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Abstract
We consider strategic players who may have a misspecified view about

the world, and investigate their long-run behavior when they learn an un-
known state from public signals over time. Our framework is flexible and
allows for higher-order misspecification, in that a player may have a bias
about the physical environment, a bias about the opponent’s bias about the
physical environment, and so on. We provide a condition under which play-
ers’ beliefs and actions converge to a steady state, and then characterize how
one’s misspecification influences the long-run (steady-state) outcome. We
apply these results to various economic examples such as Cournot competi-
tion, team production, and discrimination to study when one’s misspecifca-
tion improves her own payoff and how it influences the opponent’s behavior.
We also find that higher-order misspecification can have a significant impact
on the equilibrium outcome, e.g., one’s bias about the physical environment
can have opposite effects on their payoffs and actions, depending on whether
the opponent is aware of this bias or not.
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1 Introduction

Economic agents often take actions based on a misspecified view about the world:
A worker may be overconfident about his own capability, a firm may incorrectly
assume that the demand function is linear in prices (in reality, the demand is
non-linear), an investor may incorrectly believe that the economy is driven by
fewer variables, and so on.1 Recent literature on model misspecification studies
how such a bias influences the agents’ behavior and payoffs, assuming either a
single-agent setup or a multi-agent setup in which the agents’ misspecifications
are common knowledge (e.g., Esponda and Pouzo, 2016; Heidhues, Kőszegi, and
Strack, 2018; Ba and Gindin, 2021). However, this common knowledge assump-
tion leaves out many potential applications, as it does not allow players’ higher-
order misspecification. For example, when a worker is overconfident about his
own capability, his colleague may not be aware of it; in this case, this colleague
has a misspecified view about the opponent’s view about the world. This paper
proposes a general model which allows for such higher-order misspecification,
and studies its economic consequences.

Specifically, we consider an infinite-horizon game in which players take ac-
tions each period and learn an unknown state from public signals over time. Play-
ers are Bayesian and maximize the expected payoffs just as in the standard game-
theoretic model, but they evaluate information using misspecified models. We
assume myopic players in order to rule out the folk-theorem type result.2 Actions
are unobservable. Our goal is to understand how a misspecified player behaves
differently than the unbiased player in the long run, and how it influences the
behavior of other players.

Why should we be interested in the long-run behavior of misspecified players,

1As experimental and empirical evidence, people exhibit overconfidence in strategic entries
(Camerer and Lovallo, 1999), corporate investments (Malmendier and Tate, 2005), and merger
decisions (Malmendier and Tate, 2008). See Daniel and Hirshleifer (2015), Malmendier and Tate
(2015), and Grubb (2015) for reviews of the literature.

2Our results are valid even for forward-looking players by assuming that they play a Markov
perfect equilibrium.
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rather than an equilibrium in a one-shot model? When players have a misspecified
view about the world, they observe outcomes which are systematically different
from the anticipation. Accordingly, it is likely that they eventually change the be-
lief about some economic variable. For example, if a firm is persistently overcon-
fident about some aspect of the demand function (e.g., the intercept of the inverse
demand curve), on average, actual prices are lower than the firm’s anticipation.3

So after a long time, this firm becomes (unrealistically) pessimistic about other
aspect of the demand (e.g., the slope of the inverse demand curve). Similarly, in
tournaments, if an agent is persistently overconfident about her own capability,
after a series of unexpected losses, she may think that the tournament is unfair.
Our framework is useful to understand players’ long-run behavior in these cases,
and we show that this learning feature has a substantial impact on the equilibrium
outcomes in various applications.

In Section 2, we consider a benchmark case in which there is no higher-order
misspecification. Specifically, we assume that players have first-order misspecifi-
cation only, in that they may have misspecified views about the physical environ-
ment and these first-order beliefs about the environment are common knowledge.
This setup covers a wide range of applications, such as Cournot duopoly with mis-
specified demand and team production with overconfidence/prejudice. We show
that players’ beliefs and actions converge to a steady state under some condi-
tion, and then characterize how one’s misspecification influences the steady-state
outcomes. A novelty here is that we quantify the impact of misspecification on
the steady-state outcomes, which allows us to discuss how each parameter of the
model influences the equilibrium outcome, and how strategic interaction ampli-
fies/reduces the impact of misspecification. For example, our result implies that
in any symmetric game, both strategic substitutes and strategic complements am-

3Recent evidence suggests that overconfidence can be persistent: Hoffman and Burks (2020)
find that workers are persistently overconfident about their own productivity, and Huffman, Ray-
mond, and Shvets (2019) find that managers are persistently overconfident about future perfor-
mance. In a laboratory experiment, Grossman and Owens (2012) report that subjects’ beliefs
are consistent with Bayesian updating and overconfident prior beliefs about their ability, and the
overconfidence is persistent in the face of repeated feedback.
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plify the impact of first-order misspecification.
Then in Section 3, we consider a model with higher-order misspecification.

There are many types of higher-order misspecification we can think of, and here
we focus on a particular one which seems economically relevant.4 Specifically,
we assume that each player may have a misspecified view about the physical en-
vironment as in the case of first-order misspecification, and on top of that, each
player naively thinks that the opponent has the same view. In this setup, players
are not aware of the opponent having a different view about the world; they think
that their view about the world is absolutely correct. This describes, for exam-
ple, a worker who is unaware of a bias of his colleague. We find that even with
such higher-order misspecification, players’ beliefs and actions still converge to
a steady state under an additional assumption. We then quantify how one’s mis-
specification influences this steady-state outcome.

In Section 4, we apply these results to more specific examples. We find that
the presence of higher-order misspecification (i.e., unawareness of the opponent’s
bias) can have a significant impact on the equilibrium outcome. For example,
when Alice and Bob work on a joint project, it is possible that Bob’s overconfi-
dence (about his own capability) improves his equilibrium payoff if his overcon-
fidence is common knowledge, but reduces his payoff if Alice is not aware of the
overconfidence. A point is that with higher-order misspecification, Alice faces
inferential naivety: She makes an incorrect prediction about Bob’s action. This
leads to incorrect learning, e.g., if Alice overestimates Bob’s effort, she finds that
actual outputs are systematically worse than her anticipation, and becomes (un-
realistically) pessimistic about the fundamental. Accordingly, Alice may take an
action different from the one she would take if Bob’s overconfidence was common
knowledge, which may result in a qualitative difference in equilibrium payoffs.

We also find that our framework of higher-order misspecification is useful to
explain bias transmission. In Section 4.3, we consider a teacher who has a bias

4We propose a general model of higher-order misspecification in Appendix A. In the work-
ing paper version (Murooka and Yamamoto, 2021), we present the analysis of different types of
higher-order misspecification, as well as other applications such as a tournament.
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against a particular type of students (e.g., female students). We show that the
teacher’s bias can endogenously induce these students’ negative self-stereotypes,
if the students are not aware of the teacher’s bias.

Section 5 summarizes the related literature and concludes. Appendix A presents
a general model and characterize the asymptotic behavior of players’ actions and
beliefs. Appendix B provides proofs.

2 First-Order Misspecification

2.1 Setup

There are two players i = 1,2 and infinitely many periods t = 1,2, · · · . At the
beginning of the game, an unobservable economic state θ ∗ is drawn from a closed
interval Θ = [θ ,θ ], according to a common prior distribution µ ∈ △Θ. In each
period t, each player i has a belief µ t

i ∈ △Θ about θ , and chooses an action xi

from a closed interval Xi = [0,xi]. Player i’s action xi is not observable by the other
player j , i. Given an action profile x= (x1,x2), the players observe a noisy public
signal y = Q(x1,x2,a,θ ∗)+ ε , where a ∈ R is a fixed parameter which describes
a physical environment (e.g., a parameter which determines a market demand, a
player’s capability, etc) and ε is a random noise whose distribution is N(0,1).
Each player i receives a payoff ui(xi,y). Both Q and ui are twice continuously
differentiable.

We assume that one of the players (player 2) has a biased view about the
parameter a, while the other player is unbiased and knows the parameter a. We
call it first-order misspecification, because player 2 has an incorrect first-order
belief about the parameter a. Specifically, consider the following information
structure:

• Player 1 believes that for each parameter θ , the signal y is given by y =

Q(x1,x2,a,θ)+ ε .

• Player 2 (incorrectly) believes that for each parameter θ , the signal y is
given by y = Q(x1,x2,A,θ)+ ε , where A , a.
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• The above beliefs are common knowledge (e.g., player 2 believes that player
1 believes that y = Q(x1,x2,a,θ)+ ε , and the like).

Player 1’s subjective expected stage-game payoff given an action profile x and
a state θ is

U1(x,θ) = E[u1(x1,Q(x,a,θ)+ ε)]

and player 2’s subjective expected stage-game payoff is

U2(x,A,θ) = E[u2(x2,Q(x,A,θ)+ ε)],

where the expectation is taken with respect to ε . Note that player 2 evaluates pay-
offs given her subjective signal distribution Q(x,A,θ)+ε . To economize notation,
we will write U2(x,θ) instead of U2(x,A,θ) when it does not cause a confusion.

We assume that players play a static Nash equilibrium every period. This
essentially means that in our model, (i) players are myopic, and (ii) they predict
the opponent’s play correctly and best-respond to it. Condition (i) shuts down the
repeated-game effect, so that a result similar to the folk theorem (which is not of
our interest) does not arise.5 Condition (ii) implies that players recognize that the
opponent also learns the state and changes the action as time goes. This setup is
different from the one in the literature on learning in games (e.g., Fudenberg and
Kreps, 1993; Esponda and Pouzo, 2016), which asks when and why players play
equilibria; they assume that players do not know the opponent’s strategy and learn
it from experience. In our model, players know the opponent’s strategy, and learn
only the unknown economic state θ .6

In period one, both players have the same belief µ1
1 = µ1

2 = µ , so a Nash
equilibrium (x1

1,x
1
2) solves the first-order condition ∂E[Ui(x,θ)|µ]

∂xi
= 0 for each i,

where the expectation is taken with respect to θ . At the end of period one, players

5Another way to avoid the repeated-game effect is to use a Markov-perfect equilibrium (where
the state is players’ beliefs about θ ) as a solution concept. With an additional assumption, Ap-
pendix A shows that players’ long-run behavior is exactly the same as that of myopic players
studied in this section. In this sense, our result remains true even for forward-looking players.

6Condition (ii) is inessential if the game is dominance solvable (e.g., Cournot with linear de-
mand in our application).
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observe a public signal y1, and update the posterior beliefs using Bayes’ rule.
Assuming that no one has deviated in period one, each player i’s posterior belief
µ2

i in period two is given by

µ2
1 (θ) =

µ1
1 (θ) f (y−Q(x1,a,θ))∫

Θ µ1
1 (θ̃) f (y−Q(x1,a, θ̃))dθ̃

,

µ2
2 (θ) =

µ1
1 (θ) f (y−Q(x1,A,θ))∫

Θ µ1
1 (θ̃) f (y−Q(x1,A, θ̃))dθ̃

,

where x1 is the Nash equilibrium played in period one and f is the density function
of the noise term ε . Note that player 2’s posterior µ2

2 differs from player 1’s
posterior µ2

1 , as she incorrectly believes that the mean output is Q(x1,A,θ) rather
than Q(x1,a,θ). These posteriors are common knowledge among players.7 So in
period two, players play a Nash equilibrium given the belief profile µ2 = (µ2

1 ,µ
2
2 ),

which solves ∂E[Ui(x,θ)|µ2
i ]

∂xi
= 0 for each i. Likewise, in any subsequent period t ≥ 3,

players play a Nash equilibrium given the belief profile µ t = (µ t
1,µ

t
2), where µ t is

computed by Bayes’ rule.

2.2 Steady-State Analysis

In this subsection, we will assume that the actions and the beliefs converge to a
steady state in the long run, and characterize how one’s misspecification influences
this long-run (steady-state) outcome. In the next subsection, we will show that the
actions and the beliefs indeed converge to this steady state under some conditions.
As will be seen, these conditions are satisfied in many economic examples such
as Cournot competition and team production.

A steady state in this model is a pair (x∗1,x
∗
2,µ

∗
1 ,µ

∗
2 ) of an action profile and a

7This is because the players’ information structure about the parameter a is common knowl-
edge.

7



belief profile which satisfies the following four conditions:

x∗1 ∈ argmax
x1

U1(x1,x∗2,θ
∗), (1)

x∗2 ∈ argmax
x2

U2(x∗1,x2,θ2), (2)

µ∗
1 = 1θ∗, (3)

µ∗
2 = 1θ2 s.t. Q(x∗,A,θ2) = Q(x∗,a,θ ∗). (4)

The first two conditions are incentive compatibility, which requires that each
player maximizes her payoff given some beliefs. The next two conditions re-
quire that these beliefs satisfy consistency: (3) asserts that the unbiased player
1 correctly learns the true state θ ∗ in a steady state. (4) requires that player 2’s
belief be concentrated on a state θ2 with which her subjective signal distribution
coincides with the true distribution. This condition must be satisfied in a steady
state, because otherwise, player 2 is “surprised” by observed signals being differ-
ent from what she thinks, and changes her belief about θ accordingly. In general,
this steady-state belief θ2 is different from the true state θ ∗, i.e., the biased player
2 cannot learn θ ∗ correctly.

We assume that for each (x,A), there is a unique state θ2 which solves the
consistency condition Q(x,a,θ ∗) = Q(x,A,θ), and we denote it by θ2(x,A). In-
tuitively, this θ2(x,A) is player 2’s long-run belief given an action profile x; if
players choose the same action profile x every period, then almost surely, player
2’s belief will be concentrated on the state θ2(x,A) after a long time (Berk (1966)).
Player 1’s long-run belief is defined as θ1(x,A) = θ ∗ for all x and A, because she
is unbiased and can learn the true state θ ∗ regardless of players’ play.

Our goal is to quantify how player 2’s misspecification A influences the steady-
state action defined above. Before doing so, it is useful to think about how one’s
action influence the opponent’s steady-state action. Consider player i’s asymptotic
best response correspondence, which is defined as

BRi(x−i) =

{
xi

∣∣∣∣∣xi ∈ argmax
x′i

Ui
(
x′i,x−i,θi(x,A)

)}
. (5)
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Intuitively, BRi(x−i) describes player i’s steady-state action in a single-agent learn-
ing problem where player i learns the state while the opponent simply chooses the
same action x−i every period. Player 2’s asymptotic best response BR2 is differ-
ent from the standard best response, as it describes the optimal action in the long
run where the belief θ2(x,A) is endogenously determined. On the other hand,
player 1’s asymptotic best response BR1 coincides with the standard best response
correspondence given the state θ ∗, because her long-run belief is constant, i.e.,
θ1(x,A) = θ ∗ for all x (correct learning regardless of actions). By a fixed-point
theorem, BRi(x−i) is non-empty for all x−i. Also a standard argument shows that
BRi is upper hemi-continuous in x−i.

When the asymptotic best response is a function (rather than a correspon-
dence), its slope BR′

i can be computed by

BR′
i =−

Mi j

Mii
,

where for each i and j (possibly i = j),

Mi j =
∂ 2Ui(x,θ)

∂xi∂x j

∣∣∣∣
θ=θi(x,A)

+
∂ 2Ui(x,θ)

∂xi∂θ

∣∣∣∣
θ=θi(x,A)

∂θi(x,A)
∂x j

.

measures how player j’s action influences player i’s marginal utility in the long
run. To be precise, suppose that players choose the same action every period,
and that player j increases the action x j at bit. This influences player i’s marginal
utility directly and indirectly through the belief θi(x,A) in the long run. The first
term of Mi j represents this direct effect, and the second term represents the indirect
effect. For i = 1, the indirect effect is zero, because player 1’s long-run belief is
constant and does not depend on the actions (θ1(x,A)= θ ∗ for all x). Hence BR′

1 =
∂ 2U1/∂x1∂x2

∂ 2U1/∂ 2x1
, which is precisely the slope of the standard best-response curve. Also,

for i= 2, the indirect effect disappears in the limit as A→ a, because θ2(x,a) = θ ∗

for all x. So when misspecification is small (i.e., A is close to a), each Mi j is
approximated by ∂ 2Ui

∂xi∂x j
, which means that BR′

i is approximately the same as the
slope of the standard best-response function.
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Let

M2A : =
∂ 2U2(x,A,θ)

∂x2∂A

∣∣∣∣
θ=θ2(x,A)

+
∂ 2U2(x,A,θ)

∂x2∂θ

∣∣∣∣
θ=θ2(x,A)

∂θ2(x,A)
∂A

(6)

denote how player 2’s bias A influences her marginal utility in the long run. Again,
the first term ∂ 2U2

∂x2∂A measures the direct effect, while the second term ∂ 2U2
∂x2∂θ2

∂θ2
∂A

measures the indirect effect through the belief. Our first proposition quantifies the
impact of player 2’s first-order misspecification on the steady-state action.

Definition 1. A steady state x∗ is regular if the following conditions are satisfied
in x∗: (i) the steady-state action x∗i is uniquely optimal, i.e., Ui(x∗,θi(x∗,A)) >
Ui(xi,x∗−i,θi(x∗,A)) for all i and xi , x∗i , (ii) x∗ and θ2(x∗,A) are interior points,
(iii) BR′

1BR′
2 , 1, and (iv) Mii < 0 for each i.

Proposition 1 (Steady State under First-Order Misspecification). Let x∗ be a reg-
ular steady state for some parameter A∗. Then there is an open neighborhood of
A∗ such that for any value A in this neighborhood, there is a regular steady state
x∗ which is continuous with respect to A, and we have

∂x∗2
∂A

=−M2A

M22
· 1

1−BR′
1BR′

2
,

∂x∗1
∂A

=
∂x∗2
∂A

·BR′
1.

Suppose in addition that given the parameter A∗, the steady state is unique and
each asymptotic best response BRi is a continuous function. Then, BR′

1BR′
2 < 1.8

Note that the regularity conditions (i) and (ii) are standard, and the condition
(iii) is satisfied for generic parameters. The condition (iv) reduces to player i’s

8If these additional assumptions do not hold, there may be a steady state with BR′
1BR′

2 >

1. But it seems that such a steady state is unstable in an evolutionary sense, especially when
misspecification is small. Indeed, in a one-shot game with correctly specified model, a Nash
equilibrium with BR′

1BR′
2 > 1 is not stable under the replicator dynamics (hence it is not an ESS)

or the best response dynamics. So in practice, if players’ play converge after a long time, it is
natural to expect that BR′

1BR′
2 < 1 in the steady state.
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second-order condition for incentive compatibility when misspecification is small
(i.e., A is close to a).910

Under this regularity condition, the proposition above shows that the impact
of first-order misspecification on the steady-state action is represented as the base
misspecification effect −M2A

M22
times the multiplier effect 1

1−BR′
1BR′

2
. The base mis-

specification effect measures how player 2’s bias influences her steady-state ac-
tion x∗2 in the absence of strategic interaction. To see what it means, suppose that
player 1 chooses the same fixed action each period, so player 2 faces a single-agent
problem. Suppose that player 2’s bias A increases a bit. This influences player 2’s
marginal utility by M2A (recall that this includes the indirect effect through the
belief in the long run), and hence her optimal long-run action changes. The base
misspecification effect −M2A

M22
measures this change.

The multiplier effect 1
1−BR′

1BR′
2

in Proposition 1 measures how strategic inter-
action between two players amplifies/weakens the base misspecification effect. To
better understand the nature of this multiplier effect, suppose that player 2 changes
her action by ∆. Then player 1 best-responds to it and changes her action by BR′

1∆,
which in turn has a feedback effect of BR′

1BR′
2∆ on player 2’s steady-state action;

note that player 1’s action influences player 2’s optimal action directly and indi-
rectly through her belief θ2(x,A), and both these effects are taken into account in
the asymptotic best response BR′

2.
This process continues multiple times; the feedback effect on player 2’s action

influences player 1’s action, which again causes a feedback effect of (BR′
1BR′

2)
2∆

on player 2’s action, and so on. Summing all these feedback effects, player 2’s
action changes by

∞

∑
k=0

(BR′
1BR′

2)
k∆ =

1
1−BR′

1BR′
2

∆. (7)

9Heidhues, Kőszegi, and Strack (2018) impose a similar assumption: They consider a single-
agent learning problem and assume a unique steady state, which requires Mii ≤ 0 in the steady
state.

10We conjecture that a steady state with M22 > 0 is unstable in the sense that players’ actions
converge there with zero probability. (We can actually show that if player 1 chooses the steady-
state action every period and player 2 learns an unknown state θ , then player 2’s action never
converges to a steady state with M22 > 0. The proof is available upon request.)
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So the multiplier 1
1−BR′

1BR′
2

can be seen as a result of the infinite adjustment process
between the two strategic players.

The following corollary is an immediate consequence of Proposition 1:

Corollary 1. Suppose that all the assumptions in Proposition 1 (including the
ones in the second part) are satisfied. Then we have the following results:

(i) The multiplier 1
1−BR′

1BR′
2

is positive. So a strategic interaction influences the
size of the impact of misspecification, but not the direction.

(ii) If sgn(BR′
1) = sgn(BR′

2), then the multiplier 1
1−BR′

1BR′
2

is greater than one.
So both strategic substitutes and strategic complements amplify the impact
of misspecification.

(iii) If sgn(BR′
1) , sgn(BR′

2), then the multiplier 1
1−BR′

1BR′
2

is less than one. So a
strategic interaction reduces the impact of misspecification.

This corollary characterizes when a strategic interaction amplifies/reduces the
impact of misspecification. An interesting special case is symmetric games, such
as Cournot duopoly and team production. When A = a, we have sgn(BR′

1) =

sgn(BR′
2) in any symmetric equilibrium of a symmetric game. So part (ii) of

the corollary implies that a strategic interaction always amplifies the impact of
misspecification in these games, if misspecification is small. On the other hand,
part (iii) shows that a strategic interaction reduces the impact of misspecification
if sgn(BR′

1) , sgn(BR′
2). This condition is satisfied, for example, in a tournament

model.11

Remark 1. So far we have assumed that player 1 knows the true parameter a,
but the result similar to Proposition 1 still holds even when both players have
first-order misspecification. Suppose that player 1 believes that the true parameter
is A1 , a, and player 2 believes that the true parameter is A , a. Suppose also

11Consider a tournament model by Lazear and Rosen (1981) in which player i’s payoff is Pi(ei−
e j)w− c(ei) where w > 0 is the prize for a winner, c(·) is an increasing and convex cost, and Pi(·)
is i’s probability of winning which satisfies P1(·) = 1−P2(·). Then, so long as P′′

i (0) , 0, the
standard best response curves have opposite signs.
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that these first-order beliefs are common knowledge. Then the impact of player
2’s misspecification A on the steady-state actions is still described by the formula
presented in Proposition 1, with a minor modification on the definition of BR′

1;
now it must involve an indirect learning effect, in order to take into account the
endogeneity of her long-run belief θ1.

2.3 Sufficient Condition for Convergence

In a single-agent finite-action setup, Esponda, Pouzo, and Yamamoto (2021) pro-
vide a fairly general condition for convergence; they show that the agent’s belief
converges to a steady state almost surely if an “identifiability condition” holds.
In this subsection, we will show that the same result holds in our two-player
continuous-action model. Having two players does not cause a serious difficulty,
because our problem is essentially a single-agent problem; since player 1 is un-
biased and learns the true state, we only need to take care of player 2’s belief
evolution.

On the other hand, having continuous actions causes a technical complication.
When actions are finite, an agent’s action frequency is represented as a finite-
dimensional vector. Esponda, Pouzo, and Yamamoto (2021) show that the motion
of this action frequency is approximated by a differential inclusion, and use this
result to prove convergence. In our continuous-action model, the action frequency
is an infinite-dimensional vector, and it moves in a Banach space (rather than a
Euclidean space). Thus we need to think about whether this differential-inclusion
approach is valid even in a Banach space. As we show in Appendix A, such an
extension is indeed possible, if we choose an appropriate norm for the Banach
space

Let us define the identifiability condition in our environment. For each action
profile x, define player 2’s surprise function as

K2(θ ,x) =
(Q(x,θ ,A)−Q(x,θ ∗,a))2

2
Intuitively, this surprise function measures how player 2’s subjective expectation
Q(x,θ ,A) about the output is different from the truth, when she believes that the
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state is θ .12 Then for each probability measure σ ∈ △X on the set of action pro-
files, define a weighted surprise function as

K2(θ ,σ) =
∫

X
K(θ ,x)σ(dx).

Intuitively, this function measures how player 2’s subjective expectation is dif-
ferent from the truth on average, when players take different actions in different
periods. The identifiability requires that for each σ , the weighted surprise function
K2(θ ,σ) has a unique minimizer θ2(σ) and it is an interior point. The following
proposition shows that this identifiability condition ensures convergence.

Proposition 2. Suppose that there is a unique steady state (x∗1,x
∗
2,θ1,θ2) and it

is regular.13 Suppose also that the identifiability condition holds. Then almost
surely, player 2’s belief converges to the steady state belief, i.e., limt→∞ µ t

2 = 1θ2 .

Remark 2. Identifiability is sufficient for convergence, but not necessary. For
example, Proposition 9 of Esponda, Pouzo, and Yamamoto (2021) show that in
a single-agent problem, the agent’s action converges if payoffs and information
are “monotone” in some sense. We can show that a similar result holds in our
environment, which ensures that players’ actions and beliefs converge to a steady
state in the team production problem studied in Section 4.2 for general Q. See the
working paper version for more details.

3 Higher-Order Misspecification

In the previous section, we have studied the case in which players have incorrect
views about the environment, assuming that they correctly understand what the

12This surprise function is exactly the Kullback-Leibular divergence between the true output
distribution and the subjective distribution. See Appendix A for the general definition of the
Kullback-Leiblar divergence.

13Assuming a unique steady state is not essential, but it simplifies the statement of the proposi-
tion. In the proof, we actually show that the belief converges even when there are multiple steady
states.
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opponent thinks about the environment. However, economic agents often have
higher-order misspecification, in that they may have a biased view about the op-
ponent’s view about the environment (second-order misspecification), a biased
view about the opponent’s second-order misspecification, and so on.14

In this section, we will focus on a special form of higher-order misspecifica-
tion: We will assume that each player has a biased view about the environment,
and on top of that, she naively thinks that the opponent shares the same view
about the world (in reality, the opponent has her own view about the world). We
call it double misspecification, because players have a biased view about the world
(first-order misspecification) and a biased view about the opponent’s view about
the world (second-order misspecification). Our goal in this section is to character-
ize how such misspecification influences players’ long-run behavior. Of course,
we can think of various other forms of higher-order misspecification. In Appendix
A, we will present a more general model of higher-order misspecification.

3.1 Setup: Double Misspecification

We will consider the following information structure:

• Each player i (incorrectly) believes that for each parameter θ , the signal y
is given by y = Q(x1,x2,Ai,θ)+ ε , where Ai , a.

• Each player i (incorrectly) believes that it is common knowledge that “the
signal y is given by y = Q(x1,x2,Ai,θ)+ ε .”

We allow A1 , A2, so the different players may have different levels of misspeci-
fication.

This setup is substantially different from the first-order misspecification in the
previous section, because now players have inferential naivety and make incorrect

14As evidence from laboratory experiments, subjects often systematically mispredict other sub-
jects’ preferences and actions (e.g., Van Boven, Dunning, and Loewenstein, 2000). Ludwig and
Nafziger (2011) report that most subjects in their experiments are not aware of or underestimate
overconfidence of other subjects.
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predictions about the opponent’s play. Indeed, while player i believes that the op-
ponent (player j) maximizes the payoff conditional on the parameter Ai, in reality,
the opponent maximizes the payoff conditional on the parameter A j. Accordingly,
player i’s prediction about the opponent’s action does not match the opponent’s
actual action in general.

To analyze players’ behavior in the presence of such inferential naivety, it is
useful to consider two hypothetical players. Hypothetical player 1 is player 1
who thinks that it is common knowledge that the true technology is A2. Intu-
itively, player 2 thinks that this hypothetical player is her opponent, and hence
each period, player 2 chooses a N ash equilibrium action against this hypothetical
player. Similarly, hypothetical player 2 is player 2 who thinks that it is common
knowledge that the true technology is A1. Each period, player 1 chooses a Nash
equilibrium against this hypothetical player.

Let x̂i and µ̂i denote hypothetical player i’s action and belief, and let x =

(x1,x2, x̂1, x̂2) denote an action profile in the four-player game. Player i’s expected
stage-game payoff is defined as

Ui(x,θ ,Ai) = E[ui(xi,Q(xi, x̂−i,Ai,θ)+ ε)],

because she thinks that the parameter is Ai and the opponent is a hypothetical
player. Similarly, hypothetical player i’s expected stage-game payoff given θ is

Ûi(x,θ ,A−i) = E[ui(x̂i,Q(x̂i,x−i,A−i,θ)+ ε)].

Using these notations, the equilibrium strategy in the infinite-horizon game is de-
scribed as follows. In period one, all players have the same belief µ1

i = µ̂1
i = µ .

So they play a Nash equilibrium (x1
1,x

1
2, x̂

1
1, x̂

1
2), which solves the first-order con-

ditions ∂E[Ui(x,θ)|µ]
∂xi

= 0 and ∂E[Ûi(x,θ)|µ]
∂ x̂i

= 0. At the end of period one, players
observe a public signal y1 = Q(x1

1,x
1
2,a,θ

∗)+ ε , and update the posterior beliefs
using Bayes’ rule. Their beliefs in period two are given by

µ2
i (θ) =

µ1
i (θ) f (y−Q(x1

i , x̂
1
−i,Ai,θ))∫

Θ µ1
i (θ̃) f (y−Q(x1

i , x̂
1
−i,Ai, θ̃))dθ̃

,

µ̂2
i (θ) =

µ̂1
i (θ) f (y−Q(x̂1

i ,x
1
−i,A−i,θ))∫

Θ µ̂1
i (θ̃) f (y−Q(x̂1

i ,x
1
−i,A−i, θ̃))dθ̃

.
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As is clear from this formula, player i’s posterior belief is biased in two ways:
She updates the belief conditional on the wrong parameter Ai, and on the wrong
prediction x̂1

−i about the opponent’s play. Then in period two, players play a Nash
equilibrium given this belief profile µ2 = (µ2

1 ,µ
2
2 , µ̂

2
1 , µ̂

2
2 ).

15 Likewise, in any sub-
sequent period t ≥ 3, players play a Nash equilibrium given the posterior beliefs
computed by Bayes’ rule.

3.2 Steady-State Analysis

As in the case of first-order misspecification, we assume that players’ actions and
beliefs converge to a steady state, and study how one’s misspecification influences
this steady-state outcome. We will provide a sufficient condition for convergence
in Section 3.3.

Given an action profile x = (x1,x2, x̂1, x̂2), let θi(x,Ai) denote player i’s long-
run belief when the same action x is chosen every period. That is, let θi(x,Ai) be
a state θ which solves

Q(xi, x̂ j,Ai,θ) = Q(x1,x2, ,a,θ ∗),

so that player i’s subjective model (the left-hand side) exactly explains the actual
output (the right-hand side). A critical difference from the case of first-order mis-
specification is that player i has inferential naivety and uses x̂ j (rather than x j)
when evaluating the average output. In what follows, we will assume that θ2(x,A)
is unique for each x and Ai.

With this notation, a steady state under double misspecification is defined as

15Since y is public, player 1 correctly predicts hypothetical player 2’s posterior belief µ̂2
2 , and

similarly, hypothetical player 2 correctly predicts player 1’s posterior belief µ2
1 . So they will

indeed play a Nash equilibrium given these beliefs. The same is true for player 2 and hypothetical
player 1.
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(x∗1,x
∗
2, x̂

∗
1, x̂

∗
2,µ

∗
1 ,µ

∗
2 , µ̂

∗
1 , µ̂

∗
2 ) which satisfies

x∗i ∈ argmax
xi

Ui(xi, x̂∗−i,Ai,θi) ∀i, (8)

x̂∗i ∈ argmax
x̂i

Ûi(x̂i,x∗−i,A−i,θ−i) ∀i, (9)

µ∗
1 = µ̂∗

2 = 1θ1(x,A1), (10)

µ∗
2 = µ̂∗

1 = 1θ2(x,A2). (11)

The first two conditions are the incentive compatibility conditions, which require
that each player maximize her own payoff given some beliefs. The next two con-
ditions require that these beliefs satisfy consistency, in that each (actual and hypo-
thetical) player’s belief is concentrated on a state with which her subjective signal
distribution coincides with the objective distribution.

As in the case of first-order misspecification, we will quantify how one’s mis-
specification influences the steady-state outcome, using the slope of asymptotic
best response curve. For notational convenience, let player 3 refer to hypothetical
player 1, and player 4 refer to hypothetical player 2. Then define the slope of
player i’s asymptotic best response curve with respect to player j’s action as

BR′
i j =−

Mi j

Mii

where for each i, j = 1,2,3,4 (possibly i = j),

Mi j =
∂ 2Ui(x,θ)

∂xi∂x j

∣∣∣∣
θ=θi(x,Ai)

+
∂ 2Ui(x,θ)

∂xi∂θ

∣∣∣∣
θ=θi(x,Ai)

· ∂θi(x,A)
∂x j

denotes the impact of player j’s action on player i’s marginal utility in the long
run. Here the first term is the direct effect, and the second term is the indirect
effect through the steady-state belief θi.

Intuitively, BR′
i j measures how player j’s action influences player i’s optimal

long-run action, when other players’ actions are fixed. The mathematical defini-
tion of BR′

i j is exactly the same as that for first-order misspecification, but there
are two important remarks. First, each Mi j here involves the indirect effect caused
by inferential naivety, and thus BR′

i j need not be zero even when player i does not
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think that player j is the opponent.16 For example, consider BR′
12 =−M12

M11
. Since

player 1 does not think that player 2 is the opponent, she does not best-respond to
player 2’s action, which means that the direct effect in M12 is zero. However, a
change in player 2’s action influences player 1’s steady-state belief θ1; it leads to
misguided learning, because player 1 is not aware of a change in player 2’s action.
Hence the indirect effect in M12 is non-zero, and so is BR′

12.
Second, this indirect effect from inferential naivety does not vanish even when

Ai approaches a. So even in the limit case with Ai = a, the slope BR′
i j is not

approximated by the slope of the standard best response curve. This is in a sharp
contrast with the case of first-order misspecification, where all indirect effects
vanish in the limit as A → a.

For each i = 2,3, let

MiA :=
∂ 2Ui(x,θ ,A2)

∂xi∂A2

∣∣∣∣
θ=θi(x,A2)

+
∂ 2Ui(x,θ ,A2)

∂xi∂θ

∣∣∣∣
θ=θi(x,A2)

∂θi(x,A2)

∂A2

denote the impact of player i’s first-order misspecification on her marginal util-
ity. The following proposition characterizes how player 2’s misspecification in-
fluences the steady-state actions.

Definition 2. A steady state x∗ is regular if the following conditions are satisfied
in x∗: (i) the steady-state action x∗i is uniquely optimal, (ii) x∗ and θi(x∗,Ai) are
interior points, (iii) BR′

14BR′
41 , 1, BR′

23BR′
32 , 1, and BR′

14BR′
41 +BR′

23BR′
32 +

(BR′
21 +BR′

23BR′
31)(BR′

12 +BR′
14BR′

42) , 1, and (iv) Mii < 0 for each i.17

Proposition 3 (Steady State under Double Misspecification). Let x∗ be a regular
steady state for some parameter A∗ = (A∗

1,A
∗
2). Then there is an open neighbor-

16More precisely, we always have BR′
13 = BR′

24 = BR′
34 = BR′

43 = 0, but other slopes BR′
i j are

non-zero in general.
17As in the case with first-order misspecification, the regularity conditions (i) and (ii) ensure

that the steady state is continuous with respect to the parameter Ai and the first-order condition
for the incentive compatibility is satisfied there. The condition (iii) is needed for the multiplier
effect to be well-defined. The condition (iv) ensures that the base misspecification effect and the
slope of the asymptotic best response curve are well-defined. This condition is also useful when
we interpret the base misspecification effect.
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hood of A∗
2 such that for any value A2 in this neighborhood, there is a regular

steady state x∗ which is continuous with respect to A2, and we have

∂x∗2
∂A2

=

(
−M2A

M22
−BR′

23
M3A

M33

)(
1

1−BR′
23BR′

32

)(
1

1−NE ′
1NE ′

2

)
,

∂x∗1
∂A2

=
∂x∗2
∂A2

·NE ′
1,

where

NE ′
1 =

BR′
12 +BR′

14BR′
42

1−BR′
14BR′

41
and NE ′

2 =
BR′

21 +BR′
23BR′

31
1−BR′

23BR′
32

.

The term −M2A
M22

−BR′
23

M3A
M33

in the first equation is the base misspecification
effect of double misspecification. Suppose that the bias A2 increases a bit. This
influences player 2’s steady-state action in two ways: First, it increases player
2’s bias about the physical environment a, which influences her optimal action
directly and indirectly through the belief. This effect is measured by −M2A

M22
, and

note that this part is exactly the same as what we explained in the case of first-order
misspecification. Second, when A2 increases, hypothetical player 1’s bias about
the physical environment a increases. Hence this hypothetical player modifies the
action, and player 2 best-responds to it. This effect is measured by −BR′

23
M3A
M33

.
This second effect is a consequence of player 2’s second-order misspecification
(inferential naivety).

Proposition 3 shows that this base misspecification effect is further ampli-
fied by the two multipliers, 1

1−BR′
23BR′

32
and 1

1−NE ′
1NE ′

2
. The first multiplier ef-

fect, 1
1−BR′

23BR′
32

, is similar to the multiplier effect appearing in Proposition 1,
and it represents how the strategic interaction between player 2 and hypotheti-
cal player 1 (which happens in player 2’s mind) amplifies the base misspecifi-
cation effect, holding other players’ actions being fixed. So the term (−M2A

M22
−

BR′
23

M3A
M33

)( 1
1−BR′

23BR′
32
) in the equation measures how player 2’s misspecification

influences her own action, when player 1’s action is fixed.
The second multiplier effect, 1

1−NE ′
1NE ′

2
, captures what happens when player

1’s action is not fixed and she changes her action over time. The economic in-
terpretation of this multiplier effect is very different from the first one, in that it
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is not about the impact of strategic interaction; rather, it measures how incorrect
learning due to inferential naivety amplifies the impact of misspecification.

To see what it means, suppose that player 2’s action changes by ∆ due to
misspecification. This does not influence player 1’s action immediately, because
player 1 is not aware of player 2’s misspecification, and thus does not best-respond
to this change. However, in the long run, it causes incorrect learning and influ-
ences player 1’s steady-state belief µ1, which in turn influences player 1’s action
directly and indirectly through hypothetical player 2’s action. (Note that the belief
µ1 influences hypothetical player 2’s optimal action, and player 1 best-responds
to it.) This effect is BR12∆+BR14BR42∆. Since this effect is further amplified
by 1

1−BR14BR41
due to the strategic interaction between player 1 and hypotheti-

cal player 2, in total, player 1’s action changes by NE ′
1∆. Then for the same

reason, this change in player 1’s action influences player 2’s action, which influ-
ences player 1’s action, and so on. This infinite process leads to the multiplier

1
1−NE ′

1NE ′
2
.18

Remark 3. In this section, we have assumed two-sided misspecification, in that
both players 1 and 2 are misspecified. For some applications, it is also important
to think about one-sided misspecification; e.g., one can think of a seller-buyer
problem where only a buyer is misspecified while a seller is fully rational. It turns
out that even with such one-sided misspecification, the result similar to Proposi-
tion 3 still holds. Specifically, the equations in Proposition 3 are still valid, if we
replace NE ′

1 with the slope of the best-response function BR′
1. This is because

when player 1 is fully rational, then she correctly learns the state and simply best-

18NE ′
1 can be also seen as the slope of player 1’s asymptotic Nash equilibrium correspondence

defined as
NE1(x2) = {x1|∃x̂2 satisfying (8) for i = 1, (9) for i = 2, (10)}.

In words, NE1(x2) denotes player 1’s steady-state action, when player 2 chooses the same action
x2 every period while the other players learn the state and adjust actions. Note that player 2 is not
player 1’s opponent, but nonetheless her action x2 influences player 1’s steady-state action due to
the incorrect learning: If player 2 changes the action and player 1 is not aware of it, player 1’s
long-run belief is affected, and so is her long-run optimal action. So its slope, NE1, measures how
a marginal change in player 2’s (constant) action x2 influences player 1’s steady-state action.
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responds to player 2’s action.

3.3 Sufficient Condition for Convergence

Now we will think about whether players’ actions and beliefs indeed converge to
a steady state. The problem here is two-dimensional, in that both player 1’s belief
µ t

1 and player 2’s belief µ t
2 evolve in a non-trivial way.19 This makes our analy-

sis significantly more complicated than that of first-order misspecification, where
there is only one belief which moves in a non-trivial way. In particular, the proof
techniques developed for a single-agent learning problem in the literature are not
applicable. Nonetheless, we find that the belief converges if the identifiability
condition and some additional assumption hold.

Recall that in the case with first-order misspecification, identifiability requires
each (weighted) surprise function to have a unique minimizer. Under double mis-
specification, player i’s surprise function is defined as

Ki(θ ,x) =
(Q(xi, x̂−i,θ ,Ai)−Q(xi,x−i,θ ,a))2

2

for each action profile x = (x1,x2, x̂1, x̂2), and her weighted surprise function is
defined as

Ki(θ ,σ) =
∫

X
Ki(θ ,x)σ(dx)

for each probability measure σ ∈△(X1×X2×X1×X2). These surprise functions
are a bit different from those under first-order misspecification because of infer-
ential naivety; player i thinks that players play (xi, x̂−i), but the actual actions are
(xi,x−i). Identifiability requires that each of the above surprise functions has a
unique minimizer.

Under double misspecification, we need an additional assumption for conver-
gence. To state our condition formally, consider the single-agent learning problem
in which player 1 (and hypothetical player 2) learns the state over time, while the
belief of player 2 (and of hypothetical player 1) is fixed at some value θ2. Let

19Recall that the beliefs of the hypothetical players are exactly the same as those of the real
players, i.e., we have µ t

1 = µ̂ t
2 and µ t

2 = µ̂ t
1.
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f1(θ2) denote the set of steady-state beliefs of player 1 in this problem, that is,
f1(θ2) is the set of all θ1 such that there is (x1,x2, x̂1, x̂2) satisfying the consis-
tency condition (10) and the incentive-compatibility condition (8) and (9) given
µ2 = µ̂1 = 1θ2 .

Likewise, consider the single-agent learning problem in which player 2 (and
hypothetical player 1) learns the state over time, while the belief of player 1 (and
of hypothetical player 2) is fixed at some value θ1. Then let f2(θ1) denote the
set of steady-state belief of player 2, that is, f2(θ1) is the set of all θ2 such that
there is (x1,x2, x̂1, x̂2) satisfying the consistency condition (11) and the incentive-
compatibility condition (8) and (9) given µ1 = µ̂2 = 1θ1 .

The following proposition present a sufficient condition for convergence under
double misspecification.

Proposition 4. Suppose that there is a unique steady state (x∗1,x
∗
2,θ1,θ2) and it

is regular. Suppose also that for each i and σ , the weighted surprise function
Ki(θ ,σ) has a unique minimizer θ2(σ) and it is an interior point. In addition,
assume that

(i) For each i, fi(θ−i) is a function (rather than a correspondence), and is
continuously differentiable in θ−i.

(ii) maxθ1 |
∂ f2(θ1)

∂θ1
|maxθ2 |

∂ f1(θ2)
∂θ2

|< 1.

Then players’ beliefs converge to the steady state almost surely, regardless of the
initial prior.

Assumption (i) in this proposition is identifiability, and it ensures that the be-
lief converge in every one-dimensional problem. Assumption (ii) requires that
each player’s steady-state belief fi is not too sensitive to the opponent’s belief;
this means that one’s learning is not influenced by the the opponent’s learning by
much, at least asymptotically. The proposition above shows that the beliefs indeed
converge under these conditions.
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4 Applications

4.1 Cournot duopoly

Consider a symmetric Cournot duopoly. Each firm i= 1,2 simultaneously chooses
its quantity xi, and then they observe a market price y=Q(x1+x2,a,θ)+ε , where
a is a parameter which influences the demand and θ is an unknown economic
state. Firm i’s payoff is ui(xi,y) = xiy− c(xi), where xiy is firm i’s revenue and
c(xi) is firm i’s production cost. We assume that the inverse demand function Q is
strictly decreasing and weakly concave in the first element, and the cost function
c is strictly increasing and weakly convex.20

Kyle and Wang (1997), Heifetz, Shannon, and Spiegel (2007), and Englmaier
(2010) study (a variant of) one-shot Cournot competition with linear demand, and
show that (a moderate level of) overconfidence about the market demand is ben-
eficial, in that an overconfident firm earns higher equilibrium payoffs than the
unbiased rival firm. Intuitively, the overconfident firm is willing to produce more
than in the correctly specified model. Knowing that, the unbiased firm reduces
its production level in equilibrium, which yields higher profits to the overconfi-
dent firm. This mechanism is similar to the commitment effect in the Stackelberg
duopoly.

However, their result relies on two implicit assumptions. First, they assume
that the game is one-shot. It is not a priori clear if their result persists in the
long run, because when the game is repeatedly played, the overconfident firm
is “surprised” by a realized price being lower than its anticipation, and modifies
the (subjective) view about the demand function. Second, they assume that a
firm’s overconfidence is common knowledge, while in reality the opponent may
not recognize it. In this section, we will relax these assumptions and investigate
how it changes the result.

20These assumptions imply a concave payoff function, a downward-sloping best response curve,
and a unique Nash equilibrium under the correctly specified model. See, for example, Tirole
(1988).

24



First-order misspecification. To begin with, we will relax the first assumption
only, and consider a dynamic model in which one’s overconfidence is common
knowledge. Specifically, we consider the model of first-order misspecification in
which firm 2 incorrectly believes that the true parameter is A > a. We assume
that QA > 0 and QxA ≥ 0 for all x with x1 + x2 > 0, which means that firm 2 is
overconfident about the price level Q and (weakly) overconfident about the slope
of the inverse demand curve Qx. Note that a similar assumption is imposed in Kyle
and Wang (1997). Firm 1 knows that the true parameter is a, and the firms’ first-
order beliefs are common knowledge. We also assume that Qθ > 0 and Qxθ ≥ 0
for all x with x1 + x2 > 0, i.e., the state θ has positive impacts on the price level
and the slope of the inverse demand function.

Here are two examples which satisfy the assumptions above:21

Q(x1 + x2,a,θ) = a− (1−θ)(x1 + x2), (12)

Q(x1 + x2,a,θ) = θ − (1−a)(x1 + x2). (13)

In the first example (12), firm 2 is overconfident about the intercept of the demand
function and learns its slope.22 Conversely, in the second example (13), firm 2 is
overconfident about the slope and learns the intercept.23

We will consider how firm 2’s overconfidence influences the long-run steady
state outcome. Recall from Proposition 1 that the impact of firm 2’s overconfi-
dence on its own steady-state action is represented as the base misspecification

21These examples satisfy the regularity condition for first-order misspecification with A = a,
and for double misspecification with A1 = A2 = a. They also satisfy the conditions stated in
Propositions 2 and 4, so the firms’ beliefs and actions converge to the steady state. The proof can
be found in the working paper version (Murooka and Yamamoto, 2021).

22This happens, for example, when the firm is overconfident about the preference of the repre-
sentative customers and learns their number. Suppose that there are 1

1−θ customers, and each of
them purchases a− p units of products, where p is a price. Then, the total demand is x = a−p

1−θ ,
which results in the inverse demand function p = a− (1−θ)x.

23This happens, for example, when the firm is overconfident about the number of the customers
and learns their preference. Suppose that there are 1

1−a customers, and each of them purchases
θ − p units of products. Then, the total demand is x = θ−p

1−a , which results in the inverse demand
function p = θ − (1−a)x.
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effect −M2A
M22

times the multiplier. For ease of exposition, we assume that misspec-
ification is small (i.e., A is close to a) so that M22 < 0 and the multiplier is positive.
Simple algebra shows that the base misspecification effect in our Cournot model
is written as

− 1
M22


direct effect︷                   ︸︸                   ︷

QA(x∗1 + x∗2,A,θ2)+

indirect effect︷                         ︸︸                         ︷
∂θ2

∂A
Qθ (x∗1 + x∗2,A,θ2)︸                                                     ︷︷                                                     ︸

on the price level

+x∗2


direct effect︷                    ︸︸                    ︷

QxA(x∗1 + x∗2,A,θ2)+

indirect effect︷                          ︸︸                          ︷
∂θ2

∂A
Qxθ (x∗1 + x∗2,A,θ2)︸                                                       ︷︷                                                       ︸

on the slope


 .

(14)

This expression shows that the long-run behavior of the overconfident firm is gov-
erned by two countervailing forces. The first one is the direct effect, QA + x2QxA,
which measures how firm 2’s misspecification directly influences its marginal util-
ity. Since we assume QA > 0 and QxA ≥ 0, this effect is positive, and hence boosts
the firm’s incentive to produce. This is exactly the effect studied in Kyle and Wang
(1997). The second one is the indirect effect, ∂θ2

∂A (Qθ + x2Qxθ ), which measures
how firm 2’s learning (about θ ) influences the marginal utility in the long run.
Since ∂θ2

∂A < 0, Qθ > 0, and Qxθ ≥ 0, this effect is negative, and hence weakens
the firm’s incentive to produce.

If the direct effect is larger than the indirect effect, the overconfident firm
is willing to produce more even in the long run. This means that the result of
Kyle and Wang (1997) persists, i.e., in the long-run steady state, the rival firm
best-responds by producing less, which yields a higher profit to the overconfident
firm.24

On the other hand, if the indirect effect outweighs the direct effect, the over-
confident firm is willing to produce less in the long run. Then the commitment
effect works towards the opposite direction, i.e., the rival firm best-responds by
producing more, which harms the overconfident firm’s profit. So in this case,
the result of Kyle and Wang (1997) is overturned and a firm’s overconfidence is
detrimental in the long run.

24However, due to the indirect effect, the overconfident firm’s profit is less than that in the
one-shot game: By the incorrect learning, the commitment effect is weakened in the long run.
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There is another interpretation of the base misspecification effect (14). Note
that the first two terms in the brackets cancel out, because the overconfident firm
correctly predicts the price level in the steady state.25 Accordingly, the base mis-
specification effect is rewritten as

−
x∗2

M22

(
QxA +

∂θ2

∂A
Qxθ

)
=−

x∗2QA

M22

(
QxA

QA
− Qxθ

Qθ

)
.

This expression implies that the long-run behavior of the overconfident firm is
determined by its steady-state belief about the demand slope: If QxA

QA
− Qxθ

Qθ
> 0

so that the firm is optimistic about the demand slope, then it produces more than
in the correctly-specified model, and obtains a higher profit. This happens in
example (13) where the firm is persistently overconfident about the demand slope.

On the other hand, if QxA
QA

− Qxθ
Qθ

< 0 so that the firm is pessimistic about the
demand slope, then it produces less and earns a lower profit. This happens in
example (12) where the overconfident firm becomes pessimistic about the demand
slope through learning. This discussion leads to the following corollary:

Corollary 2. Consider the model of first-order misspecification. Suppose that
there is a unique steady state at A = a and it is regular.26 Then at A = a, we have
sgn∂x∗2

∂A = sgn
(
−∂x∗1

∂A

)
= sgn∂π∗

2
∂A = sgn

(
−∂π∗

1
∂A

)
= sgn

(
QxA
QA

− Qxθ
Qθ

)
, |∂x∗2

∂A |> |∂x∗1
∂A |,

and |∂π∗
1

∂A |> |∂π∗
2

∂A |.

Double misspecification. Now we will relax the common knowledge assump-
tion, and consider the case in which firm 1 is unaware of the rival firm’s overcon-
fidence. Specifically, consider double misspecification with A1 = a and A2 > a, so
that the firm’s beliefs about the parameter a are the same as before, but each firm
(incorrectly) believes that the other firm shares the same view about the parameter
a.

How does the overconfident firm 2 behave in such a situation? Proposition 3
shows that the impact of one’s overconfidence on its own steady-state action is the

25By the implicit function theorem, ∂θ2
∂A =−QA

Qθ
< 0, and hence we indeed have QA+

∂θ2
∂A Qθ = 0.

26Because a steady state is an intersection of asymptotic best response correspondences BR1

and BR2, the steady state is unique if BR′
i(x j) ∈ (−1,1) for all i and x j where j , i.
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base misspecification effect, −M2A
M22

−BR′
23

M3A
M33

, times the multipliers. As shown
in Lemma 4 in Appendix B.7, when the game is symmetric, the sign of this base
misspecification effect is the same as that of first-order misspecification.27 So un-
der double misspecification, firm 2 produces more than in the correctly-specified
model if it does so in the case of first-order misspecification, and produces less if
it does so in the case of first-order misspecification.

How about the behavior of the rival firm? A critical difference from the case
of first-order misspecification is that the commitment effect does not exist in this
environment; although firm 2’s overconfidence influences its behavior, the oppo-
nent is not aware of it and does not best-respond to it. This in particular implies
that if we look at the one-shot game, firm 2’s overconfidence does not influence
the opponent’s behavior, and hence never be beneficial.

However, in our dynamic model, firm 2’s overconfidence can still improve the
equilibrium payoff. Indeed, we have the following result:

Corollary 3. Consider the model of double misspecification with A1 = a. Suppose
that there is a unique steady state at A2 = a and it is regular. Then at A2 = a, all
the results stated in Corollary 2 still hold.

So in the long-run, first-order misspecification and double misspecification
lead to similar steady-state outcomes, i.e., firm 1’s unawareness about firm 2’s
overconfidence does not have a significant impact on their long-run behavior. In
particular, when QxA

QA
− Qxθ

Qθ
> 0, firm 2’s overconfidence improves its long-run

equilibrium payoff, regardless of whether the opponent is aware of it.
Why do we have such a result, even though the commitment effect does not

exist under double misspecification? A key is that firm 1’s long-run behavior is
influenced by incorrect learning. To illustrate the idea, suppose that the base mis-
specification effect is positive, so that firm 2 produces more than in the correctly-
specified model. Under double misspecification, firm 1 is not aware of it, and
hence observes prices which are systematically lower than the anticipation. Ac-
cordingly, firm 1 becomes pessimistic about θ and produces less; this yields a

27Intuitively, this happens because the impact |BR′
23

M3A
M33

| of second-order misspecification is

smaller than the impact |M2A
M22

| of first-order misspecification in symmetric games.
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higher profit to the overconfident firm 2 even in the absence of the commitment
effect.

4.2 Team production

In the Cournot example, we have seen that one’s unawareness about the oppo-
nent’s overconfidence does not have a significant impact on the equilibrium out-
come. However, this result does not hold in general; there are many economic
examples in which first-order misspecification and double misspecification lead
to qualitatively different outcomes. In this subsection, we will present one of such
examples: a team production problem.

Consider two players working on a joint project. Each period, player i = 1,2
chooses an effort level xi, and observes a stochastic output y = Q(x,a,θ ∗) + ε
where a is a fixed parameter (e.g., one’s capability) and θ ∗ is an unknown funda-
mental. We assume that Q is twice-continuously differentiable, Qxi > 0, Qa > 0,
and Qθ > 0. Player i’s payoff is y− c(xi), where c(xi) is the effort cost satisfying
c′ > 0 and c′′ > 0. Assume also that there is a unique Nash equilibrium in the
one-shot game. This setup is fairly general, and includes the following examples
as special cases.28

Example 1. Let ai denote player i’s capability, and let a = a1 +a2 denote the
total capability. Let ci(xi) = x2

i and

Q = θ(x1 + x2 + kx1x2 +a),

where k ∈ (− 2
θ∗ ,

2
θ∗ ) is a fixed parameter.29 Note that efforts are complements if

k > 0, and substitutes if k < 0. Each player i may have a bias and incorrectly
believe that the total capability is Ai , a. When Ai > a, it represents one’s over-
confidence. When Ai < a, it represents one’s underconfidence or prejudice about

28Again, these examples satisfy the regularity condition for first-order misspecification with A=

a and for double misspecification with A1 = A2 = a, and the sufficient conditions for convergence
stated in Propositions 2 and 4. The proof can be found in the working paper version (Murooka and
Yamamoto, 2021).

29This assumption ensures that the equilibrium is an interior point.
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the opponent’s capability. Players learn the profitability θ of the business over
time. This setup corresponds to a multi-player version of Example 2 of Heidhues,
Kőszegi, and Strack (2018).

Example 2. Let a denote player 1’s capability. Let ci(xi) = x2
i and

Q = θ(ax1 + x2 + kx1x2 +2),

where k ∈ (− 2
θ∗ ,

2
θ∗ ) is a fixed parameter. A difference from Example 1 is that

player 1’s capability a influences her marginal productivity, which makes the func-
tion Q asymmetric, in that Q(x1,x2,a,θ) ,Q(x2,x1,a,θ) for a , 1. As will be ex-
plained, this property has a qualitative impact on the steady-state outcome under
double misspecification.

First-Order Misspecification. Again, we start with the benchmark case in which
player 2 has first-order misspecification, in that she incorrectly believes A , a.
Simple algebra shows that the base misspecification effect of first-order misspec-
ification is

− 1
M22


direct effect︷︸︸︷

QxiA +

indirect effect︷      ︸︸      ︷
∂θ2

∂A
Qxiθ︸                        ︷︷                        ︸

on marginal productivity

 . (15)

So the base misspecification effect is determined by the biased player 2’s sub-
jective view about the marginal productivity in the steady state; the term QxiA

measures how player 2’s misspecification influences her view about the marginal
productivity, and the term ∂θ2

∂A Qxiθ measures how the incorrect learning modifies
it.

In what follows, we will assume Qx2A ≤ 0 and Qx2θ > 0, i.e., the marginal
return Qxi of the misspecified player is negatively correlated with the capability,
and positively correlated with the fundamental. It is easy to check that this as-
sumption is satisfied in Examples 1 and 2 above. Under this assumption, both the
direct effect and the indirect effect in (15) are negative. Thus the overconfident
player 2 works less in the static model, and even less in the long run (so we have
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∂x∗2
∂A < 0). Intuitively, when a player is overconfident about her own capability, she
observes outputs systematically lower than the anticipation. Accordingly, as time
goes, she becomes pessimistic about the state θ and reduces the effort.30

How about the equilibrium payoffs? There are two cases to be considered.
First, suppose that Qx1x2 > 0 so that efforts are complements. (In the above ex-
amples, this corresponds to k > 0.) Then the rational player 1 reduces the effort
as a response to the lower effort of the overconfident player, which reduces the
overconfident player’s payoff. So one’s overconfidence is detrimental in this case.

Next, suppose that Qx1x2 < 0 so that efforts are substitutes. (In the above exam-
ples, this corresponds to k < 0.) In this case, one’s overconfidence is beneficial;
indeed, the rational player 1 increases the effort as a response, which improves
the overconfident player’s payoff. The mechanism here is exactly the same as
the commitment effect in the Cournot model, i.e., one’s misspecification may in-
fluence the opponent’s behavior, which may improve the misspecified player’s
payoff. This result is in a sharp contrast with the single-agent case studied by Hei-
dhues, Kőszegi, and Strack (2018), where one’s overconfidence is always detri-
mental. In their model, the overconfident player reduces the effort just as in our
model, but it never improves the overconfident player’s payoff due to the lack of
the commitment effect.

Double Misspecification. Now we consider the case of double misspecifica-
tion, where player 1 is not aware of player 2’s overconfidence. We will focus on
Examples 1 and 2 above, and show that first-order misspecification and double

30Of course, the argument here can be extended to a more general setup. The bottom-line is
that the short-run effect of player 2’s overconfidence on her own action is determined by Qx2A, and
the long-run effect is determined by Qx2A +

∂θ2
∂A Qx2θ = Qx2A − QA

Qθ
Qx2θ . For example, suppose that

Q < 0 is the damage from drought and agents invest to irrigation which mitigate the damage, and
it takes a form of

Q =− 1
θ

(
1

x1 + x2
+

1
a

)
.

In this case, QxiA ≥ 0 and Qxiθ < 0, so both the direct effect and the indirect effect are positive.
This means that player 2’s overconfidence about her capability increases her effort in the one-shot
game, and she makes even more effort in the long run.
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misspecification can have opposite effects on players’ actions and payoffs.
First, consider Example 1. This game is symmetric, in that Q(x1,x2,a,θ) =

Q(x2,x1,a,θ) and u1(x1,y) = u2(x1,y). As discussed in the Cournot model, in
such a case, the sign of the base misspecification effect −M2A

M22
−BR′

23
M3A
M33

of double
misspecification coincides with that of first-order misspecification. So the over-
confident player 2 reduces the effort (i.e., ∂x∗2

∂A2
< 0) just as in the case of first-order

misspecification.
How does it influence player 1’s action? Under double misspecification, player

1’s long-run behavior is influenced by her incorrect learning: Player 1 is not aware
of the overconfident player reducing the effort, and thus observes outputs lower
than the anticipation on average. This makes her pessimistic about the state over
time, and she reduces the effort in the end. So in this example, one’s overconfi-
dence lowers both players’ efforts and payoffs.

Note that this result does not rely on whether efforts are complements or sub-
stitutes. This is in a sharp contrast with the case of first-order misspecification,
where an agent’s overconfidence improves her profit when the efforts are substi-
tutes. That is, first-order misspecification and double misspecification have op-
posite effects on the overconfident player’s payoff (and player 1’s action) when
k < 0.

Next, consider Example 2. Here the difference between first-order misspec-
ification and double misspecification is even more striking, in that the base mis-
specification effects of these two misspecifications can have opposite signs. For
example, let Θ = [0.1,0.3], θ ∗ = 0.2, a = A1 = 1, and k = 4. Then at A2 = a, the
base misspecification effect of double misspecification is positive, and thus the
overconfident player 2 increases the effort.31 Intuitively, in the case of double mis-
specification, player 2 (incorrectly) believes that player 1 is overconfident about
a and makes higher effort than in the reality. Because efforts are complements
(recall k = 4 > 0), with this perception, player 2 makes more effort. Given the

31In this example, we have M2A =− 1
44 , M22 = M33 =− 47

22 , BR′
23 =

63
235 , and M3A = 39

220 . Hence,
the base misspecification effect of double misspecification is about 0.012, which is positive as
claimed in the main text.
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specified parameters, this effect dominates all the other effects coming from the
misspecification, so the overconfident player 2 makes higher effort in the steady
state.

4.3 Bias Transmission and Self-fulfilling Prophecies

Recent evidence suggests that the gender gap in math achievement arises from
culture and social conditioning rather than from biological reasons (such as brain
functioning). For example, Lavy and Sand (2018) and Carlana (2019) find that the
gender gap in performance in math exam substantially increases when students are
assigned to math teachers with stronger gender stereotypes. In particular, Carlana
(2019) argues that this effect is at least partially driven by lower self-confidence
on math ability of female students who are exposed to gender-biased teachers.32

We will show that our framework is useful to explain such a bias transmission
from teachers to students.33

Suppose that player 1 (she) is a student and player 2 (he) is a teacher. The stu-
dent’s achievement (e.g., math test performance) is given by y= a(x1+x2+b)+ε ,
where a > 0 represents a gender-specific capability and b > 0 is the student’s
own capability. The student knows her own capability b, but does not know
the gender-specific capability θ1. So she thinks that the outcome is given by
y = θ1(x1+x2+b)+ε and learns θ1 over time. On the other hand, the teacher has
a biased view about the gender specific capability, and he thinks that the outcome
is given by y= A2(x1+x2+θ2)+ε , where A2 < a represents his bias. He does not
know the student’s individual capability θ2, and learns it over time. We assume
that each player (incorrectly) thinks that the opponent has the same view about the

32Relatedly, Gong, Lu, and Song (2018) report that a male math teacher in their survey is
more likely to question and praise male students than female students compared with a female
math teacher, and that having such a teacher lowers female students’ beliefs about gender-specific
capability: They find that female students who have a male math teacher are more likely to agree
with a question “boys are more talented in learning math than girls” than those who have a female
math teacher.

33See Giuliano (2020) for a survey of the transmissions of gender-biased norms and beliefs.
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world. This means that the student is not aware of the teacher’s gender-stereotype
A2 < a.

This setup is different from the one presented in Section 3, in that different
players learn different parameters. However, this does not has a substantial impact
on the property of the steady state. Similarly to the analysis in Section 4.2, it
is straightforward to show that both the teacher and the student exert less effort
than in the correctly specified model in the steady state, and the student becomes
underestimating the gender-specific capability θ1.

A notable feature in this framework is that the student initially has an unbiased
view about the environment, but nonetheless, the teacher’s gender bias is eventu-
ally transmitted to the student.34 A key driving force is the student’s inferential
naivety; a biased teacher secretly reduces the effort, and the student is not aware
of it. Then on average, the realized outcomes are lower than the student’s expecta-
tion, which makes the student unrealistically pessimistic about the gender-specific
capability θ1.

It seems that bias transmissions and self-fulfilling prophecies are as prevalent
in workplaces as they are in school classrooms. Livingston (1969) finds that a
manager’s high expectation of the subordinates improves the subordinates’ job
performance, and it is confirmed by many subsequent papers.35 This phenomenon
is known as the Pygmalion effect in management, and Eden (1984) and Davidson
and Eden (2000) argue that this effect stems from bias transmission: a manager’s

34Recent work by Heidhues, Kőszegi, and Strack (2020) also argue that a gender bias (more
generally, a group discrimination) can endogenously arise as a consequence of misspecified learn-
ing. Formally, they develop a single-agent learning model, and show that an underconfident (resp.
overconfident) agent tends to underestimate (resp. overestimate) the capability of her in-group
members. So in their setup, the source of a group discrimination is one’s misconfidence about
her own capability. Our result complements their work by considering the case in which an agent
does not have underconfidence, or more generally, any bias about the physical environment. Our
analysis shows that one’s existing prejudice may induce other players’ negative self-stereotypes
through learning.

35Kierein and Gold (2000) and McNatt (2000) provide meta-analysis results of the Pygmalion
effect in management. See Bertrand and Duflo (2017) for a survey of the self-fulfilling prophecies
in economics.
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higher expectation raises workers’ beliefs about their own self-efficacy, which
lead them to greater motivation and achievement.36 Our framework here is useful
to better understand why such a bias transmission occurs. Roughly speaking, if an
optimistic manager makes an extra effort and a worker is not (fully) aware of it,
then on average, the worker observes an output better than his expectation. This
makes the worker more confident of his own capability, which in turn improves
the outcome further.

Of course, if a manager is negatively biased, the mechanism above can work in
the opposite direction. For example, Hoobler, Wayne, and Lemmon (2009) report
that in many industries, managers tend to think that female workers are unfit for
promotion compared to male workers. Our analysis suggests that such a bias can
be transmitted to female workers, and they become underconfident about their
own capabilities. This is consistent with the recent work by Born, Ranehill, and
Sandberg (forthcoming) who find that women are less confident than men in their
relative ability as being a leader position. This mechanism may help understand
why a “glass ceiling,” an invisible barrier that discourages women and minorities,
persists in various institutions.

5 Related Literature and Conclusion

There is a rapidly growing literature on Bayesian learning with model misspec-
ification. Nyarko (1991) presents an example in which the agent’s action does
not converge. Fudenberg, Romanyuk, and Strack (2017) consider a general two-
state model and characterize the agent’s asymptotic actions and behavior. Hei-
dhues, Kőszegi, and Strack (2018), Heidhues, Kőszegi, and Strack (2021), and

36Of course, there are other mechanisms which explain the correlation between a manager’s bias
and a worker’s performance. For example, Glover, Pallais, and Pariente (2017) find that minority
workers in French grocery stores tend to perform worse when they work with biased managers,
while working with biased managers does not activate self-stereotyping of the minority workers.
Glover, Pallais, and Pariente (2017) argue that this result can be explained by the fact that biased
managers are less comfortable around minorities: such managers do not monitor minority workers
frequently and do not ask them to stay after the end of their shifts.
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He (2021) study a continuous-state setup, and they show that the agent’s action
and belief converge to a Berk-Nash equilibrium of Esponda and Pouzo (2016),
under some assumptions on payoffs and information structure. Esponda, Pouzo,
and Yamamoto (2021) characterize the agent’s asymptotic behavior in a general
single-agent model. Fudenberg, Lanzani, and Strack (2021) discuss robustness
of steady states. All these papers look at a single-agent problem and focus on
first-order misspecification.

More recently, Ba and Gindin (2021) consider two-player team production
in which both players are overconfident about their own capability. They show
that if efforts are complements and information has a positive externality, then
learning is mutually reinforcing, i.e., one’s strategic play reduces both players’
efforts and results in a worse outcome. Our work strengthens their result, in
three ways. First, our Proposition 1 gives a necessary and sufficient condition
for mutually-reinforcing learning: When the base misspecification effect is neg-
ative, our proposition shows that player 1’s strategic play reduces both players’
efforts if and only if the two asymptotic best response curves are upward-sloping
(i.e., BR′

1 > 0 and BR′
2 > 0).37 Second, our Proposition 1 does not impose any

assumptions on payoffs and information structure, and allows us to study a wide
range of applications such as Cournot duopoly and tournaments. Third and most
importantly, we develop a model of higher-order misspecification and study how
each type of misspecification influences players’ beliefs and actions.

Misspecified learning has also been studied in other settings. In the literature
on social learning, many papers study how inferential naivety or model misspecifi-
cation influences the asymptotic outcomes (e.g., DeMarzo, Vayanos, and Zwiebel,
2003; Eyster and Rabin, 2010; Gagnon-Bartsch and Rabin, 2016; Bohren and
Hauser, 2021; Frick, Iijima, and Ishii, 2020). Molavi (2020) considers a gen-
eral equilibrium model in which a representative agent has a misspecified view
about the world. Cho and Kasa (2017) study an asset-pricing model in which an
agent incorrectly believes that the environment is not stationary.

37Strategic complementarity and positive information externality assumed by Ba and Gindin
(2021) imply upward-sloping asymptotic best response curves.
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A prominent example of the first-order misspecification is overconfidence on
one’s own capability. Plenty of experimental and empirical papers report that
people exhibit overconfidence on their own ability in various economic activities,
as discussed in Section 1.38 Furthermore, recent empirical evidence suggests that
overconfidence on a particular aspect of one’s own capability persists even after
a long time and a plenty of feedback (Grossman and Owens, 2012; Hoffman and
Burks, 2020; Huffman, Raymond, and Shvets, 2019), which calls for the analysis
of long-run behavior under model misspecifications.
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Appendices

A Asymptotic Behavior of Misspecified Players
In this appendix, we will provide a general model which encompasses both first-
order misspecification and double misspecification as special cases, and show that
the motion of players’ action frequency is asymptotically approximated by a so-
lution to a differential inclusion. This result can be seen as a generalization of the
main theorem of Esponda, Pouzo, and Yamamoto (2021) to the case with multiple
players and continuous actions. Then we show that the motion of players’ beliefs
is also approximated by a solution to a differential inclusion. This result is new,
and we use it to derive a sufficient condition for belief convergence.

A.1 General Setup
For each compact set A ⊂ Rn (or more generally, separable metric space A), let
△A denote the set of probability measures over the set A. We consider the dual
bounded-Lipschitz norm on △A, that is, for each µ ∈△A, let

∥µ∥= sup
f∈BL(A)

∫
A

f dµ

where BL(A) is the set of bounded Lipschitz continuous functions f on A with
supx∈A | f (x)|+ supx,y

| f (x)− f (y)|
|x−y| ≤ 1. This norm has two nice properties. First,

it metrizes the weak topology, that is, the topology induced by the dual bounded-
Lipschitz norm coincides with the weak topology on △A. Second, with this norm,
△A is a compact subset of a Banach space, i.e., the set of finite signed measures on
A is a Banach space when paired with the dual bounded-Lipschitz norm, and △A is
a compact subset in it. See Dudley (1966) and Billingsley (1999) for references.
The first property is needed to obtain our Propisition 7. The second property
is crucial in order to use a stochastic approximation technique in the proof of
Proposition 8. The dual bounded-Lipschitz norm is used in Hofbauer, Oechssler,
and Riedel (2009) and Perkins and Leslie (2014), who study learning dynamics in
games with continuous actions.
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A.1.1 Objective World

There are two players i = 1,2 and infinitely many periods t = 1,2, · · · . In each
period t, each player i chooses an action xi from a compact set Xi ⊂ R. These
actions are not observable. Then they observe a noisy public output y ∈ Y which
is distributed according to a probability measure Q(·|x) ∈△Y , where x = (x1,x2)
denotes the chosen action profile. Each player i’s payoff is ui(xi,y).

In the infinite-horizon game, each player i’s t-period history is ht
i =(xτ

i ,y
τ)t

τ=1,
where (xt

i,y
t) is player i’s action and the public outcome in period t. Let Ht

i denote
the set of all t-period history, and let H0

i = { /0}. Player i’s pure strategy in the
infinite-horizon game is a mapping si :

∪∞
t=0 Ht

i → Xi. Let Si denote the set of
player i’s pure strategies. Let ht

Y = (yτ)t
τ=1 denote the t-period public history. A

strategy is public if it depends only on public histories.

A.1.2 Subjective World and Model Hierarchy

We assume that the output distribution Q is not common knowledge among play-
ers. Instead, each player i has a set Θi,1 of subjective models, and in each model
θi,1 ∈ Θi,1, the output distribution given an action profile x is Qθi,1(·|x). Player
i thinks that the true world is described by one of these models, and her initial
prior about the model is µi,1 ∈△Θi,1. Player i’s models are correctly specified if
there is θi,1 such that Q(·|x) = Qθi,1(·|x) for all x. Otherwise her models are mis-
specified. Player i also has models about the opponent j’s model, that is, player i
believes that the opponent j has an initial prior µi,2 over a model set Θi,2, where
each model θi,2 induces the output distribution Qθi,2(·|x) for each action profile x.
This triplet Mi,2 = (µi,2,Θi,2,(Qθi,2(·|x))(x,θi,2)) is player i’s second-order model in
that it is her subjective view about player j’s subjective model. More generally, we
assume that each player i has a model hierarchy Mi = (Mi,1,Mi,2, · · ·) where each
Mi,k = (µi,k,Θi,k,(Qθi,k(·|x))(x,θi,k)) is player i’s kth-order model. That is, player i
believes that player j believes that player i’s model is Mi,3, player i believes that
player j believes that player i believes that player j’s model is Mi,4, and so on.

This framework is flexible and allows us to study a variety of information
structures. For example, we obtain the model of first-order misspecification stud-
ied in Section 2 when M1,1 = M2,2 = M1,3 = M2,4 = M1,5 = · · · , M2,1 = M1,2 =
M2,3 = M1,4 = M2,5 = · · · , and M1,1 is correctly specified; here the first con-
dition implies that player 1’s model M1,1 is common knowledge, and the sec-
ond condition implies that player 2’s model M2,1 is common knowledge. Simi-
larly, we obtain the model of double misspecification studied in Section 3 when
Mi,1 = Mi,2 = Mi,3 = · · · for each i.
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In what follows, we will maintain the following technical assumptions.

Assumption 1. The following conditions hold:

(i) Y and Θ are Borel subsets of the Euclidean space, and Θ is compact.

(ii) There is a Borel probability measure ν ∈△Y such that Q(·|x) and Qθi,k(·|x)
are absolutely continuous with respect to ν for all x and i, k, and θi,k.
(An implication is that there are densities q(·|x) and qθi,k(·|x) such that∫

A q(y|x)ν(dy) = Q(A|x) and
∫

A qθi,k(y|x)ν(dy) = Qθi,k(A|x) for any A ⊆ Y
Borel.)

(iii) q(·|x) and qθi,k(·|x) are continuous in θ and x.

(iv) There is a function g : X ×Y → R such that (a) for each y, g(x,y) is contin-
uous in x, (b) g(x, ·) ∈ L2(Y,Q(·|x)) for each x, and (c) for all x, x̂ i, k, and
θi,k, log q(·|x)

qθi,k (·|x̂)
≤ g(x, ·) Q(·|x)-a.s..

The parts (i)-(iii) are fairly standard. The part (iv) implies that every outcome
y is generated by each player i’s model, which is useful to establish a uniform
version of the law of large numbers. The assumption above is similar to As-
sumptions 1 and 2 of Esponda, Pouzo, and Yamamoto (2021), but there are two
differences. First, we allow the action set Xi to be continuous, in which case we
require continuity of q, as described in parts (iii) and (iv-a). Second, we allow
inferential naivety, so when we consider the log-likelihood log q(·|x)

qθi,k (·|x̂)
of the true

output probability and the subjective probability, we distinguish the actual action
profile x from the inferred action profile x̂.

Recall that in the cases of first-order misspecification and double misspecifi-
cation, each player i believes that (i) her view Mi,1 about the world is common
knowledge (i.e., Mi,1 = Mi,3 = Mi,5 = · · · ) and that (ii) her view Mi,2 about the op-
ponent’s view about the world is common knowledge (i.e., Mi,2 = Mi,4 = Mi,6 =
· · · ). This ensures that player i’s decision making problem is equivalent to solving
a game played by this player i and a hypothetical player.39 In the general model
here, we will impose a (similar but) weaker assumption:

39In the case of first-order misspecification, this hypothetical player is redundant in that her
action coincides with the actual player’s action. So such a hypothetical player does not appear in
our analysis in Section 2.
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Assumption 2. Player i believes that the models (Mi,ki,Mi,ki+1) are common knowl-
edge after level ki <∞, that is, for each i, there is ki <∞ such that (Mi,ki,Mi,ki+1) =
(Mi,ki+2n,Mi,ki+1+2n) for each n = 1,2, · · · .

For the special case in which ki = 1, this assumption implies that player i
believes that the models (Mi,1,Mi,2) are common knowledge, just as in the case of
first-order misspecification and double misspecification. The assumption above is
more general than that, because it allows ki > 1; in such a case, the assumption
implies that player i believes that models are common knowledge at higher levels,
i.e., she believes that the opponent believes that · · · that the models (Mi,ki,Mi,ki+1)
are common knowledge. Note that this assumption is about whether player i
thinks that the models are common knowledge, and not about whether the models
are common knowledge in the objective sense. We believe that Assumption 2 is
satisfied in most applications.40

Pick ki as stated in Assumption 2. Then player i’s problem is strategically
equivalent to solving the following hypothetical game with ki +1 agents:

• Each period, each agent k = 1,2, · · · ,ki+1 chooses an action x̂i,k from a set
X̂i,k, where X̂i,k = Xi for odd k, and X̂i,k = X j for even k.

• Agent 1 is player i herself. She has the model Mi,1, and thinks that her
opponent is agent 2. That is, she thinks that the distribution of the public
outcome is Qθi,1(x̂i,1, x̂i,2) for some θi,1, where (x̂i,1, x̂i,2) is the action chosen
by agents 1 and 2.

• Other agents are hypothetical players appearing in player i’s reasoning.
Each agent k = 2,3, · · · ,ki + 1 has the model Mi,k, and thinks that her op-
ponent is agent k+ 1. That is, she thinks that the distribution of the public
outcome is Qθi,k(x̂i,k, x̂i,k+1) for some θi,k. Here, agent ki +2 refers to agent
ki, so agents ki and ki +1 play the game with each other.

• All the information structure above is common knowledge among the agents.

Intuitively, agent 1’s action x̂i,1 in this hypothetical game is player i’s actual action,
agent 2’s action x̂i,2 is player i’s prediction about the opponent j’s action, agent

40This assumption is needed to establish Propositions 7 and 8. Indeed, if this assumption is
not satisfied, then we need infinite agents to describe player i’s reasoning, so the set X̂ becomes
the product of infinitely many X1 and X2. This set X̂ is not separable (it is well-known that the
l∞-space is not separable), so the dual bounded-Lipschitz norm on △X̂ may not coincide with the
topology of weak convergence.
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3’s action x̂i,3 is player i’s prediction about j’s prediction about i’s action, and
so on. So the action profile x̂i = (x̂i,k)

ki+1
k=1 in this hypothetical game is essentially

player i’s prediction hierarchy. Let X̂i =×ki+1
k=1 Xi,k denote the set of all these action

profiles.
In what follows, each agent k in this hypothetical game is labelled as (i,k),

because these agents describe player i’s reasoning. The opponent j has a different
model hierarchy M j , Mi, and hence her reasoning is represented by a different
set of agents labelled as ( j,k).

Let ŝi,k denote agent (i,k)’s strategy in the infinite-horizon hypothetical game,
and let ŝi = (ŝi,k)

ki+1
k=1 denote a strategy profile. This profile ŝi is also interpreted

as player i’s prediction hierarchy about strategies in the infinite-horizon game.
That is, ŝi,1 is player i’s actual strategy, ŝi,2 is player i’s prediction about player j’s
strategy, and so on. So ŝi,k ∈ Si for odd k, and ŝi,k ∈ S j for even k. We assume that
each ŝi,k is pure and public.

Given a pure strategy profile ŝi = (ŝi,k) in the hypothetical game, each agent
k’s posterior belief µ̂ t+1

i,k ∈ △Θi,k can be computed using Bayes’ rule, after every
public history ht

Y . Formally, for each t and k, we have

µ̂ t+1
i,k (θi,k) =

µ̂ t
i,k(θi,k)Qθi,k(y

t |ŝi,k(ht−1
Y ), ŝi,k+1(ht−1

Y ))∫
Θi,k

µ̂ t
i,k(θi,k)Qθi,k(y

t |ŝi,k(ht−1
Y ), ŝi,k+1(ht−1

Y ))dθi,k

where ŝi,ki+2 = ŝi,ki . Here we use the fact that agent k thinks that the signal yt in
period t is drawn given the action profile (ŝi,k(ht−1

Y ), ŝi,k+1(ht−1
Y )), where ŝi,k(ht−1

Y )

is her own action, and ŝi,k+1(ht−1
Y ) is the opponent k + 1’s action. The above

formula is valid only if no one deviates from the profile ŝi; if some agent k deviates,
then her posterior belief must be computed using a different formula. A strategy
profile ŝi is Markov if each agent’s strategy depends only on the belief hierarchy
µ̂ t

i , i.e., for each k and t, ŝi,k(ht
Y ) depends on ht

Y only through µ̂ t+1
i .

Example 1. (Myopically optimal agents) Suppose that the agents are myopic and
maximize their expected stage-game payoffs each period. In such a case, they
play a one-shot equilibrium given a belief-hierarchy µ̂ t in each period t. Recall
that each agent (i,k) thinks that her opponent is agent (i,k+1), so her subjective
expected stage-game payoff given a model θi,k is

Uθi,k(x̂i,k, x̂i,k+1) =
∫

Y
ui,k(x̂i,k,y)Qθi,k(dy|x̂i,k, x̂i,k+1)
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where ui,k = u1 when i+k is even, and ui,k = u2 when i+k is odd. So the strategy
profile ŝi must satisfy the following equilibrium condition:

ŝi,k(µ̂i) ∈ arg max
x̂i,k∈X̂i,k

∫
Θi,k

Uθi,k(x̂i,k, ŝi,k+1(µ̂i))µ̂i,k(dθi,k) ∀k∀µ̂i. (16)

It is obvious that this strategy profile ŝi is Markov.

Example 2. (Dynamically optimal agents) Now consider dynamically optimal
agents, who maximize the expectation of the discounted sum of the stage-game
payoffs, ∑∞

t=1 δ t−1ui,k(x̂i,k,y). Many applied papers use Markov perfect equilibria
as a solution concept. In our context, ŝi is a Markov perfect equilibrium if given
any belief hierarchy µ̂i, the continuation strategy profile ŝi|µ̂i satisfies

ŝi,k|µ̂i ∈ argmax
ŝi,k

∫
Θi,k

∞

∑
t=1

δ t−1E[Uθi,k(x̂
t
i,k,x

t
i,k+1)|ŝi,k, ŝi,k+1|µ̂i]µ̂i,k(dθi,k)

for each k, where the expectation is taken over (x̂t
i,k,x

t
i,k+1).

Let h=(xt ,yt)∞
t=1 denote a sample path (a history in the infinite-horizon game).

Also, let X̂ = X̂1 × X̂2 be the product of the sets of all action profiles of the two
hypothetical games. Given a sample path h and given strategy profiles ŝ = (ŝ1, ŝ2)
of the two hypothetical games (for players 1 and 2), let σ t(h) ∈ △X̂ denote the
action frequency up to period t, that is,

σ t(h)[(x̂1, x̂2)] =
1
t

t

∑
τ=1

1{ŝi,k(h
τ−1
Y )=x̂i,k ∀i∀k}.

Intuitively, σ t(h)[(x̂1, x̂2)] describes how often the action profile x̂i was chosen in
each hypothetical game. (In other words, it describes how often each player i made
a prediction hierarchy x̂i.) Note that we cannot directly observe the actions x̂i,k of
the higher-level agents (i,k) with k ≥ 2, as they are hypothetical agents. However,
since each agent uses a public strategy ŝi,k, we can back it up from the past public
history; given a history hτ−1

Y , the hypothetical agent k’s action in period τ must be
ŝi,k(hτ−1

Y ). This allows us to define the action frequency in the hypothetical game
as a function of the observed history h.

A.2 Posterior Beliefs and Kullback-Leibler Divergence
We first show that after a long time t, the posterior belief is concentrated on the
models which best explain the data. Specifically, we show that the belief is con-
centrated on the models which minimize the Kullback-Leibler divergence, which
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is defined as follows. Let σ ∈ △X̂ be a probability measure over X̂ . For each σ ,
the Kullback-Leibler divergence of model θi,k for agent k is defined as

Ki,k(θi,k,σ) =
∫

X̂

∫
Y

log
q(y|x̂1,1, x̂2,1)

qθi,k(y|x̂i,k, x̂i,k+1)
Q(dy|x̂1,1, x̂2,1)σ(dx̂).

Intuitively, Ki,k(θi,k,σ) measures the distance between the true output distribution
and the subjective distribution induced by agent k’s model θi,k. To see this, think
about the special case in which σ is a degenerate distribution 1x̂1,x̂2 . Then the
Kullback-Leibler divergence of model θi,k can be rewritten as∫

Y
log

q(y|x̂1,1, x̂2,1)

qθi,k(y|x̂i,k, x̂i,k+1)
Q(dy|x̂1,1, x̂2,1).

This measures the distance between the true distribution q(·|x̂1,1, x̂2,1) and the sub-
jective distribution qθi,k(·|x̂i,k, x̂i,k+1) induced by the model θi,k. Indeed, this value
is always non-negative, and equals zero if and only if the true and subjective distri-
butions are the same. When σ is not a degenerate distribution, we take a weighted
sum of the Kullback-Leibler divergence over x̂ = (x̂1, x̂2), which leads to the defi-
nition of Ki,k(θi,k,σ) above.

As is clear from this formula, agent k’s subjective signal distribution qθi,k(y|x̂i,k, x̂i,k+1)
is potentially different from the true distribution q(y|x̂1,1, x̂2,1) in two ways. First,
agent k’s model θi,k can be misspecified in that the distribution qθi,k as a function
of the chosen action can be different from the true distribution q. Second, agent k
can have an inferential naivety. That is, while the true distribution is determined
by the actual actions chosen by players 1 and 2 (which is denoted by (x̂1,1, x̂2,1) in
our setup), agent k thinks that the output distribution is determined by the actions
chosen by agents k and k+1.

For each measure σ ∈△X̂ , let Θi,k(σ) denote the minimizers of the Kullback-
Leibler divergence, that is,

Θi,k(σ) = arg min
θi,k∈Θi,k

Ki,k(θi,k,σ).

Intuitively, this is the set of models which best explains the data when the past ac-
tion frequency was σ . The minimized Kullback-Leibler divergence is K∗

i,k(σ) =

minθi,k∈Θi,k Ki,k(θi,k,σ). We first show that these minimizers have useful proper-
ties:

Lemma 1. For each i and k, (i) Ki,k(θi,k,σ)−K∗
i,k(σ) is continuous in (θi,k,σ),

and (ii) Θi,k(σ) is upper hemi-continuous, non-empty, and compact-valued.
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The following proposition shows that after a long time t, the posterior is con-
centrated on the best models Θi,k(σ t). This extends Theorem 1 of Esponda,
Pouzo, and Yamamoto (2021) to the case with continuous action set Xi and with
multiple players. Let H denote the set of all sample paths h = (xt ,yt)∞

t=1. Given
strategy profiles ŝ, let Pŝ ∈ △X denote the probability distribution of the sample
path h. Given a sample path h, let µ̂ t

i (h) denote the belief hierarchy in period t.

Proposition 5. Given any i, k, and ŝ, Pŝ-almost surely, we have

lim
t→∞

∫
Θi,k

(Ki,k(θi,k,σ t(h))−K∗
i,k(σ

t(h)))µ̂ t+1
i,k (h)[dθi,k] = 0. (17)

Let H denote the set of sample paths h which satisfy (17). By Proposition 5,
Pŝ(H ) = 1.

A.3 Asymptotic Motion of Action Frequency

A.3.1 Stochastic Approximation and Differential Inclusion

Now we will show that given any Markov strategy ŝ, the asymptotic motion of the
action frequency σ t is approximated by a solution to a differential inclusion. Pick
a Markov strategy ŝ, and pick a sample path h ∈ H . By the definition, the action
frequency in each period is written as

σ t+1(h) =
t

t +1
σ t(h)+

1
t +1

1ŝ(µ̂t+1(h)).

That is, the action frequency in period t + 1 is a weighted average of the past
action frequency σ t and today’s action 1ŝ(µ̂t+1(h)). In what follows, we will show
that this second term 1ŝ(µ̂t+1(h)) can be written as a function of σ t , so that σ t+1 is
determined recursively.

Pick an arbitrary small ε > 0. Then let Bε : △X̂ → ∏2
i=1 ∏ki+1

k=1 △Θi,k be the
ε-perturbed belief correspondence defined as

Bε(σ) =

{
µ̂
∣∣∣∣∀i∀k

∫
Θi,k

(Ki,k(θi,k,σ)−K∗
i,k(σ))µ̂i,k(dθi,k)≤ ε

}
.

Roughly, Bε(σ) is the set of all belief hierarchies µ̂ such that each µ̂i,k is concen-
trated on the best models Θi,k(σ) in the sense of (17), given the mixture σ .
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Since h ∈H , there is T such that for all t > T , µ̂ t+1(h)∈ Bε(σ t). This in turn
implies that the action ŝ(µ̂ t+1) in period t+1 must be chosen from the ε-enlarged
policy correspondence Sε(σ t), which is defined as

Sε(σ) = {ŝ(µ̂)|∀µ̂ ∈ Bε(σ)}

for each σ . This immediately implies the following result:

Proposition 6. Pick a Markov strategy ŝ. Then given any h ∈ H , there is a
decreasing sequence {ε t}∞

t=1 with limt→∞ ε t = 0 such that

σ t+1(h) ∈ t
t +1

σ t(h)+
1

t +1
Sεt (σ t(h)).

This proposition implies that in a later period t, the action chosen in that period
is selected from the set Sε(σ t) for small ε . Now we ask how this set looks like in
the limit as ε → 0. Given a Markov strategy ŝ, let

Ŝ(µ) =
{

x̂
∣∣∣x̂ = lim

n→∞
ŝ(µ̂n) for some (µ̂n)∞

n=1 with lim
n→∞

(µ̂n) = µ̂
}

for each µ . This Ŝ is an upper hemi-continuous policy correspondence induced
by ŝ. It is obvious that ŝ(µ̂) ∈ Ŝ(µ̂) for each µ̂ . Also a standard argument shows
that Ŝ is indeed upper hemi-continuous with respect to µ̂ . Note that Ŝ = ŝ if ŝ is
continuous. Then define

S0(σ) = {x̂ ∈ Ŝ(µ̂)|∀µ̂ ∈ B0(σ)}

where
B0(σ) = {µ̂|µ̂i,k ∈ Θi,k(σ) ∀i∀k}.

The following proposition shows that when ε → 0, the set Sε(σ) which appears
in the previous proposition is approximated by S0(σ).

Proposition 7. Sε(σ) is upper hemi-continuous in (ε,σ) at ε = 0. So with the
dual bounded-Lipschitz norm, △Sε(σ) is upper hemi-continuous at ε = 0.

Propositions 6 and 7 suggest that after a long time, the motion of the action
frequency is approximated by

σ t+1(h) ∈ t
t +1

σ t(h)+
1

t +1
S0(σ t(h)),
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which is equivalent to

σ t+1(h)−σ t(h) ∈ t
t +1

(S0(σ t(h))−σ t(h))

That is, the drift of the action frequency, σ t+1(h)−σ t(h), should be proportional
to the difference between today’s action chosen from S0(σ t(h)) and the current ac-
tion frequency σ t(h). The next proposition formalizes this idea using the stochas-
tic approximation technique developed by Benaı̈m, Hofbauer, and Sorin (2005):
It shows that the asymptotic motion of the action frequency is described by the
differential inclusion

σ̇(t) ∈△S0(σ(t))−σ(t). (18)

In this differential inclusion, the drift of the action frequency is △S0(σ(t))−σ(t),
rather than S0(σ(t))−σ(t). The reason is as follows. As will be shown in Proposi-
tion 8 below, the differential inclusion (18) approximates the motion of the action
frequency in the limit as the period length in the discrete-time model shrinks to
zero. This means that a small time interval [t, t + ε] in the continuous-time model
should be interpreted as a collection of arbitrarily many periods in the discrete-
time model. Suppose now that players’ beliefs are in a neighborhood of µ during
this time interval [t, t + ε]. In all periods included in this interval, players choose
an action profile from the set S0(µ), and in particular, if S0(µ) contains two or
more action profiles, then different action profiles can be chosen in different peri-
ods. Accordingly, the action frequency during this interval can take any value in
△S0(µ), as described by the differential inclusion (18).41

To state the result formally, we use the following terminologies, which are
standard in the literature on stochastic approximation. Let τ0 = 0 and τt = ∑t

n=1
1
n

for each t = 1,2, · · · . Then given a sample path h, the continuous-time interpola-
tion of the action frequency σ t is a mapping w(h) : [0,∞)→△X̂ such that

w(h)[τt + s] = σ t(h)+
τ

τt+1 − τt
(σ t+1(h)−σ t(h))

for all t = 0,1, · · · and τ ∈ [0, 1
t+1). Intuitively, w represents the motion of the

action frequency as a piecewise linear path with re-indexed time. A mapping

41There is also a technical reason: In the proof of Proposition 8, we apply the stochastic ap-
proximation method of Benaı̈m, Hofbauer, and Sorin (2005), which requires that the drift term be
a convex-valued (and upper hemi-continuous) correspondence. So we need to convexify the drift
term by taking △S0(σ(t)), rather than S0(σ(t)).
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σ : [0,∞) → △X̂ is a solution to the differential inclusion (18) with an initial
value σ ∈ △X̂ if it is absolutely continuous in all compact intervals, σ(0) = σ ,
and (18) is satisfied for almost all t. Since △S0(σ) is upper hemi-continuous with
closed convex values, given any initial value σ ∈ △X̂ , the differential inclusion
(18) has a solution. (See Theorem 9 of Deimling (1992) on page 117.) Let Z(σ)
denote the set of all these solutions.

Proposition 8. Pick a Markov strategy ŝ. Then for any T > 0 and any sample
path h ∈ H ,

lim
t→∞

inf
σ∈Z(w(h)[t])

sup
τ∈[0,T ]

∥w(h)[t + τ]−σ(τ)∥= 0.

A.3.2 Steady State and Generalized Berk-Nash Equilibrium

σ ∈ △X̂ is a steady state of the differential inclusion (18) if σ ∈ △S0(σ). The
following proposition shows that if the action frequency σ t converges, then its
limit point must be a steady state. The proof is exactly the same as Proposition 1
of EPY, and hence we omit it.

Proposition 9. Pick a Markov strategy s. Then for each sample path h ∈ H , if
the action frequency σ t(h) converges, then its limit point limt→∞ σ t(h) is a steady
state of (18).

In all the examples in this paper, we assume that the agents are myopically
optimal so that the strategy profile ŝ satisfies (16). In this special case, steady
states of our differential inclusion are generalized Berk-Nash equilibria in the
following sense:

Definition 3. A probability measure σ ∈△X̂ is a generalized Berk-Nash equilib-
rium (GBNE) if for each pure action profile x̂ = (x̂1, x̂2) in the support of σ , for
each i and for each k, there is a belief µ̂i,k ∈△Θi,k(σ) such that

x̂i,k ∈ argmax
x̂′i,k

∫
Θi,k

Uθi,k(x̂
′
i,k, x̂i,k+1)µ̂i,k(dθi,k).

A generalized Berk-Nash equilibrium is degenerate if it is a point mass on some
pure action profile x̂.

In words, in a generalized Berk-Nash equilibrium σ , each action profile x̂
which has a positive weight in σ is a one-shot equilibrium for some belief µ̂ , and
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this belief µ̂ is concentrated on the models Θi,k(σ) which minimize the Kullback-
Leibular divergence. In a non-degenerate GBNE which assign positive weights on
multiple action profiles x̂, different action profiles x̂ may be supported by different
beliefs µ̂ . We will discuss more on this later.

Proposition 10. Suppose that the strategy profile ŝ satisfies (16). Then any steady
state of our differential inclusion (18) is a generalized Berk-Nash equilibrium. So
for each sample path h ∈ H , if the action frequency σ t(h) converges, then its
limit point limt→∞ σ t(h) is a generalized Berk-Nash equilibrium.

Note that the action frequency may converge to non-degenerate equilibrium
σ , which assigns positive probability to multiple action profiles x̂. An intuition is
as follows. If the action frequency σ t converges to some σ , then from Proposition
5, the posterior belief µ̂ t will be concentrated on △Θ(σ) after a long time, that
is, µ̂ t is in a neighborhood of △Θ(σ) for large t. If all the beliefs in this neigh-
borhood induce the same equilibrium action x̂ (i.e., ŝ(µ̂) = x̂ for all beliefs µ̂ in a
neighborhood of △Θ(σ)), then the action frequency will eventually converge to a
point mass on x̂. But in general, this need not be the case; different beliefs µ̂ and
µ̂ ′ in this neighborhood may induce different equilibrium actions x̂ and x̂′. In such
a case, both x̂ and x̂′ can be chosen infinitely often on the path, and hence have
positive weights in the limiting action frequency σ .

Note, however, that in many applications, all GBNE are degenerate. Indeed,
if (i) there is a unique equilibrium x̂ for each belief µ̂ and (ii) there is a unique
minimizer θi,k of the Kullback-Leibular divergence for each action frequency σ ,
then obviously any GBNE is degenerate. All our examples in the paper satisfy
these assumptions.

We view GBNE as a natural extension of BNE of Esponda and Pouzo (2016)
to our setup. For comparison, let us think about the information structure con-
sidered in Esponda and Pouzo (2016), that is, suppose that the subjective signal
distribution Qθi,k(·|x) is independent of the opponent’s action (i.e., Qθi,k(·|x) =
Qθi,k(·|xi) for each i, k, and x). In this special case, all higher-level agents (i,k)
with k ≥ 2 are irrelevant, in the sense that they do not influence the actions and
the beliefs of the actual player (i,1). This is so because each player i’s subjec-
tive expected payoff Uθi,1(xi) = ∑y∈Y Qθi,1(y|xi)ui(xi,y) and her Bayes’ formula

µ t+1
i (θi,1) =

µt
i (θi,1)qθi,1(y

t |xt
i)∫

Θi,1
µt

i (θi,1)qθi,1(y
t |xt

i)dθi,1
are independent of the opponent j’s action.

Accordingly, GBNE reduces to a probability measure σ ∈△(X1 ×X2) on the set
X1 ×X2 such that for each pure action profile x = (x1,x2) in the support of σ and
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for each i, there is a belief µi ∈△Θi,1(σ) such that

xi ∈ argmax
x′i

∫
Θi,1

Uθi,1(x
′
i)µi(dθi,1)

where Θi,1(σ) is the minimizers of the Kullback-Leibular divergence∫
X

∫
Y

log
q(y|x)

qθi,1(y|x)
Q(dy|x)σ(dx).

It is easy to check that GBNE is a weakening of BNE of Esponda and Pouzo
(2016), that is, any GBNE σ is a BNE. In particular, degenerate BNE is equiv-
alent to pure-strategy BNE, in that σ is a pure-strategy BNE if and only if it is
a degenerate GBNE. However, a non-degenerate GBNE need not be a mixed-
strategy BNE, because in a GBNE, (i) different actions xi may be supported by
different beliefs µi, and (ii) GBNE distribution σ allows correlation between x1
and x2. This difference comes from the fact that GBNE is a limit point of the
action frequency, while BNE is a limit point of the action itself. Specifically, in
Esponda and Pouzo (2016), there is an i.i.d. payoff perturbation each period, so
that each player (independently) mix actions each period. A mixed-strategy BNE
σ is regarded as a limit point of this mixed action. In this case, in a steady state,
the mixed strategy σi must be optimal (with a payoff perturbation) given a single
belief, and there is no correlation between actions of different players. In contrast,
in our model, each player chooses a pure action, so there is perfect correlation
between x1 and x2. Also as noted earlier, different action profiles x and x′ which
appear in non-degenerate GBNE σ are played in different periods t and t ′; so they
are supported by different beliefs µ t and µ t ′ .

A.4 Motion of the KL Minimizer

A.4.1 Identifiability and Differential Inclusion

Our Proposition 8 shows that the asymptotic motion of the action frequency σ t is
described by the differential inclusion (18). However, solving the differential in-
clusion (18) is not easy in general. For example, in many applications (including
the ones in this paper), there are continuous actions, in which case the action fre-
quency σ t is a probability distribution over an infinite-dimensional (continuous)
space, and thus the differential inclusion becomes an infinite-dimensional prob-
lem. In this section, we show that this dimensionality problem can be avoided
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if we look at the asymptotic motion of the belief, rather than that of the action
frequency.

We will impose the following identifiability assumption, which requires that
there be a unique KL minimizer θi,k(σ) for each measure σ ∈△X̂ . This assump-
tion is satisfied in many applications, see Esponda and Pouzo (2016) for more
detailed discussions on this assumption.

Assumption 3. For each i, k, and σ , there is a unique minimizer θi,k(σ) ∈ Θi,k of
the Kullback-Leibular divergence Ki,k(θi,k,σ).

Since Θi,k(σ) is upper hemi-continuous in σ , under the identifiability assump-
tion, each KL minimizer θi,k(σ) is continuous in σ . The next lemma shows that
θ(σ) = (θi,k(σ))i,k is Lipschitz continuous if some additional assumptions hold.
With an abuse of notation, let Ki,k(θi,k, x̂) = Ki,k(θi,k,σ) for σ = 1x̂.

Assumption 4. The following conditions hold:

(i) For each i, k, and m, ∂Ki,k(θi,k,x̂)
∂θi,k,m

< ∞, where θi,k,m denotes the m-th compo-
nent of θi,k. Also for each x̂, Ki,k(θi,k, x̂) is twice-continuously differentiable

with respect to θi,k, that is, ∂ 2Ki,k(θi,k,x̂)
∂θi,k,m∂θi,k,n

is continuous in θi,k.

(ii) ∂Ki,k(θi,k,x̂)
∂θi,k,m

is equi-Lipschitz continuous, that is, there is L > 0 such that

|∂Ki,k(θi,k,x̂)
∂θi,k,m

− ∂Ki,k(θi,k,x̂′)
∂θi,k,m

|< L|x̂− x̂′| for all i, k, m, θi,k, x̂, and x̂′.

(iii) The KL minimizer θ(σ) satisfies both the first-order and second-order con-
ditions for each σ . (An implication is that the inverse of the Hessian matrix
exists.)

Lemma 2. θ(σ) is Lipschitz continuous in σ . That is, there is L > 0 such that
|θ(σ)−θ(σ̃)| ≤ L∥σ − σ̃∥.

Now we consider the motion of the KL minimizer θ t = (θ t
i,k)i,k. Let wθ denote

the continuous-time interpolation of θ t . Let ∇Ki,k(θi,k,x) = (
∂Ki,k(θi,k,x)

∂θi,k,m
)m, and

∇K(θ ,x) = (
∂Ki,k(θi,k,x)

∂θi,k,m
)i,k,m. Also let ∇2Ki,k(θi,k,σ) denote the Hessian matrix

of Ki,k(θi,k,σ) with respect to θi,k, that is, each component of ∇2Ki,k(θi,k,σ) is
∂ 2Ki,k(θi,k,σ)
∂θi,k,m∂θi,k,n

. Let ∇2K(θ ,σ) denote a block diagonal matrix whose main diagonal
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blocks are ∇2Ki,k(θi,k,σ), that is,

∇2K(θ ,σ) =

 ∇2K1,1(θ1,1,σ) 0
∇2K1,2(θ1,2,σ)

0 . . .

 .

With an abuse of notation, let S0(θ) denote S0(σ) for σ with θ(σ) = θ . The
following proposition shows that the asymptotic motion of the KL minimizer is
described by the differential inclusion

θ̇(t) ∈
∪

σ :θ(σ)=θ(t)

∪
σ ′∈△S0(θ(t))

−(∇2K(θ(t),σ))−1 (∇K(θ(t)),σ ′)
)
. (19)

Let Zθ (θ(0)) be the set of solutions to the differential inclusion (19) with the initial
value θ(0).

Proposition 11. Suppose that Assumptions 3 and 4 hold. Then for any T > 0 and
any sample path h ∈ H ,

lim
t→∞

inf
θ∈Zθ (wθ (h)[t])

sup
τ∈[0,T ]

|wθ (h)[t + τ]−θ(τ)|= 0.

To interpret the differential inclusion (19), consider the special case in which
Θi,k ⊂ R, i.e., assume that agent k’s model θi,k is one-dimensional. Then from
(18), we have

θ̇i,k(t) ∈
∪

σ :θ(σ)=θ(t)

∪
σ ′∈△S0(θ(t))

−
K′

i,k(θi,k(t),σ
′)

K′′
i,k(θi,k(t),σ)

(20)

for each i and k, where K′
i,k(θ ,σ) =

∂Ki,k(θ ,σ)
∂θ and K′′

i,k(θ ,σ) =
∂ 2Ki,k(θ ,σ)

∂θ 2 .
The denominator K′′

i,k(θi,k(t),σ) measures the curvature of the Kullback-Leibular
divergence. Note that this term is always positive, because the second-order con-
dition must be satisfied (Assumption 4(iii)). So this term influences the absolute
value of θ(t), but not the sign of θ̇i,k(t); this in turn implies that this denominator
influences the speed of θi,k(t), but not the direction. Intuitively, when the curve
is flatter (i.e., K′′

i,k is close to zero), all models in a neighborhood of θ(t) almost
equally fit the past data. Hence the KL minimizer θ(t) is more sensitive to the new
data generated by today’s action, and it changes quickly.
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The numerator −K′
i,k(θi,k(t),σ

′) measures how much an increase in θi,k im-
proves fitness to the new data generated by today’s action σ ′. This term influences
the sign of θ̇i,k(t), so it determines whether θi,k(t) moves up or down. Intuitively,
when this numerator is positive, (at least in a neighborhood of θ(t)) higher θ bet-
ter explains the new data generated by today’s action, so θ(t) moves up. On the
other hand, when this numerator is negative, lower θ better explains the new data,
so θ(t) moves down.

When we consider the dynamic of θ t = θ(σ t), the drift of θ t cannot be
uniquely determined, for two reaosns. First, the KL minimizer θ t may not uniquely
determine the agents’ actions today, in the sense that S0(θ t) may not be a single-
ton. (As pointed out by Esponda, Pouzo, and Yamamoto (2021), in the single-
agent setup, this happens when the agent is indifferent over multiple actions at a
model θ = θ t .) In our differential inclusion (20), this multiplicity is captured by
taking the union over σ ′ ∈ △S0(θ(t)). Note that the same multiplicity problem
appears in the differential inclusion (18).

Second, the KL minimizer θ t may not uniquely determine the past action fre-
quency, in the sense that there may be more than one σ such that θ(σ) = θ t .
Note that even if two action frequencies σ and σ̃ yield the same KL minimizer
(i.e., θ(σ) = θ(σ̃)), they may yield different curvatures of the KL divergence, so
they influence the speed of θi,k(t) differently. In our differential inclusion, this
multiplicity is captured by taking the union over σ with θ(σ) = θ(t).

B Proofs

B.1 Proof of Proposition 1
Pick x∗ and A∗ as stated. Since the steady-state actions (x∗1,x

∗
2) are interior points,

they must satisfy the first-order conditions

∂U1(x1,x∗2,θ
∗)

∂x1
= 0, (21)

∂U2(x∗1,x2,θ)
∂x2

∣∣∣∣
θ=θ2(x∗,A)

= 0. (22)
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Let M be the Jacobian of this system of the equations. Then each i j-component
of the matrix coincides with Mi j defined in the main text. That is,

M =

[
M11 M12

M21 M22

]
Since BR′

1BR′
2 , 1, we have detM , 0, so the implicit function theorem guarantees

that for any parameter A close to A∗, there is an action profile x∗ which satisfies
the first-order conditions (21) and (22). These action profiles are globally optimal
(i.e., maximize the expected payoff given the belief θ1 = θ ∗ and θ2(x∗,A)), be-
cause of the regularity conditions (i) and (ii). So this x∗ is a steady state given the
parameter A. The implicit function theorem also asserts that[

M11 M12

M21 M22

][ ∂x∗1
∂A
∂x∗2
∂A

]
=−

[
0

M2A

]
,

Solving this system of equations,

∂x∗2
∂A

=−M11M2A

detM
,

∂x∗1
∂A

=
M12M2A

detM
.

Dividing both the numerator and denominator of the first equation by M11M22

and using detM = M11M22 −M12M21, we have ∂x∗2
∂A = − 1

1−BR′
1BR′

2

M2A
M22

. Also by

combining the two equations above, we have ∂x∗1
∂A = BR1

∂x∗2
∂A .

Next, we prove BR′
1BR′

2 < 1 by contradiction. Suppose that BR′
1BR′

2 > 1. Then
we have either (i) BR′

1 > 0 and BR′
2 > 0, or (ii) BR′

1 < 0 and BR′
2 < 0. Consider

case (i). Then we have BR′
2 > 1

BR′
1
> 0. This means that if we take x1 on the

horizontal axis and x2 on the vertical axis, then the two asymptotic best response
curves are upward-sloping at the steady state action x∗, and BR2 is steeper than
BR1. This and the continuity of BRi imply that BR1 and BR2 must intersect at some
x1 > x∗1, but this contradicts with the fact that x∗ is a unique steady state. The same
argument works for case (ii). Hence, we have BR′

1BR′
2 ≤ 1. Also, dividing both

sides of detM , 0 by M11M22, we have BR′
1BR′

2 , 1. Q.E.D.

B.2 Proof of Corollary 1
Immediate from Proposition 1. Q.E.D.
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B.3 Proof of Proposition 2
In this proof, we will use the tools developed in Section A. Let h = (xt ,yt)∞

t=1
denote a sample path of the infinite horizon game. Given a sample path h, let
σ t(h) ∈△X denote the action frequency up to period t, i.e.,

σ t(h)[x] =
|{τ ≤ t|xt = x}|

t
for each action profile x. Proposition 5 shows that almost surely, each player i’s
belief in a later period t will be concentrated on the minimizer of the KL diver-
gence (the surprise function) with weight σ t−1. More formally, there is a set H
of sample paths such that a sample path h must be in this set H with probability
one, and such that for any sample path h ∈ H , each player i’s belief in period t is
approximately 1θi(σ t−1(h)) for large t. This result immediately implies that player 1
correctly learns the true state θ ∗, as her KL minimizer is constant and θ1(σ) = θ ∗

for any frequency σ ∈△X .
We will show that player 2’s belief also converges to the steady-state belief

almost surely. For this, it suffices to show that for every sample path h ∈ H , her
KL minimizer θ2(σ t(h)) converges to the steady state. In what follows, we will
prove a bit stronger result; we allow multiple steady states, and show that for each
sample path h∈H , limt→∞ d(σ t(h),E2) = 0 where E2 is the set of all steady-state
beliefs θ of player 2. This implies that player 2’s belief converges even when the
steady state is not unique.

So pick an arbitrary sample path h ∈ H . To think about a dynamic of the KL
minimizer θ t

2(h) = θ2(σ t(h)), Proposition 11 is useful; it shows that the motion
of θ t

2 is asymptotically approximated by the differential inclusion (20), which
reduces to the one-dimensional differential inclusion

θ̇2(t) ∈
∪

σ :θ(σ)=θ(t)

−
K′

2(θ2(t),s(1θ∗,1θ2(t)))
K′′

2 (θ2(t),σ)
(23)

where K′
2 = ∂K2

∂θ and K′′
2 = ∂ 2K2

∂θ 2 . Here we ignore the dynamic of player 1’s KL
minimizer θ1, as it is constant and θ1(σ)= θ ∗ for all σ . With an abuse of notation,
let Zθ (θ) denote the set of solutions to the differential inclusion above with an
intial value θ ∈ Θ.

We will consider the following two cases separately.

B.3.1 Case 1: liminft→∞ θ t
2(h) , limsupt→∞ θ t

2(h).

We will show that [liminft→∞ θ t
2(h), limsupt→∞ θ t

2(h)]⊆ E2.
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Suppose not, so that there is a model θ ′ ∈ [liminft→∞ θ t
2(h), limsupt→∞ θ t

2(h)]
such that θ ′ <E2. Then K′

2(θ
′,s(1θ∗,1θ ′)), 0, meaning that (i) K′

2(θ
′,s(1θ∗,1θ ′))>

0 or (ii) K′
2(θ

′,s(1θ∗,1θ ′))< 0. In what follows, we will focus on the case (i). The
proof for the case (ii) is symmetric.

Since K′
2(θ ,σ) is continuous in (θ ,σ) and s(1θ∗,1θ ) is continuous in θ , there

is ε > 0 such that K′
2(θ ,s(1θ∗,1θ ))> 0 for any θ with |θ −θ ′| ≤ ε . Pick such ε >

0. Then the right-hand side of (23) is positive for any θ(t) in the ε-neighborhood
of θ ′, which means that θ(t) increases as time goes in this neighborhood.42 Hence
there is T > 0 such that

θ2(t)≥ θ ′+ ε (24)

for any t ≥ T and for any solution θ2 ∈ Zθ (θ) to the differential inclusion with
any initial value θ with θ ≥ θ ′

2 − ε . Pick such T .
With an abuse of notation, let wθ (t) denote the continuous-time interpolation

of the KL minimizer (θ t
2(h))

∞
t=1. From Proposition 11, there is t∗ such that for any

t > t∗, θ2 ∈ Zθ (wθ (t)), and s ∈ [0,2T ],

|wθ (t + s)−θ2(s)|<
ε
2
. (25)

Pick such t∗. Since θ ′ ≤ limsupt→∞ θ t
2(h), there is t∗∗ > t∗ such that wθ (t∗∗) ≥

θ ′− ε . Pick such t∗∗. Then from (24), we have

θ2(s)≥ θ ′+ ε

for any s ≥ T and for any solution θ ∈ Zθ (wθ (t∗∗)). This inequality and (25)
implies

wθ (t∗∗+ s)≥ θ ′+
ε
2

∀s ∈ [T,2T ].

Likewise, since wθ (t∗∗+T )≥ θ ′+ ε
2 , it follows from (24) that

θ2(s)≥ θ ′+ ε

for any s ≥ T and for any solution θ2 ∈ Zθ (wθ (t∗∗+T )). This inequality and (25)
implies

wθ (t∗∗+ s)≥ θ ′+
ε
2

∀s ∈ [2T,3T ].

Iterating this argument, we can show that

wθ (t∗∗+ s)≥ θ ′+
ε
2

∀s ∈ [T,∞).

But this means that liminft→∞ θ t
2(h)≥ θ ′+ ε

2 , which is a contradiction.

42Note that K′′ < 0 because K is convex.

61



B.3.2 Case 2: liminft→∞ θ t
i,k(h) = limsupt→∞ θ t

i,k(h).

In this case, limt→∞ θ t
i,k(h) exists. Let θ ∗

i,k = limt→∞ θ t
i,k(h). We will show that

θ ∗
i,k ∈ E.

Suppose not so that θ ∗ < E. Then as in the previous case, (i) K′
i,k(θ

∗
i,k,σ

′)> 0
for all σ ′ ∈ △S0(θ(θ ∗

i,k)), or (ii) K′
i,k(θ

∗
i,k,σ

′) < 0 for all σ ′ ∈ △S0(θ(θ ∗
i,k)). We

will focus on the case (i).
As in the previous case, there is ε > 0 such that K′

i,k(θi,k,σ ′) > 0 for any θi,k

with |θi,k − θ ∗
i,k| ≤ ε and any σ ′ ∈ △S0(θ(θi,k)). Pick such ε > 0. Then pick T

such that (24) holds for any t ≥ T and for any solution θ ∈ Zθ (θ(θi,k)) with any
θi,k with θi,k ≥ θ ∗

i,k − ε .
From Proposition 11, there is t∗ such that (25) holds for any t > t∗, θ ∈

Z′
θ (wθ (t)), and s ∈ [0,2T ]. Pick such t∗. Since θ ∗

i,k = limt→∞ θ t(h), there is
t∗∗ > t∗ such that wθ ,i,k(t∗∗) ≥ θ ∗

i,k − ε . Pick such t∗∗. Then as in the previous
case, we can show that

wθ ,i,k(t∗∗+ s)≥ θ ∗
i,k +

ε
2

∀s ∈ [T,∞).

But this means that limt→∞ θ t
i,k(h)≥ θ ∗

i,k +
ε
2 , which is a contradiction. Q.E.D.

B.4 Proof of Proposition 3
Pick A∗ and x∗ as stated. Since x∗ is an interior point, it must satisfy the first-order
conditions

∂U1(x1, x̂∗2,θ1)

∂x1
= 0, (26)

∂U2(x̂∗1,x2,θ2)

∂x2
= 0, (27)

∂Û1(x̂1,x∗2,θ2)

∂ x̂1
= 0, (28)

∂Û2(x∗1, x̂2,θ1)

∂ x̂2
= 0. (29)

Let M be the Jacobian of this system of the equations. Then each i j-component
of the matrix coincides with Mi j defined in the main text.

By the regularity condition (iii), detM , 0, so the implicit function theorem
guarantees that for any parameter A2 close to A∗

2, there is an action profile x∗ which
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satisfies the first-order conditions (26)-(29). These action profiles are globally
optimal, because of the regularity conditions (i) and (ii). So this x∗ is a steady
state given the parameter A. The implicit function theorem also asserts that


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44




∂x∗1
∂A2
∂x∗2
∂A2
∂ x̂∗1
∂A2
∂ x̂∗2
∂A2

=−


0

M2A

M3A

0

 ,

Solving this system and using M13 = M24 = M34 = M43 = 0,

∂x∗2
∂A2

=
(M14M41M33 −M11M33M44)M2A +(M11M23M44 −M23M14M41)M3A

detM
∂x∗1
∂A2

=
(M12M33M44 −M33M42M14)M2A − (M23M44M12 −M23M42M14)M3A

detM
.

Dividing both the numerator and the denominator of the first equation by M11M22M33M44,

∂x∗2
∂A2

=−
{
(1−BR14BR41)

M2A

M22
+(BR23 −BR23BR14BR41)

M3A

M33

}
M11M22M33M44

detM

=− (1−BR14BR41)
M11M22M33M44

detM

(
M2A

M22
+BR23

M3A

M33

)
.

Note that

detM =M11M22M33M44 +M14M21M33M42 −M14M22M33M41 −M12M21M33M44

−M11M23M32M44 −M14M23M31M42 +M14M23M32M41 +M12M23M31M44,

so

M11M22M33M44

detM
=

1
(1−BR′

14BR′
41)(1−BR′

23BR′
32)− (BR′

12 +BR′
14BR′

42)(BR′
21 +BR′

23BR′
31)

=

(
1

(1−BR′
14BR′

41)(1−BR′
23BR′

32)

)(
1

1−NE ′
1NE ′

2

)
Plugging this into the equation above, we obtain the first equation in the proposi-
tion. The second equation can be derived in a similar way. Q.E.D.
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B.5 Proof of Proposition 4
We use the tools developed in Section A. Recall that under double misspecifica-
tion, there are two real players and two hypothetical players. Let x=(x1,x2, x̂1, x̂2)
denote the action profile of these players, and given a sample path h = (xt ,yt)∞

t=1,
let σ t(h)∈△(X1×X2×X1×X2) denote the action frequency up to period t. Note
that this σ t(h) contains information about the past actions of the real players and
the hypothetical players.

Proposition 5 shows that after a long time, each player i’s posterior belief
will be concentrated on the KL minimizer θ t

i = θi(σ t(h)). Also Proposition 11
shows that the motion of these KL minimizers, (θ t

1,θ
t
2), is approximated by the

differential inclusion (20), which can be rewritten as the two dimensional problem(
dθ1(t)

dt
,
dθ2(t)

dt

)
∈

∪
σ :θ(σ)=θ(t)

(
−

K′
1(θ1(t),s(θ1(t),θ2(t)))

K′′
1 (θ2(t),σ)

,−
K′

2(θ2(t),s(θ1(t),θ2(t)))
K′′

2 (θ̂1(t),σ)

)
(30)

where s(θ1,θ2) denotes a static equilibrium x = (x1,x2, x̂1, x̂2) given the beliefs
(θ1,θ2, θ̂1, θ̂2) with θ̂1 = θ2 and θ̂2 = θ1.

In what follows, we will show that regardless of the initial value, any solution
to the differential inclusion (30) converges to the steady state after a long time.
This implies that the steady state is globally attracting in the sense of Esponda,
Pouzo, and Yamamoto (2021), and their Proposition 2 ensures that θ t converges
there almost surely, as desired.

The following lemma partially characterizes the solution to the differential
inclusion (30): It shows that θ2(t) moves toward f2(θ1(t)) at any time t.

Lemma 3. Pick any initial value θ(0) = (θ1(0),θ2(0)) and any solution θ =
(θ1,θ2) to the differential inclusion (30). Then for any t ≥ 0 with θ2(t)> f2(θ1(t)),
we have θ̇2(t) < 0. Similarly, for any t ≥ 0 with θ2(t) < f2(θ1(t)), we have
θ̇2(t)> 0

Proof. We will prove only the first part of the lemma, because the proof of the
second part is symmetric. Suppose that θ2(t)> f2(θ̂1(t)) at some time t. To prove
θ̇2(t)< 0, it suffices to show that K′

2(θ2(t),s(t))> 0, where s(t) denotes the static
equilibrium s(θ1(t),θ2(t)) in time t.

Suppose not and K′
2(θ2(t),s(t))< 0. (We ignore the case with K′

2(θ2(t),s(θ1(t),θ2(t)))=
0, because in such a case, θ2(t)∈ f2(θ1(t)), which contradicts with the uniqueness
of f2(θ1(t)).) We consider the following two cases:
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Case 1: θ2(t) = θ . In this case, the KL minimizer given the equilibrium s(t)
is θ2(s(t)) = θ = θ2(t) (this follows from the fact that the KL divergence K2 is
single-peaked w.r.t. θ2). Hence θ2(t) = θ is a steady state, i.e., θ2(t) ∈ f2(θ1(t)).
But this contradicts with the uniqueness of f2(θ1(t)).

Case 2: θ2(t) < θ . An argument similar to that in Case 1 shows that at
θ2 = θ , we have K′

2(θ ,s(θ1(t),θ)) > 0. On the other hand, by the assumption,
K′

2(θ2(t),s(θ1(t),θ2(t))) < 0. Then since K′
2(θ ,s(θ1(t),θ)) is continuous in θ ,

there must be θ ∈ (θ2(t),θ) such that K′
2(θ ,s(θ1(t),θ)) = 0. This implies that

θ ∈ f2(θ1), but it contradicts with the uniqueness of f2(θ1). Q.E.D.

Now we will construct a Lyapunov function V to show that any solution to the
differential inclusion (30) converges to the steady state. Without loss of generality,
assume that the steady state is (θ ∗

1 ,θ
∗
2 ) = (0,0). From assumption (iii), there

is κ > 0 such that maxθ1 |
f2(θ1)
∂θ1

| < κ < 1
maxθ2 |

f1(θ2)
∂θ2

|
. Pick such κ , and for each

θ = (θ1,θ2), let
V (θ) = max

{
|θ2|, |κθ̂1|

}
.

We will show that given any initial value θ(0) and given any solution θ to the
differential inclusion (19),

V̇ (θ(t))< 0

for all t with θ(t) , (0,0). We will consider the following cases separately:
Case 1: |θ2(t)|> |κθ1(t)|. Assume first that θ2(t)> 0. Then by the definition

of κ and f2(0) = 0, we have f2(θ1(t)) < |κθ1(t)| < θ2(t). Then from Lemma 3
and θ2(t)> 0, we have V̇ (θ(t)) = θ̇2(t)< 0.

Assume next that θ2(t) < 0. By the definition of κ and f2(0) = 0, we have
f2(θ̂1(t)) > −|κ θ̂1(t)| > θ2(t). Then from Lemma 3 and θ2(t) < 0, we have
V̇ (θ(t)) =−θ̇2(t)< 0.

Case 2: |θ2(t)|< |κθ1(t)|. An argument similar to those for Case 1 shows that
V̇ (θ(t))< 0.

Case 3: |θ2(t)| = |κθ1(t)|. We will focus on the case with θ2(t) > 0 and
θ1(t) > 0, because a similar argument applies to all other cases. Then as in the
first half of Case 1, we have θ̇2(t) < 0. Also, a similar argument shows that
θ̇1(t)< 0. Hence we have V̇ (θ(t)) = {θ̇2(t),κ θ̇1(t)}< 0. Q.E.D.
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B.6 Proof of Corollary 2
Consider the infinite-horizon model with first-order misspecification. Let Mii, Mi j
be the ones in Proposition 1. Then we have

Mii = 2Qx + xiQxx − c′′ < 0,

Mi j = Qx + xiQxx < 0,

−M2A

M22
=−

x∗2QA

M22

(
QxA

QA
− Qxθ

Qθ

)
.

The first two inequalities imply Mii < Mi j < 0, and hence we have BR′
1 =−M12

M11
∈

(−1,0) and 1
1−BR′

1BR′
2
> 1. Thus it follows from Proposition 1 that sgn∂x∗2

∂A =

sgn
(
−∂x∗1

∂A

)
= sgn

(
QxA
QA

− Qxθ
Qθ

)
and |∂x∗2

∂A |> |∂x∗1
∂A |.

For payoffs, note that at A = a, we have

∂π∗
i

∂A
=

∂π∗
i

∂xi

∂x∗i
∂A

+
∂π∗

i
∂x−i

∂x∗−i

∂A
=

∂π∗
i

∂x−i

∂x∗−i

∂A
= x∗i Qx

∂x∗−i

∂A
,

where the second inequality follows from ∂π∗
i

∂xi
= 0. Since x∗1 = x∗2 at A = a and

Qx < 0, we have sgn∂x∗2
∂A = sgn∂π∗

2
∂A = sgn

(
−∂π∗

1
∂A

)
and |∂π∗

1
∂A |> |∂π∗

2
∂A |. Q.E.D.

B.7 Proof of Corollary 3
We first prove a lemma which is useful to analyze a symmetric game, where
X1 = X2, u1(x1,y) = u2(x2,y) for all x1 and x2 with x1 = x2, and Q(x1,x2,a,θ) =
Q(x2,x1,a,θ). Let xcorrect

i and πcorrect denote firm i’s steady-state action and pay-
off in the correctly specified model. Let xfirst denote the steady-state action profile
for first-order misspecification, where player 1 believes that the true parameter is
A1 = a and player 2 believes that the true parameter is A2 , a. Likewise, let xdouble

denote the steady-state action profile for double misspecification with A1 = a and
A2 , a. The following lemma relates these two steady states when player 2’s
misspecification is small.

Lemma 4. Consider a symmetric game with xcorrect
1 = xcorrect

2 . Suppose that in
the case of first-order misspecification with A = a, there is a unique steady state
and it is regular. Suppose also that in the case of double misspecification with
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A1 = A2 = a, there is a unique steady state and it is regular. Then in the case of
double misspecification with A1 = A2 = a, we have NE ′

i ∈ (−1,1), and

∂xdouble
2

∂A2
=

(Uii −L)(Uii +Ui j −L)
Uii(Uii +Ui j −2L)

(
1−

Ui j −L
Uii −L

)
∂xfirst

2
∂A

,

∂xdouble
1

∂A2
=− L

Uii +Ui j −L
∂xdouble

2
∂A2

,

where Uii =
∂ 2U1(xcorrect,θ∗)

∂x2
1

, Ui j =
∂ 2U1(xcorrect,θ∗)

∂x1∂x2
, L= ∂ θ̂1

∂x1

Û1
∂ x̂1∂θ =

Qx1
Qθ

· ∂ 2U1(xcorrect,θ)
∂x1∂θ .

We also have sgn∂xdouble
2

∂A2
= sgn∂xfirst

2
∂A and sgn∂xdouble

1
∂A2

= sgn∂xdouble
2

∂A2
L.

Proof. We first prove NE ′
i ∈ (−1,1). Note that x1 = x2 = x̂1 = x̂2 = xcorrect

i con-
stitutes a steady state at A1 = A2 = a. Then we must have |NE ′

1NE ′
2| ≤ 1 at

xdouble = (xcorrect
1 ,xcorrect

2 ); the proof is very similar to that of BR′
1BR′

2 ≤ 1 in the
proof of Proposition 1, and hence omitted. (We only need to replace BR′

i in the
proof if Proposition 1) with NE ′

i .) Also, the regularity condition detM , 0 im-
plies |NE ′

1NE ′
2| , 1. Accordingly, we have |NE ′

1NE ′
2|= |NE ′

i |< 1, which implies
NE ′

i ∈ (−1,1).

Let Li =
Qx1
Qθ

∂ 2Ui
∂xi∂θ . When A1 = A2 = a, the multiplier effect on ∂xdouble

2
∂A2

appear-

ing in the proof of Proposition 3, (1−BR14BR41)
M11M22M33M44

detM , can be rewritten
as

1−BR14BR41

(1−BR′
14BR′

41)(1−BR′
23BR′

32)− (BR′
12 +BR′

14BR′
42)(BR′

21 +BR′
23BR′

31)

=
1− U12−L1

U11

U21
U22−L2(

1− U12−L1
U11

U21
U22−L2

)(
1− U21−L2

U22

U12
U11−L1

)
−
(
− L1

U11
+ U12−L1

U11

L2
U22−L2

)(
− L2

U22
+ U21−L2

U22

L1
U11−L1

)
=

U22(U11 −L1)(U11U22 −U11L2 −U21U12 +U21L1)

(U11U22 −U11L2 −U21U12 +U21L1)(U11U22 −U22L1 −U12U21 +U12L1)− (U12L1 −U22L1)(U21L1 −U11L2)
.

67



When the game is symmetric, this reduces to

Uii(Uii −L)(Uii −Ui j)(Uii +Ui j −L)
(Uii −Ui j)2(Uii +Ui j −L)2 −L2(Uii −Ui j)2

=
Uii(Uii −L)(Uii +Ui j −L)

(Uii −Ui j)(U2
ii +U2

i j +2UiiUi j −2UiiL−2Ui jL)

=
Uii(Uii −L)(Uii +Ui j −L)

(Uii −Ui j)(Uii +Ui j)(Uii +Ui j −2L)

=
U2

ii

U2
ii −U2

i j
·
(Uii −L)(Uii +Ui j −L)

Uii(Uii +Ui j −2L)

=
1

1−BR′
1BR′

2
·
(Uii −L)(Uii +Ui j −L)

Uii(Uii +Ui j −2L)
.

Similarly, when the game is symmetric, the base misspecification effect on ∂xdouble
2

∂A2

appearing in the proof of Proposition 3,
(

M2A
M22

+BR23
M3A
M33

)
, can be rewritten as(

1−
Ui j −L
Uii −L

)
M2A

M22
.

These results and Proposition 3 imply the first equation in the proposition. Also,
the second equation follows from

NE ′
1 =

BR′
12 +BR′

14BR′
42

1−BR′
14BR′

41
=

− L
Uii

+
Ui j−L

Uii
L

Uii−L

1− Ui j−L
Uii

Ui j
Uii−L

=
−L(Uii −L)+L(Ui j −L)

Uii(Uii −L)−Ui j(Ui j −L)

=
L(Uii −Ui j)

(Uii +Ui j −L)(Uii −Ui j)
=

L
Uii +Ui j −L

.

Next, we will show sgn∂xdouble
2

∂A2
= sgn∂xfirst

2
∂A . Recall that

∂xdouble
2

∂A2
=

(Uii −L)(Uii +Ui j −L)
Uii(Uii +Ui j −2L)

(
1−

Ui j −L
Uii −L

)
∂xfirst

2
∂A

.

Note that Uii = M11 < 0 and Uii − L = M33 < 0 under the regularity condition,
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Also Uii +Ui j −L < 0 because if not and Uii +Ui j −L > 0,

NE ′
i ∈ (−1,1)⇔−1 <

L
Uii +Ui j −L

< 1

⇔−(Uii +Ui j −L)< L <Uii +Ui j −L

⇒Uii +Ui j > 0,

which contradicts with Uii < 0 and |BR′
i|= |Ui j

Uii
|< 1. Similarly, Uii+Ui j −2L < 0

because

NE ′
i ∈ (−1,1)⇔−1 <

L
Uii +Ui j −L

< 1

⇔Uii +Ui j −L < L <−(Uii +Ui j −L)

⇒Uii +Ui j −2L < 0,

So the term (Uii−L)(Uii+Ui j−L)
Uii(Uii+Ui j−2L) appearing in the above display is positive. Similarly,

the term 1− Ui j−L
Uii−L is positive, because Uii < 0 and |BR′

i|= |Ui j
Uii

|< 1 imply

Uii −Ui j < 0 ⇔ (Uii −L)− (Ui j −L)< 0 ⇔ 1−
Ui j −L
Uii −L

> 0

where the last inequality uses Uii−L < 0. Hence we have sgn∂xdouble
2

∂A2
= sgn∂xfirst

2
∂A as

desired. Finally, sgn∂xdouble
1

∂A2
= sgn∂xdouble

2
∂A L directly follows from NE ′

i =
L

Uii+Ui j−L
and Uii +Ui j −L < 0. Q.E.D.

Let Uii, Ui j, and L be as stated in Lemma 4. That is,

Uii =
∂ 2Ui

∂ 2xi
= 2Qx + xiQxx − c′′ < 0,

Ui j =
∂ 2Ui

∂xi∂x j
= Qx + xiQxx = Qx + xiQxx < 0,

L =
Qxi

Qθ

∂ 2Ui

∂xi∂θ
=

Qx

Qθ
(xiQxθ +Qθ )< 0.

Then, Lemma 4 and the argument similar to the proof of Corollary 2 imply the
result. Q.E.D.
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B.8 Proof of Lemma 1
For the case in which X is finite, this is exactly the same as Lemma 1 of Esponda,
Pouzo, and Yamamoto (2021). For the case in which X is continuous, we need a
minor modification of the proof. We first prove a preliminary lemma:

Lemma 5. Assume that X is continuous. Under Assumption 1(iii) and (iv),
∫

Y g(x,y)Q(dy|x)
is bounded and continuous in x.

Proof. Take a sequence xn converging to x. Then∫
Y

g(xn,y)Q(dy|xn)−
∫

Y
g(x,y)Q(dy|x)

≤
∣∣∣∣∫Y

g(xn,y)Q(dy|xn)−
∫

Y
g(xn,y)Q(dy|x)

∣∣∣∣
+

∣∣∣∣∫Y
g(xn,y)Q(dy|x)−

∫
Y

g(x,y)Q(dy|x)
∣∣∣∣ .

From Assumption 1(iii), Q(dy|xn) weakly converges to Q(dy|x), so the first term
of the right-hand side converges to zero. Also from Assumption 1(iv-a), g(xn,y)
pointwise converges to g(x,y), so the second term converges to zero. Q.E.D.

As shown in the display in EPY, we have

Ki,k(θ n
i,k,σ

n)−Ki(θ n
i,k,σ)≤

∫
X

∫
Y

g(x,y)Q(dy|x)σn
X̂1,1×X̂2,1

(dx)

−
∫

X

∫
Y

g(x,y)Q(dy|x)σX̂1,1×X̂2,1
(dx)

where σX̂1,1×X̂2,1
and σn

X̂1,1×X̂2,1
are the marginals of σ and σn on X̂1,1 × X̂2,1, re-

spectively. From Lemma 5, the right-hand side converges to zero as σn → σ . The
rest of the proof is exactly the same as in EPY. Q.E.D.

B.9 Proof of Proposition 5
For the special case in which X is finite, Theorem 1 of Esponda, Pouzo, and
Yamamoto (2021) proves the same result. We need a minor modification to their
proof, as they use finiteness of X in Step 2 in the proof of Lemma 2.
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Pick i, k, θi,k. Then let

fl(x̂) = EQ(·|x̂1,1,x̂2,1)

 sup
θ ′

i,k∈O(θi,k,
1
l )

∣∣∣∣∣ q(y|x̂1,1, x̂2,1)

qθi,k(y|x̂i,k, x̂i,k+1)
−

q(y|x̂1,1, x̂2,1)

qθ ′
i,k
(y|x̂i,k, x̂i,k+1)

∣∣∣∣∣


where O(θi,k,
1
l ) is a 1

l -neighborhood of θi,k. Then as explained at the end of the
the first paragraph in EPY’s step 2, liml→∞ fl(x̂)→ 0 for each x̂. In what follows,
we will show that this convergence is uniform in x̂; then there is δ (θi,k,ε) with
which (16) of EPY holds, and the rest of the proof is exactly the same as EPY’s.

Pick an arbitrary ε > 0. For each x̂, let F(x̂) = {l ∈ [0,∞)| fl(x̂) ≥ ε}. Then
we have the following lemma:

Lemma 6. For each x̂, there is l(x̂) > 0 such that F(x̂) = [0, l(x̂)]. Also F(x̂) is
upper hemi-continuous in x̂.

Proof. The first part follows from the fact that fl(x̂) is continuous and decreasing
in l, and liml→∞ fl(x̂) = 0.

To prove the second part, pick x̂ and an arbitrary small η > 0. Then fl(x̂)+η(x̂)<
ε . Since fl(x̂) is continuous in x̂, there is an open neighborhood U of x̂ such
that fl(x̂)+η(x̂′) < ε for all x̂′ ∈ U . This implies that l(x̂′) < l(x̂) + η for all
x̂′ ∈U . Q.E.D.

The above lemma implies that l(x̂) is an upper hemi-continuous function, and
from the Maximum theorem, l(x̂) is bounded; l(x̂)< l∗ for some l∗. Hence fl(x̂)≤
ε for all x̂ and l ≥ l∗, implying uniform convergence. Q.E.D.

B.10 Proof of Proposition 7
This is very similar to the first step of the proof of Proposition 2 in EPY. However,
we need a minor modification, as X may not be finite in our setup. We first prove
upper hemi-continuity of Bε(σ).

Lemma 7. Bε(σ) is upper hemi-continuous in (ε,σ).

Proof. Since ∏2
i=1 ∏ki+1

k=1 △Θi,k is compact, it is sufficient to show that (εn,σn, µ̂n)→
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(ε,σ , µ̂) and µ̂n ∈ Bεn(σn) for each n imply µ̂ ∈ Bε(σ). Note that

lim
n→∞

(∫
Θi,k

(Ki,k(θi,k,σn)µ̂n
i,k(dθi,k)−

∫
Θi,k

(Ki,k(θi,k,σ)µ̂i,k(dθi,k)

)
= lim

n→∞

(∫
Θi,k

(Ki,k(θi,k,σn)µ̂n
i,k(dθi,k)−

∫
Θi,k

(Ki,k(θi,k,σ)µ̂n
i,k(dθi,k)

)
+ lim

n→∞

(∫
Θi,k

(Ki,k(θi,k,σ)µ̂n
i,k(dθi,k)−

∫
Θi,k

(Ki,k(θi,k,σ)µ̂i,k(dθi,k)

)
.

The first term of the right-hand side is zero, because Ki,k(·,σn) pointwise con-
verges to Ki,k(·,σ) (which follows from the fact that σn weakly converges to σ ).
Also the second term of the right-hand side is zero, as µn

i,k weakly converges to
µi,k.

lim
n→∞

∫
Θi,k

(Ki,k(θi,k,σn)µ̂n
i,k(dθi,k) =

∫
Θi,k

(Ki,k(θi,k,σ)µ̂i,k(dθi,k).

Since µ̂n ∈ Bεn(σn),∫
Θi,k

(Ki,k(θi,k,σn)−K∗
i,k(σ

n))µ̂n
i,k(dθi,k)≤ εn.

Taking n → ∞ and using continuity of K∗
i,k(σ) (which follows from the theory of

maximum), ∫
Θi,k

(Ki,k(θi,k,σ)−K∗
i,k(σ))µ̂i,k(dθi,k)≤ ε.

Hence µ ∈ Bε(σ), which implies upper hemi-continuity of Bε(σ). Q.E.D.

Now we show that Sε(σ) is upper hemi-continuous at ε = 0. Since X is com-
pact, it suffices to show that (εn,σn,xn)→ (0,σ ,x) and xn ∈ Sεn(σn) for each n,
imply x ∈ Sε(σ). As noted earlier, we already know that S0(σ) is upper hemi-
continuous in σ . So without loss of generality, we assume εn > 0 for all n.

Since xn ∈ Sεn(σn), there is µ̂n ∈ Bεn(σn) with xn = ŝ(µ̂n). The sequence
(εn,σn,xn, µ̂n) is in a compact set, so there is a convergent subsequence, still
denoted by (εn,σn,xn, µ̂n). Let µ̂ = limn→∞ µ̂n. Then µ̂ ∈ B0(σ), as Bε(σ) is
upper hemi-continuous and µ̂n ∈ Bεn(σn) for each n. Also, we have x ∈ Ŝ(µ̂),
because Ŝ is upper hemi-continuous and xn ∈ Ŝ(µ̂n) for each n. Hence x ∈ S0(σ).

Q.E.D.
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B.11 Proof of Proposition 8
The proof is very similar to that of Theorem 2 of EPY. In EPY, the proof consists
of three steps. In the first two steps, they show that w is a perturbed solution of the
differential inclusion. Then in the last step, they show that a perturbed solution is
an asymptotic pseudotrajectory (i.e., it satisfies (18)).

Our Propositions 6 and 7 imply that w is indeed a perturbed solution in the
sense of EPY. We can also show that a perturbed solution is indeed an asymptotic
pseudotrajectory. The proof is omitted because, other than replacing the Euclidean
norm with the dual bounded-Lipschitz norm, it is exactly the same as the last step
of EPY.43 Q.E.D.

B.12 Proof of Lemma 2
We will show that θ(σ) is Lipschitz continuous in σ . Under Assumptions 4(i) and
(iii), the inverse (∇2Ki,k(θi,k(σ),σ))−1 of the Hessian matrix exists for each σ ,
and is continuous in σ . This means that ∥(∇2Ki,k(θi,k(σ),σ))−1∥ is bounded and
continuous in σ , where ∥C∥ = maxi j |ci j| denotes the max norm of a matrix C =
{ci j}, . Since △X̂ is compact, there is L1 such that ∥(∇2Ki,k(θi,k(σ),σ))−1∥< L1
for all i, k, and σ . Pick such L1.

Under Assumption 4(ii), there is L2 > 1 such that∣∣∣∣∂Ki,k(θi,k, x̂)
∂θi,k,m

−
∂K(θi,k, x̂′)

∂θi,k,m

∣∣∣∣< L2|x̂− x̂′|

for all i, k, m, θi,k, x̂, and x̂′. Also, under Assumption 4(i), there is L3 > 1 such
that ∣∣∣∣∂Ki,k(θi,k, x̂)

∂θi,k,m

∣∣∣∣< L3

43This parallels Perkins and Leslie (2014), who show that the stochastic approximation tech-
nique of Benaı̈m (1999) for the Euclidean space extends to Banach spaces with the same proof.
Our result differs from Perkins and Leslie (2014) in that we consider a differential inclusion, rather
than a differential equation. But this does not cause any technical difficluty, because (i) △X̂ is a
compact subset of a banach space with the dual bounded Lipschitz norm and (ii) Mazur’s lemma,
which is used to establish the result for differential inclusions in Euclidean spaces (Benaı̈m, Hof-
bauer, and Sorin (2005) and Esponda, Pouzo, and Yamamoto (2021)), is valid even in Banach
spaces.
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for all i, k, m, θi,k, and x̂. Then for each σ and σ ′, we have∣∣∣∣∂Ki,k(θi,k,σ)

∂θi,k,m
−

∂Ki,k(θi,k,σ ′)

∂θi,k,m

∣∣∣∣
=

∣∣∣∣∫ ∂Ki,k(θi,k, x̂)
∂θi,k,m

σ(dx̂)−
∫ ∂Ki,k(θi,k, x̂)

∂θi,k,m
σ ′(dx̂)

∣∣∣∣≤ 4L2L3∥σ −σ ′∥

where the inequality follows from the definition of the dual bounded-Lipschitz
norm and the fact that 1

4L2L3

∂Ki,k(θi,k,x̂)
∂θi,k,m

∈BL(X̂). This in turn implies that ∇Ki,k(θi,k,σ)

is equi-Lipschitz continuous, that is, there is L4 > 0 such that |∇Ki,k(θi,k,σ)−
∇Ki,k(θi,k,σ ′)|< L4∥σ −σ ′∥ for all i, k, θi,k, σ , and σ ′.

Let L = L1L4. We will show that θ(σ) is Lipschitz continuous with the con-
stant L. To do so, pick two action frequencies σ and σ ′ , σ arbitrarily. For
each β ∈ [0,1], let σβ = βσ +(1−β )σ ′ denote a convex combination of σ and
σ ′. From Assumption 4(iii), the KL minimizer θi,k(σβ ) must solve the first-order
condition

∇Ki,k(θi,k,σβ ) = 0,

which is equivalent to

β∇Ki,k(θi,k,σ)+(1−β )∇Ki,k(θi,k,σ ′) = 0.

Then by the implicit function theorem,

dθ(σβ )

dβ
=−(∇2Ki,k(θi,k(σβ ),σβ ))

−1 (∇Ki,k(θi,k(σβ ),σ)−∇Ki,k(θi,k(σβ ),σ ′)
)
.

(31)

Using the fundamental theorem of calculus, we have

θ(σ)−θ(σ ′)

= θ(σ1)−θ(σ0)

=−
∫ 1

0
(∇2Ki,k(θi,k(σβ ),σβ ))

−1 (∇Ki,k(θi,k(σβ ),σ)−∇Ki,k(θi,k(σβ ),σ ′)
)

dβ .

Then by the definition of L1 and L4,

|θ(σ)−θ(σ̃)| ≤
∫ 1

0
L1L4∥σ −σ ′∥dβ = L∥σ −σ ′∥. Q.E.D.
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B.13 Proof of Proposition 11
We will first present a preliminary lemma. Pick an arbitrary action frequency
σ(0) ∈ △X̂ and a solution σ ∈ Z(σ(0)) to the differential inclusion (18) starting
from this σ(0). Let θ(t) = θ(σ(t)) for each t. The following lemma shows that
{θ(t)}t≥0 solves (19).

Lemma 8. Pick t ≥ 0 such that (18) holds. Then θ̇(t) exists and satisfies (19).

Proof. Pick t as stated, and pick σ∗ ∈△S0(σ(t)) such that σ̇(t) = σ∗−σ(t). Let
σβ = βσ∗+(1−β )σ(t) for each β ∈ [0,1]. Then we have

θ(σ(t + ε))−θ(σ(t))
ε

=

(
θ(σε)−θ(σ0)

ε
+

θ(σ(t + ε))−θ(σε)

ε

)
.

All we need to show is that the right-hand side has a limit as ε → 0, and the limit
is in the right-hand side of (19). Then θ(σ(t+ε))−θ(σ(t))

ε also has a limit θ̇(t) and
this limit value satisfies (19).

Note first that limε→0
θ(σε )−θ(σ0)

ε exists and is in the right-hand side of (19).
Indeed, from (31),

lim
ε→0

θ(σε)−θ(σ0)

ε
=

dθ(σβ )

dβ

∣∣∣∣
β=0

=−(∇2Ki,k(θi,k(σ0),σ0))
−1 (∇Ki,k(θi,k(σ0),σ1)−∇Ki,k(θi,k(σ0),σ0)

)
=−(∇2Ki,k(θi,k(σ(t)),σ(t)))−1 (∇Ki,k(θi,k(σ(t)),σ∗)

)
where the second equality follows from the fact that θi,k(σ0) solves the first-order
condition.

We conclude the proof by showing that limε→0
θ(σ(t+ε))−θ(σε )

ε = 0. Since
θ(σ) is Lipschitz continuous, there is L > 0 such that∣∣∣∣θ(σ(t + ε))−θ(σε)

ε

∣∣∣∣≤ L
∥∥∥∥σ(t + ε))−σε

ε

∥∥∥∥
= L

∥∥∥∥(σ(t + ε))−σ(t))− (σε −σ0)

ε

∥∥∥∥ .
Taking ε → 0,

lim
ε→0

∣∣∣∣θ(σ(t + ε))−θ(σε)

ε

∣∣∣∣= L
∥∥∥∥ lim

ε→0

σ(t + ε)−σ(t)
ε

− lim
ε→0

σε −σ0

ε

∥∥∥∥
= L

∥∥∥∥∥dσ(t)
dt

−
dσβ

dβ

∣∣∣∣
β=0

∥∥∥∥∥= 0
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Q.E.D.

Now we prove the proposition. Pick T > 0 and h ∈ H arbitrary. Pick any
small ε > 0. Since θ(σ) is uniformly continuous in σ (this follows from the
continuity of θ and the compactness of △X̂), there is η > 0 such that |θ(σ)−
θ(σ̃)| < ε for any σ and σ̃ with ∥σ − σ̃∥ < η . From Proposition 8, there is t∗

such that for any t > t∗, there is σ ∈ Z(w(h)[t]) such that

∥w(h)[t + τ]−σ(τ)∥< η

for all τ ∈ [0,T ]. Pick such σ, and consider the corresponding θ, i.e., let θ(t) =
θ(σ(t)) for each t. Then by the definition of η , we have

∥wθ (h)[t + τ]−θ(τ)∥< ε

for all τ ∈ [0,T ]. Also this θ solves (19).44 This implies the result we want.
Q.E.D.

44Note that θ is absolutely continuous because σ is absolutely continuous and θ(σ) is Lipschitz
continuous. Also from Lemma 8, θ satisfies (19) for almost all t.
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