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Abstract

This paper extends the theory of general equilibrium with Knightian uncertainty
to economies with more than two dates. Agents have incomplete preferences with
multiple priors à la Bewley. These priors are updated in light of new information.
Contrary to the two-date model, the market outcomes varies with choice of updat-
ing rule. We document two phenomena: First, unless agents apply the full Bayesian
rule, consumption decisions may be dynamically inconsistent. Second, unless they
apply the maximum-likelihood rule, ambiguous probability mass may dilate, which
causes price fluctuations. Either phenomenon results in Pareto inefficient alloca-
tions. We ask whether it is possible to design one updating rule that prevent both
phenomena. The answer is negative: No such rule exists. Efficiency can be restored
by restricting priors: Full Bayesian and maximum-likelihood updates agree when
priors are rectangular, and when ambiguity is sufficiently large, all equilibria are
Pareto efficient, even if prices and allocations change over time.
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1 Introduction

Two of the central themes of economic theory are decisions and markets. Consider the
sequential decision problem of a market participant as information unfolds gradually over
time. There is little disagreement among economists that better information should re-
duce uncertainty, but substantially more disagreement about the exact meaning of un-
certainty. In expected utility theory, uncertainty is represented by states of the world,
and agents assign probabilities – this is uncertainty in the traditional sense. By con-
trast, Knight (1921) reserves the term uncertainty for circumstances that do not permit
the assignment of precise probabilities – uncertainty in the Knightian sense. Both types
of uncertainty are synthesized in the Knightian decision model of Bewley (1986, 2002),
which is a multiple-prior generalization of the subjective expected utility model of Savage
(1954). Some events have ambiguous probabilities, but the agent has no attitude toward
ambiguity: Knightian uncertainty results in incomplete preferences. The purpose of the
present paper is to study competitive equilibria when agents with preferences of the Bew-
ley type meet in a sequence of complete contingent markets à la Arrow and Debreu (1954).

We build on the important contribution of Rigotti and Shannon (2005), who general-
ize the two-date Arrow-Debreu model to a setting with multiple priors. Two of their
findings are particularly relevant in our context: First, Knightian uncertainty results in a
large equilibrium set, including equilibria with identical prices but different allocations, as
well as equilibria with identical allocations but different prices. Second, all these equilibria
are Pareto efficient. This welfare result is strong but limited to a market that opens only
once. After the market has closed, the state of the world is revealed and all agents con-
sume. We call this the two-date model, but it may also accommodate contingent claims
for multiple future dates, as in Dana and Riedel (2013). The present paper modifies this
setting by permitting trade at subsequent dates. Under subjective expected utility, this
modification would have no effect: Agents attain a Pareto efficient allocation in the initial
market, and even if markets open again in the future, no more trade takes place because
preference orderings and budget sets do not change. This turns out to be different under
Knightian uncertainty.

In contrast with the two-date model, beliefs must be updated on several consecutive
dates. From studies of the maxmin expected utility model of Gilboa and Schmeidler
(1989), it is known that updates of set-valued beliefs may reverse preference orderings.
Such dynamic inconsistency also occurs in the Knightian decision model, and agents may
revise their initial consumption plans, even if their budget sets do not change. A dif-
ferent phenomenon at play is what Seidenfeld and Wasserman (1993) call dilation: In
response to new information, ambiguous probability mass may spread to unambiguous
events. Agents become uncertain about probabilities they knew before. In the equilib-
rium context, dilation results in a sudden expansion of the set of market-clearing prices.
This gives rise to equilibria at which budget sets change over time, and agents revise
their initial consumption plans, even if their preferences are dynamically consistent. Both
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phenomena result in deviations from Pareto efficient allocations after new information is
released.

Whether dynamic inconsistency and dilation occur depends on the choice of updating
rule for beliefs. In the traditional single-prior setting, Bayes’ law determines a unique
updating rule. In settings with multiple priors, this is no longer true: A large set of up-
dating rules is consistent with Bayes’ law, and different agents may apply different rules.
As Hanany and Kilbanoff (2007) show, none of these rules are able to guarantee dynamic
consistency in the maxmin expected utility model. In the Knightian decision model, a
more affirmative result can be obtained: The criterion of dynamic consistency is fulfilled
if agents update their beliefs prior by prior, as suggested by Bewley (1987).

1. The unique updating rule that guarantees dynamic consistency is full Bayesian
updating. (Proposition 2)

Dilation goes against the principle that better information should be used to reduced
uncertainty. Contrary to intuition, agents forget probabilities they knew before. We
define a condition of ambiguity containment, which ensures that new information does
not create new uncertainty. This condition is met if agents apply the maximum-likelihood
rule, as axiomatized by Gilboa and Schmeidler (1993).

2. The unique updating rule that guarantees ambiguity containment is maximum-
likelihood updating. (Proposition 3).

Since both these rationality criteria are standard in the single-prior setting, a natural
objective is to identify an updating rule that guarantees both jointly, even if agents have
multiple priors. However, this objective cannot be achieved: We show that there exists
no updating rule that satisfies Bayes’ law and guarantees both dynamic consistency and
ambiguity containment for arbitrary priors. In light of this impossibility result, we ask
whether there is a nontrivial subset of economies in which this conflict between rationality
criteria disappears. This question is answered in the affirmative: The rectangularity
condition of Epstein and Schneider (2003), which characterizes dynamic consistency in
the maximum expected utility model, turns out to be relevant for sequential decisions
under Bewley preferences. We offer the following characterization:

3. Rectangularity holds if and only if full Baysian updating, maximum-likelihood up-
dating, and minimum-likelihood updating agree on observable events (Theorem 1).

Together with the two previous characterizations, this result establishes that rectan-
gularity implies dynamic consistency and ambiguity containment simultaneously. These
properties of decision making translate into properties of market equilibrium. It is well
understood that incomplete preferences fall short of assumptions on how decisions be-
tween incomparable alternatives are made. In absence of such assumptions, agents may
switch back and forth between incomparable plans over time. This results in equilibria
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with fluctuations in prices and allocations that may be hard to justify. To avoid equilibria
with erratic behavior, it has become customary to apply equilibrium refinements. To this
end, Bewley (1986) proposes the criterion of inertia: Plans never change without a reason.
Agents will only deviate from the status quo if a preferred alternative becomes available.1

The combination of dynamic consistency and inertia leads to market outcomes that are
socially desirable:

4. Dynamic consistency and inertia jointly imply Pareto efficiency (Theorem 2).

In spite of its normative appeal, inertia is a controversial criterion. It may be criticized
for lacking an axiomatic foundation. Some critics may even argue that the volatility it
eliminates is a natural feature of Knightian uncertainty. We ask whether it is possible
to reach the same welfare standard without resorting to inertia. Again we can answer
this question in the affirmative, albeit under strong restrictions on priors. We introduce
a condition of maximum rectangularity, which combines rectangularity with a maximum
of ambiguity about probabilities of events observable at intermediate dates. Contrary to
inertia, the idea is not to prevent deviations from a Pareto efficient initial market outcome,
but to render the set of Pareto efficient allocations sufficiently large that all deviations
remain within this set. This requires that ambiguity does not spread to unambiguous
events. In this case, even if prices and allocations change over time, market outcomes are
socially desirable:

5. Ambiguity containment and maximum rectangularity jointly imply Pareto efficiency
(Theorem 3).

This is the attractive feature of the Knightian decision model: Even though it shares
with other incomplete preference models the difficulty that dynamically efficient behavior
depends on intertemporal consistency conditions, these conditions boil down to proper-
ties of updating rules. These properties are testable and have a normative foundation in
decision theory.

The remainder of this paper is structured as follows. Section 2 introduces the model.
Section 3 demonstrates, by means of an example, puzzling features of updating rules and
the resulting inefficiency. Section 4 connects updating rules with normative criteria, and
presents all decision theoretic results. This section is self-contained and accessible after
preliminary reading of sections 2.1 through 2.3. Section 5 focuses on equilibrium aspects
and presents all welfare results. Section 6 concludes.

2 Model

Consider a finite-horizon stochastic economy with symmetric information. The stochastic
model is a tree: The terminal nodes represent possible states of the world, and each

1Concerned with but a single agent, Bewley speaks of inertia as a behavioral assumption, not as part
of a solution concept.
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predecessor node represents public information at a given date about the realized state.
Information is gradually released over a finite number of dates. The economy is populated
by a finite number of agents whose objects of choice are contingent consumption plans:
Each agent plans how much to consume at each node of the tree. Contingent markets can
be used to transfer consumption across different nodes.

2.1 Time and Uncertainty

There are T + 1 dates, enumerated by t ∈ {0, . . . , T}. At date 0, the state of the world is
drawn from a finite state space Ω but not revealed. At each date t > 0, new information
about the state of the world becomes public. This gradual revelation is modeled as a
sequence of information partitions I = {It}Tt=0 on Ω. Each event ξ ∈ It is an information
set: It consists of all those states that cannot be distinguished on the basis of the infor-
mation available at date t. Initially, at date 0, none of the states can be distinguished;
that is, I0 = {Ω}. The information partitions become finer as time progresses. Finally, at
date T , the state of the world is known; that is, IT = {{ω}ω∈Ω}. Thus, the information
structure I defines a tree of date-events (t, ξ), with L =

∑T
t=0 |It| nodes.

Probabilities on Ω are represented by a measure µ : 2Ω → [0, 1] normalized to µ(Ω) = 1.
Since the number of states if finite, every probability measure can be represented as a
point on ∆|Ω|, the unit simplex in |Ω|-dimensional Euclidean space. A state ω ∈ Ω occurs
with probability µ(ω), and an event ξ ⊆ Ω occurs with probability µ(ξ). For any subset
of events E ⊂ 2Ω, denote by µ|E the domain restriction of µ to E . Moreover, denote by
Eµ[ · ] the expectation operator under µ.

2.2 Agents and Preferences

There are I agents, indexed by superscripts i ∈ {1, . . . , I}. All agents have preferences
over consumption plans from a common consumption space C = RL. There is one com-
modity per date-event, and each consumption plan x ∈ C maps date-events (t, ξ) to
consumption levels x(t, ξ). The following notation is used throughout: x ≥ 0 means all
components are nonnegative, x > 0 means at least one component is not zero, and x� 0
means all components are greater than zero. The positive orthant is C+ = {x ∈ C |x ≥ 0},
and its interior is C++ = {x ∈ C |x� 0}.

The preference relation x �i y indicates that agent i prefers x ∈ C+ to y ∈ C+. All
agents have preferences of the Bewley type: Each agent i has multiple priors, represented
by a set Πi of subjective probabilities πi : 2Ω → [0, 1].

Assumption 1 (Subjective probabilities). For each agent i, Πi is closed and convex.
Each event ξ ∈ It, t ≥ 0, has a positive probability πi(ξ) > 0 under each πi ∈ Πi. Each
state ω ∈ Ω has a positive probability πi(ω) > 0 under some πi ∈ Πi.

The positivity requirements in Assumption 1 are mild regularity conditions. These
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rule out division by zero when computing conditional probabilities as well as degenerate
priors that are entirely contained in one face of ∆|Ω|.

Assumption 2 (Preferences). For each agent i,

x �i y if and only if Eπi [ui(x)] > Eπi [ui(y)] ∀πi ∈ Πi ,

in which ui : RT+1
+ → R is additively separable, continuous, strictly increasing, concave,

and differentiable on RT+1
++ .

If Πi is a singleton, the agent is a traditional expected utility maximizer. However,
if Πi is a larger set, the agent’s preferences are transitive, monotone, and convex but
incomplete.2 In this case, the preference relation can be represented by a collection of
implied expected utility functions Uπi(x) = Eπi [ui(x)], one for each πi ∈ Πi. A plan x is
said to be undominated if there is some πi ∈ Πi such that x maximizes Uπi over the set
of alternatives; this means, there is no feasible alternative y �i x. Some plans are always
comparable: If x� y, then the expected utility Uπi(x) must exceed the expected utility
Uπi(y) under any probability measure πi. By differentiability, all implied expected utility
functions have a well-defined gradient DUπi [x] ∈ C++ at any interior consumption plan x.
These gradients can be used to define the marginal rates cone of the preference relation
�i as the conical hull

∇U i[x] = cone
{
DUπi [x]

∣∣∣ πi ∈ Πi
}
.

Bewley’s inertia assumption requires that agents compare alternatives to some status
quo. The status quo of agent i at date 0 is his endowment ei ∈ C++. If agents decide at
a future date t > 0 to deviate from a status quo, choices are restricted to the conditional
domain

Ct(ei) = {x ∈ C+ |x(s, ξ′) = ei(s, ξ′) ∀ξ′ ∈ Is ∀s < t} ;

that is to say, only future consumption can be changed and the past cannot be undone.
Further constraints for choices at a specific date-event (t, ξ) will be formulated using the
subtree inner product

[x, y](t,ξ) =
T∑
s=0

∑
ξ′⊆ξ

x(s, ξ′) y(s, ξ′)1Is(ξ
′) ,

which agrees with the canonical dot inner product x · y at the root node (0,Ω).

2This preference representation is introduced by Rigotti and Shannon (2005) and is slightly more
general than the axiomatization of Bewley (1986, 2002), which results in a linear function ui. Additive

separability is a further generalization of Bewley (1987), who assumes a function ui(x) =
∑T

t=0 β
tũi(xt)

with constant discount factor β ∈ (0, 1).
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2.3 Updating

To make precise the idea that agents update their subjective probabilities in light of new
information, define the updating rule Πi : 2Ω ⇒ ∆|Ω| of agent i as a nonempty-closed-
convex-valued correspondence from the observed event ξ ⊆ Ω to his set of posterior
probabilities Πi(ξ). We follow the convention of dropping parentheses whenever Ω is the
argument, such that Πi(Ω) = Πi is the set of prior probabilities. Bayesian updating
is the natural rule in the single-prior case: The unique posteriors are the conditional
probabilities

πi(ω|ξ) =

{
πi(ω)
πi(ξ)

if ω ∈ ξ
0 otherwise

. (1)

By contrast, in the multiple-prior case, the set of candidate updating rules is large. A
minimal requirement is Bayes’ law:

Definition 1. An updating rule Πi satisfies Bayes’ law if for any ξ ⊆ Ω the following
condition is true:

πi ∈ Πi(ξ) =⇒ ∃π̂i ∈ Πi with πi( · ) = π̂i( · |ξ) .

Each agent may have his individual updating rule, as long as this rule is consistent
with Definition 1. The conditional preference relation of agent i on observing ξ is jointly
determined by Assumption 2 and the update Πi(ξ):

x �iξ y if and only if Eπi [ui(x)] > Eπi [ui(y)] ∀πi ∈ Πi(ξ) .

In words: x is conditionally preferred to y in event ξ. Conditional preferences result
in a conditional marginal rates cone

∇U i[x](ξ) = cone
{
DUπi [x]

∣∣∣ πi ∈ Πi(ξ)
}
.

We shall write x �it y if x is conditionally preferred to y in some event ξ ∈ It and
conditionally equivalent or preferred to y in each event ξ ∈ It, in which conditional
equivalence means that x and y have identical values in the entire subtree rooted at date-
event (t, ξ). As we shall see, two candidates for the updating rule Πi are particularly
relevant from a normative viewpoint. The first is the so-called full Bayesian rule:

Πi
B(ξ) =

{
πi( · |ξ)

∣∣ πi ∈ Πi
}
. (2)

It applies Equation (1) prior by prior and is therefore the least selective updating rule
that satisfies Bayes’ law. By contrast, only those priors that assign the highest probability
to the observed event are considered under the maximum-likelihood rule:

Πi
M(ξ) =

{
πi∗( · |ξ)

∣∣∣∣ πi∗ ∈ arg max
πi∈Πi

πi(ξ)

}
. (3)
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One additional updating rule that has little normative appeal but interesting technical
properties is the minimum-likelihood rule, which reduces model uncertainty by discarding
all models except those least likely to generate the observed data:3

Πi
W(ξ) =

{
πi∗( · |ξ)

∣∣∣∣ πi∗ ∈ arg min
πi∈Πi

πi(ξ)

}
. (4)

2.4 Production

There are K production technologies indexed by superscripts k ∈ {1, . . . , K}. Each
technology can be used to convert some consumption good at date t to contingent con-
sumption at date t+ 1. All agents have non-rivalrous access to the same K technologies.
The key assumption is that production plans are short-lived: If production starts at date-
event (t, ξ), the costs of production have to be paid immediately, and all output becomes
available at the direct successor nodes in the date-event tree. Once a successor node is
reached, production plans for the next period are implemented, and this continues until
the final output is paid off at the terminal date T . Production plans entail no long-term
commitment.

All feasible production plans are collected in the production set Yk ⊂ C. For each el-
ement Y ∈ Yk, negative signs Y (t, ω) < 0 denote input and positive signs Y (t, ω) > 0
denote output.

Assumption 3 (Production technology). For each technology k, Yk is a closed, convex
cone, and there is a date-event (t, ξ) with t < T such that each Y ∈ Yk satisfies

1. Y ∈ Ct(0) (no retroaction)

2. Y (t, ξ) ≤ 0 (irreversibility)

3. Y (t, ξ) = 0 =⇒ Y = 0 (no free output)

4. Y (s, ξ′) > 0 =⇒ s = t+ 1 (one-period activity)

5. Y (t+ 1, ξ′) > 0 =⇒ ξ′ ∈ It+1 and ξ′ ⊆ ξ (output in successor nodes).

Since production sets are cones under Assumption 3, all technologies have constant
returns to scale. The following requirements are expressed by the five conditions in As-
sumption 3: First, there is no input or output before the initial date-event. Second,
production requires input at the initial date-event. Third, zero input leads to zero out-
put. Fourth, there is no long-term commitment. Fifth, output cannot appear in other
branches of the date-event tree. The aggregate production set is Ȳ =

∑K
k=1 Yk, and if

Ȳ = {0}, the model boils down to a pure exchange economy.

3The subscript is an M turned upside down, just like this rule turns the logic of maximum-likelihood
updating upside down.
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2.5 Contingent Markets

Trade takes place in a sequence of complete markets for contingent consumption. At date
0, consumption at all L date-events is traded, and all L prices are collected in the price
vector q0 ∈ C+. Each agent i chooses a consumption plan ci0 ∈ C+ subject to the date 0
budget constraint

q0 · ci0 ≤ q0 · ei + q0 · Y for some Y ∈ Ȳ .

In words: The market value of consumption must not exceed the market value of the
initial status quo allocation ei net of feasible production. Since preferences are mono-
tone under Assumptions 1 and 2, the budget constraint will always bind and should be
thought of as holding with equality. At date 1, markets open again for consumption at all
subsequent nodes of the date-event tree. In light of new information, prices may change
to q1 ∈ C1(q0), and each agent i may retrade the status quo allocation ci0 for a revised
consumption plan ci1 ∈ C1(ci0). Note that ci1 is a complete contingent plan of the agent,
which incorporates the choices in all markets that are open at date 1 nodes. By definition
of the conditional domain, the price and allocation of date 0 consumption good can no
longer change at this point in time.

This procedure repeats itself: At any date t < T , markets open again after new in-
formation is released. Prices may change to qt ∈ Ct(qt−1), and the status quo allocation
of agent i is cit−1, the consumption plan carried over from the previous date. The generic
date t budget set of the agent is therefore

Bt(qt, c
i
t−1) =

{
cit ∈ Ct(cit−1)

∣∣∣∣ [qt, c
i
t − cit−1](t,ξ) = [qt, Y ](t,ξ)

for all ξ ∈ It and some Y ∈ Ȳ

}
,

which depends on current prices and on the current status quo allocation. At date 0, this
status quo is understood as ci−1 = ei. The choices of all agents at date t are collected in
the vector ct = (c1

t , . . . , c
I
t ).

2.6 Equilibrium

Agents face a sequence of prices q = (q0, . . . , qT−1) and a sequence of decisions c =
(c0, . . . , cT−1). Recall that when preferences are complete, the decision criterion is opti-
mality. A decision is optimal if it is preferred to all alternatives. By contrast, Bewley
preferences are incomplete and thus based on the weaker criterion of undominatedness.
A decision is undominated if there is no preferred alternative.4 The consumption plan
cit is undominated for agent i if Dit(qt, cit) = ∅, in which Dit : C+ × C+ ⇒ C+ is the
dominating-set correspondence, defined as

Dit(qt, x) =
{
cit ∈ Bt(qt, x)

∣∣ cit �it x} .
4Two decisions can be simultaneously undominated for two reasons: Either they are not comparable

or the agent is indifferent. However, indifference can be a narrow concept under Bewley preferences.
Gerasimou (2018) shows that indifference sets are singletons if Πi is full-dimensional.
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The economy is in equilibrium if all agents choose undominated consumption plans
subject to their budget constraint at given prices, and prices are set in such way that all
contingent markets clear.

Definition 2. An equilibrium is tuple (q, c) ∈ CT++×CIT++ of prices and consumption plans
that satisfies at each date t ∈ {0, . . . , T − 1},

1. for each agent i,

Dit(qt, cit) = ∅ and
(
cit 6= cit−1 =⇒ cit ∈ Bt(qt, c

i
t−1)
)

2. market clearing,
I∑
i=1

(
cit − ei

)
∈ Ȳ .

Note that equilibrium prices and allocations are strictly positive by definition: Given
the results of Rigotti and Shannon (2005), we expect a large number of equilibria, indeter-
minate both in prices and allocations. In face of such indeterminacy, we take the liberty
of concentrating on interior equilibria, at which utility functions Uπi are differentiable.
Equilibrium indeterminacy reduces the explanatory power of the model, and this side-
effect of incomplete preferences is particularly pronounced in a dynamic context: As time
progresses, agents may switch back and forth between undominated choices for no partic-
ular reason. In awareness of this issue, Bewley (1986, 2002) introduces the assumption of
inertia: An agent deviates from a status quo only if the status quo is dominated by the
new choice. Inertia leads to an equilibrium refinement in the allocation dimension. This
is what Rigotti and Shannon (2005) and Dana and Riedel (2013) refer to as equilibrium
with interia:

Definition 3. An equilibrium with inertia is tuple (q, c) ∈ CT++ × CIT++ of prices and
consumption plans that satisfies at each date t ∈ {0, . . . , T − 1},

1. for each agent i,

Dit(qt, cit) = ∅ and
(
cit 6= cit−1 =⇒ cit ∈ Dit(qt, cit−1)

)
2. market clearing,

I∑
i=1

(
cit − ei

)
∈ Ȳ .

In comparison with Definition 2, the budget constraint cit ∈ Bt(qt, c
i
t−1) is replaced

with the stronger requirement that choices must be affordable and dominate the status
quo cit−1. Recall that the status quo of the agent at date 0 is ci−1 = ei. In both of
the above equilibrium concepts, the production set Ȳ places an exogenous restriction on
indeterminacy in the price dimension. This insight should be attributed to Chambers
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(2014), who characterizes undominated choice in the presence of production technologies.
At date 0, an interior consumption plan ci0 of agent i is undominated if and only if

q0 ∈ ∇U i[ci0] ∩NȲ [Y ] for some Y ∈ Ȳ , (5)

in which NȲ [Y ] is the normal cone to Ȳ at Y . By convexity of production sets, NȲ =⋂K
k=1 NYk at any point of evaluation. The restrictions imposed by (5) can be summarized

as follows: If date-event (t, ξ) is unambiguous for at least one agent i, or contained in
the output range of at least one technology k, then there must be unique price q0(t, ξ) of
consumption at that date-event, for any initial equilibrium allocation c0. Initial allocations
are always Pareto efficient : There exists no other feasible allocation ĉ0 such that ĉi0 �i ci0
for each agent i. For interior allocations, this follows from the characterization of Pareto
efficiency (see Chambers (2014), p. 50, Proposition 6),

I⋂
i=1

∇U i[ci0] ∩NȲ [Y ] 6= ∅ for some Y ∈ Ȳ . (6)

Since the first-order condition (5) holds for each agent i in equilibrium, (6) is implied.
Therefore, inefficient allocations can only arise if agents abandon their initial consumption
plans at a future date. As the following example shows, such inefficient deviations can
indeed occur when markets reopen. Technological price restrictions via (5) are used to
keep the example tractable.

3 Example

The example is based on an economy with three dates and four states of the world
Ω = {ω1, ω2, ω3, ω4}. Information unfolds in a binomial tree: The sequence of information
partitions is I0 = {Ω}, I1 = {{ω1, ω2}, {ω3, ω4}}, and I2 = {{ω1}, {ω2}, {ω3}, {ω4}},
and these seven nodes are assigned labels ` = 0, . . . , 6. We write ξ1 = {ω1, ω2} and
ξ2 = {ω3, ω4} for the two branches at date 1, corresponding to labels 1 and 2. There are
I = 2 agents with identical utility functions

Eπi [ui(ci)] = ci(0) +
L∑
`=1

πi(`) ln(ci(`)),

and identical endowments ei = (6, 0, 0, 0, 1, 1, 0). Thus, each agent is endowed with six
units of the consumption good at date 0, and one unit at the terminal nodes 4 and 5.
Consumption at the remaining four date-events is possible through production. There are
K = 4 constant returns to scale production technologies that can be used generate output
in nodes 1, 2, 3, and 6. One unit of input at the predecessor node yields two units at the
output node. These production possibilities are summarized in the aggregate production
set Ȳ =

{
α ·M | α ∈ R4

+

}
, which contains the rows of
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Figure 1: Date-event tree. Nodes are labeled with ` = 0, . . . , 6; branches with Agent 1’s
prior probability of passing through. Relative prices are fixed along solid branches, and
endogenous along dashed branches.

M =


−1 2 0 0 0 0 0
−1 0 2 0 0 0 0
0 −1 0 2 0 0 0
0 0 −1 0 0 0 2


and all their conical combinations. According to the first-order condition (5), equilibrium
prices must satisfy the normality condition q0 ·M> = 0. For example, the first row of
M restricts the price of consumption in node 1 relative to node 0 to q0(1)

q0(0)
= 1

2
. There

can be no indeterminacy in these prices. Only the prices of consumption in nodes 4 and
5 may float freely. The corresponding date-event tree is visualized in Figure 1. The
only difference between the two agents is in their subjective probabilities. Agent 1 can
assign precise probabilities to states ω2 and ω3 but faces Knightian uncertainty about the
probability of the remaining two states:

Π1 =

{(
η

2
,
1

4
,
1

4
,
1− η

2

) ∣∣∣∣ η ∈ [0, 1]

}
From the perspective of Agent 1, the set of elementary unambiguous events is A1 =

{{ω2}, {ω3}, {ω1, ω4}}. This set is a partition of the state space Ω, and will be referred
to as ambiguity partition. By contrast, Agent 2 assigns precise probabilities to all four
states and is therefore a classical expected utility maximizer:

Π2 =

{(
1

4
,
1

4
,
1

4
,
1

4

)}
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The set of prices and allocations that clear the date 0 market is fairly easy to compute.
Each element (q0, c0) corresponds to an Arrow-Debreu equilibrium of an economy with
two subjective expected utility maximizers. The whole set is then obtained by varying the
parameter η over the unit interval. Recall that prices of consumption at nodes 4 and 5 are
determined endogenously and may, in principle, vary across equilibria (in Figure 1 this is
highlighted in the form of dashed branches). However, in this particular example, both
agents assign unique probabilities to states ω2 and ω3. As a consequence, consumption
at the corresponding terminal nodes must have determinate relative prices. The set of
market-clearing prices is therefore a ray:

q0 ∈ cone

{(
1,

1

2
,
1

2
,
1

4
,
1

4
,
1

4
,
1

4

)}
At these prices the consumption plans of both agents as η varies are:

c1
0 =

(
9

2
,
1

2
+ η,

3

2
− η, 2η, 1, 1, 2− 2η

)
c2

0 =

(
9

2
, 1, 1, 1, 1, 1, 1

)
Agent 2 has complete preferences that result in a unique optimal plan at given prices

q0. By contrast, Agent 2 has incomplete preferences that result in a continuum of undom-
inated plans. These different plans do not involve different trading behavior in the market
but are entirely implemented through different choices of production scales; in aggregate:

Y0 =

(
−3,

3

2
+ η,

5

2
− η, 1 + 2η, 0, 0, 3− 2η

)
Since the date 0 allocation c0 serves as the status quo in date 1 markets, different

choices of η must result in different equilibria. We pick as one particular instance η̂ = 1
2
,

which results in the status quo ĉ1
0 = ĉ2

0 =
(

9
2
, 1, 1, 1, 1, 1, 1

)
. It is easy to verify that this

allocation is Pareto efficient: The marginal rates cone of Agent 1 is

∇U1[ĉ1
0] = cone

{(
1,

1 + 2η

4
,
3− 2η

4
,
η

2
,
1

4
,
1

4
,
1− η

2

) ∣∣∣∣ η ∈ [0, 1]

}
,

and since the marginal rates cone of Agent 2 is the ray

∇U2[ĉ2
0] = cone

{(
1,

1

2
,
1

2
,
1

4
,
1

4
,
1

4
,
1

4

)}
,

it is true that q0 ∈ ∇U1[ĉ1
0] ∩ ∇U2[ĉ2

0] and the necessary and sufficient condition (6) is
met. Will the agents deviate from these plans at date 1? Two cases are considered.

Case 1. Maximum-likelihood updating : Suppose both agents apply the maximum-likelihood
rule to update their prior probabilities. If event ξ1 is observed, updating leads to unique
posterior probabilities

13



ω1

ω2 ω3

ω4

ξ1 ξ2

A1 ω1

ω2 ω3

ω4 A1(ξ1)

Figure 2: From left to right: Ambiguity partition (solid) before and after observing the
event ξ1 under maximum-likelihood updating.

Π1
M(ξ1) =

{(
2

3
,
1

3
, 0, 0

)}
, Π2

M(ξ1) =

{(
1

2
,
1

2
, 0, 0

)}
.

For Agent 1, these are the conditional probabilities at η = 1, and thus the maximal
probability mass is put on the observed event. By symmetry of the example, if ξ2 is
observed, conditional probabilities at η = 0 are taken, and the posterior probabilities are

Π1
M(ξ2) =

{(
0, 0,

1

3
,
2

3

)}
, Π2

M(ξ2) =

{(
0, 0,

1

2
,
1

2

)}
.

Note that Knightian uncertainty is completely resolved at date 1. This is illustrated
in Figure 2: The left panel shows the information partition I1 at date 1 (dashed), and the
ambiguity partition A1 of the first agent. The large cell {ω1, ω4} visualizes the ambiguity
about the probability of these two states. The right panel shows the conditional ambigu-
ity partition after observing event ξ1, which coincides with the information partition I2

at date 2. Just like the information partitions become finer over time, also the ambigu-
ity partitions become finer over time – new information reduces uncertainty, both in the
traditional and Knightian sense. However, this reduction in uncertainty has an effect on
the decision problem of Agent 1. The first-order condition (5) implies that q0 ∈ ∇U1[ĉ1

0].
A section of this set inclusion along the c1

0(3)–c1
0(4) plane is depicted in the left panel of

Figure 3. Knightian uncertainty results in a two-dimensional marginal rates cone. The
right panel displays the same section after the information release: As ambiguity vanishes,
the marginal rates cone collapses to a ray, and the price vector is no longer contained.

The consequences for the plan of the agent are easily seen: Since there is no uncer-
tainty remaining, the conditional preferences are complete and have an expected utility
representation with well-defined indifference surfaces. The indifference surface through
the original consumption plan ĉ1

0 (more precisely, its section on the c1
0(3)–c1

0(4) plane) is
illustrated as the solid curve in the right panel. There is no point of tangency between
the curve and the budget set. The optimal allocation involves more consumption at node
3 and less consumption at node 4 than in the original plan ĉ1

0. If Agent 1 adjusts his
demand, the market cannot clear under the original prices q0. Instead, market clearing
results in different prices in the date 1 markets:
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∇U1
q0

1 2 3
c1 (3)

1

2

3
c1 (4)

∇U1(ξ1)q0

1 2 3
c1 (3)

1

2

3
c1 (4)

Figure 3: Section of Agent 1’s budget set before and after the information release. The
state price vector (q0(3), q0(4)) drops out of the marginal rates cone.

q1 ∈ cone

{(
1,

1

2
,
1

2
,
1

4
,
15

76
,
15

76
,
1

4

)}
Both agents react and choose different consumption plans under new prices q1:

ĉ1
1 =

(
9

2
,
18

19
,
18

19
,
24

19
,
4

5
,
4

5
,
24

19

)
ĉ2

1 =

(
9

2
,
18

19
,
18

19
,
18

19
,
6

5
,
6

5
,
18

19

)
Agent 1 deviates from his initial plan because the resolution of Knightian uncer-

tainty leads to dynamic inconsistency in his preferences. This dynamic inconsistency
then spreads through the price mechanism and affects the choice set of Agent 2. As a
consequence, the expected utility maximizer will also abandon his initial plan, in spite
of having complete and dynamically consistent preferences. The pair (q1, ĉ1) clears the
market at readjusted production levels

Ŷ1 =

(
−3,

36

19
,
36

19
,
42

19
, 0, 0,

42

19

)
.

The new allocation is qualitatively different: To test it for Pareto efficiency, the neces-
sary and sufficient condition (6) must be evaluated using the information available ex-ante,
at date 0. The resulting marginal rates cone of Agent 1 is

∇U1[ĉ1
1] = cone

{(
1,

38(1 + 2η)

144
,
38(3− 2η)

144
,
57η

144
,

45

144
,

45

144
,
57(1− η)

144

) ∣∣∣∣ η ∈ [0, 1]

}
,
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and its counterpart for Agent 2 is

∇U2[ĉ2
1] = cone

{(
1,

76

144
,

76

144
,

38

144
,

30

144
,

30

144
,

38

144

)}
.

A comparison of the marginal rates of substitution for consumption in nodes 4 and
5 reveals at one glance that ∇U1[ĉ1

1] ∩ ∇U2[ĉ2
1] = ∅, and thus the allocation is Pareto

inefficient. Since the market does not reopen at date 2, this is the final allocation, and
the ensuing equilibrium is problematic from a normative viewpoint. Nevertheless, this
equilibrium survives the equilibrium refinement: The tuple (q̂, c) is an equilibrium with
inertia. The source of inefficiency in this case is dynamic inconsistency of preferences.

Case 2. Full Bayesian updating : Now suppose both agents apply the full Bayesian rule.
For Agent 2, this does not make a difference because the identities Π2

B(ξ1) = Π2
M(ξ1) and

Π2
B(ξ2) = Π2

M(ξ2) hold trivially when priors are unique. However, for Agent 1, the set of
posteriors upon observing ξ1 now becomes the larger set

Π1
B(ξ1) =

{(
2η1

3
,
3− 2η1

3
, 0, 0

) ∣∣∣∣ η1 ∈ [0, 1]

}
,

or its symmetric mirror image if ξ2 is observed:

Π1
B(ξ2) =

{(
0, 0,

3− 2η2

3
,
2η2

3

) ∣∣∣∣ η2 ∈ [0, 1]

}
.

Contrary to maximum-likelihood updating, there is no dynamic inconsistency. This
is illustrated in Figure 4 for the case of observing ξ1. The marginal rates cones before
and after the information release are displayed in the left and right panel respectively.
These two cones agree. The full Bayesian rule updates probabilities in such a way that
the first-order conditions at date 0 imply the first-order conditions at date 1, provided
the agents stick to their initial plans.

Unfortunately, the full Bayesian rule leads to a different problem, which is illustrated
in Figure 5. The initial ambiguity partition A1 visualizes the Knightian uncertainty be-
tween states ω1 and ω4. There is no such ambiguity regarding the other states: Agent 1
is able to assign unique probabilities to ω2 and ω3. However, this knowledge is lost once
the event ξ1 is observed. The conditional ambiguity partition A1(ξ1) is not finer than
A1; instead, ambiguity has dilated and spread to the unambiguous event {ω2}. This is
inconsistent with the principle that new information should not create new uncertainty –
the agent forgets what he knew before. This affects the size of the equilibrium set: The
two agents no longer agree on the probability of state ω2 (or of state ω3 if ξ2 is observed).
As a consequence, the relative price of consumption in this state is no longer unique, but
the set of market clearing prices is enlarged. Dilation of ambiguity results in dilation of
price indeterminacy. The status quo ĉ0 gives rise to a continuum of equilibria with prices

q1 ∈ cone

{(
1,

1

2
,
1

2
,
1

4
,
27− 12η1

60 + 16η1

,
27− 12η2

60 + 16η2

,
1

4

)
,

∣∣∣∣ η1, η2 ∈ [0, 1]

}
.
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∇U1
q0

1 2 3
c1 (3)

1

2

3
c1 (4)

∇U1(ξ1)q0

1 2 3
c1 (3)

1

2

3
c1 (4)

Figure 4: Section of Agent 1’s budget set before and after the information release. The
state price vector (q0(3), q0(4)) drops out of the marginal rates cone.

ω1

ω2 ω3

ω4

ξ1 ξ2

A1 ω1

ω2 ω3

ω4 A1(ξ1)

Figure 5: From left to right: Ambiguity partition (solid) before and after observing the
event ξ1 under full Bayesian updating.

and corresponding allocations after trading in the date 1 markets:

c1
1 =

(
9

2
,

18

15 + 4η1

,
18

15 + 4η2

,
24η1

15 + 4η1

,
12− 8η1

9− 4η1

,
12− 8η2

9− 4η2

,
24η2

15 + 4η2

)
c2

1 =

(
9

2
,

18

15 + 4η1

,
18

15 + 4η2

,
18

15 + 4η1

,
6

9− 4η1

,
6

9− 4η2

,
18

15 + 4η2

)
Again we pick one particular equilibrium from the continuum and test its final alloca-

tion for Pareto efficiency. The selection of η̂1 = η̂2 = 1
2

results in consumption plans

ĉ1
1 =

(
9

2
,
18

17
,
18

17
,
12

17
,
8

7
,
8

7
,
12

17

)
ĉ2

1 =

(
9

2
,
18

17
,
18

17
,
18

17
,
6

7
,
6

7
,
18

17

)
.

This is again a deviation from the initial consumption plans, but this time the cause is
not a change in preferences but a change in prices. This change in prices is consistent with
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the definition of equilibrium because the resulting consumption plans satisfy the market
clearing condition. The marginal rates cone of Agent 1 is

∇U1[ĉ1
1] = cone

{(
1,

68(1 + 2η)

288
,
68(3− 2η)

288
,
204η

288
,

63

288
,

63

288
,
204(1− η)

288

) ∣∣∣∣ η ∈ [0, 1]

}
,

and the marginal rates cone of Agent 2 is

∇U2[ĉ2
1] = cone

{(
1,

136

288
,
136

288
,

68

288
,

84

288
,

84

288
,

68

288

)}
.

This is the final allocation since there is no further trade at date 2, and again this
allocation fails to be Pareto efficient: A simple inspection of marginal rates of substi-
tution for nodes 4 and 5 reveals that ∇U1[ĉ1

1] ∩ ∇U2[ĉ2
1] = ∅. This could not occur in

the single-prior setting: If there is no ambiguous probability mass that could dilate, the
no-trade theorem of Milgrom and Stokey (1982) applies, and agents would not deviate
from a Pareto efficient status quo. The source of inefficiency in this case is dilation and
the resulting expansion of price indeterminacy.

It should be noted that the equilibrium refinement is effective in this case: To go through
as an equilibrium with inertia, the adjusted consumption plan ĉ1

1 of Agent 1 would
have to dominate the original plan ĉ1

0. To see that this is not the case, note that
π1 =

(
1
2
, 1

2
, 0, 0

)
∈ Π1

B(ξ1) and compare the resulting expected utility values. Since

Eπ1
[u1(ĉ1

0)] = 2 > 1.983 = Eπ1
[u1(ĉ1

1)], the adjusted plan does not dominate the sta-
tus quo. In this case, inertia is a binding restriction. This suggests that the welfare effect
of this equilibrium refinement depends on the chosen updating rules.

To conclude, both updating rules have side effects that are undesirable from a norma-
tive viewpoint. Full Bayesian updating may lead to dilation, and agents may fail to recall
some of their previous knowledge. Maximum-likelihood updating may lead to dynamic
inconsistency, and agents may no longer be satisfied with their original plans. Both effects
have been shown to result in Pareto inefficient market outcomes, in spite of frictionless
and complete markets. Moreover, these side effects may occur simultaneously: Dynamic
inconsistency and dilation occur at the same time if the updating rule of Agent 1 is mod-
ified to Π1 = αΠ1

M + (1 − α)Π1
B for some weight α ∈ (0, 1).5 Do the presented updating

rules have desirable properties beside their side effects? And is it possible to design a well-
behaved rule that does not come with side effects at all? These questions are addressed
in the following section.

4 Information Processing

In this section we focus on normative considerations about the individual. Our aim is to
identify updating rules that are consistent with individual rationality. In a setting with

5This is what Cheng (2021) calls relative maximum-likelihood updating.
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multiple priors, updating is only trivial if there are two dates and all uncertainty is resolved
at once. If there are more than two dates, the choice of updating rules affects behavior
and knowledge over time. The knowledge of Agent i at date-event(t, ξ) is summarized
by the tuple (ξ,Πi(ξ)): The information set ξ contains all states that are considered
possible, and thus represents uncertainty in the traditional sense. The set of posteriors
Πi(ξ) contains all probability measures that are consistent with the observed event, and
thus represents uncertainty in the Knightian sense. Section 3 introduced the concept of
ambiguity partition for modeling the evolution of Knightian uncertainty over time. This
kind of partition will prove useful for several of the results to come. Let prζ denote the
projection onto the subspace of those states contained in ζ.

Definition 4. The ambiguity partition Ai(ξ) of agent i, conditional on event ξ, is the
finest partition of Ω that satisfies

Πi(ξ) =
∑

ζ∈Ai(ξ)

prζ(Π
i(ξ)) ,

The ambiguity partition is the finest partition that satisfies two properties: First, each
cell is an unambiguous event; that is, any two measures πi, π̂i ∈ Πi(ξ) assign identical
probabilities πi|Ai(ξ) = π̂i|Ai(ξ) to all cells. This makes the power set 2A

i(ξ) a collection of
unambiguous events in the sense of Epstein (1999). Second, the probability distribution
within a cell is independent from the probability distribution within any other cell: For
any two cells ζ, ζ ′ ∈ Ai(ξ), any two states ω ∈ ζ and ω′ ∈ ζ ′, and any two measures
πi, πi′ ∈ Πi(ξ), there is some π̂i ∈ Πi(ξ) that assigns π̂i(ω) = πi(ω) and π̂i(ω′) = πi′(ω′).
In the usual notation, Ai(Ω) = Ai is the unconditional ambiguity partition. A sequence
of ambiguity partitions represents the evolution of uncertainty in the Knightian sense,
just like the sequence of information partitions represents the evolution of uncertainty
in the traditional sense. As a preliminary result, we shall establish that the concept of
ambiguity partition is well-defined.

Proposition 1. For any updating rule Πi that satisfies Bayes’ law, and any nonempty
event ξ ⊆ Ω, there exists a unique ambiguity partition conditional on ξ.

Proof. Since Ω is a finite set, it admits a finite number of partitions. Let P(Ω) denote
the subset of partitions P that satisfy Πi(ξ) =

∑
ζ∈P prζ(Π

i(ξ)). By (1), the partition
P = {Ω} is an element of P(Ω), and therefore this set is nonempty. The relation is finer
than defines a partial order on P(Ω), and existence of a maximal element follows from
the axiom of choice. Suppose this maximal element were not unique; then, there would
be some state ω ∈ Ω, two ambiguity partitions P 6= P ′ in P(Ω), and two events ζ ∈ P
and ζ ′ ∈ P ′ that satisfy ζ 6= ζ ′ and the proper set inclusions {ω} ⊂ ζ and {ω} ⊂ ζ ′,
for if any of these three conditions could not be met, one of the two partitions would
either not be maximal or not distinct from the other. Since {ω} is not unambiguous,
there must be two πi, π̂i ∈ Πi(ξ) that satisfy πi(ω) < π̂i(ω). Since both ζ and ζ ′ are
unambiguous, πi(ζ) = π̂i(ζ) and πi(ζ ′) = π̂i(ζ ′), but then the previous inequality implies
both πi(ζ\{ω}) > π̂i(ζ\{ω}) and πi(ζ ′\{ω}) > π̂i(ζ ′\{ω}). Thus, the probabilities of

19



ζ\{ω} and ζ ′\{ω} are not independent, and no proper subset of ζ ∪ ζ ′ could be a cell of
an ambiguity partition. That is to say, P and P ′ could not have been ambiguity partitions
in the first place – a contradiction.

Given that the set of possible updating rules is large, behavior and knowledge may
respond to new information in many different ways. As the example in Section 3 shows,
some of these responses are at odds with common sense. A normative desideratum is
therefore to narrow down the set of rules on the ground of rationality. Clearly, normative
arguments cannot be grounded on inductive reasoning based on examples. Behavior that
seems surprising in a special case, need not be irrational in general. The correct approach
is to define first the notion of rationality in the form of general criteria, in order to check
then whether these are fulfilled by the updating rule under consideration. We focus on
two such criteria.

4.1 Dynamic Consistency

The first rationality criterion is dynamic consistency: Since consumption in different states
can be chosen independently, learning that a state has not occurred should not affect the
ranking of consumption in other states; otherwise, preferences would vary with timing of
information. This would lead to implausible judgment: Even though new information does
not create new decision alternatives, previously undominated alternatives may become
dominated. Dynamic consistency demands that the ranking x �i y of two state-contingent
consumption plans is independent of how much information ξ ⊆ Ω about the state of the
world the agents receives ex interim. Since updating is what connects conditional and
unconditional preferences, this criterion of rationality is ultimately a requirement for
updating rules.

Definition 5. An updating rule Πi satisfies dynamic consistency if for any ξ ∈ It, t > 0
and any x and y that agree on events disjoint from ξ the following condition is true:

x �i y ⇐⇒ x �iξ y .

The example in Section 3 has demonstrated that prominent updating rules, such as
maximum-likelihood updating, may fail to meet this requirement. Two alternatives that
had been incomparable before could be ranked after an information release. Even though
the choice set did not change, the agent found it optimal to deviate from the original
plan. In principle, other updating rules may cause the same phenomenon, yet there is
one exception: Bewley type preferences are dynamically consistent if and only if the full
Bayesian rule (2) is used.

Proposition 2. The unique updating rule that satisfies Bayes’ law and dynamic consis-
tency for any information structure I is the full Bayesian rule:

Πi(ξ) = Πi
B(ξ) ∀ξ ⊆ Ω
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Figure 6: Problematic full Bayesian updating: The marginal distribution of the events
(ζ1, ζ2) changes in spite of no news about their probabilities.

Proof. The proposition can be composed of previous results: That Bewley preferences are
dynamically consistent under full Bayesian updating and Assumption 1 is the content of
Lemma 8 of Kajii and Ui (2009). Uniqueness among all rules that satisfy Bayes’ law is a
by-product of the last sentence in Theorem 1 of Faro and Lefort (2019).

Proposition 2 reveals a remarkable difference between the Knightian decision model
and maxmin expected utility when it comes to sequential decision making: It is well-
known that full Bayesian updating is not sufficient for dynamic consistency under maxmin
expected utility. The only exceptions are decision problems that satisfy the rectangularity
condition of Epstein and Schneider (2003). In all other cases, dynamic consistency is an
unrealistic requirement, and not simply a deficiency of full Bayesian updating: As Hanany
and Kilbanoff (2007) show, there exists no updating rule consistent with Definition 1 that
guarantees dynamic consistency in the maxmin expected utility setting. By contrast, in
the present setting such an updating rule exists, and it is identified in the proposition.
Further restrictions, such as rectangularity, are not necessary.

4.2 Ambiguity Containment

The second rationality criterion is that agents do not forget what they knew. In the
single-prior setting, this simply means that once the agent assigns a probability of zero
to an event, this probability can never again become positive. This condition is fulfilled
as long as the information partitions become progressively finer and the updates satisfy
Bayes’ law. In the multiple-prior setting, a stronger condition is necessary. A minimal
requirement is that once the agent assigns a unique probability to an event, this probability
can never again become ambiguous. This is ensured if the ambiguity partitions become
progressively finer. However, this condition is not yet strong enough to guarantee that
updates are consistent with the agent’s previous knowledge. A small example sheds light
on the condition actually needed.

Example. Let Ω = {ω1, ω2, ω3, ω4} be the state space. Consider an agent with priors Πi ={(
η1,

1
2
− η1,

1
2
− η2, η2

) ∣∣ η1, η2 ∈
[
0, 1

2

]}
. The ambiguity partitionAi = {{ω1, ω2}, {ω3, ω4}}

is depicted in the left panel of Figure 6. Each cell is assigned a probability of 1
2

under any
prior in Πi. Suppose the only payoff-relevant events are ζ1 = {ω1, ω2} and ζ2 = {ω3, ω4}.
Therefore, only the marginal distribution of (ζ1, ζ2) matters. Since the agent knows this
marginal distribution, ambiguity plays no role in the decision problem and, as long as
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preferences satisfy Assumption 2, there is only one undominated choice. However, sup-
pose the agent receives the information that the true state of the world is contained in
ξ = {ω2, ω4} before he makes his decision. As a consequence of this release, all odd states
can be ruled out. This release is irrelevant since it contains no news about the marginal
distribution. The only consistent one is still πi(ζ1|ξ) = πi(ζ2|ξ) = 1/2. However, if the
agent applies the full Bayesian rule, he does not reach this conclusion. Updating Πi prior
by prior results in

Πi
B(ξ) =

{
πi ∈ R|Ω|+

∣∣ πi(ω2) + πi(ω4) = 1
}
,

and suddenly all choices are undominated. This dilation of ambiguity is illustrated in the
right panel of Figure 6. It may lead to completely different decisions even though the
observed information is not payoff-relevant.

Such updating is problematic since it adds something arbitrary to the set of posteriors.
Consider, for example, the probability vector πi = (0, 0, 0, 1), which puts all the mass on
state ω4. This vector is a valid posterior under full Bayesian updating, but the marginal
distribution has changed completely. Even though the information set ξ does not rule
out event ζ1, the agent finds it possible that the event occurs with a probability of zero.
This is inconsistent with his priors, which assign an unambiguous probability of 1/2. The
issue with the updating rule in the example can be described as follows: Full Bayesian
updating allows ambiguous probability mass to flow from one event to another. Although
the new information resolves all uncertainty, the probability mass is no longer distributed
in equal proportions over the two events.

How do we avoid this kind of behavior? It is not sufficient to impose a restriction on
the progressive fineness of ambiguity partitions. Consider, for example, an updating rule
that results in Πi(ξ) = {(0, 0, 0, 1)}. Such an update is consistent with Bayes’ law and
leads to a finer ambiguity partition. Nevertheless, it is at odds with the previous knowl-
edge of the agent – he forgets the objective probabilities of the payoff-relevant events.
To prevent such misguided information processing, the updating rule must preserve the
marginal distribution of all events that are still considered possible after an information
release. In other words, their likelihood ratios must not change between priors π̃i and
posteriors πi:

πi(ξ ∩ ζ)

πi(ξ ∩ ζ ′)
=
π̃i(ζ)

π̃i(ζ ′)
∀ζ, ζ ′ ∈ Ai, ξ ∩ ζ 6= ∅, ξ ∩ ζ ′ 6= ∅

This condition is the necessary refinement of full Bayesian updating that eliminates
the undesirable behavior in the above example. It forces ambiguous probability mass to
stay within a cell of Ai as long as some contained states are still considered possible. In
the above example, this refinement works well because only ambiguous probability mass
has to be redistributed. However, if there is unambiguous probability mass on some states
in a cell of Ai, this mass cannot remain within the cell when those states are discarded;
otherwise, Bayes’ law would be violated. For any event ξ, the unambiguous probability
mass is minπ̂i∈Πi π̂

i(ξ), the least probability that all priors assign. To maintain Bayes’
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law, unambiguous mass on discarded states has to be subtracted when calculating the
likelihood ratios:

πi(ξ ∩ ζ)

πi(ξ ∩ ζ ′)
=

π̃i(ζ)−minπ̂i∈Πi π̂
i(ζ\ξ)

π̃i(ζ ′)−minπ̂i∈Πi π̂i(ζ ′\ξ)
∀ζ, ζ ′ ∈ Ai, ξ ∩ ζ 6= ∅, ξ ∩ ζ ′ 6= ∅ .

This is the general condition we impose to ensure that agents do not lose their previous
knowledge. Since π̃i(ζ) = minπ̂i∈Πi π̂

i(ζ\ξ) + maxπ̂i∈Πi π̂
i(ξ ∩ ζ) for any ζ ∈ Ai, it can be

stated more concisely in the form of the following definition.

Definition 6. An updating rule satisfies ambiguity containment if for any ξ ∈ It, t > 0
and any ambiguity partition Ai the following condition is true:

πi ∈ Πi(ξ) =⇒ πi(ξ ∩ ζ)

πi(ξ ∩ ζ ′)
=

maxπ̂i∈Πi π̂
i(ξ ∩ ζ)

maxπ̂i∈Πi π̂i(ξ ∩ ζ ′)
∀ζ, ζ ′ ∈ Ai, ξ ∩ ζ ′ 6= ∅ .

Even though the space of potential updating rules is very large, it turns out that the
conditions from Definitions 1 and 6 restrict this space to one single point. Bayes’ law and
ambiguity containment are jointly satisfied if and only if the maximum-likelihood rule (3)
is used:

Proposition 3. Let |A| > 1. The unique updating rule that satisfies Bayes’ law and
ambiguity containment for any information structure I is the maximum-likelihood rule:

Πi(ξ) = Πi
M(ξ) ∀ξ ⊆ Ω

Proposition 3, whose proof is presented in the appendix, offers a strong justification
for maximum-likelihood updating. It shows that under any other rule, agents may lose
confidence in their own model of the world on receiving irrelevant information. The
maximum-likelihood rule ensures that new information does not create new uncertainty
and thus fulfills the desired rationality criterion. Note that |A| > 1 is not a limitation
but a logical consistency condition: If the ambiguity partition contains only one cell,
ambiguous probability mass cannot spill over to other cells by definition, and ambiguity
containment holds trivially for any updating rule that satisfies Bayes’ law.

4.3 A Difficulty in the Design of Updating Rules

Now that both criteria of individual rationality are formulated, it remains to be analyzed
whether and when these criteria are fulfilled. Taken separately, neither of the two criteria
is too demanding. There are choices of updating rules that ensure either: Full Bayesian
updating guarantees dynamic consistency; maximum-likelihood updating guarantees am-
biguity containment. In light of these findings, a natural objective of normative theory is
to design an updating rule that combines both criteria. Unfortunately, this is impossible:

Corollary 1. Let |A| > 1. There exists no updating rule that satisfies Bayes’ law
and guarantees both dynamic consistency and ambiguity containment for any informa-
tion structure I.
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Proof. Take Bayes’ law as a primitive; then, the corollary follows trivially from Propo-
sitions 2 and 3 together with the observation from Section 3 that full Bayesian rule and
maximum-likelihood rule result in different updates for some events.

Corollary 1 highlights a conflict between rationality criteria under Knightian uncer-
tainty. In simple two-date models, this conflict does not surface because all uncertainty
is eliminated at once. In this case, all updating rules agree and assign a probability of
one to the realized state. For the same reason, conflicts of this kind do not occur under
subjective expected utility: If there is a single prior, all updating rules agree and result in
simple Bayesian updating. In this case, preferences are always dynamically consistent and
new information always reduces uncertainty. Difficulties only appear when the updating
rules are in discord.

Even though these difficulties cannot be resolved in general, there are some events for
which full Bayesian and maximum-likelihood updating agree. If an information structure
only consists of such events, both rules coincide and thus exhibit dynamic consistency and
ambiguity containment simultaneously. In particular, for arbitrary information structures,
one can always find non-singleton sets of priors for which both rules lead to equivalent
updates. The following two propositions provide sufficient and necessary conditions for
unproblematic pairs of information structure and priors. These conditions depend only
on the relative fineness of information partitions and ambiguity partitions. If an observed
event ξ shares states with a cell ζ of the ambiguity partition, the rules agree if ζ ⊆ ξ; that
is, if the event fully contains the cell of the ambiguity partition. In this case, there is not
even a difference between maximum-likelihood and minimum-likelihood updating:

Proposition 4. If for each t ∈ {0, . . . , T − 1},

ξ ∩ ζ ∈ {ζ,∅} ∀(ξ, ζ) ∈ It ×Ai ,

then for each t ∈ {0, . . . , T},

Πi
B(ξ) = Πi

M(ξ) = Πi
W(ξ) ∀ξ ∈ It .

Proof. Let t ∈ {0, . . . , T − 1}. Since Ai is a partition, the probability of any event ξ ∈ It
can be decomposed into

πi(ξ) =
∑
ζ∈Ai

πi(ξ ∩ ζ).

For any two priors πi and π̂i in Πi, ξ ∩ ζ ∈ {ζ,∅} and Definition 4 jointly imply that
πi(ξ ∩ ζ) = π̂i(ξ ∩ ζ) and thus πi(ξ) = π̂i(ξ). Therefore, Πi

B(ξ) = Πi
M(ξ) = Πi

M(ξ) =
{πi( · |ξ)}. The same holds true at t = T because IT consists of singletons, and for any
updating rule, there is a unique element πi ∈ Πi({ω}), which satisfies πi(ω) = 1.

Proposition 4 covers as special cases the single-prior model, as Ai consists of singletons
in this case, and the two-date model, as {0, . . . , T − 1} = {0} in this case. The next
proposition complements this result with a necessary condition.
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Proposition 5. If for each t ∈ {0, . . . , T},

Πi
B(ξ) = Πi

M(ξ) ∀ξ ∈ It .

then for each t ∈ {0, . . . , T},

ξ ∩ ζ ∈ {ξ, ζ,∅} ∀(ξ, ζ) ∈ It ×Ai .

Proof. Note that ξ ∩ ζ = ζ at date 0 because I0 = {Ω}, and ξ ∩ ζ = ξ at date T because
IT contains only singletons. For all interim dates, the proof is by contradiction: If there
is a nontrivial intersection of partitions, the updating rules must disagree on the observed
event ξ involved. Lemma 1 in the appendix implies that for each ζ ∈ Ai with ξ ∩ ζ 6= ∅,
there is a unique scalar νζ such that for any πi∗ ∈ arg maxπi∈Πi π

i(ξ), probabilities are
πi∗(ξ ∩ ζ) = νζ , and conditional probabilities are thus πi∗(ζ|ξ) =

νζ
πi∗(ξ)

. By (3), each

element of ΠM(ξ) is of this form. Moreover, each scalar must satisfy νζ > 0; otherwise,
all priors would assign zero probability to states in ξ ∩ ζ, which violates Assumption
1. Suppose there were some ambiguity partition Ai and some pair (ξ, ζ) ∈ It × Ai for
which ξ ∩ ζ /∈ {ξ, ζ,∅}. Then, there must be some πi ∈ Πi such that πi(ξ ∩ ζ) < νζ but
πi(ξ ∩ ζ ′) = νζ′ for any other ζ ′ ∈ Ai\ζ with ξ ∩ ζ ′ 6= ∅. Note that πi(ξ) < πi∗(ξ) by
construction. By (2), ΠB(ξ) contains the conditional probabilities πi( · |ξ), which satisfy
π(ζ ′|ξ) =

νζ′

πi(ξ)
>

νζ′

πi∗(ξ)
for each ζ ′ from before, but then these conditional probabilities

cannot be contained in ΠM(ξ) – a contradiction.

Proposition 5 clarifies that differences between maximum-likelihood updating and full
Bayesian updating only manifest if cells of information and ambiguity partitions have
a nontrivial intersection. These insights generalize to a whole family of updating rules:
Consider the family of relative maximum-likelihood updating, introduced by Cheng (2021).
These rules are of the form Πi

α(ξ) = αΠi
M(ξ) + (1−α)Πi

B(ξ) for some scalar α ∈ [0, 1], and
contain maximum-likelihood updating and full Bayesian updating as special cases. The
following corollary is a useful by-product of the above analysis:

Corollary 2. If for each t ∈ {0, . . . , T − 1}, ξ ∩ ζ ∈ {ζ,∅} ∀(ξ, ζ) ∈ It × Ai, then
each relative maximum-likelihood updating rule Πi

α exhibits both dynamic consistency and
ambiguity containment.

Proof. Note that Πi
α satisfies Bayes’ law for any choice of α ∈ [0, 1]. Proposition 4 implies

that the whole continuum Πi
α(ξ) = αΠi

M(ξ) + (1−α)Πi
B(ξ) of updating rules collapses to a

singleton when restricted to cells of It, t ≥ 0. The corollary now follows from Propositions
2 and 3.

Corollary 2 makes relative maximum-likelihood updating testable, at least within the
framework of Knightian decision theory. If ambiguity and information structure are de-
signed to meet the above intersection criterion, then the entire family of updating rules
can be rejected in the laboratory if dynamic inconsistency or dilation is observed. Both
properties have been tested for in experiments, and indeed subjects exhibit behavior that
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can be rationalized by maximum-likelihood or full Bayesian updating: Testing for dynamic
consistency, Dominiak, Duersch, and Lefort (2012) find that about 68% of subjects make
dynamically inconsistent decisions in a version of the Ellsberg urn experiment. Shishkin
and Ortoleva (2021) test for dilation, albeit under the assumption of maxmin expected
utility, but find no evidence, which is at best consistent with maximum-likelihood updat-
ing. Also assuming maxmin expected utility, Ngangoué (2021) finds more diverse updating
in a simulated asset market experiment with an information structure identical to the one
from the example in Section 3. She identifies the behavior of 54% of subjects as consistent
with full Bayesian updating and of further 35% as consistent with maximum-likelihood
updating. These numbers are in the same ball park as findings of Cohen, Gilboa, Jaf-
fray, and Schmeidler (2000) in a dynamic Ellsberg urn experiment. The authors classify
about 55% of subjects as full Bayesian updaters, and further 29% as maximum-likelihood
updaters.

4.4 Rectangularity

The true value of our intersection criterion becomes manifest once it is related to the
rectangularity condition of Epstein and Schneider (2003), which characterizes dynami-
cally consistent decisions under full Bayesian updating in the related setting of maxmin
expected utility. In the notation of the present paper, the condition can be stated as
follows. Summations are understood as Minkowski sums.

Definition 7. A tuple (I,Πi) of information structure and subjective probabilities satis-
fies rectangularity if for each t ∈ {1, . . . , T − 1} and each ξ ∈ It−1,

Πi
B(ξ) =

⋃
πi∈Πi

∑
ξ′∈It

πi(ξ′|ξ) Πi
B(ξ
′) .

Since Definition 7 is based on the full Bayesian rule, Πi
B, it may create the impression

that full Bayesian updating and rectangularity are intrinsically related. However, the
condition is in fact so strong that differences between full Bayesian, maximum-likelihood,
and minimum-likelihood updating disappear. In fact, the concurrence of these three
updating rules is the very nature of rectangularity:

Theorem 1. The following statements are equivalent:

(i) For each t ∈ {0, . . . , T},

Πi
B(ξ) = Πi

M(ξ) = Πi
W(ξ) ∀ξ ∈ It .

(ii) (I,Πi) satisfies rectangularity.

Theorem 1, whose proof can be found in the appendix, reveals that the relevance
of rectangularity is not limited to maxmin expected utility. In the Knightian decision
model, it guarantees dynamic consistency jointly with ambiguity containment whenever
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the agent uses one of its defining updating rules. Moreover, in combination with Propo-
sition 5, the theorem suggests an indirect test for rectangularity that is not confined to
a particular decision model. Rectangularity can be rejected purely on the basis of the
ambiguity partition, which is easier to elicit in the laboratory than the entire set of sub-
jective probabilities. If the ambiguity partition exhibits nontrivial intersection with an
information partition, subjective probabilities can by no means be rectangular. Setting
up a dynamic decision problem is not necessary for this simple test.

In light of Theorem 1, it becomes clear that Definition 7 can be equivalently formu-
lated in terms of maximum-likelihood updates by replacing Πi

B with Πi
M. The resulting

condition can be strengthened as follows:

Definition 8. A tuple (I,Πi) of information structure and subjective probabilities satis-
fies maximum rectangularity if for each t ∈ {1, . . . , T − 1} and each ξ ∈ It−1,

Πi
M(ξ) =

⋃
πi∈∆|Ω|

∑
ξ′∈It

πi(ξ′|ξ) Πi
M(ξ
′) .

The main difference to Definition 7 is that the union is not taken over Πi but over the
unit simplex ∆|Ω|, which is a larger set. This is where the formulation in terms of the
maximum-likelihood updating matters: Under maximum rectangularity the set Πi con-
tains boundary points of the simplex that assign a probability of zero to some observable
events. This is at odds with the second sentence of Assumption 1 but unproblematic
when the maximum-likelihood rule is used. Since this rule only updates priors that put
a maximal of probability mass on the observed event, the denominator in (1) is always
nonzero. By contrast, under full Baysian and minimum-likelihood updating, some con-
ditional probabilities would be undefined in this case. For this reason, Definition 8 goes
hand in hand with a relaxation of Assumption 1.

5 Welfare

In this section we focus on normative considerations about society. Our aim is to identify
equilibria that engender social welfare. As we use Pareto efficiency at the ex-ante stage
as our welfare standard, the question we are implicitly asking is whether some allocation
mechanism other than a sequence of competitive markets could make every agent better
off. Since no restrictions are placed on the set of alternative mechanisms, this set includes
direct allocation by a planner with perfect knowledge about preferences and endowments.
Recall that complete contingent markets result in efficient allocations in the two-date
setting: Rigotti and Shannon (2005) show that date 0 markets always have a Pareto
efficient outcome, and if there is no more trade at date 1, this efficient outcome is the
final equilibrium allocation. The same logic can be extended to the setting with multiple
future dates: An equilibrium is Pareto efficient if agents never deviate from the allocation
attained in date 0 markets. This is where the first rationality criterion from Section 4
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comes into play: Dynamic consistency and inertia jointly imply that agents stick to their
initial plans. This insight leads to the following theorem.

Theorem 2. If (I,Πi) satisfies dynamic consistency for each agent i, then all equilibria
with inertia are Pareto efficient.

Proof. At any equilibrium with inertia (q, c), the date 0 allocation c0 = (c1
0, . . . , c

I
0) satisfies

the first-order conditions (5) for undominatedness. Since this implies the characteriza-
tion (6) of Pareto efficiency, c0 is an ex-ante efficient allocation under the unconditional
preferences (�1, . . . ,�I). The remainder of the proof is by induction: We start at t = 1,
and show that if ct−1 is Pareto efficient, then ct must be Pareto efficient as well. Irrespec-
tive of prices qt at the subsequent date, each status quo cit−1 is contained in the budget
set Bt(qt, c

i
t−1). By Definition 3, ct 6= ct−1 only if ct Pareto dominates ct−1 under the

interim preferences (�1
t , . . . ,�It ). By Proposition 2, dynamic consistency implies that all

updating rules agree with full Bayesian updating on I. By Proposition 4 of Kajii and
Ui (2009), full Bayesian updating implies that the ex-ante efficient allocation ct−1 is also
interim efficient, and thus ct = ct−1 by inertia. Since this is true for any t > 0, it follows
that c0 = · · · = cT−1, and thus the terminal allocation cT−1 is Pareto efficient.

In the proof of Theorem 2, we take a huge shortcut by utilizing the characterization
of interim efficient allocations of Kajii and Ui (2009). Since Bewley’s inertia assumption
implies that agents only deviate from the status quo if the new allocation is condition-
ally preferred, this will never happen unless the status quo is interim Pareto dominated.
If updates are consistent with the full Bayesian rule, such interim Pareto domination
does not occur, and all agents stick to the original plan. This line of reasoning is sim-
ple because prices q = (q0, . . . , qT−1) can be disregarded. For this reason, it should be
emphasized that Theorem 2 does not imply that prices stay constant over time. The
part of equilibrium (q, c) that inertia keeps constant is the sequence of consumption plans
c0 = c1 = · · · = cT−1. Nevertheless, bounds are placed on the variance of prices over
time by the size of each (conditional) marginal rates cone and the individual production
technologies. This follows from the first-order condition (5).

Finally, we will drop the inertia assumption. One of the main insights from Section 3
is that prices and consumption plans can change in such a way that agents abandon an
efficient allocation. This may happen in spite of dynamic consistency because budget sets
change over time. The idea behind the next theorem is not preventing such changes of
prices and plans but ensuring that plans only alternate within the set of efficient alloca-
tions. A necessary condition suggested by the example in Section 3 is that ambiguous
probability mass does not dilate. This insight is strengthened by the following theorem:
If priors are maximum-rectangular, ambiguity containment is not only necessary but also
sufficient.

Theorem 3. If (I,Πi) satisfies ambiguity containment and maximum rectangularity for
each agent i, then all equilibria are Pareto efficient.
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Theorem 3 utilizes the fact that the Pareto frontier is a large set when preferences
are incomplete. Its proof, which can be found in the appendix, is based on the relation
between the first-order conditions under conditional preferences and the characterization
of Pareto efficiency. Maximum rectangularity of subjective probabilities translates into
maximal rectangularity of marginal rates cones. If a price vector qt is contained in the
conditional marginal rates cones for all observable events ξ ∈ It at that date, then qt
must also be contained in the unconditional marginal rates cone of the agent. It should
be noted that additive separability of utility is a relevant property: Since past prices
cannot change at a future date, marginal utility of past consumption must not react to
changes in future consumption either; otherwise, marginal rates and relative prices of past
consumption would cease to agree.

In light of Theorem 1, it should not be surprising that preferences are dynamically con-
sistent under the assumptions of Theorem 3. However, with inertia dropped, there is no
reason to believe that agents stick to their original consumption plans. This is because
preferences are incomplete. Deviations from the status quo to an incomparable plan are
always possible, even in cases where prices q0 = q1 = · · · = qT−1 are constant across time.
The theorem shows that repeated trade is not inconsistent with Pareto efficiency. In fact,
a propensity to trade can be viewed as a natural feature of Knightian uncertainty.

6 Conclusion

The traditional theory of general equilibrium holds strong implications for complete finan-
cial markets: Individuals plan their lifetime consumption in advance, trade only once, and
stick to their plans when markets reopen. While appealing from a welfare-theoretic view-
point – the resulting allocations are Pareto efficient – these predictions are contradicted
by the empirical fact that market participants trade repeatedly. One possible explanation
for this behavior is Knightian uncertainty. With imprecise knowledge of probabilities, the
dynamics of individual behavior and market outcomes depend on the updating rule. This
is where decision theory and general equilibrium theory meet. Normative criteria for the
individual imply normative criteria of social welfare.

As regards the individual, we expect that preferences are dynamically consistent, and
that better information reduces uncertainty. These two rationality criteria are not always
compatible. Even though we have identified updating rules that guarantee either prop-
erty, there exists no rule that guarantees both. This impossibility result poses a challenge
for a general theory of dynamic markets under Knightian uncertainty. In some economies,
one of the two properties must be given up, but neither is a natural candidate. Dynamic
consistency is a form of commitment to one’s own plans. In absence of such intrinsic
commitment, individuals might be better off if their market participation were restricted
sometimes, which does not suit with the assumption of market completeness.

Allowing uncertainty to spread, on the other hand, is not only at odds with traditional
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theory but incompatible with the ideas of Knight (1921). Even though he employs his
own concept of uncertainty, he conforms with the traditional view that uncertainty stems
from imperfect knowledge. In line with this view, he recognizes that uncertainty is re-
duced through new information. This is expressed most concisely in his discussion of
social aspects of uncertainty: “The amount of uncertainty may, however, be reduced in
several ways, as we have seen. In the first place, we can increase our knowledge of the
future through scientific research and the accumulation and study of the necessary data”
(p. 347). The argument is normative in nature: Individuals should use information to
improve their knowledge, and should not forget knowledge previously held.

As regards society, our normative criterion is Pareto efficiency. This criterion turns out
to be demanding: Even in complete markets, it cannot be guaranteed unless the both
rationality criteria are met. If either of the two is given up, Pareto efficiency is lost in
some economies. It must be noted, though, that there is a set of economies in which
both rationality criteria are compatible because different updating rules lead to identical
updates. Our characterization shows that this set is sizable. In particular, it contains the
well-known special cases of two-date economies and single-prior economies. Outside this
set, however, different updating rules have different implications. In this case, the theory’s
predictions depend on how subjective probabilities are updated, which is ultimately an
empirical question.

Appendix

The appendix contains several proofs that have been omitted in the main part of this
paper. It will be notationally convenient to decompose updating rules into projections
and rescale operations. For any set S ⊂ R|Ω|, define the rescale operation R(S) ={

x
x·~1

∣∣∣ x ∈ S}, the maximizer Mξ(S) = arg maxx∈S x · prξ(~1), and the minimizer Wξ(S) =

arg minx∈S x · prξ(~1). The three updating rules can be written as

Πi
B(ξ) = R(prξ(Π

i)) (7)

Πi
M(ξ) = R(prξ(Mξ(Π

i))) (8)

Πi
W(ξ) = R(prξ(Wξ(Π

i))) . (9)

We first introduce two lemmata that will play a role in the proofs to come.

Lemma 1. For any event ξ ⊆ Ω, there exists a probability vector πi∗ ∈ Πi that satisfies

πi∗ ∈ arg max
πi∈Πi

πi(ξ ∩ ζ) ∀ζ ∈ Ai with ξ ∩ ζ nonempty,

and this condition is equivalent to

πi∗ ∈ arg max
πi∈Πi

πi(ξ) .
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Proof. As regard existence, note that Πi is compact under Assumption 1 as a closed subset
of the unit simplex. Thus, the final problem maxπi∈Πi π

i(ξ) has a solution. As regards
equivalence, the implication from the first condition to the second is trivial. The reverse
implication can be proven by contradiction: Any maximizer πi∗ from the second condition
also solves the maximization problems in the first condition. Suppose not; then, there
would be some ζ ∈ Ai and some πi ∈ Πi such that πi∗(ξ∩ζ) < πi(ξ∩ζ). By construction of
Ai, πi can be chosen to satisfy πi(ζ ′) = πi∗(ζ ′) for all ζ ′ 6= ζ because Πi =

∑
ζ∈Ai prζ(Π

i).

Summing over all ζ ′ ∈ Ai with ξ ∩ ζ ′ nonempty leads to

πi∗(ξ) =
∑
ζ′

πi∗(ξ ∩ ζ ′) <
∑
ζ′ 6=ζ

πi∗(ξ ∩ ζ ′) + πi(ξ ∩ ζ) = πi(ξ) ,

but if πi∗(ξ) < πi(ξ), then πi∗ could not have been a maximizer in the first place.

Lemma 2. Let (q, c) be an equilibrium. For each t ≥ 0, there is some Yt ∈ Ȳ ∩ Ct(Yt−1)
that satisfies qt ∈ NȲ [Yt] (with C0(Y−1) = C).

Proof of Proposition 3. Necessity of Πi
M: By Lemma 1, the condition of ambiguity con-

tainment can be written as

πi(ξ ∩ ζ)

πi(ξ ∩ ζ ′)
=
πi∗(ξ ∩ ζ)

πi∗(ξ ∩ ζ ′)
∀ζ, ζ ′ ∈ Ai with ξ ∩ ζ ′ 6= ∅

which defines a system of equations. Although the system is overdetermined, there exists
some scalar κ 6= 0 such that

πi(ξ ∩ ζ) = κπi∗(ξ ∩ ζ) ∀ζ ∈ Ai

constitutes a solution. By definition, πi(ξ) = 1 is satisfied for πi ∈ Πi(ξ) under any
updating rule Πi(ξ). Therefore,

1 = πi(ξ) =
∑
ζ∈Ai

πi(ξ ∩ ζ)

= κ
∑
ζ∈Ai

πi∗(ξ ∩ ζ) = κπi∗(ξ) ,

and we have κ = 1/πi∗(ξ). As a consequence, all conditional probabilities of events ξ ∩ ζ
are defined as the unique Bayesian updates

πi(ξ ∩ ζ) =
πi∗(ξ ∩ ζ)

πi∗(ξ)
= πi∗(ζ|ξ) .

Combining this restriction with Bayes’ law leads to the implication

πi ∈ Πi(ξ) =⇒ ∃πi∗ ∈ arg max
π̂∈Πi

π̂(ξ) with πi( · ) = πi∗( · |ξ) ,
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and the maximum-likelihood rule (3) follows.

Sufficiency of Πi
M: It is obvious that Bayes’ law is implied; thus, it remains to be shown

that the rule satisfies ambiguity containment. Under the rule, πi ∈ Πi(ξ) implies

πi(ξ ∩ ζ) = πi∗(ζ|ξ) =
πi∗(ξ ∩ ζ)

πi∗(ξ)
∀ζ ∈ Ai,

and thus it holds for the likelihood ratio of any two events ζ, ζ ′ ∈ Ai that

πi(ξ ∩ ζ)

πi(ξ ∩ ζ ′)
=

πi∗(ξ ∩ ζ)

πi∗(ξ ∩ ζ ′)
=

maxπ̂∈Πi π̂(ξ ∩ ζ)

maxπ̂∈Πi π̂(ξ ∩ ζ ′)
.

The second equality follows from Lemma 1 and establishes ambiguity containment.

Proof of Theorem 1. Both implications are proven separately. The first part of this proof
establishes that (i) implies (ii): As a prelude, note that the following inclusion always
holds, irrespective of (i), by Bayes’ law:

Πi
B(ξ) ⊇

⋃
πi∈Πi

∑
ξ′∈It

πi(ξ′|ξ) Πi
B(ξ
′) . (10)

To see this, note that for any πi ∈ Πi
B(ξ), the definition of conditional probabilities (1)

implies that πi =
∑

ξ′∈It π
i(ξ′)πi( · |ξ′). Therefore, πi ∈

∑
ξ′∈It π

i(ξ′) Πi
B(ξ
′), and (10)

follows since πi(ξ′) = πi(ξ′|ξ) because πi(ξ) = 1. We now use (i) to establish the opposite
inclusion

Πi
B(ξ) ⊆

⋃
πi∈Πi

∑
ξ′∈It

πi(ξ′|ξ) Πi
B(ξ
′) (11)

by contradiction. Suppose some πi /∈ Πi
B(ξ) were a member of the set on the right-hand

side of (11) for some t. Pick an arbitrary ξ′ ∈ It and consider the projection pi = prξ′(π
i);

then, R(pi) ∈ ΠB(ξ
′). We use the fact that full Bayesian updating is transitive for ξ′ ⊆ ξ:

Πi
B(ξ
′) = R(prξ′(Π

i)) = R(prξ′(R(prξ(Π
i)))) = R(prξ′(Π

i
B(ξ))) .

Together with (i) this yields Πi
M(ξ
′) = Πi

W(ξ
′) = R(prξ′(Π

i
B(ξ))). By construction, pi ∈

prξ′(Π
i
B(ξ)), and thus there must be two other points pi ∈ prξ′(Mξ′(Π

i
B(ξ))) and pi ∈

prξ′(Wξ′(Π
i
B(ξ))) that satisfy R(pi) = R(pi) = R(pi). Since the preimage of a point

under R is a ray, there must be some α ∈ [0, 1] such that pi = αpi + (1 − α)pi. As

the domain restriction of prξ′ to the unit simplex ∆|Ω| is injective, there are unique

elements πi = pr−1
ξ′ (pi) ∈Mξ′(Π

i
B(ξ)) and πi = pr−1

ξ′ (pi) ∈ Wξ′(Π
i
B(ξ)). Both πi and πi are

elements of Πi
B(ξ). Since this set is convex under Assumption 1, the convex combination

π̂i = απi + (1 − α)πi is also an element of Πi
B(ξ). By linearity of the projection prξ′ ,

π̂i = pr−1
ξ′ (αpi + (1 − α)pi) = πi, but this means that πi ∈ Πi

B(ξ) – a contradiction. As
this argument is independent of the particular choice of t > 0 and ξ′ ∈ It, the inclusion
(11) is established, and the first part of this proof is complete.
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Now we move on to the second part of this proof and show that (ii) implies (i): We
show that for any t > 0, a recursive application of the rectangularity condition (Definition
7) from date 0 through date t− 1 implies that Πi

B and Πi
M agree on all date t events (the

arguments for Πi
W will be analogous): At date 0, ξ0 = Ω for all ξ0 ∈ I0, and thus

Πi
B(ξ0) = Πi. Using rectangularity recursively leads to

Πi =
⋃
πi1∈Πi

∑
ξ1∈I1

πi1(ξ1)
⋃
πi2∈Πi

∑
ξ2∈I2

πi2(ξ2|ξ1) · · ·
⋃
πit∈Πi

∑
ξt∈It

πit(ξt|ξt−1)Πi
B(ξt) . (12)

For any ξ ∈ It, the maximum operation Mξ can be applied to both sides of (12). Let

ξ̂0, ξ̂1, . . . , ξ̂t be the sequence of events ξ̂s ∈ Is that satisfies ξ̂t = ξ and ξ̂s ⊆ ξ̂s−1 for all
1 ≤ s ≤ t. Note that Mξ applied to the right-hand side of (12) maximizes the product

πi1(ξ̂1)πi2(ξ̂2|ξ̂1) · · · πit(ξ̂t|ξ̂t−1). Since the constraint set (Πi)t =
�t

s=1 Πi has a product
structure,

max
(πi1,...,π

i
t)∈(Πi)t

t∏
s=1

πis(ξ̂s|ξ̂s−1) =
t∏

s=1

max
πis∈Πi

πis(ξ̂s|ξ̂s−1) = λ∗ ,

in which λ∗ is a strictly positive scalar because each maximum must be greater than zero
under Assumption 1. Using Mξ on both sides of (12) thus leads to

Mξ(Π
i) =

⋃
πi1∈Mξ̂1

(Πi)

∑
ξ1∈I1

πi1(ξ1) · · ·
⋃

πit∈Mξ̂t
(Πi)

∑
ξt∈It

πit(ξt|ξt−1)Πi
B(ξt) . (13)

Note that prξ(Π
i
B(ξt)) = {0} for all ξt ∈ It\{ξ}. Therefore, prξ applied to both sides of

(13) results in

prξ(Mξ(Π
i)) =

⋃
πi1∈Mξ̂1

(Πi)

· · ·
⋃

πit∈Mξ̂t
(Πi)

prξ

(
πi1(ξ̂1)πi2(ξ̂2|ξ̂1) · · · πit(ξ̂t|ξ̂t−1) Πi

B(ξ)
)
, (14)

and the rescale operation R applied to both sides of (14) in

R(prξ(Mξ(Π
i))) = R(λ∗prξ(Π

i
B(ξ))) . (15)

By construction, R(λS) = R(S) for any scalar λ 6= 0 and set S. Therefore, by means of
(7) and (8), Equation (15) can be rewritten as

Πi
M(ξ) = Πi

B(ξ) . (16)

Since this is true for any t > 0 and any choice of ξ ∈ It, the agreement of Πi
B and Πi

M is
proven. The agreement of Πi

B and Πi
W is obtained by the same arguments after replacing

the maximum operation Mξ with the minimum operation Wξ. This establishes the second
implication and concludes the proof.

Proof of Theorem 3. By Lemma 2, qt ∈ NȲ [Y ] for some Y ∈ Ȳ at any date t ≥ 0. If
qt ∈ ∇U i[cit] for any date t ≥ 0 and consumer i, then the characterization (6) of Pareto
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efficiency is satisfied throughout, and the market outcome at any date is efficient. To
establish this property in compact notation, define the binary operator⊗ : RL×R|Ω| → RL

as qt ⊗ πi =
(

(qt(t, ξ)π
i(ξ))ξ∈It

)T
t=0

. As ui is differentiable under Assumption 2, this

operator can be used to decompose the marginal rates cone ∇U i[ci0] = cone(vi0⊗Πi), into
a marginal utility vector vi0 ∈ C++ and the set of beliefs. Taking Lemma 2 into account,
the first-order condition (5) at date zero 0 boils down to

q0 ∈ cone
(
vi0 ⊗ Πi

)
.

At any later date t > 0, vit = Ct(vit−1) because cit = Ct(cit−1) and marginal utility of past
consumption is invariant to changes in future consumption since ui is additively separable
under Assumption 2. Defining the projection prξ : C → C in a slight reuse of notation

as prξ(qt) =
((
qt(t, ξ

′)1{ξ′⊆ξ}(ξ
′)
)
ξ′∈It

)T
t=0

, the first-order conditions for undominatedness

under the conditional preference relation �iξ can be written as

prξ(qt) ∈ cone
(
vit ⊗ Πi

M(ξ)
)
,

in which posterior beliefs are computed by means of the maximum-likelihood rule because
this is necessary for ambiguity containment according to Proposition 3. These conditions
can be aggregated across all ξ ∈ It into

qt ∈
∑
ξ∈It

cone
(
vit ⊗ Πi

M(ξ)
)

=
⋃

α∈R|It|+

∑
ξ∈It

αξ
(
vit ⊗ Πi

M(ξ)
)

= vit ⊗
⋃

α∈R|It|+

∑
ξ∈It

αξΠ
i
M(ξ) = cone

vit ⊗ ⋃
πi∈∆|Ω|

∑
ξ∈It

πi(ξ)Πi
M(ξ)

 ,

in which vit could be shifted outside the summation because ⊗ is a linear operator. Since
maximum rectangularity is satisfied and since Πi

M(Ω) = Πi, Definition 8 can be used to
rewrite the term inside the conical hull in order to obtain

qt ∈ cone(vit ⊗ Πi),

and thus qt ∈ ∇U i[cit]. Since this holds for any date t ≥ 0 and any consumer i, (6) is
satisfied and c0, . . . , cT−1 is a sequence of Pareto efficient allocations.
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