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This paper characterizes the set of perfect public equilibrium payoffs, the set of

stationary Markov perfect equilibrium payoffs, and a simple class of semi-stationary

equilibrium payoffs in continuous-time stochastic games with finitely many states

and a publicly observable Brownian signal about past actions. Contrary to many

discrete-time methods, the characterization does not rely on a convergence to the

stationary distribution of the underlying state process. As a consequence, the corre-

spondence of initial state to equilibrium payoffs is preserved, the characterization is

possible for any level of discounting, and the characterization is applicable to games,

in which the state process is not irreducible.
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1 Introduction

A wide range of economic applications can be cast as strategic interactions between differ-

ent parties, where the environment changes in response to the parties’ behavior. In the

global financial crisis, financial institutions were unable to raise sufficient capital to meet

their short-term liabilities because investors had lost confidence in the financial sector.

The past performance of the financial sector had led credit lines to dry up and created an

environment where financial institutions were not able to bridge short-term liquidity gaps

in the usual way. The development of new technologies by competing research institu-

tions exhibits a similar history-dependent environment. The successful discovery of a new

technology changes the research environment forever: competing researchers will not be

able to patent similar work anymore and any effort put into such a discovery was exerted

in vain. It is impossible to forecast the exact time of a financial crisis or the discovery of

a new technology. The occurrence of such a state change is random and the likelihood

depends on the involved parties’ actions. A game-theoretic model that accounts for these
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sudden state changes is a stochastic game. No deterministic-time dynamic game can

capture these sudden and potentially drastic changes in the environment.1

Our understanding of perfect public equilibria (PPE) in repeated games owes an

invaluable debt to the recursive techniques of Abreu, Pearce, and Stacchetti [1]. Their

notion of self-generating payoff sets has lead to numerous applications, allowing us to char-

acterize equilibria in a variety of settings. Chief among them, Fudenberg and Levine [10]

developed a linear program that characterizes the limit PPE payoff set as the players’

discount factor δ tends to 1. A key ingredient in this linear program is the fact that

continuation payoffs of extremal PPE payoffs have to lie below the tangent hyperplane.

In a stochastic game, this is no longer the case because the stage game played in the next

state need not be the same. Nevertheless, Hörner, Sugaya, Takahashi, and Vieille [14]

show that a linear program can be recovered as δ → 1 if the limiting PPE payoff set is

independent of the initial state. This is the case, for example, if the underlying state

process is irreducible.2

In continuous-time stochastic games with finitely many states, the effects of state

changes on continuation payoffs can be cleanly separated from the effects of the public

signal: continuous movements in the continuation value due to information from the

public signal have to lie below the tangent hyperplane, whereas discontinuous movements

at a time of a state transition are entirely caused by the state transition. This allows us

to use the techniques developed in Sannikov [29] to relate the continuous movement of the

continuation value to the boundary of the set Ey(r) of PPE payoff for any initial state y

and any discount rate r. Sannikov [29] shows that in a repeated game with Brownian

information, the boundary of the the PPE payoff set can be characterized by an ordinary

differential equation (ODE) describing the curvature of the set. In this paper, we show

that in a stochastic game, the family
(
Ey(r)

)
y
of PPE payoff sets can be described via

a set of coupled ODEs, in which the differential equation describing the payoff set Ey(r)
depends on the solutions to the equations describing Ey′(r) for all states y′ that can be

reached from state y. In a stochastic game without possible cycles among states, this

readily yields a procedure to solve for the equilibrium payoff set. In general, however,

solving this system of coupled ODEs is a non-trivial fixed-point problem.

We show that this set of coupled ODEs can be approximated by a sequence of un-

coupled ODEs that arise from an iterative procedure over state transitions. Consider an

auxiliary game in each state y that ends at the time of the first state transition such

1Stochastic games have been used also to model dynamic competition with inventories (e.g., Kirman
and Sobel [21], the extraction of a common resource (e.g., Levhari and Mirman [22]), economic growth
(e.g., Bernheim and Ray [5]), entry and exit dynamics in oligopolistic competition (e.g., Ericson and
Pakes [8]), strategic pricing (e.g., Bergemann and Välimäki [3]), social uprisings (e.g., Acemoglu and
Robinson [2]), and strategic experimentation (e.g., Keller, Rady, and Cripps [20]).

2In his proof of the folk theorem, Dutta [7] provides a weaker condition for the limiting PPE payoff
set to be independent of the state.
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that terminal payoffs after a transition to state y′ come from a fixed payoff set Wy′ .

Because the state is fixed for the duration of the auxiliary game, the auxiliary game is

a repeated game with discontinuous and abrupt information arrival at the game’s end.

The equilibrium payoff set Br,y(W) of the auxiliary game is thus characterized by the

techniques in Bernard [4]. It is an extension of Sannikov’s result to monitoring struc-

tures that contain both continuous and discontinuous signals. We can recover equilibrium

payoffs of the stochastic game from equilibrium payoffs of the auxiliary games if the fam-

ily Br(W) =
(
Br,y(W)

)
y
is self-generating, that is, if Wy ⊆ Br,y(W) for each state y.

Then each equilibrium payoff of the auxiliary game in state y can be attained with an

incentive-compatible strategy profile until the transition to the next state y′, at which

point the continuation value comes from Wy′ ⊆ Br,y′(W). Thus, the strategy profile can

be concatenated with an equilibrium in the auxiliary game of state y′ until the next state

transition, and so on. An infinite concatenation of these equilibria of the stage games

then yields a PPE of the stochastic game.

Similarly to the algorithm in Abreu, Pearce, and Stacchetti [1], an iterated application

of the operator Br to the set of feasible payoffs converges to the PPE payoff set. At first

glance it may seem that the construction of PPE has been reduced to a discrete-time

stochastic game, whose period lengths are determined by the state transitions. While

incentives at state transitions are dealt with similarly, the continuous-time operator Br

also ensures that incentives are satisfied at all points between state transitions. This gives

rise to two ODEs that describe the boundary of each set Br,y(W): the abrupt-information

optimality equation is a first-order ODE that captures optimal incentives from the absence

of state transitions and the optimality equation is a second-order ODE that, similarly to

Sannikov [29], captures optimal value transfers based on the public signal.

Because differential equations can be solved numerically rather easily, an ODE de-

scription of equilibrium payoffs also contributes to the literature on computation of equi-

librium payoffs in stochastic games. While current algorithms restrict attention to patient

players (e.g., Hörner et al. [14]) or perfect monitoring (e.g., Yeltekin, Cai, and Judd [31]),

our techniques provide an algorithm for imperfect public monitoring. Different from the

two aforementioned algorithms, our approach also yields the equilibrium strategies that

attain extremal payoffs, as well as the incentives required to enforce those equilibria.

In many applications, particular attention is given to stationary Markov or Markov-

perfect equilibria because of their simplicity.3 Because stationary Markov equilibria are

time independent, their characterization is very similar to the discrete-time counterpart;

3Existence of stationary Markov equilibria in behavior strategies in our setting with finitely many
actions and states has been established in Fink [9]. Haller and Lagunoff [12] show genericity and Do-
raszelski and Escobar [6] show stability and purifiability. In more general settings, stationary Markov
equilibria may not exist; see Levy [23] and Levy and McLennan [24] for a counterexample. Finally, see
He and Sun [13] for the most general existence result to date.
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see Haller and Lagunoff [12].4 In addition to characterizing PPE and stationary Markov

equilibrium payoffs, we characterize payoffs of what we call semi-stationary PPE. A semi-

stationary PPE disregards the public signal completely and it depends on the public

history only through the sequence of states that have been attained so far. Note that

this requirement is weaker than it would be in a standard discrete-time setting because

players can neither infer the time nor the time of state transitions from the sequence of

states. Semi-stationary PPE thus strike a balance between simplicity of implementation

and attaining a multitude of equilibrium payoffs. We illustrate the different equilibrium

notions in an example of a regime-change game.

In the literature on discrete-time stochastic games, techniques often differ drastically

between different classes of stochastic games. Analysis of games with an irreducible state

process often rely on convergence to a steady state distribution (e.g., Hörner, Sugaya,

Takahashi, and Vieille [14] and Peski and Toikka [27]), whereas the analysis of absorbing

games often hinges on the fact that there is only one non-absorbing state. The techniques

in this paper do not rely on any such properties, hence they are applicable to stochastic

games with arbitrary state transitions. The continuous-time techniques do, however,

require that the public signal satisfies a pairwise full rank condition to ensure that the

aforementioned ODEs admit strong solutions. This condition is stronger than the pairwise

identifiability condition in Sannikov [29] because admissible incentives related to state

transitions may be discontinuous in the players’ continuation value.

It is worth noting that the construction in this paper works for any discount rate

and not just in the limit as the discount rate tends to 0. Thus, even for irreducible

games, for which we have developed a decent understanding from discrete time, the

techniques provide additional insights: since convergence to the steady state distribution

is not required, the correspondence y 7→ Ey(r) of initial states to equilibrium payoffs is

preserved. The presence of absorbing states simplifies the computation as we illustrate

in Section 7 as it decouples some of the ODEs.

The remainder of this paper is organized as follows. The model is presented in Sec-

tion 2. Section 3 contains a motivating example of a contestable democracy. In Section 4,

we introduce the notions of enforceability and self-generation in our setting. The set of

stationary Markov equilibrium payoffs and semi-stationary equilibrium payoffs are char-

acterized in Section 5. Section 6 describes the characterization of the set of all PPE

payoffs. Section 7 discusses notions related to the computation of equilibrium payoffs

and Section 8 concludes. Appendix A contains the mathematical foundation for the

model and Appendices B and C contains the proofs.

4This paper restricts attention to pure-strategy equilibria. This is not a severe restriction for PPE
because players can mix artificially by playing different pure actions for a fraction of the time. However,
this restriction is more severe for stationary Markov equilibria because those are time independent.
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2 Model

Consider a game between 2 players i = 1, 2 with a finite set of states Y . State y ∈ Y
determines the set Ai(y) of each player i’s feasible actions. We assume that Ai(y) is finite

for any state y ∈ Y and we denote by A(y) := A1(y)×A2(y) the set of feasible action

profiles in state y. We denote by A =
⋃

y∈Y A(y) the set of all action profiles. The chosen

action profile a ∈ A(y) affects the rate λy,y′(a) at which the state process S = (St)t≥0

transitions from state y to y′. We denote by λ(a) the matrix containing the transition

intensities from row state to column state. We denote by Z(a) the set of ordered pairs

of states (y, y′) with λy,y′(a) > 0 and by Z the set of those (y, y′), for which there exists

some a ∈ A(y) with λy,y′(a) > 0. We say that y′ is a successor state of y if (y, y′) ∈ Z.

In a game of imperfect monitoring, players cannot observe the actions chosen by their

opponents, but only the impact of the chosen actions on the distribution of a publicly

observable signal X as well as the state process S. Specifically, we assume that in state y,

the chosen action profile a affects the drift rate µ(y, a) of a d-dimensional Brownian

motion Z, that is, dXt = µ(y, a) dt + dZt.
5,6 The public information Ft at time t is

a σ-algebra that contains the history of the processes S and Z up to time t. It may

contain additional information that players can use for public randomization. We denote

by F = (Ft)t≥0 the filtration of public information.

Definition 2.1. A (public) strategy Ai of player i is an F-predictable process that takes

values in Ai(S−). We denote by A = (A1, A2) a (public) strategy profile.

Remark 2.1. Stochastic games are tractable despite their generality because they are

time homogeneous: the set of available actions, the payoffs, and the conditional distri-

bution over future states and public signal realizations do not depend on the time. In a

continuous-time setting, this imposes that, conditional on the current state and the cho-

sen strategy profile, the increments of the signal and the state process are independent

and identically distributed, that is, they are Lévy increments. It follows from Corol-

lary 10.23 and Theorem 11.4 in Kallenberg [17] that the distribution of the state process

and a continuously arriving public signal have to be of the chosen form.

Because at any time t, the chosen strategy profile affects the future distribution of the

state process and the public signal, play of a strategy profile A = (A1, . . . , An) induces

5In a continuous-time setting, the volatility of the public signal is perfectly observable through the
quadratic variation process. Thus, the volatility does not depend on the chosen action profiles in a
continuous-time game of imperfect monitoring. We normalize the volatility matrix to be the identity
matrix for simplicity of notation.

6Changes in the state are also an imperfect public signal of past actions. Discrete arrival of information
about past play without impact on the state can be accommodated by having duplicate states y1, y2
with identical sets of available actions, payoffs, drift rate of the public signal, and conditional transition
probabilities to states in Y \ {y1, y2}. The “transition” between duplicate states is then just a signal
about past play. This framework thus allows a mixed signal structure as in Bernard [4].
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a family of probability measures QA =
(
QA

t

)
t≥0

, under which players observe the game.

On any interval [0, T ] for T > 0, the public signal takes the form

Xt =

∫ t

0

µ(Ss, As) ds+ ZA
t , (1)

under QA
T , where ZA = Z −

∫
µ(Ss, As) ds is a QA

T -Brownian motion describing noise in

the continuous component. Moreover, under QA
T , state transitions to state y at time t

occur with instantaneous intensity λSt−,y(At). For a mathematical foundation of the

model and details on the change of probability measures, see Appendix A.

Simon and Stinchcombe [30] and, more recently, Neyman [26] demonstrate that in

continuous-time games of perfect monitoring, strategies may not lead to unique outcomes

if they depend on the immediate past of the opponent’s chosen actions. This is not

a problem in our model: since the public signal has unbounded variation and state

changes occur relatively rarely, actions taken by opponents do not immediately generate

unambiguous information. Formally, in public monitoring games, one can identify the

probability space Ω with the path space of all publicly observable processes, hence a

realized path ω ∈ Ω leads to the unique outcome (A(ω), S(ω)). In particular, each

strategy in a public monitoring game is admissible in the sense of Neyman [26].

Definition 2.2.

(i) Each player i receives an unobservable expected flow payoff gi : Y ×A → R.7

(ii) Player i’s discounted expected future payoff (or continuation value) under strategy

profile A at any time t ≥ 0 is given by

W i
t (St, A) =

∫ ∞

t

re−r(s−t)EQA
s

[
gi(Ss, As)

∣∣Ft

]
ds, (2)

where r > 0 is the discount rate of both players and the distribution of (Ss)s≥t is

determined uniquely by St and (As)s≥t.

(iii) A strategy profile A is a perfect public equilibrium (PPE) for discount rate r if for

every state y ∈ Y , for every player i and all possible deviations Ãi,

W i(y, A) ≥ W i
(
y, (Ãi, A−i)

)
a.e.,8 (3)

where A−i denotes the strategy of player i’s opponent in profile A.

7The expected flow payoff corresponds to the ex-ante stage game payoff in discrete-time games.
8Deviations of a PPE are not profitable almost everywhere (a.e.), that is, the inequality

W i
t (y,A;ω) ≥ W i

t

(
y, Ãi, A−i;ω

)
holds for every pair (ω, t) except on a set of P ⊗ Lebesgue-measure 0.

Observe that (3) has to hold for every state y ∈ Y because every state occurs with positive probability
at any time t > 0 by the full-support assumption.
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(iv) We denote the set of all payoff vectors that are achievable by a perfect public

equilibrium when the initial state is y and the discount rate is r by

Ey(r) :=
{
w ∈ R2

∣∣ there exists a PPE A with W0(y, A) = w a.s.
}
.

We denote by E(r) the family
(
Ey(r)

)
y∈Y of equilibrium payoffs.

The form of the players’ continuation value in (2) shows that the players’ strategies af-

fect their expected payoffs directly through their expected flow payoff and indirectly,

through the impact on the distribution of the public signal and the state process, which

is reflected in the change of measure in the expectation operator. Because the weights

re−r(s−t) in (2) integrate up to one, the continuation value of a strategy profile is a

convex combination of “stage game” payoffs. The set of feasible payoff pairs V :=

conv {g(y, a) | a ∈ A(y), y ∈ Y} is thus given by the convex hull of pure action payoff

pairs. By deviating to their strategy of myopic best replies to their opponent’s strategy

profile, each player i can ensure an equilibrium payoff of at least

vi = min
y∈Y

min
a−i∈A−i(y)

max
ai∈Ai(y)

gi
(
y, (ai, a−i)

)
.

It follows that V∗ := {w ∈ V | wi ≥ vi for every player i} is an upper bouund for the

set of equilibrium payoffs Ey(r) in each state y ∈ Y . Moreover, each Ey(r) is convex

because players are allowed to use public randomization. Indeed, for any two PPE A

and A′ with expected payoffs W0(y, A) and W0(y, A
′), respectively, any payoff vector

νW0(y, A) + (1 − ν)W0(y, A
′) for ν ∈ (0, 1) can be attained by selecting either A or A′

according to the outcome of a public randomization device at time 0.

Because the set of public perfect equilibria is typically very large, it is worth study-

ing simple classes of PPE that might be easier to implement and, thus, perhaps more

reasonable to expect in reality. The most frequently studied of such equilibria are sta-

tionary Markov or Markov-perfect equilibria, which depend on the entire public history

only through the current state. Since there are only finitely many stationary Markov

equilibria, those propose a sharp contrast to the multitude of PPE. The techniques in

this model also allow us to easily characterize the payoffs of a family of equilibria between

stationary Markov equilibria and general PPE. We call semi-stationary PPE.

Definition 2.3.

(i) A PPE A is a stationary Markov (perfect) equilibrium for initial state S0 if there

exists a map a∗ : Y → A with a∗(y) ∈ A(y) for every state y such that A = a∗(S−).

(ii) A PPE is semi-stationary for initial state S0 if there exists a map a∗ :
⋃∞

k=1 Yk → A
with a∗(y1, . . . , yk) ∈ A(yk) for any sequence of states of any length k such that

A = a∗(Ŝ−), where Ŝt is the sequence of states visited up to and including time t.
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(iii) We denote by EM(r) and ES(r) the families of payoff pairs that are achievable in

stationary Markov and semi-stationary equilibria, respectively. Note that

EM(r) ⊆ ES(r) ⊆ E(r) ⊆ V∗.

A semi-stationary PPE depends on the public history only through the sequence of

states that have been attained so far. Note that this requirement is significantly weaker

than it would be in a standard discrete-time setting because players can neither infer the

time nor the time of state transitions from the sequence of states. This is a significant loss

of information since players’ actions affect the intensity of state transitions. Consider,

for example, a strategy profile A and a deviation Ãi so that all state transitions occur

ten times more frequently under the deviation than under A. Such a deviation leads to

the same distribution over sequences of states as A. If players observe only the sequences

of states, they cannot statistically distinguish (Ãi, A−i) from A, whereas the distinction

would be easy given the full information of the state process.

Note that if the state process is cyclic, the sequence of state transitions is determined

uniquely from the initial state. Thus, in a cyclic game, the sequence of action profiles

taken—but not their duration—in semi-stationary PPE is known at the beginning of

the game. This is the case in the following example of a regime-change game: if one

ideological group is removed from office, it is because the other group has taken over.

3 Example of a Regime-Change Game

Suppose that proponents of two ideologies compete for power. State yi for i = 1, 2 indi-

cates that group i is in charge. At every instant, the incumbent can either work on policy

reforms or manipulate the media, that is, Ai(yi) = {P,M}. The non-incumbent can either

accommodate the incumbent or attempt to instigate a revolution, i.e., A−i(yi) = {A, I}.
The intensity of state changes is indicated in the left panel of Figure 1. State changes are

much more frequent when the non-incumbent is actively trying to instigate a revolution.

The incumbent can somewhat counteract this effect by manipulating the media. We

suppose that the cooperative actions A and P have a flow cost of 2 dt and we normalize

the cost of the non-cooperative actions I and M to zero.

Suppose that welfare X has two dimensions: X1 measures components of welfare that

are enjoyed equally by the two groups, whereas X2 measures welfare of issues, on which

the two groups have diametrically opposite views. In a sense, (X1, X2) is an orthogonal

decomposition of welfare. This leads to a realized flow payoff of

dV 1
t := dX1

t − dX2
t − 2 · 1{A1∈{A,P}} dt, dV 2

t := dX1
t + dX2

t − 2 · 1{A2∈{A,P}} dt.

The expected flow payoff is thus gi(y, a) = µ1(y, a) + (−1)iµ2(y, a) − 2 · 1{Ai∈{A,P}} for
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λy,y′(a) A I

P 0.5 4.5

M 0.25 2.25

µ1(yi, a) A I

P 7 1

M 2 0

µ2(yi, a) A I

P (−1)i (−1)i3

M 0 0

g(y1, a) A I

P (5, 3) (1,−2)

M (2,−1) (0, 0)

g(y2, a) P M

A (3, 5) (−1, 2)

I (−2, 1) (0, 0)

Figure 1: Impact of actions on state transitions and the drift rate of the public signal, as well as
expected flow payoffs of the game.

group i = 1, 2. The pure action stage-game payoff pairs are summarized in Figure 1.

In addition to being payoff relevant, welfare changes carry information about past

play. The chosen action profiles affect the drift rate of welfare as indicated in Figure 1.

The total increase in welfare is highest if the incumbent works on policy reforms and

the non-incumbent accommodates, which leads to compromises and to more moderate

policies being implemented. If the non-incumbent actively instigates a revolution, the

total increase in welfare is lower and more one-sided.

Note that each stage game has a unique Nash equilibrium in which both parties choose

the cooperative action, giving each group its highest-possible payoffs of the stage game.

Thus, if one group was to rule forever, the efficient PPE would demand that the non-

incumbent accommodates at all times to ensure moderate policies are implemented. How-

ever, the possibility for state changes prevents permanent collaboration as the opposition

is tempted to accelerate a state change by instigating a revolution. Figure 2 illustrates

the different sets of equilibrium payoffs for this game. There are two stationary Markov

equilibria, which involve one group exerting effort at all times and the other group work-

ing on policies when they are in charge but instigating a revolution when in opposition.

The highest sum of payoffs is attained in two semi-stationary PPE, which exceed the sum

of payoffs in the two stationary Markov equilibria. Since permanent collaboration is not

an equilibrium, the restriction of stationarity forces that one group always instigates a

revolution, hindering growth of welfare. By allowing players to make their actions de-

pendent on the sequence of states, four consecutive terms of collaborative effort can be

supported in equilibrium as illustrated in the zoom-in of Figure 2. In the fifth term, the

opposition randomizes among its actions to select a stationary continuation equilibrium.

Outside the set of semi-stationary PPE payoffs, the boundary is given by the solution

to two coupled ODEs. The solutions of the ODEs reveal the generically unique action

profiles that are played on the boundary. Outside the set of semi-stationary PPE payoffs,

the opposition mostly attempts to instigate a revolution. Doing so is temporarily costly,

but it improves the likelihood of a state change that will put the opposition in power. On

the upper part of the boundary ∂Ey1(r), the incumbent is mostly willing to exert effort

since an equilibrium reward for the opposition necessarily also rewards the incumbent.
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w∗w∗

(A,P )(A,P )

(P, I)(P, I)
(P,A)(P,A)

(I, P )(I, P )

w1

w2 g(y2, (A,P ))g(y2, (A,P ))

g(y2, (A,M))

g(y2, (I, P ))

g(y1, (P,A))g(y1, (P,A))

g(y1, (P, I))

g(y1, (M,A))

g(yi, (M, I))g(yi, (M, I))

(P, I)(P, I)

(M, I)(M, I)

(P, I)(P, I)

(M, I)(M, I)

(P,A)(P,A)

(P,A)(P,A)

Figure 2: Depicted in color is the family E(r) = {Ey1(r), Ey2(r)} of PPE payoff sets. The hatched area
are payoff pairs that can be attained semi-stationary PPE. The solid area of the zoom-in are payoff pairs
that can be attained by play of a pure action until the next state transition. There are two stationary
Markov equilibria, yielding payoff pairs in {ŵ (y1), ŵ (y2)} and {ŵ◦(y1), ŵ◦(y2)} indicated with squares
and circles, respectively. The sample path of a semi-stationary PPE attaining w∗ is shown.

This is not the case on the lower part of the boundary ∂Ey1(r), where the incumbent

exerts effort only when the non-incumbent accommodates.

4 Enforceability and Self-Generation

As in any game with imperfect public monitoring, players’ incentives are tied to outcomes

of the public signal. Thus, we first state the dependence of the continuation value on the

public signal and the state process. It will be convenient to denote by

Jy
t =

∑
0<s≤t

1{Ss=y,Ss− ̸=y} (4)

the process that counts the number of state transitions to state y. Note that the increment

dJy
t is the increment of a counting process with instantaneous intensity λSt−,y(At), which

means dJy ≡ 0 if y cannot be reached directly from state St−. We obtain the following

stochastic differential representation of the players’ continuation value.

Lemma 4.1. A semimartingale W is the continuation value of a strategy profile A if and

only if W is bounded and for every player i = 1, . . . , n, it holds that

dW i
t = r

(
W i

t − gi(St, At)
)
dt+ rβi

t

(
dZt − µ(St, At) dt

)
+ r

∑
y∈Y

δit(y)
(
dJy

t − λSt−,y(At) dt
)
+ dM i

t

(5)

for a martingale M i orthogonal to Z and (Jy)y∈Y with M i
0 = 0, predictable and locally

square-integrable processes βi and δi(y) for y ∈ Y.

The first term in (5) is a drift term that describes the expected movement of the
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continuation value. It points away from the expected flow payoff: if W i
t < gi(St, At),

then player i extracts an instantaneous payoff rate that exceeds his continuation value

and, therefore, doing so has to decrease his future payoff in expectation. The second term

is a diffusion term that describes the exposure of the continuation value to the public

signal, where the term rβi
t is the sensitivity of the exposure. The third term is a jump term

that captures impacts of state changes on the continuation value of player i. The term

rδit(y) is the instantaneous increase of player i’s expected value when the state changes

from St− to y. The final term is a martingale which captures public randomization.

In discrete-time games, incentives are provided by a continuation promise that maps

the public signal to a promised continuation payoff for every player; see, for exam-

ple, Abreu et al. [1]. The representation in (5) shows that in continuous-time games,

the continuation value is linear in the public signal and hence, so is the continuation

promise. To state the incentive-compatibility conditions, it will be convenient to denote

by λ(y, a) :=
(
λy,y1(a), . . . , λy,y|Y|(a)

)
the vector of all transition intensities to successor

states when the state is equal to y and action profile a is played.

Definition 4.2. An action profile a ∈ A(y) is enforceable in state y if there exists

a continuation promise (β, δ) with β = (β1, β2)
⊤

and δ = (δ1, δ2)
⊤

such that for every

player i and every deviation ãi ∈ Ai(y),

gi(y, a) + βiµ(y, a) + δiλ(y, a) ≥ gi
(
y, (ãi, a−i)

)
+ βiµ

(
y, (ãi, a−i)

)
+ δiλ

(
y, (ãi, a−i)

)
. (6)

A strategy profile A is enforceable for initial state y0 if there exist processes (βt)t≥0, (δt)t≥0

such that (6) is satisfied a.e. for the induced state process S.

Action profile a is enforceable in state y if the continuation promise guarantees that

the sum of expected instantaneous payoff rate gi(y, a) and promised continuation rate

βiµ(y, a) + δiλ(y, a) for every player i is maximized in ai over all unilateral deviations.

Suppose that players keep their promises and the continuation promise used to enforce

A are, in fact, the sensitivities of the continuation value to the public signal and the

state process. Then, no player has an incentive to deviate at any point in time and the

strategy profile is an equilibrium. This is formalized in the following lemma, which is the

continuous-time analogue to the one-shot deviation principle.

Lemma 4.3. A strategy profile A is a PPE for initial state y0 if and only if (β, δ) related

to A by (5) enforces A for the induced state process S with S0 = y0.

For the characterization of PPE payoffs—but not stationary Markov and semi-stationary

PPE payoffs—we make the following assumptions on stage-game payoffs and the distri-

bution of the public signal.
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Definition 4.4. For any state y, any action profile a ∈ A(y), and any player i = 1, 2, let

M i
y(a) denote the d× (|Ai(y)| − 1)-dimensional matrix, whose column vectors are given

by µ(y, ãi, a−i)−µ(y, a) for ãi ∈ Ai(y) \ {ai}. An action profile a is said to have pairwise

full rank if the matrix [M1
y (a),M

2
y (a)] has rank |A1(y)|+ |A2(y)| − 2.

Assumption 1. For each y ∈ Y , every action profile a ∈ A(y) has pairwise full rank.

Remark 4.1. As in Fudenberg, Levine, and Maskin [11], an action profile a has pairwise

full rank if and only if it satisfies two weaker conditions: a has individual full rank ifM i
y(a)

has rank |Ai(y)| − 1 and a is pairwise identifiable if spanM1
y (a) ∩ spanM2

y (a) = {0}. As-
sumption 1 ensures regularity of the boundaries of the family of PPE payoff sets. The

individual full rank condition ensures that the optimality equation is locally Lipschitz

continuous in incentives from state transitions. As in Sannikov [29], pairwise identifiabil-

ity guarantees that the characterizing ODE is locally Lipschitz continuous in incentives

from the public signal in non-coordinate directions. For local Lipschitz continuity in

coordinate directions, we additionally need the following assumption.

Assumption 2. spanM1
y (a) ⊥ spanM2

y (a) for each y ∈ Y and each a ∈ A(y).

Lemmas 4.1 and 4.3 motivate how we construct equilibrium profiles in continuous

time—as solutions to the SDE (5), subject to the enforceability constraint (6). To do so,

we use the fact that stochastic games are time homogeneous: since the continuation profile

of a PPE after any time t is also an equilibrium of the entire game, the continuation value

has to remain within the family of equilibrium payoff sets at all times. This property is

known as self generation. In our setting, it is formalized as follows.

Definition 4.5. A family of sets (Wy)y∈Y ⊆ Rn is self-generating if for every y ∈ Y and

every w ∈ Wy, there exists a solution
(
W,A, β, δ,M

)
to (5) such that (β, δ) enforces A,

S0 = y a.s., W0 = w a.s., and Wτ ∈ WSτ a.s. for every stopping time τ .9

Remark 4.2. The stochastic differential equation (5) does not in general admit strong

solutions, that is, it may not be possible to solve (5) for a fixed Brownian motion and

a fixed state process. In the proofs that are contained in the appendices, we use weak

solutions to (5), in which the Brownian motion, the state process, and the probability

space are part of the solution. To keep the notation simple, we do not make this distinction

in the main text. See Appendix B for details.

Similarly as in discrete-time games, the family of equilibrium payoff sets is the largest

family of bounded self-generating sets.10

9The processes (Jy)y∈Y appearing in (5) are defined from S as in (4).
10One can show that the union (Wy ∪Vy)y∈Y of two families (Wy)y∈Y , (Vy)y∈Y of self-generating sets

is again self-generating. Thus, there is, in fact, a largest bounded self-generating family of payoff sets
equal to the union of all such families of payoff sets.
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Ey2(r)

Ey1(r)

βt (dZt − µ(y1, At) dt)

Nw

rδ(y2) dJ
y2
trδ(y2) dJ
y2
t w

g(At) + δtλ(y1, At)

drift

Figure 3: While the state is equal to y1, the continuation value of a PPE moves continuously in Ey1
(r).

At the boundary, self-generation implies that the continuation value has to move tangentially to the
boundary, given through the incentives arising from the public signal. When the state changes to y2, the
continuation value changes discontinuously to a value in Ey2

(r).

Lemma 4.6. The family
(
Ey(r)

)
y∈Y is the largest family of bounded self-generating sets.

The characterization of E(r) as the largest family of bounded self-generating sets

allows us to construct equilibria using a stochastic control approach. Self-generation

implies that the continuation value of each PPE corresponds to an enforceable solution

to (5) that locally remains in Ey(r) while the state is equal to y, which jumps to Ey′(r)
when the state transitions to state y′. From (5), it follows that for any w ∈ ∂Ey(r) and
any normal vector Nw to w ∈ ∂Ey(r), it is necessary that:

(I1) The drift points towards the interior of the set: Nw
⊤(g(y, a) + δλ(y, a)− w

)
≥ 0,

(I2) The volatility is tangential to the set: Nw
⊤β = 0,

(I3) State transitions are within E(r): w+rδ(y′) ∈ Ey′(r) for every y′ with (y, y′) ∈ Z(a).

Observe that restriction (I2) is necessary because of unbounded variation of Brownian

motion: if incentives were provided in any non-tangential direction, the continuation

value would escape E(r) immediately; see Figure 3.

Sannikov [29] has shown that in the special case of a repeated game, i.e., when Y is a

singleton, one can relate the law of motion of the continuation value to the curvature of the

equilibrium payoff set. Crucial in this regard is the fact that there are no state changes:

the continuation value is continuous and has to move tangentially to the set. Incentives

that can be provided at any given point on the boundary thus depend on the geometry

of the payoff set only through local information, i.e., the direction of the tangent. This

local dependence gives rise to an ordinary differential equation. Bernard [4] shows that

when information also arrives discontinuously, such a local characterization is no longer

possible because restriction (I3) depends on global information of the equilibrium payoff

set. Nevertheless, one can approximate the boundary of the equilibrium payoff set through

a sequence of ordinary differential equations. Key is the relaxation of restriction (I3) to

a condition that requires continuation values after a state change to come from a fixed

payoff set. We shall pursue a similar approach here.
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Definition 4.7. Fix a family of payoff sets W = (Wy)y∈Y . Let σ denote the occurrence

of the first state change.

(i) We say that a family X = (Xy)y∈Y of payoff sets is W-relaxed self-generating if for

each y ∈ Y and each w ∈ Xy, there exists a solution (W,A, β, δ, Z, S,M) to (5)

such that W0 = w a.s., S0 = y a.s., Wσ ∈ WSσ a.s., and for almost every (ω, t) with

0 ≤ t < σ(ω), we have Wt(ω) ∈ Xy0 and (βt(ω), δt(ω)) enforces At(ω) in St(ω).

(ii) Br(W)=
(
Br,y(W)

)
y∈Y is the largest family of W-relaxed self-generating payoff sets.

The operator Br is a continuous-time extension of the standard set operator in Abreu,

Pearce and Stacchetti [1] to stochastic games. Payoff pairs in Br,y(W) for any state y ∈ Y
can be attained by an enforceable strategy profile with continuation promise from WSσ

at time σ. The additional requirement due to the continuous-time setting is that before

the state transition, the continuation value remain in Br,y(W). In particular, incentives

related to the absence of state transitions and the arrival of the public signal have to

enforce the strategy profile at all times before the state transition. Similarly to [1], the

operator Br is closely related to the concept of self-generation.

Lemma 4.8. Let W = (Wy)y∈Y such that Wy ⊆ V for every state y ∈ Y. If W is

self-generating, then Wy ⊆ Br,y(W) for every state y ∈ Y. Conversely, if Wy ⊆ Br,y(W)

for every state y ∈ Y, then Br(W) is self-generating.

Since payoff pairs in Br,y(W) can be attained with a continuation promise in WSσ

at time σ, the condition that Wy′ ⊆ Br,y′(W) for every y′ allows us to attain Wσ with

an enforceable strategy profile that remains in Br,Sσ(W) until the next state transition,

and so on. Because Poisson processes have only countably many jumps, repeating this

concatenation argument countably many times yields solutions that remain in Br,S(W)

forever. The proof in Appendix B additionally deals with some measurability issues of

the concatenation. We obtain the following algorithm to approximate E(r).

Proposition 4.9. Let W0 = (W0,y)y∈Y be the family of payoff sets with W0,y = V∗ for ev-

ery y ∈ Y. Define the sequence (Wn)n≥0 iteratively via Wn = Br(Wn−1) for n ≥ 1. Then

(Wn,y)n≥0 is decreasing in the set-inclusion sense for every y ∈ Y with
⋂

n≥0Wn,y = Ey(r).

This is an extension of the algorithm in Abreu, Pearce, and Stacchetti [1] to continuous-

time stochastic games. We will show in the next section that the boundary of the resulting

set in each step of the iteration admits a characterization by a differential equation. This

is possible because in each step, the restriction on the use of abrupt information is fixed.

Contrary to the algorithm in Hölder, Sugaya, Takahashi, and Vieille [14], our algorithm

does not require players to be arbitrarily patient. As a consequence, the algorithm is

applicable to wider class of games that violate Assumption A in [14] that the limit equi-

librium payoff set is independent of the initial state. Their assumption A is typically
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encountered in the form of irreducibility of the state process. However, there are other

sufficient conditions; see Dutta [7].

Remark 4.3. Such an approximation of the equilibrium payoff set via a notion of relaxed

self-generating payoff sets was used also in Bernard [4] to approximate the equilibrium

payoff set in continuous-time repeated games with discontinuous information arrival.

Since there is only one state in a repeated game, a “state transition” simply corresponds

to a discontinuous signal about past play. The repeated-game operator B̃r requires that

continuation values after every discontinuous signal come from the same payoff set, but

is otherwise identical to Br. This similarity will help us greatly in the construction of

Br(W) for an arbitrary family of payoff sets W in Section 6.

5 Stationary Markov and Semi-Stationary Equilibria

In a semi-stationary equilibrium, the public signal is not used to provide incentives be-

cause the public signal does not affect future play. Therefore, incentives have to be tied to

state changes, i.e., inequalities (6) have to be satisfied for β = 0. Since the time between

two state changes is exponentially distributed, it may take an arbitrarily long time for a

state change to occur. A solution to (5) with β = 0 is thus either locally constant (if the

drift rate is 0) or it diverges with positive probability (if the drift rate is not 0). Because

ES(r) is bounded, the continuation value in a semi-stationary equilibrium must be locally

constant. One could thus define a notion of self-generation similarly to Definition 4.5,

requiring that any payoff be attainable by a locally constant enforceable solution to (5).

We state the following equivalent condition in terms of primitives.

Definition 5.1. A family W = (Wy)y∈Y of payoff sets is mutually stationary if for every

y ∈ Y and every w ∈ Wy, there exists a ∈ A(y) and δ such that (0, δ) enforces a with

w = g(y, a) + δλ(y, a), and w + rδ(y′) ∈ Wy′ for every y′ with (y, y′) ∈ Z(a).

Similarly to Lemma 4.6, we obtain the following characterization of ES(r).

Lemma 5.2. The family of semi-stationary equilibrium payoffs ES(r) is the largest bounded

family of mutually stationary payoff sets.

Mutual stationarity is the analogue to self-generation for semi-stationary PPE. The

set ES(r) can be approximated with a similar localized construction, where we impose

that the continuation value after a state change comes from a fixed family of payoff sets.

Definition 5.3. Fix a family W = (Wy)y∈Y of payoff sets.

(i) We say that a family X = (Xy)y∈Y of payoff sets is W-stationary if for each y ∈ Y
and each w ∈ Xy, there exist a ∈ A(y) and δ ∈ R|Y| such that (0, δ) enforces a in

state y, w = g(y, a)+δλ(y, a), and w+rδ(y′) ∈ Wy′ for every y′ with (y, y′) ∈ Z(a).

(ii) Let Sr(W) =
(
Sr,y(W)

)
y∈Y denote the largest family of W-stationary payoff sets.
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Observe that Sr,y(W) ⊆ Br,y(W) for any state y ∈ Y : any payoff pair w ∈ Sr,y(W)

can be attained by an enforceable solution to (5) that remains in w until the first state

transition occurs, at which point the continuation value jumps to WSσ . Therefore, the

singleton {w} is W-relaxed self-generating and hence contained in Br,y(W). Similarly to

Lemma 4.8 and Proposition 4.9, we obtain the analogue results for semi-stationary PPE.

Lemma 5.4. If Wy ⊆ Sr,y(W) for every state y, then Sr(W) is mutually stationary.

Proposition 5.5. Let W0 be as in Proposition 4.9 and let Wn := Sr(Wn−1) for any

n ≥ 1. Then (Wn,y)n≥0 is decreasing for every y ∈ Y with
⋂

n≥0Wn,y = ES
y (r).

As stated, the construction in Proposition 5.5 converges to the set of semi-stationary

equilibrium payoffs when players are not allowed to use public randomization. If, in each

step of the algorithm, we instead take the convex hull of Sr,y, then the resulting set is the

set of all semi-stationary PPE payoffs with the use of public randomization.

5.1 Characterization of Sr(W)

We begin by illustrating the computation of Sr,y(W) if y has at most one successor state.

If y has no successor state, then Sr,y(W) is simply the set of static Nash equilibrium

payoffs of stage game y. If y has exactly one successor state y′, then δi in (5) is one-

dimensional. Let Sr,y,a(W) denote the set of all stationary payoffs, for which there exists

δ0 such that (0, δ0) enforces a, w = g(y, a)+δ0λ(y, a), and w+rδ0 ∈ Wy′ . The stationarity

condition of a payoff w ∈ Sr,y,a(W) implies that w+ rδ0 = g(y, a)+ δ0λ(y, a)+ rδ0 ∈ Wy.

The set of all payoffs that can be reached from Sr,y,a(W) after a state transition is thus(
g(y, a) + Ψy(a)(λ(y, a) + r)

)
∩Wy′ , (7)

where Ψy(a) := {δ | (0, δ) enforces a in state y}. Note that (7) consists only of scalings,

translates, and intersections of closed, convex sets and is thus easily computed. In order

to get Sr,y,a(W), we simply shrink the set in (7) towards g(y, a) by a factor λ(y,a)
λ(y,a)+r

; see

Figure 4. Repeating this construction for all action profiles a ∈ A(y) yields Sr,y(W).

If a state y has more than one successor state, an a analogue construction is carried

out in the incentive space rather than in the payoff space. The condition that the con-

tinuation value after a transition to state y′ comes from the set Wy′ can be expressed as

g(y, a) + fy,y′(δ) ∈ Wy′ , where fy,y′(δ) = δ
(
λ(y, a)+ rey′

)
and ey′ is the unit vector in the

direction of state y′ among all successor states of y. This eliminates the variable w and

allows us to parametrize the set of stationary payoffs via incentives δ. Such incentives

have to come from Ψy(a) and they have to satisfy the jump condition for every y ∈ Y ,

i.e., the set of all such incentives is given by

Xy,a(W) := Ψy(a) ∩
⋂

y′:(y,y′)∈Z(a)

f−1
y,y′

(
Wy′ − g(y, a)

)
,
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w1

w2

g + (λ+ r)Ψg + (λ+ r)Ψ

V∗

g(y1, a)

Sr,y1,a(V∗)

w1

w2

Sr,y2(V∗)

Sr,y1(V∗)

Figure 4: In the regime-change example, mutual effort a = (P,A) can be enforced in state y1 by any δ
with δ2 ≤ 1.25 and δ1 ≥ −12. As illustrated in the left panel, the set Sr,y1,a(V∗) is given by shrinking
the set of (g + (λ+ r)Ψ) ∩ V∗ towards g. The right panel shows the family Sr(V∗).

where f−1
y,y′ denotes the inverse image under fy,y′ . It is now straightforward that

Sr,y(W) =
⋃
a∈A

(
g(y, a) + Xy,a(W)λ(y, a)

)
, (8)

where Xy,a(W)λ(y, a) := {v ∈ R2 | ∃ δ ∈ Xy,a(W) with δλ(y, a) = v} denotes the projec-

tion of Xy,a(W) onto R2 in the direction λ(y, a).

Note that Ψy(a) is a closed, convex polytope characterized by the affine inequalities

in (6). Consider first the case, where W is a family of polygons Wy with extremal points

vy,1, . . . , vy,ny and corresponding normal vectors Ny,1, . . . , Ny,ny . Then the set Xy,a(W) is

a convex polytope, characterized by the affine inequalities in (6) and

Ny′,j
⊤(δ(λ(y, a) + rey′)

)
≤ Ny′,j

⊤xy′,j, j = 1, . . . , ny′ , (y, y
′) ∈ Z(a).

One can thus compute extremal points of Xy,a(W)λ(y, a) by projecting the extremal

points of Xy,a(W) onto R2 in the direction λ(y, a). Alternatively, one can maximize

N⊤δλ(y, a) over δ ∈ Xy,a(W) for a sufficiently rich grid of normal vectors N . This is

efficient numerically because it maximizes a linear function under a set of affine constrains.

Since the projection of a polytope is a polygon,Mr,y(W) is a polygon again. In particular,

Wn in the approximating sequence of Proposition 5.5 is a family of polygons for every n.

However, it is not guaranteed that the limiting set ES(r) is also a polygon.

For general W , one can use inner and outer polygon approximations Wy and Wy of

Wy, respectively, as in Judd, Yeltekin, and Conklin [16] and then use the steps above.

5.2 Stationary Markov Equilibria

Stationary Markov equilibria are a special class of semi-stationary equilibria that depend

on the sequence of observed states only through the current state. For initial state y0,
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let Y(y0) denote the set of all states that can be reached from y0, including y0 itself. The

following is a verification result for whether or not a given map from states to action

profiles is a stationary Markov perfect equilibrium.

Proposition 5.6. A map a∗ : Y → A with a∗(y) ∈ A(y) for every y is a stationary

Markov perfect equilibrium for initial state y0 if and only if for every state y ∈ Y(y0),

every player i, and every ai ∈ Ai(y), we have

wi
∗(y) ≥ gi(y, (ai, a−i

∗ (y))) +
∑
y′∈Y

δi∗(y, y
′)λy,y′(a

i, a−i
∗ (y)), (9)

where we denote by Λy0(a∗) the matrix with entries λy,y′(a∗(y)) in row y′ and column y

for (y, y′) ∈ Y(y0)
2, by Gy0(a∗) and w∗ the matrices with entries gi(y, a∗(y)) and wi

∗(y),

respectively, in row i and column corresponding to y ∈ Y(y0), by 1 the |Y(y0)|-dimensional

row vector containing all ones, and

w∗ := rGy0(a∗)
(
diag (r1+ 1Λy0(a∗))− Λy0(a∗)

)−1
, δ∗(y, y

′) :=
w∗(y

′)− w∗(y)

r
. (10)

Moreover, W (a∗(S−)) = w∗(S), where S is the state process starting in y0.

It is worth noting that for a fixed map a∗ from states to action profiles, w∗ and δ∗ are

given explicitly by the respective expressions in (10). A naive algorithm is thus to verify

the conditions of all such maps a∗ since we restrict attention to pure-strategy equilibria

in this paper. While this comes at almost no loss of generality for continuous-time PPE,

it is a significant restriction for stationary Markov equilibria; see also Footnote 4.

6 Characterization of Br(W)

In Section 4, we motivated the construction of equilibrium profiles as enforceable solutions

to (5). Due to the iterative procedure in Proposition 4.9, it is sufficient to construct such

solutions up until the first state transition if we additionally impose that continuation

values after a state transition come from a fixed family of payoff sets. This local con-

struction of strategy profiles can be viewed as equilibria of an auxiliary game that ends

at the time of a state transition with terminal payoffs from W = (Wy)y∈Y . A “state tran-

sition” in the auxiliary game does not really correspond a transition of states but simply

to a discrete signal about past play that ends the game. The auxiliary game with initial

state y ∈ Y is thus a repeated game with expected flow payoff rate gy(a) := g(y, a), drift

rate µy(a) := µ(y, a) of the public Brownian signal, and intensities λy(y
′ | a) := λy,y′(a)

of the discrete signals. The equilibrium payoff set of the auxiliary game is Br,y(W).

The fact that this local construction is the same as in a continuous-time repeated

game with public signal (X,S) means that we can characterize Br,y(W) for a fixed state y
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directly with the techniques from continuous-time repeated games; see also Remark 4.3.

The construction of local incentives is thus identical to those in in Bernard [4], hence

this section follows [4] rather closely.

We have already seen in the previous section that the family ofW-stationary payoffs is

contained in Br(W) and how one can characterize stationary payoffs. In a non-stationary

payoff, the public signal as well as the history of the state process may be used to provide

intertemporal incentives. Incentives at the boundary of Br,y(W) must satisfy an analogue

to informational restrictions (I1)–(I3), described in the following definition.

Definition 6.1. For a payoff pair w ∈ R2, a direction N ∈ S1, and a family W of payoff

sets, we say that a continuation promise (β, δ) from the set

Ξy,a(w,N,W) :=

(β, δ)

∣∣∣∣∣∣ (β, δ) enforces a in state y,N⊤(g(y, a) + δλ(y, a)− w
)
≥ 0,

N⊤β = 0, and w + rδ(y′) ∈ Wy′ for all y
′ with (y, y′)∈Z(a).


restricted-enforces a in state y. An action profile a ∈ A is restricted-enforceable for

(w,N,W) in state y if the set Ξy,a(w,N,W) is non-empty.

We will distinguish between payoff pairs on the boundary, where the public signal is

needed and where it is not needed to provide intertemporal incentives. Due to informa-

tional restriction (I1), necessity of the public signal at a boundary point depends not only

on the location of the payoff pair but also on the direction of the outward normal vector.

Definition 6.2. Denote by Ψy,a(w,W) the set of all δ such that (0, δ) enforces a in state y

with w + rδ(y′) ∈ Wy′ for all successor states y
′ of y. Define

Γy(W) :=

(w,N) ∈ R2 × S1

∣∣∣∣∣∣ There exist a ∈ A and δ ∈ Ψy,a(w,W)

with N⊤(g(y, a) + δλ(y, a)− w
)
≥ 0

.

For any convex set X and any w ∈ ∂X , let Nw(X ) denote the set of outward normal

vectors to X at w. Denote by NX := {(w,N) | w ∈ ∂X and N ∈ Nw(X )} the outward

normal bundle of X . With slight abuse of terminology, we will refer to the boundary of

Br,y(W) within Γy(W) when referring to boundary points w ∈ ∂Br,y(W), for which there

exists an outward normal vector N with (w,N) ∈ Γy(W).

6.1 Characterization of ∂Br,y(W) outside of Γy(W)

Consider, for a moment, that an enforceable solution W to (5) for initial state y ∈ Y re-

mains on a continuously differentiable curve C before any state transitions occur.11 Then

11A curve C is continuously differentiable if it has a unique normal vector Nw (up to orientation of the
curve) at every point w ∈ C such that the Gauss map w 7→ Nw is continuous.
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g(y, At) + δtλ(y, At)
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rβt

(
dZt − µ(y, At) dt

)
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2
κy(w)∥βt∥2 dt

Figure 5: The infinitesimally quick oscillation in the continuation value due to unbounded variation of
value transfers causes the continuation value to drift away from the curve in orthogonal direction.

the public signal must be used to provide incentives via tangential value transfers as illus-

trated in Figure 5. Due to unbounded variation of Brownian motion, players transfer value

very rapidly. The infinitesimally quick tangential oscillation created by those transfers

causes the continuation value to drift away from the curve in orthogonal direction, similar

in spirit to the centrifugal force in physics. The larger the curvature is, the stronger is

the outward drift created by the tangential transfers. The magnitude of the outward drift

is given by Itō’s formula and it is equal to r2

2
κy(w)∥βt∥2. For the continuation value to

stay on the curve, the outward drift has to be offset precisely by the inward drift, hence

r2

2
κy(w)∥βt∥2 = rNw

⊤(g(y, At) + δtλ(y, At)− w
)
.

To complete the argument, it is necessary that whenever the continuation value revisits

the same point on the curve, the tangential transfers induce the same curvature. This is

the case when the chosen action profiles and the provided continuation promise are Marko-

vian in the continuation value. This discussion is summarized in the following lemma.

Lemma 6.3. Fix a state y ∈ Y and suppose that Assumptions 1–2 hold. Let C be a

continuously differentiable curve oriented by the Gauss map w 7→ Nw such that:

(i) There exist measurable selectors a∗, δ∗, and β∗ on C such that the selections sat-

isfy β∗(w) ̸= 0 and
(
β∗(w), δ∗(w)

)
∈ Ξy,a∗(w)

(
w,Nw,W) for any w ∈ C and the

curvature at any point w ∈ C is given by

κy(w) =
2Nw

⊤(g(y, a∗(w))+ δ∗(w)λ
(
y, a∗(w)

)
− w

)
r∥β∗(w)∥2

. (11)

(ii) C is a closed curve or both of its endpoints are contained in Br,y(W).

Then C ⊆ Br,y(W) and the solution W to (5) with M ≡ 0, A = a∗(W−), δ = δ∗(W−), and

β = β∗(W−) remains on C until an endpoint of C is reached or a state transition occurs.

The curvature of ∂Br,y(W) outside of Γy(W) arises from (11) by taking the maximum

over all restricted-enforceable action profiles and their continuation promises.
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Figure 6: If a solution C to (12) starting at (w,Nw) falls into the interior of Br,y(W), then a solution
C′ with initial conditions (w,N ′) for a slight rotation N ′ of Nw would leave and re-enter Br,y(W).
Lemma 6.3 then implies that w′ ∈ Br,y(W), which is a contradiction.

Lemma 6.4. Suppose that Assumptions 1–2 hold. Outside of Γy(W), the boundary

∂Br,y(W) is continuously differentiable with curvature at almost every point w given by

κy(w) = max
a∈A

max
(β,δ)∈Ξy,a(w,Nw,W)

2Nw
⊤(g(y, a) + δλ(y, a)− w

)
r∥β∥2

. (12)

Suppose that a solution C to (12) starting at (w,Nw) falls into the interior of Br,y(W),

then a solution C ′ with initial conditions (w,N ′) for a slight rotation N ′ of Nw would

leave and re-enter Br,y(W); see Figure 6. That is, it would attain a payoff pair w′ strictly

outside of Br,y(W). But Lemma 6.3 implies that w′ ∈ Br,y(W), which is a contradiction.

Note that this argument requires continuity of solutions to (12) in initial conditions. On

the other hand, a solution C to (12) cannot escape Br,y(W) either because C maximizes the

curvature over all restricted-enforceable action profiles and their incentives. Any other

enforceable strategy profile that is played has to involve non-tangential value transfers,

which causes the continuation value to grow arbitrarily large with positive probability.

Continuity of the solution C ′ in initial conditions (w,N ′) in this argument requires

that κy is locally Lipschitz continuous in (w,N). One can show that for a fixed action

profile, the right-hand side of (12) is locally Lipschitz continuous at (w,N) in the in-

terior of the effective domain {(w,N) | Ξy,a(w,N,W) ̸= ∅} of Ξa,y. The expression for

the curvature may thus fail to be Lipschitz continuous only where the maximizing action

profile in (12) fails to be restricted-enforceable within a small neighborhood. Assump-

tions 1 and 2 guarantee that the maximizing action profile is restricted-enforceable for

small perturbations in w and N .

6.2 Characterization of ∂Br,y(W) within Γy(W)

In some situations, the players receive sufficient information to provide incentives by

observing the state process alone. Incentives are provided through lump rewards and

punishments when a state transition does occur, as well as incremental punishments

and rewards—typically in the opposite direction—for the lack of such state transitions.

The provision of lump rewards/punishments upon a state transition is similar to the

decomposition of payoffs in discrete time, hence we shall adopt the same terminology.
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Figure 7: The left panel illustrates that it is not possible that both conditions of Lemma 6.6 hold
simultaneously at (w,N) ∈ Γy(W). The right panel illustrates the construction of Kr,y1,a(V∗) in the
contestable democracy game for a = (M, I). Extremal points in Kr,y1,a(V∗) or offset from extremal
points in V∗ precisely by the minimal jump size rδ∗.

Definition 6.5. Consider w ∈ ∂Br,y(W) and a set of action profiles Aw ⊆ A(y).

(i) Aw decomposes w if for anyN ∈Nw

(
Br,y(W)

)
, there exist a∈Aw and δ∈Ψy,a(w,W)

with N⊤(g(y, a) + δλ(y, a)− w
)
≥ 0. Such w is said to be decomposable.

(ii) Aw strictly decomposes w if Aw decomposes w and for each N ∈ extNw

(
Br,y(W)

)
,

there exist a ∈ Aw and δ ∈ Ψy,a(w,W) with N⊤(g(y, a) + δλ(y, a)− w
)
> 0.

(iii) Aw minimally decomposes w if Aw decomposes w and no proper subset of Aw

decomposes w.

Referring back to the definition of Ξy,a in Definition 6.1, we note that the defining

characteristics of a decomposable payoff pair are the following: incentives are provided

through state changes only, the drift rate points towards the interior of Br,y(W), and the

continuation payoff after a state transition to state y′ is in Wy′ . The following lemma

establishes that at most one of these defining conditions holds strictly.

Lemma 6.6. For any (w,N) ∈ NBr,y(W)∩Γy(W), it is impossible that there exist a ∈ A(y)

and δ ∈ Ψy,a(w,W) such that both of the following conditions hold:

(i) (0, δ) strictly enforces a in state y,

(ii) N⊤(g(y, a) + δλ(y, a)− w
)
> 0.

The idea is that if such (w,N, a, δ) existed, then Conditions (i) and (ii) could be

satisfied at any w′ in a sufficiently small neighborhood of w. For a sufficiently small

perturbation of incentives, it would then be possible to attain w′ outside of Br,y(W) with

a locally enforceable strategy profile, that reaches Br,y(W)—or Wy′ after a transition to

state y′—with certainty. But then w′ must lie in Br,y(W), a contradiction.

Lemma 6.6 tells us that there are two kinds of boundary payoffs in Γy(W). On the

one hand, there are boundary payoffs that are not strictly decomposable, hence (w,N)

has to satisfy the abrupt-information optimality equation

N⊤w = max
a∈A

max
δ∈Ψy,a(w,W)

N⊤(g(y, a) + δλ(y, a)
)
. (13)
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Note that (13) is in some sense the limiting ODE of (12) as (w,N) approaches Γy(r,W),

corresponding to the case where both numerator and denominator of (12) are 0. Only for

a solution to (13), does the expression for the curvature in (12) not explode for (w,N) in

Γy(r,W). On the other hand, there are strictly decomposable boundary payoffs, at which

incentives for at least one player have to be binding with extremal rewards/punishments

in Wy′ for at least one successor state y
′. Such a payoff pair thus lies on the boundary of

Kr,y,a(W) := {w | ∃ δ ∈ Ψy,a(w,W)}.

The boundary of the set Kr,y,a(W) consists of translates of ∂Wy′ for successor states y
′

by the extremal punishments/rewards necessary to enforce a. This can be visualized

particularly easily when there is a single type of events as we do in Figure 7 for the

regime-change example of Section 3.

The implication of Lemma 6.6 is particularly pungent for the decomposition of cor-

ners of Br,y(W), i.e., boundary points with more than one outward normal vector. Con-

dition (ii) can be violated for all outward normal vectors only if w = g(y, a) + δλ(y, a),

i.e., if w is stationary. Thus, corners of Br,y(W) are either stationary or in the set

Kr,y(W) :=
⋃

a∈A ∂Kr,y,a(W). This discussion is formalized in the following proposition.

Proposition 6.7. Consider (w,N) ∈ NBr,y(W) ∩ Γy(W) with non-stationary w. Then

exactly one of the following conditions holds:

(i) There exists a set Aw ⊆ A(y) that strictly and minimally decomposes w such that

w ∈ ∂Kr,y,a(W) for each a ∈ Aw and

Nw

(
Br,y(W)

)
⊆ Nw

(
Kr,y,Aw(W)

)
, (14)

where we denote Kr,y,Aw(W) :=
⋂

a∈Aw
Kr,y,a(W).

(ii) (w,N) satisfies (13) and either of the following conditions hold:

(a) w is in the interior of Kr,y,a∗(W) and Nw

(
Br,y(W)

)
= {N},

(b) w is decomposed by a∗ and w ∈ ∂Kr,y,a∗(W),

where a∗ is the action profile attaining the maximum in (13).

Proposition 6.7 implies that within Γy(W), the boundary of Br,y(W) can have three

kinds of continuously differentiable or smooth line segments and three kinds of corners.

Consider a smooth segment C ⊆ ∂Br,y(W) with NC ⊆ Γy(W). Since the outward normal

vector is unique, w must be minimally decomposable by a single action profile a. If a

strictly decomposes w, then we are in case (i) and C must be contained in ∂Kr,y,a(W). If no

action profile strictly decomposes w, then the drift rate of any enforceable strategy profile
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Figure 8: The set Br,y1(V∗) of relaxed-generating payoff sets in the regime-change example after one
step of the algorithm in Proposition 4.9. In this example, the boundary is a differentiable solution to (12)
or (13) outside of Sr,y1

(V∗). In general, it could have corners in Kr,y1
(V∗).

attaining w must be parallel to the boundary. According to Proposition 6.7, C is thus

either stationary or a solution to (13) with tangential drift as in case (ii.a). Similarly, if a

corner w is strictly decomposable by Aw, then w is a corner of Kr,y,Aw(W) satisfying (14).

Note that contrary to smooth line segments, corners are not necessarily decomposable

by a single action profile. If w is not strictly decomposable, then it is either stationary

or the starting point of a continuously differentiable solution to (13) as in case (ii.b).

6.3 PPE Payoff Set

Lemmas 6.4 and 6.7 motivate the following result, characterizing the family of payoff sets

in each step of the algorithm in Proposition 4.9. Figure 8 illustrates the family of sets

Br(V∗) after one step of the algorithm in the regime-change example in Section 3.

Theorem 6.8. Let W be a family of convex and compact payoff sets. Then Br,y(W) is

the largest closed convex subset X of V∗ that contains Sr,y(W) such that:

(i) Outside of Sr,y(W) ∪ Kr,y(W), the boundary ∂X is continuously differentiable and

(w,Nw) ∈ NX solves (13) within Γy(W) and (12) outside of Γy(W),

(ii) Every corner w ∈ ∂X is either stationary, minimally decomposable by a maximizer

a∗ of (13) for (w,N) with N ∈ extNw(X ) and w ∈ ∂Kr,y,a∗(W), or minimally and

strictly decomposable by some Aw ⊆ A(y) with Nw(X ) ⊆ Nw

(
Kr,y,Aw(W)

)
.

Since Br preserves compactness due to Theorem 6.8, it follows from Proposition 4.9

that E(r) is compact. An application of Theorem 6.8 for W = E(r) thus provides a fixed-

point characterization of E(r) since Br

(
E(r)

)
= E(r). We refer to Section 8 in Bernard [4]

for notes on the implementation of Theorem 6.8.
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Figure 9: Communicating classes of a stochastic game form a directed acyclic graph.

Compared to repeated games, the proof of Theorem 6.8 has to deal with a more

complex mathematical foundation of the model and additional arguments to show that

the relevant differential equations are locally Lipschitz continuous. After establishing

these, however, the construction of local incentives along the differential equations (12)

and (13) are identical to Bernard [4] and, hence, omitted in this paper.

7 Computation

In the terminology of Markov processes, a set of states Y0 ⊆ Y is a communicating

class if each state within Y0 can be reached from any other state in Y0 with positive

probability (either directly or indirectly). Computation of the family of equilibrium

payoff sets proceeds by communicating classes.

Communicating classes of a Markov process can be organized in a directed acyclic

graph as illustrated in Figure 9.12 A communicating class Y0 is a direct predecessor class

of Y1, denoted Y0 ≺ Y1, if some state in Y1 can be reached directly from some state in Y0.

If Y0 ≺ Y1, we also say that Y1 is a direct successor class of Y0. Consider a communi-

cating class Ye without direct successor class, that is, a class at the end of the directed

graph. Since no states outside of Ye can ever be reached, the subfamily
(
Ey(r)

)
y∈Ye

of

equilibrium payoff sets can be computed from the algorithm in Proposition 4.9 without

considering states in Yc
e . This is particularly simple if Ye = {ye} is a singleton, that is,

ye is an absorbing state. The continuation game is then just a repeated game and hence

Eye(r) can be computed with Theorem 2 in Sannikov [29] if all enforceable action profiles

are pairwise identifiable or with Theorem 6.8 in Bernard [4] otherwise. One can then

proceed backwards in the directed graph: consider a communicating class Y ′, for which

all subfamilies of equilibrium payoff sets of direct successor classes Ye1 , . . . ,Yen have been

computed already. In the computation of
(
Ey(r)

)
y∈Y ′ , incentives from state transitions

to states in YE :=
⋃n

k=1 Yek do not need to computed iteratively as in Proposition 4.9,

but only incentives via state transitions within the communicating class Y ′ have to be

accounted for in an iterative fashion. This becomes again particularly simple if Y ′ = {y′}
is a singleton. Then Ey′(r) = Br,y′

(
(Ey(r))y∈YE

)
can be solved in a single application of

Theorem 6.8 rather than an iterated application.

12Indeed, if there was a cycle of communicating classes, then every state within the cycle could be
reached from any other state in the cycle, hence the union of all communicating classes in the cycle forms
a single communicating class.
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8 Conclusion

Based on recent developments in continuous-time repeated games, this paper provides a

unifying framework for the analysis of stochastic games with imperfect public monitoring

in a continuous-time setting. The methodology is not limited to irreducible games or

absorbing games and it is applicable to any stochastic game, as long as the public signal

satisfies Assumptions 1 and 2. The paper characterizes the set of all PPE payoffs, the

set of all stationary Markov payoffs, as well as the payoffs of a notion of semi-stationary

PPE that are simple to compute, yet not as limiting as stationary Markov equilibria.

The analysis relies on an iterative procedure over state transitions, allowing us to draw

from the techniques of continuous-time repeated games in each step of the iteration. This

is possible because we consider stochastic games with finitely many states and, hence,

the state is constant almost everywhere. The techniques in the present paper cannot be

extended in a straightforward manner to stochastic games with a continuum of states.

Such an extension provides an interesting direction for future research.
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A Mathematical Foundation

A mathematical foundation for the model in Section 2 can be provided as follows. Let Z
denote the set of ordered pairs (y, y′) of states, where λy,y′(a) > 0 for some action profile

a ∈ A(y). Let (Ω,F , P ) be a probability space containing a Brownian motion Z and a

Poisson process Jy,y′ with intensity 1 for each (y, y′) ∈ Z such that (Jy,y′)(y,y′)∈Z and Z

are mutually independent. The state process S is then defined by

S0 = y0, St :=

 St− if ∆J
St−,y
t = 0 for all y with (St−, y) ∈ Z,

y if ∆J
St−,y
t = 1,

(15)

i.e., S is a piecewise constant stochastic process that jumps to y at time t if and only

if ∆J
St−,y
t = 1. When we require existence of a state process S with certain properties

in Section 2, the mathematically precise statement is to require existence of independent

Poisson processes (Jy,y′)(y,y′)∈Z such that the induced process S has the desired properties.

The family QA =
(
QA

t

)
t≥0

of probability measures is defined via its density process

dQA
t

dP
:= exp

(∫ t

0

µ(Ss, As) dZs −
∫ t

0

(
1

2
|µ(Ss, As)|2 +

∑
(Ss−,y)∈Z(As−)

λSs−,y(As−)− 1

)
ds

)
∏

0<s≤t
(Ss−,y)∈Z(As−)

(
1 + (λSs−,y(As−)− 1)∆JSs−,y

s

)
. (16)

Formally, the filtration F contains the filtration generated by Z and (Jy,y′)(y,y′)∈Z , and

not just the filtration generated by Z and S so that the density process is adapted to

F. Note that the instantaneous intensities of the processes Jy,y′ are equal to 1 under

QA, where S ̸= y so that players learn nothing from these processes. A mathematical

foundation based on processes (Jy,y′)(y,y′)∈Z ensures that each QA
t is absolutely continuous

with respect to some reference measure P . It follows from Girsanov’s theorem (e.g.,

Theorem III.3.11 in Jacod and Shiryaev [15]) that the public signal under QA indeed takes

the form (1) and that state transitions occur with instantaneous intensities λSt−,y(At).
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A.1 Continuation Value of PPE

The proofs in this appendix are adaptations of the proofs in Bernard [4] to the setting

of stochastic games. Because the public signal and the state process generate the same

information as the public signal in Bernard [4], those adaptations are minor.

Proof of Lemma 4.1. Fix a strategy profile A first and observe that W := W (S,A) is

bounded as it remains in V at all times. Fix a player i and a time T > 0, and de-

fine the bounded FT -measurable random variable wi
T := W i

T − r
∫ T

0

(
W i

t − gi(St, At)
)
dt.

Because (Jy,y′)(y,y′)∈Z are pairwise orthogonal and orthogonal to Z, the stable sub-

space generated by Z and (Jy,y′)(y,y′)∈Z is the space of all stochastic integrals with re-

spect to these processes by Theorem IV.36 in Protter [28]. Therefore, we obtain the

unique martingale representation property for a square-integrable martingale by Corol-

lary 1 to Theorem IV.37 in [28]. That is, for a bounded FT -measurable random vari-

able wi
T , there exist an F0-measurable ciT , predictable and square-integrable processes(

βi
t,T

)
0≤t≤T

and
(
δit,T (y, y

′)
)
0≤t≤T

for (y, y′) ∈ Z with δit,T (y, y
′) = 0 for (y, y′) ̸∈ Z(A),

EQA
T

[∫ T

0

∣∣βi
t,T

∣∣2 dt] < ∞ and EQA
T

[∫ T

0

∣∣δit,T (y, y′)∣∣2λy,y′

t dt
]
< ∞ for all (y, y′) ∈ Z and a

QA
T -martingale M i orthogonal to Z and (Jy,y′)(y,y′)∈Z with M i

0 = 0 such that

wi
T = ciT + r

∫ T

0

βi
t,T (dZt − µ(St, At) dt) +

∑
(y,y′)∈Z

r

∫ T

0

δit,T (y, y
′)(dJy,y′

t − λy,y′

t dt) +M i
T,T .

To prove that (5) holds, we need to show that ciT , β
i
t,T , δ

i
t,T (y, y

′) and M i
t,T do not depend

on T . It follows from (2) and Fubini’s theorem that

wi
T = W i

T + r

∫ T

0

gi(St, At) dt− r

∫ ∞

0

∫ s∧T

0

re−r(s−t)EQA
s

[
gi(Ss, As)

∣∣ Ft

]
dt ds. (17)

Let T̃ ≤ T and take conditional expectations on FT̃ under QA
T of (17) to deduce that

EQA
T

[
wi

T

∣∣FT̃

]
− wi

T̃
= EQA

T

[
W i

T

∣∣FT̃

]
−W i

T̃
+ r

∫ T

T̃

EQA
t

[
gi(St, At)

∣∣FT̃

]
dt

− r

∫ ∞

T̃

∫ s∧T

T̃

re−r(s−t)EQA
s

[
gi(Ss, As)

∣∣FT̃

]
dt ds

= EQA
T

[
W i

T

∣∣FT̃

]
−W i

T̃
−
∫ ∞

T

re−r(s−T )EQA
s

[
gi(Ss, As)

∣∣FT̃

]
ds

+

∫ ∞

T̃

re−r(s−T̃ )EQA
s

[
gi(Ss, As)

∣∣FT̃

]
ds

= 0.
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Taking T̃ = 0, this shows that ciT = W i
0 does not depend on T . It also implies

wi
T̃
=W i

0 + r

∫ T̃

0

βi
t,T

(
dZt − µ(St, At) dt

)
+

∑
(y,y′)∈Z

r

∫ T̃

0

δit,T (y, y
′)
(
dJy,y′

t − λy,y′

t dt
)
+M i

T̃ ,T
,

which yields βi
· ,T = βi

· ,T̃ and δi· ,T (y, y
′) = δi· ,T̃ (y, y

′) for every (y, y′) ∈ Z a.e. on [0, T̃ ]

and M i
T̃ ,T

= M i
T̃ ,T̃

a.s. by the uniqueness of the orthogonal decomposition. Taking Ft-

conditional expectations, we deduce M i
t,T̃

= M i
t,T a.s. for t ∈ [0, T̃ ], proving that the

integral representation is independent of T . We thus omit the subscript T and T̃ of the

constructed processes βi,
(
δi(y, y′)

)
(y,y′)∈Z , and M i. To arrive at (5), we set

M̃ i = M i +
∑

(y,y′)∈Z

r

∫ ·

0

δit(y, y
′)1{St− ̸=y}

(
dJy,y′

t − 1 dt
)

and δi(y) := δi(S−, y)1{(S−,y)∈Z} for any y ∈ Y . Because M i is orthogonal of Z and

(Jy,y′)(y,y′)∈Z , and the processes Jy,y′ are independent of each other and of Z, it follows

that M̃ i is a martingale orthogonal to Z and to Jy =
∑

0<s≤t ∆J
Ss−,y
t for every y ∈ Y .

Since the processes δi(y, y′) are square-integrable by construction, so is δi(y). Moreover,

δi(y) is predictable because δi(y, y′) and S− are. By construction,

M̃ i +
∑
y∈Y

r

∫ ·

0

δi(y)
(
dJy

t − λSt−,y(At) dt
)
= M i +

∑
(y,y′)∈Z

r

∫ T̃

0

δit,T (y, y
′)
(
dJy,y′

t − λy,y′

t dt
)
,

hence W satisfies (5) for processes βi,
(
δi(y)

)
y∈Y , and M̃ i.

To show the converse, we derive from Itō’s formula that

d(e−rtW i
t ) = −re−rtgi(St, At) dt+ re−rtβi

t

(
dZt − µ(St, At) dt

)
+ re−rt

∑
y∈Y

δit(y)
(
dJy

t − λSt−,y(At) dt
)
+ e−rt dM i

t . (18)

Since M i is strongly orthogonal to Z and (Jy)y∈Y , it is also strongly orthogonal to the

density process given in (16). Therefore, M i is a martingale also under QA. Integrating

(18) from t to T and taking QA
T -conditional expectations on Ft thus yields

W i
t =

∫ T

t

re−r(s−t)EQA
s

[
gi(Ss, As)

∣∣ Ft

]
ds+ e−r(T−t)EQA

T

[
W i

T

∣∣Ft

]
.

Since W is bounded, the second summand converges to zero a.s. as T tends to ∞, hence

W i
t is indeed i’s continuation value under strategy profile A in St.

Proof of Lemma 4.3. Fix a strategy profile A and let Ã be a strategy profile involving a
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unilateral deviation of some player i, that is, Ã−i = A−i a.e. For (β, δ) related to W (S,A)

by (5), integrating (18) from t to u yields

W i
t (St, A) = −

∫ u

t

e−r(s−t)
(
βi
s

(
dZs − µ(Ss, As) ds

)
− gi(Ss, As) ds− dM i

s

)
−

∑
y∈Y

∫ u

t

e−r(s−t)δis(y)
(
dJy

s − λSs−,y(As) ds
)
+ e−r(u−t)W i

u(Su, A).

Note that the term e−r(u−t)W i
u(Su, A) vanishes as we let u → ∞ because W (S,A) remains

in the bounded set V . Since M is a martingale up to time u also under QÃ
u , taking

conditional expectations yields

W i
t

(
St, Ã

)
= lim

u→∞
EQÃ

u

[∫ u

t

re−r(s−t)gi
(
Ss, Ãs

)
ds

∣∣∣∣Ft

]

= W i
t (St, A) + lim

u→∞
EQÃ

u

[∫ u

t

re−r(s−t)
((

gi
(
Ss, Ãs

)
− gi(Ss, As)

)
ds

+ βi
s

(
dZs − µ(Ss, As) ds

)
+
∑
y∈Y

δis(y)
(
dJy

s − λSs−,y(As) ds
))∣∣∣∣Ft

]
a.s.

Note here that the state process S is the same process under strategy profile A and

Ã, but it has a different distribution under QA
u and QÃ

u . Because β is constructed us-

ing a martingale representation result for the bounded random variable wi
T in (17), the

process
∫ ·
t
re−r(s−t)βi

s

(
dZs − µ(Ss, As) ds

)
is a bounded mean oscillation (BMO) mar-

tingale under the probability measure QA
u up to any time u > t. It follows from Theo-

rem 3.6 in Kazamaki [19] that
∫ ·
t
re−r(s−t)βi

s

(
dZs−µ(Ss, Ãs) ds

)
is a martingale underQÃ

u .

Since W (A) lies in V P ⊗ Lebsgue-a.e., it follows from Lemma 4.1 that ∥δ(y)∥ ≤ |V |/r
P ⊗ Lebsgue-a.e. In particular, each δ(y) is uniformly bounded P -a.s. and hence also

QÃ
u -a.s. for any u > t. The lemma after Theorem IV.29 in Protter [28] thus implies

that
∫ ·
t
re−r(s−t)δis(y)

(
dJy

s − λSs−,y(Ãs) ds
)
is a QÃ

u up to any time u > t. Together with

Fubini’s theorem, this implies

W i
t

(
St, Ã

)
−W i

t (St, A) =

∫ ∞

t

e−r(s−t)EQÃ
s

[
gi
(
Ss, Ãs

)
− gi(Ss, As) + βi

s

(
µ
(
Ss, Ãs

)
(19)

− µ(Ss, As)
)
+ δis

(
λ
(
Ss, Ãs

)
− λ(Ss, As)

) ∣∣∣Ft

]
ds a.s.

If (β, δ) enforces A in state S, the above conditional expectation is non-positive, hence A

is a PPE. To show the converse, assume towards a contradiction that there exist a player i
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and a set Ξ ⊆ Ω× [0,∞) with P ⊗Lebesgue(Ξ) > 0, such that for some strategy Âi

gi
(
S, Â

)
− gi(S,A) + βi

(
µ
(
S, Â

)
− µ(S,A)

)
+ δi

(
λ
(
S, Â

)
− λ(S,A)

)
> 0

on the set Ξ, where we denoted Â =
(
Âi, A−i

)
for the sake of brevity. Because β and δ

are predictable, we can and do choose Ξ predictable as well. Thus, Ãi := Âi1Ξ +Ai1Ξc is

predictable and, in particular, a strategy for player i. For Ã =
(
Ãi, A−i

)
, the expectation

in (19) is strictly positive for t = 0, which is a contradiction.

A.2 Self-Generation

The main idea behind the proof of stochastic self generation in Proposition 4.6 is the

following: Any payoff in E(r) can be attained by an enforceable solution W to (5) by

Lemma 4.3. Thus, for any stopping time τ , Wτ is trivially attained by an enforceable

solution to (5). We would then like to conclude that, by virtue of Lemma 4.3, Wτ must lie

in ESτ (r). This last conclusion, however, is subject to some subtle measurability issues.

Without restrictions on β and δ, solutions to (5) are weak solutions, that is, the public

signal Z, the Poisson processes (Jy,y′)(y,y′)∈Z , and the probability space are part of the

solution. Thus, the equivalence in Lemma 4.3 can be stated as

Ey0(r) =

w ∈ V

∣∣∣∣∣∣∣∣∣
There exists a stochastic framework (Ω,F ,F, P, Z, (Jy,y′)(y,y′)∈Z)

containing a solution (W,A, β, δ,M) to (5) for S defined in (15)

such that W0 = w P -a.s. and (β, δ) enforces A in state S.

,

In general, the probability space may thus depend on the payoff that is being attained.

To conclude that the random variable Wτ is in ESτ (r), we construct a regular conditional

probability that allows us to aggregate the different probability spaces. This is possible

because the probability spaces for different realizations of Wτ share the same path space.

Lemma A.1. For an F0-measurable random variable W ∗ in a stochastic framework(
Ω,F ,F, P, Z, (Jy,y′)(y,y′)∈Z

)
the following are equivalent:

(a) W ∗ ∈ Ey0(r) P -a.s.,

(b) There exist a solution (W,A, β, δ,M) to (5) in the given stochastic framework for

S defined in (15) such that W0 = W ∗ P -a.s. and (β, δ) enforces A in state S.

Proof. Let first W ∗ ∈ Ey0(r) a.s. for initial state y0 ∈ Y . Although a PPE may exist on

different probability spaces in (a) for each realization W ∗ = w, the path space in each

w for the strategy profile A and its stochastic framework is given by A[0,∞) ×Dd+|Z|,

where Dd+|Z| is the space of càdlàg functions from [0,∞) into Rd+|Z|. By Theorem A.2.2

in Kallenberg [17], there exists a metric on Dd+|Z| that induces the Skorohod topology,
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under which Dd+|Z| is complete and separable. Since A[0,∞) is compact by Tychonoff’s

theorem (see Theorem 37.3 in Munkres [25]), it follows that Ω = V × A[0,∞) × Dd+|Z| is

complete and separable. Thus, by Theorem V.3.19 in Karatzas and Shreve [18], there

exists a regular conditional probability (w,F ) 7→ Pw(F ) for (w,F ) ∈ V × F , that is,

(i) for each w ∈ V , Pw is a probability measure on (Ω,F),

(ii) for each F ∈ F , the mapping w 7→ Pw(F ) is Borel(V)-measurable,

(iii) Pw(F ) = P(F |W ∗ = w) for each F ∈ F and ν-a.e. w ∈ V , where ν is the distribu-

tion of W ∗.

By Lemma 4.3, for each w ∈ Ey0(r) there exists a solution (Ww, Aw, βw, δw,Mw) to (5) for

Sw defined from the stochastic framework and Aw via (15) with Ww
0 = w and (βw, δw) en-

forcing Aw in Sw. Define the processes (W,A, β, δ,M) pointwise as (Ww, Aw, βw, δw,Mw)

on {W ∗ = w} for each w ∈ V . Let Ξ denote the set on which (W,A, β, δ,M) satisfies (5)

such that W0 = W ∗ and (β, δ) enforces A in state S. It follows from the properties of a

regular conditional probability that

P(Ξ) =

∫
Ey0 (r)

P(Ξ |W ∗ = w) dν(w) = 1.

To show the converse, let (W,A, β, δ,M) be a solution to (5) for S defined in (5) such that

W0 = W ∗ a.s. and (β, δ) enforces A in S. Suppose that W ∗ ̸∈ Ey0(r) on an F0-measurable

set Ξ with ν(Ξ) > 0. For each w ̸∈ Ey0(r), there exists a player with a profitable deviation

and hence, by Lemma 4.3, there exists a set Ξ̃(w) with positive Pw-measure, on which

(β, δ) does not enforce A in state S. We thus obtain a contradiction via

P((β, δ) enforces A) ≤ ν
(
Ey0(r)

)
+

∫
Ey0 (r)

c
Pw((β, δ) enforces A) dν(w) < 1.

Proof of Lemma 4.6. Consider any family (Wy)y∈Y of bounded stochastic self-genera-

ting sets. For any state y ∈ Y , any payoff pair w ∈ Wy can be attained by an enforceable

solution to (5) with initial state y. It follows that w ∈ Ey(r) by Lemma 4.3, i.e., any

family of self-generating sets is contained in E(r). Since Ey(r) ⊆ V is bounded for each

y ∈ Y , it remains to show that E(r) is self-generating. Take w ∈ Ey(r) so that Lemma 4.1

yields the existence of a stochastic framework
(
Ω,F ,F, P, Z, (Jy,y′)(y,y′)∈Z

)
and a solution

(W,A, β, δ,M) to (5) for S defined in (5) such that W0 = w a.s. and (β, δ) enforces A

in state S. We now fix a stopping time τ and show that Wτ ∈ ESτ (r) a.s. To do so, we

set W ∗ = Wτ , F̃t = Fτ+t, Z̃t = Zτ+t − Zτ , J̃
y,y′

t := Jy,y′

τ+t − Jy,y′
τ for every (y, y′) ∈ Z,

M̃t = Mτ+t −Mτ , W̃t = Wτ+t, β̃t = βτ+t, δ̃t = δτ+t, Ãt = Aτ+t, and S̃t = Sτ+t. Because

the tilde-processes and -filtrations satisfy condition (b) in Lemma A.1 for W ∗ = Wτ , we

obtain by the equivalence in Lemma A.1 that Wτ = W ∗ ∈ ES̃0
(r) = ESτ (r) a.s.

33



B Concatenations of Solutions and Convergence of Algorithm

In this appendix we prove the convergence of the algorithm in Proposition 4.9 to E(r).
We first show that Br(W) is monotone in W .

Lemma B.1. Let Wy ⊆ W ′
y for every y ∈ Y. Then Br,y(W) ⊆ Br,y(W ′) for every y ∈ Y.

Proof. Fix any state y ∈ Y and any payoff pair w ∈ Br,y(W). By definition, there

exists a solution (W,A, β, δ,M) to (5) for S defined in (15) with initial state y such

that W0 = w a.s., Wσ ∈ WSσ a.s., and on J0, σ)), (β, δ) enforces A in state y and

W ∈ Br,y(W).13 Since this implies that also Wσ ∈ W ′
Sσ

a.s., it follows that Br(W) is W ′-

relaxed self-generating. In particular, Br,y(W) ⊆ Br,y(W ′) by maximality of Br(W ′).

For the proof of Lemma 4.8 it will be necessary to concatenate enforceable solutions

to (5) at transition times of the state process. Concatenating enforceable solutions to (5)

will be an essential tool also in the proofs of our other results. For ease of later use, we

state the concatenation procedure in a separate lemma.

Lemma B.2. Fix a family W = (Wy)y∈Y of payoff sets. Consider a stochastic frame-

work
(
Ω,F ,F, P, Z, (Jy,y′)(y,y′)∈Z

)
containing a solution (W,A, β, δ,M) to (5) for S de-

fined in (15). Fix an F-stopping time τ ≤ σ P -a.s., where σ is the time of the first

state transition. Let σ̂ denote the first state transition strictly after τ . Suppose that

(β, δ) enforces A in state S0 on J0, τ)) and Wτ ∈ Br,Sτ (W). Then there exists a solution

(Ŵ , Â, β̂, δ̂, M̂) to (5) on the same stochastic framework such that (Ŵ , Â, β̂, δ̂, M̂) coin-

cides with (W,A, β, δ,M) on J0, τ)), (β, δ) enforces A in state S on J0, σ̂)), W ∈ Br,Yτ (W)

on Jτ, σ̂)) and Wσ̂ ∈ WSσ̂
P -a.s.

Concatenating solutions requires an analogous result to Lemma A.1 for a family of

relaxed self-generating payoff sets. The proof works analogously and is omitted.

Lemma B.3. For an F0-measurable random variable W ∗ in a stochastic framework(
Ω,F ,F, P, Z, (Jy,y′)(y,y′)∈Z

)
the following are equivalent:

(a) W ∗ ∈ Br,y0(W) P -a.s.,

(b) There exist a solution (W,A, β, δ,M) to (5) in the given stochastic framework for

S defined in (15) such that W0 = W ∗ P -a.s., Wσ ∈ WSσ P -a.s., and on J0, σ)),
continuation promise (β, δ) enforces A in state S0 and W ∈ Br,y0(W).

13For two stopping times σ and τ , the set Jσ, τ)) := {(ω, t) ∈ Ω× [0,∞) | σ(ω) ≤ t < τ(ω)} is called
the (left-closed, right-open) stochastic interval from σ to τ . Closed, open, and left-open, right-closed
stochastic intervals are defined analogously.
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Proof of Lemma B.2. Fix a stochastic framework,
(
Ω,F ,F, P, Z, (Jy,y′)(y,y′)∈Z

)
, a solu-

tion (W,A, β, δ,M) to (5), and stopping times, τ , σ, and σ̂. Define the processes

Z̃ := Z ·+τ − Zτ , J̃y,y′ := Jy,y′

·+τ − Jy,y′

τ , for every (y, y′) ∈ Z

and the filtration F̃ :=
(
F̃t

)
t≥0

defined by F̃t := Ft+τ . Because Brownian motion

and Poisson processes have independent and identically distributed increments, Z̃ is

an F̃-Brownian motion and J̃y,y′ for any (y, y′) ∈ Z is an F̃-Poisson process. There-

fore, (Ω,F , F̃, P, Z̃, (J̃y,y′)(y,y′)∈Z) is a stochastic framework with Wτ ∈ F̃0. Since Wτ ∈
Br,Sτ (W) by assumption, the equivalence in Lemma B.3 implies the existence of a solu-

tion
(
W̃ , Ã, β̃, δ̃, M̃

)
to (5) on the stochastic framework (Ω,F , F̃, P, Z̃, (J̃y,y′)y,y′∈Z) such

that W̃0 = Wτ P -a.s., W̃σ̃ ∈ W P -a.s., and on J0, σ̃)), (β̃, δ̃) enforces Ã in state S̃0 and

W̃ ∈ Br(W), where σ̃ is the time of the first state transition of S̃ defined by (15) from

processes (J̃y,y′)y,y′∈Z with initial state Sτ . We define the concatenated processes Ŵ , Â,

β̂, δ̂, M̂ , and Ŝ by setting

W ′ = W1J0,τ)) + W̃ · −τ1Jτ,∞))

and similarly for Â, β̂, δ̂, M̂ , and Ŝ. The concatenation (Ŵ , Â, β̂, δ̂, M̂) is a solution

to (5) in the concatenated stochastic framework defined by

Ẑ = Z1J0,τ)) + (Z̃ + Zτ )1Jτ,∞)), Ĵy,y′ = Jy,y′1J0,τ)) + (J̃y,y′ + Jy,y′

τ )1Jτ,∞)).

Observe that Ẑ = Z and Ĵy,y′ = Jy,y′ for all events (y, y′) ∈ Z, hence the concatenated

stochastic framework is identical to the original framework. Thus,
(
Ŵ , Â, β̂, δ̂, M̂

)
is a

solution to (5) in (Ω,F ,F, P, Z, (Jy,y′)(y,y′)∈Z). Since τ + σ̃ = σ̂, it follows that (β̂, δ̂)

enforces Â in state Ŝ on J0, σ̂)). Moreover, Ŵ is contained in Br,Sτ (W) on the stochastic

interval Jτ, σ̂)) on which Ŵ coincides with W̃ . Finally, Ŵσ̂ = W̃σ̃ ∈ WS̃σ̃
= WSσ̂

P -a.s.

Proof of Lemma 4.8. We first show that Wy ⊆ Br,y(W) implies that Br(W) is self-

generating. To that end, fix any state y ∈ Y and any payoff pair w ∈ Br,y(W). By

definition of Br,y(W), there exists a solution (W,A, β, δ,M) to (5) on a stochastic frame-

work (Ω,F ,F, P, Z, (Jy,y′)(y,y′)∈Z) such that W0 = w P -a.s., Wσ ∈ WSσ P -a.s., and on

J0, σ)), we have W ∈ Br,y(W) and (β, δ) enforcing A for state process S defined by (15).

Let σn denote the time of the nth state transition. Since Wσ ∈ WSσ ⊆ Br,Sσ(W), we

can apply Lemma B.2 to τ = σ to obtain a solution
(
Ŵ , Â, β̂, δ̂, M̂

)
to (5) on the same

stochastic framework such that Ŵ0 = w P -a.s., Ŵσ2 ∈ WSσ2
P -a.s., and on J0, σ2)), (β̂, δ̂)

enforces Â in state S and Ŵ ∈ Br,S(W). With an iteration of this concatenation proce-

dure, we can construct solutions to (5) on J0, σn)) that remains in Br,S(W) up until σn

for any n. Because Poisson processes have only countably many jumps, an iteration of
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this procedure constructs an enforceable solution to (5) that remains in Br(W) forever,

showing that Br(W) is self-generating.

For the converse, suppose that W = (Wy)y∈Y is self-generating. By definition, for any

state y ∈ Y and any w ∈ Wy, there exists an enforceable solution W to (5) that is in

WS a.e. In particular, Wσ ∈ WSσ a.s. It follows that Wy ⊆ Br,y(W) by maximality of

Br,y(W). Since the state was arbitrary the result follows.

Proof of Proposition 4.9. Lemma 4.8 implies that Ey(r) ⊆ Br,y

(
E(r)

)
for every state y ∈ Y

and that Br

(
E(r)

)
is self-generating. Since E(r) is the largest family of bounded self-

generating sets, it follows that Br,y

(
E(r)

)
⊆ Ey(r) for every y ∈ Y and hence Br

(
E(r)

)
=

E(r). Next, we show that Br,y(V∗) ⊆ V∗ for every y ∈ Y , i.e., each player i attains

at least vi in Br,y(V∗). Suppose towards a contradiction that this is not the case, i.e.,

there exists w ∈ Br,y(V∗) with wi < vi for some i. Since w ∈ Br,y(V∗), there exists

a solution (W,A, β, δ,M) to (5) on a stochastic framework (Ω,F ,F, P, Z, (Jy,y′)(y,y′)∈Z)

with W0 = w a.s., Wσ ∈ V∗ a.s., such that on J0, σ)), we have W ∈ Br,y(V∗) and (β, δ)

enforces A in state y. By Lemma 4.1, we can write

wi =

∫ σ

0

re−rsEQA
s

[
gi(Ss, As)

]
ds+ e−rσEQA

σ

[
W i

σ

]
. (20)

Since wi < vi but W i
σ ≥ vi a.s., it follows that the first term in (20) is smaller than

(1 − e−rσ)vi. Define now the strategy Ãi = argmaxai∈Ai(y) g
i(y, · , A−i)1J0,σ)) + Ai1Jσ,∞)).

Because Ãi is i’s myopic best reply to A−i on J0, σ)), it follows that gi(y, Ãi, A−i) ≥ vi on

that same stochastic interval. We deduce that∫ σ

0

re−rsE
QÃi,A−i

s

[
gi(Ss, Ã

i
s, A

−i
s )

]
ds ≥ (1− e−rσ)vi >

∫ σ

0

re−rsEQA
s

[
gi(Ss, As)

]
ds.

This contradicts the fact that (β, δ) enforces A in state y on J0, σ)).14 We have thus

shown that W1,y = Br,y(V∗) ⊆ V∗ = W0,y for every y ∈ Y . Since Ey(r) ⊆ W0,y for every

y ∈ Y , monotonicity of Br implies that Ey(r) ⊆ W1,y ⊆ W0,y. An iterated application of

Lemma B.1 thus shows that (Wn,y)n≥0 is decreasing in the set-inclusion sense and that it

is bounded from below by Ey(r) for any y ∈ Y . Those sequences must converge to a limit

W∞ with W∞,y ⊇ Ey(r) for every y ∈ Y such that W∞,y = Br,y(W∞). The limit W∞ is

thus self-generating and hence W∞ = E(r) by Lemma 4.8.

C Stationary Markov and Semi-Stationary Equilibria

We begin with the proofs of the results characterizing semi-stationary PPE.

Proof of Lemma 5.2. We first show that any payoff pair in a family W of bounded mutu-

14This follows along the same lines as the proof of Lemma 4.3 by restricting attention to J0, σ)).
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ally stationary payoff sets can be attained by a semi-stationary PPE. Fix initial state y0

and w0 ∈ Wy0 . By definition of mutual stationarity, there exist a0 ∈ A(y0) and δ0 such

that (0, δ0) enforces a0, w0 = g(y0, a0) + δ0λ(y0, a0), and w0 + rδ0(y) ∈ Wy for every suc-

cessor state y of y0. A solution to (5) for A ≡ a0, β ≡ 0, δ ≡ δ0, and M ≡ 0 starting at w0

thus remains in w0 until the first time σ1, when a state transition occurs. It follows from

the choice of δ0 that Wσ1 ∈ WSσ1
. Note that w0, δ0, and a0 can be viewed as a function

from the initial state. Therefore, Wσ1 is fully determined by w0, δ0, and the state Sσ, that

is,Wσ is a function of (y0, Sσ1). SinceWσ1 ∈ WSσ1
, by definition of mutual stationarity, we

can decompose Wσ1 by a1 and δ1, which are functions of Wσ1 , hence functions of (y0, Sσ1).

We can thus get an enforceable solution to (5) on Jσ1, σ2)) that remains inWσ1 until σ2 and

jumps to Wσ2 at time σ2. Similarly to the proof of Lemma B.2, we can concatenate the

solutions at state transitions. Since there are countably many state transitions, a concate-

nation will yield an enforceable solution to (5) on [0,∞), which is a PPE by Lemma 4.3.

Moreover, it is semi-stationary because ak is a function of (y0, Sσ1 , . . . , Sσk
).

Since the union of two families of mutually stationary payoff sets is again mutually sta-

tionary, this shows that ES(r) contains the largest bounded family of mutually stationary

payoff sets. Thus, it remains to show that ES(r) is mutually stationary.

Fix an initial state y0 and a payoff pair w0 ∈ ES
y0
(r). Let A be a semi-stationary

PPE attaining w0 for initial state y0, corresponding to selector a∗. Let τ be a stopping

with τ ≤ σ1 a.s. It follows along the same lines as in the proof of Lemma 5.6 that

Wτ (A) = w0. Since τ was arbitrary, W is locally constant on J0, σ)). Lemma 4.1 thus

implies that β ≡ 0, M ≡ 0, and δ ≡ δ0 for some δ0 such that

w0 = g(y, a∗(y0)) +
∑

y′∈Y(y0)

δ0(y
′)λy0,y′(a∗(y0)). (21)

Semi-stationarity implies that also the continuation profile after the first state transition

is semi-stationary and hence Wσ1 ∈ ES
y (r) on the event {Sσ1 = y} for all states y, for

which {Sσ1 = y} has positive measure, i.e., for all y such that (y0, y) ∈ Z. The SDE

representation of the continuation value implies that Wσ1 −w0 = rδ0(y) on {Sσ1 = y} for

all successor states y of y0 and hence w0 + rδ0(y) ∈ ES
y (r). Finally, since A is a PPE,

Lemma 4.3 implies that (0, δ0) enforces a∗(y0).

Proof of Lemma 5.4. Since Sr(W) isW-stationary, for each y ∈ Y and each w ∈ Sr,y(W),

there exist a ∈ A(y) and δ such that (0, δ) enforces a in state y, w = g(y, a) + δλ(y, a),

and w + rδ(y′) ∈ Wy′ for every (y, y′) ∈ Z. If Wy′ ⊆ Sr,y′(W) for every (y, y′) ∈ Z, then

Sr(W) is also Sr(W)-stationary and hence mutually stationary.

Proof of Proposition 5.5. This proof mimics the proof of Proposition 4.9. We first note

that Sr is monotone by definition, that is, Sr,y(W) ⊆ Sr,y′(W ′) for any two families W ,W ′

of payoff sets with Wy ⊆ W ′
y for every state y. Note that Sr,y(W) ⊆ Br,y(W) ⊆ V∗ for
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any family W of feasible payoff sets, hence W1,y ⊆ W0,y. Since ES
y (r) ⊆ V∗, monotonicity

of Sr,y implies that ES
y (r) ⊆ W1,y ⊆ W0,y = V∗ for every state y. An iterated application

of Sr thus yields a family of payoff sets that is decreasing in the set-inclusion sense.

Each member of the family must thus converge to a limit set W∞,y =
⋂

n≥0Wn,y such

that W∞,y ⊇ ES
y (r). Since Sr(W∞) = W∞, Lemma 5.4 implies that W∞ is mutually

stationary and hence W∞ = ES(r).

Finally, we prove the characterization of stationary Markov equilibria in Proposi-

tion 5.6.

Proof of Proposition 5.6. Suppose first that PPE A = a∗(S−) is a stationary Markov

perfect equilibrium for initial state y0. For any state y ∈ Y(y0), let S
y denote the state

process defined in (15) with initial state y and set wy := W0(y, a∗(S
y
−)). Fix an arbitrary

stopping time τ and define the processes Jτ,y,y′ := Jy,y′

·+τ − Jy,y′
τ for every (y, y′) ∈ Z. Let

Sτ be defined as in (15) from processes (Jτ,y,y′)y,y′∈Z with initial state Sτ . Since J
y,y′ is a

Lévy process for every (y, y′) ∈ Z, the process Jτ,y,y′ is identically distributed as Jy,y′ . In

particular, on {Sτ = y}, the process S̃ is identically distributed as Sy. This implies that

Ã := A·+τ− = a∗(S·+τ−) = a∗(S̃−) =
∑

y∈Y(y0)

a∗(S̃−)1{Sτ=y}
d
=

∑
y∈Y(y0)

a∗(S
y
−)1{Sτ=y}

and hence

Wτ (A) = W0(a∗(S̃))
d
=

∑
y∈Y(y0)

W0(a∗(S
y
−))1{Sτ=y} =

∑
y∈Y(y0)

wy1{Sτ=y}.

Since τ was arbitrary, this shows that W (A) = w∗(S), where w∗(y) = wy for every

y ∈ Y(y0). In particular, W (A) is locally constant where S is constant. Together with

Lemma 4.1, this implies that β = 0, M = 0, and δ(y′) = δ∗(S−, y
′) for every y′ such that

w∗(y) = g(y, a∗(y)) +
∑

y′∈Y(y0)

δ∗(y, y
′)λy,y′(a∗(y)) (22)

for every state y ∈ Y(y0). Moreover, since W has to jump from w∗(y) to w∗(y
′) when

a state transition from y to y′ occurs, it follows that δ∗(y, y
′) = 1

r

(
w∗(y

′) − w∗(y)
)
for

every (y, y′) ∈ Y(y0)
2. Substituting the expression for δ∗(y, y

′) into (22) and solving for

the vector w∗ yields (10). Note here that

B = diag (r1+ 1Λy0(a∗))− Λy0(a∗)

is indeed invertible since dividing each row y′ by r+Λy0(a∗)ey′ turns B into the identity

matrix minus a strictly substochastic matrix. Finally, Lemma 4.3 implies (9).
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Suppose that the converse holds, i.e., there exists a∗ : Y → A with a∗(y) ∈ A(y)

such that for w∗ and δ∗ defined in (10) for states Y(y0), inequalities (9) hold. Let S be

the state process starting in initial state y0. Let W be a solution to (5) for A = a∗(S−),

β ≡ 0, δ = δ∗(S−), and M ≡ 0, starting in initial state w∗(y0). Since (10) is equivalent

to (22), it follows that W is locally constant unless a state change from y to y′ occurs,

at which point there is a jump of size w(y′) − w(y) in W and hence W = w∗(S). Due

to (9), (β, δ) enforces A and hence Lemma 4.3 implies that A is a PPE.

D Characterization of Br(W)

Since the state is locally constant for enforceable solutions to (5) attaining payoffs in

Br(W), the characterization of Br,y(W) for a fixed state y is very similar to the case of

repeated games with signal (S,X). There are two differences. First, the set Br,y(W) is

not necessarily contained within conv g(y,A(y)) because continuation payoffs partially

come from conv g(y′,A(y′)) for successor states y′ of y. Second, for repeated games,

the approximation in algorithm in Proposition 4.9 leads to a decreasing sequence of

payoff sets, each satisfying Br(W) ⊆ W . In stochastic games, incentives related to state

transitions may not come from a superset of Br,y(W): while Br,y(W) ⊆ Wy is still true for

the approximating sequence in Proposition 4.9, jump incentives come from the sets Wy′

for successor states y′ of y. These two differences affect local Lipschitz continuity of (12),

which we shall prove here. Once we have local Lipschitz continuity, the remainder of the

proof works analogously as in Bernard [4] and we omit it here.

For the proof, we need a slightly more general version of the optimality equation. For

a convex set X and any h ≥ 0, let Xh := {v ∈ R2 | minw∈X ∥v − w∥ ≤ h} denote the set

of all payoff pairs within distance h from X . Call a family L = (Ly)y∈Y of set-valued

maps Ly : R2 ⇒ R2×|Y | a Lipschitz expansion of W = (Wy)y∈Y if

Ly(w) =
{
δ ∈ R2×|Y | ∣∣ w + rδ(y′) ∈ Wy′, h(w) for all y

′ with (y, y′) ∈ Z
}

for a non-negative Lipschitz-continuous function h : R2 → R. Observe that each Ly

is Lipschitz continuous in the sense of set-valued maps. We denote by L0 the trivial

Lipschitz expansion with h ≡ 0. Let Ψy,a(w,N,L) denote the set of all δ ∈ Ly(w), for

which there exists β with N⊤β = 0 such that (β, δ) enforces a. Denote by

Ey,a(L) :=
{
(w,N) ∈ R2 × S1

∣∣ Ψy,a(w,N,L) ̸= ∅
}

the effective domain of of (w,N) 7→ Ψy,a(w,N,L). For any N and any δ ∈ Ψy,a(w,N, δ),

let Φy,a(N, δ) denote the set of all ϕ ∈ Rd, for which (Tϕ, δ) enforces a, where T is the

clockwise orthogonal vector to N . Let ϕy(a,N, δ) denote the shortest vector in Φy,a(N, δ).

We can now write (12) in the following form, for which we prove local Lipschitz continuity.
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Lemma D.1. Suppose that Assumptions 1 and 2 are satisfied. Then

κy,L(w,N) := max
a∈A(y)

max
δ∈Ψy,a(w,N,L)

2Nw
⊤(g(y, a) + δλ(y, a)− w

)
r∥ϕy(a,N, δ)∥2

∨ 0 (23)

is locally Lipschitz continuous outside of Γy(L) =
⋃

a∈A(y) Γy,a(L), where

Γy,a(L) := {(w,N) | there exists δ ∈ Ly(w) with (0, δ) enforces a}.

The basic idea behind the proof of Lemma D.1 is to show that the right-hand side

of (23) is locally Lipschitz continuous for fixed a on Ey,a(L)\Γy,a(L). Then κy,L is locally

Lipschitz continuous except at
⋃

a∈A(y) ∂Ey,a(L). The first lemma shows that ∂Ey,a(L) is
contained in R2 × {±e1,±e2} for any a ∈ A(y).

Lemma D.2. Suppose that Assumption 1 is satisfied. For any Lipschitz expansion L,
any state y, and any a ∈ A(y), we have R2 × (S1 \ {±e1,±e2}) ⊆ Ey,a(L). Moreover,

(w,N) 7→ Ψy,a(w,N,L) is locally Lipschitz continuous on R2 × (S1 \ {±e1,±e2}).

Proof. Fix any W , y, a, w ∈ R2, and any non-coordinate N . Choose any δ in Ly(w).

Since M i(a) has individual full rank by Assumption 1, there exists βi that solves (6) for

player i with equality. Since a is pairwise identifiable by Assumption 1, it follows from

Lemma 2 in Sannikov [29] applied to payoff function g̃(y, a) = g(y, a)+δλ(y, a) that there

exists β′ with N⊤β′ = 0 such that (β′, δ) enforces a. In particular, Ψy,a(w,N,L) ̸= ∅ and

hence (w,N) ∈ Ey,a(L). Moreover, this construction shows that Ψy,a(w,N,L) = Ly(w)

for non-coordinate N , which is locally Lipschitz continuous.

Proof of Lemma D.1. Let Gi
y(a) denote the row vector with entries gi(y, ãi, a−i)−gi(y, a)

and let Λi
y(a) denote the matrix with column vectors λ(y, ãi, a−i) − λ(y, a). For non-

coordinate N , Φy,a(N, δ) is the set of all ϕ that satisfy ϕM i
y(a) ≤ − 1

T i

(
Gi

y(a) + δiΛi
y(a)

)
for i = 1, 2. Since M i

y(a) does not depend on N or δ and the right-hand side is locally

Lipschitz continuous in N, δ, the set Φy,a(N, δ) is a constant-rank polyhedron with locally

Lipschitz continuous right-hand side. It follows from the main result of Yen [32] that the

projection of 0 onto Φa(N, δ) is locally Lipschitz continuous in (N, δ). In particular,

ϕy(a,N, δ) is locally Lipschitz continuous in (N, δ) for non-coordinate N .

Consider now a coordinate direction N = ±ei. Then any β with N⊤β cannot provide

any incentives to player i, hence any δ ∈ Ψy,a(w,N,L) must satisfy Gi
y(a) + δiΛi

y(a) ≤ 0.

Denote by Φ−i
y,a(δ) the set of all ϕ that satisfy ϕM−i

y (a) ≤ −
(
Gi

y(a) + δ−iΛ−i
y (a)

)
. As

above, the shortest vector ϕ−i
y (a, δ) in Φ−i

y,a(δ) is locally Lipschitz continuous in δ as the

projection of 0 onto Φ−i
y,a(δ). The shortest vector in Φy,a(N, δ) = 1

T 1Φ
1
y,a(δ) ∩ 1

T 2Φ
2
y,a(δ)

is thus at least as long as 1
T−iϕ

−i
y (a, δ). Since spanM i

y(a) is orthogonal to spanM−i
y (a)

it follows that 1
T−iϕ

−i
y (a, δ)M i

y(a) = 0, hence ϕy(a,N, δ) = 1
T−iϕ

−i
y (a, δ), which is locally

Lipschitz continuous in a neighborhood of (N, δ).
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Since Γy(W) is closed, for any (w,N) ̸∈ Γy(W), there exists a neighborhood on which

∥ϕy(a,N, δ)∥ is bounded away from 0. For non-coordinate N , it follows from Lemma D.2

that κy,L(w,N) is locally Lipschitz continuous as the maximum of a locally Lipschitz

continuous function over a locally Lipschitz continuous set; see Lemma B.2 in Bernard [4].

For (w,N) with coordinate N , fix any action profile a with Ψy,a(w,N,L) = ∅. This means

that there exists no δ ∈ L(w) with 0 ∈ Φi
y,a(δ). Since Φ

iy, a(δ) is closed, this implies that

0 is bounded away from Φi
y,a(δ), hence

∥∥ϕy(a, Ñ , δ)
∥∥ converges to ∞ as Ñ converges to

N because it is the shortest vector in Φy,a(Ñ , δ) = 1
T̃ 1Φ

1
y,a(δ) ∩ 1

T̃ 2Φ
2
y,a(δ). Let Ay(w,N)

denote the action profiles a ∈ A(y), for which

κy,a,L(w,N) := max
δ∈Ψy,a(w,N,L)

2Nw
⊤(g(y, a) + δλ(y, a)− w

)
r∥ϕy(a,N, δ)∥2

∨ 0

is strictly positive. Then κy,a,L(w
′, N ′) > 0 for (w′, N ′) in a neighborhood of (w,N)

and hence κy,L(w
′, N ′) = maxa∈Ay(w′,N ′) κy,a,L(w,N) in a neighborhood of (w,N). In

particular, κy,L is locally Lipschitz continuous at (w,N).
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