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Abstract

We analyze statistical discrimination using a multi-armed bandit model where my-
opic firms face candidate workers arriving with heterogeneous observable character-
istics. The association between the worker’s skill and characteristics is unknown ex
ante; thus, firms need to learn it. In such an environment, laissez-faire may result in
a highly unfair and inefficient outcome—myopic firms are reluctant to hire minority
workers because the lack of data about minority workers prevents accurate estimation
of their performance. Consequently, minority groups could be perpetually underesti-
mated—they are never hired, and therefore, data about them is never accumulated.
We proved that this problem becomes more serious when the population ratio is im-
balanced, as is the case in many extant discrimination problems. We consider two
affirmative-action policies for solving this dilemma: One is a subsidy rule that is based
on the popular upper confidence bound algorithm, and another is the Rooney Rule,
which requires firms to interview at least one minority worker for each hiring oppor-
tunity. Our results indicate temporary affirmative actions are effective for statistical
discrimination caused by data insufficiency.
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1 Introduction

Statistical discrimination refers to discrimination against minority people, taken by fully ra-
tional and non-prejudiced agents.1 In contrast to taste-based discrimination (Becker, 1957),
which regards agents’ preferences (e.g., racism, sexism) as the primary source of discrimina-
tion, the model of statistical discrimination does not assume any preferences towards specific
groups. Previous studies have shown that even in the absence of prejudice, discrimination
could occur persistently because of various reasons, such as the discouragement of human
capital investment (Arrow, 1973; Foster and Vohra, 1992; Coate and Loury, 1993; Moro and
Norman, 2004), information friction (Phelps, 1972; Cornell and Welch, 1996), and search
friction (Mailath, Samuelson, and Shaked, 2000). The literature has proposed a variety of
affirmative-action policies to solve statistical discrimination, and many of them are being
implemented in practice.

The contribution of this paper is to articulate a new channel of statistical discrimination—
underestimation of minority workers that appears as a consequence of social learning. Most
of the extant literature focuses on behaviors of rational agents under an equilibrium where
agents have a correct belief about the relationship between observable characteristics and
unobservable skills. However, several empirical studies have shown that real-world people
often have a biased belief towards minority groups.2 The aim of this study is to endogenize
the evolution of the biased belief and analyze its consequence. In our model, (i) all firms
(decision makers) are fully rational and non-prejudiced (i.e., attempt to hire the most pro-
ductive worker), and (ii) all workers are ex ante symmetric. We show that, even in such an
environment, a biased belief could be generated endogenously and persist in the long run.

For instruction, we use the terminology of hiring markets (while our model is applicable to
a broader class of situations). In our model, firms make hiring decisions based on observable
characteristics, sequentially.3 However, the true statistical relationship between characteris-

1According to Moro’s (2009) definition,

Statistical discrimination is a theory of inequality between demographic groups based on stereo-
types that do not arise from prejudice or racial and gender bias.

Although some previous studies in statistical discrimination consider the consequence of exogenously endowed
biased beliefs (e.g., Bohren, Haggag, Imas, and Pope, 2019a; Bohren, Imas, and Rosenberg, 2019b; Monachou
and Ashlagi, 2019), we additionally require that agents are fully rational.

2De Paola, Scoppa, and Lombardo (2010) analyzed an Italian local administration record where a gender
quota is introduced in a short period of 1993-1995, which resulted in increased representation of women
politicians even after the quota is terminated. Battaglini, Harris, and Patacchini (2020) showed that increased
professional exposure of women judges promotes hiring of other women judges and hypothesized that it is
due to the reinforced belief of women’s professional capabilities. Bohren et al. (2019a) showed that there is
a widespread misconception on the mathematical competence of American people.

3Observable characteristics can be very informative in one’s career. Wang, Zhang, Posse, and Bhasin
(2013) showed that the CV is very informative for predicting whether a software engineer switches another
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tics and actual skills is not observed directly; thus, firms need to learn it based on the data
about past hiring cases. Firms tend to have insufficient data about minority groups because
(i) minority groups are literally a “minority” (in terms of the population), and (ii) they have
been discriminated against and not hired in history. The lack of data makes it difficult to
assess the skills of minority workers. Hence, it tends to be safer and more profitable to hire
a majority candidate, whose skill is accurately estimable. This situation persists because no
firm is willing to “experiment” with hiring minorities for the purpose of data diversity. Con-
sequently, minority workers may never be hired, and firms may miss many skillful workers
from the minority group. We also show that some temporary affirmative-action policies can
effectively prevent this form of discrimination.

We develop a multi-armed bandit model of social learning, in which many myopic and
short-lived firms sequentially make hiring decisions. In each round, a firm faces multiple can-
didate workers. Each firm wants to hire only one person. Each firm’s utility is determined
by the hired worker’s skill, which cannot be observed directly until employment. However,
as in the standard statistical discrimination model, each worker also has an observable char-
acteristic that is associated with the worker’s hidden skill. In the beginning, no one knows
the precise way to interpret the worker’s observable characteristic for predicting that skill.
Hence, firms first need to learn the relationship between the characteristic and skill, and then
apply the statistical model to evaluate the predicted skill of workers. We assume that, firms
submit all the information about their hiring cases to a public database, and therefore, each
firm can observe all the past hiring cases (the characteristics and skills of all the workers
actually hired in the past).

Each worker belongs to a group that represents the worker’s gender, race, and ethnicity.
We assume that the characteristics of workers who belong to different groups should be in-
terpreted differently. This assumption is realistic. First, previous studies have revealed that
the underrepresented groups receive unfairly low evaluations in many places.4 When the ob-
servable characteristic is an evaluation provided by an outside rater, then the characteristic
information itself could be biased because of the prejudice of the rater. Second, evalua-
tions may also reflect differences in the culture, living environment, and social system. For
example, firms must be familiar with the custom of writing recommendation letters to inter-

senior position in three years.
4For example, Trix and Psenka (2003) study letters of recommendation for medical faculty and find that

letters written for female applicants differ systematically from those written for male applicants. Hanna
and Linden (2012) suggest that students who belong to lower caste (in India) tend receive unfairly lower
exam scores. Conversely, as for teaching evaluation, MacNell, Driscoll, and Hunt (2015) and Mitchell and
Martin (2018) demonstrate that students rated the male identity significantly higher than the female identity.
Hannák, Wagner, Garcia, Mislove, Strohmaier, and Wilson (2017) study online freelance marketplaces and
find that gender and race are significantly correlated with worker evaluations.
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pret letters correctly.5 Hence, the observable characteristics (curriculum vitae, exam score,
grading report, recommendation letter, teaching evaluation, etc.) may provide very differ-
ent implications even when their appearances are similar. If firms are impartial and aware
of these biases, they should adjust the way they interpret the characteristics, by applying
different statistical models for different groups.6

Firms are typically less knowledgeable about minority workers. In many cases, discrimi-
nated groups are literally “minorities,” and therefore, the number of candidate workers itself
tends to be smaller. Furthermore, even when discriminated groups are demographically a
majority, they might not have been hired in the past due to a historical reason. Hence,
compared with majority workers, the data about minority workers are often insufficient.

The lack of data results in inaccurate prediction of minority workers’ skills, and the
inaccuracy discourages firms from hiring the minorities. Many workers apply for each job
opening. To get hired, a worker must have the highest predicted skill. Once the minor-
ity group is underestimated, it is difficult for a minority worker to appear to be the best
candidate worker—even if the true skill is the highest, the firm will not be convinced. Un-
derestimation rarely happens once society acquires a sufficiently rich data set. However, in
the very beginning of the hiring process, the minority group is underestimated due to bad
realizations of the unpredictable component.

The structure described above causes perpetual underestimation. Firms tend to hire
majority workers because of the imbalance of data richness. However, as long as firms only
hire majority workers, society cannot learn about the minority group; thus, the imbalance
remains even in the long run. Here, the minority group is perpetually underestimated: the
lack of data prevents hiring, and therefore, minority workers are never hired. We prove that,
perpetual underestimation may happen with a significantly large probability in our model.
Importantly, perpetual underestimation becomes more frequent when the population ratio
is imbalanced, as observed in many real-world discrimination problems.

The social discrimination triggered by perpetual underestimation is not only unfair but
also socially inefficient. From the welfare perspective, if the time horizon (the total number of
hiring opportunities) is sufficiently long, then it is not very costly to “experimenting” with
a small fraction of minority workers for learning. However, because firms are selfish and
myopic, they are not willing to bear the cost of experiments on their own. Here, laissez-faire

5Precht (1998) and Al-Ali (2004) report cross-cultural differences in letters of recommendations (that do
not originate from discrimination).

6Through a randomized experiment, Williams and Ceci (2015) demonstrate that as for the STEM tenure
track hiring, female applicants are favored over male applicants. This result is consistent with our assumption
here: If the observed characteristics are systematically biased, an impartial employer would debias the data
before interpreting it. This may lead to reversal discrimination.
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results in the underprovision of a public good—the information about minority groups. By
enforcing or incentivizing early movers (firms) to review the minority groups, late movers can
refer to a more useful data set of hiring cases, leading to improvement of social welfare. Note
that the policy intervention need not be persistent: once sufficiently rich data are collected,
the government can terminate the affirmative action and return to laissez-faire.

We analyze the equilibrium consequence of laissez-faire and study desirable policy inter-
ventions. Multi-armed bandit models are useful for quantifying the value of information as
the width of confidence bounds. We use a linear contextual bandit model to study whether
a policy can lead society to achieve “no regret” in the long run. The regret is one of the
most popular criteria for evaluating the performance of algorithms in multi-armed bandit
problems. The regret measures the welfare loss compared with the first-best decision rule
(which firms would take when they had perfect information about the statistical model).
When the regret grows sublinearly in N , it means that firms make fair and efficient decisions
after a certain time.

In our theoretical analyses of laissez-faire, we first prove that it achieves no regret in the
long run: When the groups are ex ante symmetric and the population ratio is equal, the
expected regret of laissez-faire is shown to be Õ(

√
N), where Õ is a Landau notation that

ignores a logarithmic factor. In contrast, when the population ratio is imbalanced (i.e., the
number of majority workers is larger than the number of minority workers), this result no
longer holds. In such a case, the expected regret is proven to be Ω̃(N), which implies that
efficiency is not attained even in the long run.

This paper studies two policy interventions towards fair and efficient social learning. The
first policy is a subsidy rule, based on the idea of the upper confidence interval algorithm
(UCB). UCB is an effective solution for balancing exploration and exploitation in the (stan-
dard single-agent) multi-armed bandit problem (Lai and Robbins, 1985; Auer, Cesa-Bianchi,
and Fischer, 2002). By incentivizing firms to take actions that are consistent with the rec-
ommendation of UCB, we can lead the social learning to no regret in the long run. We
achieve it by providing firms subsidies when they hire a worker who belongs to an under-
explored group. The subsidy is adjusted to the degree of information externality; thus, its
total amount shrinks as time goes. Formally, we show that the UCB mechanism has expected
regret of Õ(

√
N). The subsidy amount required for implementing the UCB mechanism is

also Õ(
√
N).

This paper further proposes a hybrid mechanism, which terminates affirmative actions
once a sufficiently rich data set is collected and returns to laissez-faire. In our setting, once
firms obtain a certain amount of data, the diversity of workers’ characteristics naturally pro-
motes learning about the minority group. Hence, even if we terminate the policy intervention
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earlier than a standard UCB algorithm would do, society rarely falls into perpetual under-
estimation. We prove that our hybrid mechanism achieves Õ(

√
N) regret with Õ(1) subsidy

in N rounds. Furthermore, in our simulation, the hybrid mechanism achieved smaller regret
than the UCB mechanism.

The second policy is the Rooney Rule.7 The Rooney Rule is a “soft” affirmative action (in
that no hiring quota is required) and it does not require monetary compensation. Instead, the
Rooney Rule requires each firm to select at least one minority candidate as a finalist for each
job opening. In the final selection, firms can obtain additional signals, besides the observable
characteristics shown as an application document. The Rooney Rule leaves minority workers
an opportunity to be hired. Even when a firm underestimates a minority worker’s skill in
the beginning (due to the prediction inaccuracy), the worker may turn out to be the most
attractive candidate once the interview is done. As long as minority workers have a chance
to be hired, perpetual underestimation will not occur. However, our analysis also shows that
the Rooney Rule may hinder hiring of skilled majority candidates, and therefore, should not
be adopted as a permanent policy.

The remainder of this paper is organized as follows. Section 2 reviews the literature.
Section 3 introduces the model. Section 4 studies the equilibrium consequence of laissez-
faire. Section 5 develops the upper-confidence-bound subsidy rules, and Section 6 improves
it further. Section 7 studies the two-stage model and analyze the performance of laissez-
faire and the Rooney Rule. Section 8 exhibits the simulation results. Section 9 discusses
the connection to a Bayesian setting. Section 10 describes this paper’s contribution to the
multi-armed bandit literature. In Section 11, we make concluding remarks.

2 Related Literature

A survey by Fang and Moro (2011) classifies the literature of statistical discrimination
broadly into two strands. The first strand, originates from Arrow (1973), assumes that
groups are ex ante identical and analyzes how statistical discrimination occurs as an asym-
metric equilibrium (e.g., Foster and Vohra; Coate and Loury, 1992; 1993; Mailath et al., 2000;
Moro and Norman, 2003, 2004; Gu and Norman, 2020). This strand interprets statistical
discrimination as a random selection of multiple equilibria and does not explain why demo-
graphic minorities tend to be discriminated against. The second strand of the literature,
originates from Phelps (1972), studies discrimination triggered by unexplained exogenous

7The Rooney Rule is originally introduced to the National Football League, and the original version of
the rule required league teams to interview ethnic-minority candidates for head coaching and senior football
operation jobs. The rule is named after Dan Rooney, the former chairman of the league’s diversity committee
(Eddo-Lodge, 2017).
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differences between groups, coupled with incomplete information about workers’ skills (e.g.,
Aigner and Cain, 1977; Lundberg and Startz, 1983; Cornell and Welch, 1996). The differ-
ence in the signal distribution of workers’ skill is one of the most popular assumptions in
this strand. This paper unifies these two strands in that we endogenize the difference in
the signal distribution. We consider otherwise ex ante identical individuals from different
groups.8 Using a social learning model, we demonstrate how the difference in the prediction
of skills is generated and persists. We find that when the population ratio of a group is
small, the group tends to be statistically discriminated against. Hence, in contrast to most
papers in the first strand, our result indicates that a minority group tends to suffer as an
inevitable consequence under laissez-faire.

More recently, several works (e.g., Bohren et al., 2019a, 2019b; Monachou and Ash-
lagi, 2019) demonstrate how misspecified beliefs about groups will result in discrimination.
Thus far, this literature has attributed the belief misspecification to psychological bias (e.g.,
Judd and Park, 1993; Hilton and Von Hippel, 1996) and bounded rationality (e.g., Fryer and
Jackson, 2008; Schwartzstein, 2014; Bordalo, Coffman, Gennaioli, and Shleifer, 2019). In
contrast, we develop a model of fully rational agents and show that a misspecified belief per-
sists (i.e., a minority group is perpetually underestimated) even in the long run. Our result
supports a fundamental assumption of the belief-based statistical discrimination literature.

We model statistical discrimination as a consequence of social learning. The previous
studies on social learning, herding, and information cascades have discussed how a sequence
of myopic agents reaches an incorrect conclusion with various settings (e.g., Bikhchandani,
Hirshleifer, and Welch, 1992; Banerjee, 1992; Smith and Sørensen, 2000). A number of
papers have studied the improvement of social welfare through subsidy for exploration (e.g.,
Frazier, Kempe, Kleinberg, and Kleinberg, 2014; Kannan, Kearns, Morgenstern, Pai, Roth,
Vohra, and Wu, 2017) and selective information disclosure (e.g., Kremer, Mansour, and
Perry, 2014; Che and Hörner, 2018; Papanastasiou, Bimpikis, and Savva, 2018; Immorlica,
Mao, Slivkins, and Wu, 2020; Mansour, Slivkins, and Syrgkanis, 2020). Bohren et al. (2019b)
and Monachou and Ashlagi (2019), which are discussed above, study discrimination using
social learning models. We develop a novel social learning model for analyzing statistical
discrimination and find that, under laissez-faire, society tends to perpetually underestimate
workers form a minority group, even when all firms are fully rational and non-prejudiced.

Che, Kim, and Zhong (2019) consider a repeated two-sided matching model where buyers
search sellers with the help of rating information about previous transactions. In particular,
they analyzed a discriminating equilibrium due to the reinforced inter-group asymmetry of
the amount of information due to the search mechanism. This is related to our notion of

8The population imbalance is not an “unexplained” difference.
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perpetual underestimation in the sense that statistical discrimination occurs in the endoge-
nous process of sampling data. They attribute it to the search process, whereas we attribute
it to the imbalanced population. Note also that our bandit-based model is able to evaluate
the price of information by balancing exploration and exploitation, and we propose two ways
to mitigate perpetual underestimation.

A multi-armed bandit problem stems from the literature of statistics (Thompson, 1933;
Robbins, 1952). The theme of this problem is how one long-lived decision maker can max-
imize his payoff by balancing exploration and exploitation. More recently, the machine
learning community has proposed the contextual bandit framework, in which payoffs asso-
ciated with “arms” (actions) not only depend on the hidden state but are also influenced
by additional information, called “contexts” (Abe and Long, 1999; Langford and Zhang,
2008). To study statistical discrimination in labor markets, we adopt the contextual ban-
dit framework because it allows us to capture the diversity of worker characteristics. For
readers’ convenience, we summarize our technological contribution to the contextual bandit
literature in Section 10.

While most of the literature in multi-armed bandit has studied abstract models, Joseph,
Kearns, Morgenstern, and Roth (2016) and Kannan et al. (2017) apply contextual bandit
frameworks to human-related decision making. These two papers study contextual fairness,
which is a stronger concept than our notion of no-regret learning (while these two fairness no-
tions are asymptotically equivalent). Although Kannan et al. (2017) propose a contextually
fair UCB-based subsidy rule, it requires an impractically large budget (because contextual
fairness is a too stringent requirement with finite horizon). Our subsidy rules also originate
from the idea of UCB. However, as we show theoretically and by simulation, our subsidy
rules require a much smaller budget. Bardhi, Guo, and Strulovici (2020) study a Bayesian
bandit model in which a long-lived employer allocates a task to one of the two workers from
different groups.9 Bardhi et al. (2020) show that a small difference in the prior belief about
each worker’s type (associated with the group the worker belongs to) could generate a signif-
icant difference in payoffs of workers10. In contrast, the focus of this paper is on how society
acquires a persistent misspecified belief about the minority group endogenously.

Some previous studies consider a linear contextual bandit problem and study the per-
formance of a “greedy” algorithm, which myopically makes decision in accordance with the
current information (Bastani, Bayati, and Khosravi, 2020; Kannan, Morgenstern, Roth,
Waggoner, and Wu, 2018). As firms take greedy actions under laissez-faire, their results are

9As a decision maker is a long-lived employer, Bardhi et al. (2020) belongs to the literature on dynamic
employer learning (Farber and Gibbons, 1996; Altonji and Pierret, 2001), not to the social learning literature.

10Bardhi et al. (2020) also described the effect of population imbalance in an independent section.
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also relevant to our model. They show that the greedy algorithm could lead to no regret in
the long run, if (i) the contexts (corresponding to workers’ characteristics in our model) are
diverse enough, and (ii) the decision maker acquires sufficiently many uniform samples in the
beginning. While their results suggest that laissez-faire performs well, uniform sampling is
not adaptive, and thus does not adequately quantify the value of information. Subsection 8.6
provides a detailed analysis on this point—we show that, our hybrid mechanism performs
better than uniform sampling followed by laissez-faire.

There is also increasingly large literature on algorithmic fairness in the field of machine
learning. Although most of the papers of this literature were focused on batch learning
(i.g., learning from past data to support future hiring), bandit-based sequential learning
with algorithmic fairness has been considered in several papers such as Joseph et al. (2016);
Raghavan, Slivkins, Vaughan, and Wu (2018); Schumann, Counts, Foster, and Dickerson
(2019a); Bechavod, Ligett, Roth, Waggoner, and Wu (2019); Chen, Cuellar, Luo, Modi,
Nemlekar, and Nikolaidis (2020). The literature of algorithmic fairness has implicitly as-
sumed exogenous asymmetry in the workers’ skill and has been sought affirmative action
policies. To this aim, “discrimination-aware” constraints such as demographic parity (Pe-
dreschi, Ruggieri, and Turini, 2008; Calders and Verwer, 2010) and equal opportunity (Hardt,
Price, and Srebro, 2016) have been proposed. In contrast, we mainly consider the case where
there is no difference in the expected skills among groups. Under such symmetric skill dis-
tribution, most of these algorithmic fairness tools are not very meaningful: For example, the
demographic parity, that requires the firm to hire workers of each group with equal ratio, is
(asymptotically) achieved by any sublinear regret decision rule even in the absence of fairness
constraints. Note also that, insights into the long-term effects of these algorithmic fairness
policies are still limited (Liu, Dean, Rolf, Simchowitz, and Hardt, 2018).

Theoretical analyses for the Rooney Rule are relatively scarce.11 Kleinberg and Raghavan
(2018) show that, when the recruiter has an unconscious bias against the discriminated group,
the Rooney Rule not only helps the representation of the discriminated group but also leads
to a higher payoff for the recruiter. To the best of our knowledge, our study is the first
attempt to demonstrate the practical advantage of the Rooney Rule without unconscious
bias. Our result indicates that even when no unconscious bias exists, the Rooney Rule may
improve social welfare by preventing perpetual underestimation.12

11De Paola et al. (2010) empirically show that a gender quota imposed on an Italian local administration
broke down negative stereotypes towards women even after it was terminated. This quota can be regarded
as a version of the Rooney Rule.

12While there is literature on the tiered interviewing problem (such as Schumann, Lang, Foster, and
Dickerson, 2019b), their focus is on an optimization of a single firm’s profit.
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3 Model

Basic Setting We develop a linear contextual bandit problem with myopic agents (firms).
We consider a situation where N firms (indexed by n = 1, . . . , N) sequentially hire one
worker for each. In each round n, a set of workers I(n) arrives. Each worker i ∈ I(n) takes
no action, and firm n selects one worker ι(n) ∈ I(n). We denote the set of all workers by
I :=

⋃N
n=1 I(n). Both firms and workers are short-lived. Once round n is finished, firm n’s

payoff is finalized, and all the workers not hired leave the market.
Each worker i belongs to a group g ∈ G. We assume that the population ratio is fixed:

for every round n, the number of arrived workers who belong to group g is Kg ∈ N and
K =

∑
g∈GKg. Slightly abusing the notation, we denote the group worker i belongs to by

g(i). Each worker i ∈ I also has an observable characteristic xi ∈ Rd, where d ∈ N is its
dimension. Finally, each worker i also has a skill yi ∈ R, which is not observable until worker
i is hired. The characteristics and skills are random variables.

Because each firm’s payoff is equal to the hired worker’s skill yi (plus the subsidy assigned
to worker i as an affirmative action, if any), firms want to predict the skill yi based on
the characteristics xi. We assume that the characteristics and skills are associated in the
following way:

yi = x′iθg(i) + εi,

where θg ∈ Rd is a coefficient parameter, and εi ∼ N (0, σ2
ε ) i.i.d. is an unpredictable error

term. We assume ||θg|| ≤ S for some S ∈ R+, where || · || is the standard L2-norm. Since εi
is unpredictable,

qi := x′iθg(i) (1)

is the best predictor of worker i’s skill yi.
The coefficient parameters (θg)g∈G are unknown in the beginning. Hence, unless firms

share the information about past hiring cases, firms are unable to predict each worker’s
skill yi. We assume that all firms share information about hiring cases. Accordingly, when
firm n makes a decision, besides current workers’ characteristics and groups (xi, g(i))i∈I(n),
firm n can observe all the past candidate workers’ characteristics and groups, (xi, g(i)) for
all i ∈

⋃n−1
n′=1 I(n′), the past firms’ decisions (ι(n′))n−1

n′=1, and the past hired workers’ skills
(yι(n′))

n−1
n′=1. We refer to all of the realizations of these variables as the history in round n,

and denote it by h(n). Formally, h(n) is given by

h(n) =
(

(xi, g(i))i∈I(n), (xi, g(i))i∈⋃n−1
n′=1

I(n′), (ι(n
′))n−1

n′=1, (yι(n′))
n−1
n′=1

)
.

10



Note that, h(n) does not include the information about (i) the worker hired in firm n, and
(ii) that worker’s actual skill. This is because h(n) represents the information set firm n

faces when it makes a hiring decision. We define the set of all histories in round n as H(n).
We define the set of all histories as H :=

⋃N
n=1H(n). The firm’s decision rule for hiring and

the government’s subsidy rule will be defined as a function that maps a history to a hiring
decision and the subsidy amount (described later). For notational convenience, we often
drop h(n).

Prediction We assume that firms are not Bayesian but frequentist. Hence, firms have no
prior distribution but they estimate the true parameter θ using the available data set. (We
would obtain a similar result in a Bayesian setting. See the discussion in Section 9.)

We assume that each firm predicts the skill by using ridge regression (also known as l2-
regularized least square) to stabilize the small-sample inference. Let Ng(n) be the number
of rounds at which group-g workers are hired by round n. Let Xg(n) ∈ RNg(n)×d be a
matrix that lists the characteristics of group-g workers hired by round n: each row of Xg(n)

corresponds to {xι(n′) : ι(n′) = g}n−1
n′=1. Likewise, let Yg(n) ∈ RNg(n) be a vector that

lists the skills of group-g workers hired by round n: each element of Yg(n) corresponds to
{yι(n′) : ι(n′) = g}n−1

n′=1. We define Vg(n) := (Xg(n))′Xg(n). For a parameter λ > 0, we
define V̄g(n) = Vg(n) + λId, where Id denotes the d × d identity matrix. Firm n estimates
the parameter as follows:

θ̂g(n) := (V̄g(n))−1(Xg(n))′Yg(n). (2)

Unlike ordinary least square (OLS), for λ > 0 the inverse (V̄g(n))−1 is always well-defined.
Firm n predicts worker i’s skill by (1), while substituting θg with θ̂g(n):

q̂i(n) := x′iθ̂g(i)(n).

Note that, both q̂i(n) and θ̂g(n) depend on the history h(n). We often drop h(n) for nota-
tional simplicity.

Mechanism Besides the (predicted) skill of workers, firms also take the subsidies provided
as affirmative actions into consideration. We assume that firms’ preferences are risk-neutral
and quasi-linear. Hence, if firm n hires worker i, firm n’s payoff (von-Neumann–Morgenstern
utility) is given by yi + si, where where si ∈ R+ denotes the amount of the subsidy assigned
to worker i.

In the beginning of the game, the government commits to a subsidy rule si(n, ·) : H → R+,
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which maps a history to a subsidy amount. Hence, once a history h(n) is specified, firm n

can identify the subsidy assigned to each worker i ∈ I(n). Firm n attempts to maximize

E [yi + si(n;h(n))|h(n)] = q̂i(n;h(n)) + si(n;h(n)).

Firm n’s decision rule ι(n, ·) : H(n) → I(n) specifies the worker firm n hires given a
history h(n). We say that, a decision rule ι is implemented by a subsidy rule si if for all n,
for all h(n), we have

ι(n;h(n)) = arg max
i∈I(n)

{q̂i(n;h(n)) + si(n;h(n))} . (3)

We call a pair of a decision rule and subsidy rule a mechanism.
Throughout this paper, any ties are broken in an arbitrary way. Again, we often drop

h(n) from the input of decision rule ι when it does not cause confusion.

Remark 1 (Observability of the Past Hiring Data). While we assume that firms share
the entire history of past hiring data for simplicity, practically, each firm may have limited
access to the database. Even if we make such an assumption, our analysis and results will
not require qualitative changes. Rational firms estimate θg based on the available data and
use it to predict workers’ skills. The smaller the sample size of the available data is, the
severer the data insufficiency of minority workers is.

Social Welfare We measure social welfare by the smallness of regret, which is the standard
measure to evaluate the performance of algorithms in multi-armed bandit models. The regret
is defined as follows:

Reg(N) :=
N∑
n=1

{
max
i∈I(n)

qi − qι(n)

}
.

Since εi is unpredictable, it is natural to evaluate the performance of the algorithm (or the
equilibrium consequence of the policy intervention) by checking the value of predictors qi. If
the parameter (θg)g∈G were known, each firm could easily calculate qi for each worker i and
choose ι(n) = arg maxi∈I(n) qi. In this case, the regret would become zero. However, since
(θg)g∈G is unknown, it is too demanding to aim at zero regret. The goal of the policy design is
to set up a mechanism that minimizes the expected regret E[Reg(N)], where the expectation
is taken on a random draw of the workers.13 This aim is equivalent to maximizing the sum
of the skills of the hired workers.

13All the mechanisms proposed in this paper are deterministic.
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Algorithm 1 Initial Sampling Phase

{gn}N
(0)

n=1 is allocated such that
∑N(0)

n=1 1[gn = g] = N
(0)
g .

for n = 1, · · · , N (0) do
Hire ι(n;h(n)) = mini∈I(n):g(i)=gn i. . Firm n blindly hires a group-gn candidate.

end for

Following the literature, we mainly evaluate the performance by the limiting behavior
(order) of expected regrets. One useful benchmark is whether the expected regret is linear
(i.e., E[Reg(N)] = Ω(N)) or sublinear (i.e., E[Reg(N)] = o(N)).14 As we described above,
once (θg)g∈G is known, firms can use the best predictor qi to evaluate workers. After that
point, regret does not increase. Although (θg)g∈G is unknown ex ante, firms can learn it from
the data. A linear regret means that society fails to learn the underlying parameter (θg)g∈G,
and therefore, firms are hiring less-skilled workers even in the long run. In our model, perpet-
ual underestimation is often a consequence of statistical discrimination—typically, minority
workers are more likely to be underexplored, and therefore, they are unfairly rejected.

Budget Some of the policies we study incentivize exploration by subsidization. The total
budget required by a subsidy rule is also an important policy concern. The total amount of
the subsidy is given by

Sub(N) :=
N∑
n=1

sι(n)(n).

Initial Sampling Phase For analytical tractability, we assume that for the first N (0)

rounds, each firm n is forced to hire from a pre-specified group, gn. We refer to the first N (0)

rounds as the initial sampling phase (Algorithm 1). Namely, for all n = 1, . . . , N (0), firm n

hires a group-gn candidate who has the smallest agent number:

ι(n;h(n)) = min
i∈I(n)

i subject to g(i) = gn. (4)

Choosing an agent who has the smallest number is just a random choice. Whenever agents
belong to the same group, their characteristics and skill distributions are the same. Ac-
cordingly, (4) is equivalent to choosing a group-gn worker blindly (i.e., uniformly at random
without looking at workers’ predicted skills). We define N (0)

g :=
∑N(0)

n=1 1[gn = g] as the data
size of initial sampling for group g. The initial sampling phase is exogenous and not regarded

14In the literature of the multi-armed bandit problem, sublinear regret is also referred as no regret since
the regret per round approaches zero as N →∞.
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Algorithm 2 Laissez-Faire
Complete the initial sampling phase by running Algorithm 1.
for n = N (0) + 1, · · · , N do . Laissez-Faire starts.

Offer si(n) = 0 for all i ∈ I(n). . No Subsidy is provided.
Firm n hires ι(n) = arg maxi x

′
iθ̂g(i)(n) as an equilibrium consequence.

end for

as a part of the mechanism. Hence, we ignore the incentives and payoffs of firms hiring in
the initial sampling phase.

4 Laissez-Faire

This section analyzes the equilibrium under laissez-faire, that is, the consequence of social
learning when policy intervention is absent. Subsection 4.1 introduces a basic fact: laissez-
faire has linear regret in a general domain. However, a general domain is not suitable for
the analysis of statistical discrimination. Hence, in Subsection 4.2, we define a symmetric
and diverse environment, with which we can discuss how statistical discrimination grows. In
Subsection 4.3, we formally define perpetual underestimation and discuss its implications.
Subsection 4.4 describes the case where (i) both of the groups have sufficient variation, and
(ii) the population ratio is balanced. In this case, the underestimation of minority groups
is spontaneously resolved, and therefore, laissez-faire performs well. However, as shown
in Subsection 4.5, when the population ratio is imbalanced, laissez-faire tends to result in
perpetual underestimation, and therefore, performs poorly.

4.1 Preliminary: Failure in a General Domain

We first define laissez-faire.

Definition 1 (Laissez-Faire). The laissez-faire decision rule always selects the worker who
has the highest predicted skill, i.e.,

ι(n) = arg max
i∈I(n)

q̂i(n).

Clearly, the laissez-faire decision rule is implemented by the laissez-faire subsidy rule, which
provide no subsidy si = 0 after any history (Algorithm 2).
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Laissez-faire makes no intervention, and therefore, each firm hires the worker whose
expected skill, predicted by the current data set, is the highest. In the multi-armed bandit
literature, the laissez-faire decision rule is referred to as the greedy algorithm. The greedy
algorithm often results in a catastrophic outcome due to insufficient exploration. Since
information is a public good, its supply is inefficiently low if the government makes no policy
intervention. This well-known result applies to our environment if no structure is assumed.
We state this basic result as a benchmark.

Theorem 1 (Failure of Laissez-Faire in General Domain). Let RegLF be the regret under
the laissez-faire decision rule. There exists an instance with which

E[RegLF(N)] = Ω(N).

Proof. See Appendix B.2.

The analysis in Appendix B.2 is essentially the same as the analysis of greedy algorithm
in the standard K-armed bandit problem, which is well-known to be Ω(N). We show The-
orem 1 by constructing an instance explicitly. By assuming that the distribution of the
characteristics (xi) to be degenerate, our linear contextual bandit problem reduces to a
basic K-armed bandit problem, where the expected skill (reward) of each group (arm) is
fixed. We assume that one group is more productive than another, and therefore, the first-
best decision rule would always hire from the better group. With a constant probability,
firms happen to underestimate the more productive group in the beginning. When a less
productive group constantly performs better than the underestimated predicted skill of the
better group, firms never want to investigate the better group further. Consequently, with a
significant probability, a worker from the better group is never hired again, implying linear
expected regret. Once an underestimation of the minority group occurs, it tends to persist:
When the “context” of the majority group is fixed, there is a constant probability that the
minority group is never chosen throughout all the rounds.

4.2 Symmetry and Diverse Characteristics

It is too naive to conclude from Theorem 1 that the laissez-faire decision rule may cause
statistical discrimination. First, the instance constructed in the proof of Theorem 1 assumes
an unexplained exogenous difference (in expected skills) between groups, while our aim is
to endogenize the difference. Second, we assumed that one group has higher expected skill
than the other. With this assumption, it is efficient to always hire a worker from one group.
Under such an assumption, when social learning is successful, workers from the inferior group
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are never hired. Third, we reduced a contextual bandit model to a K-armed bandit model
by assuming that the distribution of characteristics is degenerate. However, in the real word,
candidate workers have diverse characteristics, even when they belong to the same group.

To provide better analysis for the laissez-faire decision rule, we make the following three
assumptions. First, we focus on the case of two groups.

Assumption 1 (Two Groups). The population consists of two groups G = {1, 2}.

When we consider asymmetric groups and equilibria, we refer to group 1 as a majority
(dominant) group and group 2 as a minority (discriminated) group. The two-group assump-
tion helps us to elucidate how the minority group is discriminated against by the majority
group.

Second, we assume that groups are symmetric.

Assumption 2 (Symmetric Groups). The characteristics of all groups are identically dis-
tributed, and the coefficient parameters are the same across all groups. Namely, a probability
distribution F such that for all i ∈ I,

xi ∼ F,

and there exists θ ∈ Rd such that for all g ∈ G,

θg = θ.

Note that although we assume that groups are symmetric, firms do not see them as
symmetric, and therefore, apply different statistical models for different groups. In other
words, even though the true coefficients are identical (θg = θ′g for all g, g′ ∈ G), firms
estimate them separately; thus, the values of the estimated coefficients are typically different
(θ̂g(n) 6= θ̂g′(n) for g 6= g′).

Although Assumption 2 is unrealistic (as it is evident that the characteristics should be
interpreted differently), it is useful for elucidating how laissez-faire nourishes statistical dis-
crimination. Under Assumption 2, there is no ex ante difference between groups (as assumed
in Arrow, 1973; Foster and Vohra, 1992; Coate and Loury, 1993; Moro and Norman, 2004,
etc.). Hence, all the differences we observe in the equilibrium consequence are purely due to
the property of the equilibrium learning process.

Under Assumption 2, statistical discrimination implies inefficiency: although a best can-
didate belongs to a minority group with substantial probability (K2/K), that candidate is
not hired due to underexploration. Hence, when the groups are symmetric, the resolution
of statistical discrimination make the hiring process not only fair but also efficient. By con-
trast, when there is exogenous asymmetry between groups, fairness and efficiency are often
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conflicting. For example, demographic parity is one of the most popular fairness notions
studied in machine learning (or supervised learning) literature. In our model, the demo-
graphic parity requires that the probability of hiring from the minority group is equal to
the population ratio; i.e., K2/K. Clearly, when the groups are asymmetric, the “first-best
decision rule” does not satisfy this condition—it hires more from a “more productive group,”
while it is arguable that such a decision rule is socially desirable. As long as we assume the
group symmetry, our argument avoids this controversy: The first-best decision rule is fair
and efficient. Thus, we should attempt to approximate it.

Third, we assume that characteristics are normally distributed, and therefore, the distri-
bution is non-degenerate. This assumption captures the diversity of workers, which is the
nature of the real-world labor market.

Assumption 3 (Normally Distributed Characteristics). For every candidate i,

xi ∼ N (µxg(i), σ
2
xg(i)Id),

where µxg ∈ Rd and σxg ∈ R++ for every g ∈ G. We also denote xi = µxg(i) +exi to highlight
the noise term exi.

Note that when we have both Assumptions 2 and 3, then there exist µx, σx such that

µxg = µx,

σxg = σx,

for all g ∈ G. Hence, xi ∼ N (µx, σ
2
xId) for all i ∈ I.

4.3 Perpetual Underestimation

To determine whether social learning incurs linear expected regret or not, it is useful to check
whether it results in perpetual underestimation with a significant probability.

Definition 2 (Perpetual Underestimation). A group g0 is perpetually underestimated if, for
all n > N (0), we have g(ι(n)) 6= g0.

Namely, when group g0 is perpetually underestimated, no worker from group g0 is hired
after the initial sampling phase.

If social learning results in perpetual underestimation with a significant probability, then
it often incurs linear expected regret. In particular, under Assumptions 2, perpetual under-

17



estimation against any group g ∈ G implies that firms fail to hire at least

Kg

K

(
N −N (0)

)
best candidate workers, which is linear in N . Hence, if the probability of perpetual under-
estimation is constant (independent of N), then we have linear expected regret.

In our model, perpetual underestimation is also closely related to social discrimination.
When perpetual underestimation occurs, a candidate who belongs to an underestimated
group is not hired, while groups are symmetric. This outcome happens because society
cannot accurately predict the skills of minority workers due to the lack of data. Hence, in
our model, perpetual discrimination can be regarded as a form of statistical discrimination.

4.4 Sublinear Regret with Balanced Population

This section analyzes the case where is only one candidate arrives at each round for both
groups. In this case, the variation of context implicitly urges the firms to explore all the
groups with some frequency. Consequently, laissez-faire has sublinear regret, implying that
statistical discrimination is eventually resolved, spontaneously.

Theorem 2 (Sublinear Regret with Balanced Population). Suppose Assumptions 1, 2, and
3. Suppose also that Kg = 1 for g = 1, 2. Then, the expected regret is bounded as

E[RegLF(N)] ≤ Cbal
√
N

where Cbal is a Õ(1) factor that depends on model parameters. Here, Õ(1) is a Landau
notation that ignores polylogarithmic factors.15 Letting µx = ||µx||, the factor Cbal is inverse
proportional to Φc(µx/σx), which approximately scales as exp(−(µx/σx)

2/2).

Proof. See Appendix B.3. The explicit form of Cbal is found at the end of the Appendix
B.3.

The crux of the analysis here is whether the perpetual underestimation is prevented.
Assume that group 2 is underestimated, which happens with some constant probability.
The ratio µx/σx represents the stability of characteristics. The larger this value is, the more
stable the skill of candidates. If µx/σx is small, there is some probability such that the skill

15Namely, there exists N0 ∈ N and a function f(N) that is finite-order polynomial of logN such that
E[RegLF(N)] ≤ f(N) for all N ≥ N0. In this and subsequent theorems, we often ignore polylogarithmic
factors (factors that are finite-order polynomial of the logarithm) of N because they grow very slowly as N
grows large. We remark on the important dependence on model parameters and refer to the equation of
explicit formulae of each factor.
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of the group-1 candidate is predicted to be bad. In such a case, the candidate from group 2

might be chosen, which updates the belief about group 2 to resolve underestimation. As is
expected by the theory of least squares, the standard deviation of θ̂g(n) is proportional to
(V̄g(n))−1/2, and we show that its diameter (λmin(V̄g(n)))−1/2 shrinks as Õ(1/

√
n). The regret

per error is defined by this quantity, and the total regret is Õ(
∑

n≤N(1/
√
n)) = Õ(

√
N).

Theorem 3 shows that statistical discrimination is resolved spontaneously when the can-
didate variation is large. At a glance, this appears to be in contradiction with widely known
results that states laissez-faire may lead to suboptimal results in bandit problems due to un-
derexploration. Since selfish firms do not want to experiment with underrepresented groups
at their own risk, laissez-faire perpetually underestimates the skill of the minority group (as
demonstrated in Theorem 1). However, the variation in characteristics naturally incentivizes
selfish agents to explore the underestimated group, and therefore, with some additional con-
ditions, we can bound the probability of perpetual underestimation.

Theorem 2 shares some intuitions with the previous results (Kannan et al., 2018; Bastani
et al., 2020), which have shown that the variation in contexts (characteristics) improves
the performance of the greedy algorithm (laissez-faire) in contextual multi-armed bandit
problems. Kannan et al. (2018) assume that there is a sufficiently long initial sampling
phase, in which society can collect the uniform-sample data until the model parameters are
stabilized. Theorem 1 in Bastani et al. (2020) corresponds to Theorem 2 in our paper, and
we further attributes it to the stability µx/σx rather than the diameter of the characteristics.

More importantly, in the next subsection, we prove that these positive results are “special
cases”—we will show that, even when there is a variation in characteristics, when the popu-
lation ratio imbalanced, the laissez-faire decision rule may cause perpetual underestimation
with a substantial probability.

4.5 Large Regret with Imbalanced Population

While Theorem 2 implies that statistical discrimination might be spontaneously resolved in
the long run (if we admit that workers’ characteristics are diverse enough), it crucially relies
on one unrealistic assumption—the balanced population ratio. In many real-world prob-
lems, the population ratio is imbalanced. The dominant group is often the majority of the
population, and the discriminated is minority. Even when the population demographically
balanced, if we look at a specific labor market, the population ratio could be imbalanced
due to an imbalanced wealth distribution or discouragement of human capital investments.

We indeed find that the population ratio between groups has a crucial role for the welfare
under laissez-faire. In the following theorem, we assume that, in each round, while only one
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minority worker arrives (i.e., K2 = 1), while many majority workers (K1 > 1) arrive. When
the population is imbalanced, perpetual underestimation becomes more likely, and therefore,
society suffers from a large expected regret.

Theorem 3 (Large Regret with Imbalanced Population). Suppose Assumptions 1, 2, and 3.
Suppose also that K2 = 1 and d = 1. Let K1 > log2N . Then, under the laissez-faire decision
rule, group 2 is perpetually underestimated with the probability at least Cimb = Θ̃(1).
Accordingly, the expected regret of the laissez-faire decision rule is

E
[
RegLF(N)

]
≥ Cimb(N −N (0))

K
= Ω̃(N).

Proof. See Appendix B.4. The explicit form of Cimb is found at Eq. (39).

In the proof of Theorem 3, we evaluate the probability of the following two events oc-
curing. (i) The coefficient parameter for the minority candidates, θ2 is underestimated. (ii)
The characteristics and skills of the hired majority workers are consistently good throughout
the rounds. The probability of (i) is constant (independent of N) and the probability of (ii)
is constant if K1 > log2N . When both (i) and (ii) occur, minority workers are perpetually
underestimated, and therefore, we have a large regret.

Theorem 3 indicates that we should not be too optimistic about the consequence of
laissez-faire. The imbalance in the population ratio naturally favors the majority group by
helping society to collect a richer data set about them, leading to statistical discrimina-
tion. This insight applies to many real-world problems because an imbalanced population is
commonplace.

Remark 2. In the proof of Theorem 3, we explicitly bound the probability that each event
happens. Hence, the effect of initial sample size is revealed. The probability of underestimat-
ing the minority group is exponentially small to the number initial samples for minorities,
N

(0)
2 , which implies that small number of initiators in the minority group can prevent the

underestimation to be perpetuated.16 Note also that this is consistent with the prior results
by Kannan et al. (2018), which state a sufficiently large initial samples prevent perpet-
ual underestimation because it alleviates the underestimation of θ̂2. In Subsection 8.6, we
demonstrate that this solution is not desirable because uniform sampling is costly and dif-
ficult to implement. According to our simulation, the UCB-based subsidy rule (the hybrid
mechanism, proposed in Section 6) outperforms uniform sampling followed by laissez-faire.

Remark 3. In our framework, the statistical distribution purely attributes to a failure of
social learning and the resultant misinformation. Hence, even when perpetual underesti-

16See Lemma 24 (in the Appendix) for the full detail.
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mation occurs, the true skills of minority workers (the distribution of yi) are not lowered.
However, if we additionally incorporate the choice of the education level and human capital
investments (as in Foster and Vohra, 1992; Coate and Loury, 1993), the misinformation nat-
urally discourages minority workers from improving their skills. Therefore, if education is
endogenous, the welfare loss and inequality raised by social learning would be more serious.

5 The Upper Confidence Bound Mechanism

Section 4 has discussed the equilibrium consequence under laissez-faire. We observed that,
when the population ratio is imbalanced (as in the real-world job market), there is a sub-
stantial probability that the underestimation is perpetuated. This result indicates that a
policy intervention (affirmative action) is effective for improving social welfare and fairness
of the hiring market.

This section proposes a subsidy rule to resolve such a perpetual underestimation. We
use the idea of the upper confidence bound (UCB) algorithm, which is widely used in the
literature of the bandit problem.17 The UCB algorithm balances exploration and exploitation
by allocating handicaps to less explored arms (groups), whose rewards (skills) cannot be
predicted accurately. The UCB algorithm develops a confidence interval for the true reward
and evaluate each arm’s performance by its upper confidence bound to achieve this balance.
Although firms are not willing to follow the UCB’s recommendation under laissez-faire, the
government can provide a subsidy to promote a candidate worker who has the highest UCB.
In this section, we establish a UCB-based subsidy rule and evaluate its performance.

5.1 The UCB Decision Rule

To establish the UCB-based subsidy rule, we first define the hiring decision suggested by
the UCB algorithm. After that, we construct a subsidy rule that incentivizes firms to hire
workers based on UCB. A challenge is that the adaptive selection of the candidates based
on history can induce some bias, and the standard confidence bound no longer applies to
our case. To overcome this issue, we use martingale inequalities (Peña, Lai, and Shao, 2008;
Rusmevichientong and Tsitsiklis, 2010; Abbasi-Yadkori, Pál, and Szepesvári, 2011). We here
introduce the confidence interval for the true coefficient parameter, (θg)g∈G.

17The idea of UCB goes back to at least in 1980s. The seminal paper by Lai and Robbins (1985) analyzed
a version of UCB. More recently, Auer et al. (2002) introduced UCB1, which is widely known in the machine
learning literature.
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Definition 3 (Confidence Interval, Abbasi-Yadkori et al., 2011). Given the group g’s col-
lected data matrix V̄g(n), the confidence interval of group g’s coefficient parameter θg is
given by

Cg(n) =

{
θ̄g ∈ Rd :

∥∥∥θ̄g − θ̂g(n)
∥∥∥
V̄g(n)

≤ σε

√
d log

(
det(V̄g(n))1/2 det(λId)−1/2

δ

)
+ λ1/2S

}

where ||v||A =
√
v′Av for a d-dimensional vector v and d× d matrix A.

The standard confidence interval, Cg(n), shrinks as firm n has a richer set of data about
group g. Abbasi-Yadkori et al. (2011) study the property of this confidence interval, and
they prove that the true parameter θg lies in Cg(n) with a probability 1− δ (Lemma 19). If
we choose sufficiently small δ,18 it is “safe” to assess that worker i’s skill is at most

q̃i(n) := max
θ̄g(i)∈Cg(i)(n)

x′iθ̄g(i).

We call q̃i(n) the upper confidence bound index (UCB index) of worker i’s skill. Intuitively,
q̃i(n) is worker i’s skill in the most optimistic scenario. The UCB decision rule makes a
decision based on this UCB index.

Definition 4 (UCB Decision Rule). The UCB decision rule selects the worker who has the
highest UCB index; i.e.,

ι(n) = arg max
i∈I(n)

q̃i(n). (5)

The UCB index q̃i(n) is close to the pointwise estimate q̂i(n) when society has a rich data
about group g(i), because Cg(i)(n) is small in such a case. However, when the information
about group g(i) is insufficient, q̃i(n) is much larger than q̂i(n), because the firm is not
sure about the true skill of worker i and Cg(i)(n) is large. In this sense, the UCB decision
rule offers affirmative actions to underexplored groups. In contrast to the greedy algorithm
(laissez-faire), the UCB algorithm appropriately balances exploration and exploitation, and
therefore, it has a sublinear expected regret in general environments.

The UCB decision rule recommends the exploration of majority candidates as well as
minority candidates. The amount of the subsidy is proportional to the uncertainty of the
candidate’s characteristic, which is represented by the confidence interval Cg(n). The confi-
dence interval Cg(n) is inverse proportional to V̄g(n) = (Xg(n))′Xg(n) +λId.19 Hence, if the
data Vg(n) do not have a large variation in a particular dimension of xi, then the prediction

18We typically choose δ = 1/N so that the confidence interval is asymptotically correct in the limit of
N →∞.

19The standard ordinary least square has a confidence bound of the form θg − θ̂g(n) ∼ N (0, σ2
εV
−1
g (n))
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from that dimension can be inaccurate. In such a case, the UCB decision rule recommends
hiring a candidate who contributes to increasing the data variation for that dimension. For
example, when a candidate has some skills that previous candidates do not have, then the
candidate’s UCB index tends to become large.

As the UCB decision rule nicely balances exploration and experimentation, it has a
sublinear regret for a general environment.

Theorem 4 (Sublinear Regret of UCB). Suppose Assumptions 3. Let RegUCB be the regret
from the UCB decision rule. Let λ ≥ max(1, L2). Then, by choosing sufficiently small δ, the
regret under the UCB decision rule is bounded as

E[RegUCB(N)] ≤ Cucb
√
N,

where Cucb is a Õ(1) factor to N that depends on model parameters.

Proof. See Appendix B.5. The explicit form of Cucb is found in Eq. (43) therein.

Note that, Õ(
√
N) regret is the optimal rate for these sequential optimization problems

under partial feedback (Chu, Li, Reyzin, and Schapire, 2011). Hence, Theorem 4 states that
the UCB decision rule effectively prevents perpetual underestimation and is asymptotically
efficient. The analysis here does not depend on the size of candidate pool K, and thus
effective regardless of the population ratio.

Remark 4. Although we have made several strong assumptions for the analysis of laissez-
faire (e.g., two groups, symmetry), Theorem 4 does not rely on them, and therefore, it
is applicable to a very general environment. The groups need not be symmetric. The
normal characteristic assumption (Assumption 3) can be relaxed to a weaker condition that
guarantees that the distributions are light-tailed, or the characteristics can even be arbitrary
as long as they are bounded with high probability.

5.2 The UCB Index Subsidy Rule

To implement the UCB decision rule, we need to satisfy the firms’ obedience condition (3)
along with the UCB’s decision rule (5). In this paper, we focus on two types of subsidy rules.
One is the UCB index subsidy rule, and another is the UCB cost-saving subsidy rule.

and thus |θg − θ̂g(n)| ∼ σεV −1/2g (n). The martingale confidence bound Cg(n) is larger than OLS confidence
bound in two factors because of the price of adaptivity. Namely, (1)

√
d factor and (2)

√
log(det(V̄g(n)))

factor. As discussed in Xu, Honda, and Sugiyama (2018), the first
√
d factor unnecessarily overestimates the

confidence bound for most cases.
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Algorithm 3 The UCB Index Subsidy Rule
Complete the initial sampling phase by running Algorithm 1.
for n = N (0) + 1, · · · , N do . The UCB index subsidy rule starts.

for i do
Compute q̃i(n) = maxθ̄g(i)∈Cg(i)(n) x

′
iθ̄g(i). . Obtain UCB indices.

Offer si = q̃i(n)− q̂i(n) for all i ∈ I(n). . Align firm n’s payoff to the UCB index.
Firm n hires ι(n) = arg maxi∈I(n) q̃i(n) as an equilibrium consequence.

end for
end for

First, we formally define the UCB index subsidy rule. The UCB index subsidy rule
induces firms to hire a candidate with the largest UCB index by aligning each firm’s profit
with the UCB index.

Definition 5 (UCB Index Subsidy Rule). The UCB index subsidy rule s subsidizes worker
i who arrives in round n by

si(n;h(n)) = q̃i(n;h(n))− q̂i(n;h(n)).

The formal algorithm is shown as Algorithm 3.

The UCB index subsidy rule is named “index” because it belongs to an index policy
(Gittins, 1979) in the terminology of the multi-armed bandit literature.

Definition 6 (Index Policy). A subsidy rule s is an index policy if for all n and i ∈ I(n),
si(n; ·) only depends on Xg(i)(n), Yg(i)(n),xi.

To be more precise, our definition of the index rule is slightly weaker than the standard
definition. A standard definition requires that the index of an arm only depends on the data
generated by the arm. However, since we regard a set of arms as a group, it does not make
sense to focus on the data generated by “an arm.” Hence, we utilize all the data about group
g(i). Having said that, our definition requires that the subsidy for worker i is independent
of (i) the other agents’ characteristics xj for any j ∈ I(n) \ {i} and (ii) the data about other
groups, Xg′(n) for any g′ 6= g(i).

If a subsidy rule is an index policy, the government need not observe the characteristics
of I(n) \ {i} to determine the subsidy assigned to the employment of worker i. This is a
practically desirable property: In many real-world problems, it is difficult for the government
to observe the characteristics of candidate workers who are not hired.
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The following theorem states the property of the UCB index subsidy rule. Among all
index subsidy rules that implement the UCB decision rule, the UCB index subsidy rule
requires the minimum amount of the subsidy. Its expected amount is proven to be Õ(

√
N).

Theorem 5 (Sublinear Subsidy of the UCB Index Rule).

1. The UCB index subsidy rule implements the UCB decision rule.

2. The UCB index subsidy rule needs a minimum amount of the subsidies among all
subsidy rules that (i) implement the UCB decision rule, and (ii) str an index policy.
Formally, let sU-I be the UCB cost-saving subsidy rule and s be an arbitrary subsidy
rule that satisfies (i) and (ii). Then, for all i, n and h(n), we have

sU-I
i (n;h(n)) ≤ si(n;h(n)).

3. Under the same assumptions as Theorem 4, the amount of the subsidy required by the
UCB index subsidy rule is bounded as

E[SubUCB-I(N)] ≤ Cucb
√
N.

where Cucb is an Õ(1) factor that is the same as Theorem 4.

Proof. See Appendix B.6.

The square-root subsidy implies that the government can eventually end the subsidy
because SubUCB-I(N)/N → 0 as N →∞. Alternatively, Theorem 5 implies that society can
terminate affirmative actions once a sufficiently rich data set about the minority groups is
obtained.

5.3 The UCB Cost-Saving Subsidy Rule

If the mechanism does not have to be an index policy (i.e., the subsidy for worker i ∈ I(n)

may depend on (xj)j∈I(n) of the other candidates), then we can save the budget without
modifying the decision rule. To achieve it, we can subsidize the minimum amount such that
candidate ι is more profitable than the other candidates. Formally, the UCB cost-saving
subsidy rule is defined as follows.

Definition 7 (UCB Cost-Saving Subsidy Rule). For every round n, the UCB cost-saving
subsidy rule chooses si(n) = 0 for every i ∈ I(n) \ {ι(n)}, where ι(n) is the candidate worker
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Algorithm 4 The UCB Cost-Saving Subsidy Rule
Complete the initial sampling phase by running Algorithm 1.
for n = N (0) + 1, · · · , N do . The UCB cost-saving subsidy rule starts.

for i do
Compute q̂i(n) = x′iθ̂g(i)(n).
Compute q̃i(n) = maxθ̄g(i)∈Cg(i)(n) x

′
iθ̄g(i).

Compute ι(n) = arg maxi∈I(n) q̃i(n). . ι(n) is the UCB winner.
Offer sι(n)(n) = maxj∈I(n) q̂j(n)− q̂ι(n)(n). . Make ι(n) becomes most profitable.
Offer sj(n) = 0 for all j ∈ I(n) \ {ι(n)}.
Firm n hires ι(n) as an equilibrium consequence.

end for
end for

selected by the UCB algorithm, (5). For i = ι(n), the subsidy si is given by

si(n;h(n)) = max
j∈I(n)

q̂j(n;h(n))− q̂i(n;h(n)).

The formal algorithm is shown as Algorithm 3.

The UCB cost-saving subsidy rule subsidizes only the targeted worker, ι(n). Hence, for
other workers j 6= ι(n), the payoff from the employment is q̂j(n). The UCB cost-saving
subsidy rule sets the subsidy amount sι(n) in such a way that the payoff from hiring worker
ι(n), which is q̃ι(n)(n) + sι(n), is equal to (or slightly larger than) the payoff from hiring the
worker who has the highest predicted skill, maxj∈I(n) q̃j(n).

Clearly, the UCB cost-saving subsidy rule is the subsidy rule that requires the minimum
budget to implement the UCB decision rule. As fines (negative subsidies) are not allowed
in our model, the government cannot discourage the employment of the other candidate
workers, j ∈ I(n) \ {ι(n)}, further. Hence, the UCB cost-saving subsidy rule requires the
smallest budget among all subsidy rules that implements the decision rule (5).

Combining this observation with Theorem 5, we obtain the following theorem.

Theorem 6 (Sublinear Subsidy of the UCB Cost-Saving Rule).

1. The UCB cost-saving subsidy rule implements the UCB decision rule.

2. The UCB cost-saving subsidy requires the minimum budget for implementing the UCB
decision rule. Formally, let sU-CS be the UCB cost-saving subsidy rule and s be an
arbitrary subsidy rule that implements the UCB decision rule. Then, for all i, n and
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h(n), we have
sU-CS
i (n;h(n)) ≤ si(n;h(n)).

3. The amount of the subsidy required by the UCB cost-saving subsidy rule is bounded
as

E[SubUCB-CS(N)] ≤ E[SubUCB-I(N)] ≤ Cucb
√
N.

Proof. The first two statements straightforwardly follow from the argument above. The last
statement follows from the first two and Theorem 5.

The cost-saving subsidy rule has some drawbacks. It depends on the characteristics of
all the potential candidates. Hence, the government must have precise knowledge about
candidates who appeared in each round but were not hired by the firm. Still, as a theoretical
benchmark, it is useful to study the minimum subsidy amount incurred. In Subsection 8.4,
we compare the index rule and cost-saving rule numerically. Our simulation results indicate
that the cost-saving rule outperform the index rule by much in terms of the total amount of
subsidy.

6 The Hybrid Mechanism

In the previous section, we showed that the UCB mechanism effectively prevents perpetual
underestimation and achieves sublinear regret for general environments. However, the UCB
mechanism has one draw back: it assigns subsidies forever. Although the confidence interval
Cg(n) shrinks as n grows large, it does not degenerate to a singleton for any finite n. Accord-
ingly, even for a large n, there remains a gap between expected skill q̂i(n) and the UCB index
q̃i(n) (though small in size). This feature is not desirable for the following reasons. First, in-
troducing a permanent policy is often more politically difficult than introducing a temporary
policy. If the government declares that hiring of minority workers is permanently subsidized,
the policy may look quite unfair to the majority group. The appearance of unfairness would
cause significant opposition. Second, if we keep distributing subsidies over the long run, the
required budget tends to grow. Third, besides the subsidy itself, the permanent allocation
of the subsidy comes with (unmodeled) administration costs.

To overcome these limitations of the UCB mechanism, we propose the hybrid mechanism,
which starts with the UCB mechanism and turns to laissez-faire by terminating the subsidy
at some point. We terminate the UCB-phase once the amount of data of the minority group
is enough to induce spontaneous exploration. We prove that, our hybrid mechanism has
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Õ(
√
N) regret (as the UCB mechanism does), and its expected total subsidy amount is Õ(1)

(as opposed to Õ(
√
N) subsidy of UCB).

The construction of the hybrid mechanism is as follows. Let sU-I
i (n) = q̃i(n) − q̂i(n) be

the size of confidence bound. Note that, sU-I
i (n) corresponds to the amount of the subsidy

allocated by the UCB index subsidy rule (Definition 5). The hybrid index q̃H
i is defined as

q̃H
i (n;h(n)) :=

q̃i(n;h(n)) if sU-I
i (n;h(n)) > aσx||θ̂g(i)(n;h(n))||,

q̂i(n;h(n)) otherwise,
(6)

where a ≥ 0 is the mechanism’s parameter.
The hybrid index is literally a “hybrid” of the predicted skill q̂i(n) and the UCB index

q̃i(n). If the difference between the UCB index and the predicted skill is larger than the
threshold (i.e., sU-I

i (n) > aσx||θ̂g(i)(n)||), the hybrid index is equal to the UCB index q̃i(n).
The confidence bound |q̃i(n) − q̂i(n)| is large while we have insufficient knowledge about
group g(i); this is typically the case in an early stage of the game. Once this gap becomes
smaller than the threshold (i.e., sU-I

i (n) ≤ aσx||θ̂g(i)(n)||), then the hybrid index becomes
equal to the predicted skill q̂i(n).

Naturally, the hybrid decision rule is defined as the rule that hires the highest hybrid
index.

Definition 8 (The Hybrid Decision Rule). The hybrid decision rule selects the worker who
has the highest hybrid index; i.e.,

ιH(n;h(n)) = arg max
i∈I(n)

q̃H
i (n;h(n)).

As the hybrid decision rule is a hybrid of the UCB decision rule and the laissez-faire
decision rule, it can be implemented by mixing the laissez-faire subsidy rule and either the
UCB index subsidy rule or the UCB cost-saving subsidy rule.

Definition 9 (The Hybrid Index Subsidy Rule). Let sU-I
i be the UCB index subsidy rule.

The hybrid index subsidy rule sH-I is defined by

sH-I
i (n;h(n)) :=

sU-I
i (n;h(n)) if sU-I

i (n;h(n)) > aσx||θ̂g(i)(n;h(n))||,

0 otherwise.

Or, equivalently, the hybrid index subsidy rule can be defined by

sH-I
i (n;h(n)) = q̃H

i (n;h(n))− q̂i(n;h(n)).
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Algorithm 5 The Hybrid Index Subsidy Rule
Complete the initial sampling phase by running Algorithm 1.
for n = N0 + 1, · · · , N do . The hybrid index subsidy rule starts.

for i do
Compute q̂i(n) = x′iθ̂g(i)(n).
Compute q̃i(n) = maxθ̄∈Cg(n) x

′
iθ̄.

Compute sU-I
i (n) = q̃i(n)− q̂i(n).

Offer si(n) =

{
0 if sU-I

i ≤ aσx||θ̂g(i)||,
sU-I
i (n) otherwise.

. The hybrid index subsidy.

Firm n hires ι(n) = arg maxi∈I(n)

{
q̂i(n) + sU-I

i (n)
}

as an equilibrium consequence.
end for

end for

Definition 10 (The Hybrid Cost-Saving Subsidy Rule). Let sU-CS
i be the UCB cost-saving

subsidy rule. The hybrid cost-saving subsidy rule sH-CS is defined by

sH-CS
i (n;h(n)) :=

sU-CS
i (n;h(n)) if sU-I

i (n;h(n)) > aσx||θ̂g(i)(n;h(n))||,

0 otherwise.

Theorem 7 (The Properties of the Hybrid Subsidy Rules).

1. The hybrid index subsidy rule sH-I and the hybrid cost-saving subsidy rule sH-CS im-
plement the hybrid decision rule ιH.

2. The hybrid index subsidy rule sH-I requires the minimum subsidy among all index
subsidy rules that implement ιH.

3. The hybrid cost-saving subsidy rule sH-CS requires the minimum subsidy among all
subsidy rules that implement ιH.

The proof of Theorem 7 is analogous to that of Theorems 5 and 6, and thus is omitted.
The algorithm of the hybrid index subsidy rule and its equilibrium consequence is stated

as Algorithm 5. As it is straightforward to modify Algorithm 5 to construct a hybrid cost-
saving subsidy rule, we omit the algorithm for the hybrid cost-saving subsidy rule here.

The following two theorems characterize the regret and amount of subsidy of the hybrid
decision rule.

Theorem 8 (Regret Bound for the Hybrid Decision Rule). Suppose Assumptions 1, 2, and
3. Then, by choosing sufficiently small δ, the regret under the hybrid decision rule ιH is
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bounded as
E[RegH(N)] ≤ Chyb

√
N

where Chyb is a factor that is Õ(1) to N .

Theorem 9 (Subsidy Bound for the Hybrid Subsidy Rules). Suppose Assumptions 1, 2, and
3. By choosing sufficiently small δ, for any a > 0, the total amount of the subsidy under
the hybrid index subsidy rule (SubH-I) and the hybrid cost-saving subsidy rule (SubH-CS) is
bounded as

SubH-CS(N) ≤ SubH-I(N) = Chyb-sub.

where Chyb-sub is a factor that is Õ(1) to N .

Proof. See Appendix B.7. The explicit form of Chyb is found at Eq. (54). The explicit form
of Chyb-sub is found at Eq. (61) therein.

Theorem 8 states that the order of the regret under the hybrid decision rule is Õ(
√
N),

which is the same as the original UCB decision rule. Theorem 9 states that the amount of
the subsidy is polylogarithmic to N , which is a substantial improvement from the standard
UCB where Õ(

√
N) subsidy is required.

The threshold of switching from the UCB mechanism to laissez-faire is crucial for guaran-
teeing the performance of the hybrid mechanism. Our threshold, aσx||θ̂(n)||, is determined
in such a way that the hybrid decision rule ιH satisfies proportionality, which is a new concept
established in this paper. The formal statement appears in Lemma 28 in Appendix B.7 but
it requires additional notations that do not appear in the main body of this paper. In what
follows, we provide a high-level intuition regarding the concept of proportionality.

We evaluate the expected regret of the hybrid decision rule by comparing it with the
expected regret of the UCB decision rule. However, since different decision rules generate
different histories and data, neither decision rule dominates the other. This is why the
comparison is challenging. We overcome this problem by proving that the hybrid decision
rule ιH is proportional to ιU in the sense that there exists a constant c > 0 such that when
the UCB rule ιU hires worker i with probability pi, then the hybrid rule ιH hires worker
i with probability at least cpi given the same history. This property guarantees that the
hybrid rule escapes from underexploring the minority group and secures expected regret of
Õ(
√
N).

The timing of switching to laissez-faire is crucial for the proportionality. When the data
about the minority group are insufficient, firms rarely hire minority workers under laissez-
faire. We prove that, when the threshold is set to aσx||θ̂g(n)||, then firms keep hiring minority
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workers with sufficiently high frequency, and therefore, statistical discrimination is resolved
eventually.

Remark 5 (Dependence on Parameter a). There is a tradeoff between the regret and subsidy.
The constant on the top of regret (Theorem 8) is exp(a2/4), which is increasing in a. By
contrast, the constant on the top of subsidy (Theorem 9) is exp(3a2/4)/a2, which goes to
infinity as a→ 0. Theorem 9 guarantees that the subsidy is Õ(1) whenever a > 0. However,
when a is small, the bound provided by Theorem 9 becomes large and may not be insightful.
To balance the tradeoff, the government should select a “right-size” value for a. In our
simulations (Section 8) we adopt a = 1.

For small a, because the hybrid mechanism is close to the UCB mechanism, we can divert
our analysis for the UCB mechanism (Theorem 5). When a is small and N is finite, the
square-root subsidy bound established in Theorem 5 may provide a tighter characterization
of the total subsidy.

7 Interviews and the Rooney Rule

7.1 Two-Stage Model

Although the UCB-based subsidy rule is a powerful policy intervention to resolve statistical
discrimination, the subsidy rule is sometimes difficult to implement in practice. This section
articulates the advantages and disadvantage of the Rooney Rule, which requires each firm
to invite at least one candidate of each group to an on-site interview. The Rooney Rule is
relatively easy to implement because it requires neither the subsidy nor hard hiring quota.

To incorporate the additional information the firms acquire through the interview, we
make the following modification to the model. In the modified model, each round n consists
of two stages. In the first stage, firm n observes the characteristics of each arriving agent
i ∈ I(n), xi. Based on xi, firm n selects a shortlist of finalists IF (n) ⊆ I(n), where
|IF (n)| = KF for someKF ∈ N. In the second stage, by interviewing finalists, firm n observes
an additional signal ηi for each finalist i (as assumed in Kleinberg and Raghavan, 2018). Firm
n predicts each finalist i’s skill from the characteristics xi and the additional signal ηi, and
hires one worker from the set of finalists, ι(n) ∈ IF (n). Firms are not allowed to hire a
worker who was not selected as a finalist. After the firm makes a decision, the skill of the
hired worker yι(n) is publicly disclosed.

We assume the following linear relationship between the skill yi and the observable vari-
ables xi and ιi:

yi = x′iθg(i) + ηi + εi
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The “noise” term comprises two variables: ηi and εi. ηi is revealed as an additional signal
when the firm chooses i as a finalist. However, εi remains to be unpredictable even after the
hiring—firms only observe yi after worker i is hired.

For analytical tractability, besides Assumptions 1, 2, and 3, we make the following two
assumptions.

Assumption 4 (Two Finalists). Each firm can invite only two finalists; i.e., KF = 2.

Assumption 4 generates a minimal environment to consider the performance of the
Rooney Rule.

Assumption 5 (Normal Additional Signals). The signal that the finalist reveals is the
independent and identically distributed normal random variable:

ηi ∼ N (0, σ2
η).

Remark 6. If ση = 0, then the two-stage model is the same as the one-stage model that we
have considered in the previous sections.

7.2 Failure of Laissez-Faire in the Two-Stage Model

This subsection analyzes the performance of laissez-faire in this two-stage setting. The
result is analogous to the one-stage case (Theorem 3) : laissez-faire often falls in perpetual
underestimation, and therefore, has linear regret.

First, we formally define the regret. As in the one-stage model, the benchmark is the
first-best decision rule, which is the rule firms would take if the coefficient parameter θ were
known. Clearly, the first-best decision rule would greedily invite top-KF workers in terms of
qi to the final interview. We denote this set of finalists chosen by the first-best decision rule
in round n by ĪF (n). Formally, ĪF (n) is obtained by solving the following problem:

ĪF (n) = arg max
I′⊆I(n)

∑
i∈I′

qi s.t. |I ′| = KF .

After that, the first-best decision rule would observe the realization of ηi for i ∈ ĪF (n), and
then hires the worker i who has the highest skill predictor: qi + ηi. The unconstrained two-
stage regret is defined as the loss compared with this first-best decision rule. (This regret is
named “unconstrained” because we introduce an alternative definition of regret later.)

Definition 11 (Unconstrained Two-Stage Regret). In the two-stage hiring model, the un-
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constrained two-stage regret U2S-Reg of decision rule ι is defined as follows:

U2S-Reg(N) =
N∑
n=1

{
max
i∈ĪF (n)

(qi + ηi)−
(
qι(n) + ηι(n)

)}
.

Under laissez-faire, firm n’s optimal strategy is to greedily choose their candidates based
on the belief, i.e.,

IF (n) = arg max
I′⊆I(n)

∑
i∈I′

q̂i(n) s.t. |I ′| = KF .

After observing the realization of the additional signals ηi, firm n again selects the candidate
with the highest predicted skill:

ι(n) = arg max
i∈IF (n)

{q̂i(n) + ηi} .

Even in the two-stage model, laissez-faire has linear regret when the population ratio is
imbalanced.

Theorem 10 (Failure of Laissez-Faire in the Two-Stage model). Suppose Assumptions 1,
3, 2, 4, and 5. Suppose also that K2 = 1 and d = 1. Let K1 − log2(K1 + 1) > log2N .
Then, under the laissez-faire decision rule, group 2 is perpetually underestimated with the
probability at least Cimb = Θ̃(1). Accordingly, the expected regret of the laissez-faire decision
rule is

E
[
U2S-RegLF

]
= Ω̃(N).

Proof. See Appendix B.8.

The proof idea of Theorem 10 is as follows. Under laissez-faire, each firm n interviews
two candidates who have the highest expected skills, q̂i(n). If both of these two workers are
majorities, then minority workers are never hired no matter what the ηi for each finalist is.
By evaluating the probability that both finalists are majorities, we derive the probability
that perpetual underestimation occurs. Note that, to meet K1 − log2(K1 + 1) ≥ log2N ,
K1 should be Ω(logN) = Ω̃(1). Hence, Theorems 3 and 10 require the same rate of the
imbalanced population ratio.

To summarize, even in a two-stage setting, the laissez-faire decision has linear regret
(when the population ratio is imbalanced). This is because the laissez-faire decision rule
results in perpetual underestimation with a significant probability.
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7.3 The Rooney Rule and Exploration

As laissez fair does not perform well, we need to seek for desirable policy intervention. The
Rooney Rule, which requires each firm to invite at least one minority finalist to the final
interview, is one of the natural affirmative actions in this setting, and is widely implemented
in real-world problems.

Definition 12 (The Rooney Rule). In the two stage hiring model, the Rooney Rule requires
each firm n to select at least one finalist from every group g ∈ G; i.e., for every n and every
g ∈ G, IF (n) must satisfy ∣∣{i ∈ IF (n) | g(i) = g

}∣∣ ≥ 1. (7)

The Rooney Rule is relatively easy to implement because it imposes no hiring quota
or hiring preference given to minorities. The Rooney Rule of originally introduced as the
National Football League policy to promote hiring of ethnic-minority candidates for head
coaching positions, but variations of the Rooney Rule are now implemented in many indus-
tries.20 Although the Rooney Rule has been used in many places, its theoretical performance
has not been studied intensively.

To understand the fact that the Rooney Rule resolves statistical discrimination, we in-
troduce an alternative (weaker) notion of regret, constrained two-stage regret.

Definition 13 (Constrained Two-Stage Regret). In the two-stage hiring model, the con-
strained two-stage regret (C2S-Reg) of decision rule ι is defined as follows:

C2S-Reg(N) =
N∑
n=1

{
max
i∈ĬF (n)

(qi + ηi)−
(
qι(n) + ηι(n)

)}
.

where ĬF (n) is given by

ĬF (n) = arg max
I′⊆I(n)

∑
i∈I

qi (8)

s.t. |I ′| = KF ,

∀g ∈ G,
∣∣∣{i ∈ ĬF (n) | g(i) = g

}∣∣∣ ≥ 1.

20For example, in a securities and exchange commission filing posted on 2018, Amazon declares that
“The Amazon Board of Directors has adopted a policy that the Nominating and Corporate Governance
Committee include a slate of diverse candidates, including women and minorities, for all director openings.
This policy formalizes a practice already in place” (https://www.sec.gov/Archives/edgar/data/1018724/
000119312518162552/d588714ddefa14a.htm). In addition, according to O’Brien (2018), Facebook COO
Sheryl Sandberg said that “The company’s ‘diverse slate approach’ is a sort of ‘Rooney Rule,’ the National
Football League policy that requires teams to consider minority candidates.”
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In plain words, ĬF (n) is the best list of finalists who satisfy the constraint (7). If (7)
is imposed as an “exogenous constraint” (rather than a policy), the first-best decision rule
would interview ĬF (n) to maximize social welfare. Clearly, the unconstrained regret is larger
than the constrained regret.

The constrained regret is useful in that it enables us to identify whether the Rooney Rule
prevents perpetual underestimation—if perpetual underestimation occurs under the Rooney
Rule, then the constrained regret is linear in N . To the contrary, if the social learning is
successful (i.e., q̂i is very close to qi for all the workers), the constrained regret would be
zero.

Under Rooney Rule, myopic firm n would greedily choose candidates based on estimator
q̂i(n) subject to the constraints:

IF (n) = arg max
I′⊆I(n)

∑
i∈I

q̂i(n) (9)

s.t. |I ′| = KF ,

∀g ∈ G,
∣∣{i ∈ IF (n) | g(i) = g

}∣∣ ≥ 1.

and ι = arg maxi∈IF (n) {q̂i(n) + ηi}. Note that the only difference between Eq. (8) and (9) is
that qi is replaced by q̂i(n).

The following theorem states that the Rooney Rule is able to resolve perpetual underes-
timation with sufficiently revealing signal ηi.

Theorem 11 (Sublinear Constrained Regret under the Rooney Rule). Suppose Assumptions
1, 2, 3, 4, and 5. Then, the regret under the Rooney Rule is bounded as

E
[
C2S-RegRooney(N)

]
≤ C2SR

√
N

where C2SR is Õ(1) to N .

Proof. See Appendix B.9. The explicit form of C2SR is found at Eq. (68) therein. Note that
C2SR is exponentially dependent on signal variance ση (see the definition of C6 in Eq. (64)),
which implies that a sufficiently large value of ση is required to obtain a reasonable bound.

The proof idea is as follows. When a group is underrepresented, no candidates from the
group is regarded as the most promising finalist with a significant probability. Hence, laissez-
faire may result in perpetual underestimation. The Rooney Rule mitigates this problem by
securing a finalist seat for each group. If the additional signal is informative enough (i.e.,
ση is large), there is some probability that the minority finalist beats the majority finalist

35



and is hired. In other words, additional signal naturally induces exploration for the minority
group and prevents perpetual underestimation.

Remark 7. The Rooney Rule is analogous to the ε-greedy algorithm that is widely studied
in the multi-armed bandit and reinforcement learning literature. The ε-greedy algorithm
usually makes a decision based on the greedy algorithm (equivalent to laissez-faire in our
model), but there is a small probability (ε) that the algorithm chooses a worker uniformly
at random. In the bandit literature, the ε- greedy algorithm is known to be robust to the
choice of the exploration probability ε: In fact, one can prove that the regret of the ε-greedy
algorithm is sub-linear for any value ε > 0. In our model, the Rooney Rule successfully
resolve underexploration because of the randomness in the additional signal ηi induces ε-
experiments.

7.4 The Rooney Rule and Exploitation

This subsection shows that, although the Rooney Rule successfully prevents statistical dis-
crimination, it may worsen social welfare evaluated by the original unconstrained regret.

When the population ratio is imbalanced (i.e., K1/K2 is large), there is a significant
probability that more than one majority worker has high skills. In that case, the true
predicted skill of the second-best majority worker (qi) is likely to be higher than that of
the minority champion. This feature raises constant regret per round: when ηi is normally
distributed, any finalist has a positive probability of being hired. Hence, the skills of all
candidates matter, and therefore, firms want to interview top-KF candidates who have the
highest skills. The Rooney Rule prevents this outcome. This effect would present even when
firms had perfect information about coefficients θ. Furthermore, the loss from the constraint
(7) is constant per round, and therefore, results in the unconstrained regret of Ω(N) in total.

Theorem 12 (Linear Unconstrained Regret under the Rooney Rule). Suppose Assumptions
1, 2, 3, 4, 5. Then, the regret under the Rooney Rule is bounded as

E
[
U2S-RegRooney(N)

]
= Ω(N).

The proof is straightforward from the argument above, and therefore, is omitted.
In summary, both laissez-faire and the Rooney Rule have linear unconstrained regret.

However, the structure behind these results are different. Laissez-faire has linear regret due
to underexploration. In contrast, the Rooney Rule has linear regret due to underexploitation.

One way to resolve this trade-off is to mix the Rooney Rule and laissez-faire (as the hybrid
mechanism does). By starting with the Rooney Rule and abolishing it after sufficiently rich
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Figure 1: The number of perpetual underestimation among 2000 runs under laissez-faire.
The error bars are the two-sigma binomial confidence intervals.

data is obtained, we could mitigate the disadvantage of the Rooney Rule. In Section 8, we
also testify the performance of such a mechanism.

8 Simulation

8.1 Setting

This section reports the results of the simulations that we run to support our theoretical
findings21. Unless specified, the model parameters are set as follows: d = 1, µx = 3, σx = 2,
σε = 2. The regularizer of regression is set to be λ = 1. The group sizes are set to be
(K1, K2) = (10, 2). The initial sample size is N (0) = K1 + K2, and the sample size for each
group is equal to its population ratio: N (0)

1 = K1, N
(0)
2 = K2. All the results are averaged

over 2000 runs.
The value of δ in the confidence bound is set to 0.1.

8.2 The Effects of the Population Ratio

We first testify the population ratio effects to the frequency of perpetual underestimation
(i.e., group 2 is never hired after the initial sampling phase). The decision rule is fixed
to laissez-faire (LF). We fix the number of minority candidates in each round to two (i.e.,
K2 = 2) and vary the number of majority candidates (K1 = 2, 10, 30, 100).

21The source code of the simulations is available at https://github.com/jkomiyama/
FairSocialLearning/
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Figure 2: The comparison between the LF and UCB decision rules. The lines are the average
over sample paths, and the areas cover between 5% and 95% percentile of runs. The error
bars at N = 1000 are the two-sigma confidence intervals.

Figure 1 exhibits the simulation result. Consistent with our theoretical analyses, we
observe that (i) as indicated by Theorem 2 laissez-faire rarely results in perpetual underes-
timation if the population is balanced (i.e., K1 is close to K2 = 2), and (ii) as indicated by
Theorem 3, perpetual underestimation becomes more frequent as the population of majority
workers increases (i.e., K1 increases).

8.3 Laissez-Faire vs The UCB Decision Rule

Figure 2a compares the number of minority workers hired by the laissez-faire (LF) and UCB
decision rules. Figure 2b compares the regret under these two rules. The horizontal axis
represents the round (where the number of total rounds is fixed to N = 1000), and the
vertical axis represents the number of minority workers hired and the regret, respectively.
The subsidy required by the UCB mechanism will be shown later (in Figure 4).

As indicated by Theorem 3, our simulation shows that laissez-faire has a significant
probability of underestimating the minority group. Consequently, we observe the following
two facts. First, the number of minority workers hired on average is lower than the first-best
decision rule would hire (hire a minority worker with probabilityK2/(K1+K2) = 2/(10+2) ≈
17% for each round). Second, laissez-faire sometimes causes perpetual underestimation, and
therefore, the number of minority workers hired could be zero, and the regret grows linearly in
n even after 1000 rounds. Due to the possibility of perpetual underestimation, the confidence
intervals of the sample paths (denoted by the read area) is very large, indicating that the
performance of laissez-faire is highly uncertain.

In contrast, consistent with Theorem 4, the performance of the UCB decision rule is
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Figure 3: The comparison between the UCB and hybrid decision rules. The lines are average
over sample paths, and the areas cover between 5% and 95% percentile of runs. The error
bars at N = 1000 show the two-sigma confidence intervals of the expected regret.

shown to be much more stable. As the UCB rule avoids underexploration, it does not cause
perpetual underestimation. Consequently, the regret of UCB is not only lower than laissez-
faire on average but also has smaller variance. Note that the UCB decision rule tends to
hire more minority workers than the first-best decision rule. This outcome happens because
society is typically less knowledgeable about the minority group (due to an uneven population
ratio), and therefore, the confidence interval for minority workers is typically larger than that
for the majority.

8.4 The UCB Mechanism vs the Hybrid Mechanism

Next, we compare the performance of the UCB and hybrid mechanisms. The parameter
of the hybrid mechanism is set to be a = 1. Figure 3 compares the performance of these
decision rules: Figure 3a shows the number of minority workers hired, and Figure 3b shows
the regret.

We observe that the number of the minority hired on average becomes closer to the
first-best decision rule (Figure 3a). Furthermore, as expected by Theorems 4 and 8, as for
efficiency (regret), the performance of these two decision rules grows in the same order.
However, we find that the hybrid decision rule outperforms UCB in our simulation setting
(Figure 3b). We consider that these results happen because the hybrid decision rule stops
overexploration of the minority group in an early stage.

Figure 4 compares the total budgets required by (i) the UCB index subsidy rule (UCB),
(ii) the hybrid index subsidy rule (Hybrid), (iii) the UCB cost-saving subsidy rule (CS-UCB),
and (iv) the hybrid cost-saving subsidy rule (CS-Hybrid).
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Figure 4: The comparison of the budget required by subsidy rules. The lines are average
over sample paths, and the areas cover between 5% and 95% percentile of runs. The error
bars at N = 1000 show the two-sigma confidence intervals of the expected regret.

Figure 4a compares the index subsidy rules. As predicted by Theorems 5 and 9, the
hybrid index subsidy rule requires a much smaller budget than the UCB index subsidy rule.
Furthermore, the subsidy distributed by the UCB rule seems still growing, even after 1000

rounds are finished. This is also consistent with our theory because the UCB rule requires
Õ(
√
N) subsidy (while the hybrid rule only requires Õ(1) subsidy).

Figure 4b compares the subsidy amount of the UCB cost-saving subsidy rule and the
hybrid subsidy rules. The UCB index subsidy rule is excluded because it requires a much
larger subsidy amount. We observe that (i) two cost-saving subsidy rules require a similar
amount of the subsidy (while the hybrid cost-saving subsidy rule performs slightly better),
and (ii) the cost-saving method is very effective, even when it is compared with the hybrid
index rule.

Note that, although the subsidy amounts required by these two cost-saving rules are
similar, when we have more rounds, the hybrid cost-saving subsidy rule outperforms. Figure 5
articulates this result. While the subsidy required by the hybrid cost-saving rule remains
constant after a few (about 100) rounds, the subsidy by the UCB cost-saving rule gradually
grows. This result is also consistent with our theory: While the subsidy required by the
hybrid rule is Õ(1) (Theorem 9), the subsidy required by the UCB cost-saving rule is Õ(

√
N)

(Theorem 6).
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Figure 5: The UCB cost-saving subsidy rule vs the hybrid index subsidy rule and the hybrid
cost-saving subsidy rule where N = 10000. Each line is an average over sample paths, and
the areas cover between 5% and 95% percentile of runs. Due to computational limitation,
we only did 50 runs of this simulation. The error bars at N = 10000 show the two-sigma
confidence intervals of the expected regret.

8.5 The Rooney Rule

This subsection describes the performance of the Rooney Rule compared with laissez-faire.
Figure 6a depicts the relationship between the frequency of perpetual underestimation and
the informativeness of the signal obtained at the second stage (measured by σ2

η, which is the
variance of ηi) under laissez-faire and the Rooney Rule.

For the Rooney Rule, we observe that when the second-stage signal ηi is more informative,
perpetual underestimation occurs less often. This outcome happens because, even when the
minority finalist is underestimated (the predicted skill q̂i is small while the true skill qi is
large), when σ2

i is large, the minority finalist has a significant probability of overturning the
situation. If this happens often enough, society can learn about the minority group, and
statistical discrimination can be spontaneously resolved.

As for laissez-faire, we observe that laissez-faire falls in perpetual underestimation with
a significant probability for any ση adopted in the simulation. This outcome is consistent
with our analysis (Theorem 10). Since minority workers are rarely chosen as finalists, they
have no opportunity to be hired even when ση is large. These results imply that that, even
in a two-stage model, laissez-faire frequently results in statistical discrimination.

Figure 6b shows the constrained regret of the Rooney Rule. We can observe that the
constrained regret grows sublinearly in n, implying that the Rooney Rule resolves perpetual
underestimation. Hence, under the Rooney Rule, society does not suffer from underexplo-
ration of the minority group.

However, this does not imply that the Rooney Rule arrives come without cost. As we
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Figure 6: The Rooney Rule’s performance for exploration.
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Figure 7: The unconstrained two-stage regret under laissez-faire (LF), the Rooney Rule, and
their hybrid (Rooney-LF).

discussed in Subsection 7.4, once the coefficient parameter θ is learned, the Rooney Rule may
prevent society from making a fair and efficient decision. To testify this, we also examine
the growth of unconstrained regret. Figure 7 exhibits the results of this simulation. We
find that the performance of the Rooney Rule is worse than laissez-faire because the cost of
underexploitation (of Rooney) exceeds the cost of underexploitation (of laissez-faire).

As we indicated in Subsection 7.4, the performance of the Rooney Rule could be improved
if we terminate it after “learning is completed.” In this simulation, we also test this rule, the
Rooney-LF rule—impose the Rooney Rule to first 100 firms and then turn to laissez-faire.
We find that the Rooney-LF rule avoids perpetual underestimation, and therefore, has a
similar performance to laissez-faire. This result indicates that, if we select the transition
timing appropriately, then we can resolve statistical discrimination without compromising
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the quality of the finalists.

8.6 The Hybrid Mechanism vs Uniform Sampling

Kannan et al. (2018) show that when we have sufficiently large initial samples (i.e., N (0)

is large), the greedy algorithm (corresponding to laissez-faire in this paper) has sublinear
regret.22 As stated in Remark 2, our analysis also indicates that the probability of perpetual
underestimation is small when N (0) is large (see Lemma 24 for the full detail).

One may think that this “warm-start” version of laissez-faire is efficient. However, the
warm-start approach has several disadvantages. First, while we have ignored the cost of
acquiring initial samples thus far for analytical tractability, we need to take into account
of the cost of acquiring uniform samples if we want to take a sufficiently long warm-start
period. As uniform sampling ignores firms’ incentives for hiring workers, we need a large
budget to implement it in practice. Second, uniform sampling does not maximize any index.
Accordingly, it cannot be implemented by any index policy. Third, uniform sampling is
inefficient in terms of information acquisition because it is not adaptive to current estimated
parameters.

We argue that our hybrid mechanism (Section 6) is a more sophisticated version of
laissez-faire with a warm start—it initially samples the data adaptively and then switch to
laissez-faire at an efficient timing. Hence, we can naturally expect that the hybrid mechanism
outperforms laissez-faire with initial uniform sampling.

Figure 8 exhibits the simulation results that compare the hybrid mechanism with laissez-
faire with various initial samples. In this simulation, the number of initial samples for each
group is proportional to the population ratio; i.e., N (0)

g = (Kg/K) ·N (0).
Figure 8a measures the number of perpetual underestimations. As indicated by our

theory, the larger the initial sample, the less frequently perpetual underestimation occurs.
In addition, we observed no perpetual underestimation under the hybrid mechanism, as it
solidly incentivizes hiring from an underexplored group.

Figure 8b depicts the subsidy amount required by the cost-saving subsidy rules (recall
that uniform sampling cannot be acquired by any index subsidy rule). Here, we can observe
that the hybrid cost-saving subsidy rule outperforms laissez-faire with uniform sampling.
Laissez-faire requires at least N (0) > 20 samples to mitigate perpetual underestimation.
However, when N (0) ≥ 20, the hybrid cost-saving subsidy rule requires a smaller budget
than uniform sampling. This result indicates that the hybrid mechanism is more efficient in

22We also note that the number of initial samples required by the relevant theorem (nmin of Lemma 4.3
therein) is very large and cannot be satisfied in our simulation setting: Letting R = σx

√
2 log(N), we have

nmin ≥ 320R2 log(R2dK/δ)/λ0 ≥ 103.
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compensating firms.

9 Bayesian Approach

Thus far, we have assumed that firms and the regulator are frequentists, implying that they
estimate the underlying parameter (θg)g∈G only based on the data, without forming a “prior
belief” about the distribution of the parameter.

The frequentist approach is widely used in the multi-armed bandit literature because
selecting a “prior belief” for implementing a Bayesian approach is difficult in practice. Since
the frequentist approach is valid for any realization of the parameter (θg)g∈G, it produces a
more robust solution. Based on this trend, we have developed and analyzed a frequentist
model.

Nevertheless, we will come to a similar conclusion even when we adopt a Bayesian setting,
as long as all firms share a common prior belief. Specifically, when the common prior belief
is endowed as a normal distribution, i.e.,

θg ∼ N (0, κ2Id),

then the posterior belief would also be a normal distribution N (x′iθ̂g(i)(n),Σt). Further-
more, θ̂g(n) is exactly the same as the one of Eq. (2) where λ = σ2

ε/κ
2 (c.f., p.120 in

Kaufmann, 2014). Therefore, under the laissez-faire mechanism, the firms would optimally
apply a ridge regression even in a Bayesian model.
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Regarding the UCB mechanism, there exists a Bayesian version of confidence region23

Cg(n)Bayes such that such that

PrBayes

(⋂
n

{θg ∈ CBayes
g (n)}

)
≥ 1− δ

by defining

CBayes
g (n) =

θ̄g ∈ Rd :
∥∥∥θ̄g − θ̂g(n)

∥∥∥
V̄g(n)

≤ σε

√√√√d+ log

(
π2N2

6δ

)
+ 2

√
d log

(
π2N2

6δ

) .

By using CBayes
g (n), we can obtain a Bayesian version of the UCB mechanism.24

10 Contribution to the Multi-Armed Bandit Litera-
ture

Thus far, we have stated all the results in the terminology of the economics and statistical
discrimination literature. However, this paper also makes several technological contributions
to the literature of the contextual bandit problems, which are of independent interest. In
particular, we consider non-discounted reward formalization (Robbins, 1952; Lai and Rob-
bins, 1985). Unlike other formalization such as Gittins’s (1979) one (e.g., Sundaram, 2005;
Bergemann and Välimäki, 2006), this formalization weights future rewards and the current
reward equally. The greedy and the UCB algorithms have been intensively studied in this
literature, and we made several contributions to it. For convenience of the readers, we state
our technological contributions using the bandit terminology.

Perpetual Underestimation The greedy algorithm (which takes optimal decision at
each round based on plug-in parameters) fails due to the randomness in finite samples. This
concept originated in a “context-less” bandit, a traditional model that corresponds to the
limit of σx → 0. We prove that, when the context is fixed (or has very small variance),
exploration is required to mitigate perpetual underestimation (Theorem 1).

23Here, PrBayes denotes a probability over the Bayes posterior. The bound here is derived from Eq. (4.8)
in Kaufmann (2014).

24Note that, to run the UCB mechanism in a model, the regulator needs to know the common prior belief
of firms to calculate the confidence bound CBayes

g (n).
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Analysis of the Greedy Algorithm in a Disproportionate Model Some previous
studies (Bastani et al., 2020; Kannan et al., 2018) show that the greedy algorithm performs
well if the context variation is sufficient. Our results (Theorem 3) indicate that, when
multiple arms form a group (cluster) and share the coefficient parameter, the ratio of the
group size is crucial for the performance of the greedy algorithm (laissez-faire). This is
a novel finding in the contextual multi-armed bandit literature. When the contexts have
limited variance, the greedy algorithm fails.

Development of the Hybrid Algorithm Thus far, the contextual bandit literature
(e.g., Chu et al., 2011) has studied the regret with an “adversarial” setup where the contexts
(characteristics) are chosen to maximize the regret, and the UCB algorithm was designed to
solve such an adversarial bandit problem.

By contrast, this paper assumes that the contexts are drawn from a fixed distribution.
Our hybrid algorithm, which switches from an UCB algorithm to a greedy algorithm, takes
advantage of the knowledge about the context distribution (more specifically, the information
about σx), and selects an appropriate time for switching. Consequently, we obtained the
proportionality (Lemma 28), which is a crucial lemma to evaluate the performance of the
hybrid algorithm. As shown theoretically (Theorem 9) and numerically (Subsection 8.6),
the hybrid algorithm outperforms the UCB algorithm in terms of the total budget required
to a large extent.

Analysis of the Rooney Rule To our knowledge, this is the first multi-armed bandit
study on the Rooney Rule.25 We show that, the greedy algorithm underexplores some arms
even when agents are unbiased and fully rational, and the Rooney Rule can mitigate that
underexploration (Theorem 11). The uncertainty in the first stage (the realization of ηi)
helps to mitigate perpetual underestimation by implicitly encouraging exploration.

11 Conclusion

We studied statistical discrimination using a contextual multi-armed bandit model. Our
dynamic model articulates that statistical discrimination can be caused by the failure of
social learning. In our model, the insufficiency of the data about the minority group is
endogenously generated. The lack of data prevents firms from estimating the candidate
workers’ skill accurately. Consequently, firms tend to prefer hiring a majority worker, which

25Prior to our work, Kleinberg and Raghavan (2018) study the Rooney Rule in the context of evaluation
bias.
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makes the data sufficiency persistent (perpetual underestimation). In our setting, this form
of statistical discrimination is not only unfair but also inefficient. We showed that when the
population ratio is imbalanced, laissez-faire tends to cause this phenomenon.

We analyzed two possible policy interventions for mitigating statistical discrimination
due to the data insufficiency. One is the subsidy rules for incentivizing firms to hire minority
workers. We established the UCB and hybrid mechanisms and analyzed their performance
theoretically and numerically. Another policy is the Rooney Rule, which requires firms to
interview at least one minority candidate. Our result indicates that the Rooney Rule with an
appropriate termination would resolve statistical discrimination, while maintaining the level
of social welfare. These results contrast with to some of the previous studies (e.g., Foster
and Vohra, 1992; Coate and Loury, 1993; Moro and Norman, 2004) that have shown that
affirmative-action policies can be counterproductive.

Our analyses of the subsidy rules and the Rooney Rule provide a consistent practical pol-
icy implication: Affirmative actions are useful for resolving statistical discrimination caused
by the data insufficiency, but they should be terminated once information acquisition is com-
pleted. If we start with laissez-faire, firms may be reluctant to hire minority workers, and
perpetual underestimation could occur. Conversely, if we keep using an affirmative-action
policy for a long period of time, the policy may unfairly crowd out skilled majority workers.
To summarize, a temporary affirmative action would be the best solution to resolve statistical
discrimination as a failure of social learning.

Appendix

A Lemmas

This section describes the technical lemmas that are used for deriving the theorems.
The Hoeffding inequality, which is one of the most well-known versions of concentration

inequality, provides a high-probability bound of the sum of bounded independent random
variables.

Lemma 13 (Hoeffding inequality). Let x1, x2, . . . , xn be i.i.d. random variables in [0, 1]. Let
x̄ = (1/n)

∑n
t=1 xt. Then,

Pr [x̄− E[x̄] ≥ k] ≤ e−2nk2

Pr [x̄− E[x̄] ≤ −k] ≤ e−2nk2

47



and taking union bound yields

Pr [|x̄− E[x̄]| ≥ k] ≤ 2e−2nk2 .

The following is a version of concentration inequality for a sum of squared normal vari-
ables.

Lemma 14 (Concentration Inequality for Chi-squared distribution). Let Z1, Z2, . . . , Zn be
independent standard normal variables. Then,

Pr

[∣∣∣∣∣ 1n
n∑
k=1

Z2
k − 1

∣∣∣∣∣ ≥ t

]
≤ 2e−nt

2/8

Lemma 15 (Normal Tail Bound, Feller, 1968). Let φ(x) := e−x
2/2

√
2π

be the probability density
function (pdf) of a standard normal random variable. Let Φc(x) =

∫∞
x
φ(x′)dx′. Then,(

1

x
− 1

x3

)
e−x

2/2

√
2π
≤ Φc(x) ≤ 1

x

e−x
2/2

√
2π

Lemma 16 (Largest Context, Theorem 1.14 in Rigollet, 2015). Let

xi ∼ N (µx, σxId)

for each i ∈ I(n). Let µx = ||µx|| and

L = L(δ) := µx + σx
√

2d(2 log(KN) + log(1/δ))

Then, with probability at least 1− δ, we have

∀i ∈ I(n), n ∈ [N ], ||xi||2 ≤ L(δ).

The following bounds the variance of a conditioned normal variable.

Lemma 17 (Conditioned Tail Deviation). Let x ∼ N (a, 1) be a scalar normal random
variable with its mean a ∈ R and unit variance. Then, for any b ∈ R, the following two
inequalities hold.

Var(x|x ≥ b) ≥ 1

10

Proof of Lemma 17. Without loss of generality, we assume b = 0 because otherwise we can
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reparametrize x′ = x − b ∼ N (a − b, 1). If a ≤ 0, the pdf of conditioned variable x|x ≥ 0

is 2ψ(x) for x ≥ 0. Manual evaluation of this distribution26 reveals that Var(x) ≥ 1/10.
Otherwise (a > 0), the pdf of x|x ≥ b is p(x) ≥ ψ(x− a) for x ≥ a, which implies Var(x|x ≥
b) ≥ Var(z), where z be a “half-normal” random variable27 with its cumulative distribution
function

P (z) =


Φ(z) if z > 0

1/2 if z = 0

0 otherwise

.

Manual evaluation of Var(z) also shows that Var(z) ≥ 1/10.

The following diversity condition that simplifies the original definition of (Kannan et al.,
2018) is used to lower-bound the expected minimum eigenvalue of V̄g.

Lemma 18 (Diversity of Multivariate Normal Distribution). The context x is λ0-diverse
for λ0 ∈ R if for any b̂ ∈ R, θ̂ ∈ Rd

λmin

(
E
[
xx′|x′θ̂ ≥ b̂

])
≥ λ0.

Let x ∼ N (µx, σxId). Then, the context x is λ0-diverse with λ0 = σ2
x/10.

Proof of Lemma 18.

λmin

(
E
[
xx′|x′θ̂ ≥ b̂

])
= min
v:||v||=1

E
[
(v′x)2|x′θ̂ ≥ b̂

]
≥ min
v:||v||=1

Var
[
v′x|x′θ̂ ≥ b̂

]
Let e1, e2, . . . , ed be the orthogonal bases. Without loss of generality, we assume θ̂ = θ1e1

for some θ1 ≥ 0 and µx = u1e1 + u2e2 for some u1, u2 ∈ N. Let

x = x1e1 + x2e2 + · · ·+ xded.

Due to the property of the normal distribution, each coordinate xl for l ∈ [d] are independent
each other. We will show the variance of

Var
[
xl|x′θ̂ ≥ b̂

]
≥ σ2

x/10, (10)

which suffices to prove Lemma 18.
26This distribution is called a folded normal distribution.
27Half of the mass lies in z > 0, the other half of mass is at z = 0.
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• For the first dimension, we have x1 ∼ N (u1, σ
2
x) and

Var
[
x1|x′θ̂ ≥ b̂

]
= Var

[
x1|x1 ≥ b̂/θ1

]
.

Applying Lemma 17 with x = sgn(b̂/θ1)/σx, a = µx/σx, b = |b̂/θ1| yield Var
[
x1|x1 ≥ b̂/θ1

]
≥

σ2
x/10.

• For the second dimension, we have x2 ∼ N (u2, σ
2
x) and

Var
[
x2|x′θ̂ ≥ b̂

]
= Var [x2] = σ2

x > σ2
x/10.

• (x3, x4, . . . , xd) ∼ N (0, σ2
xId−2). In other words, these characteristics are normally

distributed and thus Var(xl) = σ2
x > σ2

x/10.

In summary, we have Eq. (10), which concludes the proof.

Lemma 19 (Martingale Inequality on Ridge Regression, Abbasi-Yadkori et al., 2011). As-
sume that ||θg|| ≤ S. Take δ > 0 arbitrarily. With probability at least 1 − δ, the true
parameter θg is bounded as

∀n,
∥∥∥θ̂g(n)− θg

∥∥∥
V̄g(n)

≤ σε

√
2d log

(
det(V̄g(n))1/2 det(λI)−1/2

δ

)
+ λ1/2S. (11)

Moreover, let L = maxi,n ‖xi(n)‖2 and

βn(L, δ) = σε

√
d log

(
1 + nL2/λ

δ

)
+ λ1/2S.

Then, with probability at least 1− δ,

∀n,
∥∥∥θ̂g(n)− θg

∥∥∥
V̄g(n)

≤ βn(L, δ). (12)

The following lemma is used in deriving a regret bound.

Lemma 20 (Sum of Diminishing Contexts, Lemma 11 in Abbasi-Yadkori et al., 2011). Let
λ ≥ 1 and L = maxn,i ‖xi(n)‖2. Then, the following inequality holds:

∑
n:ι(n)=g

∥∥xι(n)

∥∥2

(V̄g(n))−1 ≤ 2L2 log

(
det(V̄g(N))

det(λId)

)

for any group g.
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The following inequality is used to bound the variation of the minimum eigenvalue of the
sum of characteristics (contexts).

Lemma 21 (Matrix Azuma Inequality, Tropp, 2012). Let X1,X2, . . . ,Xn be adaptive se-
quence of d × d symmetric matrices such that Ek−1Xk = 0 and X2

k � A2
k almost surely,

where A � B between two matrices denotes A−B is positive semidefinite. Let

σ2
A :=

∥∥∥∥∥ 1

n

∑
k

A2
k

∥∥∥∥∥
where the matrix norm is defined by the largest eigenvalue. Then, for all t ≥ 0,

Pr

[
λmin

(∑
k

Xk

)
≤ t

]
≤ d exp(−t2/(8nσ2

A)).

Proof. The proof directly follows from Theorem 7.1 and Remark 3.10 in Tropp (2012).

The following lemma states that the selection bias makes its variance slightly (O(1/ logK)

times) smaller than the original variance.

Lemma 22 (Variance of Maximum, Theorem 1.8 in Ding, Eldan, and Zhai, 2015). Let
x1, . . . , xK ∈ R be i.i.d. samples from N (0, 1). Let Imax = arg maxi∈[K] xi. Then, there exists
a distribution-independent constant Cvarmax > 0 such that

Var[Imax] ≥ Cvarmax

log(K)
.

B Proofs

This section is structured as follows. Section B.1 describes the common inequalities that we
assume throughout the section.28 Proofs of individual theorems are shown in what follows.

B.1 Common Inequalities

In the proofs, we often ignore the events that happen with probability O(1/N). The expected
regret per round is at most maxi x

′
iθg(i) −mini x

′
iθg(i), which is O(1) in expectation. Hence,

the events that happen with probability O(1/N) contributes to the regret by O(1/N ×N) =

28Except for Theorem 1 that does not pose distributional assumptions.
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O(1), which are insignificant in our analysis. In particular,

Pr

[
∀n ∈ [N ], i ∈ I(n), ||xi(n)||2 ≤ L

(
1

N

)]
≥ 1− 1

N
. (by Lemma 16) (13)

Moreover,

Pr

[
∀n ∈ [N ], g ∈ G,

∥∥∥θ̂g(n)− θg
∥∥∥
V̄g(n)

≤ βn

(
L,

1

N

)]
≥ 1−|G|

N
. (by Eq. (12) in Lemma 19)

(14)
and throughout the proof we ignore the case these events do not hold: All the contexts are
bounded by L(1/N) = O(

√
logN), and all the confidence bounds hold with βn

(
L(1/N), 1

N

)
≤

βN
(
L(1/N), 1

N

)
= O(

√
logN) = Õ(1), which grows very slowly as N grows large. We also

denote L = L(1/N) and βN = βN
(
L, 1

N

)
.

We next discuss the upper confidence bounds.

Remark 8 (Bound for θ̃i). Let θ̃i = arg maxθ̄g(i)∈Cg(i)(n) x
′
iθ̄g(i). By definition of θ̃i, the

following inequality always holds:

∀n,
∥∥∥θ̃i − θ̂g(i)(n)

∥∥∥
V̄g(n)

≤ βN (15)

and Eq. (14) implies
∀n, xi(θ̃i − θg(i)(n)) ≥ 0. (16)

Moreover, by using triangular inequality, we have∥∥∥θ̃i − θg(n)
∥∥∥
V̄g(n)

≤
∥∥∥θ̃i − θ̂g(n)

∥∥∥
V̄g(n)

+
∥∥∥θ̂g(n)− θ

∥∥∥
V̄g(n)

and thus Eq. (14) implies
∀n,

∥∥∥θ̃i − θg(n)
∥∥∥
V̄g(n)

≤ 2βN . (17)

We use the calligraphic font to denote events. For two events A,B, let Ac be a com-
plementary event and {A,B} := {A ∩ B}. We also use prime to denote event that is close
to the original event. For example, event A′ is different from event A but these two events
are deeply linked. Finally, we discuss the minimum eigenvalue. We denote A � B for two
d × d matrices if A − B is positive semidefinite: That is, λmin(A − B) ≥ 0. Note that
λmin(A+B) ≥ λmin(A) + λmin(B) and λmin(A+B) ≥ λmin(A) if B � 0. xx′ � 0 for any
vector xRd.
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B.2 Proof of Theorem 1

Consider an environment where there are two groups, G = {1, 2}, and two workers arrive in
each round, K1 = K2 = 1. We assume that error terms follow a standard normal distribution,
i.e., σ2

ε = 1. We set the ridge regression parameter λ to be 1. We assume N (0)
1 = 1 and

N
(0)
2 = 0. Hence, g1 = 1.29 We consider “no context” setting: Namely, d = 1, and xi = 1 for

all i ∈ I. We assume that θ1 = 0 and θ2 = −b with b > 0. Under this assumption, hiring a
worker from group 2 incurs regret of b. Let Rg(n) be the sum of the skills of workers who
have been hired until round n (i.e., have arrived from round 1 to n− 1) and belong to group
g. Then, (2) implies that θ̂g(n) = Rg(n)/(Ng(n) + λ) = Rg(n)/(Ng(n) + 1). Since xi is fixed
to 1, firm n chooses a group whose predicted expected skill θ̂g(n) is larger.

Since g1 = 1, firm 1 hires the group-1 worker: ι(1) = 1. Let b′ > b be a constant that we
specify later. Let

A := {θ̂1(2) < −b′} = {ει(1) < −2b′}

be the event that the skill of the worker hired in round 1 is smaller than 2b′/(1 + λ) = b′.
The probability that A occurs is Φ(−2b′), where Φ(x) is the cumulative distribution of a
standard normal distribution. Let

B :=
N⋂
n=1

(
θ̂2(n) ≥ −b′

)
be the event that θ̂2(n) never becomes smaller than b′.

We evaluate the probability that A∩B occurs. When such an event happens, a group-1
worker is hired in round 1, and group-2 workers are hired all the subsequent rounds (i.e.,
ι(2) = 2 for any round n > 2). Accordingly, N2(n) = n− 2 is the case for all n ≥ 2.

{
θ̂2(n) ≥ −b′

}
=

{
R2(n)

N2(n) + 1
≥ −b′

}
⊇
{
R2(n)

N2(n)
≥ −b′

}
Applying Hoeffding’s inequality to the empirical average Rg(n)/Ng(n), we have

P
(
R2(n)

N2(n)
< −b′

)
≤ exp

(
−2(b′ − b)2(n− 2)

)
.

29Note that these the following derivation does not strongly depend on the specific value of these parameters
nor the number of groups.
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Accordingly,

P(B) ≥ P

(
N⋃
n=1

{
θ̂2(n) ≥ −b′

})
≥ 1−

N∑
n=3

exp
(
−2(b′ − b)2(n− 2)

)
.

Here,

N∑
n=3

exp
(
−2(b′ − b)2(n− 2)

)
≤

∞∑
n=3

exp
(
−2(b′ − b)2(n− 2)

)
=

exp (−2(b′ − b)2)

1− exp (−2(b′ − b)2)

≤ 1

2(b′ − b)2
,

and thus P(B) occurs with constant probability 1 − 1
2(b′−b)2 > 0 for any b′ > b + 1/

√
2.

Remember that A∩B implies that arm 1 is never drawn after n > 2, and thus Reg(N) ≥ bN .
In conclusion, we have

E[Reg(N)] ≥ Φ(−2b′) ·
(

1− 1

2(b′ − b)2

)
· b ·N = Ω(N),

as desired.

B.3 Proof of Theorem 2

We first bound regret per round reg(n) := Reg(n) − Reg(n − 1) in Lemma 23. Then, we
prove Theorem 2.

Lemma 23 (Regret per Round). Under the laissez-faire decision rule, the regret per round
is bounded as:

reg(n) ≤ 2 max
i∈I(n)

‖xi‖V̄ −1
g

∥∥∥θg(i) − θ̂g(i)∥∥∥
V̄g
.

Proof of Lemma 23. We denote the first-best decision rule by i∗(n) := arg maxi∈I(n) x
′
iθg(i).

Then,

reg(n) = x′i∗θg(i∗) − x′ιθg(ι)

≤ x′i∗
(
θ̂g(i∗) + θg(i∗) − θ̂g(i∗)

)
− x′ι

(
θ̂g(ι) + θg(ι) − θ̂g(ι)

)
≤ x′i∗

(
θg(i∗) − θ̂g(i∗)

)
− x′ι

(
θg(ι) − θ̂g(ι)

)
(by the greedy choice of firm)

≤ ‖xi∗‖V̄ −1
g(i∗)

∥∥∥θg(i∗) − θ̂g(i∗)∥∥∥
V̄g(i∗)

+ ‖xι‖V̄ −1
g(ι)

∥∥∥θg(ι) − θ̂g(ι)∥∥∥
V̄g(ι)
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(by the Cauchy–Schwarz inequality)

≤ 2 max
i∈I(n)

‖xi‖V̄ −1
g(i)

∥∥∥θg(i) − θ̂g(i)∥∥∥
V̄g(i)

.

The following proves Theorem 2. For the ease of discussion, we assume N (0) = 0. That
is, there is no initial sampling phase. Taking it into consideration is trivial. We first show
that regardless of estimated values θ̂1, θ̂2, the candidate of group 2 is drawn with constant
probability. Let µx = ||µx||. Let

M1(n) =
{
x′1(n)θ̂1 ≤ 0

}
M2(n) =

{
x′2(n)θ̂2 > 0

}
The sign of x′1θ̂1(n) is solely determined by the component of x1(n) that is parallel to θ̂1(n).
This component is drawn from N (µx,‖, σx) where µx,‖ is the component of µx that is parallel
to θ̂1(n). Therefore, for any θ̂1, we have30

Pr[M1(n)] ≥ Φc(µx/σx). (18)

Likewise, for θ̂2 6= 0, we have31

Pr[M2(n)] ≥ Φc(µx/σx) (19)

Let X2(n) = {g(ι(n)) = g} for g ∈ {1, 2}. By using Eq. (18) and (19),

Pr[X2(n)] = Pr[x′1(n)θ̂1 < x′2(n)θ̂2]

≥ Pr[x′1(n)θ̂1 ≤ 0 < x′2(n)θ̂2]

= Pr[M1(n),M2(n)]

≥ (Φc(µx/σx))
2 . (20)

(by Eq. (18), (19))

Let N
(M)
2 (n) =

∑n
n′=1 1[M1(n′),X2(n′)] ≤ N2(n). Eq. (20) implies E[N

(M)
2 (n)] ≥

(Φc(µx/σx))
2 n. By using the Hoeffding inequality, with probability at least 1 − 2/N2, we

have
N

(M)
2 ≥ n

(
(Φc(µx/σx))

2 − k
)

(21)
30Pr[M(n)] = Φc(µx/σx) when µx,‖ = µx. Namely, the direction of µx is exactly the same as θ̂1.
31In the subsequent discussion, we do not care point mass θ̂2 = 0 of measure zero for N2(n) > 0.
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for

k =

√
log(N)

n
.

Therefore, union bound over n = 1, 2, . . . , N implies Eq. (21) holds with probability at least
1−

∑
n 2/N2 = 1− 2/N .

In the following we bound the λmin(V̄g). Note that a hiring of a worker i2 under events
M1(n),X2(n) satisfies a diversity condition (Lemma 18) with b̂ = 0, and we have

λmin(E[xιx
′
ι|M1(n),X2(n)]) ≥ λ0

with λ0 = σ2
x/10. Using the matrix Azuma inequality (Lemma 21) for subsequence {xιx′ι :

M1(n),X2(n)} with X = xιx
′
ι − E[xιx

′
ι] and σA = 2L2, for t =

√
32N2σ2

A log(dN), with
probability 1− 1/N

λmin

 ∑
n:ι(n)=2

xιx
′
ι

 ≥ N
(M)
2 λ0 − t. (22)

In summary, with probability 1− 4/N , Eq. (21) and (22) hold, and then, we have

λmin(V̄2) ≥ N
(M)
2 λ0 −

√
32N2σ2

A log(dN)

≥ (n(Φc(µx/σx))
2 − k)λ0 −

√
32N2σ2

A log(dN)

= n(Φc(µx/σx))
2λ0 − Õ(

√
n). (23)

By using the symmetry of the two groups, exactly the same results as Eq. (23) holds for
group 1.

In the following, we bound the regret as a function of ming λmin(V̄g). Eq. (23) holds with
probability 1−O(1/N), and we ignore events of probability O(1/N) that does not affect the
analysis. The regret is bounded as

Reg(N) ≤ 2
∑
n

max
i
‖xi‖V̄ −1

g(i)

∥∥∥θg(i) − θ̂g(i)∥∥∥
V̄g(i)

(by Lemma 23) (24)

≤ 2
∑
n

max
i
‖xi‖V̄ −1

g(i)
βN (by Eq. 14)

≤ 2
∑
n

max
i

||xi||
λmin(V̄g(i))

βN (by definition of eigenvalues)

≤ 2
∑
n

max
i

L

λmin(V̄g(i))
βN (by Eq. (13))
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≤ 2L
∑
n

max
i

min

(
1

λmin(V̄g(i))
,

1

λ

)
βN (by λmin(V̄g(i)) ≥ λ)

≤ 2L
∑
n

min

(√
1

n(Φc(µx/σx))2λ0 − Õ(
√
n)
,

1

λ

)
βN (by Eq. (23))

≤ 4L

√
N

(Φc(µx/σx))2λ0

βN + Õ(1)

(
by

N∑
n=C2+1

{
1√

n− C
√
n

}
= 2
√
N + Õ(1) for C = Õ(1))

)

which completes Proof of Theorem 2.

B.4 Proof of Theorem 3

Since we consider d = 1 case in this theorem, we remove bold styles in scalar variables. In
this proof, we assume µxθ > 0 and θ > 0. The proof for the case of µxθ < 0 or θ < 0

is similar. Let θ̂g,t be the value of θ̂g when group g candidate was chosen t times. With a
slight abuse of notation, we use i2 = i2(n) to denote the unique candidate of group 2 in each
round n. We first define the several events that characterize the perpetual underestimation.
Namely,

P =

{∣∣∣θ̂
2,N

(0)
2

∣∣∣ < b

2
θ

}
P ′(n) =

{
xi2(n)θ̂2,N

(0)
2
<

1

2
µxθ

}
Q =

{
∀t ≥ N

(0)
1 , θ̂1,t ≥

1

2
θ

}
Q′(n) =

{
∃i s.t. g(i) = 1, xiθ̂1,N1(n) ≥

1

2
µxθ

}
where b is a small32 constant that we specify later. P and P ′ are about the minority
whereas Q and Q′ are about the majority: Intuitively, Event P states that θ̂2 is largely
underestimated, and P ′ states that the minority candidate is undervalued. Q states that the
majority parameter θ̂1 is consistently lower-bounded, and Q′ states the stability of the best
candidate of the majority after n rounds. Under laissez-faire,

N⋂
n=1

(P ′(n) ∩Q′(n))

32We will specify b = O(1/(logN)).
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implies the majority candidate is always chosen (g(ι) = 1 for all n), which is exactly the
perpetual underestimation of Definition 2. Therefore, proving

Pr

[
N⋂
n=1

(P ′(n) ∩Q′(n))

]
≥ Õ(1) (25)

concludes the proof. We bound these events by the following lemmas and finally derives Eq.
(25).

Lemma 24.
Pr[P ] ≥ C1b

for some constant C1.

Proof of Lemma 24. We denote xi2,t for representing t-th sample of group 2 during the initial
sampling phase, which is an i.i.d. sample from N (µx, σ

2
x). Likewise, we also denote yi2,t =

xi2,tθ + εt.

Pr[P ] = Pr

∣∣∣∣∣∣
∑N

(0)
2

t=1 xi2,t(xi2,tθ + εt)∑N
(0)
2

t=1 x2
i2,t

+ λ

∣∣∣∣∣∣ ≤ b

2
θ


= Pr

∣∣∣∣∣∣
N

(0)
2∑
t=1

xi2,t(xi2,tθ + εt)

∣∣∣∣∣∣ ≤ b

2
θ

N
(0)
2∑
t=1

x2
i2,t

+ λ


= Pr

−g(b) ≤
N

(0)
2∑
t=1

xi2,t(xi2,tθ + εt) ≤ g(b)


where

g(b) =
b

2
θ

N
(0)
2∑
t=1

x2
i2,t

+ λ

 .

Let xi2,t = µx + et. Define an event R as follows.

R =


N

(0)
2∑
t=1

e2
t ≤ 5σ2

xN
(0)
2

 ⊆

N

(0)
2∑
t=1

x2
i2,t
≤ 2N

(0)
2 (µ2

x + 5σ2
x)


where we used x2

i2,t
= (µx + et)

2 ≤ 2(µ2
x + e2

t ) in the last transformation. By using Lemma
14, we have

Pr[Rc] ≤ 1− 2e−2N
(0)
2 ≤ 1/4.

58



Moreover, let

S =


N

(0)
2∑
t=1

x2
i2,t

=

N
(0)
2∑
t=1

(µx + et)
2 ≥ N

(0)
2 µ2

x

 .

It is easy to confirm that Pr[
∑

n(µx + et)
2 ≥ N

(0)
2 µ2

x] ≥ 1/2, and thus

Pr[R∩ S] ≥ 1− 1/4− 1/2 = 1/4. (26)

Note that S implies
g(b) ≥ b

2
θN

(0)
2 µx + λ. (27)

Conditioned on xi2,t, we have xi2,tεt ∼ N (0, x2
i2,t
σ2
ε ). Moreover, by using the property on

the sum of independent normal random variables,∑
t

xi2,tεt ∼ N (0,
∑
t

x2
i2,t
σ2
ε ) (28)

Letting

LR =
−g(b)−

∑
t x

2
i2,t
θ

σε
√∑

t x
2
i2,t

UR =
g(b)−

∑
t x

2
i2,t
θ

σε
√∑

t x
2
i2,t

MR =
LR + UR

2
=
−
(√∑

t x
2
i2,t

)
θ

σε

We have

Pr

[
−g(b) ≤

∑
t=1

(x2
i2,t
θ + xi2,tεn) ≤ g(b)

]

≥ Pr

[
−g(b) ≤

∑
t=1

(x2
i2,t
θ + xi2,tεt) ≤ g(b),R,S

]

≥ Pr

[
−g(b)−

∑
t=1

x2
i2,t
θ ≤

∑
t=1

xi2,tεt ≤ g(b)−
∑
t=1

x2
i2,t
θ,R,S

]

≥ Pr[R,S] min
{en:R,S}

[∫ UR

LR

φ(y)dy

]
(by Eq. (28))

≥ 1

4
min
{en:R,S}

[∫ UR

LR

φ(y)dy

]
(by Eq. (26)) (29)
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The following bounds Eq. (29). The integral’s bandwidth is

UR − LR =
2g(b)

σε
√∑

t x
2
i2,t

≥ 2g(b)

σε

√
2N

(0)
2 (µ2

x + 5σ2
x)

. (by event R)

The value of φ(y) within [MR− 1,MR + 1] is at least φ(MR)/e1/2 ≥ (1/2)φ(MR). Therefore,

∫ UR

LR

φ(y)dy ≥ min

2,
2g(b)

σε

√
2N

(0)
2 (µ2

x + 5σ2
x)

× φ(MR)

2
. (30)

Moreover,

φ(MR) =
1√
2π

exp

(
−(MR)2

2

)

=
1√
2π

exp

−θ2
∑N

(0)
2

t=1 x2
i2,t

2σ2
ε


≤ 1√

2π
exp

(
−2θ2N

(0)
2 (µ2

x + 5σ2
x)

2σ2
ε

)
(by event R) (31)

By using these, we have

∫ UR

LR

φ(y)dy ≥ min

(
2,

2g(b)

σε
√

2(µ2
x + 5σ2

x)

)
φ (MR)

2
(by Eq. (30))

= min

1,
g(b)

σε

√
2N

(0)
2 (µ2

x + 5σ2
x)

φ(MR)

= O

(
b

√
N

(0)
2 exp

(
−2θ2N

(0)
2 (µ2

x + 5σ2
x)

2σ2
ε

))
(by Eq. (27), (31))

The exponent does not depend on b: Given all model parameters as constant, the probability
of P is O(b), which concludes the proof.

The following Lemma 25 on Q is about the stability of the mean estimator, which is
widely used to prove lower bounds in multi-armed bandit problems. Namely, for any ∆ > 0,
a wide class of mean estimators θ̂ of θ satisfies

Pr

[
∞⋃
n=1

(
θ̂(n) ≥ θ −∆

)]
≥ C (32)
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for some constant C = C(θ,∆) > 0. Lemma 25 is a version Eq. (32) for our ridge estimator.

Lemma 25. There exists a constant N (0)
1 that is independent on N such that, with a warm-

start of size N (0)
1 ,

Pr[Q] ≥ C2

holds.

Proof of Lemma 25. In this proof, we use t ≥ 0 to denote the estimator where the t-th
sample is drawn. For example, V̄g,t := V̄g(n) of n : N1(n − 1) = t. Note that we consider
d = 1 case and V̄1,t =

∑t
t′=1 x

2
1,t+λ. By martingale bound (Eq. (11)), with probability 1−δ,

∀t ≥ 1, |θ̂1,t − θ|
√
V̄1,t ≤ σε

√√√√log

(
V̄

1/2
1,t λ

−1/2

δ

)
+ λ1/2S. (33)

Let δ = 1/2. It follows from
√

log x ≤
√
x for any x > 0 that√

log
(

2V̄
1/2

1,t λ
−1/2

)
≤
√

2V̄
1/2

1,t λ
−1/2. (34)

Therefore,

|θ̂1,t − θ| ≤

σε

√√√√log

(
V̄

1/2
1,t λ

−1/2

δ

)
+ λ1/2S√

V̄1,t

(by Eq. (33))

≤
σε

√
2V̄

1/2
1,t λ

−1/2 + λ1/2S√
V̄1,t

(by (34))

and thus
∀t ≥ N

(0)
1 , |θ̂1,t − θ| ≤

1

2
|θ|

holds if √
V̄

1,N
(0)
1
≥ 2θmax

(
σε

√
2V̄

1/2

1,N
(0)
1

λ−1/2, λ1/2S

)

whose sufficient condition for the initial sample size N (0)
1 is

V̄
1,N

(0)
1
≥ max

[
64

θ4
(σ4

ε/λ
2),

4

θ2
λS2

]
.
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Note that Pr[V̄
1,N

(0)
1
≥ µ2

xN
(0)
1 ] ≥ 1/2. Letting the observation noise σε and regularizer λ

be constants, constant size of warm-start is enough to assure this bound with probability
C2 = 1/2× 1/2 = 1/4.

The following lemma states that, when θ̂2 is very small, the estimated quality xi2 θ̂2 of
the minority group is likely to be small.

Lemma 26. There exists a constant C3, C4 that is independent of N such that

Pr[P ′(n)|P ] ≥ 1− C3 exp (−C4/b) (35)

holds.

Proof of Lemma 26.

Pr[P ′(n)|P ] ≥ 1− Pr

[
xi2(n) ≥ 2

b

]
≥ 1− Φc

(
1

σx

(
2

b
− µx

))
≥ 1− 1√

2πσ2
x

exp

(
− 1

σx

(
2

b
− µx

))
, (by Lemma 15)

where we have assumed
(

2
b
− µ

)
/σx ≥ 1 in the last transformation (which holds for suffi-

ciently small b). Eq. (35) holds for C3 = 1√
2πσ2

x

eµ/σx and C4 = 2/σx.

Lemma 27.
Pr[Q′(n) | Q] ≥ 1− (1/2)K1 .

Event Q′(n) states that all the candidates’ estimated quality xiθ̂ is not below mean.
Lemma 27 states that the probability of Q′(n) is exponentially small to the number of can-
didates. The proof of Lemma 27 directly follows from the symmetry of normal distribution
and independence of each characteristic xi.

Proof of Theorem 3. By using Lemmas 24–27, we have

Pr[P ] ≥ C1b (36)

Pr [Q] ≥ C2 (37)

Pr[P ′(n)|P ] ≥ 1− C3 exp (−C4b) (38)

Pr[Q′(n)|Q] ≥ 1− (1/2)K1
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From these equations, the probability of perpetual underestimation is bounded as:

Pr

[⋃
n

{ι(n) = 1}

]

≥ Pr

[⋃
n

{P ′(n),Q′(n)},P ,Q

]

≥ Pr [P ] Pr [Q] Pr

[⋃
n

{P ′(n),Q′(n)} | P ,Q

]
(by the independence of P and Q)

≥ C1b× C2 × (1−NC3 exp (−C4b))×

(
1−N

(
1

2

)K1
)

(by the union bound) (39)

which, by letting b = O(1/ log(N)) and K1 > log2(N), is Õ (1).

B.5 Proof of Theorem 4

Proof. Let reg(n) = Reg(n)− Reg(n− 1). Notice that under the UCB decision rule,

ι(n) = max
i∈I(n)

(x′iθ̃i(n)). (40)

By Lemma 19, with probability at least 1− δ, the true parameter of group g lies in Cg, and
thus

x′iθ̃i(n) ≥ x′iθg (41)

for each i ∈ I(n).
Let i∗ = i∗(n) := arg maxi∈I(n) x

′
iθg(i) be the first-best worker, and g∗ = g(i∗) be the

group i∗ belongs to. The regret in round n is bounded as

reg(n) = x′i∗θg∗ − x′ιθg(ι)
≤ x′i∗θ̃i∗ − x′ιθg(ι) (by Eq. (41))

≤ x′ιθ̃ι − x′ιθg(ι) (by Eq. (40))

≤ ||x′ι||V̄ −1
g(ι)

∥∥∥θg(ι) − θ̃ι∥∥∥
V̄g(ι)

(by the Cauchy–Schwarz inequality)

≤ ||x′ι||V̄ −1
g(ι)
βN . (by Eq. (14)) (42)
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The total regret is bounded as:

Reg(N) =
∑
n

reg(n) ≤
√
N
∑
n

reg(n)2 (by the Cauchy–Schwarz inequality)

≤ 2βN

√
N
∑
n

||x′ι||2V̄ −1
g(ι)

(n)

≤ 2βN

√
2NL2

∑
g∈G

log(det(V̄g(N))) (by Lemma 20) (43)

≤ Õ(
√
N |G|)

where we have used the fact that log(det(V̄g)) = O(log(N)) = Õ(1).

B.6 Proof of Theorem 5

Proof of the first statement Since si(n) = q̃i(n)− q̂i(n), we have q̂i(n) + si(n) = q̃i(n).
Hence, firm i’s incentive is aligned with the UCB index. Accordingly, firm i follows the UCB
decision rule, which maximizes the UCB index.

Proof of the second statement For notational simplicity, we drop n, Xg, Yg from this
proof. Define a correspondence U by

U(q̃i; s) := {ui ∈ R | ∃i, ∃xi s.t. q̂i(xi) + si(xi) = ui, q̃i = q̃i(xi)} .

The set U(q̃i) represents the set of firm n’s all possible payoffs from a worker whose UCB
index is q̃i.

Clearly, the subsidy rule s implements the UCB decision rule ι if and only if for all i,
q̃′i > q̃i implies

minU(q̃′i; s) > maxU(q̃i; s). (44)

Since minU(·; si) is an increasing function, it is continuous at all but countably many points.
Equivalently, U(q̃i; si) is a singleton for almost all values of q̃i.

Now, suppose that U(q̃∗i ) is not a singleton for some q̃∗i . Define ∆ by

∆ := maxU(q̃∗i ; s)−minU(q̃∗i ; s).
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Define another subsidy rule s′ by setting

s′i(xi) =


si(xi) if q̃i(xi) < q̃∗i

minU(q̃∗i )− q̂i(xi) if q̃i(xi) = q̃∗i

si(xi)−∆ otherwise

for all i. Then, we have

U(q̃i; s
′) =


U(q̃i; s) if q̃i < q̃∗i

{minU(q̃∗i ; s)} if q̃i = q̃∗i

U(q̃i; s)−∆ otherwise,

which implies U(·; s′) also satisfies (44), or equivalently, s′ also implements the UCB rule ι.
Furthermore, s′i(xi) ≤ s′i(xi) for all xi, with a strict inequality for some xi. Accordingly, s′

needs a smaller budget than s.
By the argument above, whenever U(·; si) does not returns singleton for some q̃i, the

subsidy amount can be improved by filling a gap. From now, we discuss the case in which
U(·; si) returns a singleton for all q̃i; i.e., U reduces to a function. From now, we use u(q̃i; s)

to represent the firm’s utility when it hires a worker whose UCB index is q̃i (which was
previously written as U because it could take multiple values). Then, we have

si(xi) = u(q̃i(xi); s)− q̂i(xi)

for all xi. Since we require that si(xi) ≥ 0 for all xi,

u(q̃i(xi); s)− q̂i(xi) ≥ 0.

After some history, q̂i may become arbitrarily close to q̃i. Therefore, the inequality is satisfied
for all q̃i and q̂i. Accordingly, u must satisfy

u(q; s) ≥ q (45)

for all q. The UCB index subsidy rule satisfies (45) with equalities for all q: The UCB index
subsidy rule satisfies si = q̃i − q̂i, and therefore, u(q̃i; s) = q̃i for all q̃i. Accordingly, it needs
the minimum possible budget.
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Proof of the third statement We bound the amount of total subsidy Sub(N).

Sub(N) :=
∑
n

x′ι(n)(θ̃ι − θ̂g(ι))

≤ ||x′ι||V̄ −1
g(ι)
βN , (by Eq. (15))

which is the same as Eq. (42) and thus the same bound as regret applies.

B.7 Proofs of Theorems 8 and 9

Proof of Theorem 8. We adopt “slot” notation for each group. Group g is allocated Kg slots
and at each round n, one candidate arrives for each slot. We use index i ∈ [K] to denote each
slot: Although xi at two different rounds n,n′ (= xi(n),xi(n

′)) represent different candidates,
they are from the identical group g = g(i). In summary, we use index i to represent the i-th
slot and with a slight abuse of argument. We also call candidate i to represent the candidate
of slot i. Note that this does not change any part of the model, and the slot notation here
is for the sake of analysis.

Under the hybrid decision rule, a firm at each round hires the candidate of the largest
index. Namely,

ι(n) = arg max
i∈I(n)

q̃H
i (n)

where q̃H
i is defined at Eq. (6). We also denote ι̃(n) = arg maxi∈I(n) x

′
iθ̃i. That is, ι̃ indicates

the candidate who would have been hired if we have used the standard UCB decision rule
(Eq. (5))

The following bounds the regret into estimation errors of ι̃ and ι.

reg(n) = x′i∗θg∗ − x′ιθg(ι)
≤ x′i∗θ̃i∗ − x′ιθg(ι) (by Eq. (16))

≤ x′ι̃θ̃ι̃ − x′ιθg(ι) (by definition of ι̃)

= x′ι̃θ̃ι̃ − x′ιθ̃ι + x′ι(θ̃ι − θg(ι))

≤ x′ι̃(θ̃ι̃ − θ̂g(ι̃)) + x′ι(θ̃ι − θg(ι)) (by definition of ι) (46)

Here,

x′ι̃(θ̃ι̃ − θ̂g(ι̃)) ≤ ||x′ι̃||V̄ −1
g(ι̃)

∥∥∥θ̃ι̃ − θ̂g(ι̃)∥∥∥
V̄g(ι̃)

(by the Cauchy–Schwarz inequality)

≤ ||x′ι̃||V̄ −1
g(ι̃)
βN . (by Eq. (15))
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≤ ||x′ι̃||√
λmin(V̄g(ι̃))

βN (by definition of eigenvalues)

≤ L√
λmin(V̄g(ι̃))

βN . (by Eq. (13)) (47)

Moreover, the estimation error of candidate ι is bounded as

x′ι(θ̃ι − θg(ι)) ≤ ||x′ι||V̄ −1
g(ι)

∥∥∥θ̃ι − θg(ι)∥∥∥
V̄g(ι)

(by the Cauchy–Schwarz inequality)

≤ 2||x′ι||V̄ −1
g(ι)
βN . (by Eq. (17))

≤ 2||x′ι||√
λmin(V̄g(ι))

βN (by definition of eigenvalues)

≤ 2L√
λmin(V̄g(ι))

βN . (by Eq. (13)) (48)

Based on the above bounds, the regret is bounded as follows.

Reg(N) =
N∑
n=1

reg(n)

≤
N∑
n=1

 2√
λmin(V̄g(ι))

+
1√

λmin(V̄g(ι̃))

LβN

(by Eq.(46), (47), (48) )

≤ 2LβN
∑
i∈[K]

N∑
n=1

1[ι = i]
1√

λmin(V̄g(i))

+ LβN
∑
i∈[K]

N∑
n=1

1[ι̃ = i]
1√

λmin(V̄g(i))
(49)

Eq. (49) consisted of two components. The first component is the estimation error of the
hired candidate ι. The second component is the estimation error of ι̃, who would have hired
if we had posed the UCB decision rule. The Hybrid decision rule ι̃ can be different from
the UCB decision rule ι, which is the main challenge of deriving regret bound in the hybrid
decision rule.

We first define the following events

Vi(n) :=
{
xi(n)′(θ̃i(n)− θ̂g(i)(n)) ≤ aσx

∥∥∥θ̂(n)
∥∥∥}
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Wi(n) := {ι̃(n) = i}

Xi(n) := {ι(n) = i}

X ′i (n) :=

{
xi(n)′θ̂(n) ≥ arg max

j 6=i
q̃H
j

}
⊆ Xi.

Event Vi states that the candidate i is not subsidized. Event Wi states that i would have
been hired if it was subsidized in the UCB decision rule. Event Xi states that i is hired and
X ′i states that i is hired regardless of the subsidy.

The following lemma is the crux of bounding the components in Eq. (49).

Lemma 28 (Proportionality). The following two inequalities hold.

Pr[X ′i ] ≥ exp(−a2/2) Pr[Wi] (50)

Pr[X ′i ] ≥ exp(−a2/2) Pr[Xi] (51)

Proof of Lemma 28. We first prove, for any c ∈ R, d > 0,

Pr
[
x′iθ̂g(i) ≥ c

]
≥ exp(−d2/2) Pr

[
x′iθ̂g(i) ≥ c− d

(
σx

∥∥∥θ̂g(i)∥∥∥)2
]
. (52)

Let x‖ := (x′iθ̂g(i))/||θ̂g(i)|| be the projection of xi into the direction of θ̂g(i). Then, x′iθ̂g(i) =

x‖||θ̂g(i)||. From the symmetry of a normal distribution, x‖||θ̂g(i)|| is drawn from a normal
distribution with its variance (σx||θ̂g(i)||)2, from which Eq. (52) follows.

Eq. (50) follows by letting c = maxj 6=i q̃
H
j , d = a because

Wi ⊆
{
x′iθ̂g(i) ≥ c− d

(
σx

∥∥∥θ̂g(i)∥∥∥)2
}

X ′i ⊇
{
x′iθ̂g(i) ≥ c

}
Eq. (51) also follows by letting c = maxj 6=i q̃

H
j and d = a

Xi ⊆
{
x′iθ̃i ≥ c

}
X ′i ⊇

{
x′iθ̃i ≥ c+ d

(
σx

∥∥∥θ̂g(i)∥∥∥)2
}
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and exactly the same discussion as Eq. (52) applies for33

Pr

[
x′iθ̃i ≥ c+ d

(
σx

∥∥∥θ̂g(i)∥∥∥)2
]
≥ exp(−d2/2) Pr

[
x′iθ̃i ≥ c

]
. (53)

Lemma 28 is intuitively understood as follows. Assume that candidate i would have been
hired under the UCB rule. The candidate may not be hired under the Hybrid rule because
it can cut subsidy for that candidate. However, there is constant probability such that a
slightly better (“aσ-good”) candidate appears on slot i and such a candidate is hired under
the Hybrid rule.

The following two lemmas, which utilizes Lemma 28, bounds the two terms of Eq. (49).

Lemma 29.

E

 N∑
n=1

1[ι = i]
1√

λmin(V̄g(i))

 ≤ 2ea
2/4

λ0

√
N +O(1).

Lemma 30.

E

 N∑
n=1

1[ι̃ = i]
1√

λmin(V̄g(i))

 ≤ 2ea
2/4

λ0

√
N +O(1).

With Lemmas 29 and 30, the regret is bounded as

Reg(N) ≤ 2Lβn(L, 1/N)
∑
i∈[K]

N∑
n=1

1[ι = i]
1√

λmin(V̄g(i))

+ Lβn(L, 1/N)
∑
i∈[K]

N∑
n=1

1[ι̃ = i]
1√

λmin(V̄g(i))
(by Eq. (49))

≤ 6Lβn(L, 1/N)K
ea

2/4
√
N

λ0

+ Õ(1) (by Lemma 29 and 30) (54)

which completes the proof of Theorem 8.

Proof of Lemma 29. Let Ni(n) be the number of the rounds before n such that the worker of
slot i is selected. Let τt be the first round such thatNi(n) reaches t andNi,t =

∑
n≤τt 1[X ′i (n)].

Lemma 28 implies E[Ni,t] ≥ e−a
2/2t and applying the Hoeffding inequality on binary random

33Note that x′iθ̂g(i) in Eq. (52) is replaced by x′iθ̃i in Eq. (53), which does not change the subsequent
derivations at all.
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variables (1[X ′i (τ1)],1[X ′i (τ2)], . . . , ...,1[X ′i (τt)]) yields

Pr
[
Ni,t <

(
e−a

2/2t−
√

(logN)t
)]
≤ 2

N2
. (55)

By using this, we have

Pr

[
N⋂
t=1

{
Ni,t <

(
e−a

2/2t−
√

(logN)t
)}]

≤
∑
t

Pr
[
Ni,t <

(
e−a

2/2t−
√

(logN)t
)]

(by union bound)

≤
∑
t

2

N2
(by Eq. (55))

≤ 2

N
.

In the following, we focus on the case

Ni,t ≥ e−a
2/2t−

√
(logN)t, (56)

which occurs with probability at least 1− 2/N .
Let V̄i(n) :=

∑
n′≤n 1[ι = i]xix

′
i � V̄g(i)(n). The context xi conditioned on event X ′i

satisfies assumptions in Lemma 18 with θ̂ = θ̃i and b̂ = maxj 6=i q̃
H
j . We have,

N∑
n=1

1[ι = i]
1√

λmin(V̄g(i))
≤

N∑
n=1

1[ι = i]
1√

λmin(V̄i)
(by V̄g(i) � V̄i)

≤
N∑
n=1

N∑
t=1

1[ι = i, Ni(n) = t]
1√

λmin(V̄i)

(by Ni(N) ≤ N)

≤
N∑
t=1

1√
λmin(V̄i(τt))

.

(by 1[ι = i, Ni(n) = t] occurs at most once)

In other words, lower-bounding λmin(V̄i(τt)) suffices the regret bound, which we demonstrate
in the following.

We have

E
[
λmin(V̄i(τt))

]
≥ λmin(

∑
n

E[1[X ′i (n)]xix
′
i])
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≥ λ0Ni,t. (by Lemma 18)

By using the matrix Azuma inequality (Lemma 21), with probability of at least 1− 1/N

λmin(V̄i(τt)) ≥
(
λ0Ni,t −

√
32Ni,tσ2

A log(dN)

)
(57)

where σA = 2L2. By using Eq. (56), (57), we have

λmin(V̄i(τt)) ≥ λ0e
−a2/2t−O(

√
t)

and thus

N∑
t=1

1√
λmin(V̄i(τt))

≤
N∑
t=1

1√
λ0e−a

2/2t−O(
√
t)

≤ 2ea
2/4

λ0

√
N +O(1).

Proof of Lemma 30. Let NWi
i (n) =

∑
n′≤n 1[Wi] and let τt be the first round such that

NWi
i (n) reaches t and Ni,t =

∑
n≤τt 1[X ′i (n)]. The following discussions are very similar to

the one of Lemma 29, which we write for the completeness. Then, we have

Pr

[
N⋂
t=1

{
Ni,t <

(
e−a

2/2t−
√

(logN)t
)}]

≤
∑
t

Pr
[
Ni,t <

(
e−a

2/2t−
√

(logN)t
)]

(by union bound)

≤
∑
t

2

N2
(by Lemma 28 and the Hoeffding inequality)

≤ 2

N
.

In the following, we focus on the case

Ni,t ≥ e−a
2/2t−

√
(logN)t (58)

that occurs with probability at least 1− 2/N .
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We have,

N∑
n=1

1[ι̃ = i]
1√

λmin(V̄g(i))
≤

N∑
n=1

1[ι̃ = i]
1√

λmin(V̄i)
(by V̄g(i) � V̄i)

≤
N∑
n=1

N∑
t=1

1[ι̃ = i, NWi
i (n) = t]

1√
λmin(V̄i)

≤
N∑
t=1

1√
λmin(V̄i(τt))

.

(by {ι̃ = i} increments NWi
i )

The following lower-bounds λmin(V̄i(τt)).
We have

E
[
λmin(V̄i(τt))

]
≥ λmin

(∑
n

E[1 [X ′i (n)]xix
′
i]

)
≥ λ0Ni,t. (by Lemma 18)

By using the matrix Azuma inequality (Lemma 21), at least 1− 1/N

λmin(V̄i(τt)) ≥
(
λ0Ni,t −

√
32Ni,tσ2

A log(dN)

)
(59)

where σA = 2(L(1/N))2. By using Eq. (58), (59), we have

λmin(V̄i(τt)) ≥ λ0e
−a2/2t−O(

√
t)

and thus

N∑
t=1

1√
λmin(V̄i(τt))

≤
N∑
t=1

1√
λ0e−a

2/2t−O(
√
t)

≤ 2ea
2/4

λ0

√
N +O(1).
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Proof of Theorem 9. We here bound the amount of the subsidy. Eq. (47), (48) imply

x′i

(
θ̃i − θ̂g(i)

)
≤ 1√

λmin(V̄g(i))
LβN

∣∣∣x′iθ̂g(i) − θg(i)∣∣∣ ≤ 2
1√

λmin(V̄g(i))
LβN

and thus the subsidy sH-I
i (n) = 0 for

λmin(V̄g(i)) ≥
(

2LβN
‖θ‖

)2

max

(
1,

1

a2σ2
x

)
=: Cs = Õ(1). (60)

Hence, it follows that

Sub(N) =
∑
n

sH-I
ι (n)

≤
∑
n

∑
i

1[Xi]sH-I
ι (n)

≤ LβN
∑
i

∑
n

1[λmin(V̄g(i)) ≤ Cs]
1√

λmin(V̄g(i))
(by Eq. (60))

≤ LβN
∑
i

∑
t

1[λ0e
−a2/2t−O(

√
t) ≤ Cs]

1√
λ0e−a

2/2t−O(
√
t)

(by the same discussion as Lemma 29)

≤ LβNK
∑
t

1[λ0e
−a2/2t ≤ Cs]

1√
λ0e−a

2/2t
+ Õ(1)

≤ LβNK
2ea

4/2

λ0

√
Csea

2/2

λ0

+ Õ(1) = Õ(1). (61)

Note that Cs diverges as a → +0. The bound of Theorem 9 is meaningful for a > 0. If
a = 0, the hybrid mechanism is reduced to the UCB mechanism, and thus Theorem 5 for
UCB applies.

B.8 Proof of Theorem 10

We modify the proof of Theorem 3. Accordingly, we use the same notation as the proof of
Theorem 3 unless we explicitly mention.
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We define

Q′′(n) =

{
∃iA, iB s.t. g(iA) = g(iB) = 1, iA 6= iB, and xiθ̂1,N1(n) ≥

1

2
µxθ for i = iA, iB

}
.

When the event Q′′(n) occur, there are two majority workers whose predicted skill q̂i(n) is
larger than its mean.

Lemma 31.

Pr[Q′′(n)|Q] ≥ 1− (K1 + 1)

(
1

2

)K1

. (62)

EventQ′′(n) states that the second order statistics of {q̂i}i:g(i)=1 is below mean. Lemma 31
states that this event is exponentially unlikely to K1. By the symmetry of normal distribution
and independence of each characteristic xi, each candidate is likely to be below mean with
probability 1/2, and the proof of Lemma 31 directly follows by counting the combinations
such that at most one of the worker(s) are above mean.

When we have P ′(n) and Q′′(n) for all n, then for every round n, the top-2 workers in
terms of quality q̂i(n) are from the majority. In this case, the minority worker is not hired
regardless of additional signal ηi. Accordingly, this is a sufficient condition for a perpetual
underestimation.

Proof of Theorem 10. By using Lemmas 24, 25, 26, and 31, we have (36), (37), (38), and
(62). From these equations, the probability of perpetual underestimation is bounded as:

Pr

[⋃
n

{ι(n) = 1}

]

≥ Pr

[⋃
n

{P ′(n),Q′′(n)},P ,Q

]

≥ Pr [P ] Pr [Q] Pr

[⋃
n

{P ′(n),Q′′(n)} | P ,Q

]
(by the independence of P and Q)

≥ C1b× C2 × (1−NC3 exp (−C4b))×

(
1−N (K1 + 1)

(
1

2

)K1
)

(by the union bound),

which, by letting b = O(1/ log(N)) and K1 + log2(K1 + 1) ≥ log2N , is Õ (1).
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B.9 Proof of Theorem 11

Proof of Theorem 11. We have

|x′i(θ̂g − θg)| ≤ ||xi||V̄ −1
g

∥∥∥θ̂g − θg∥∥∥
V̄g

≤ L

λmin(V̄g)
βn (by Eq. (13) and (14))

≤ L

λ
βN (by V̄g � λId)

=: C5 = Õ(1). (63)

Let i1 and i2 be the finalists chosen from group 1 and 2, respectively. Define the following
event:

J (n) = {ηi1(n)− ηi2(n) > 2C5}.

Under J , the finalist of group 1 is chosen because Eq. (63) implies that |x′i1θ̂g1 − x
′
i2
θ̂g2| ≤

2C5 and thus x′i1θ̂g1 + ηi1 − x′i2θ̂g2 + ηi2 > 0. Note that ηi1 − ηi2 is drawn from N (0, 2σ2
η).

Let C6 = Φc(
√

2C5/ση). Then,
Pr[J (n)] = C6. (64)

Let NJ1 =
∑n−1

n′=1 1[g(ι) = 1,J ] ≤ N1(n) be the number of hiring of group 1 under event
J . By using the Hoeffding inequality, with probability 1− 1/N2 we have

NJ1 ≥ nC6 −
√
n log(N). (65)

By taking union bound, Eq. (65) holds for all n with probability 1 −
∑

n 1/N2 ≥ 1 − 1/N .
From now, we evaluate λmin

(
V̄1(n)

)
. It is easy to see that

V̄1 :=
n∑

n′=1:ι(n′)=g

xi1x
′
i1

+ λI

≥
n∑

n′=1:ι(n′)=g

xi1x
′
i1

≥
n∑

n′=1:J

xi1x
′
i1
.

In the following, we lower-bound the quantity

λmin(E[xix
′
i|J ]) ≥ min

v:||v||=1
λmin(Var[v′xi|J ]).
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Note that i1 = arg maxi:g(i)=1 x
′
iθ̂1 is biased towards the direction of θ̂1, and we cannot use

the diversity condition (Lemma 18). Let v‖ and v⊥ be the component of v that is parallel to
and perpendicular to θ̂1.34 It is easy to confirm that Var[v′⊥xi] = ||v⊥||2σ2

x because selection
of arg maxi x

′
iθ̂g does not yield any bias in perpendicular direction. Regarding v‖, Lemma

22 characterize the variance, which is slightly35 smaller than the original variance due to
biased selection. Namely,

min
v:||v||=1

λmin(Var[v′xi|J ]) ≥ σx

(
Cvarmax

log(K)
||v‖||2 + ||v⊥||2

)
≥ σx

Cvarmax

log(K)
.

By using the matrix Azuma inequality (Lemma 21) with σA = 2L2, for t =
√

32NJ1 σ
2
A log(dN),

with probability 1− 1/N

λmin(V̄1) ≥ σx
Cvarmax

log(K)
NJg − t. (66)

Combining Eq. (65) and (66), with probability at least 1− 2/N , we have

λmin(V̄1(n)) ≥ σx
Cp

log(K)
n− Õ(

√
n) (67)

where Cp = C6Cvarmax = Õ(1). By symmetry, exactly the same bound as Eq. (67) holds for
group 2. Finally, by using similar transformations as Eq. (24), the regret is bounded as

E[Reg(N)] ≤ 2
N∑
n=1

max
i∈[K]

∣∣∣x′i(n)(θ̂g − θg)
∣∣∣

≤ 2
N∑
n=1

L√
λmin(V̄g)

βN (by Eq. (13), (14))

≤ 2LβN

N∑
n=1

√
log(K)

σxCpn− Õ(
√
n)

(by Eq. (67))

≤ 4LβN

√
N log(K)

σxCp
+ Õ(1) = Õ(

√
N) (68)

which concludes the proof.
34||v‖||2 + ||v⊥||2 = 1.
35O(1/ logK)
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