > π(x) > π(y) > π(wi), π
′(z) > π′(y) > π′(x) > π′(wi), and π(wi) = π′(wi).

To show the claim, we will show the following two facts: (a) For any E ∈ D,

ρπ(E) 6= ρπ
′
(E) if and only if {x, y} ⊂ E and π(x) ≥ π(E); (b) If E ∈ D, {x, y} ⊂ E

and π(x) ≥ π(E), then ρπ(E, x) = 1, ρπ(E, z) = 0 for any z ∈ D \ {x} and

ρπ
′
(E, y) = 1, ρπ

′
(E, z) = 0 for any z ∈ E \ {y}.

42We are identifying each ρ ∈ P as an element of RD×X .
43If D = 2X \ ∅, then l = 1. If D ( 2X \ ∅, then l can be larger than 1.
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It is easy to see statement (b) and the only if part of statement (a). To show

the if part of statement (a), assume {x, y} 6⊂ E or π(x) < π(z) for some z ∈ E.

First consider the case where {x, y} 6⊂ E. If both x and y do not belong to E, then

ρπ(E) = ρπ
′
(E) because the ranking over X \ {x, y} is the same for π and π′. If

only one of them, say x, belongs to E, then ρπ(E) = ρπ
′
(E) because the ranking

over X \ {y} is the same for π and π′.

Next consider the case where π(x) < π(z) for some z ∈ E. By the definition

of π, we obtain z ∈ X \ {x, y, w1, . . . , wl−1}. Therefore, π′(y) < π′(z). Hence,

ρπ(E, z) = 1 = ρπ
′
(E, z) and ρπ(E, z′) = 0 = ρπ

′
(E, z′) for all z′ ∈ E \ {z}.

Now, we will prove the claim. Since t · ρπ = t · ρπ′ ,

0 =
∑

(E,z)∈D×X t(E, z)(ρ
π(E, z)− ρπ′(E, z))

=
∑

(E,z)∈D×X:{x,y}⊂E,π(x)≥π(E) t(E, z)(ρ
π(E, z)− ρπ′(E, z)) (∵ (a))

=
∑

E∈D:π(x)≥π(E),{x,y}⊂E(t(E, x)− t(E, y)) (∵ (b))

=
∑

E∈D:π(x)≥π(E),{x,y}⊂E,|E|≥l+1(t(E, x)− t(E, y))

+
∑

E∈D:π(x)≥π(E),{x,y}⊂E,|E|≤l(t(E, x)− t(E, y))

= t(D,x)− t(D, y) +
∑

E∈D:π(x)≥π(E),{x,y}⊂E,|E|≤l(t(E, x)− t(E, y)),

where the last equality holds because if E contains both x and y, π(x) ≥ π(E),

and |E| ≥ l + 1 then |E| = l + 1, and hence E must be equal to D. The second

term is zero because there is no D ∈ D such that |D| ≤ l by the definition of l. So

t(D,x) = t(D, y). This completes the proof of the claim. �

The general case can be proved by the induction on |D|. Choose any D such

that |D| = l′ + 1, where l′ > l. Choose any x, y ∈ D. As an induction hypothesis,

suppose that for any E ∈ D, if |E| ≤ l′ then t(E, x) = t(E, y) for any x, y ∈ E. By

the same argument (with l′ in place of l) in the proof of the claim, we have

0 = t(D,x)− t(D, y) +
∑

E∈D:π(x)≥π(E),{x,y}⊂E,|E|≤l′
(t(E, x)− t(E, y)).

Since the second term is zero by the induction hypothesis, t(D,x) = t(D, y). �

B.8.1 Main Proof of Proposition 4 by using Lemma 10

The set {q ∈ RD×X |(i) and (ii)} is affine. So it suffices to show that for any affine

set A, if Pr ⊂ A, then {q ∈ RD×X |(i) and (ii)} ⊂ A. Since the set is affine, then by

Theorem 1.4 of Rockafellar (2015), there exist a positive integer L, L× (|D| × |X|)
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matrix B, and L × 1 vector b such that A = {q ∈ RD×X |Bq = b}. For any l ∈
{1, . . . , L}, Bl(D,x) denotes (l, (D,x)) entry of B. (Remember that B has a column

vector for each (D,x) ∈ D ×X.) So Bq = b means that for any l ∈ {1, . . . , L},∑
D∈D

∑
x∈X

Bl(D,x)q(D,x) = bl. (9)

By assuming Pr ⊂ {q ∈ RD×X |Bq = b}, we will show that if q satisfies (i) and

(ii), then (9) holds for any l ∈ {1, . . . , L}.
Step 1: Bl(D,x) = Bl(D, y) for any l ∈ {1, . . . , L}, D ∈ D, and x, y ∈ D. To

prove Step 1, fix any l. For any π ∈ Π, ρπ ∈ Pr ⊂ {q ∈ RD×X |Bq = b}. Hence,

(9) holds with q = ρπ for any π ∈ Π. Thus ρπ · Bl = ρπ
′ · Bl for any π, π′ ∈ Π. By

Lemma 10, this implies that Bl(D,x) = Bl(D, y) for any D ∈ D, and x, y ∈ D.

By Step 1, we can define Bl(D) = Bl(D,x) for any x ∈ D.

Step 2: If q satisfies (i) and (ii), thenBq = b, i.e.,
∑

D∈D
∑

x∈X Bl(D,x)q(D,x) =

bl for any l ∈ {1, . . . , L}. To prove Step 2, choose any π ∈ Π and l ∈ {1, . . . , L}.
Since ρπ ∈ Pr ⊂ {q ∈ RD×X |Bq = b}, then by (9),

bl =
∑
D∈D

∑
x∈X

Bl(D,x)ρπ(D,x) =
∑
D∈D

Bl(D), (10)

where the second equality holds by ρπ(D, z) = 1 if π(z) ≥ π(D) and ρπ(D, z) = 0

otherwise.

Finally, by using these equalities, for each l ∈ {1, . . . , L}, we obtain the following

equations:∑
D∈D

∑
z∈X Bl(D, z)q(D, z) =

∑
D∈D

∑
z∈D Bl(D, z)q(D, z) (∵ (ii))

=
∑

D∈D
∑

z∈D Bl(D)q(D, z) (∵ Step 1)

=
∑

D∈D Bl(D)
∑

z∈D q(D, z)

=
∑

D∈D Bl(D) (∵ (i))

= bl. (∵ (10))

This establishes that aff.Pr = {q ∈ RD×X |(i) and (ii)}.
The equalities in (i) and (ii) are independent. The dimension of {q ∈ RD×X |(ii)}

is
∑

D∈D |D|. The number of equalities of (i) is |D|. Hence, the dimension of Pr is

(
∑

D∈D |D|)− |D| =
∑

D∈D(|D| − 1).
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B.9 Proof of Proposition 5

Since the set cl.co.Pa(d, η|µ) is compact and convex, ρ∗ = arg infρ∈cl.co.Pa(d,η|µ) d(ρ, ρ̂) =

arg infρ∈cl.co.Pa(d,η|µ) ||ρ − ρ̂||22 exists and it can be written as a convex combina-

tion of elements of cl.Pa(d, η|µ). By Caratheodory’s theorem, it can be written as

ρ∗ =
∑M

i=1 λiρi, where λi ≥ 0,
∑

i λi = 1 and ρi ∈ cl.Pa(d, η), M = dimPr + 1.

For each step n, define En = ‖ρ̂ − ρn‖2 − ‖ρ̂ − ρ∗‖2. For each step n, let α∗n and

ρ∗n be the minimizers over the grids {αn} and cl.Pa(d, η|µ), respectively. Define

C =
∑

i λi‖ρi − ρ∗‖2 and T = max{2E1, 4C}. Note that E1 can be upper bounded

by 2||ρ̂||2 + 2||ρn||2 ≤ 4|D| and similarly C ≤ 4|D|. Thus we can chooce T = 16|D|.
Then, for each step n and each αn,

En ≤ (1− αn)En−1 + Cα2
n. (11)

In the following, we will show En ≤ T
n+1 for each n. We prove this by induction.

The inequality holds with n = 1. Fix n. Suppose En−1 ≤ T
n . By substituting

αn = 2
n+1 to (11), we have (i): En ≤ T

n+1 .44 Let dn = d(ρ̂, ρn) and d∗ = d(ρ̂, ρ∗).

Since En = (
∑

D∈D 1)2((dn)2 − (d∗)2), we have (ii): (dn)2 − (d∗)2 ≤ T ′

n+1 , where

T ′ = T
(
∑
D∈D 1)2

. Then we have (dn − d∗)2 ≤ (dn − d∗)(dn − d∗) + (dn − d∗)2d∗ =

(dn − d∗)(dn + d∗) ≤ T ′

n+1 , where we use the fact that dn ≥ d∗ and d∗ ≥ 0. This

implies dn − d∗ ≤
√

T ′

n+1 .45

44En ≤
n− 1

n+ 1

T

n
+ C

4

(n+ 1)2
=

(n2 − 1)T + 4Cn

(n+ 1)2n
≤ (n2 − 1)T + Tn

(n+ 1)2n
≤ n2T + Tn

(n+ 1)2n
=
Tn(n+ 1)

(n+ 1)2n
=

T

n+ 1
.

45We comment that we can upper bound E1 and C by the squared diameter of the random utility
polytope. For example C ≤

∑
i λi||ρi − ρ∗||2 ≤ supx,y∈Pr

||x− y||22 = 2× the number of choice sets. The
extremum is achieved by selecting x to be a degenerate preference ranking and y its reverse ranking.
Similarly we can bound E1. Notice this implies T = 8 × the number of choice sets. Thus T ′ should be

8

the number of choice sets
.
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Online Appendix for
“Approximating Choice Data by Discrete

Choice Models”

Haoge Chang, Yusuke Narita, and Kota Saito

A Omitted Proofs

A.1 Proof of Proposition 3

To prove the proposition, we will prove the following general claim. The claim is

trivial when the set C is closed. Proposition 3 follows from the claim with C = Pa,
where Pa may not be closed. (For example, when Pa = Pl)
Claim: For any set bounded C ⊂ Rk, let ∆(C) denote the set of Borel probability

measures over C. Then, co.C =
{ ∫

xdm(x)|m ∈ ∆(C)
}

, where
∫
xdm(x) denotes

k-dimensional vector whose l-th element is
∫
x(k)dm(x) for any l ∈ {1, . . . , k}.

Proof. By definition, we immediately obtain co.C ⊂ {
∫
xdm(x)|m ∈ ∆(C)}. In

the following, we will show the statement (∗):
{∫

xdm(x)|m ∈ ∆(C)
}
⊂ co.C.

First we will show the statement (∗∗):
{∫

xdm(x)|m ∈ ∆(C)
}
⊂ cl.co.C.

To prove this statement, suppose by way of contradiction that
∫
xdm(x) 6∈

cl.co.C for some m ∈ ∆(C). By the strict separating hyperplane theorem (Corol-

lary 11.4.2 of Rockafellar (2015)), there exist t ∈ Rk \ {0} and α ∈ R such that

(
∫
xdm(x)) · t = α > x · t for any x ∈ cl.co.C. This is a contradiction because

α = (
∫
xdm(x)) · t =

∫
(x · t)dm(x) <

∫
αdm(x) = α.

We now will show (∗) by the induction on the dimension of co.C.

Induction Base: If dim co.C = 1, then there must exist y and z such that

co.C is the line segment between y and z. In the following, we assume that the

line segment does not contain both y and z but the proof for the other cases

are similar. Then for any x ∈ C, there exists unique α(x) ∈ (0, 1) such that

x = α(x)y + (1 − α(x))z. Notice that the function α is continuous in x and

hence measurable. Moreover, the function α is integrable because α is bounded

and nonnegative. Choose any m ∈ ∆(C), then
∫
αdm =

∫
α(x)dm(x) exists.

Moreover, since 0 < α(x) < 1, it follows from the monotonicity of integral that

0 <
∫
α(x)dm(x) < 1. Denote the value of the integral by β ∈ (0, 1). Then,∫

xdm(x) =
∫
α(x)y + (1− α(x))zdm(x) = βy + (1− β)z ∈ co.C, as desired.
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Choose any integer l ≥ 3.

Induction Hypothesis: Now suppose that (∗) holds for any C such that

dimC ≤ l.
Induction Step: For any C such that dimC = l + 1, (∗) holds. To prove the

step, choose any m ∈ ∆(C). By (∗∗), we have
∫
xdm(x) ∈ cl.co.C.

First consider the case where
∫
xdm(x) ∈ rint.cl.co.C. Since rint.cl.co.C =

rint.co.C (by Theorem 6.3 of Rockafellar (2015)), we have
∫
xdm(x) ∈ co.C, as

desired.

Next consider the case where
∫
xdm(x) 6∈ rint.cl.co.C. Then,

∫
xdm(x) ∈

∂cl.co.C ≡ cl.co.C \ rint.co.C. By the strict separating hyperplane theorem (Corol-

lary 11.4.2 of Rockafellar (2015)), there exists a supporting hyperplane H of cl.co.C

at
∫
xdm(x). There exist t ∈ Rk \ {0} and α ∈ R such that H = {x|x · t = α} and∫

xdm(x)·t = α > x·t for any x ∈ cl.co.C∩Hc. This implies that m(H) = 1. Hence,

m(H ∩ C) = 1. Since H is a supporting hyperplane and cl.co.C 6⊂ H, we obtain

dim(H ∩ aff.C) ≤ l. Hence, dim(H ∩ C) ≤ l. Therefore, the induction hypothesis

shows that
∫
xdm(x) ∈ co.(H ∩ C) ⊂ co.C, as desired. �

The claim above implies Proposition 3. The result is not true in an infinite

dimensional space.46

46Let {ei}∞i=1 be the base of the infinite dimensional real space. Define C = {ei}∞i=1. Define a measure
m on C such that m(ei) = (1/2)i for each i. Then,

∑∞
i=1m(ei) = 1, so that m is a probability measure

on C.
∫
xdm cannot be represented as any finite mixture of elements of C. For any y ∈ co.C, there exists

i such that y(ei) = 0.
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A.2 Derivation of (11) in Section 11

Full calculation is as follows:

En

= ‖ρ̂− (1− α∗n)ρn−1 − α∗nρ∗n‖2 − ‖ρ̂− ρ∗‖2

≤
∑

i λi‖ρ̂− (1− αn)ρn−1 − αnρi‖2 − ‖ρ̂− ρ∗‖2

=
∑

i λi{(1− αn)2‖ρ̂− ρn−1‖2 + 2αn(1− αn)
(
(ρ̂− ρn−1) · (ρ̂− ρi)

)
+ α2

n‖ρ̂− ρi‖2}
−‖ρ̂− ρ∗‖2

= (1− αn)2‖ρ̂− ρn−1‖2 + 2αn(1− αn)
(
(ρ̂− ρn−1) · (ρ̂−

∑
i λiρi)

)
+α2

n

∑
i λi‖ρ̂− ρi‖2 − ‖ρ̂− ρ∗‖2

≤ (1− αn)2‖ρ̂− ρn−1‖2 + αn(1− αn)(‖ρ̂− ρn−1‖2 + ‖ρ̂− ρ∗‖2)− ‖ρ̂− ρ∗‖2

+α2
n

∑
i λi‖ρ̂− ρi‖2

≤ (1− αn)2‖ρ̂− ρn−1‖2 + αn(1− αn)(‖ρ̂− ρn−1‖2 + ‖ρ̂− ρ∗‖2)− ‖ρ̂− ρ∗‖2

+α2
n

∑
i λi‖ρi − ρ∗‖2 + α2

n‖ρ∗ − ρ̂‖2

= (1− αn)‖ρ̂− ρn−1‖2 − (1− αn)‖ρ̂− ρ∗‖2 + α2
n

∑
i λi‖ρi − ρ∗‖2

= (1− αn)En−1 + α2
n

∑
i λi‖ρi − ρ∗‖2.

B EM Algorithm: Details

To compute approximation errors for degree-1-unrepresentable rankings in Table 1,

we fit finite-mixture models to each deterministic preference ranking by the method

of maximum likelihood. The data input is the observed stochastic choice function

ρ̂(D,x) and covariates of each alternative. We choose the number of mixtures, M ,

according to the theoretical upper bound using Corollary 2. Given the number of

mixtures, the model has two sets of parameters: (1) mixture weights {λi}Mi=1 and (2)

coefficients for each mixture {βi}Mi=1. The log-likelihood function of a finite mixture

model with M mixtures is

L ≡
∑
D∈D

∑
x∈D

ρ̂(D,x) log

M∑
i=1

λi
exp(βi · x)∑
y∈D exp(βi · y)

.

We estimate the parameters by the EM algorithm (Dempster et al. (1977), Train

(2009)). We implement the algorithm according to Chapter 14 in Train (2009). We

terminate the algorithm when the change of the implied l2 distance between the

estimated choice probability and the target choice probability is smaller than 1
106

between two successive runs.
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Our use of Maximum Likelihood Estimation with the EM algorithm is partially

motivated by the following observation: If the sufficient condition in Theorem 1-(i)

is satisfied and the target choice probability is an interior random utility model

ρ̂ ∈ rint.Pr, then the model that maximizes the likelihood will yield a perfect fit

to the target probability. Maximum Likelihood Estimation therefore minimizes the

approximation error metric in (5).

To see this, notice that under the sufficient condition in Theorem 1-(i), Propo-

sition 4 and Corollary 2 imply that any interior random utility model can be repre-

sented by a finite mixture of logit models with M =
∑

D∈D(|D|−1) mixtures. That

is, there exists a set of parameters {β∗i , λ∗i }Mi=1 such that
∑M

i=1 λ
∗
i

exp(β∗i · x)∑
y∈D exp(β∗i · y)

=

ρ̂(D,x) for any D ∈ D, x ∈ D and M =
∑

D∈D(|D| − 1). This set of parameters

maximizes the likelihood. Recall that for any other choice probability vector ρ, the

likelihood is: ∑
D∈D

∑
x∈D

ρ̂(D,x) log(ρ(D,x)).

ρ̂ maximizes the likelihood since∑
D∈D

∑
x∈D

ρ̂(D,x)(log(ρ̂(D,x))− log(ρ(D,x)))

=
∑
D∈D

∑
x∈D

ρ̂(D,x) log
ρ̂(D,x)

ρ(D,x)

=−
∑
D∈D

∑
x∈D

ρ̂(D,x) log
ρ(D,x)

ρ̂(D,x)

≥−
∑
D∈D

∑
x∈D

ρ̂(D,x)(
ρ(D,x)

ρ̂(D,x)
− 1)

=−
∑
D∈D

∑
x∈D

ρ(D,x) +
∑
D∈D

∑
x∈D

ρ̂(D,x) = −|D|+ |D| = 0,

where we use the fact − log(x) ≥ −(x − 1) for the inequality. Finally observe that

this set of parameters yields a perfect fit of the target probability.

C In-sample and Out-of-sample Fit

In this section, we show that our method performs better or equally well compared

to standard methods, not only in terms of in-sample fit but also in terms of out-

of-sample fit. We use the same fishing choice dataset used in Section 5 and predict
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choice probabilities using aggregated characteristics.

We estimate a random-coefficient logit model with arbitrary mixing distribu-

tions. In the dataset, we have four alternatives and we consider only one choice set

D = {X}. Thus by Proposition 4 and Corollary 2, it suffices to mix four logit mod-

els without fixed effects to represent any random utility model.47 We also estimate

several standard models for comparison. They include a multinomial logit model; a

nested logit model with two nests (charter and the rest); a nested logit model with

two nests (boat and the rest); a random coefficient logit model with a log-normal

mixing distribution for each variable; a multinomial logit model with alternative

fixed effects; and a random coefficient logit model with log-normal mixing distribu-

tions and alternative fixed effects. We detail the definition of each specification in

Section C.1.

To evaluate in-sample and out-of-sample fit, we adopt the following strategy. We

randomly divide individuals in the sample into a training sample and a test sample of

equal sizes. Separately for the training and testing samples, we average individual

choices and characteristics to obtain aggregate data on choice probabilities and

characteristics. We then estimate the models using the training sample. The models

are estimated by maximizing the log-likelihoods. That is, for each model, we solve

the problem maxθ∈Θ
∑|X|

j=1 ρ̂j log ρ(xj , θ), where j indexes fishing modes, θ is the

parameter vector of the model, Θ denotes the set of possible parameter vectors, ρ̂j

is the observed market share for fishing mode j in the training data, and ρ(xj , θ) is

the model-predicted choice probability for fishing mode j with characteristic vector

xj . See Section C.1 for a likelihood expression for each model. For the standard

models, we maximize the likelihoods with the nonlinear optimization package in R

(Ghalanos and Theussl, 2015; Ye, 1987). For our model, we use the EM algorithm

in Section B of Online Appendix.48

To evaluate the in-sample fit performance, we compute the predicted choice

probabilities in the training sample (ρ̂train ∈ R|X|) and compare it with the observed

choice probabilities in the training sample (ρtrain ∈ R|X|) .49 For this comparison,

we calculate the l2 distance between the predicted choice probabilities and the

aggregated observed choice probabilities ||ρ̂train − ρtrain||2. Similarly, to evaluate

the out-of-sample performance, we compute the predicted choice probabilities using

47In this case, it is easy to show mixing three logit models is enough.
48We prefer the EM algorithm over the greedy algorithm here because the EM algorithm is faster.
49We only consider the single choice set case in this simulation. So the choice probability vector has

length |X|.
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the testing sample (ρ̂test ∈ R|X|) and compare it with the aggregated observed

choice probabilities in the testing sample (ρtest ∈ R|X|). We use the l2 metric

||ρ̂test − ρtest||2 for this comparison as well.

We repeat this exercise with 50 random splits. The results for in-sample fits are

reported in Table A.1. The results for out-of-sample fits are in Table A.2.

As expected, the in-sample fit of our model is perfect. Several standard models,

especially those without fixed effects, exhibit imperfect in-sample fit. For example,

the random coefficient logit model with the log normal distributions has the l2

prediction error 0.038.

Table A.2 shows that the out-of-sample prediction error of our model is positive

but small. Standard models without alternative fixed effects have out-of-sample

prediction errors substantially larger than our model. The two alternative models

with fixed effects have out-of-sample prediction errors comparable to ours. This

result suggests that even without using the fixed effects, our model performs better

or equally well compared to standard models in this simulation, not only in terms

of in-sample fit but also in terms of out-of-sample fit.

C.1 Definitions of Other Models

In each of the standard models used in our empirical section, the choice probability

ρ(X, j) ≡ ρj of alternative j from X is specified as follows:

• Multinomial logit: ρj =
exp (x′jβ)∑

j′∈J exp (x′j′β)

• Nested logit (charter and others): the choice probability of alternative j that

belongs to nest g is specified as

ρj =
exp (x′jβ/λ)∑

j′∈Jg exp (x′j′β/λ)
×

[∑
j′∈Jg exp (x′j′β/λ)

]λ
∑

g′∈G

[∑
j′∈Jg′

exp (x′j′β/λ)
]λ .

The nest is defined by the partition G = {{charter} , {beach, boat, pier}} .

• Nested logit (boat and others): the nested logit model specified above, with

the nest defined by G = {{boat} , {beach, charter, pier}} .

• Mixed logit: ρj =
∫ exp (x′jβ)∑

j′∈J exp (x′j′β)
f(β)dβ where f is the density of the dis-

tribution of random coefficients. We use independent log-normal distributions
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Table A.1: In-Sample Fit

Choice probabilities Prediction error
Beach Boat Charter Pier

(1) (2) (3) (4) (5) (6)
Our method 0.114 0.353 0.383 0.151 0.000

(0.009) (0.015) (0.017) (0.010) (0.000)
Multinomial logit 0.141 0.355 0.378 0.126 0.038

(0.007) (0.015) (0.017) (0.007) (0.009)
Nested logit 0.114 0.353 0.383 0.150 0.001

(charter and others) (0.010) (0.015) (0.017) (0.011) (0.002)
Nested logit 0.141 0.355 0.378 0.126 0.038

(boat and others) (0.007) (0.015) (0.017) (0.007) (0.009)
Mixed logit with 0.142 0.354 0.378 0.126 0.038

log normal distribution (0.008) (0.015) (0.017) (0.007) (0.009)
Multinomial logit 0.113 0.353 0.383 0.151 0.000
with fixed effects (0.009) (0.015) (0.017) (0.010) (0.000)

Mixed logit with log normal 0.114 0.353 0.383 0.151 0.000
distribution and fixed effects (0.009) (0.015) (0.017) (0.010) (0.000)

Note: Table A.1 summarizes the in-sample fit of different models. The row “our method” presents choice probabilities

predicted by the four-mixture mixed logit model and the prediction error. The remaining rows present in-sample predicted

choice probabilities and prediction errors obtained by standard models. In parentheses are standard deviations obtained by

repeating the same analyses 50 times.

for each coefficient. To evaluate the integral, we random draw 100 realizations

from the random coefficient distribution.

• Multinomial logit with fixed effects: the above multinomial logit model with

x including dummies for each alternative (except for beach).

• Mixed logit with fixed effects: the random coefficient logit model with log

normal distributions. We also include fixed effects for each alternative (except

for beach). To evaluate the integral, we random draw 100 realizations from

the random coefficient distribution.
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Table A.2: Out-Sample Fit

Choice probabilities Prediction error
Beach Boat Charter Pier

(1) (2) (3) (4) (5) (6)
Our method 0.114 0.353 0.383 0.151 0.049

(0.009) (0.015) (0.017) (0.010) (0.017)
Multinomial logit 0.143 0.353 0.377 0.127 0.058

(0.011) (0.017) (0.022) (0.011) (0.019)
Nested logit 0.115 0.350 0.383 0.152 0.050

(charter and others) (0.012) (0.022) (0.018) (0.014) (0.020)
Nested logit 0.143 0.353 0.377 0.127 0.058

(boat and others) (0.011) (0.017) (0.022) (0.011) (0.019)
Mixed logit with 0.143 0.352 0.377 0.127 0.058

log normal distribution (0.010) (0.016) (0.021) (0.010) (0.018)
Multinomial logit 0.116 0.350 0.380 0.154 0.048
with fixed effects (0.014) (0.019) (0.022) (0.019) (0.022)

Mixed logit with log normal 0.113 0.353 0.383 0.151 0.048
distribution and fixed effects (0.008) (0.015) (0.018) (0.010) (0.017)

Note: Table A.2 summarizes the out-sample fit of different models. The row “our method” presents choice probabilities

predicted by the four-mixture mixed logit model and the prediction error (5). The remaining rows present out-of-sample

predicted choice probabilities and prediction errors obtained by standard models. In parentheses are standard deviations

obtained by repeating the same analyses 50 times.
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