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Abstract

A college or firm makes admissions or hiring decisions in which each candidate is
characterized by priority ranking and type, which may depend on race, gender, or
socioeconomic status. The admissions or hiring committee faces a trade-off between
meritocracy and diversity: while a merit-first choice rule may admit candidates of the
same type, a diversity-first choice rule may be unfair due to priority violations. To
formalize this trade-off, we introduce a measure of meritocracy and a measure of diver-
sity for choice rules. Then, we investigate how to resolve the tension between them. A
choice rule that uses both reserves and quotas can be viewed as a compromise and is a
generalization of the two extreme rules. The first result is comparative statics for this
class of choice rules: we show that as parameters change and the choice rule becomes
more meritorious, it also becomes less diverse. The second result is a characterization
of the choice rule, which may help admissions or hiring committees to decide their
policies.

Keywords: Affirmative action, market design, choice rule, meritocracy, diversity.
JEL Classification: D47, D63.

∗I am very grateful to M. Utku Ünver and M. Bumin Yenmez for their invaluable guidance and Tayfun
Sönmez for his continuous support. I am grateful to Keisuke Bando, Manshu Khanna, Katsuya Kobayashi,
Hideo Konishi, Kentaro Tomoeda, and participants at the dissertation seminar at Boston College and the
2019 Summer School of the Econometric Society for helpful discussions.

†Department of Economics, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467. Email:
imamurak@bc.edu

1

https://drive.google.com/file/d/1zF2cPq7BmDgrDgkV6PoPHqGIwBZ-Uhrf/view?usp=sharing


1 Introduction
Affirmative action is a scheme to promote diversity based on different characteristics, such
as gender and race. Furthermore, it is used to close socioeconomic gaps that exist between
various groups in society. To this end, it involves policies designed to increase the participa-
tion of underrepresented groups in public areas such as employment, education, and business
contracting, thereby giving these groups a higher chance of participation.

Affirmative action policies highlight the basic tension between meritocracy and diversity.
Since they give a higher chance to underrepresented groups, they may not be meritorious:
while a more meritorious candidate may be rejected, a less meritorious candidate from an
underrepresented group may be admitted. On the other hand, a policy based on only merit
does not promote diversity, as many candidates from the overrepresented group may be
admitted, since they are likely to be more meritorious than candidates from the other groups.

The tension between meritocracy and diversity can be a very contentious issue. For
example, Harvard’s college admissions policies were brought to court by an organization
representing a group of Asian-American students called “Students for Fair Admissions.” The
plaintiffs claimed that Harvard used race and ethnicity as a predominant factor in admissions
decisions for diversity purposes, which intentionally discriminated against Asian-American
applicants.1 However, this claim was rejected by a federal judge who stated that the uni-
versity met the strict constitutional standards for considering race in its admissions process.
Moreover, the judge discussed the benefits of diversity, such as fostering tolerance, accep-
tance, and understanding that will ultimately make race-conscious admissions obsolete. She
further stated that it was not yet time to look beyond race in college admissions, which sug-
gests that the current race-conscious admissions process should be justified due to diversity
concerns.2

While there is rich market-design literature on how to incorporate various diversity con-
straints into a choice rule, little attention has been paid to how the choice of these constraints
affects meritocracy. In this paper, we propose a measure of meritocracy and a measure of di-
versity to formalize the tension and a potential resolution. We obtain a choice rule generated
by reserves and quotas (reserves-and-quotas rule) as a resolution of the tension. Reserves
provide soft lower bounds while quotas provide hard upper bounds on the number of candi-
dates of different types. The first result is comparative statics in this class of choice rules:
as parameters change and the choice rule becomes more meritorious, it also becomes less

1Students for Fair Admissions also accused the University of North Carolina and the University of Texas
of discrimination. See https://candidatesforfairadmissions.org/about/.

2For more details, see the following NY Times article: https://www.nytimes.com/2019/10/01/us/harvard-
admissions-lawsuit.html.
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diverse. While we focus on the specific class of choice rules, it includes choice rules in market-
design literature. We obtain two choice rules from the literature—the responsive rule and
the ideal-distribution rule—as two extremes of the class of reserves-and-quotas rules. The
responsive rule is the most meritorious and least diverse rule among this class, whereas the
ideal-distribution rule is the least meritorious and most diverse rule.

The second result is a characterization of the reserves-and-quotas rule, which could help
colleges or firms decide their admissions or hiring policies. Two out of the four axioms are
particularly important. The first axiom is across-types ≻-compatibility. We face the trade-off
between meritocracy and diversity. This axiom states when the college uses the priority and
when it concerns diversity. The other axiom is substitutability, which is necessary for the
existence of stable (or fair) matchings. It also enables us to use the most popular mechanism
in practice—the deferred acceptance algorithm—to find a stable matching.

The reserves-and-quotas rule is also closely related to the recently developed reserve
system literature, which analyzes the allocation of resources by reserves. A key observation
is that allocation depends on not only the size of reserve but also the order which seat is
processed (Dur et al. [10]). In terms of the order, our choice rule processes all reserves before
open seats. We provide another characterization to understand the relationship between
our choice rule and alternative reserve systems. In particular, we introduce a new axiom
meritorious monotonicity in reserve and quota size, which is motivated by our comparative
statics. This axiom ensures transparency: when a diversity constraint by reserves and quotas
is relaxed, a choice rule becomes more meritorious. The reserves-and-quotas rule is the only
natural choice rule which satisfy the new axiom. In terms of reserves system, processing
reserves first is the only transparent way.

We provide two additional results. First, we study the case of endogenous priorities.
The priority is exogenous in our model. The first characterization is generalized to the case
in which not only reserves and quotas, but also the priority, are endogenous. Second, we
study a separable choice rule. This property states that the college never uses the priority to
compare candidates of different types. While the ideal-distribution rule is separable, there
are other separable choice rules. We study the class of separable choice rules with the new
property.

The rest of the paper is organized as follows. Section 2 presents the model. Section
3 presents our main results. Section 4 provides a characterization. Section 5 provides
additional results. Section 6 provides the concluding remarks. Appendix A provides the
proofs of the results. Appendix B verifies the independence of the axioms.
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1.1 Related literature

Our results are closely related to the results obtained by Echenique and Yenmez [12]. They
study the tension between the existence of stable matchings and diversity concerns. Three
choice rules are proposed to resolve this tension; specifically, they characterize the ideal-
distribution rule, the reserves rule, and the quotas rule. Doğan [9] corrects the mistake in
the characterization of the reserves rule. These choice rules are included in the class of our
reserves-and-quotas rules. While our first characterization builds on their results, there are
two major differences in our results. First, we identify the role of substitutability, which is
the main axiom in Echenique and Yenmez’s characterizations, by providing another charac-
terization of our choice rule without substitutability. Second, and perhaps more importantly,
we provide not only the characterizations but also the trade-off between meritocracy and
diversity, which is the main topic in our work.

In two recent papers, Erdil and Kumano [14] and Kojima et al. [21] consider choice rules
similar to the ideal-distribution rule. However, their models and motivations are different
from those in this paper. First, their models are different. Erdil and Kumano [14] allow
indifferences in the priority, whereas the preference is strict in our model. Also, while their
choice rule assigns empty reserved seats for one type to other types of candidates, the ideal-
distribution rule never assigns them due to diversity concerns. Kojima et al. [21] consider
a matching market in which there are multiple colleges and multiple candidates. However,
this paper mainly focuses on the case of one college and multiple candidates. Also, Kojima
et al. [21] do not assume types of candidates. Second, the motivations in their papers differ.
Erdil and Kumano [14] focus on inefficiency due to indifferences and study how to improve
this. Kojima et al. [21] study how to incorporate distributional constraints into matching
theory. To do so, Kojima et al. [21] change the definition of stability and show the existence
of stable matchings using techniques in discrete convex analysis. We study how diversity
constraints affect meritocracy and provide a formal trade-off.

Diversity concerns have been widely studied in school choice literature. Abdulkadiroğlu
and Sönmez [2] note the problem of school choice with diversity concerns. They propose a
choice rule generated by quotas, which have been analyzed by Abdulkadiroğlu [1] and Ergin
and Sönmez [15]. Kojima [20] shows an impossibility result: affirmative action policies based
on majority quotas may hurt minority candidates. To overcome this difficulty, Hafalir et al.
[18] propose an affirmative action based on minority reserves. Doğan [8] proposes another
solution which never hurts minority candidates. More generally, Ehlers et al. [13] study
affirmative action policies when there are both upper and lower type-specific bounds. They
propose solutions based on whether these bounds are hard or soft. The reserves-and-quotas
rule in this paper can be regarded as a choice rule with hard upper and soft lower type-
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specific bounds. The hard lower type-specific bounds are further analyzed by Fragiadakis
[16], Fragiadakis and Troyan [17], and Tomoeda [30]. Other papers consider specific choice
rules similar to the choice rule generated by reserves (Aygun and Bó [3]; Dur et al. [10];
Dur et al. [11]; Kominers and Sönmez [22]; Westkamp [31]). These papers study how to
incorporate diversity constraints into school choice. In this paper, we investigate the impact
of diversity constraints on meritocracy.

Recently, affirmative action with complex constraints have been studied in various set-
tings (Aygun and Turhan [5]; Baswana et al. [6]; Hamada et al. [23]; Sönmez and Yenmez
[27] and [28]; Thakur [29]). For example, several papers study a model in which candidates
possibly have multiple types. However, this paper assumes that each candidate has one type.
These models are outside the scope of our analysis.

2 Preliminaries
This section presents the model and preliminary results. We describe the model in the first
subsection and the choice rules in the literature in the second subsection. Then, in the third
subsection, we study the ideal-distribution rule by introducing a new property.

2.1 Model

Let S = {s1, ..., sn} be a nonempty finite set of candidates. There is a college. The college’s
choice rule C is a function that maps for each nonempty set S ⊆ S to a subset C(S) ⊆ S.
Let k denote the capacity of the college. It is such that |C(S)| ≤ k for each S ⊆ S. A priority
is a binary relation ≻ on S that is complete, transitive and antisymmetric. The candidates
is partitioned into d different types. Let T = {t1, ..., td} be the set of types and τ : S → T

be the type function. Let St be the set of type t candidates; i.e., St ≡ {s ∈ S : τ(s) = t}.
Similarly, for each S ⊆ S, let St be the set of type t candidates in S; i.e., St ≡ S∩St. We use
a function ξ : 2S → Zd

+ to describe the number of candidates of each type in each particular
set. Thus, ξ(S) ≡ (|St1|, ..., |Std |) ∈ Zd

+ consists of the number of candidates of each type in
S. We term ξ(S) the distribution of candidates in S. We shall assume that the college is
not large enough to admit all candidates of a given type: k < |St| for every t ∈ T .

2.2 Choice rules

We introduce two choice rules. The first choice rule is a responsive rule as meritocracy first.
The other choice rule is an ideal-distribution rule as diversity first.
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First, we introduce a responsive rule. This rule is meritocracy first: the college always
uses the priority to compare candidates of different types.

Definition 1. A choice rule C is responsive if for all S ⊆ S

C(S) =

S if |S| ≤ k

{s∗1, ..., s∗k} otherwise

where s∗1 = argmax≻ S, and for all i = 2, ..., k, s∗i = argmax≻ S \ {s∗1, ..., s∗i−1}.

Next, we introduce an ideal-distribution rule proposed by Echenique and Yenmez [12]. In
this rule, the college sets an ideal distribution of candidate types and minimizes the distance
to it.

Definition 2 (Ideal-distribution rule). A choice rule C is generated by an ideal distri-
bution for priority ≻ if there exists a vector z∗ ∈ Zd

+ with
∑

t∈T z∗t ≤ k such that for all
S ⊆ S,

(i) ξ(C(S)) is the closest vector to z∗ (in Euclidean distance) in B(ξ(S)), where B(x) ≡
{y ∈ Zd

+ :
∑

i∈T yi ≤ k and ∀i ∈ T, yi ≤ xi} and

(ii) type-t candidates in C(S) have a higher priority than all type-t candidate in S \C(S)

for all t ∈ T .

In words, the ideal-distribution rule consists of two stages. First, the college chooses
a distribution of candidates ξ(C(S)) that is as close to z∗ as possible. Second, given the
distribution ξ(C(S)), it admits the highest priority candidates up to ξ(C(S))t for each type
t.

2.3 Separability: alternative characterization of ideal-distribution
rule

We study the ideal-distribution rule by introducing a new property. While the ideal-
distribution rule is intuitive and simple, it is extreme: the college never uses the priority to
compare candidates of different types. Echenique and Yenmez [12] describe it as diversity
first: the rule emphasizes diversity over individual candidates’ priorities. We introduce a
new property for choice rules to formalize the idea.

Definition 3. A choice rule C is separable if there exists a collection of choice rules {Ct}t∈T
such that
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Figure 1: Ideal-distribution rule.

(i) Ct is a choice rule defined on St for each type t and

(ii) C(S) = ∪t∈TCt(St) for all S ⊆ S.

We provide an alternative characterization of the ideal-distribution rule based on sepa-
rability. The proof is contained in Appendix A.

Proposition 1. A choice rule C is generated by an ideal distribution if and only if there
exists z∗ ∈ Zd

+ with
∑

t∈T z∗t ≤ k such that C is separable and for each type t, Ct is a
responsive rule whose capacity is z∗t .

The ideal-distribution rule is extreme in its view of how to resolve the tension between
meritocracy and diversity. The college insists in achieving the diversity objective z∗. There
are two disadvantages. First, it would create many priority violations: while low priority
candidates are admitted, high priority candidates of other types are rejected. Second, it
would create many empty seats: if no candidates from some type t apply to this college, zt
seats are unassigned, even if candidates of other types are rejected. We will discuss this issue
in the next section.

3 Main results
In this section, we study a reserves-and-quotas rule as a potential flexible choice rule. The
key property of the ideal-distribution rule is separability: the college never uses the priority
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to compare candidates of different types. The reserves-and-quota rule relaxes it: the college
sometimes uses the priority to compare candidates of different types. We provide two results
for this choice rule. The first result is the trade-off between meritocracy and diversity. The
second result is the characterizations.

3.1 Reserves-and-quotas rule

We define our main rule, the reserves-and-quotas rule. Reserves provide soft lower bounds
while quotas provide hard upper bounds on the number of candidates of different types. The
college can use the priority to compare two candidates of different types when their types
meet minimum and maximum requirements.

To define the choice rule, given S ⊆ S, let H(S, l, (lt)t∈T ) be the largest subset of S that
includes the highest priority candidates in S according to ≻ such that there are no more
than l candidates in total and lt candidates of type t. Formally, for all S ′ ⊆ S such that
|S ′| ≤ l and |S ′

t| ≤ lt for each t ∈ T , H(S, l, (lt)t∈T ) satisfies

(i) |S ′| ≤ |H(S, l, (lt)t∈T )| and

(ii) if |S ′| = |H(S, l, (lt)t∈T )| and S ′ ̸= H(S, l, (lt)t∈T ), then for all s ∈ H(S, l, (lt)t∈T ) \ S ′

and s′ ∈ S ′ \H(S, l, (lt)t∈T ), we have s ≻ s′.

Definition 4 (Reserves-and-quotas rule). A choice rule C is generated by reserves and
quotas for priority ≻ if there exist parameters r = (rt)t∈T and q = (qt)t∈T such that rt ≤ qt

for each type t,
∑

t∈T rt ≤ k ≤
∑

t∈T qt, and for all S ⊆ S, C(S) = C1(S) ∪ C2(S) where

C1(S) ≡ H(S, k, (rt)t∈T ) and
C2(S) ≡ H(S \ C1(S), k − |C1(S)|, (qt − rt)t∈T ).

In words, the reserves-and-quotas rule consists of two stages. First (reserves stage), the
college considers each type t separately and admits min{|St|, rt} type-t candidates with the
highest priority. Second (open seat stage), the college considers the candidates from all types
that are rejected at the first stage. Then, it admits these candidates with the highest priority
up to its remaining capacity, while keeping its hard upper type-specific bound qt for each
type t.

It is important to mention four points related to the reserves-and-quotas rule. First, the
class of reserves-and-quotas rules includes a lot of choice rules in market-design literature.
The responsive rule and the ideal-distribution rule are obtained as special cases. The reserves-
and-quotas rule is the responsive rule when for each type t, the number of reserves is equal
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to zero, and the number of quotas is greater than or equal to the capacity, that is, rt = 0 and
qt ≥ k for all t ∈ T . The reserves-and-quotas rule is the ideal-distribution rule when for each
type t, the numbers of reserves and quotas equal the diversity goal z∗t , that is, rt = z∗t = qt

for all t ∈ T .3 Clearly, the class of the reserves-and-quotas rule also includes the reserves
rule and the quotas rule proposed by Hafalir et al. [18] and Abdulkadiroğlu and Sönmez [2],
respectively. Our contribution is to provide the unified framework, the reserves-and-quotas
rule, and show the trade-off between meritocracy and diversity based on the parameters
(rt)t∈T and (qt)t∈T .

Second, the reserves-and-quotas rule is a variant of the choice rules proposed in the
literature. Ehlers et al. [13] propose the choice rule with soft lower bounds (rt)t∈T and soft
upper bounds (qt)t∈T . The reserves-and-quotas rule is generated by soft lower bounds (rt)t∈T
and hard upper bounds (qt)t∈T . The difference between these rules is that the reserves-and-
quotas rule does not admit more than qt students of type t, whereas the choice rule by Ehlers
et al. [13] sometimes admits more than qt students of type t. Formally, we obtain their choice
rule by adding the third stage C3 to the reserves-and-quotas rule where for all S ⊆ S,

C3(S) ≡ H(S \ (C1(S) ∪ C2(S)), k − |C1(S) ∪ C2(S)|, (k − qt)t∈T ).

Third, the reserves-and-quotas rule is not a unique choice rule to satisfy the constraint
by soft lower bounds (rt)t∈T and hard upper bounds (qt)t∈T ; there are other choice rules to
implement the same number of reserves and quotas. A real-life example is the choice rule
used in elite public high schools in Chicago (Kominers and Sönmez [22]; Dur et al. [11])
or the vertical reserves in India (Sönmez and Yenmez [27] and [28]). In words, this choice
rule also consists of two stages.4 First, it considers candidates from all types and admits
k−

∑
t∈T rt candidates with the highest priority. Second, it considers each type t separately

and type-t candidates that are rejected at the first stage. Then, it admits rt candidates with
the highest priority for each type t. Intuitively, this rule assigns reserves at the second stage.
Thus, this rule implements the reserves in the opposite order to our rule: the reserves-and-
quotas rule assigns reserves at the first stage. It is worth noting that our results on the
reserves-and-quotas rule cannot be carried out with the reserves rule used in Chicago. We
discuss this issue in the following sections.

Last, the reserves-and-quotas rule sometimes creates empty seats even if it rejects some
candidates. It is observed in practice to leave seats empty due to diversity concerns. An
example is the kindergarten assignment in Louisville, KY. Parents who tried to enroll their
children in kindergarten sued the Louisville school district. They argued that there was a

3The proofs are provided in Appendix A.
4This rule has no quotas.
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racial quota since the schools did not accept them although there were plenty of empty seats.
The school district contends that it’s not discriminating against anyone, but instead is trying
to maintain racially balanced and integrated schools for the benefit of all.5
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Figure 2: Reserves-and-quotas rule.

3.2 Trade-off between meritocracy and diversity

In this section, we investigate the trade-off between meritocracy and diversity. The respon-
sive rule cannot promote diversity, and the ideal-distribution rule is unfair due to many
priority violations. The reserves-and-quotas rule lies between the two rules. We formally
discuss the trade-off by introducing a measure of meritocracy and a measure of diversity for
choice rules.

First, we introduce a measure of meritocracy. Upon enumerating S from highest to lowest
according to s∗1 ≻ s∗2 ≻ s∗3 ≻ ... ≻ s∗n, we define FS for all S ⊆ S and l ∈ {1, ..., n} as follows.

FS(l) = |{s ∈ S : s ⪰ s∗l }|.

Definition 5. A choice rule C is more meritorious than C ′ if for all S ⊆ S and l ∈
{1, ..., n}, we have FC(S)(l) ≥ FC′(S)(l).6

5For more details, see the following ABC News article:
http://abcnews.go.com/Politics/SupremeCourt/story?id=2693451.

6This is equivalent to the following definition. Let R(S, l) be the lth highest priority candidate in S.
Formally, |{s ∈ S : s ⪰ R(S, l)}| = l when l ≤ |S|. For a case of |S| < l, let introduce a fictitious candidate
s∅ whose priority is lower than any other candidate s ∈ S i.e., for all s ∈ S, we have s ≻ s∅. For |S| < l,
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In words, for all priority ranking l, C always admits more candidates whose priority
ranking is weakly higher than l. A more meritorious choice rule reduces the numbers of
priority violations and empty seats. For example, F{s∗1,s∗2}(l) ≥ F{s∗2,s∗3}(l) and F{s∗1,s∗2}(l) ≥
F{s∗1}(l) for all l ∈ {1, ..., n}.

Next, we introduce a measure of diversity. Suppose that the college has a diversity goal
z∗ with

∑
t∈T z∗t ≤ k on the distribution of candidate types. The measure of diversity here is

a distance from the diversity goal z∗, considering the Manhattan norm (or L1 norm), which
is defined as ∥x∥ ≡

∑d
i=1 |xi|.7

Definition 6. A choice rule C is less diverse than C ′ if for all S ⊆ S,

∥z∗ − ξ(C(S))∥ ≥ ∥z∗ − ξ(C ′(S))∥.

Now we provide our first main result. It formalizes the trade-off between meritocracy
and diversity in the class of reserves-and-quotas rules. The proof is contained in Appendix
A.

Theorem 1. Let C be a choice rule generated by reserves r and quotas q and C ′ be a choice
rule generated by reserves r′ and quotas q′. Suppose rt ≤ r′t ≤ z∗t ≤ q′t ≤ qt for every type
t ∈ T . Then C is more meritorious than C ′ and C is less diverse than C ′.

Theorem 1 yields the following result: the responsive rule and the ideal-distribution
rule are two extremes in the class of reserves-and-quotas rules. The proof is contained in
Appendix A.

Proposition 2. The responsive rule is more meritorious and less diverse than any other
reserves-and-quotas rules. Any reserves-and-quotas rules are more meritorious and less
diverse than the ideal-distribution rule.

While the class of reserves-and-quotas rules has the trade-off, it is unclear in other classes
of choice rules for diversity. For example, the reserves rule in public high schools in Chicago
does not have such a trade-off: reducing reserves does not mean that it is more meritorious.
The following example illustrates the fact.

Example 1. There are three candidates s1, s2, and s3 and two types t1 and t2. Suppose
that τ(s1) = τ(s3) = t1 and τ(s2) = t2. A priority ≻ ranks them from first to last as

define R(S, l) = s∅. We say that a function f : S → R is compatible with ≻ when for all s, s′ ∈ S, s ≻ s′

if and only if f(s) > f(s′). A choice rule C is more meritorious than C ′ if and only if for all S ⊆ S,
l ∈ {1, ..., n}, and f compatible with ≻, we have

∑l
i=1 f(R(C(S), i)) ≥

∑l
i=1 f(R(C ′(S), i)).

7Our results rely on this norm. For example, Theorem 1 cannot be extend to the measure of diversity
based on L2. On the other hand, the ideal-distribution rule works with any Lp norm for p < ∞.
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Figure 3: Trade-off between meritocracy and diversity.

s1 ≻ s2 ≻ s3. A capacity k is equal to 2. Let C be the choice rule used in Chicago generated
by rt1 = rt2 = 1. Also, let C ′ be the choice rule used in Chicago generated by r′t1 = 1 and
r′t2 = 0. Notice that C ′ is obtained from C by reducing a reserve for t2. The choice rule C

admits s1 and s2. On the other hand, the choice rule C ′ admits s1 and s3. Thus, C ′ is not
more meritorious than C since F{s1,s2}(2) > F{s1,s3}(2).

The example leads to a natural question: what a class of choice rules does have the trade-off?
In Section 4, we will answer this question: The reserves-and-quotas rule is the one and only
natural choice rule which has the trade-off.

3.3 Characterizations of reserves-and-quotas rule

This section provides a characterization of the reserves-and-quotas rule using four axioms.
Also, we provide another characterization in a different case in which reserves and quotas
are exogenously specified to identify the role of substitutability—one of the main axioms.

3.3.1 Characterization

We introduce four axioms. The first axiom is substitutability, as introduced by Kelso and
Crawford [19], which is necessary for the existence of stable or fair matchings. Substitutabil-
ity, together with the irrelevance of rejected contracts introduced by Aygün and Sönmez
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[4], is sufficient for the existence of stable matchings.8 This also enables us to use the most
popular mechanism in practice, the deferred acceptance algorithm, to find a stable matching.
This axiom states that if a candidate s is chosen in a set of candidates S, s is chosen in any
subset of S including her.

Definition 7. A choice rule C satisfies substitutability if for all S ⊆ S ′ ⊆ S and s ∈ S,
s ∈ C(S ′) implies s ∈ C(S).

The second axiom is within-type ≻-compatibility introduced by Echenique and Yenmez
[12]. This is fairness within type: the college should always use the priority to compare
candidates of the same type.9 This axiom states that if a candidate s is chosen over another
s′ of the same type, s has a higher priority than s′.

Definition 8. A choice rule C satisfies within-type ≻-compatibility if for all S ⊆ S and
s, s′ ∈ S, whenever s ∈ C(S), s′ ∈ S \ C(S) and τ(s) = τ(s′), we have s ≻ s′.

The third axiom is rejection maximality introduced by Echenique and Yenmez [12]. This
is a weak efficiency condition: acceptance implies rejection maximality.10 In words, if a type-
t candidate is rejected from a set when there is an empty seat, then the number of type-t
candidates chosen from this set is weakly greater than the corresponding number for any set
that does not have more type-t candidates than this set.

Definition 9. A choice rule C satisfies rejection maximality if for all s ∈ S ⊆ S, s ∈
S \ C(S) and |C(S)| < k implies that for all S ′ with |S ′

τ(s)| ≤ |Sτ(s)|, we have |C(S ′)τ(s)| ≤
|C(S)τ(s)|.

The last axiom is our new axiom, across-types ≻-compatibility. We face the trade-off
between meritocracy and diversity. Thus, the key point is to determine when the college uses
the priority and when it concerns diversity. This axiom states that the number of candidates
of each type determines when the priority is used.

To introduce this axiom, we need two concepts introduced by Echenique and Yenmez [12]
and Doğan [9]. A type t is saturated in a set of candidates S if there exists S ′ such that
|S ′

t| = |C(S)t| and |C(S ′)t| < |C(S)t|. Saturation says that the number of admitted type-t
candidates in S is judged to be enough for diversity. This is because the college admits fewer
type-t candidates in another situation S ′ though the number of available type-t candidates is

8Substitutability and rejection maximality, the third axiom, imply the irrelevance of rejected contracts.
Thus, the reserves-and-quotas rule satisfies sufficiency for the existence of stable matchings.

9It is also referred to as inter se merit in the context of affirmative action in India; see Sönmez and
Yenmez [27] and [28] for more detail.

10A choice rule C satisfies acceptance if for all S ⊆ S, |C(S)| = min{k, |S|}.
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the same for that of the admitted type-t candidates in S. A type t is demanded in a set of
candidates S if there exists S ′ such that |S ′

t| = |St| and |C(S ′)t| > |C(S)t|. Demanded type
t means the college can admit more type-t candidates without sacrificing diversity. This
is because the college admits more type-t candidates in another situation S ′, though the
number of available type-t candidates is the same in S.

Now, we can introduce our new axiom.

Definition 10. A choice rule C satisfies across-types ≻-compatibility if for all S ⊆ S
and s, s′ ∈ S, whenever s ∈ C(S), s′ ∈ S\C(S), τ(s) is saturated in S, and τ(s′) is demanded
in S, we have s ≻ s′.

This axiom decides when to use the priority. If a saturated type candidate s is admitted
and a demanded type candidate s′ is rejected, then the admission of s is explained by the
high priority of s and the rejection of s′ is explained by the low priority of s′. From a different
view, the axiom states that when the college focuses on diversity. Consider a situation S

where the college rejects a candidate s and admits a candidate s′, whereas s has the higher
priority than s′: i.e., s ∈ S \ C(S), s′ ∈ C(S), and s ≻ s′. According to the axiom, the
college overrules an objection by s for either or both of two diversity reasons. First, τ(s) is
the non-demanded type, meaning that there are many type-τ(s) candidates relative to some
diversity objectives. Thus, the college cannot admit more type-τ(s) candidates to promote
diversity. Second, for another admitted candidate s′, τ(s′) is non-saturated, meaning that
there are few type-τ(s′) candidates relative to some diversity objectives. Thus, the college
must admit s′ regardless of the priority.

We provide our second main result. The proof is contained in Appendix A. We also verify
the independence axioms in Appendix B.

Theorem 2. A choice rule is generated by reserves and quotas for priority ≻ if and only if it
satisfies substitutability, within-type ≻-compatibility, rejection maximality, and across-types
≻-compatibility.

3.3.2 Another characterization: role of substitutability

In this section, we discuss the role of substitutability in our characterization. One might
think that it is difficult to label substitutability as an axiom. While substitutability is
necessary for the existence of stable matchings, stability is not a concept of choice rules.
Neither stability nor substitutability is necessary, especially in the case of one college. We
identify the role of substitutability: it constructs reserves and quotas. Specifically, we show
that in the case where reserves and quotas are exogenously specified, substitutability can be
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dropped from our characterization, with small modifications. In contrast, the reserves and
quotas are not exogenously specified in the first characterization: our axioms do not involve
the reserves and quotas. In practice, colleges or firms often specify the number of reserves
and quotas. Thus, our characterization without substitutability is still helpful for admissions
or hiring committees in deciding their policies.

Exogenously given the reserves r and the quotas q, we focus on a class of choice rules
satisfying the constraints by r and q. Specifically, a choice rule C satisfies the feasible
constraints by the reserves r and quotas q if for all S ⊆ S and t ∈ T , we have
min{rt, |St|} ≤ |C(S)t| ≤ qt. Also, we slightly change the two axioms to suit the case of
exogenous reserves r and quotas q.

Definition 11. A choice rule C satisfies rejection maximality* if for all s ∈ S ⊆ S,
whenever s ∈ S \ C(S) and |C(S)| < k, we have |C(S)τ(s)| = qτ(s).

Definition 12. A choice rule C satisfies across-types* ≻-compatibility if for all S ⊆ S
and s, s′ ∈ S, whenever s ∈ C(S), s′ ∈ S \ C(S), |C(S)τ(s)| > rτ(s), and |C(S)τ(s′)| < qτ(s′),
we have s ≻ s′.

Recall that there are many ways to satisfy the feasible constraints: the reserves-and-
quotas rule is not unique. An example is the reserves rule used in public high schools in
Chicago or the vertical reserves rule in India.11 While this rule satisfies the feasible con-
straints by the reserves and quotas, it violates across-types* ≻-compatibility. The following
example illustrates the fact.

Example 2. There are four candidates s1, s2, s3 and s4 and two types t1 and t2. Suppose
that τ(s1) = τ(s2) = τ(s3) = t1 and τ(s4) = t2. A priority ≻ ranks them from first
to last as s1 ≻ s4 ≻ s2 ≻ s3. A capacity k is equal to 2. There is one reserve for t1

and no reserve for t2, rt1 = 1 and rt2 = 0. There are non-binding quotas for t1 and t2,
qt1 = qt2 = 2. Let C be the choice rule used in Chicago. Since C({s1, s2, s4}) = {s1, s2}, we
have |C({s1, s2, s4})t1| = 2 > 1 and |C({s1, s2, s4})t2 | = 0 < 2. However s2 ∈ C({s1, s2, s4}),
s4 ∈ S \ C({s1, s2, s4}) and s4 ≻ s2, a violation of across-types* ≻-compatibility.12

Our third result states that the three axioms are enough to characterize the reserves-
and-quotas rule in the class of choice rules satisfying feasible constraints by the exogenous
reserves and quotas. The proof is contained in Appendix A. We also verify the independence
axioms in Appendix B.

11See Section 3 for how the reserves rule used in Chicago works.
12This rule also violates across-types ≻-compatibility. Notice that t1 is saturated in {s1, s2, s4} since

|{s2, s3, s4}t1 | = |C({s1, s2, s4})t1 | and |C({s2, s3, s4})t1 | < |C({s1, s2, s4})t1 |. Also, note that t2 is de-
manded in {s1, s2, s4} since |{s1, s2, s4}t2 | = |{s4}t2 | and |C({s1, s2, s4})t1 | < |C({s4})t1 |. However
s2 ∈ C({s1, s2, s4}), s4 ∈ S \ C({s1, s2, s4}) and s4 ≻ s2, a violation of across-types ≻-compatibility.
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Theorem 3. Let r and q be reserves and quotas, respectively. Suppose that a choice rule
satisfies feasibility constraints by r and q. Then it is the reserves-and-quotas rule for priority
≻ if and only if it satisfies within-type ≻-compatibility, rejection maximality*, and across-
types* ≻-compatibility.

4 Comparative statics as axiom
In this section, we provide the third characterization of the class of the reserves-and-quotas
rules. We introduce a new axiom, meritorious monotonicity in reserve and quota size. This
axiom (i) is motivated by our comparative statics in Theorem 1 and (ii) is transparency for
a practitioner and individuals in a market. Then, we discuss the relationship between our
new axiom and the choice rules in the literature, reserve system and soft reserves and soft
quotas.

4.1 New axiom

Our axiom states that as a constraint generated by reserves and quotas is relaxed, a choice
rule should become more meritorious. To capture a change of a constraint, we focus on
a class of choice rule parameterized by reserves r and quotas q. Specifically, the college’s
choice rule C is a function that maps for each nonempty set S ⊆ S and non-zero vectors
r, q ∈ Zd

+ to a subset C(S : r, q) ⊆ S. It is such that C(S : r, q) ⊆ S and |C(S : r, q)| ≤ k for
each S ⊆ S and r, q ∈ Zd

+. C(S : r, q) means the set of admitted candidates in S given the
reserves r and quotas q. Now we introduce our new axiom.

Definition 13. A choice function C satisfies meritorious monotonicity in reserve and
quota size if for all S ⊆ S, r, r′ ∈ Zd

+ and q, q′ ∈ Zd
+, whenever rt ≤ r′t and q′t ≤ qt for all

t ∈ T , C(: r, q) is more meritorious than C(: r′, q′).

It is important to mention two points related to our axiom. First, our axiom is motivated
by Theorem 1. Thus, the class of the reserves-and-quotas rules clearly satisfies it. As we
have seen in Example 1, the reserves rule used in Chicago public high school choice (Dur et
al. [11]) violates it. In addition, as we will see the next section, the other rules proposed in
the literature violate our axiom as well. Therefore, the class of reserves-and-quotas rule is
the only natural class that has clear comparative statics.13

Second, this axiom ensures transparency of rule to a practitioner and participants in the
market. Affirmative action is often implemented through a reserves system (Pathak et al.

13We can define a monotonicity axiom about diversity. However, our axiom is enough to characterize the
class of reserves-and-quotas rules. We will discuss it more in-depth in the Appendix.
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[26]). However, the functioning of the systems is counter intuitive, and thus a practitioner
and participants in the market often misunderstand it (Dur et al. [10]; Pathak et al. [25];
Delacrétaz [7]). In addition, a reserve and quota size often changes in real life. For example,
to promote diversity, each public school in Chicago increase the reserve size for students
from specific neighborhoods in 2012 (Dur et al. [11]). The elimination of reserves for local
neighborhood applicants in Boston’s school choice system (Dur et al. [10]) serves as another
example. Given the complexity of the system, it is not easy to understand what will happen
with these changes. Our axiom ensures that the rule works the way the practitioner and
participants intended it to.

We need additional concepts. Exogenously given the reserves r and the quotas q, we
focus on a class of choice rules satisfying the constraints by r and q. Specifically, a choice
rule C satisfies the feasible constraints by the reserves r and quotas q if for all S ⊆ S
and t ∈ T , we have min{rt, |St|} ≤ |C(S)t| ≤ qt. Also, we slightly change the two axioms to
suit this case.

Definition 14. A choice rule C satisfies within-type ≻-compatibility if for all S ⊆ S,
r, q ∈ Zd

+ and s, s′ ∈ S, whenever s ∈ C(S : r, q), s′ ∈ S \ C(S : r, q) and τ(s) = τ(s′), we
have s ≻ s′.

Definition 15. A choice rule C satisfies rejection maximality* if for all s ∈ S ⊆ S and
r, q ∈ Zd

+, whenever s ∈ S \ C(S : r, q) and |C(S : r, q)| < k, we have |C(S : r, q)τ(s)| = qτ(s).

We provide our third characterization. The proof is contained in Appendix A. We also
verify the independence axioms in Appendix B.

Theorem 4. Let C be a feasible choice rule. Then it is the reserves-and-quotas rule for
priority ≻ if and only if it satisfies within-type ≻-compatibility, rejection maximality*, and
meritorious monotonicity in reserve and quota size.

4.2 Choice rule in literature

4.2.1 Reserve system

Pathak et al. [26] propose a reserve system to allocate medical resources (e.g., ventilators,
ICU beds, drugs, and vaccines) to reconcile various ethical values. Their concept general-
izes a reserve system with sequential processing introduced by Kominers and Sönmez [22].
Recently, the importance of the precedence order is identified in the literature. Practical
examples are affirmative action in India (Sönmez and Yenmez [27]; Sönmez and Yenmez
[28]), school choice in the U.S. (Dur et al. [10]), and H1B visa allocation (Pathak et al.
[24]).
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The reserves-and-quotas rule is closely related to the reserve system literature. In terms
of the order, our choice rule processes all reserves before open seats. While that approach is
similar to our reserves-and-quotas rule, there are at least two important differences. First,
the reserve system does not have quotas. Extending this rule to incorporate quotas would
be a non-trivial and interesting question. Second, perhaps more importantly, the reserves-
and-quotas rule is not included in the class of the reserve systems even without quotas.
Specifically, a reserve system with any precedence order is not equivalent to the reserves-
and-quotas rule.14 On the other hand, any reserve system satisfies feasibility, within-type
≻-compatibility, and rejection maximality*. Therefore, Theorem 4 imply that it violates
only meritorious monotonicity in reserve and quota size. In other words, this new axiom
makes the difference.

4.2.2 Soft reserves and soft quotas

Ehlers et al. [13] propose the choice rule with soft lower bounds (rt)t∈T and soft upper bounds
(qt)t∈T .15 The reserves-and-quotas rule is a variant of this choice rule. However, this class of
choice rules has no comparative statics as we study in Theorem 1. The following example
illustrates that the class of the choice rules violate meritorious monotonicity in reserve and
quota size.

Example 3. There are five candidates s1, s2, s3, s4 and s5 and tree types t1, t2 and t3. Sup-
pose that τ(s1) = τ(s4) = t1, τ(s2) = τ(s4) = t2 and τ(s5) = t3. A priority ≻ ranks them
from first to last as s1 ≻ s2 ≻ s3 ≻ s4 ≻ s5. A capacity k is equal to 3. Let C be the choice
rule proposed by Ehlers et al. [13] generated by rt1 = rt2 = rt2 = 0 and qt1 = 2, qt1 = qt1 = 1.
Also, let C ′ be the choice rule proposed by Ehlers et al. [13] generated by rt1 = rt2 = rt2 = 0

and qt1 = qt1 = qt1 = 1. Notice that C is obtained from C ′ by relaxing the constraint by
soft reserves and soft quotas. The choice rule C admits s1, s2 and s4. On the other hand,
the choice rule C ′ admits s1, s2 and s3. This is a violation of meritorious monotonicity in
reserve and quota size: C is not more meritorious than C since F{s1,s2,s3}(3) > F{s1,s2,s4}(3).

14The cause of the difference is how to allocate empty reserves. While the reserve system with the order
converts an empty reserve to an open seat immediately, the reserves-and-quotas moves an empty reserve
last.

15The formal definition is provided in Section 3
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5 Additional results

5.1 Endogenous priority

In this section, we generalize Theorem 2 so that the class of reserves-and-quotas rules does
not depend on a particular priority. We introduce a property based on the strong axiom of
revealed preference. This axiom allows for the endogenous construction of a priority over
candidates.

Definition 16. A choice rule C satisfies across-types strong axiom of revealed pref-
erence if there are no sequences {sk}Kk=1 and {Sk}Kk=1, candidates and sets of candidates,
respectively, such that, for all k

(i) sk+1 ∈ C(Sk+1) and sk ∈ Sk+1 \ C(Sk+1);

(ii) τ(sk+1) = τ(sk) or τ(sk) is demanded in Sk+1 and τ(sk+1) is saturated in Sk+1.

(using addition mod K).

This axiom excludes the existence of certain cycles in the revealed preference. There are
two cases to consider. First, if τ(sk+1) = τ(sk), it is revealed that sk+1 has a higher priority
than sk. Second, if τ(sk+1) ̸= τ(sk), we require τ(sk) is demanded in Sk+1 and τ(sk+1) is
saturated in Sk+1. In this case, we can say that sk+1 has a higher priority than sk in the
revealed preference, even if they have different types.

Theorem 5. A choice rule is generated by reserves and quotas for some priority ≻ if and
only if it satisfies substitutability, rejection maximality, and across-types strong axiom of
revealed preference.

Proof. Suppose that C satisfies the axioms. We show that C is generated by reserves and
quotas for some ≻.

Step 1: Construction of a binary relation ≻∗ over S.
Define the binary relation ≻∗ over S as follows. For each s, s′ ∈ S such that τ(s) = τ(s′),

s ≻∗ s′ if and only if there exists S ⊆ S such that s ∈ C(S) and s′ ∈ S \ C(S). For each
s, s′ ∈ S such that τ(s) ̸= τ(s′), s ≻∗ s′ if and only if there exists S ⊆ S such that s ∈ C(S),
s′ ∈ S \C(S), τ(s) is saturated in S, and τ(s′) is demanded in S. While ≻∗ is not a complete
order, ≻∗ has a linear extension ≻ to S by across-types strong axiom of revealed preference.
Specifically, there exists a linear order ≻ over S such that for every s, s′ ∈ S, s ≻∗ s′ imply
s ≻ s′.

Step 2: C satisfies within-type ≻-compatibility and across-types ≻-compatibility for the
constructed ≻.
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For all S ⊆ S and s, s′ ∈ S, if s ∈ C(S), s′ ∈ S \ C(S) and τ(s) = τ(s′), then s ≻∗ s′ by
the definition of ≻∗. We also get s ≻ s′ since ≻ is a linear extension of ≻∗. Thus, C satisfies
within-type ≻-compatibility. For every S ⊆ S and every s, s′ ∈ S, if s ∈ C(S), s′ ∈ S \C(S),
τ(s) is saturated in S, and τ(s′) is demanded in S, then s ≻∗ s′ by the definition of ≻∗.
Again, we also get s ≻ s′ since ≻ is a linear extension of ≻∗. Thus, C satisfies across-types
≻-compatibility.

Note that C satisfies all axioms in Theorem 1. Thus, C is generated by reserves-and-
quotas.

For the other direction, it is enough to show C generated by reserves and quotas for ≻
satisfies across-types strong axiom of revealed preference. Suppose toward a contradiction:
there are sequences {s}Kk=1 and {S}Kk=1, of candidates and sets of candidates, respectively,
with the properties in the definition. This means ≻ admits a cycle: sK ≻ sK−1 ≻ ... ≻ s1 ≻
sK , a contradiction to ≻ being a linear order.

5.2 Separable choice rules

In this section, we study the class of separable choice rules. While the ideal-distribution
rule is separable, it is not a unique separable choice rule. We introduce a new monotonicity
property and show that together with substitutability, the choice rule is still separable. Then,
we study the class of choice rules.

5.2.1 New monotonicity

We introduce a new monotonicity property. Echenique and Yenmez [12] introduce mono-
tonicity, which is the key axiom in their characterization of the ideal-distribution rule. The
definition is as follows.

Definition 17. A choice rule C satisfies monotonicity if for all S, S ′ ⊆ S such that
|St| ≤ |S ′

t| for every type t, we have |C(S)t| ≤ |C(S ′)t| for every type t.

This new property relaxes monotonicity based on the law of aggregate demand.16 A
choice rule satisfying this property compares two sets of candidates with respect to a set
inclusion of each type, instead of the number of each type.

Definition 18. A choice rule C satisfies the type law of aggregate demand if for all
S, S ′ ⊆ S such that St ⊆ S ′

t for every t ∈ T , we have |C(S)t| ≤ |C(S ′)t| for every t ∈ T .
16A choice rule C satisfies the law of aggregate demand if for all S, S′ ⊆ S such that S ⊆ S′, we have

|C(S)| ≤ |C(S′)|.
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We show that a choice rule satisfying substitutability and the type law of aggregate
demand is still separable.

Theorem 6. If a choice rule satisfies substitutability and the type law of aggregate demand,
then it is separable.

Proof. We show that for all t ∈ T and all S, S ′ ⊆ S with St = S ′
t, we have C(S)t = C(S ′)t.

For all t ∈ T and all S, S ′ ⊆ S with St = S ′
t, we have |C(S)t| ≤ |C(S ∪ S ′)t|. This is

because for every t′ ∈ T , we have St′ ⊆ (S ∪ S ′)t′ and the type law of aggregate demand.
By substitutability, we have C(S ∪ S ′)t ∩ St ⊆ C(S)t. Since St = (S ∪ S ′)t, we have
C(S ∪ S ′)t ∩ St = C(S ∪ S ′)t. Since |C(S)t| ≤ |C(S ∪ S ′)t| and C(S ∪ S ′)t ⊆ C(S)t, we have
C(S)t = C(S ∪ S ′)t. Similarly we have C(S ′)t = C(S ∪ S ′)t and thus C(S)t = C(S ′)t.

5.2.2 Class of separable choice rules

We study the class of choice rules that satisfy substitutability, the type law of aggregate
demand, and within-type ≻-compatibility. This class is larger than the class of ideal-
distribution rules: Echenique and Yenmez [12] characterize the ideal-distribution rule by
substitutability, monotonicity, and within-type ≻-compatibility. First, we give an exam-
ple in which a choice rule is in our class, but not the ideal-distribution rule. Second, we
show that our rule also has a representation based on the reserves and quotas. Then, the
ideal-distribution rule appears again, when reserves equal quotas. Third, however, the class
of choice rules has no clear trade-off between meritocracy and diversity as in the class of
reserves-and-quotas rules.

In the following example, a choice rule satisfies substitutability, the type law of aggregate
demand, and within-type ≻-compatibility, but violates monotonicity. Thus it is not the
ideal-distribution rule.

Example 4. There are three candidates s1, s2 and s3. Suppose that τ(s1) = τ(s2) = τ(s3).
A priority ranks them from first to last as s1 ≻ s2 ≻ s3. Consider the following choice rule.

C(S) =

{s1, s2} if {s1, s2} ⊆ S

argmax≻ S otherwise

It is easy to check that C satisfies substitutability. Since all candidates are the same type,
C satisfies the type law of aggregate demand and within-type ≻-compatibility. However, it
violates monotonicity: |{s1, s2}| = |{s1, s3}| and |C({s1, s2})| = |{s1, s2}| ̸= |C({s1, s3})| =
|{s1}|. Thus, C is not the ideal-distribution rule.
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In the example, while the college admits all candidates when the first and second highest
priority candidates are available, it admits only one candidate otherwise. In other words,
the college’s capacity depends on the set of candidates.

The choice rule also has a representation based on reserves and quotas. The proof is
contained in Appendix A.

Proposition 3. Suppose that a choice rule C satisfies substitutability, the type law of aggre-
gate demand, and within-type ≻-compatibility. Then there exist reserves r and quotas q such
that C satisfies the feasible constraints by r and q. Moreover, C is the ideal-distribution rule
when rt = qt for each type t.

By Proposition 1, the ideal-distribution rule allocates the fixed capacity for each type
and applies the responsive rule. Here, the choice rule allocates a flexible capacity for each
type. As long as the choice rule satisfies the feasible constraint, it can change the capacity
depending on the set of candidates. For example, suppose that rt = 50 and qt = 100 for some
t. Then, the college admits 100 candidates of type t when the highest priority candidates
apply. On the other hand, it admits only 50 candidates of type t when the lowest priority
candidates apply.

While the choice rule also has a representation based on reserves and quotas, it has no
clear trade-off between meritocracy and diversity as in our reserves-and-quota rule. Either
reducing reserves or increasing quotas possibly leads to more priority violations. This is
because we cannot use the priority to compare candidates of different types by separability.

6 Concluding remarks
Affirmative action is used in various settings to promote diversity and has caused a debate
about meritocracy and diversity. In this paper, we study the tension between meritocracy
and diversity, with the reserves-and-quotas rule provided as a compromise solution.

First, we formalize the trade-off between meritocracy and diversity by introducing the two
measures of choice rules. We show the clear trade-off in the class of reserves-and-quotas rules:
as the number of reserves and quotas changes so that the rule becomes more meritorious,
it is less diverse. As a by-product of this result, we provide a unified view of the choice
rules in market design literature. The responsive rule is most meritorious and least diverse,
while the ideal-distribution rule is least meritorious and most diverse. Second, we provide
characterizations of reserves-and-quotas rules. These results help organizations that want to
promote diversity, to decide on their policies. Also, we identify the role of substitutability,
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one of the main axioms in our result and the characterizations by Echenique and Yenmez
[12].

While we focus on the class of the reserves-and-quotas rules, some choice rules for diversity
in the literature are not included in this class. We illustrate that one such rule, the reserves
rule as used in public high schools in Chicago, has no clear trade-off based on our measures.
Two possible directions for future research are as follows. The first direction is to show a
trade-off in this class of choice rules by providing a new measure of choice rules. The other
direction is to provide a characterization of the choice rule. These remain possible avenues
for future research.

References
[1] Atila Abdulkadiroğlu. College admissions with affirmative action. International Journal

of Game Theory, 33(4):535–549, 2005.

[2] Atila Abdulkadiroğlu and Tayfun Sönmez. School choice: A mechanism design ap-
proach. American economic review, 93(3):729–747, 2003.

[3] Orhan Aygun and Inácio Bó. College admission with multidimensional privileges: The
brazilian affirmative action case. Available at SSRN 3071751, 2017.

[4] Orhan Aygün and Tayfun Sönmez. Matching with contracts: Comment. American
Economic Review, 103(5):2050–51, 2013.

[5] Orhan Aygun and Bertan Turhan. Dynamic reserves in matching markets: Theory and
applications. Available at SSRN 2743000, 2016.

[6] Surender Baswana, Partha Pratim Chakrabarti, Sharat Chandran, Yashodhan Kano-
ria, and Utkarsh Patange. Centralized admissions for engineering colleges in india.
Interfaces, 49(5):338–354, 2019.

[7] David Delacrétaz. Processing reserves simultaneously. 2020.

[8] Battal Doğan. Responsive affirmative action in school choice. Journal of Economic
Theory, 165:69–105, 2016.

[9] Battal Doğan. How to control controlled school choice: Comment. American Economic
Review, 107(4):1362–64, 2017.

23



[10] Umut Dur, Scott Duke Kominers, Parag A Pathak, and Tayfun Sönmez. Reserve design:
Unintended consequences and the demise of boston’s walk zones. Journal of Political
Economy, 126(6):2457–2479, 2018.

[11] Umut Dur, Parag A Pathak, and Tayfun Sönmez. Explicit vs. statistical preferential
treatment in affirmative action: Theory and evidence from chicago’s exam schools.
Technical report, National Bureau of Economic Research, 2016.

[12] Federico Echenique and M Bumin Yenmez. How to control controlled school choice.
American Economic Review, 105(8):2679–94, 2015.

[13] Lars Ehlers, Isa E Hafalir, M Bumin Yenmez, and Muhammed A Yildirim. School
choice with controlled choice constraints: Hard bounds versus soft bounds. Journal of
Economic Theory, 153:648–683, 2014.

[14] Aytek Erdil and Taro Kumano. Efficiency and stability under substitutable priorities
with ties. Journal of Economic Theory, page 104950, 2019.

[15] Haluk Ergin and Tayfun Sönmez. Games of school choice under the boston mechanism.
Journal of public Economics, 90(1-2):215–237, 2006.

[16] Daniel Fragiadakis, Atsushi Iwasaki, Peter Troyan, Suguru Ueda, and Makoto Yokoo.
Strategyproof matching with minimum quotas. ACM Transactions on Economics and
Computation, 4(1):6, 2016.

[17] Daniel Fragiadakis and Peter Troyan. Improving matching under hard distributional
constraints. Theoretical Economics, 12(2):863–908, 2017.

[18] Isa E Hafalir, M Bumin Yenmez, and Muhammed A Yildirim. Effective affirmative
action in school choice. Theoretical Economics, 8(2):325–363, 2013.

[19] Alexander S Kelso Jr and Vincent P Crawford. Job matching, coalition formation, and
gross substitutes. Econometrica: Journal of the Econometric Society, pages 1483–1504,
1982.

[20] Fuhito Kojima. School choice: Impossibilities for affirmative action. Games and Eco-
nomic Behavior, 75(2):685–693, 2012.

[21] Fuhito Kojima, Akihisa Tamura, and Makoto Yokoo. Designing matching mechanisms
under constraints: An approach from discrete convex analysis. Journal of Economic
Theory, 176:803–833, 2018.

24



[22] Scott Duke Kominers and Tayfun Sönmez. Matching with slot-specific priorities: The-
ory. Theoretical Economics, 11(2):683–710, 2016.

[23] Ryoji Kurata, Naoto Hamada, Atsushi Iwasaki, and Makoto Yokoo. Controlled school
choice with soft bounds and overlapping types. Journal of Artificial Intelligence Re-
search, 58:153–184, 2017.

[24] Parag A Pathak, Alex Rees-Jones, and Tayfun Sönmez. Immigration lottery design:
Engineered and coincidental consequences of h-1b reforms. Technical report, National
Bureau of Economic Research, 2020.

[25] Parag A Pathak, Alex Rees-Jones, and Tayfun Sönmez. Reversing reserves. Technical
report, National Bureau of Economic Research, 2020.

[26] Parag A Pathak, Tayfun Sönmez, M Utku Ünver, and M Bumin Yenmez. Fair allocation
of vaccines, ventilators and antiviral treatments: leaving no ethical value behind in
health care rationing. arXiv preprint arXiv:2008.00374, 2020.

[27] Tayfun Sönmez and M Bumin Yenmez. Affirmative action in india via vertical and
horizontal reservations. 2019.

[28] Tayfun Sönmez and M Bumin Yenmez. Constitutional implementation of vertical and
horizontal reservations in india: A unified mechanism for civil service allocation and
college admissions. Technical report, 2019.

[29] Ashutosh Thakur. Matching problem of civil service. Working Paper, 2018.

[30] Kentaro Tomoeda. Finding a stable matching under type-specific minimum quotas.
Journal of Economic Theory, 176:81–117, 2018.

[31] Alexander Westkamp. An analysis of the german university admissions system. Eco-
nomic Theory, 53(3):561–589, 2013.

25



Appendix A. Omitted Proofs

Proof of Theorem 1

The proof consists of two steps. We start with lemmas.

Lemma 1. Suppose that C(S) \ C ′(S) ̸= ∅ and C ′(S) \ C(S) ̸= ∅. Then, for all s ∈
C(S) \ C ′(S) and s′ ∈ C ′(S) \ C(S), we have s ≻ s′.

Proof. s ∈ S \ C ′(S) implies |C ′(S)τ(s)| ≥ r′τ(s) ≥ rτ(s). s ∈ C(S) implies |C(S)τ(s)| >

|C ′(S)τ(s)|. Together with facts, we have |C(S)τ(s)| > rτ(s). Since s′ ∈ C ′(S) \C(S), we have
qτ(s′) ≥ q′τ(s′) ≥ |C ′(S)τ(s′)| > |C(S)τ(s′)|. Since C satisfies across-types* ≻-compatibility, we
have s ≻ s′.

Lemma 2. Let C1 be a choice rule generated by reserves r1 and quotas q1 and C2 be it
generated by reserves r2 and quotas q2. Suppose q1t ≤ q2t for every t ∈ T . Then, for all
S ⊆ S, we have |C1(S)| ≤ |C2(S)|.

Proof. Suppose not: there exists S ⊆ S such that |C2(S)| < |C1(S)|. Thus, there exists
t ∈ T such that |C2(S)t| < |C1(S)t|. This implies St \ C2(S)t ̸= ∅. By the definition of
the capacity, |C2(S)| < |C1(S)| ≤ k. Since C2 satisfies rejection maximality*, we have
|C2(S)t| = q2t . However, this implies q1t ≤ q2t = |C2(S)t| < |C1(S)t|, a contradiction to the
definition of q1t .

Step 1: C is more meritorious than C ′.
By Lemma 2, for all S ⊆ S, we have |C ′(S)| ≤ |C(S)|. There are two cases to consider.

Case 1: C ′(S) ⊆ C(S).
For all l ∈ {1, ..., n}, we have {s ∈ C ′(S) : s ⪰ s∗l } ⊆ {s ∈ C(S) : s ⪰ s∗l }. Thus, we have

FC′(S)(l) ≤ FC(S)(l).
Case 2: C ′(S) ̸⊆ C(S).

By Lemma 1 and |C ′(S)| ≤ |C(S)|, for all l ∈ {1, ..., n}, we have |{s ∈ C ′(S) \ C(S) :

s ⪰ s∗l }| ≤ |{s ∈ C(S) \ C ′(S) : s ⪰ s∗l }|. Thus, we have

FC′(S)(l) = |{s ∈ C ′(S) \ C(S) : s ⪰ s∗l }|+ |{s ∈ C ′(S) ∩ C(S) : s ⪰ s∗l }|

≤ |{s ∈ C(S) \ C ′(S) : s ⪰ s∗l }|+ |{s ∈ C ′(S) ∩ C(S) : s ⪰ s∗l }|

= FC(S)(l).

We complete Step 1.
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Step 2: C is less diverse than C ′.
Fix any type t ∈ T with rt < z∗t . Construct another choice rule C∗ generated by reserves

r∗ and quotas q∗. r∗ and q∗ are defined as follows. r∗t = rt + 1 for t and r∗t′ = rt′ for t′ ̸= t

and q∗t′ = qt′ for all t′ ∈ T . In words, the choice rule C∗ is obtained from C by increasing
reserves for t by one and keeping other reserves and quotas same.
Step 2-1. C is less diverse than C∗.

Claim 1. For all S ⊆ S, |C∗(S) \ C(S)| ≤ 1.

Proof. Suppose not. There exists S ⊆ S such that |C∗(S) \ C(S)| > 1. Pick for any
s1, s2 ∈ C∗(S) \ C(S). Note that C(S)τ(si) ⊊ C∗(S)τ(si) for i = 1, 2 by within-type ≻-
compatibility of C and C∗. Thus, |C∗(S)τ(si)| > rτ(si). By the construction of r∗, without
loss of generality, we can assume that |C∗(S)τ(s1)| > r∗τ(s1). By Lemma 2, |C(S)| = |C∗(S)|.
Thus, |C(S) \ C∗(S)| > 1. Pick s′ ∈ C(S) \ C∗(S). Note that C∗(S)τ(s′) ⊊ C(S)τ(s′) and
thus |C∗(S)τ(s′)| < |C(S)τ(s′)| ≤ qτ(s′) = q∗τ(s′). By across-types* ≻-compatibility of C∗, we
have s1 ≻ s′. However, by Lemma 1, s′ ≻ s1, a contradiction.

Claim 2. For all S ⊆ S, if |C∗(S) \C(S)| = 1, then (1) τ(s) = t for s ∈ C∗(S) \C(S) and
(2) |C(S)t| = rt.

Proof. First part: suppose not. There exists S ⊆ S such that |C∗(S)\C(S)| = 1, but τ(s) ̸= t

for s ∈ C∗(S) \C(S). Following the same argument in Claim 1, rτ(s) < |C∗(S)τ(s)| < qτ(s) =

q∗τ(s). By the assumption τ(s) ̸= t, we have rτ(s) = r∗τ(s) and thus r∗τ(s) < |C∗(S)τ(s)|. By
Lemma 2, |C(S)| = |C∗(S)|. Thus, |C(S) \ C∗(S)| = 1. Pick s′ ∈ C(S) \ C∗(S). Following
the same argument in Claim 1, |C∗(S)τ(s′)| < q∗τ(s′). By across-types* ≻-compatibility of C∗,
we have s ≻ s′. However, by Lemma 1, s′ ≻ s, a contradiction.

Second part: suppose not. There exists S ⊆ S such that |C∗(S) \ C(S)| = 1, but
|C(S)t| ̸= rt. Since s ∈ S \ C(S), |C(S)t| > rt. By the first part in this claim, |C∗(S)t| =
|C(S)t| + 1 > rt + 1 = r∗t . By Lemma 2, |C(S)| = |C∗(S)|. Thus, |C(S) \ C∗(S)| = 1. Pick
s′ ∈ C(S) \C∗(S). Following the same argument in Claim 1, |C∗(S)τ(s′)| < q∗τ(s′). By across-
types* ≻-compatibility of C∗, s ≻ s′. However, by Lemma 1, s′ ≻ s, a contradiction.

Now we show that C is less diverse than C∗: for all S ⊆ S, ∥z∗ − ξ(C(S))∥ ≥ ∥z∗ −
ξ(C∗(S))∥. If C(S) ̸= C∗(S), then by Lemma 2, |C(S)| = |C∗(S)|. By Claim 1, |C∗(S) \
C(S)| = 1 and |C(S) \ C∗(S)| = 1. By Claim 2, τ(s) = t for s ∈ C∗(S) \ C(S) and
|C(S)t| = rt. Thus, we have |z∗ − rt| − |z∗t − r∗t | = 1. Let t′ be τ(s′) for s′ ∈ C(S) \ C∗(S).
Since |C∗(S) \ C(S)| ≤ 1, we have |z∗t′ − ξ(C(S))t′| − |z∗t′ − ξ(C∗(S))t′| ≥ −1. The two
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inequalities imply

∥z∗ − ξ(C(S))∥ − ∥z∗ − ξ(C∗(S))∥ = |z∗t − ξ(C(S))t| − |z∗t − ξ(C∗(S))t|

+ |z∗t′ − ξ(C(S))t′ | − |z∗t′ − ξ(C∗(S))t′ |

= |z∗t − rt| − |z∗t − r∗t |

+ |z∗t′ − ξ(C(S))t′ | − |z∗t′ − ξ(C∗(S))t′ |

≥ 0.

We complete Step 2-1.
Fix any type t ∈ T with z∗t < qt. Construct another choice rule Ĉ generated by reserves

r̂ and quotas q̂. r̂ and quotas q̂ are defined as follows. r̂t′ = rt′ for all t′ ∈ T and q̂t = q̂ − 1

for t and q̂t′ = qt′ for t′ ̸= t. In words, Ĉ is obtained from C by decreasing quotas for t by
one and keeping other reserves and quotas same.

Step 2-2. C is less diverse than Ĉ.

Claim 3. For all S ⊆ S, |C(S) \ Ĉ(S)| ≤ 1.

Proof. Suppose not. There exists S ⊆ S such that |C(S) \ Ĉ(S)| > 1. Pick for any s1, s2 ∈
C(S) \ Ĉ(S). Note that Ĉ(S)τ(si) ⊊ C(S)τ(si) for i = 1, 2. Thus, |Ĉ(S)τ(si)| < |C(S)τ(si)| ≤
qτ(si) for i = 1, 2. By the construction of q̂, without loss of generality, we can assume that
|Ĉ(S)τ(s1)| < q̂τ(s1). By s1 ∈ S \ Ĉ(S), |Ĉ(S)τ(s1)| < q̂τ(s1) and rejection maximality* of
Ĉ, we have |Ĉ(S)τ(s1)| = k. Thus, |Ĉ(S) \ C(S)| > 1. Pick s′ ∈ Ĉ(S) \ C(S). Note that
C(S)τ(s′) ⊊ Ĉ(S)τ(s′) and thus r̂τ(s′) = rτ(s′) ≤ |C(S)τ(s′)| < |Ĉ(S)τ(s′)|. By across-types*
≻-compatibility of Ĉ, s′ ≻ s1. However, by Lemma 1, s1 ≻ s′, a contradiction.

Claim 4. For all S ⊆ S, if |C(S) \ Ĉ(S)| = 1, then (1) τ(s) = t for s ∈ C(S) \ Ĉ(S) and
(2) |C(S)t| = qt.

Proof. First part: suppose not. There exists S ⊆ S such that |C(S)\Ĉ(S)| = 1, but τ(s) ̸= t

for s ∈ C(S)\Ĉ(S). Following the same argument in Claim 3, |Ĉ(S)τ(s)| < |C(S)τ(s)| ≤ qτ(s).
By the assumption τ(s) ̸= t, qτ(s) = q̂τ(s). Following the same argument in Claim 3, there
exists s′ ∈ Ĉ(S) \ C(S) such that r̂τ(s′) < |Ĉ(S)τ(s′)|. By across-types* ≻-compatibility of
Ĉ, s′ ≻ s. However, by Lemma 1, s ≻ s′, a contradiction.

Second part: suppose not. There exists S ⊆ S such that |C(S) \ Ĉ(S)| = 1, but
|C(S)t| < qt. By the first part in this claim, |Ĉ(S)t| = |C(S)t| − 1 < qt − 1 = q̂t. Since
s ∈ S \ Ĉ(S), |Ĉ(S)t| < q̂t, and rejection maximality* of Ĉ, we have |Ĉ(S)| = k. Thus,
|Ĉ(S) \ C(S)| > 1. Pick s′ ∈ Ĉ(S) \ C(S). Following the same argument in Claim 3,
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r̂τ(s′) < |Ĉ(S)τ(s′)|. By across-types* ≻-compatibility of Ĉ, s′ ≻ s. However, by Lemma 1,
s ≻ s′, a contradiction.

Now we show that C is less diverse than Ĉ: for all S ⊆ S, ∥z∗ − ξ(C(S))∥ ≥ ∥z∗ −
ξ(Ĉ(S))∥. If C(S) ̸= Ĉ(S), then by Lemma 2, |C(S)| ≥ |Ĉ(S)|. Thus, |C(S) \ Ĉ(S)| = 1

and |Ĉ(S) \ C(S)| ≤ 1. By Claim 4, τ(s) = t for s ∈ C(S) \ Ĉ(S) and |C(S)t| = qt. Thus,
|z∗t − qt| − |z∗t − q̂t| = 1. If Ĉ(S) \ C(S) ̸= ∅, let t′ be τ(s′) for s′ ∈ Ĉ(S) \ C(S). Since
|Ĉ(S) \ C(S)| ≤ 1, we have |z∗t′ − ξ(C(S))t′| − |z∗t′ − ξ(Ĉ(S))t′| ≥ −1. The two inequalities
imply

∥z∗ − ξ(C(S))∥ − ∥z∗ − ξ(Ĉ(S))∥ = |z∗t − ξ(C(S))t| − |z∗t − ξ(Ĉ(S))t|

+ |z∗t′ − ξ(C(S))t′ | − |z∗t′ − ξ(Ĉ(S))t′ |

= |z∗t − qt| − |z∗t − q̂t|

+ |z∗t′ − ξ(C(S))t′ | − |z∗t′ − ξ(Ĉ(S))t′ |

≥ 0.

We complete Step 2-2.
To complete Step 2, note that C ′ can be obtained from C by sequentially constructing

C∗ and Ĉ from C. By Step 2-1 and Step 2-2, C is less diverse than C ′.

Proof of Theorem 2

We show the first part: when C satisfies the axioms, there exist r = (rt)t∈T ∈ Zd
+ and

q = (qt)t∈T ∈ Zd
+ such that C can be regard as the reserves-and-quotas rule. Let qt ≡ |C(St)|.

We construct the reserve of type t as follows. Let Xt ≡ {S ⊂ S : ∃s ∈ C(S),∃s′ ∈ S \
C(S)such thatτ(s) = t, τ(s′) ̸= t, |C(S)τ(s′)| < qτ(s′)ands′ ≻ s} and let rt ≡ maxS∈Xt |C(S)t|.
If Xt = ∅, set rt = 0. We also need the following property of choice rules.

Definition 19. A choice rule C satisfies the irrelevance of rejected candidates (IRS) if for
all S, S ′ ⊆ S, C(S ′) ⊆ S ⊆ S ′ imply that C(S) = C(S ′).

Substitutability and IRS are equivalent to the following property.

Definition 20. A choice rule C is path independent (PI) if for all S, S ′ ⊆ S, C(S ∪ S ′) =

C(S ∪ C(S ′)).

To prove the first part, we will establish claims.

Claim 5. If C satisfies substitutability and rejection maximality, it also satisfies PI.
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Proof. It is enough to show C satisfies IRC. First, we show that rejection maximality imply
the law of aggregate demand. Consider any S, S ′ ⊆ S with S ⊆ S ′. If |C(S ′)| = k, then
|C(S)| ≤ |C(S ′)|. Thus, suppose |C(S ′)| < k. There are two cases to consider. Case
1: S ′ \ C(S ′) = ∅. Since S ⊆ S ′, we have S ⊆ C(S ′) and |C(S)| ≤ |C(S ′)|. Case 2:
S ′ \ C(S ′) ̸= ∅. Notice that for all t ∈ T , |St| ≤ |S ′

t| since S ⊆ S ′. For all t ∈ T such that
|C(S ′)t| < |S ′

t|, by rejection maximality, we have |C(S)t| ≤ |C(S ′)t|. For all t ∈ T such that
|C(S ′)t| = |S ′

t|, we have |C(S)t| ≤ |C(S ′)t|. Thus, we have |C(S)| ≤ |C(S ′)|.
Second, we show that substitutability and the law of aggregate demand imply IRC.

Consider any S, S ′ ⊆ S with C(S ′) ⊆ S ⊆ S ′. Since S ⊆ S ′ and the law of aggregate
demand, we have |C(S)| ≤ |C(S ′)|. Since C(S ′) ⊆ S ⊆ S ′ and substitutability, we have
C(S ′)∩S = C(S ′) ⊆ C(S). By |C(S)| ≤ |C(S ′)| and C(S ′) ⊆ C(S), we have C(S ′) = C(S).

Claim 6. For all S ⊆ S and t ∈ T , if rt < |C(S)t|, then t is saturated in S.

Proof. By the definition of rt, there exists S∗ ∈ Xt such that |C(S∗)t| = rt. Let S ′ be
the set obtained by adding |C(S)t| − rt type t candidates to C(S∗). Specifically, S ′ =

C(S∗)∪{s1, ..., s|C(S)t|−rt} where {s1, ..., s|C(S)t|−rt} ⊆ St \C(S∗)t. Notice that |S ′
t| = |C(S)t|.

We show that |C(S ′)t| < |S ′
t| = |C(S)t|, and t is saturated in S. Suppose not: |C(S ′)t| = |S ′

t|.
Since S∗ ∈ Xt, there exist s ∈ C(S∗) and s′ ∈ S \ C(S∗) such that τ(s) = t, τ(s′) ̸= t,
|C(S∗)τ(s′)| < qτ(s′) and s′ ≻ s. Consider S∗ ∪ {s1, ..., s|C(S)t|−rt}. Since C(S∗) ⊆ S ′ and
|C(S ′)t| = |S ′

t|, we have s ∈ C(S ′). By path independence,

C(S∗ ∪ {s1, ..., s|C(S)t|−rt})

= C(C(S∗) ∪ {s1, ..., s|C(S)t|−rt})

= C(S ′)

Since C(S∗ ∪ {s1, ..., s|C(S)t|−rt}) = C(S ′), we have s ∈ C(S∗ ∪ {s1, ..., s|C(S)t|−rt}), s′ ∈
S \ C(S∗ ∪ {s1, ..., s|C(S)t|−rt}) and |C(S∗ ∪ {s1, ..., s|C(S)t|−rt})τ(s′)| < qτ(s′). However, rt =
|C(S∗)t| < |S ′

t| = |C(S ′)t| = |C(S∗ ∪ {s1, ..., s|C(S)t|−rt})t|, we get a contradiction to maxi-
mality of rt.

Claim 7. For all S ⊆ S and t ∈ T , if |C(S)t| < min{|St|, qt}, then t is demanded in S.

Proof. There are two cases to consider. Case 1: |St| ≤ qt. By the definition of qt, we have qt =
|C(St)|. Let be the set S ′ obtained from C(St) by removing qt−|St| candidates. Specifically,
S ′ = C(St) \ {s1, ..., sqt−|St|} where {s1, ..., sqt−|St|} ⊆ C(St). By substitutability, we have
C(S ′) = S ′. Since |St| = |S ′

t| and |C(S)t| < |C(S ′)|t, t is demanded in S. Case 2: qt < |St|.
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Notice that |St| ≤ |St|. Let S ′ be the set obtained from St by removing |St| − |St| rejected
candidates. Specifically, S ′ = St \ {s1, ..., s|St|−|St|} where {s1, ..., s|St|−|St|} ⊆ (St \ C(St)).
By IRC, we have C(S ′) = C(St). Since |St| = |S ′

t| and |C(S)t| < |C(S ′)|t, t is demanded in
S.

Claim 8. For all S ⊆ S and t ∈ T , if |C(S)t| < min{|St|, qt}, then |C(S)| = k.

Proof. Suppose not: there exist S ∈ S and t ∈ T such that |C(S)t| < min{|St|, qt}, and
|C(S)| < k. By the definition of qt, |C(St)| = qt. There are two cases to consider. Case 1:
qt ≤ |St|. Since |C(St)t| ≤ |St| and |C(S)t| < |C(St)t|, we get a contradiction to rejection
maximality. Case 2: qt > |St|. Let S ′ be the set obtained from C(St) by removing qt −
|St| candidates. Specifically, S ′ = C(St) \ {s1, ..., sqt−|St|} where {s1, ..., sqt−|St|} ⊆ C(St).
By substitutability, C(S ′) = S ′. However, we have |S ′

t| = |St| and |C(S)t| < |C(S ′)t|, a
contradiction to rejection maximality.

Claim 9. For all S ⊆ S and t ∈ T , min{rt, |St|} ≤ |C(S)t| ≤ qt.

Proof. First we show that |C(S)t| ≤ qt. By the definition of qt, we have |C(St)| = qt. If
|C(St)| = k, then it is clear |C(S)t| ≤ |C(St)| = qt. Thus, suppose |C(St)| < k. By the
definition of St, we have |St| ≤ |St|. Since we assume k < |St|, we have St \ C(St) ̸= ∅. By
rejection maximality, |C(S)t| ≤ |C(St)| = qt.

Second, we show that min{rt, |St|} ≤ |C(S)t|. Suppose by way of contradiction that
|C(S)t| < |St| and |C(S)t| < rt. By the definition of rt, there is S ′ ∈ Xt such that |C(S ′)t| =
rt. Let S∗ ≡ S ′ \ (S ′

t \C(S ′)t). In words, S∗ is obtained from S ′ by removing rejected type-t
candidates in S ′. By IRS, we have C(S ′) = C(S∗). Notice that all type t candidates in S∗

are admitted and |S∗
t | = |C(S∗)t| = rt. There two cases to consider. Case 1: |St| ≤ rt.

Let S ′′ be the set of candidate obtained from S by adding rt − |St| type t candidates so
that |S ′′

t | = rt. By substitutability, we have |C(S ′′)t| ≤ |C(S)t| + rt − |St| < rt = |C(S∗)t|.
By Claim 6, type t is saturated in S∗. However, S∗ ∈ Xt, a contradiction to across-types
≻-compatibility. Case 2: |St| > rt. Let S ′′ be the set of candidates obtained from S by
removing |St| − rt rejected type t candidates from S. By IRS, we have C(S) = C(S ′′). Now
type t is saturated in S∗ because |C(S ′′)t| < |S ′′

t | = rt = |C(S∗)t| and Claim 6. However,
S∗ ∈ Xt, a contradiction to across-types ≻-compatibility.

Given these claims, we prove the first part. The proof consists of three steps.
Step 1: For all S ⊆ S, C1(S) ⊆ C(S).

Recall that C1(S) ≡ H(S, k, (rt)t∈T ). Suppose not: there exist S ⊆ S and s ∈ S such
that s ∈ C1(S) and s ∈ S \ C(S). Since s ∈ C1(S), s is the at least rtth highest priority
candidate of type τ(s) in S that is, |{s′ ∈ S : τ(s′) = τ(s), s′ ≻ s}| < rt. Since s ∈ S \ C(S)
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and Claim 9, rτ(s) ≤ |C(S)τ(s)|. Thus, there exists s̃ such that s̃ ∈ C(S), τ(s̃) = τ(s), and
s ≻ s̃, a contradiction to within-type ≻-compatibility.

Step 2: For all S ⊆ S, C2(S) ⊆ C(S).
Suppose not: there exist S ⊆ S and s ∈ S such that s ∈ C2(S) and s ∈ S \ C(S).

By within-type ≻-compatibility of C and the definition of C1 and C2, we have C(S)τ(s) ⊊
(C1(S)∪C2(S))τ(s). Thus, |C(S)τ(s)| < qτ(s). By Claim 7, τ(s) is demanded in S. By Claim 8,
|C(S)| = k, and thus there exists s′ ∈ S such that s′ ∈ C(S)\(C1(S)∪C2(S)). By within-type
≻-compatibility, τ(s′) ̸= τ(s) and (C1(S)∪C2(S))τ(s′) ⊊ C(S)τ(s′). Thus, rτ(s′) < |C(S)τ(s′)|.
By Claim 6, τ(s′) is saturated in S. By across-types ≻-compatibility, s′ ≻ s. However,
|(C1(S) ∪ C2(S))τ(s)| > rτ(s) since s ∈ C2(S). Also, |(C1(S) ∪ C2(S))τ(s′)| < qτ(s′) since
(C1(S) ∪ C2(S))τ(s′) ⊊ C(S)τ(s′). By the definition of C1 and C2, we have s ≻ s′, a contra-
diction.

Step 3: C is generated by reserves r and quotas q for priority ≻.
We show that C1(S) ∪ C2(S) = C(S). Suppose not: C1(S) ∪ C2(S) ⊊ C(S). Then,

|C1(S)∪C2(S)| < |C(S)|. By the definition of C1 and C2, either |C(S)| > k or |C(S)t| > qt

for some t ∈ T , a contradiction. We complete the first part in Theorem 2.

To prove the second part in Theorem 2, suppose that C is generated by reserves r =

(rt)t∈T ∈ Zd
+ and quotas q = (qt)t∈T ∈ Zd

+ for ≻. We show that C satisfies the four axioms.
By the definition of C1 and C2 , C satisfies within-type ≻-compatibility. For all S ⊆ S, if
s ∈ S \C(S) and |C(S)| < k, then |C(S)τ(s)| = qτ(s). Thus, C satisfies rejection maximality.
Given r = (rt)t∈T ∈ Zd

+ and q = (qt)t∈T ∈ Zd
+, it is easy to see that for all t ∈ T and S ⊆ S,

if t is saturated in S, then |C(S)t| > rt; if t is demanded in S, then |C(S)t| < qt. Thus,
C satisfies across-types ≻-compatibility. We show that C also satisfies substitutability: for
all s ∈ S ⊆ S ′ ⊆ S, s ∈ S \ C(S) implies s ∈ S ′ \ C(S ′). To see that, let l(s, S) be the
priority ranking of s in S. There are two cases to consider. Case 1: |C(S)τ(s)| = qτ(s).
l(s, Sτ(s)) > qτ(s) since s ∈ S \ C(S) and the definition of C. S ⊆ S ′ implies l(s, S ′

τ(s)) ≥
l(s, Sτ(s)) > qτ(s) and thus s ∈ S ′ \ C(S ′). Case 2: |C(S)| < qτ(s). s ∈ S \ C(S) implies
s ∈ S \C1(S) and rτ(s) < l(s, Sτ (s)). Since Sτ(s) ⊆ S ′

τ(s), we have rt < l(s, Sτ(s)) ≤ l(s, S ′
τ(s)).

Thus, s ∈ S ′ \ C1(S ′). Also s ∈ S \ C(S) implies s ∈ S \ C2(S). Consider a student of
the lowest priority in C2(S): i.e., argmin≻H(S \C1(S), k− |C1(S)|, (qt − rt)t∈T ). Since s ∈
S\C2(S), we have argmin≻H(S\C1(S), k−|C1(S)|, (qt−rt)t∈T ) ≻ s. Since S ⊆ S ′, we have
|C1(S)| ≤ |C1(S ′)| and argmin≻H(S ′ \ C1(S ′), k − |C1(S ′)|, (qt − rt)t∈T ) ⪰ argmin≻H(S \
C1(S), k− |C1(S)|, (qt− rt)t∈T ). Thus, argmin≻H(S ′ \C1(S ′), k− |C1(S ′)|, (qt− rt)t∈T ) ≻ s
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and s ∈ S ′ \ C2(S ′). Together with these facts, s ∈ S ′ \ C(S ′).

Proof of Theorem 3

We show that the first part: C is the reserves-and-quotas rule if it satisfies within-type ≻-
compatibility, rejection maximality*, and across-types* ≻-compatibility. The proof consists
of three steps.
Step 1: For all S ⊆ S, C1(S) ⊆ C(S).

Suppose not: there exist S ⊆ S and s ∈ S such that s ∈ C1(S) and s ∈ S \ C(S).
Since s ∈ C1(S), s is the at least rtth highest priority candidate of type τ(s) in S that
is, |{s′ ∈ S : τ(s′) = τ(s), s′ ≻ s}| < rt. Since s ∈ S \ C(S) and C satisfies the feasible
constraints by r and q, we have rτ(s) ≤ |C(S)τ(s)|. Thus, there exists s̃ such that s̃ ∈ C(S),
τ(s̃) = τ(s), and s ≻ s̃, a contradiction to within-type ≻-compatibility.

Step 2: For all S ⊆ S, C2(S) ⊆ C(S).
Suppose not: there exist S ⊆ S and s ∈ S such that s ∈ C2(S) and s ∈ S \ C(S).

By within-type ≻-compatibility of C and the definition of C1 and C2, C(S)τ(s) ⊊ (C1(S) ∪
C2(S))τ(s). Thus, |C(S)|τ(s) < qτ(s). By rejection maximality*, |C(S)| = k and thus there
exists s′ ∈ S such that s′ ∈ C(S) \ (C1(S) ∪ C2(S)). By within-type ≻-compatibility of
C and the definition of C1 and C2, τ(s′) ̸= τ(s) and (C1(S) ∪ C2(S))τ(s′) ⊊ C(S)τ(s′).
Thus, rτ(s′) < |C(S)τ(s′)|. By across-types* ≻-compatibility, we have s′ ≻ s. However,
|(C1(S) ∪ C2(S))τ(s)| > rτ(s) since s ∈ C2(S). Also, |(C1(S) ∪ C2(S))τ(s′)| < qτ(s′) since
(C1(S) ∪ C2(S))τ(s′) ⊊ C(S)τ(s′). By the definition of C1 and C2, we have s ≻ s′, a contra-
diction.

Step 3: C is generated by reserves r and quotas q for priority ≻.
We show that C1(S) ∪ C2(S) = C(S). Suppose not: C1(S) ∪ C2(S) ⊊ C(S). Then

|C1(S)∪C2(S)| < |C(S)|. By the definition of C1 and C2, either |C(S)| > k or |C(S)t| > qt

for some t ∈ T , a contradiction.
Next, we show the second part. Suppose that C is generated by reserves r and quotas q.

By the definition of C1 and C2, C satisfies the feasible constraints by r and q. By Theorem 2,
we haven shown C satisfies within-type ≻-compatibility. For rejection maximality*, suppose
by way of contradiction that there exists s ∈ S ⊆ S such that s ∈ S \ C(S), |C(S)| < k,
and |C(S)τ(s)| < qτ(s). Notice that |C(S) ∪ {s}| ≤ k and |C(S)τ(s) ∪ {s}| ≤ qτ(s), we get a
contradiction to the maximality of C1 and C2. For across-types* ≻-compatibility, suppose by
way of contradiction that there exist S ⊆ S and s, s′ ∈ S such that s ∈ C(S), s′ ∈ S \C(S),
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|C(S)τ(s)| > rτ(s), |C(S)τ(s′)| < qτ(s′), and s′ ≻ s. Since s′ ∈ S \ C(S), |C(S)τ(s′)| < qτ(s′),
and rejection* maximality of C, we have |C(S)| = k. Let S∗ ≡ (C(S) \ {s}) ∪ {s′}. Notice
that |S∗| = k, |S∗

τ(s)| ≥ rτ(s) and |S∗
τ(s′)| ≤ qτ(s′). This contradicts that C1 and C2 chooses

the highest priority candidates with respect to the constraints.

Proof of Proposition 1

Suppose that there exists z∗ such that C is separable and for each type t, Ct is a responsive
rule on St whose capacity is z∗t . Echenique and Yenmez [12] show that the ideal-distribution
rule is characterized by substitutability, monotonicity, and within-type ≻-compatibility.
Thus, it is enough to check that C satisfies these three axioms. Since Ct is responsive
on St for each t ∈ T , C satisfies substitutability and within-type ≻-compatibility. We show
that for all S, S ′ ⊆ S and t ∈ T , if |St| ≤ |S ′

t|, then |C(S)t| ≤ |C(S ′)t|. Suppose not:
there exist S, S ′ ⊆ S and t ∈ T such that |St| ≤ |S ′

t| and |C(S)t| > |C(S ′)t|. Notice that
|C(S ′)t| < |C(S)t| ≤ |St| ≤ |S ′

t|. Since Ct satisfies acceptance on St, |C(S ′)t| < |S ′
t| imply

|C(S ′)t| = z∗t . This implies z∗t < |C(S)t|, a contradiction for the fact that Ct is a responsive
rule whose capacity is z∗t . This property is stronger than monotonicity, and thus C satisfies
monotonicity.

Proof of Proposition 2

We show that the class of reserves and quotas rules includes the responsive rule and the
ideal-distribution rule as special cases. Then, Proposition 2 follows from Theorem 1.

First, we show that C is the responsive rule when rt = 0 and qt ≥ k for all t ∈ T . Since
rt = 0 for all t ∈ T , we have C1(S) = ∅ for all S ⊆ S. Since qt ≥ k for all t ∈ T , C = C2

satisfies acceptance. Let C ′ be the responsive rule whose capacity is k. We show that for all
S ⊆ S, C(S) = C ′(S). Suppose not: there exists S ⊆ S such that C(S) ̸= C ′(S). Since both
C and C ′ satisfy acceptance, |C(S)| = |C ′(S)| = k. Thus, there are s ∈ C(S) \ C ′(S) and
s′ ∈ C ′(S) \ C(S). Since s ∈ C(S), s′ ∈ S \ C(S), C1(S) = ∅, and the definition of C2, we
have s ≻ s′. However, since s′ ∈ C ′(S), s ∈ S \ C ′(S), and the definition of the responsive
rule, we have s′ ≻ s, a contradiction.

Next, we show that C is the ideal-distribution rule when rt = z∗t = qt for all t ∈ T . Since
rt = z∗t = qt for all t ∈ T , we have C2(S) = ∅ for all S ⊆ S. This means C = C1, and thus
C is separable. For each t ∈ T , Ct is the responsive rule whose capacity is z∗t since rt = z∗t

and the definition of C1. By Proposition 1, C is the ideal-distribution rule.
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Proof of Proposition 3

For each type t, the reserves rt and quotas qt are defined as rt ≡ minS⊆S{|St| : |C(S)t| = |St|}
and qt ≡ maxS⊆S |C(S)t|, respectively. By the definitions of r and q, the choice rule C satisfies
the feasible constraints by r and q. By Theorem 5, C is separable. For each t ∈ T , if rt = qt,
then Ct is the responsive rule on St. By Proposition 1, C is the ideal distribution rule.

Proof of Theorem 4

Proof. Let C be the reserves-and-quotas rule. Let C ′ be a choice rule satisfying the four
axioms. By a way of contradiction, suppose that for some S ⊆ S and r, q ∈ Zd

+, we have
C(S, r, q) ̸= C ′(S, r, q).

Claim 10. |C(S, r, q)| = |C ′(S, r, q)| = k.

Proof. First we show |C(S, r, q)| = |C ′(S, r, q)|. Suppose not: |C(S, r, q)| ̸= |C ′(S, r, q)|.
There are two cases to consider. Case 1: |C(S, r, q)| > |C ′(S, r, q)|. There exists t ∈ T such
that |C(S, r, q)t| > |C ′(S, r, q)t|. By the feasible constraint, we have qt > |C(S, r, q)t| >

|C ′(S, r, q)t|. Note that St \ C ′(S, r, q)t ̸= ∅ since |C(S, r, q)| ̸= |C ′(S, r, q)|. However,
|C(S, r, q)| > |C ′(S, r, q)| imply k > |C ′(S, r, q)|, a violation of rejection maximality. Case 2:
|C(S, r, q)| < |C ′(S, r, q)|. Since the reserves-and-quotas rule C satisfies rejection maximality,
we can apply the same argument in Case 1.

Second we show |C(S, r, q)| = k. Suppose not: |C(S, r, q)| < k. Since C(S, r, q) ̸=
C ′(S, r, q) and |C(S, r, q)| = |C ′(S, r, q)|, we have C ′(S, r, q) \ C(S, r, q) ̸= ∅. Pick any s ∈
C ′(S, r, q)\C(S, r, q). Since C ′ satisfies the feasible constraint, we have |C ′(S, r, q)τ(s)| ≤ qτ(s).
By within-type ≻-compatibility of C ′ and s ∈ C ′(S, r, q) \C(S, r, q), we have C(S, r, q)τ(s) ⊊
C ′(S, r, q)τ(s) and thus |C(S, r, q)τ(s)| < qτ(s). However, together with |C(S, r, q)| < k and
s ∈ S \ C(S, r, q), it contradicts C satisfies rejection maximality.

Lemma 3. FC(S,r,q)(l) ≥ FC′(S,r,q)(l) for all l ∈ {1, ..., n}.

Proof. Since C(S, r, q) ̸= C ′(S, r, q) and |C(S, r, q)| = |C ′(S, r, q)|, we have C(S, r, q) \
C ′(S, r, q) ̸= ∅, C ′(S, r, q) \ C(S, r, q) ̸= ∅, and |C(S, r, q) \ C ′(S, r, q)| = |C ′(S, r, q) \
C(S, r, q)|. It is suffice to show that for all s ∈ C(S, r, q) \ C ′(S, r, q) and s′ ∈ C ′(S, r, q) \
C(S, r, q), we have s ≻ s′. First, we show that |C(S, r, q)τ(s)| > rτ(s). s ∈ S \ C ′(S)

imply |C ′(S, r)τ(s)| ≥ rτ(s). By within-type ≻-compatibility of C and s ∈ C(S, r, q) \
C ′(S, r, q), we have C ′(S, r, q)τ(s) ⊊ C(S, r, q)τ(s) and thus |C(S, r, q)τ(s)| > rτ(s). Second,
we show that |C(S, r, q)τ(s′)| < qτ(s′). Since C ′ satisfies the feasible constraint, we have
|C ′(S, r, q)τ(s′)| ≤ qτ(s). By within-type ≻-compatibility of C and s′ ∈ C ′(S, r, q) \ C(S, r, q),
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we have C(S, r, q)τ(s′) ⊊ C ′(S, r, q)τ(s′) and thus |C(S, r, q)τ(s′)| < qτ(s′). By the definition of
the reserves-and-quotas rule, we have s ≻ s′.

Now we prove Theorem 4. Define r′, q′ ∈ Zd
+ by setting r′t = |C(S, r, q)t| = q′t for all

t ∈ T . Notice that
∑

t∈T r′t = k =
∑

t∈T q′t by Claim. Together with these facts, ξ(C(S, r, q))

is a unique solution for the feasible constraint by r′ and q′. Thus, we have ξ(C ′(S, r′, q′)) =

ξ(C(S, r, q)). Since C ′ satisfy within-type ≻-compatibility, we have C ′(S, r′, q′) = C(S, r, q).
By Lemma, we have FC′(S,r′,q′)(l) ≥ FC′(S,r,q)(l) for all l ∈ {1, ..., n}. However, we have
rt ≤ |C(S, r, q)t| = r′t and q′t = |C(S, r, q)t| ≤ qt for all t ∈ T , a contradiction.

Appendix B. Independence of Axioms
We show the independence of axioms in Theorem 2, 3, 4, and 5.
Axioms in Theorem 5

Example 1 (Violating only rejection maximality). Let S = {s1, s2, s3}, k = 2 and τ(s1) =

τ(s2) = τ(s3) = t. Consider the following choice rule: C({s1, s2, s3}) = C({s1, s2}) =

C({s1, s3}) = C({s1}) = {s1}, C({s2, s3}) = {s2, s3}, C({s2}) = {s2} and C({s3}) = {s3}.
C satisfies substitutability. C also satisfies across-types strong axiom of revealed preference
since all candidates are the same type. It violates rejection maximality since |{s1, s2, s3}t| >
|{s2, s3}t| and |C({s1, s2, s3})t| < |C({s2, s3})t| = k.

Example 2 (Violating only substitutability). Let S = {s1, s2, s3, s4}, k = 2 and τ(s1) =

τ(s2) = τ(s3) = t1 and τ(s4) = t2. Consider the following choice rule: C({s1, s2, s3, s4}) =
C({s1, s2, s3}) = {s1, s2}, C({s1, s2, s4}) = C({s1, s3, s4}) = {s1, s4}, C({s2, s3, s4}) =

{s2, s4}, C({s1, s2}) = C({s1, s3}) = {s1}, C({s2, s3}) = {s2}, and C(S) = S for the
remaining S.

Let ≻ be defined as follows: s ≻ s′ if there exists S ⊇ {s.s′} such that s ∈ C(S) and
s′ ̸∈ C(S) and either τ(s) = τ(s′) or τ(s) is saturated and τ(s′) is demanded in S. Notice
that t1 is neither demanded nor saturated in any S ⊆ S. Thus, we focus on t1 only and
get s1 ≻ s2 ≻ s3. Since there is no cycle, across-types strong axiom of revealed preference
is satisfied. For rejection maximality, there are three cases where |C(S)| < k. Rejection
maximality is satisfied since |C({s1, s2})| = |C({s1, s3})| = |C({s2, s3})|. To see that substi-
tutability is not satisfied, note s2 ∈ C({s1, s2, s3, s4}) and s2 ̸∈ C({s1, s2, s4}).
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Example 3 (Violating only across-types strong axiom of revealed preference). Let S =

{s1, s2, s3, s4}, k = 2 and τ(s1) = τ(s2) = τ(s3) = τ(s4) = t. Consider the following
choice rule: C({s1, s2, s3, s4}) = C({s1, s2, s3}) = C({s1, s2, s4}) = {s1, s2}, C({s1, s3, s4}) =
{s1, s3}, C({s2, s3, s4}) = {s2, s4} and C(S) = S for the remaining S. C satisfies rejec-
tion maximality and substitutability. But it does not satisfy across-types strong axiom of
revealed preference since s3, s4 and {{s2, s3, s4}, {s1, s3, s4}} satisfies s4 ∈ C({s2, s3, s4}),
s3 ∈ {s2, s3, s4} \ C({s2, s3, s4}), s3 ∈ C({s1, s3, s4}), s4 ∈ {s1, s3, s4} \ C({s1, s3, s4}), and
τ(s3) = τ(s4) = t.

Axioms in Theorem 2

Example 4 (Violating only rejection maximality). Consider the choice rule in Example 1. Let
≻ be as follows: s1 ≻ s2 ≻ s3. As argued in Example 1, C satisfies substitutability but not
rejection maximality. Moreover, C satisfies within-type ≻-compatibility and across-types
≻-compatibility for ≻.

Example 5 (Violating only substitutability). Consider the choice rule in Example 2. Let ≻
be as follows: s1 ≻ s2 ≻ s3 ≻ s4. As argued in Example 2, C satisfies rejection maximal-
ity but not substitutability. It is easy to see C satisfies within-type ≻-compatibility. t1 is
neither demanded nor saturated in any S ⊆ S, as argued in Example 2. Thus, across-types
≻-compatibility is also satisfied.

Example 6 (Violating only within-type ≻-compatibility). Consider the choice rule in Exam-
ple 3. As argued in Example 3, C satisfies rejection maximality and substitutability. Across-
types ≻-compatibility is also satisfied since there is only one type. But it fails within-type
≻-compatibility for any ≻; s4 ∈ C({s2, s3, s4}) and s3 ∈ {s2, s3, s4} \ C({s2, s3, s4}) imply
s4 ≻ s3; s3 ∈ C({s1, s3, s4}) and s4 ∈ {s1, s3, s4} \ C({s1, s3, s4}) imply s3 ≻ s4.

Example 7 (Violating only across-types ≻-compatibility). Consider the choice rule in Ex-
ample 3 but suppose that all candidates have different types. As argued in Example 3,
C satisfies rejection maximality and substitutability. Within-type ≻-compatibility is also
satisfied since all candidates have different types. But it fails across-types ≻-compatibility
for any ≻. Since s4 ∈ C({s2, s3, s4}), s3 ∈ {s2, s3, s4} \ C({s2, s3, s4}), τ(s4) is saturated in
{s2, s3, s4}, and τ(s3) is demanded in {s2, s3, s4}, we have s4 ≻ s3. On the other hand, since
s3 ∈ C({s1, s3, s4}), s4 ∈ {s1, s3, s4} \ C({s1, s3, s4}), τ(s3) is saturated in {s1, s3, s4}, and
τ(s4) is demanded in {s1, s3, s4}, we have s3 ≻ s4.

37



Axioms in Theorem 3

Example 8 (Violating only rejection maximality*). Consider the choice rule in Example 1.
Let ≻ be as follows: s1 ≻ s2 ≻ s3. Let rt = 0 and qt = 2. C satisfies feasible constraints by r

and q. C violates rejection maximality* since |C({s1, s2, s3})t| < qt and |C({s1, s2, s3})| < k.
Moreover, C satisfies within-type ≻-compatibility and across-types* ≻-compatibility for ≻.

Example 9 (Violating only within-type ≻-compatibility). Consider the choice rule in Exam-
ple 3. Let rt = 0 and qt = 2. C satisfies feasible constraints by r and q. Note that C satisfies
acceptance which is stronger than rejection maximality*. Across-types* ≻-compatibility is
also satisfied since there is only one type. But it fails within-type ≻-compatibility for any ≻;
s4 ∈ C({s2, s3, s4}) and s3 ∈ {s2, s3, s4} \ C({s2, s3, s4}) imply s4 ≻ s3; s3 ∈ C({s1, s3, s4})
and s4 ∈ {s1, s3, s4} \ C({s1, s3, s4}) imply s3 ≻ s4.

Example 10 (Violating only across-types* ≻-compatibility). Consider the choice rule in Ex-
ample 3 but suppose that all candidates have different types. Let rτ(si) = 0 and qτ(si) = 2 for
i = 1, ..., 4. C satisfies feasible constraints by r and q. Note that C satisfies acceptance which
is stronger than rejection maximality*. Within-type ≻-compatibility is also satisfied since
all candidates have different types. But it fails across-types* ≻-compatibility for any ≻.
Since s4 ∈ C({s2, s3, s4}), s3 ∈ {s2, s3, s4} \ C({s2, s3, s4}), |C({s2, s3, s4})τ(s4)| > rτ(s4), and
|C({s2, s3, s4})τ(s3)| < qτ(s3), we have s4 ≻ s3. On the other hand, since s3 ∈ C({s1, s3, s4}),
s4 ∈ {s1, s3, s4} \ C({s1, s3, s4}), |C({s1, s3, s4})τ(s3)| > rτ(s3), and |C({s1, s3, s4})τ(s4)| <

qτ(s4), we have s3 ≻ s4.

Axioms in Theorem 4

Example 11 (Violating only within-type ≻-compatibility). Let S = {s1, s2}, k = 1 τ(s1) =

τ(s2) = t, and s1 ≻ s2. Consider the following choice rule: C({s1, s2}) = {s2} and C(S) = S

for the remaining S. C satisfies feasibility, rejection maximality* and meritorious mono-
tonicity in reserve and quota size. But it does not satisfy within-type ≻-compatibility.

Example 12 (Violating only rejection maximality*). Fix any type t. Consider the following
choice rule. For all r and q, C(: r, q) is the reserves-and-quotas rule generated by r and q

except that for all S ⊆ S, |C(S)t| = min{rt, |St|}. By the definition of the rule, C satisfies
feasibility and within-type ≻-compatibility. It also satisfies meritorious monotonicity in re-
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serve and quota size by Theorem 1. But it dose not satisfy rejection maximality*.

Example 12 (Violating only meritorious monotonicity in reserve and quota size). As we
discussed in Section 3.2, the reserves rule in public high schools in Chicago does not satisfy
the reserves rule in public high schools in Chicago. On the other hand, it satisfies feasibility,
within-type ≻-compatibility and rejection maximality*.
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