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Abstract

In a workhorse model of legislative bargaining with spatial preferences, I establish

easy to compute bounds on all equilibrium acceptable agreements, proposals, and out-

comes. The approach constitutes a feasible method to incorporate equilibrium restric-

tions from the model in correlational and structural empirical studies of legislatures,

avoiding the computation of actual equilibria. It also yields a number of theoretical

insights on the centrality of equilibrium legislative decisions, the relation of such equi-

librium outcomes with social choice solution sets, and the effect of changes on voting

and proposal-making rights. These theoretical results highlight the broad conclusion

that the proper functioning of democratic institutions is highly contingent on other

institutional features besides the assignment of voting rights.
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What policies do legislatures, parliaments, or committees adopt when deciding over

a continuum of alternatives? How do these policy outcomes change as the voting rule,

rules for the origination of proposals, and other features of the legislative environment vary?

Even the first of these questions has no obvious answer. Plott (1967) convincingly showed

that a natural candidate set of collective outcomes, the core, exists only under knife-edge

conditions in simple majority-rule settings when the policy space comprises more than one

dimensions. Richard McKelvey and Norman Schofield (McKelvey (1976, 1979); Schofield

(1978)) subsequently showed that in the generic case when such knife-edge conditions are

not met, intransitivity of majority preferences afflicts the committee in the most egregious

manner, encompassing the entire policy space. These findings posed both a theoretical

and a practical challenge for the study of policy-making in committees. On the theoretical

side, they forcefully introduced the possibility that preference aggregation in legislatures

may generate outcomes that poorly reflect collective preferences and may be subject to

normatively unacceptable levels of manipulation by a minority of legislators with procedural

prerogatives (McKelvey (1979); Riker (1980)). On the applied side, they left researchers with

little guidance as to what to substitute for core policies when specifying likely legislative

policy outcomes. Several generalizations of the core were subsequently developed to address

the theoretical and practical gap in the literature.1

With the subsequent shift in the literature from a cooperative to a non-cooperative

game-theoretic approach, the workhorse model to address these questions has been the leg-

islative bargaining model of Baron and Ferejohn (1989). However, most applications using

this framework primarily operate in a divide-the-dollar setting (for example, see the recent

review by Eraslan and Evdokimov (2019)). Indeed, while the model can certainly accom-

modate more general spaces of political disagreement (Banks and Duggan (2000, 2006)),

1See Austen-Smith and Banks (1999) for a review.
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it is rarely analytically tractable with spatial preferences except in special environments.2

The goal of this study is to develop a computationally feasible method to delineate possible

outcomes in the legislative bargaining model with classic spatial preferences, thus providing

an inexpensive alternative to the computation of equilibrium for practitioners and, at the

same time, allowing a systematic theoretical exploration of the dependence of collective de-

cisions on the allocation of proposal and voting rights and other features of the legislative

environment.

I study committees that decide by general voting rules and bargaining protocols, and I

allow for large committees, including the possibility of a continuum of members or a separate

(possibly continuous) population of proposers. The model captures weighted majority quota

rules, multi-cameral legislatures, and veto and veto-override provisions as provided by the

US constitution and, in the typical application with finite committees, it encompasses all

non-empty, monotonic voting rules. Though some findings apply to a more general domain

of preferences, I assume negative quadratic Euclidean preferences, a form prevalent in the

literature both in applications of the model but also in empirical work to estimate legislator

preferences.

For any point y, I establish inner and outer spherical bounds centered at y on ac-

ceptable agreements such that no proposal outside the outer sphere can be approved in

any equilibrium, and all proposals within the (possibly empty) inner sphere pass (if pro-

posed) in every equilibrium (Theorem 2). Figure 1 illustrates. These a priori restrictions

on equilibrium outcomes are straightforward to compute, and can become sharper by com-

bining bounds with different center points y (Corollary 1). To illustrate this approach, I

present computations using US Congressional preference data from DW-nominate (Lewis

et al. (2021)) in section 4. In that setting involving 537 individual players, I compute and

combine bounds for a grid of 40,401 distinct points y in about 2.5 minutes and an average

2Primarily one-dimensional instances of the spatial model (e.g., Cardona and Ponsati

(2011); Cho and Duggan (2003); Herings and Predtetchinski (2010); Predtetchinski (2011))

or a small number of players in higher dimensions (e.g., Baron (1991)).
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Figure 1: Equilibrium bounds

y
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For all y, there exists a ball with radius B̄∗(y) that contains all acceptable agreements in
every equilibrium. An open ball with radius

¯
B∗(y) (possibly zero) contains agreements that

are acceptable in every equilibrium.

of 0.0034 seconds per y-specific computed bound.3 These numerical experiments underscore

the practical feasibility of the proposed approach. They also highlight how the predictions

of the model differ from static analyses of choice in these settings, and also exhibit some

substantively intriguing qualitative properties which invite additional study (due to space

limitations, I only briefly discuss these at the end of section 4).

By its make-up, the legislative model I study speaks to the possible decisions legis-

latures reach, the likely bills different actors pursue, and the likely coalitions that support

them. Therefore, the range of possible committee outcomes isolated by the approach pur-

sued in this paper can inform the analysis and interpretation of empirical evidence in a

variety of settings, and I briefly highlight a few presently. In experimental settings on spa-

tial committee decision-making originating in the work of Fiorina and Plott (1978), both

the preferences and the outcome of the committee interaction are observable, and the com-

puted bounds provide an alternative framework to interpret and evaluate such experimental

data, for example, along lines analogous to the work of Bianco et al. (2006). Computations

3These computations were performed on a 2017 2.3 GHz Intel Core i5 mac, with 2 cores

and 8GB of memory. I wrote the code in MATLAB and did not attempt elaborate vector-

ization or parallelization. The theory of comparative advantage suggests that an applied

analyst with computer expertise can significantly improve over that record.
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from US Congressional settings similar to those performed in section 4, where it is assumed

that individual preferences (but not necessarily the actual decisions) are observable, can in-

form theories of Congressional gridlock and/or be evaluated along with empirical measures

of legislative productivity as in, for example, Howell et al. (2000) and Clinton and Lapin-

ski (2006). Such an approach would capitalize on consistently stringing together successive

Congressional decisions predicted from the model to gauge the degree of shift in policy

over successive Congresses. Because the bounds developed in this paper restrict observables

across all equilibria through inequality restrictions, the more ambitious lines of empirical

application of the model could combine evidence from roll-call votes, bill sponsorship data,

and the content of legislative decisions (among others) in order to structurally estimate or set

identify model parameters without imposing ad hoc equilibrium selection arguments, along

the lines pursued in the burgeoning literature on structural estimation of partially identified

models (e.g., Tamer (2010) and Pakes et al. (2015)).

In the remainder of this introduction, I first briefly outline how the bounds are estab-

lished, then summarize the comparative statics questions they help address, and conclude

with a review of additional related literature. The analysis builds on two generalizations

of the median established in Kalandrakis (2019) and defined for every possible point y: A

y-centered P -ball (for pivotal) is a ball centered at y such that, for every equilibrium, if all of

its members approve some alternative in equilibrium, then some winning coalition approve

that alternative in equilibrium. A y-centered W -ball (for winning) is a (weakly smaller) ball

centered at y such that if some winning coalition approve some alternative in equilibrium,

then there exists some member of the y-centered W -ball that also approves it in equilibrium

(Lemma 1). When the radius of these generalized median balls is minimized over possible

centers y in a unicameral legislature with an odd number of committee members and simple

majority rule, these constructs coincide with the classic yolk (Ferejohn, McKelvey and Packel

(1984); McKelvey (1986)).

Using these generalized medians, I recover a structure of the set of agreements that

can pass in equilibrium (Lemma 2) comparing individual payoffs to possible lotteries over
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agreements induced in any equilibrium. That structure, in turn, allows me to bound the

maximum and minimum distance of optimal individual proposals from y as a function of

equilibrium-specific bounds centered at y (Lemma 3). These arguments yield inequations for

equilibrium-specific bounds and in a final step I rely once more on the generalized medians

to relax these inequalities so that they apply to bounds across equilibria (Theorem 1). The

resulting equilibrium bounds centered at any y depend indirectly on the voting rule through

the radii of the corresponding P - and W -balls, and directly on other model primitives such

as the status quo, discount factor, and the distribution of proposers.

I establish comparative statics on the equilibrium bounds with respect to the location

of the status quo, showing that they expand as it gets further away from the center of

the bounds (Theorem 6). In the discounted case, the inner and outer bound differ by a

fixed constant at the limit as the distance of the status quo from the center of the bounds

goes to infinity, implying that for bad enough status quo a unique equilibrium in pure

strategies prevails if the distribution of proposers has bounded support (Corollary 4). I

also study the effect of changes in the voting rule and show that more restrictive (proper)

voting rules, such as higher majority quota thresholds in one chamber or the addition of

a legislative chamber, have ambiguous effects on the outer bound though the inner bound

weakly contracts (Theorem 10). On the one hand, such changes tend to shrink the set

of agreements that can pass in any equilibrium. A counter-veiling force emerges, though,

because more stringent voting rules expand the set of core points (once the core is non-empty)

and may also expand the set of possible equilibria.

What do these bounds imply about the possible or likely location of equilibrium

outcomes? First, for any fixed instance of the model, the radius of the outer bound is finite

(Theorem 3), therefore social choice induced by the non-cooperative legislative bargaining

model cannot wander everywhere in the space of alternatives. This is so if the distribution

of proposers has finite second moments4 and in Appendix B I provide an example in which

that moment condition is violated and there exists an equilibrium with outcome support on

4This restriction is automatically met if the distribution of proposers has finite support.
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the entire real line. Furthermore, under the assumed moment restriction on the distribution

of proposers, finiteness of the bound also relies on the structure of the set of agreements that

can pass in equilibrium induced by quadratic preferences (Lemma 2) which disciplines the

distribution of optimal proposals (Lemma 3).

Second, I explore conditions for equilibrium outcomes to be at or near core points

(if they exist) or uncovered points (Fishburn (1977); Miller (1980)). I term these conditions

advocacy conditions, as they generally amount to the existence or prevalence of proposers that

advocate for such outcomes. The weaker of these advocacy conditions are generalizations of

conditions of Banks and Duggan (2000, 2006) for core equivalence (Theorem 4, part 2) and

require that a unique core is in the support of the distribution of proposers when legislators

are perfectly patient. In the general – discounted or not – case, Theorem 5 establishes a

lower bound on the probability equilibrium outcomes fall within an envelope containing the

uncovered set (or the core), where the bounding probability is equal to the probability of

proposers sufficiently close to the center of that envelope.

Thirdly, I show that the outer bound expands as the distribution of proposers piles

mass away from its center (Theorem 8, part 1). In the discounted case, I show that there

is a maximal bound that limits the effect of changes in the distribution of proposers for

any fixed discount factor. The radius of this maximal bound coincides with the distance of

the center of the bound from the status quo if the bound is centered at a core point, but

if the core is empty it increases with the discount factor and, contrary to the expectation

that equilibrium outcomes are confined in the center of the policy space, it encompasses

the entire policy space at the limit as the discount factor goes to one (Theorem 8, parts

2-3). Furthermore, if the core is empty, then for any arbitrary distance from any point y

and sufficiently patient legislators, there exists a distribution of proposers that guarantees

the bulk of equilibrium outcomes are farther than that distance (Theorem 8, part 4). In

the limit model with perfectly patient legislators, I show that if there exists a(n arbitrary)
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unique proposer,5 there exists an equilibrium in which that single proposer can pass her ideal

point with probability one if and only if there does not exist a legislator with absolute veto

who prefers the status quo more than the ideal point of the proposer (Theorem 9).

In sum, in the spatial legislative bargaining model there is a limit to the effect of

proposal rights on equilibrium outcomes for any fixed discount factor less than one and,

if the advocacy conditions of Theorems 4 or 5 are met, then this model may support the

core or its generalizations. But in the absence of a core, manipulation of the rights for the

origination of proposals can nullify these centrifugal tendencies as the legislators become

patient. Notably, patience does not deliver this result through complex history-dependent

equilibrium constructions, and the analysis throughout focuses on equilibria in stationary

strategies. These latter findings parallel and complement a number of recent studies on

the role of proposal rights in collective decision-making. In the divide-the-dollar setting,

Ali, Bernheim and Fan (2019) expand the set of recognition protocols to non-stationary

rules and study the role of predictability in allowing a proposer to extract the whole dollar.

Kalandrakis (2006) shows that even with stationary recognition protocols (as assumed in

this study) all possible equilibrium expected payoffs are attainable for some allocation of

proposal rights.

The reliance of the approach pursued in this paper on generalized medians and their

connection to the yolk directly links this work with an earlier wave of the literature on

collective decision-making motivated by the same broad questions that motivate this study.

The yolk first appears in the work of Ferejohn, McKelvey and Packel (1984) who study a

dynamic non-equilibrium process of agenda formation that induces a Markov process over

policy outcomes. McKelvey (1986) used the yolk in an incisive construction of an outer

bound for the uncovered set in the classic spatial model. McKelvey and several authors

5A number of papers focus on the special case of a unique proposer in a similar class of

bargaining models including Primo (2002) and Duggan and Ma (2018). Kalandrakis (2010),

Diermeier and Fong (2012), and Anesi and Duggan (2016) study the special case of a unique

proposer in sequential bargaining models with endogenous status quo.

8



established a connection between the uncovered set and Downsian electoral competition

(e.g., Banks, Duggan and LeBreton (2002); Dutta and Laslier (1999); McKelvey (1986)), or

certain legislative amendment procedures (McKelvey (1986); Shepsle and Weingast (1984)).

Gary Cox (Cox (1987)) generalized McKelvey’s conclusion on the central location of the

uncovered set to non-Euclidean preferences. Feld, Grofman and Miller (1988) developed a

priori bounds on the size of the yolk; while Feld, Grofman and Miller (1989) suggest that

the ability to manipulate the agenda in committees may be limited when the yolk is small.

All of these studies have as common theme a direct or implied restriction on likely social

choice outcomes to a centrally located set of the policy space that shrinks as the committee

preferences get closer to satisfying conditions for the existence of a core point. As already

discussed, there are similarities and important differences between the main thrust of the

conclusions in these studies and the information that can be gleaned from the equilibrium

bounds established presently.

I conclude this section with some comments on computational aspects of the analy-

sis. An important advantage of the approach of this paper is that it obtains bounds on all

equilibria at an overall cost that is polynomial in the size of the committee. Therefore, this

approach is generally less expensive than computation of even a single equilibrium. Though

there are versions of the legislative bargaining model (in the divide-the-dollar case) for which

a polynomial time algorithm to compute equilibrium expected payoffs exists (Kalandrakis

(2015)), no such algorithm is known to exist for the model with spatial preferences.6 Out-

side special cases, computing one equilibrium of this model is considered a hard problem.

Furthermore, the proposed approach bounds all equilibria, whilst finding all Brouwer fixed

points is an even harder computational problem (Herings and Peeters (2010); McKelvey and

McLennan (1996)). Finally, even if an actual equilibrium is desired, the bounds provide a

natural starting point to economize on its computation.

6One important difference between these models is that in the divide-the-dollar frame-

work, equilibrium expected payoffs are known to be unique (Eraslan (2002); Eraslan and

McLennan (2013)), but payoff uniqueness does not generally hold in the spatial model.
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1 Model

Consider policy-making over a D-dimensional policy space, X = RD, where D ≥ 1.

To allow large committees with a continuum of members let the set of players be I = RD.

Players are indexed by x̂ ∈ I, and are endowed with a von Neumann-Morgenstern utility

function u : X × I → R over policies, x, that takes the familiar negative quadratic form

u(x; x̂) = −(x− x̂)T · (x− x̂). Let π be a probability measure on I, and assume that it has

finite first and second moments. In each period t = 1, 2, . . . before an agreement is reached,

a proposer x̂ is realized from distribution π, independently across periods. The proposer

offers a proposal z that is put to an up-or-down vote and if the set of legislators A ⊆ I that

approve it satisfies (1) (as explained below), then z is implemented in all remaining periods

and the game ends; otherwise, a status quo policy q ∈ X is implemented in period t and the

game moves to period t+1 with a new proposer drawn from π, a new proposal, etc., until an

agreement is reached. Players discount the future by a common factor δ ∈ [0, 1] and player

x̂’s payoff if agreement x is reached in period t is given by (1−δt−1)u(q; x̂)+δt−1u(x; x̂) (and

it is u(q; x̂) in the case of perpetual disagreement).

Voting over policies is organized in a finite number of L,L ≥ 1, legislative chambers

indexed by ` = 1, . . . , L, each represented by a pair µ`,m`: µ` is a probability measure over

I which can be construed as the distribution of voting weights in chamber `; m` ∈ (0, 1) is

a threshold of support that is required in chamber ` in order for a policy to be approved in

that chamber. Proposal x is approved if the set of legislators A ⊆ I that vote for it are a

winning coalition in each chamber

µ`(A) ≥ m`, for all ` = 1, . . . , L.(1)

A single legislature deciding by majority rule is the special case when L = 1 and m1 = 1
2
.

The equilibrium concept, which is standard in this literature, is subgame perfect Nash
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in stationary, no-delay,7 proposal strategies, and voting strategies such that players approve a

proposal if and only if they weakly prefer it over their continuation payoff. To formalize, let P

denote the space of Borel probability measures on X. A strategy profile is a pair consisting of

a measurable proposal profile p : I → P and a voting profile A : I → 2X . Here px̂ ∈ P is the

probability distribution over proposals when the proposer has ideal point x̂ and A(x̂) ⊆ X is

the set of proposals that committee member x̂ is approving. Let σ = (A, p) denote a complete

such strategy profile. Given voting strategy profile A the set of agreements that can pass

is given (according to (1)) by Aσ = {x ∈ X | µ` ({x̂ | x ∈ A(x̂)}) ≥ m` for all `}. With

proposal strategies that are no-delay (see footnote 7), that is, that place probability one on

Aσ, the continuation payoff of x̂ is given by vσ(x̂) = (1−δ)u(q; x̂)+δ
∫ ∫

u(z; x̂)px̂′(dz)π(dx̂′).

Two conditions are necessary for such σ = (A, p) to be an equilibrium:

A(x̂) = {x | u(x; x̂) ≥ vσ(x̂)},(Ev)

px̂

(
arg max

x
{u(x; x̂) | x ∈ Aσ}

)
= 1.(Ep)

While these conditions preclude profitable one-stage deviations, additional conditions must

be verified in general to preclude profitable infinite deviations.8 I will refer to a profile σ

that satisfies (Ev) as a voting equilibrium. I call σ a quasi-equilibrium if it also satisfies (Ep),

to emphasize that profitable infinite deviations have not been ruled out (yet). I call a profile

7It is well understood that the restriction to no-delay proposal strategies is without loss

of generality in this model. With strictly concave payoffs, delay is only possible in knife-

edge situations (see Banks and Duggan (2006)), and in those cases such equilibria with

delay prevail, they are outcome equivalent to an equilibrium without delay. For the exact

same reasons, there is no consequence to the added restriction on voting strategies to accept

proposals when indifferent.
8This is so even in the discounted case (δ < 1) because we have allowed payoffs to be

unbounded. If δ < 1, the bounds established in Section 2 allows us to invoke the one-stage-

deviation principle to conclude that every quasi-equilibrium is an equilibrium (Corollary 3).
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σ an equilibrium when profitable infinite deviations have also been precluded.

A few comments are in order regarding this model setup. First, allowing for a con-

tinuum (or even countably infinite) number of players is a significant departure from exist-

ing literature. Infinite committees conveniently capture direct democracy settings in which

proposals are approved through referendum in a large electorate approximated by a con-

tinuum. Furthermore, the support of probability measures µ1, . . . , µL, π is unrestricted.

It is possible, for example, that the distribution of proposers has full support so that

all conceivable positions might be advocated, albeit with vanishing likelihood, in society.

Finitely populated legislatures are special cases when each µ` is a discrete measure with

finite support. The set of proposers can be restricted among players with voting rights

(Support(π) ⊆
(
∪L`=1Support(µ`)

)
) or we can assume proposals to the legislature arise from

outside members such as the electorate, lobbies, interest groups, etc. The only restriction

placed on the distribution of proposers, π, is that it has finite first and second moments, a

restriction that is automatically met in the finite committee setting.

It is not consequential that we require legislators to have distinct ideal points. We can

equivalently capture the case two or more legislators share an ideal point x̂ by accordingly

increasing the voting weight (and possibly proposal probability) of x̂. Under this interpre-

tation, legislators that share an ideal point are restricted to play the same strategy. With

regard to voting strategies, this restriction is already imposed broadly in the literature via

condition (Ev). The restriction on proposal strategies also does not affect the equilibrium

outcome distribution: Every equilibrium such that two or more legislators with identical

ideal points employ distinct proposal strategies can be transformed to an equivalent equi-

librium in which they share the same proposal strategy. Finally, the restrictions on the

voting rule are also minimal. As shown by Taylor and Zwicker (1993) any multi-cameral

legislature, along with veto and veto-override provisions similar to those found in the US

constitution, are easily accommodated. In fact, all monotonic voting rules can be captured

if the committee is finite (Taylor and Zwicker (1993)).

With these comments on the model, we can proceed to the analysis. Before doing
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so, I introduce additional necessary notation. Let a hyperplane Ha,c in RD be defined by

direction a ∈ A and level c such that Ha,c = {x | aT ·x = c}, where A = {a ∈ RD | ||a|| = 1}

is the set of unit vectors in RD. Let H+
a,c = {x | aT ·x ≥ c} and H−a,c = {x | aT ·x ≤ c} be the

two closed half-spaces defined by Ha,c. If the direction a and level c are not needed in the

context, I denote a hyperplane by H, and let H+ and H− be the corresponding (arbitrary)

two half-spaces. For any x ∈ RD, let B(x, d) = {x′ ∈ RD | d(x, x′) ≤ d} be the closed ball of

points within distance d from x, and denote the corresponding open ball by Bo(x, d).

2 Equilibrium bounds

To illustrate the approach, I first show its incarnation in the special case of the one-

dimensional model (X = R), with one chamber (L = 1) operating under simple majority rule

(m1 = 1
2
), and a unique median committee member at x̂m. In this setting there is a unique

equilibrium when δ < 1 and the committee is finite (Cho and Duggan (2003)). Uniqueness

of equilibrium aside, for any equilibrium σ the majority-acceptable agreements are given by

an interval Aσ = [x̂m −Bσ, x̂m +Bσ] for some scalar Bσ ≥ 0. It follows that the distance of

x̂’s equilibrium proposal from the median is

(2) d̃(Bσ, x̂) = min{d(x̂m, x̂), Bσ}.

This allows us to express the continuation payoff of the median as

vσ(x̂m) = −
(

(1− δ)(d(x̂m, q))
2 + δ

∫
(d̃(Bσ, x̂))2π(dx̂)

)
,

and pin down the distance, Bσ, of the farthest alternative from x̂m the median approves by

the indifference condition u(x̂m + Bσ; x̂m) = u(x̂m − Bσ; x̂m) = vσ(x̂m). Therefore, Bσ is a

solution for B to

(3) B2 −
(

(1− δ)d(x̂m, q)
2 + δ

∫
(d̃(B, x̂m))2π(dx̂)

)
= 0.
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Generically, equation (3) admits a unique solution, but to cover cases with multiple equilibria,

define B∗ to be its largest solution. This coincides with the general outer bound B̄∗(x̂m)

I characterize later in this section,9 that is, in every equilibrium σ, possible equilibrium

agreements are confined within B(x̂m, B
∗) ⊇ Aσ. What is particularly appealing in this

special setting is that the computation involved could not be simpler: B∗ solves one equation

in one unknown.

Two stumbling blocks stand in the way of obtaining an equation analogous to (3)

more generally. First, the set of agreements that can pass in equilibrium does not coincide

with the set of agreements acceptable by some decisive player, such as a unique median,

whose preferences can be used to determine the bound on equilibrium agreements as in

equation (3). In more than one dimensions, such decisive player does not exist generally or

even generically. Second, when D > 1 the optimal proposals cannot be determined a priori

as a function of the bound in the sense of equation (2) since the set Aσ is generally not

convex and has no standard geometric form. This is so even if equilibrium is unique and

in pure strategies, though in more than one dimensions equilibrium need not be unique and

may require non-degenerate mixed proposal strategies.

To overcome the first obstacle, I use two generalizations of the median developed in

Kalandrakis (2019), and I introduce these concepts here for completeness and to make the

analysis self-contained. Define a pivotal hyperplane as one that renders one of its half-spaces

a smallest such (that is, half-space) winning coalition. Specifically:

Definition 1. Hyperplane Ha,c is pivotal if c = c∗(a) where

c∗(a) = max
c
{c | µ`({x̂ | aT · x̂ ≥ c}) ≥ m` for all `}.

For every a ∈ A, H+
a,c∗(a) is a pivotal winning half-space.

We can now define the two median generalizations for an arbitrary point y. A y-centered

P -ball (for pivotal) is a smallest radius ball B(y, r) that intersects all pivotal hyperplanes,

9If there is a unique equilibrium, B∗ also coincides with the inner bound
¯
B∗(x̂m).
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that is, r solves

min
r
{r | B(y, r) ∩Ha,c∗(a) 6= ∅ for all a ∈ A}.(Py)

Analogously define for all y a y-centered W -ball (for winning) as a smallest radius ball B(y, r)

that intersects all pivotal winning half-spaces

min
r
{r | B(y, r) ∩H+

a,c∗(a) 6= ∅ for all a ∈ A}.(Wy)

Denote the minimizer (and attained minimum) of programs (Py) and (Wy) by rp(y) and

rw(y). It is easy to see that rp(y) ≥ rw(y) for all y.

Lemma 1 renders precise the claim that these constructs function as generalized

medians: For all y, any agreement that can pass in a voting equilibrium must be weakly

preferred by some player with ideal point in the y-centered W -ball; and, if all x̂ in the

y-centered P -ball approve x in a voting equilibrium, then x is approved by some winning

coalition in equilibrium.

Lemma 1. Let σ be a voting equilibrium. For all y and all x

1. If x ∈ Aσ, then there exists x̂ ∈ B(y, rw(y)) such that u(x; x̂) ≥ vσ(x̂).

2. If u(x; x̂) ≥ vσ(x̂) for all x̂ ∈ B(y, rp(y)), then x ∈ Aσ.

The proofs of all results appear in Appendix A. Building on Lemma 1, the next

Lemma ensures that if a policy x can be approved in equilibrium, then for all y, any policy

that is closer to y than x by a distance 2(rp(y) + rw(y)) is also acceptable. This result bears

a close connection to arguments of McKelvey (1986) for the winset under simple majority

rule. In the present setting, the argument applies to general voting rules, arbitrary center

points y, and proposals. Also, Lemma 1 is not implied by the results in Kalandrakis (2019)

as it involves a social preference comparison of proposals against equilibrium continuation

lotteries instead of deterministic alternatives. To economize on notation, in what follows I

set r(y) := rp(y) + rw(y).
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Figure 2: Illustration of Lemma 2 and Lemma 3
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a. If x is the farthest policy from y that can be approved (d(y, x) = B̄σ(y)), then every
alternative in the open ball B

(
y, B̄σ(y)− 2r(y)

)
can also be approved in equilibrium.

b. Proposals by x̂ ∈ B
(
y, B̄σ(y)− 2r(y)

)
are at their ideal; proposals by x̂′ ∈

B
(
y, B̄σ(y)− r(y)

)
\ B
(
y, B̄σ(y)− 2r(y)

)
are at maximal distance 2d(y, x̂′) + 2r(y)− B̄σ(y)

from y; proposals by x̂′′ /∈ B
(
y, B̄σ(y)− r(y)

)
are no farther than B̄σ(y) from y. Red points

indicate most distant possible proposals.

Lemma 2. For all y, x, and voting equilibrium σ, if x ∈ Aσ, then B(y, d(y, x)−2r(y)) ⊆ Aσ.

Lemma 2 is crucial. For starters, it allows us to address the second difficulty to

generalizing the approach illustrated in the one-dimensional model: Instead of an exact

distance d̃ of optimal proposals from the median, as in equation (2), Lemma 2 implies upper

and lower bounds on the distance of optimal proposals from any point y. I establish these

bounds on proposals in the forthcoming Lemma 3, and outline a sketch of the argument for

that result in what follows. Specifically, if B is the distance of the furthest policy from y that

can be approved, then x̂’s equilibrium proposal cannot be further than a distance d̄(B, x̂, y)

from y, where

d̄(B, x̂, y) :=


B if B < max{r(y), d(y, x̂)}+ r(y),

2d(y, x̂) + 2r(y)−B if max{r(y), d(y, x̂)}+ r(y) ≤ B < d(yp, x̂) + 2r(y),

d(yp, x̂) if B ≥ d(y, x̂) + 2r(y).
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The first case on the right-hand-side is obvious because, by assumption, B is the maximal

distance of acceptable proposals from y. The last case follows from the fact that all agree-

ments within B(y,B−2r(y)) are acceptable by Lemma 2 (these points are in the highlighted

disk in the center of Figure 2.b), so that an optimizing player x̂ ∈ B(y,B − 2r(y)) must

be proposing her ideal point. The middle case pertains to proposers with ideal points such

as point x̂′ of Figure 2.b. Because alternatives in B(y,B − 2r(y)) are available to x̂′, her

proposals cannot be outside the ball centered at her ideal x̂′ and tangent to B(y,B − 2r(y))

(which has radius d(y, x̂) − (B − 2r(y))). The farthest point from y in that ball is at a

distance d(y, x̂) + (d(y, x̂)− (B − 2r(y))), as specified by the function d̄(B, x̂, y).

Assume on the other hand that every policy within distance B from y is approved in

equilibrium. We can similarly reason that x̂’s proposal is no closer to y than

¯
d(B, x̂, y) := min{B, d(y, x̂)}.

In this case, x̂ can pass her ideal if B > d(y, x̂) and otherwise would not propose anything

closer than B to y since a proposal at a distance exactly d(y, x̂)−B from her ideal is available.

To put all these results together, for all y and any quasi-equilibrium σ define

B̄σ(y) = inf{d ≥ 0 | Aσ ⊆ B(y, d)},

¯
Bσ(y) = sup{d ≥ 0 | Bo(y, d) ⊆ Aσ}.

B̄σ(y) is the largest distance of acceptable policies from y; and
¯
Bσ(y) is the smallest (infimum)

distance from y of non-acceptable agreements. Note that by Lemma 3 we must have B̄σ(y)−

¯
Bσ(y) ≤ 2r(y). This inequality can be strict, in general. In the one-dimensional, simple

majority rule case with a unique median, x̂m, we have B̄σ(x̂m) −
¯
Bσ(x̂m) = r(x̂m) = 0. In

Lemma 3, I use these quantities to bound optimal proposals generalizing equation (2) to an

upper and lower bound (4).
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Lemma 3. For all y and quasi-equilibrium σ, px̂({x̂}) = 1 for all x̂ ∈ Bo(y,
¯
Bσ(y)) and

¯
d(

¯
Bσ(y), x̂, y) ≤ d(y, z) ≤ d̄(B̄σ(y), x̂, y), for all x̂ and all z ∈ Support(px̂).(4)

To specify analogues of equation (3) in the general case, define

F̄ (B, y) = (B − rw(y))2 −
(

(1− δ)(d(y, q) + rw(y))2 + δ

∫ (
d̄ (B, x̂, y) + rw(y)

)2
π(dx̂)

)
,

¯
F (B, y) = (B + rp(y))2 −

(
(1− δ)(d(y, q)− rp(y))2 + δ

∫
(
¯
d (B, x̂, y)−min{B, rp(y)})2 π(dx̂)

)
.

Using Lemmas 1-3, we now establish:

Theorem 1. Let σ be a quasi-equilibrium. For all y, B̄σ(y) and
¯
Bσ(y) are finite and satisfy

F̄ (B̄σ(y), y) ≤ 0 and
¯
F (

¯
Bσ(y), y) ≥ 0.

Inequalities F̄ (B̄σ(y), y) ≤ 0 and
¯
F (

¯
Bσ(y), y) ≥ 0 must hold for any quasi-equilibrium

σ. Therefore, the maximum (minimum) candidate bound that satisfies them define the

advertised inner (outer) bound on equilibrium acceptable agreements:

B̄∗(y) := sup{B ≥ 0 | F̄ (B, y) ≤ 0},

¯
B∗(y) := inf{B ≥ 0 |

¯
F (B, y) ≥ 0}.

With these definitions in place, we can now state the main results of this section:

Theorem 2. For every quasi-equilibrium σ and every y, Bo(y,
¯
B∗(y)) ⊆ Aσ ⊆ B(y, B̄∗(y)).

Note that, unlike equation (3) which centers the motivating one-dimensional bound

at the median, Theorems 1 and 2 establish generalizations centered at any, arbitrary, point

y. Corollary 1 highlights how this generality can be used to advantage by combining bounds

across different y.
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Corollary 1. For every Y ⊆ RD, every yp, yw ∈ Y , and and every quasi-equilibrium σ

Bo(yp,
¯
B∗(yp)) ⊆

⋃
y∈Y

Bo(y,
¯
B∗(y)) ⊆ Aσ ⊆

⋂
y∈Y

B(y, B̄∗(y)) ⊆ B(yw, B̄
∗(yw)).

Though the set Y in Corollary 1 can be a continuum, the practically relevant scenario is when

it is a finite grid covering the space of legislator ideal points. The computations reported

later in this paper suggest that this approach is both feasible and recommended.

Theorem 2 and Corollary 1 bound equilibrium acceptable agreements. But, by rea-

soning as in Lemma 3, these results imply stricter bounds on equilibrium proposals and (by

the no-delay property) on outcomes. To state these more stringent bounds first define

D̄x̂(y) := min{B̄∗(y),max{d(y, x̂), r(y)}+ r(y)}.

D̄x̂(y) = maxB∈[0,B̄∗(y)] d̄(B, x̂, y) and, by Lemma 3 and Theorem 2, it is the maximum

distance from y that x̂’s proposal can reach. We also define

¯
Dx̂(y) :=

max{0, d(y, x̂)−
¯
B∗(y)} if

¯
B∗(y) > 0,

+∞ otherwise.

When
¯
B∗(y) > 0,

¯
Dx̂(y) is that largest possible distance from her ideal point that x̂ could

propose, given that alternatives in Bo(y,
¯
B∗(y)) are available to her. These arguments es-

tablish:

Corollary 2. For every Y ⊆ RD, every x̂, and every quasi-equilibrium σ

Support(px̂) ⊆

(⋂
y∈Y

B
(
y, D̄x̂(y)

))⋂
B
(
x̂,min

y∈Y ¯
Dx̂(y)

)
.
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Though D̄x̂(y) can be strictly smaller than B̄∗(y), the likely most dramatic restrictions of

this type arise from the second part of Corollary 2, in cases Bo(y,
¯
B∗(y)) is non-empty.10

These results leave open the possibility that solutions to the inequations of Theorem

1 may not exist, or that the outer bound may be infinite, or that either bound may be hard

to compute. All are precluded by the next Theorem, which ensures that the bounds are

well-defined and provides additional details on their location.

Theorem 3. For all y, B̄∗(y),
¯
B∗(y) ∈ R+ exist. Moreover,

1.a If (1−δ)d(y, q)+rw(y) > 0, then either B̄∗(y) = 2r(y) and F̄ (2r(y), y) > 0, F̄ (B, y) 6= 0

for all B > 0, or B̄∗(y) ≥ 2rw(y) is the unique B > 0 that solves F̄ (B, y) = 0.

1.b If (1− δ)d(y, q) + rw(y) = 0, then

i. If δ = 1, F̄ (B, y) = 0 for all B ≤ B̄∗(y) = max

{
2rp(y), sup

B
{B | π (B(y,B − rp(y))) = 0}

}
.

ii. If δ < 1, B̄∗(y) = 0.

2.a If (1− δ)(d(y, q)− rp(y))2 > rp(y)2, then
¯
B∗(y) > 0 uniquely solves

¯
F (B, y) = 0.

2.b If (1− δ)(d(y, q)− rp(y))2 ≤ rp(y)2, then
¯
B∗(y) = 0 .

It may be tempting to discount the finding that the outer bound B̄∗(y) is finite as

obvious, but this result crucially relies on the structure of the set of acceptable agreements

established in Lemma 2 and the finiteness of the second moments of the distribution of

proposers π. That the latter assumption cannot be disposed with is shown in Appendix

B. One immediate implication of the finiteness of the outer bound B̄∗(y) is that the set of

equilibria of the game are identical to the set of equilibria of a game with compact policy

space X ′ = B(y, B̄∗(y)), thus ensuring that in the discounted case conditions (Ev) and (Ep)

are also sufficient for equilibrium:

10These additional restrictions suggest the possibility of iterating the procedure for com-

puting the bounds by adding the new proposal restrictions from Corollary 2 in successive

iterations. I leave the details of this promising avenue to tighten the bounds for future work.
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Corollary 3. If δ < 1, every quasi-equilibrium is an equilibrium.

When Theorem 3 does not yield the bounds in closed form, these can be recovered

from the respective equations using bisection becasue, in the relevant range dictated by

Theorem 3, they consistently change sign on either side of a unique solution. Therefore, the

major computation involved in obtaining these bounds is that of solving (Py) or (Wy) which

is straightforward in the finite legislature case by the arguments in Tovey (1992) (specifically

Theorem 1 and Corollary 1, page 266). Appendix D provides details.

3 Implications & constitutional design

How tight are these bounds? What do they imply about the set of equilibrium

outcomes and its relation to classic social choice concepts? How do they change with model

primitives? I take up these questions in this section. I have broken the discussion in small

segments.

Relation to the core & the uncovered set: By Theorem 3, if y is the only acceptable

agreement in equilibrium (B̄∗(y) = 0), it is necessary that rw(y) = 0 and y is a core point

(see Kalandrakis (2019)). The following Theorem elaborates:

Theorem 4. If B̄∗(y) = 0 then y is a core point. If y is a core point, then B̄∗(y) = 0 if

1. δ < 1 and q = y, or,

2. δ = 1, y is a unique core point, and π (B(y, ε)) > 0 for all ε > 0.

Therefore, we have a unique equilibrium with a policy at a core point if either, players are

not perfectly patient but the status quo policy is at that core point (part 1); or, if the core

is unique, players are perfectly patient, and there exist proposers to advocate for the core

(part 2). This last condition on π is a parallel to the requirement that all players have

positive recognition probability in the core equivalence and core selection analysis of Banks

and Duggan (2000, 2006) for finite committees, which these results recover and complement.
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Instead of requiring the core to be the only equilibrium outcome, we may instead

consider whether outcomes near the uncovered set (which reduces to the core when the latter

is non-empty) prevail. For all y, the uncovered set is contained in B(y, 2r(y)).11 Relying

on Lemma 3, we establish a lower bound on the probability that equilibrium outcomes fall

within this envelope. For the purposes of this result, let λσ denote the equilibrium lottery

over outcomes.

Theorem 5. For all y and every quasi-equilibrium σ, λσ (B(y, 2r(y))) ≥ π (B(y, r(y))).

Thus, if possible proposers are tightly concentrated within half the distance of the envelope on

the uncovered set from its center, then equilibrium outcomes are also concentrated within

the generalized uncovered set envelope. Combined with Theorem 4 and the forthcoming

Theorem 8, these results generally imply that the prevalence of outcomes in or near these

sets generally relies on the degree to which they are advocated by proposers.

Status Quo: A classic insight of political theory is that collective choices differ systemat-

ically with the location of the status quo. This is an almost immediate conclusion in static

models of choice and Romer and Rosenthal (1978) is an elementary but forceful demon-

stration of that effect. The following result establishes the effect of the status quo on the

equilibrium bounds.

Theorem 6. For all y, B̄∗(y) and
¯
B∗(y) weakly increase as d(y, q) increases and, if δ < 1,

lim
d(y,q)→+∞ ¯

B∗(y) = +∞ and lim
d(y,q)→+∞

(
B̄∗(y)−

¯
B∗(y)

)
=
(

1 +
√

1− δ
)
r(y).

Both the set of possible equilibrium outcomes and the set of outcomes guaranteed to be

acceptable in every equilibrium weakly expand as the status quo moves further away from

the center y. In the discounted case, these sets converge and cover the entire policy space as

the distance of the status quo from y goes to infinity, but the difference between the outer

and inner bounds converges to a constant at most twice the sum of the radii of the y centered

11This is a generalization of an envelope due to McKelvey (1986) (see Kalandrakis (2019)).
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P - and W -balls. Combining Theorem 6 and Lemma 3 we conclude that if the distribution of

proposers has bounded support and the status quo is bad enough, then there exists a unique

equilibrium in which all proposers propose their ideal.

Corollary 4. If δ < 1 and π
(
B(y, P̄ )

)
= 1 for some y, P̄ > 0, then there exists Q̄ > 0 such

that for all q /∈ B(y, Q̄) equilibrium is unique and satisfies px̂({x̂}) = 1 for all x̂ ∈ Support(π).

Equilibrium Uniqueness: Besides Corollary 4, we also deduce a unique equilibrium

whenever
¯
B∗(y) = B̄∗(y), whence it follows that Aσ = B(y, B̄∗(y)). Theorem 4 provides

one set of sufficient conditions for a unique equilibrium at the core. More generally:

Theorem 7. If
¯
B∗(y) = B̄∗(y) then y is a core point and there exists a unique equilibrium,

σ, and σ is in pure strategies with Aσ = B(y, B̄∗(y)). Furthermore, if y is a core point

1.
¯
B∗(y) = B̄∗(y) = 0 in cases 1. and 2. of Theorem 4.

2.
¯
B∗(y) = B̄∗(y) > 0 if and only if y is the unique core point and (1− δ)d(y, q) > 0.

Thus, in the discounted case, equilibrium is unique when the core is non-empty (not

necessarily a singleton) and the status quo is a core point; the equilibrium in those cases

puts mass one on the status quo (case 1 of Theorem 4). We also have a unique equilibrium

with multiple acceptable agreements if the core is unique and the status quo is different than

the core (part 2 of Theorem 7). In the undiscounted case (δ = 1) the conditions replicate

those in part 2 of Theorem 4. Part 2 of Theorem 7 extends the uniqueness result of Cho and

Duggan (2003) to more than one dimensions and infinite committees.

Proposal rights: While Theorems 2 and 3 assure us that equilibrium outcomes are bounded

for any given distribution of proposers, π, the actual bounds generally vary as the alloca-

tion of proposal rights changes. Let Π denote the space of all admissible distributions over

proposers, that is, those with finite second moments. We can show:

Theorem 8. For all y:
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1. B̄∗(y) weakly increases if π changes to π′ such that π′(B(y, d)) ≤ π(B(y, d)) for all d.

2. For all δ < 1, there exists ¯̄B∗(δ, y) ∈ R+ such that max
π∈Π

B̄∗(y) = ¯̄B∗(δ, y).

3. ¯̄B∗(δ, y) = d(y, q) if y is a core point, and lim
δ→1

¯̄B∗(δ, y) = +∞ otherwise.

4. If the core is empty, for all B̄ > 0 and all sufficiently large δ ∈ (1
2
, 1) there exists πδ

and equilibrium σδ with λσδ(X \ B(y, B̄)) ≥ 2δ−1
δ

.

Part 1 of Theorem 8 establishes that as proposal rights are shifted away from any

point y, in the sense of first-order-stochastic dominance, then the outer bound on acceptable

agreements across equilibria centered at y weakly expands. This might allow for policies

to reach arbitrarily distant areas of the policy space, but part 2 of the Theorem bars this

possibility in the discounted case: With stationary proposal rules,12 there is a maximal

distance from y which equilibrium outcomes cannot exceed, no matter how far proposal

rights are shifted away from y. That distance is

¯̄B∗(δ, y) :=
1 + δ

1− δ
rw(y) +

√
(d(y, q) + rw(y))2 + δ

(
2rw(y)

1− δ

)2

,(5)

and it increases with the radius of the y-centered W -ball as well as with the distance of the

status quo from y. The maximal distance also depends on the discount factor, and parts 3

and 4 of Theorem 8 clarify this dependence: If y is a core point, then the distance is constant

and equal to the distance of the status quo from y. This is consistent with the finding in

the special environment of Primo (2002). But if y is not a core point, then this maximal

outer distance is going to infinity as the discount factor tends to one. While this bound itself

does not guarantee that there exist equilibria with outcomes at that distance, part 4 of the

12With non-stationary rules, a McKelvey (1976)-like chain of proposers would likely not

respect such an outer bound. Nevertheless, the result might hold if an appropriate analogue

of the restriction on the second moments of the distribution of proposers is imposed on a

Markovian recognition protocol.
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Theorem ensures that there exist sequences of equilibria with outcomes whose distance from

y goes to infinity as the discount factor goes to one, whenever the core is empty (rw > 0).

These findings paint a mixed picture of the impact of proposal rights on legislative

bargaining outcomes. On the positive side, part 2 of Theorem 8 imposes a cap on how much

proposal rights can influence collective choice for any fixed discount factor less than one.

On the other hand, unless the core is empty, this cap may be too permissive and, in fact,

it becomes non-binding at the limit as legislators get patient in the strong sense implied by

parts 3 and 4 of the Theorem. While Theorem 8 does not fully address what happens in

the limit case of perfectly patient legislators, this is rectified in the following Theorem by

focusing on the special environment when there exists a unique proposer:

Theorem 9. Assume δ = 1 and π({x̂}) = 1 for some x̂. Then B̄∗(y) = max{d(y, x̂), rp(y)}+

rw(y) + r(y) for all y. Furthermore, there exists an equilibrium with Support(λσ) = {x̂} if

and only if for all x̂′ such that u(x̂; x̂′) < u(q; x̂′), µ`({x̂′}) ≤ 1−m` for all `.

Theorem 9 establishes very weak necessary and sufficient conditions for a(n arbitrary)

unique proposer to propose and pass her ideal point in an equilibrium. The condition requires

that if there is a legislator with absolute veto power, then she prefers the ideal point of the

proposer over the status quo. Therefore, if there is no legislator with absolute veto, then for

any ideal point for the unique proposer there exists an equilibrium in which she passes her

ideal with probability one. This condition is weaker than the sufficient condition of Duggan

and Ma (2018) that there does not exist a restricted core point.13

Voting Rights: What about the effect of voting rules? These variables enter the equations

that define equilibrium outcome bounds through the radii rp(y) and rw(y) of the y-centered

P -ball and W -ball, and these quantities respond differently to stricter (proper) voting rules:

Radius rp(y) weakly increases (to, say, r′p(y)) while rw(y) weakly decreases (to r′w(y)) as the

voting rule becomes more stringent by either requiring a larger majority quota or the assent

13Duggan and Ma (2018) look at limits of equilibria as δ → 1. Such limit equilibria

generally constitute a refined subset of the set of equilibria of that limit undiscounted game.
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of an additional chamber. Theorem 10 establishes that the introduction of a more stringent

voting rule has ambiguous effect on the outer bound though it weakly contracts both the

inner bound and the maximal outer bound of equation (5):

Theorem 10. Assume m`∗ >
1
2

for some `∗. For all y, if

a. m` increases for any `, or

b. a chamber ` = L+1 is added with any voting weights µL+1 and threshold mL+1 ∈ (0, 1),

1. The inner bound
¯
B∗(y) weakly decreases.

2. The outer bound B̄∗(y) weakly decreases if r(y) ≥ r′(y), and may increase otherwise.

3. If δ < 1, the maximal outer bound ¯̄B∗(δ, y) of Theorem 8 weakly decreases.

The comparative statics of Theorem 10 are mostly intuitive as they imply that more

stringent voting rules, requiring higher majority thresholds or the assent of more chambers,

limit possible acceptable agreements across equilibria and proposer distributions in the dis-

counted case (part 3); and also limit agreements that are guaranteed to be acceptable for

any specific parameterization of the model (part 1). But, the outer bound and hence the set

of possible equilibrium outcomes may decrease or increase (depending on how much rp(y)

increases relative to the decrease of rw(y)). Though paradoxical at first, this finding is rec-

oncilable in view of the possibility that the set of agreements in any one equilibrium may

indeed shrink with more stringent voting rules, but the set of equilibria may in fact expand

leading to an expansion of the set of possible outcomes across equilibria. This is already

anticipated by part 1(b)i of Theorem 3: When δ = 1 and rw(y) = 0, more stringent voting

rules can lead to an increase in r(y) because rp(y) < r′p(y) while rw(y) = r′w(y) = 0. If,

for example, π has full support, then the new outer bound becomes B̄∗ = 2r′p(y) and the

increase in the bound mirrors the increase in the radius of the y-centered P -ball.
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4 Numerical experiments

To illustrate the bounds and some of these comparative statics, I present numerical

experiments in this section. I focus on the US Congress which, due to size and institutional

complexity, provides a challenging environment for this application. I use DW-NOMINATE14

scores (Lewis et al. (2021)) to locate the ideal points of members in the first Congress of

four consecutive presidential terms since 2000. There is divided government in two of these

Congresses (107th and 113th). To specify the model, I assume the President proposes with

probability 1
4

and the remainder of proposal-making is equally split between the Senate and

the House. Within each chamber, 95% of proposal making goes to the majority party in that

chamber. Further, within each party group in each chamber, 95% of the assigned probability

goes to the party’s leader, and the remainder is equally split among the chamber’s remaining

party members. These assumptions reflect tight party control on access to the agenda (but

are of course arbitrary and should ideally be informed by fitting the model to data). I fix

the discount factor to δ = 0.9.

I consider two voting rules, varying the majority threshold for passage in the Senate,

one requiring simple majority with a tie-breaking vote by the vice-President, the other

requiring 60% filibuster-proof majority. Both rules require passage in the two chambers

and the assent of the President or two-thirds majorities without the Presiedent. Finally, I

consider one centrally located status quo at q = (0, 0); and one at q = (0, 1) which is extreme

without being biased in favor of one or the other party. Additional details can be found in

Appendix D. Overall there are four configurations (two status quo and voting rules) for four

Congresses, for a total of 16 configurations presented in Figure 3.

The cases with a centrally located status quo are in the left two columns. The bounds

are very narrow with filibuster-proof majority in the Senate (second column) and are larger

with simple majority. In all of these cases the bounds are larger than the static winset of

14Obviously, the payoff function assumed by DW-NOMINATE differs from that in the

present model, but this transgression seems acceptable given our purposes in this section.
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Figure 3: Equilibrium bounds in the DW-NOMINATE Congress

Computed based on Theorems 1-3 for all y on a grid Y ⊆ [−1, 1]× [−1, 1] of 40,401 points.
Light gray: Set of points in the (static) winset of the status quo.
Light blue: Possible acceptable agreements across all equilibria (based on Corollary 1).
Dark blue: Agreements acceptable in every equilibrium (based on Corollary 1).
Light red: Possible proposals by the President across all equilibria (based on Corollary 2).
Red points: Ideal points of President, Speaker of the House, and Senate majority leader.
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the status quo. They also tend to be slightly larger with unified government (109th and

111th Congresses when simple majority is assumed in the Senate). The figures also display

the added restrictions on possible proposals by the President (using Corollary 2), but these

restrictions are not very informative over the set of possible acceptable agreements in this

setting.

When the status quo is extreme (right two columns) the set of possible acceptable

agreements across equilibria expands (as expected by Theorem 6) substantially. Now these

sets are smaller than the static winset. Furthermore, in four cases the inner bound of

agreements acceptable in every equilibrium is non-empty (107th and 109th Congress with

simple majority in the Senate, and 111th Congress). In those cases, the extra restrictions

on possible outcomes established in Corollary 2 are substantial, as shown by the highlighted

possible proposals by the President. Applied to all proposers, these extra restrictions imply

that well over 95% of the set of outcomes fall solidly within the Democratic camp in the

111th Congress (or the Republican camp in the 109th Congress), even though the set of

agreements possibly acceptable in either Congress encompasses both party camps.

Though an in depth study of all of these questions is outside the scope of this paper,

there are three additional patterns worth some discussion: First, with the extreme status quo,

the bounds are larger under divided government than under unified government. Second,

they also tend to be larger with filibuster-proof majority in the Senate, while the opposite is

true with a centrist status quo. These patterns are partly anticipated by Theorem 10. Third,

perhaps surprisingly, the core is non-empty in all four Congresses under either voting rule (see

Appendix D). These calculations suggest that outcomes near (but not necessarily in the core)

tend to prevail when the status quo is centrist,15 even with proposal-making concentrated to

individuals away from the core. But when the status quo is extreme, the spread in agenda-

control implied by divided government leads to much larger variation in possible outcomes

according to these bounds. Whether these larger bounds arise due to many and variable

equilibria coordinating expectations on either side of the spectrum, or few equilibria with

15q is not in the core in all cases, so Theorem 4, part 1, does not apply.
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large acceptance sets, or whether the bounds are simply too conservative in these cases,

remains to be evaluated by either further narrowing these bounds (for example, by iterating

their calculation as suggested in footnote 10) or by computing the actual equilibria.

5 Conclusion

I have established an inner and outer envelope on possible equilibrium acceptable

agreements and outcomes in the spatial model of legislative bargaining. These bounds are

informative theoretically, for example, by recovering and extending several known results for

uniqueness and core equivalence of equilibrium and by allowing a number of comparative

static analyses. More stringent voting rules across legislative chambers exercise two coun-

tervailing forces on these bounds, and are possibly consistent with both smaller and larger

sets of possible equilibrium acceptable agreements. For any discount factor less than one,

the equilibrium bounds dispel the possibility of arbitrarily distant alternatives prevailing in

equilibrium, even if the distribution of possible proposers piles mass away from the center

of the policy space. The potential dependence of equilibrium outcomes on the allocation of

proposal-making rights becomes more severe as legislators get patient, though, and can take

an extreme form at the limit when the legislators are perfectly patient. On the empirical

side, these bounds are easy to compute and provide a cheap alternative to computation of

actual equilibria, thus opening the possibility for a range of empirical applications informed

by the equilibrium constraints from the model.
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A Proofs

As a background result, I state without proof a straightforward Lemma that makes

use of mean-variance decomposition of expected quadratic payoffs, i.e., for all x̂ and for

E(σ) := (1− δ)q + δ

∫ ∫
zpx̂(dz)π(dx̂),

V(σ) := (1− δ) (q − E(σ))T · (q − E(σ)) + δ

∫ ∫
(z − E(σ))T · (z − E(σ)) px̂(dz)π(dx̂),

vσ(x̂) = u(E(σ); x̂)− V(σ).(6)
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Lemma A.1. Consider any x, σ. If x = E(σ), {x̂ | u(x; x̂) ≥ vσ(x̂)} = I. If x 6= E(σ), there

exists hyperplane H perpendicular to the line segment [x,E(σ)], such that (a) {x̂ | u(x; x̂) =

vσ(x̂)} = H, (b) {x̂ | u(x; x̂) > vσ(x̂)} = H+ \H, (c) {x̂ | u(x; x̂) < vσ(x̂)} = H− \H.

Proof of Lemma 1. Part 1. By Lemma A.1, if x ∈ Aσ there is (at least) a pivotal winning

half-space that weakly prefer x. It intersects with B(y, rw(y)) by definition. Therefore, there

exists x̂ ∈ B(y, rw(y)) such that u(x; x̂) ≥ vσ(x̂).

Part 2. Assume u(x; x̂) ≥ vσ(x̂) for all x̂ ∈ B(y, rp(y)). To get a contradiction, assume

that x /∈ Aσ. Then, by Lemma A.1 x 6= E(σ) and there exists a hyperplane Ha,c such

that Ha,c = {x̂ | u(x; x̂) = vσ(x̂)} and H+
a,c = {x̂ | u(x; x̂) ≥ vσ(x̂)} 6= I. By x /∈ Aσ,

we must have µ`(H
+
a,c) < m` for some `. There exists a pivotal hyperplane Ha,c∗(a) and,

by definition, Ha,c∗(a) ∩ B(y, rp(y)) 6= ∅. But B(y, rp(y)) ⊂ H+
a,c, hence it must be that

c∗(a) > c and H+
a,c∗(a) ⊂ H+

a,c. This leads to a contradiction as there exists ` such that

m` ≤ µ`(H
+
a,c∗(a)) ≤ µ`(H

+
a,c) < m`.

Proof of Lemma 2. Fix y, assume x ∈ Aσ, and consider any x′ ∈ B(y, d(y, x) − 2r(y)).

We must show x′ ∈ Aσ. By part 2 of Lemma 1 it suffices to show that u(x′; x̂′) ≥ vσ(x̂′),

for all x̂′ ∈ B(y, rp(y)). By Lemma 1 and x ∈ Aσ, there exists x̂ ∈ B(y, rw(y)) such that

u(x; x̂) ≥ vσ(x̂). First we will show that d(x′, x̂′) ≤ d(x, x̂) − r(y) for all x̂′ ∈ B(y, rp(y)).

Indeed, (recalling that r(y) = rp(y) + rw(y))

d(x′, x̂′) ≤ d(y, x̂′) + d(x′, y) [triangle inequality]

≤ d(x′, y) + rp(y) [x̂′ ∈ B(y, rp(y))]

≤ d(x, y)− rp(y)− 2rw(y) [x′ ∈ B(y, d(x, y)− 2r(y))]

≤ d(x, x̂) + d(x̂, y)− rp(y)− 2rw(y) [triangle inequality]

≤ d(x, x̂)− r(y) [x̂ ∈ B(y, rw(y))].
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Now fix arbitrary x̂′ ∈ B(y, rp(y)); u(x′; x̂′) ≥ vσ(x̂′) follows because we have:

u(x′; x̂′) = −d(x′, x̂′)2 ≥ − (d(x, x̂)− r(y))2 [d(x′, x̂′) ≤ d(x, x̂)− r(y)]

≥ −
(√
−vσ(x̂)− r(y)

)2

[u(x; x̂) ≥ vσ(x̂)]

= −
(√

d(x̂,E(σ))2 + V(σ)− r(y)
)2

[(6)]

≥ −
(√

(d(x̂′,E(σ)) + d(x̂, x̂′))2 + V(σ)− r(y)

)2

[triangle inequality]

≥ −
(√

(d(x̂′,E(σ)) + d(x̂, y) + d(y, x̂′))2 + V(σ)− r(y)

)2

[triangle inequality]

≥ −
(√

(d(x̂′,E(σ)) + r(y))2 + V(σ)− r(y)

)2

[ x̂ ∈ B(y, rw(y)), x̂′ ∈ B(y, rp(y))]

= −
(√

d(x̂′,E(σ))2 + r(y)2 + 2r(y)d(x̂′,E(σ)) + V(σ)− r(y)
)2

≥ −
(√
−vσ(x̂′) + r(y)2 + 2r(y)

√
−vσ(x̂′)− r(y)

)2

[
√
−vσ(x̂′) ≥ d(x̂′,E(σ))]

= −
((√

−vσ(x̂′) + r(y)
)
− r(y)

)2

= vσ(x̂′).

Proof of Lemma 3. Fix a quasi-equilibirum σ and y. Consider any x̂ ∈ Bo(y,
¯
Bσ(y)).

By definition of
¯
Bσ(y) and Aσ closed, x̂ ∈ Aσ so that {x̂} = arg maxx∈Aσ u(x; x̂), there-

fore px̂({x̂}) = 1 and
¯
d(

¯
Bσ(y), x̂, y) = d(y, x̂) = d(y, z) for all z ∈ Support(px̂). On the

other hand, if d(y, x̂) >
¯
Bσ(y) for some x̂, then maxx∈Aσ u(x; x̂) ≥ maxx∈B(y,

¯
Bσ(y)) u(x; x̂) =

−(d(y, x̂) −
¯
Bσ(y))2. Therefore, there cannot exist z ∈ Support(px̂) such that d(y, z) <

¯
d(

¯
Bσ(y), x̂, y) =

¯
Bσ(y). Combining the two cases we conclude d(y, z) ≥

¯
d(

¯
Bσ(y), x̂, y) for

all x̂. To complete the proof of (4), note that the right-hand-side inequality holds trivially

when B̄σ(y) < 2r(y) or B̄σ(y) ≤ d(y, x̂) + r(y), whence d̄(B̄σ(y), x̂, y) = B̄σ(y). Further-

more, if B̄σ(y) ≥ d(y, x̂) + 2r(y), then x̂ ∈ Aσ by Lemma 2, therefore Support(px̂) =

{x̂} and d̄(B̄σ(y), x̂, y) = d(y, x̂). Thus, it remains to consider the case d(y, x̂) + r(y) ≤

B̄σ(y) ≤ d(y, x̂) + 2r(y) and B̄σ(y) ≥ 2r(y). Then, by Lemma 2, maxx∈Aσ u(x; x̂) ≥

maxx∈B(y,B̄σ(y)−2r(y)) u(x; x̂) = −(d(y, x̂)−(B̄σ(y)−2r(y)))2. Now if d(y, z) > d̄(B̄σ(y), x̂, y) =

2d(y, x̂) + 2r(y)− B̄σ(y), we have u(z; x̂) = −d(z, x̂)2 ≤ −(d(y, z)− d(y, x̂))2 < −(d(y, x̂)−
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(B̄σ(y)− 2r(y)))2, therefore it cannot be that z ∈ Support(px̂).

Proof of Theorem 1. Fix a quasi-equilibirum σ and y. We start with showing that both

B̄σ(y),
¯
Bσ(y) are finite. If not, since 2r(y) ≥ B̄σ(y)−

¯
Bσ(y) by Lemma 2, then

¯
Bσ(y) = +∞

and, by Lemma 3, px̂({x̂}) = 1 for all x̂. Then

vσ(x̂) = (1− δ)u(q; x̂) + δ

∫
u(x̂′; x̂)π(dx̂′) > −∞,

for all x̂ (because π has finite first and second moments). Furthermore, by Lemma 1, for

all k = 1, 2, . . . there exists xk ∈ Aσ and x̂k ∈ B(y, rw(y)) such that d(y, xk) > k and

u(xk; x̂k) ≥ vσ(x̂k) > −∞. Since d(xk, x̂k) ≥ k − rw(y), we have limk→+∞ u(xk; x̂k) = −∞,

yet min
x̂∈B(y,rw(y))

vσ(x̂) > −∞, a contradiction. Therefore, both B̄σ(y),
¯
Bσ(y) are finite.

Next, consider F̄ (B̄σ(y), y) ≤ 0. It holds for all B̄σ(y) ∈ [0, 2rw(y)], because then

(1− δ)(d(y, q) + rw(y))2 + δ

∫ (
d̄
(
B̄σ(y), x̂, y

)
+ rw(y)

)2
π(dx̂) ≥ rw(y)2 ≥ (B̄σ(y)− rw(y))2.

To show F̄ (B̄σ(y), y) ≤ 0 for B̄σ(y) ≥ 2rw(y), observe that there exists x′ ∈ Aσ such that

d(y, x′) = B̄σ(y), since Aσ is closed and bounded (because B̄σ(y) is finite). By the first part
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of Lemma 1 there also exists x̂′ ∈ B(y, rw(y)) such that u(x′, x̂′) ≥ vσ(x̂′). We now have

(B̄σ − rw(y))2 ≤ (B̄σ(y)− d(y, x̂′))2 [x̂′ ∈ B(y, rw(y)), B̄σ(y) ≥ rw(y)]

= (d(y, x′)− d(y, x̂′))2 [d(y, x′) = B̄σ(y)]

≤ d(x′, x̂′)2 = −u(x′; x̂′) [d(a, b) ≥| d(a, c)− d(c, b) |]

≤ −vσ(x̂′) [u(x′, x̂′) ≥ vσ(x̂′)]

≤ (1− δ)(d(x̂′, y) + d(y, q))2

+ δ

∫ ∫
(d(x̂′, y) + d(y, z))2px̂(dz)π(dx̂) [triangle inequality]

≤ (1− δ)(rw(y) + d(y, q))2

+ δ

∫ ∫
(rw(y) + d(y, z))2px̂(dz)π(dx̂) [x̂′ ∈ B(y, rw(y))]

≤ (1− δ)(d(y, q) + rw(y))2

+ δ

∫ (
d̄
(
B̄σ(y), x̂, y

)
+ rw(y)

)2
π(dx̂) [(4)].

To show
¯
F (

¯
Bσ(y), y) ≥ 0, let εk = 1

k
. By the definition of

¯
Bσ(y), for all k = 1, 2, . . .,

there exists xk ∈ B(y,
¯
Bσ(y) + εk) \ B(y,

¯
Bσ(y)) such that xk /∈ Aσ. Since xk /∈ Aσ,

there also exists corresponding x̂k ∈ B(y, rp(y)) such that u(xk; x̂k) < vσ(x̂k), by the

contra-positive of the second part of Lemma 1. Now the sequence (xk, x̂k) belongs in

(B(y,
¯
Bσ(y) + 1) \ Bo(y,

¯
Bσ(y)))×B(y, rp(y)), a compact set, so – by going to a subsequence

if necessary – there is a limit (xk, x̂k)→ (x∗, x̂∗) ∈ (B(y,
¯
Bσ(y)) \ Bo(y,

¯
Bσ(y)))×B(y, rp(y)).

Since u, vσ are continuous in x, x̂, we conclude

u(x∗; x̂∗) ≤ vσ(x̂∗).(7)
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We now have

(
¯
Bσ(y) + d(y, x̂∗))2 = (d(y, x∗) + d(y, x̂∗))2 [x∗ ∈ B(y,

¯
Bσ(y)) \ Bo(y,

¯
Bσ(y))]

≥ d(x∗, x̂∗)2 [triangle inequality]

≥ −vσ(x̂∗) [(7)]

= (1− δ)d(x̂∗, q)2 + δ

∫ ∫
d(x̂∗, z)2px̂(dz)π(dx̂)

≥ (1− δ) (d(y, q)− d(y, x̂∗))2

+ δ

∫ ∫
(d(y, z)− d(y, x̂∗))2 px̂(dz)π(dx̂) [d(a, b) ≥| d(a, c)− d(c, b) |].

The left-hand-side of the resulting inequality

(
¯
Bσ(y) + d(y, x̂∗))2 − (1− δ) (d(y, q)− d(y, x̂∗))2 − δ

∫ ∫
(d(y, z)− d(y, x̂∗))2 px̂(dz)π(dx̂) ≥ 0,

is increasing in d(y, x̂∗) and (because d(y, x̂∗) ≤ rp(y)) we obtain

(
¯
Bσ(y) + rp(y))2 − (1− δ) (d(y, q)− rp(y))2 − δ

∫ ∫
(d(y, z)− rp(y))2 px̂(dz)π(dx̂) ≥ 0.

Now
¯
F (

¯
Bσ(y), y) ≥ 0 follows because

∫ ∫
(d(y, z)− rp(y))2 px̂(dz)π(dx̂) =

∫
Bo(y,

¯
Bσ(y))

(d(y, x̂)− rp(y))2 π(dx̂)

+

∫
I\Bo(y,

¯
Bσ(y))

∫
(d(y, z)− rp(y))2 px̂(dz)π(dx̂)

≥
∫
Bo(y,

¯
Bσ(y))

(d(y, x̂)− rp(y))2 π(dx̂)

+

∫
I\Bo(y,

¯
Bσ(y))

min
z:d(y,z)≥

¯
d(

¯
Bσ(y),x̂)

(d(y, z)− rp(y))2 π(dx̂).

≥
∫

(
¯
d(

¯
Bσ(y), x̂, y)−min{

¯
Bσ(y), rp(y)})2 π(dx̂).

Proof of Theorem 2. Follows from Theorem 1 and the definition of
¯
B∗(y), B̄∗(y).
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Proof of Theorem 3. By the Lebesgue dominated convergence Theorem and because π

has finite first and second moments,16 we have

lim
B→+∞

∫ (
d̄(B, x̂, y) + rw(y)

)2
π(dx̂) =

∫
(d(y, x̂) + rw(y))2 π(dx̂) < +∞, and

lim
B→+∞

∫
(
¯
d (B, x̂, y)−min{B, rp(y)})2 π(dx̂) =

∫
(d (y, x̂, y)− rp(y))2 π(dx̂) < +∞.

It follows that limB→+∞ F̄ (B, y) = limB→+∞
¯
F (B, y) = +∞. This ensures that

¯
B∗(y) (pos-

sibly 0) exists. By the definition of d̄, F̄ (·, y) is continuous in [0, 2r(y)) and in [2r(y),+∞),

and limB→2r(y)+ F̄ (B, y) = F̄ (2r(y), y) and limB→2r(y)− F̄ (B, y) ≤ F̄ (2r(y), y), due to the

fact that limB→2r(y)+ d̄(B, x̂, y) = d̄(2r(y), x̂, y) ≤ 2r(y) = limB→2r(y)− d̄(B, x̂, y) for all x̂.

Existence of B̄∗(y) ∈ R then follows from the above because (1 − δ)d(y, q) + rw(y) > 0

implies F̄ (0, y) < 0 in case 1.(a), and F̄ (0, y) = 0 in case 1.(b).

We now proceed to show parts 1.(a)-2.(b), starting with 1.(a). So assume (1 −

δ)d(y, q) + rw(y) > 0, which implies F̄ (0, y) < 0, therefore B̄∗(y) > 0. If there does not exist

B > 0 such that F̄ (B, y) = 0, then limB→2r(y)− F̄ (B, y) ≤ 0 < F̄ (2r(y), y) and B̄∗(y) = 2r(y),

because limB→+∞ F̄ (B, y) = +∞ and F̄ (·, y) is continuous in [0, 2r(y)) and in [2r(y),+∞).

To complete the proof, then, we need to show that if there exists B̄ > 0, F̄ (B̄, y) = 0, it is

unique. Distinguish two cases:

Case 1. B̄ ∈ (0, 2r(y)). When B ∈ (0, 2r(y)), F̄ (B, y) is the quadratic polynomial:

(B − rw(y))2 − (1− δ)(d(y, q) + rw(y))2 − δ(B − rw(y))2.

Because F̄ (0, y) < 0, δ < 1, we can only have at most one root B̄ ∈ (0, 2r(y)) and 0 <

limB→2r(y)− F̄ (B, y) ≤ F̄ (2r(y), y). By Lemma C.2 in Appendix C, there is no solution in

[2r(y),+∞) when F̄ (2r(y), y) > 0.

Case 2. B̄ ∈ [2r(y),+∞). Then there is no other solution by case 1 and Lemma C.2.

16In particular, (d̄(B, x̂, y) + rw(y))2 ≤ (d(y, x̂) + 2r(y) + rw(y)))2 and (
¯
d(B, x̂, y) −

min{B, rp(y)})2 ≤ (d(yp(y), x̂))2 for all B.
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Moving to part 1.(b), observe that r(y) = rp(y) and

F̄ (B, y) =

B
2 − δB2 if B < 2rp(y),

B2 − δ
(∫
B(y,B−rp(y))

d̄(B, x̂, y)2π(dx̂) +
∫
I\B(y,B−rp(y))

B2π(dx̂)
)

if B ≥ 2rp(y).

When δ = 1, 1.(b)i follows since F̄ (B, y) = 0 for all B < 2rp(y), while B > 2rp(y) satisfies

F̄ (B, y) = 0 if and only if π(B(y,B − rp(y))) = 0. Indeed, d̄(B, x̂, y) < B if and only

if x̂ ∈ B(y,B − rp(y)), B > 2rp(y), whilst F̄ (B, y) > 0 for all B > 2rp(y) such that

π(B(y,B − rp(y))) > 0. Similarly, 1.(b)ii, follows when δ < 1, as F̄ (B, y) ≥ 0 and B = 0 is

the unique solution to F̄ (B, y) = 0.

Now consider part 2. It is the case that
¯
F (0, y) < 0 if and only if (1 − δ)(d(y, q) −

rp(y))2 > r2
p(y), hence both cases 2.(a) and 2.(b) follow if

¯
F is strictly increasing when

(1 − δ)(d(y, q) − rp(y))2 > r2
p(y). This is indeed the case, because δ < 1 and the integrand

is either constant in B, or (when differentiable w.r.t. B) has derivative smaller in absolute

value than 2(B + rp(y)).

Proof of Theorem 4. y is a core point iff rw(y) = 0 (Theorem 4, Kalandrakis (2019)).

By Theorem 3, if B̄∗(y) = 0 then rw(y) = 0 so y is a core point. Part 1 follows from parts

1(b)ii of Theorem 3; part 2 from part 1(b)i of Theorem 3.

Proof of Theorem 5. By the definition of d̄ we have

λσ (B(y, 2r(y))) = 1 if B̄∗σ(y) ≤ 2r(y),

λσ (B(y, 2r(y))) ≥ π

(
B(y,

B̄∗σ(y)

2
)

)
if 2r(y) < B̄∗σ(y) ≤ 4r(y),

λσ (B(y, 2r(y))) ≥ π (B(y, 2r(y))) if B̄∗σ(y) > 4r(y).

Proof of Theorem 6. Write F̄ (B, y; q),
¯
F (B, y; q), B̄∗(y; q), and

¯
B∗(y; q), to make the

dependence on q explicit. The result is immediate from the fact that if d(y, q) < d(y, q′),

then F̄ (B, y; q) ≥ F̄ (B, y; q′) so that the largest solution to F̄ (B, y; q) ≤ 0 weakly increases.

For the lower bound, the results holds trivially if
¯
B∗(y; q) = 0. If case 2(a) of Theorem 3
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applies, then
¯
F (B, y; q) ≥

¯
F (B, y; q′), and the smallest solution to

¯
F (B, y; q) ≥ 0 strictly

increases. Thus, if δ < 1 and d(y, q) is large enough we have limd(y,q)→+∞
¯
B∗(y) = +∞ and

F̄ (B̄∗(y; q), y; q) = 0 and
¯
F (

¯
B∗(y; q), y; q) = 0. From these equations we conclude

B̄∗(y; q)−
¯
B∗(y; q) = r(y) +

√
(1− δ)(d(y, q) + rw(y))2 + δ

∫ (
d̄
(
B̄∗(y; q), x̂, y

)
+ rw(y)

)2
π(dx̂)

−

√
(1− δ)(d(y, q)− rp(y))2 + δ

∫
(
¯
d (

¯
B∗(y; q), x̂, y)− rp(y))2 π(dx̂).

The integrals converge to (finite) constants
∫

(d(y, x̂) + rw(y))2 π(dx̂) and
∫

(d(y, x̂)− rp(y))2 π(dx̂)

as B̄∗(y; q) and
¯
B∗(y; q) go to infinity. The limit of the right-hand-side as d(y, q) → +∞ is

independent of the value of these integrals and equals r(y) +
√

1− δr(y).

Proof of Theorem 7. That the equilibrium is unique and in pure strategies follows triv-

ially from the convexity of the unique possible Aσ. To show that it is necessary for y to be

a core point, recall that y is a core point iff rw(y) = 0 and y is a unique core if rp(y) = 0

(Theorem 4, Kalandrakis (2019)). Now assume
¯
B∗(y) = B̄∗(y) = B∗ but rw(y) > 0 to

get a contradiction. By Theorem 3, 1(a), it must be that B∗ ≥ 2rw(y) > 0, therefore

it must also be that Theorem 3, 2(a) applies, i.e., (1 − δ)(d(y, q) − rp(y))2 > r2
p(y) and

¯
F (B∗, y) = F̄ (B∗, y) = 0, unless B∗ = 2r(y) in which case

¯
F (B∗, y) = 0 < F̄ (B∗, y) (by

Theorem 3, 1(a)). These inequations then imply

(B∗ − rw(y))2 ≥ (1− δ)(d(y, q) + rw(y))2 + δ

∫ (
d̄ (B∗, x̂, y) + rw(y)

)2
π(dx̂),

(B∗ + rp(y))2 = (1− δ)(d(y, q)− rp(y))2 + δ

∫
(
¯
d (B∗, x̂, y)−min{B∗, rp(y)})2 π(dx̂).

Expanding the squares on the right-hand-side of both inequations, reorganizing, and com-

bining inequations (using d̄ (B∗, x̂, y) ≥
¯
d (B∗, x̂, y) for all x̂) we conclude

(B∗ − rw(y))2 − r2
w(y) ≥ (B∗ + rp(y))2 − (1− δ)r2

p(y)− δmin{B∗, rp(y)}2
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which in turn implies

−2B∗rw(y) ≥ 2B∗rp(y) + δ(r2
p(y)−min{B∗, rp(y)}2).

But the left-hand-side is negative and the right-hand-side positive which is impossible. There-

fore rw(y) = 0. By the same arguments, it is necessary that y is a unique core in part 2, as

we similarly cannot have
¯
B∗(y) = B̄∗(y) = B∗ > 0, rw(y) = 0 but rp(y) > 0. For sufficiency

in part 2, assume rw(y) = rp(y) = 0 and (1 − δ)d(y, q) > 0. Then F̄ (B∗, y) =
¯
F (B∗, y) for

all B∗ and F̄ (0, y) =
¯
F (0, y) = −(1− δ)(d(y, q))2 < 0, therefore

¯
B∗(y) = B̄∗(y) > 0.

Proof of Theorem 8. Part 1. Write F̄ (B, y; π) to make dependence on π explicit. We

have F̄ (B, y; π) ≥ F̄ (B, y; π′), because d̄ weakly increases with d(y, x̂) so that∫ (
d̄ (B, x̂, y) + rw(y)

)2
π(dx̂) ≤

∫ (
d̄ (B, x̂, y) + rw(y)

)2
π′(dx̂).

Part 2. If π is such that π(B(y,B − r(y))) = 0, then d̄(B, x̂, y) = B for all x̂ in π’s support

(whether B > r(y) or not). Then F̄ (B, y; π) = 0 takes the form

(B − rw(y))2 − (1− δ)(d(y, q) + rw(y))2 − δ
∫

(B + rw(y))2π(dx̂) = 0,

which has a unique solution ¯̄B∗(δ, y) given in equation (5). By Theorem 3, for all π such that

π(B(y, ¯̄B∗(δ, y)− r(y))) = 0, B̄∗(y) = ¯̄B∗(δ, y) is the unique B > 0 that solves F̄ (B, y; π) =

0. By part 1, there cannot be a larger B̄∗(y) for some π′, because for any π′ such that

π′(B(y, ¯̄B∗(δ, y) − r(y))) > 0, there exists π′′ such that π′′(B(y, ¯̄B∗(δ, y) − r(y))) = 0 and

π′′(B(y, d)) ≤ π′(B(y, d)) for all d.

Part 3. Straightforward from equation (5).

Part 4. Fix B̄ > 0 and let (yw, rw) be a solution to (W ) of Appendix D. Since the

core is empty, rw > 0 (Theorem 4, Kalandrakis (2019)). Consider δ ∈ (1
2
, 1). Let ¯̄B >

max{B̄ + d(y, yw), d(yw, q) + 2r(yw)}. There exist at least two pivotal hyperplanes Hm

tangent to B(yw, rw) (otherwise yw, rw do not solve (W )). Let the tangency points be
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x̂m,m = 1, . . . ,M,M ≥ 2,17 and for each m let x̂pm be a point corresponding to x̂m with the

property that yw, x̂m, x̂
p
m are collinear, d(x̂pm, yw) = ¯̄B, and d(x̂pm, x̂m) = ¯̄B − rw. Also, let

q′ be the point with the property that yw, q, q
′ are collinear and d(yw, q

′) = d(yw, q). Let λδ

be a discrete probability distribution with support on x̂p1, . . . , x̂
p
M and expectation yw. Let

πδ be the compound lottery putting probability (1−δ)
δ

on q′ and (2δ−1)
δ

on λδ. Let σδ be such

that each of proposers q′, x̂p1, . . . , x̂
p
m propose their ideal point. Then, for any x̂ we have

vσ(x̂) = (1− δ)u(q; x̂) + δ

(
1−δ
δ
u(q′; x̂) + 2δ−1

δ

∑
m

λδ({x̂pm})u(x̂pm; x̂)

)
= u(yw; x̂)− 2(1− δ)d(yw, q)

2 − (2δ − 1) ¯̄B2,

because E(σδ) = yw and V(σδ) = 2(1−δ)d(yw, q)
2 +(2δ−1) ¯̄B2. By Lemma A.1, if x̂m weakly

prefers x̂pm, then so does everyone in the pivotal winning half-space H+
m, therefore x̂pm ∈ Aσδ .

Indeed, as long as δ >
¯̄B−rw

¯̄B
, then for all m:

u(x̂pm; x̂m) = −( ¯̄B − rw)2 > r2
w − (2δ − 1) ¯̄B2 ≥ vσ(x̂m).

Now, because x̂pm ∈ Aσδ and d(yw, x̂
p
m) = ¯̄B > d(yw, q) + 2r(yw), we also have q′ ∈ Aσδ by

Lemma 2. Therefore, σδ is a quasi-equilibrium that is also an equilibrium by Corollary 3,

part 4. Furthermore, for all m, d(y, x̂pm) ≥ d(yw, x̂
p
m)− d(y, yw) > B̄.

Proof of Theorem 9. First, B̄∗(y) = d(y, x̂) + r(y) + rw(y) uniquely solves F̄ (B, y) = 0

when d(y, x̂) ≥ rp(y), while if d(y, x̂) < rp(y), then limB→2r(y)− F̄ (B, y) = 0 ≤ F̄ (2r(y), y) >

0 and B̄∗(y) = 2r(y) by Theorem 3. Next, we show that there exists a quasi-equilibrium

profile σ such that x̂ proposes x̂ with probability 1 and A(x̂′) = {x | u(x; x̂′) ≥ u(x̂; x̂′)} for all

x̂′. Trivially, x̂ ∈ A(x̂′) for all x̂′, therefore x̂ ∈ Aσ and σ satisfies (Ev),(Ep). Since proposal

x̂ is unanimously accepted, voter x̂′ 6= x̂ has a unilateral infinite deviation that possibly

induces a different payoff only if x̂′ has absolute veto, i.e., µ`({x̂′′}) > 1−m` for some `. But

17Because yw, rw solve (W ) the convex hull of these tangency points contains yw (if there

is a continuum of such points, we may select M = D + 1 with that property).
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such an infinite deviation by vetoer x̂′ is profitable if and only if vσ(x̂′) = u(x̂; x̂′) < u(q; x̂′).

Thus the stated conditions are indeed necessary and sufficient.

Proof of Theorem 10. By Theorem 6 in Kalandrakis (2019), rw(y) weakly decreases and

rp(y) weakly increases with the stated changes in the voting rule. Write F̄ (B, y; rw(y), r(y))

and
¯
F (B, y; rp(y)) to indicate the relevant parameters that enter each inequality. The results

follow from the fact that

F̄ (B, y; rw(y), r(y)) ≥ F̄ (B, y; r′w(y), r(y)) if rw(y) < r′w(y),

F̄ (B, y; rw(y), r(y)) ≥ F̄ (B, y; rw(y), r′(y)) if r(y) < r′(y), and,

¯
F (B, y; rp(y)) ≤

¯
F (B, y; r′p(y)) if rp(y) < r′p(y).

The first and last of these inequalities follow directly by taking derivatives (note that d̄

is unchanged when r(y) is and
¯
d does not depend on rp(y)). The second follows because

d̄(B, x̂, y) weakly increases with r(y). Parts 1 and 2 now follow from the above inequalities

because B̄∗(y) (and
¯
B∗(y)) is the largest (respectively, smallest) solution of F̄ (B, y) ≤ 0

(
¯
F (B, y) ≥ 0). Part 3 follows directly from (5).
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B Equilibrium with unbounded support when π does

not have finite second moments

Let D = L = 1, δ ∈ (0, 1). Assume µ1 has finite support with and odd number of

K ≥ 3 atoms x̂1, . . . , x̂K and µ1 ({x̂k}) = 1
K

. Let π a Student’s t distribution with 2 degrees

of freedom. The strategy profile σ with px̂({x̂}) = 1 and A(x̂) = X = R for all x̂ is an

equilibrium as vσ(x̂) = −∞ for all x̂. Conditions (Ev) and (Ep) are obviously met and there

are no profitable infinite deviations as no voting atom x̂k has veto over proposals. Therefore,

B̄∗(y) = B̄σ(y) = +∞ for all y.
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C Single-crossing of upper bound equation

Lemma C.2. If F̄ (B̄, y) ≥ 0 for some B̄ ≥ 2r(y), then there is no B′ > B̄ such that

F̄ (B′, y) = 0.

Proof. Let B̄ ≥ 2r(y) be such that F̄ (B̄, y) ≥ 0, or

(B̄ − rw(y))2 − (1− δ)(d(y, q) + rw(y))2 − δ
∫
B(y,B̄−r(y))

(
d̄(B̄, x̂, y) + rw(y)

)2
π(dx̂)

−δ
∫
I\B(y,B̄−r(y))

(
B̄ + rw(y)

)2
π(dx̂) = α ≥ 0.

Setting A = −(1−δ)(d(y, q)+rw(y))2−δ
∫
B(y,B̄−r(y))

(
d̄(B̄, x̂, y) + rw(y)

)2
π(dx̂)−α, we obtain

(because δ
∫
I\B(y,B̄−r(y))

(
B̄ + rw(y)

)2
π(dx̂) = δ

(
1− π(B(y, B̄ − r(y)))

) (
B̄ + rw(y)

)2
)

δ
(
1− π(B(y, B̄ − r(y)))

)
=

(B̄ − rw(y))2 − A
(B̄ + rw(y))2

≤ (B̄ − rw(y))2

(B̄ + rw(y))2
.

Now suppose, to get a contradiction, that there exists B′ > B̄ such that F̄ (B′, y) = 0.

Because, d̄(B̄, x̂, y) ≥ d̄(B′, x̂, y) when x̂ ∈ B(y, B̄ − r(y)),18 it is the case that

∫
B(y,B̄−r(y))

(
d̄(B̄, x̂, y) + rw(y)

)2
π(dx̂) ≥

∫
B(y,B̄−r(y))

(
d̄(B′, x̂, y) + rw(y)

)2
π(dx̂).

18Specifically,

d̄(B̄, x̂, y) = d(y, x̂) = d̄(B′, x̂, y) if d(y, x̂) ≤ B̄ − 2r(y),

d̄(B̄, x̂, y) = 2d(y, x̂)− B̄ + 2r(y) > d(y, x̂) = d̄(B′, x̂, y) if B̄ − 2r(y) < d(y, x̂) ≤ min{B̄ − r(y), B′ − 2r(y)},

d̄(B̄, x̂, y) = 2d(y, x̂)− B̄ + 2r(y) > 2d(y, x̂)−B′ + 2r(y) = d̄(B′, x̂, y) if B′ − 2r(y) < d(y, x̂) ≤ B̄ − r(y).
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As a consequence, also using F̄ (B̄, y) ≥ F̄ (B′, y) = 0, we must have

(B̄ − rw(y))2 − δ
∫
I\B(y,B̄−r(y))

(
d̄(B̄, x̂, y) + rw(y)

)2
π(dx̂) ≥

(B′ − rw(y))2 − δ
∫
I\B(y,B̄−r(y))

(
d̄(B′, x̂, y) + rw(y)

)2
π(dx̂).

In turn, because B′ ≥ d̄(B′, x̂, y) and B̄ = d̄(B̄, x̂, y) for all x̂ /∈ B(y, B̄ − r(y)), we have

(B̄−rw(y))2−δ
∫
I\B(y,B̄−r(y))

(
B̄ + rw(y)

)2
π(dx̂) ≥ (B′−rw(y))2−δ

∫
I\B(y,B̄−r(y))

(B′ + rw(y))
2
π(dx̂), or

δ
(
1− π(B(y, B̄ − r(y)))

) (
(B′ + rw(y))

2 −
(
B̄ + rw(y)

)2
)
≥ (B′ − rw(y))2 − (B̄ − rw(y))2.

Combining inequalities, and using the fact that B′ > B̄ ≥ 2r(y), we have

(B̄ − rw(y))2

(B̄ + rw(y))2
≥ δ

(
1− π(B(y, B̄ − r(y)))

)
≥ (B′ − rw(y))2 − (B̄ − rw(y))2

(B′ + rw(y))2 −
(
B̄ + rw(y)

)2 > 0.

We now obtain a contradiction, because

(B′ + rw(y))2 −
(
B̄ + rw(y)

)2

(B̄ + rw(y))2
≥ (B′ − rw(y))2 − (B̄ − rw(y))2

(B̄ − rw(y))2
⇔

(B′ + rw(y))2

(B̄ + rw(y))2
≥ (B′ − rw(y))2

(B̄ − rw(y))2
⇔

(B′ + rw(y)) (B̄ − rw(y)) ≥ (B′ − rw(y))(B̄ + rw(y)) ⇔

B̄B′ −B′rw(y) + rw(y)B̄ − r2
w(y) ≥ B̄B′ +B′rw(y)− rw(y)B̄ − r2

w(y) ⇔

B̄ ≥ B′.

This completes the proof.
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D Numerical experiments of section 4

In this appendix I add details on the numerical experiments reported in section 4

and discuss how Tovey’s algorithm is used to solve programs (Wy) and (Py). The DW-

NOMINATE scores disseminated through voteview Lewis et al. (2021) do not (consistently)

provide a score for the vice-president and I assume the vice-president’s ideal point coincides

with that of the president. These data also may include multiple individuals or scores for a

particular House or Senate seat due to party change, death, or resignation. In such cases, I

use the last recorded person with available ideology score holding a seat. So (if such changes

occur) these calculations primarily pertain to the later portion of each Congressional term.

The computations in section 4 proceed as follows:

1. Solve programs (Wy) and (Py) for each y.

2. Solve for the bounds B̄∗(y) and
¯
B∗(y) using F̄ (B, y) and

¯
F (B, y) as detailed in The-

orems 1-3. When Theorem 3 does not isolate a closed form solution, the solution is

obtained using bisection.

3. Combine the bounds across y according to Corollary 1.

4. Compute the extra bounds on proposals according to Corollary 2.

Steps 2-4 are straightforward, so I further elaborate on step 1. Naturally, what

follows draws heavily on Tovey (1992), and I merely highlight the modifications needed in

order to solve programs (Wy) and (Py) in this discussion. Programs (Wy) and (Py) involve

a continuum of possible constraints (in general two possible pivotal hyperplanes for each

possible direction a ∈ A), but Tovey has explicitly studied this type of program as part

of his analysis leading to the (more elaborate) algorithm to compute the yolk. The main

difference is that Tovey is concerned with median hyperplanes, whereas here we are concerned

with pivotal hyperplanes. The relevant results are in Theorem 1 and Corollary 1 of Tovey

(1992), but the core idea is easy to convey. In order for a constraint (hyperplane) to be

binding for either program, it has to contain at least one ideal point. If not, the hyperplane
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is clearly not pivotal as we can move it in either direction from y without switching any

ideal points on either half-space. In D = 2 dimensions, that leaves us with two relevant

possibilities (with ideal points in general position, the qualification “(or more)” in the first

statement below can be eliminated):

• The binding hyperplane (a line in D = 2) has two (or more) ideal points on it.

• The binding hyperplane has only one ideal point on it (Tovey refers to these as “swivel-

ing” hyperplanes).

With N players, there are at most

 N

2

 possible hyperplanes of the first variety. We

simply take all pairs of points and recover exactly the corresponding hyperplane parameters

(a, c). There are N possibly binding “swiveling” hyperplanes but for programs (Wy) and (Py)

each of those is actually fixed for any specific y by the KKT conditions: If such hyperplane

through ideal x̂ is a binding constraint, it has to be perpendicular to the line segment [y, x̂].

We can then easily compute the hyperplane parameters (a, c) for any y and any one of the

N candidate swiveling hyperplanes.

These
∑2

k=1

 N

k

 hyperplanes are the only relevant (possibly binding) constraints

and Tovey refers to them as determining hyperplanes. We then retain only those that are

pivotal by simply checking whether either half-side of them is winning, and whether it ceases

to be winning if we remove the points on the hyperplane from that winning coalition. If

either criterion fails the hyperplane is not pivotal and these determining hyperplanes can be

discarded:19

• The solution to (Py) is determined by the distance to the hyperplane that is farthest

from y among the surviving hyperplanes. That distance is rp(y).

19In fact, the pivotality status of the determining hyperplanes with two points on them is

independent of y. So, as Tovey discusses later in his paper, we can eliminate those ahead

of time to expedite the computation. This is part of the reason we can handle such a large

grid in these computations.
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Figure D.1: Non-empty core in the DW-NOMINATE Congress
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Computed by solving program (Wy) on a grid of 160,801 points. The set of core points
(highlighted red) is non-empty in all four Congresses and both voting rules.
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To solve (Wy), we further eliminate those among surviving hyperplanes that have only one

winning half-space side and that side contains y (because any ball centered at y must intersect

that winning half-space).

• The solution to (Wy) is determined by the distance to the hyperplane that is farthest

from y among this smaller set of surviving hyperplanes. If none survive, then rw(y) = 0

and y is a core point.

Based on such calculations, all Congresses studied in section 4 have a non-empty core for

either voting rule, and I plot the set of recovered core points in Figure D.1.

If we wished to center the bounds at only one point, then we could solve two harder

optimization problems searching over both a center y and radius r:

min
y,r
{r | B(y, r) ∩Ha,c∗(a) 6= ∅ for all a ∈ A},(P )

min
y,r
{r | B(y, r) ∩H+

a,c∗(a) 6= ∅ for all a ∈ A}.(W )

Tovey’s algorithm for computing the yolk (Tovey (1992), Theorem 2 and Corollary 2) builds

on the above cited results to show how these more elaborate programs can be solved. When

D = 2, this algorithm can be used exactly as stated by Tovey (1992) to generate a finite

number of candidate solutions for (P ). For program (P ), the only difference is that we now

discard any of these solutions if they involve hyperplanes that are not pivotal, instead of

median. For program (W ), we also discard those that have a center on the unique winning

side of some pivotal binding hyperplane (and if none survive then the radius solution is zero

and one of the candidate solutions contains – possibly infinite – center solutions).

Though (P ) and (W ) are still useful for other purposes, the ease of computing so-

lutions to the simpler programs (Wy) and (Py), along with the fact that the bounds are

sharper when many y-centered bounds are computed, obviate the need to tackle programs
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(P ) and (W ) (in fact, using the grid Y , we recovered many exact solutions for (W ), and

good approximate solutions for (P ) in the application of section 4).
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