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1 Introduction

In this paper, we develop a new methodology for estimating models of di�erentiated products

markets. Our approach requires commonly used demand-side data on products' prices, market

shares, observed characteristics, and �rm-level cost data. The novelty of our method is that it

does not use instrumental variables to deal with the endogeneity of prices to demand shocks in

estimating demand, nor the endogeneity of outputs to cost shocks in estimating cost functions.

Instead, we use cost data for identi�cation and estimation. Market-level demand and cost data

tend to be available for large industries that are subject to regulatory oversight (which often

requires �rms to report cost data). Examples include banking, telecommunications, and nursing

home care. Such major sectors of the economy represent natural settings for the application of

our estimator.

Recently, in order to incorporate the rich heterogeneities of agents, aggregate demand or

market share equations are becoming more complex and nonlinear, and thus, more instruments

and their interactions are needed for the identi�cation of parameters. It is, in general, a challenge

to convincingly argue that all these instruments are valid. We show in our Monte-Carlo exercises

and an empirical example, how a small subset of invalid instruments can greatly bias parameter

estimates in unanticipated directions in nonlinear demand models. In contrast, we �nd that the

cost data based approach that we propose tends to deliver consistent and reasonable parameter

estimates. By comparing the IV-based parameter estimates and those obtained by our cost-based

approach, our method can provide additional support for the chosen instruments if the estimates

are similar.

The frameworks of interest for this paper are the logit and random coe�cient logit models

of Berry (1994) and Berry et al. (1995) (hereafter, BLP) which have had a substantial impact

on empirical research in IO and various other areas of economics.1 These models incorporate

unobserved heterogeneity in product quality and use instruments to deal with the endogeneity

of prices to such heterogeneity. As Berry and Haile (2014) and others point out, as long as there

are instruments available, demand functions can be identi�ed using market-level data. Popular

instruments include cost shifters such as market wages, observed product characteristics of other

products in a market (�BLP instruments�), and the price of a given product in other markets

(�Hausman instruments�). The attractiveness of this approach is that even in the absence of cost

1Leading examples from IO include measuring market power (Nevo (2001)), quantifying welfare gains from
new products (Petrin (2002)), and merger evaluation (Nevo (2000)). Applications of these methods to other �elds
include measuring media slant (Gentzkow and Shapiro (2010)), evaluating trade policy (Berry et al. (1999)), and
identifying sorting across neighborhoods (Bayer et al. (2007)).
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data, �rms' marginal cost functions can be recovered with the assumption that �rms set prices

to maximize pro�ts given their rivals' prices.2

Nonetheless, BLP also propose using cost data, if available, for a variety of purposes, including

improving their parameter estimates as well as understanding the relationship between prices and

marginal costs. Recently, some researchers have started incorporating cost data as an additional

source of identi�cation. For instance, Houde (2012) combines wholesale gasoline prices with

�rst order conditions that characterize stations' optimal pricing strategies to identify stations'

marginal cost function. Crawford and Yurukoglu (2012) and Byrne (2015) similarly exploit

�rst order conditions and �rm-level cost data to identify the cost functions of cable companies.

Some researchers have also used demand and cost data to test assumptions regarding conduct

in oligopoly models. See, for instance, Byrne (2015), McManus (2007), Clay and Troesken

(2003), Kim and Knittel (2003), and Wolfram (1999). Kutlu and Sickles (2012) estimate market

power while allowing for ine�ciency in production. Like previous research, these researchers use

instrumental variables (IVs) to identify demand in a �rst step.

We extend the existing research on BLP-type models by developing and formalizing new

ways to obtain additional identi�cation with cost data.3 Our main theoretical �nding is that

by combining demand and cost data, and by using the restriction that marginal revenue equals

marginal cost in equilibrium, one can jointly identify the price coe�cients in the BLP demand

model and a nonparametric cost function, without using any instruments.4 The type of cost data

we have in mind comes from �rms' income statements and balance sheets, among other sources.

Such data has been used extensively in a large parallel literature on cost function estimation in

empirical IO.5

It is important to note that we do not require data on marginal cost or markups nor knowledge

of the cost function. If such information were available, it would be straightforward to use the �rst

order condition to identify the price parameters without any instruments. For example, Smith

(2004) estimates a demand model using consumer-level choice data for supermarket products.

2There has been some research assessing numerical di�culties with the BLP algorithm (Dube et al. (2012) and
Knittel and Metaxoglou (2012)), and the use of optimal instruments to help alleviate these di�culties (Reynaert
and Verboven (2014)).

3At a broader level, our paper shares a common theme with De Loecker (2011), where the usefulness of
demand-side data in identifying production functions and measuring productivity is investigated.

4Fox et al. (2012) establish identi�cation of the random coe�cient discrete choice models with exogenous
regressors. Berry and Haile (2014) prove nonparametric identi�cation of a general market share function when
the regressors are endogenous but instruments are available.

5Numerous studies have used such data to estimate �exible cost functions (e.g., quadratic, translog, generalized
Leontief) to identify economies of scale or scope, measure marginal costs, and quantify markups for a variety of
industries. For identi�cation, researchers either use instruments for output or argue that output is e�ectively
exogenous from �rms' point of view in the market they study.
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The author does not, however, have product-level price data. To overcome this missing data

problem, the author develops an identi�cation strategy that uses data on national price-cost

margins and identi�es the price coe�cient in the demand model as the one that rationalizes

these national margins. Our study di�ers in that we focus on the more common situation where

a researcher has data on prices, aggregate market shares, and total costs, but not marginal costs.

We also do not follow the literature on cost function estimation to measure marginal cost as doing

so requires use of instruments to deal with the endogeneity of output due to pro�t maximization

by �rms.

We note that in the logit as well as BLP demand equations, the inversion procedure in Berry

(1994) and BLP enables researchers to substitute away the unobserved product characteristics

using observables, and thus, marginal revenue can be expressed as a function of only observables

and the parameters. We apply this approach to the cost side as well. Assuming that cost is a

function of output, input prices, observed characteristics and a cost shock, we show that when

cost data is available, cost (or expected cost conditional on observables) can be used to control

for the cost shock. Then, both marginal revenue and marginal cost can be expressed as functions

of only observables and parameters. Therefore, no orthogonality conditions between observables

and unobservables are needed for identi�cation. Then, the �market structure� variables, such as

the observed characteristics of rival �rms in BLP, price, market share of rival �rms, and market

size can be used as sources of variation for the identi�cation of price parameters through the

exclusion restriction that they do not enter in the cost function. However, they do not have to

be instruments.

Our results then imply that one does not need to use instruments to identify the parameters

for endogenous prices in di�erentiated goods markets, nor to identify the cost function where

output is potentially endogenous. Our identi�cation strategy also does not require information

on the correlation of the demand and cost shocks, which is used by MacKaye and Miller (2018)

to identify the price coe�cient of demand, nor do we need orthogonality between observed and

unobserved product characteristics.6

In our paper, we show that cost data can be used to deal with the endogeneity issue of

product prices to demand shocks with relatively weak assumptions. The main requirement we

have on the nonparametric cost function is that it is strictly increasing in output and cost shock

6Petrin and Seo (2016) propose an identi�cation and estimation scheme that allows for observed and unobserved
characteristics in the demand equation to be endogenously determined. They skillfully exploit the optimal choice
of observed characteristics to create additional moments. However, in the BLP random coe�cient model of
demand, the number of �rst order conditions is less than the number of parameters. Therefore, additional
moment restrictions are required.
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and in addition marginal cost is strictly increasing in the cost shock. We also allow for cost

data with measurement error, random component of �xed cost as well as systematic over/under

reporting by �rms.

We do not need any variation in market size to identify and estimate the BLP-demand

model. For logit demand, we need it, but such variation does not need to be exogenous, that

is, orthogonal to other variables that determine the equilibrium outcomes. In our Monte-Carlo

simulations, we show that our methodology yields consistent estimates even when market size is

correlated with demand and cost shocks, as well as input prices.

We also show that we can identify price coe�cients without any instruments, even if the true

market size is unobservable, as long as it is a function of observables. We follow Bresnahan and

Reiss (1990) partly in that we assume, as they do, that the variables determining market size do

not enter the cost function. However, we do not exclude these variables from the demand function

as they do. We believe that our exclusion restriction is more reasonable because typically, the

determinants of market size are demographics, which are likely to a�ect demand but do not a�ect

cost directly.

We also highlight a Curse of Dimensionality problem in the nonparametric estimation of

the expected cost conditional on observables that likely makes an estimator based on the direct

application of our identi�cation results impractical. This motivates our two-step Sieve Non-

Linear Least Squares (SNLLS) estimator, which does not su�er from the dimensionality problem.

This is essentially because we use marginal revenue, which is a parametric function, to control

for the cost shock, rather than expected cost conditional on observables. This estimator is

semi-parametric in that it assumes parametric logit or BLP demand and a nonparametric cost

function. We also show how this estimator can be adapted to accommodate various data and

speci�cation issues that arise in practice. These include endogenous product characteristics,

imposing restrictions on cost functions such as homogeneity of degree one in input prices, dealing

with the di�erence between accounting cost and economic cost, missing cost data for some

products or �rms, and multi-product �rms.

Through a set of Monte-Carlo experiments for the BLP demand model, we illustrate how our

estimator delivers consistent parameter estimates when the demand shock is not only correlated

with the equilibrium price and output, but also with the cost shock, input prices, and market

size, observed characteristics of rival products and when the cost shock is correlated with market

size as well. In such a setting there are no valid instruments to account for price endogeneity.

In particular, market size cannot work as an exogenous variation for the supply side, and the
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orthogonality between the demand and cost shocks cannot be used as a moment restriction for

consistent estimation of price parameters. Hence, the IV estimates are shown to be biased. Our

Monte-Carlo experiments also show that no variation in market size is needed for identifying the

BLP price parameters.

We then apply our methodology to the estimation of deposit demand in the US banking

industry. We �nd that our method works well. The magnitude of the coe�cient estimate on

deposit interest rate is smaller than the ones obtained in the existing literature such as Dick

(2008) and Ho and Ishii (2012). Further, we �nd that the IV-based method yields a negative

coe�cient on deposit interest rate whereas ours is positive which is what one would expect.

This paper is organized as follows. In Section 2, we specify the di�erentiated products model

that we adopt from the literature and review the IV based estimation approach in the literature.

In Section 3, we study identi�cation when demand and cost data are available and present

our formal identi�cation results. In Section 4, we propose the two-step SNLLS estimator and

analyze its large sample properties. Section 5 contains a Monte-Carlo study that illustrates the

e�ectiveness of our estimator in environments where standard approaches to demand estimation

yield biased results. In Section 6 we apply our methodology to the estimation of deposit demand

in the banking industry. In Section 7 we conclude. The appendix contains several proofs and

further details of the deposit demand estimation exercise.

2 Di�erentiated products models and IV estimation

In this section, we describe the standard di�erentiated products model that we adopt including

some of the assumptions and provide an overview of IV estimation of the demand and supply

side. For more details, see Berry (1994), Berry et al. (1995), Nevo (2001) and others. Most

features of the model we discuss here are carried over to the next section where we explain our

cost data-based identi�cation strategy.

2.1 Di�erentiated products discrete choice demand models

In the standard model, consumer i in market m gets the following utility from consuming one

unit of product j:

uijm = xjmβ + pjmα+ ξjm + εijm,

where xjm is a 1×K vector of observed product characteristics, pjm is price, ξjm is the unobserved

product quality (or demand shock) that is known to both consumers and �rms but unknown to
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researchers, and εijm is an idiosyncratic taste shock. Let the demand parameter vector be

θ =
[
α,β′

]′
where β is a K × 1 vector.

It is assumed that there are m = 1 . . .M isolated markets that have respective market sizes

Qm.
7 Each market has j = 0 . . . Jm products whose aggregate demand across individuals is

qjm = sjmQm,

where qjm denotes output and sjm denotes market share. In the case of the Berry (1994) logit

demand model, εijm is assumed to have a logit distribution. Then, the aggregate market share

for product j in market m is,

sjm(θ) ≡ sj (pm,Xm, ξm;θ) =
exp (xjmβ + pjmα+ ξjm)∑Jm
k=0 exp (xkmβ + pkmα+ ξkm)

=
exp (δjm)∑Jm
k=0 exp (δkm)

, (1)

where pm = [p0m, p1m, ..., pJmm]′ is a (Jm + 1)× 1 vector,

Xm =


x0m

x1m

...

xJmm


is a (Jm + 1)×K matrix, ξm = [ξ0m, ξ1m, ..., ξJmm]′ is a (Jm + 1)× 1 vector, and

δjm ≡ xjmβ + pjmα+ ξjm, (2)

is the �mean utility� of product j in marketm. Using this de�nition, we can express market share

in Equation (1) as sj (δ(θ)) ≡ sj (pm,Xm, ξm;θ) where δ(θ) = [δ0m(θ), δ1m(θ), . . . , δJmm(θ)]′.

Good j = 0 is labeled the �outside good� or �no purchase option� that corresponds to not

buying any of the j = 1, . . . , Jm goods. This good's product characteristics, price, and demand

shock are normalized to zero (i.e., x0m = 0, p0m = 0, and ξ0m = 0 for all m), which implies

δ0m(θ) = 0. (3)

This normalization, together with the logit assumption for the distribution of εijm, identi�es the

level and scale of utility.

7With panel data the m index corresponds to a market-period.
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In BLP, one allows the price coe�cient and coe�cients on the observed characteristics to be

di�erent for di�erent consumers. Speci�cally, α has a distribution function Fα (.;θα), where θα

is the parameter vector of the distribution, and similarly, β has a distribution function Fβ (.;θβ)

with parameter vector θβ. The probability with which a consumer with coe�cients α and β

purchases product j is identical to that provided by the market share formula in Equation (1).

The aggregate market share of product j is obtained by integrating over the distributions of α

and β,

sj (pm,Xm, ξm;θ) =

ˆ
α

ˆ
β

exp (xjmβ + pjmα+ ξjm)∑Jm
k=0 exp (xkmβ + pkmα+ ξkm)

dFβ (β;θβ) dFα (α;θα) , (4)

where θ =
[
θ′α,θ

′
β

]′
. Letting µα to be the mean of α and µβ the mean of β, the mean utility is

de�ned to be

δjm ≡ xjmµβ + pjmµα + ξjm, (5)

with δ0m = 0 for the outside good.

2.1.1 Recovering demand shocks

For each market m = 1, . . .M , researchers are assumed to have data on prices pm, market shares

sm = [s0m, s1m, ..., sJmm]′ and observed product characteristics Xm for all �rms in the market.

Given θ and this data, one can solve for the vector δm through market share inversion. That

is, if we denote sj (δm (θ) ;θ) to be the market share of �rm j predicted by the model, market

share inversion involves obtaining δm by solving the following set of Jm equations,

sj (δm (θ) , j;θ)− sjm = 0, for j = 0, . . . , Jm, (6)

and therefore,

δm (θ) = s−1 (sm;θ) . (7)

The vector of mean utilities that solves these equations perfectly aligns the model's predicted

market shares to those observed in the data.

In the logit model, Berry (1994) shows we can easily recover mean utilities for product j

using its market share and the share of the outside good as δjm (θ) = log (sjm) − log (s0m),

j = 1, . . . , Jm. In the random coe�cient model, there is no such closed-form formula for mar-

ket share inversion. Instead, BLP propose a contraction mapping algorithm that recovers the
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unique δjm (θ) that solves Equation (7) under some regularity conditions. In both cases, δ0m is

normalized to 0.

With the mean utilities and parameters in hand, one can recover the structural demand

shocks straightforwardly from Equation (2) for the logit demand and Equation (5) for the BLP

demand.

2.1.2 IV estimation of demand

A simple regression of Equation (2) or (5) with δjm (θ) being the dependent variable and xjm and

pjm being the regressors would yield a biased estimate of the price coe�cient. This is because

�rms likely set higher prices for products with higher unobserved product quality, which creates

a correlation between pjm and ξjm, violating the OLS orthogonality condition E[ξjmpjm] = 0.

Researchers use a variety of demand instruments to overcome this issue. In particular, researchers

construct a GMM estimator for θ by assuming the following population moment conditions are

satis�ed at the true value of the demand parameters θ0:

E[ξjm (θ0) zjm] = 0

where zjm is an L × 1 vector of instruments that is correlated with xjm. Also, instruments are

required to satisfy the exclusion restriction that at least one variable in zjm is not contained in

xjm.

2.2 Cost Function and Supply

For each product j in market m, in addition to the data related to demand explained above,

researchers observe output qjm (hence, market size Qm = qjm/sjm as well), L×1 vector of input

price wjm and cost Cjm. The observed cost Cjm is assumed to be a function of output, input

prices wjm, observed product characteristics xjm and a cost shock υjm. That is,

Cjm = C (qjm,wjm,xjm, υjm; τ ) ,

where τ is a parameter vector. C () is assumed to be strictly increasing and continuously di�er-

entiable in output and cost shock.

Assuming that there is one �rm for each product, �rm j's pro�t function is as follows:

πjm = pjm × qjm − C (qjm,wjm,xjm, υjm; τ ) .
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Let MRjm, be the marginal revenue of �rm j in market m. BLP assume that �rms act as

di�erentiated products Bertrand price competitors. Therefore, the optimal price and quantity

of product j in market m are determined by the �rst order condition (F.O.C.) that equates

marginal revenue and marginal cost:

MRjm =
∂pjmqjm
∂qjm

= pjm + sjm

[
∂sj (pm,Xm, ξm;θ)

∂pjm

]−1

︸ ︷︷ ︸
MRjm

= MCjm =
∂C (qjm,wjm,xjm, υjm; τ )

∂qjm︸ ︷︷ ︸
MCjm

.

(8)

Note that given the market share inversion in Equation (6), and the speci�cation of mean

utility δm, ξm is a function of (pm, sm,Xm) and θ. Therefore, marginal revenue of �rm j in

market m, MRjm in Equation (8) can be written as a function of observables and parameters

as follows:

MRjm ≡MRj (pm, sm,Xm;θ) , (9)

where MRj (pm, sm,Xm;θ) is the j th element of the vector of marginal revenue functions in

market m, denoted by MR (pm, sm,Xm;θ). Equations (8) and (9) imply that demand parame-

ters can potentially be identi�ed if there is data on marginal cost8 or even without such data, if

the cost function is known or can be estimated and its derivative with respect to output can be

taken. Berry et al. (1995) assume that marginal cost is log-linear in output and observed product

characteristics, i.e., MCjm = exp (wjmγw + qjmγq + υjm) (see their Equation 3.6). They then

use instruments to deal with the endogeneity of output with cost shocks and of prices to demand

shocks. As long as the parametric speci�cation of the supply side is accurate and there are enough

instruments for identi�cation, the demand side and F.O.C. based orthogonality conditions are

su�cient for identifying demand parameters. We in contrast assume cost to be a nonparametric

function of output, input prices, observed product characteristics and the cost shock, and use

observed cost to control for the cost shock. This point is further explained in Section 3.

2.2.1 Cost function estimation

As with demand estimation, one can recover unobserved cost shocks through inversion:

Cjm = C (qjm,wjm,xjm, υjm; τ )⇒ υjm = υ (qjm,wjm,xjm, Cjm; τ ) . (10)

8Genesove and Mullin (1998) use data on marginal cost to estimate the conduct parameters of the homogeneous
goods oligopoly model.
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Like demand estimation, there are important endogeneity concerns with standard approaches

to estimating cost functions. Speci�cally, output qjm is endogenously determined by pro�t-

maximizing �rms as in Equation (8), and is potentially negatively correlated with the cost shock

υjm. That is, all else equal, less e�cient �rms tend to produce less. In dealing with this issue,

researchers have traditionally focused on selected industries where endogeneity can be ignored,

or used instruments for output.

The IV approach to cost function estimation typically uses excluded demand shifters as

instruments. Denoting this vector of cost instruments by z̃jm, one can estimate τ assuming

that the following population moments are satis�ed at the true value of the cost parameters τ 0:

E [υjm (qjm,wjm,xjm, Cjm; τ 0) z̃jm] = 0.

3 Identi�cation using cost data

In this section, we present our methodology for dealing with the endogeneity issues in identi�ca-

tion mentioned above. We propose using cost data in addition to demand data to identify price

parameters. We do so by using the control function approach. That is, given output, input prices

and observed product characteristics, we use the observed cost to control for the cost shock. We

focus primarily on the BLP random coe�cients model but also use logit as a simple example

to illustrate our identi�cation strategy. Instead of Equation (10), we use a nonparametric cost

function. We elaborate on our demand and cost structure further below.

To begin with, we assume that market size is observable. In Subsection 3.3, we demonstrate

how our methodology can be modi�ed to the case where market size is not observed, and thus

needs to be estimated.

3.1 Main Assumptions

We �rst state all the main assumptions for our methodology. Most of these assumptions are

standard as discussed in the previous section or simply describe the environment our methodology

is applicable to. For each market in the population, we attach a unique positive real number m

as an identi�er. Then, we assume m ∈ M, where M is the set of all market identi�ers, and is

an uncountable subset of R+.

Assumption 1 Data Requirements: Researchers have data on outputs, product prices, market

shares, input prices, observed product characteristics, and total costs of �rms.
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Note that market size can be derived from data on outputs and market shares. Thus, we

need to assume observability of only two of these three variables. In contrast to BLP, we require

data on total costs of �rms. But we do not need data on marginal cost.

Assumption 2 Isolated Markets: Outputs, market shares, prices and costs in market m are

functions of variables in market m .

Assumption 3 Common Input Prices within Markets: Input price wjm = wm for all j,m.

We make this assumption to show that we do not need within-market variation in input

prices. That is, relaxing it makes it easier for our methodology to work. The assumption is

reasonable as usually there is little within-market variation in input prices in the data.

Assumption 4 BLP demand: Market share sjm is speci�ed as in Equation (4). The distribu-

tions of α and each element of β are assumed to be independently normal, i.e., α ∼ N
(
µα, σ

2
α

)
,

βk ∼ N
(
µβk, σ

2
βk

)
, k = 1, . . . ,K. Further, µβk = 0, k = 1, . . . ,K; µα < 0.

Assumption 5 Equilibrium Concept: Bertrand-Nash equilibrium holds in each market. That

is, for any j = 1, . . . , Jm, �rm j in market m chooses its price pjm to equalize marginal revenue

and marginal cost, given market size Qm and prices of other �rms in the same market p−j,m.
9

The next assumption describes the support of variables that determine the equilibrium

outcomes in market m. Let the set of these variables be denoted by Vm. Then Vm ≡

(Qm,wm,Xm, ξm,υm), and let V ≡ {Vm}m∈M. Let V \ wlm to be the set V without the

element wlm for any l = 1, 2, . . . , L. For other elements of V, the set V without the element is

similarly de�ned. The assumption imposes substantially weaker restrictions on the support of

the variables in V than is typical in the literature. In particular, it imposes minimal restrictions

on the joint distribution of these variables as stated below.

Assumption 6 Support of V: The support of Qm conditional on V \Qm can be any nonempty

subset of R+ for all m. The support of wlm conditional on V \ wlm is R+ for all l,m; the

support of xkjm conditional on V \ xkjm is either R or R+ for all k, j, m; and the support of

ξjm conditional on V \ ξjm is R. Finally, the support of υjm conditional on V \ υjm is R+.

9Note that we have assumed this for expositional purposes only. It is not required for identi�cation. MR is a
one-to-one function of MC in equilibrium, and not necessarily equal to MC, we can identify the price parameters.
This makes our framework applicable to �rms that are under government regulation and �rms under organizational
incentives or behavioral aspects that prevent them from setting MR =MC.
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Assumption 6 ensures that the variables in V are not subject to any orthogonality conditions,

which typically restrict the moments of a subset of the unobserved variables (ξm,υm) conditional

on the other variables to be zero. In other words, we do not require them to be econometrically

exogenous, and thus, Assumption 6 removes the validity of any conventional instruments.

Note that we do not impose any assumptions on the support of market size other than that

it is nonempty and positive. For logit, we require the conditional support to be R+ since as we

show later, market size variation is needed for the identi�cation of the price parameters of logit

but not for BLP.

The next two assumptions are about our nonparametric cost function.10

Assumption 7 Properties of the Cost Function: Let C∗jm denote true cost. Then,

C∗jm ≡ Cv (qjm,wm,xjm, υjm) + ef (wm,xjm, υjm) + ςjm, (11)

where Cv () is the variable cost component, which is a continuous function of q, w, x and υ,

strictly increasing, and continuously di�erentiable in q and v, and marginal cost is strictly in-

creasing in υ; ef () is the deterministic component of �xed cost, a continuous function of w, x

and υ and increasing in υ. The �xed cost shock ς is i.i.d., with mean zero and independent of

Vm. Further, for any q > 0, w > 0 and x ∈ X , where X is the support of x,

limυ↘0
∂Cv (q,w,x, υ)

∂q
= 0, limυ↗∞

∂Cv (q,w,x, υ)

∂q
=∞.

Assumption 8 Measurement Error in Cost: Let Cjm be the observed cost. Then,

Cjm = C∗jm + eme (qjm,wm,xjm) + νjm, (12)

where eme () is a continuous function and νjm is i.i.d. with mean 0 and independent of Vm and

the �xed cost shock ςm.
11

The assumption implies that the measurement error in cost is eme (qjm,wm,xjm) + νjm,

where eme () is the deterministic component.12

10Note that we assume that market share sjm does not enter in the cost function. This restriction rules out
situations in which �rms with high market shares have buying power in the input market.

11We can also include xme,jm, a vector of additional variables that determine the deterministic component of
the measurement error as well as �xed cost. However, we omit these for the sake of expositional simplicity.

12Note that we could also allow for systematic misreporting of true costs. For example, if ν (C∗) is the systematic
component of the reported true cost, then, if �rms report costs truthfully but with an error, then ν (C∗) = C∗.
Alternatively, if �rms systematically under-report their true costs, then we could consider a speci�cation like
ν (C∗) = νC∗ where 0 < ν < 1. Over-reporting could be captured by the same speci�cation with ν > 1.
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Using Equations (11) and (12), we obtain

Cjm = Cv (qjm,wm,xjm, υjm) + ef (wjm,xjm, υ) + eme (qjm,wjm,x) + νjm + ςjm.

In the next subsection, we show that cost data together with other data and our assumptions

enables us to identify the parameters of the distribution of the random coe�cients on price

(µα, σα), as well as σβk , k = 1, . . . ,K. Note that we can only identify (µα0, σα0,σβ0) and ξ0jm +

xjmµβ0 in the absence of further restrictions imposed on the model. However, this information

is su�cient to identify marginal revenue, and thus, markup, which is of primary interest of most

empirical exercises in IO. The additional orthogonality assumption E (xjmξjm) = 0 identi�es

µβ0. For the logit model of demand, we identify the price coe�cient α0 and ξ0jm + xjmβ0.

From now on, except when noti�ed otherwise, we will denote the vector of true parameters

θc0 we identify to be α0 for the logit demand speci�cation and
(
µα0, σα0,σ

′
β0

)
for the BLP

speci�cation. More generally, we denote by θc0 the demand parameters that we identify.

3.2 The Main Result

In this subsection, we derive our main theoretical result, namely that given our assumptions,

parameters of the BLP model, that is, θc0 =
(
µα0, σα0,σ

′
β0

)
, are identi�ed.

We use cost data to control for the cost shock. Since we allow for measurement error in the

cost data, the �rst step in proving our results is to show that the expected cost conditional on

observables contains only deterministic components of the cost function, which is done in Lemma

1. We then provide an intuitive explanation of our identi�cation strategy using the logit example

and then develop two equivalent de�nitions of identi�cation using cost data. The �rst de�nition

(De�nition 1) is based on the �rst order condition (Equation (8)) and highlights the sources of

variation behind identi�cation as well as the exclusion restrictions. However, since the control

function approach leads to marginal cost becoming an unspeci�ed function of output, input

prices, observed product characteristics and the deterministic component of cost, it is di�cult

to implement and thus we develop a second de�nition of identi�cation (De�nition 2) based on

pairing of �rms that have the same output, input prices and observed characteristics. We show

that the two de�nitions are equivalent and then specify a condition on marginal revenue that

together with our assumptions ensures identi�cation in the BLP model.

Lemma 1 Let Assumptions 1-3 and 7-8 be satis�ed, and let the marginal revenue function be

speci�ed as in Equation (9). Further, let R = {p, s,X, q,w, Q, j}, and let C̃ be the deterministic
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component of cost. Then, for any �rm j in the population with R being observable,

E
[
C
∣∣∣ (q̃ = q, w̃ = w, p̃ = p, s̃ = s, X̃ = X, j

)]
= Cv (q,w,x, υ)+ef (w,x, υ)+eme (q,w,x) ≡ C̃.

Proof. From Assumption 7, marginal cost is strictly increasing in υ, and given any (q,w,x)

in the population, the support of marginal cost is R+. Therefore, given Assumption 5, for any

observation R = {p, s,X, q,w, Q, j} in the population, there exists a unique υ such that

MRj (p, s,X;θc0) = MC (q,w,x, υ) . (13)

Because Equation (13) determines a unique υ given (q,w,x), υ is a function of (q,w,x,MRj (p, s,X;θc0)).

Thus, Assumptions 7 and 8 result in

E
[
C
∣∣ (q̃ = q, w̃ = w, p̃ = p, s̃ = s, X̃ = X, j

)]
= E

[
Cv (q,w,x, υ (q,w,x,MRj (p, s,X;θc0))) + ef (w,x, υ (q,w,x,MRj (p, s,X;θc0)))

+eme (q,w,x) + ς + ν
∣∣∣ (q̃ = q, w̃ = w, p̃ = p, s̃ = s, X̃ = X, j

) ]
= Cv (q,w,x, υ) + ef (w,x, υ) + eme (q,w,x)

In this subsection, we call a variable observable if it is directly observable in the population

or can be recovered as the expectation of a directly observable variable conditional on other

directly observable variables. Hence, from now, we call the deterministic component of cost

as cost whenever there won't be any confusion. C̃ is observed because it is the conditional

expectation of observed cost conditional on other observed data.

Before providing formal results, we outline the logic of our identi�cation argument. In par-

ticular, we �rst explain how we remove the need for instruments to deal with the endogeneity of

the supply shock. We use the following three equations for identi�cation. For �rm j in market

m, they are:

sjm =
qjm
Qm

, (14)

MRj (pm, sm,Xm;θc0) = MC (qjm,wm,xjm, υjm) , (15)

C̃jm = Cv (qjm,wm,xjm, υjm) + ef (wm,xjm, υjm) + eme (qjm,wm,xjm) . (16)
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The market size Qm is subsumed in market share sm and qjm through Equation (14). The �rst

order condition (15) holds in equilibrium because we assume in Assumption 5 that �rms choose

prices to equate marginal revenue to marginal cost.

If we had data on marginal cost, i.e., MCjm, then, we could just use Equation (15) for

identi�cation of θc0. By substituting MCjm into the RHS, we would have a function of only

observables. In the logit model, Equation (15) then becomes

pjm +
1

(1− sjm)α0
= MCjm,

and the price coe�cient α0 can be identi�ed as

α0 =
1

(1− sjm) (MCjm − pjm)
.

However, marginal cost is generally not observable. Then, one could consider estimating the

cost function C̃jm ≡ C (qjm,wm,xjm, υjm), and taking its derivative with respect to output to

derive the marginal cost. However, as discussed in the previous section, this strategy runs into

the potential endogeneity issue of output being correlated with the cost shock and thus requires

the use of instruments which we propose to avoid with our methodology.13

Instead, we use cost data to control for the cost shock. That is, we invert the cost function

in Equation (16) to derive

υjm = υ
(
qjm,wm,xjm, C̃jm

)
. (17)

Such inversion is possible because of Assumption 7 stating that given output, input price and

observed characteristics, the deterministic component of cost is a strictly increasing function of

the cost shock. After substituting Equation (17) into Equation (15), F.O.C. becomes:

MRj (pm, sm,Xm;θc0) = ψ
(
qjm,wm,xjm, C̃jm

)
, (18)

where ψ is an unspeci�ed function. Note that there are no unobservables in Equation (18) that

may be correlated with the observables and create endogeneity problems.

We now de�ne identi�cation based on this F.O.C, letting �rm jm denote �rm j in market

m.

De�nition 1 Identi�cation by F.O.C.: Let the marginal revenue function be speci�ed as in

13Such a derivative would also include the derivative of the deterministic component of the measurement error
with respect to output, which should not be part of the marginal cost.
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Equation (9). Then, the true parameter vector θc0 is identi�ed if the following two statements

hold only at θc0:

1. For any �rm jm in the population, marginal revenue is positive and can be expressed as a

function of only
(
qjm,wm,xjm, C̃jm

)
.

2. Given (q,w,x), this function is one-to-one in C̃.

The function of
(
qjm,wm,xjm, C̃jm

)
in the above de�nition corresponds to ψ () in Equa-

tion (18). From Assumption 7, we know that given (q,w,x), C̃ and marginal cost are strictly

increasing in the cost shock υ, which implies that, given (q,w,x), ψ is strictly increasing and

thus one-to-one in C̃. Our de�nition implies that only at the true parameter vector θc0, given

(q,w,x), each value of C̃jm is associated with a unique marginal revenue. Intuitively this means

that for �rms with the same output, input prices and observed characteristics, having equal

observed cost is equivalent to having equal marginal revenue only at the true parameter vector.

The sources of variation we use for identi�cation of θc0 are similar to the ones in the literature.

In the logit model, as we explain below, these are market size Qm and price pjm, and in BLP,

additionally we can use price, market share and observed characteristics of the rival �rms. All

these sources of variation re�ect the �market structure� and appear in the marginal revenue

function but not in the marginal cost function ψ (see Equation (18)). The di�erence from the

literature is that these variables do not need to be instruments, i.e. orthogonal to the cost shock

υjm because we have already controlled for it using C̃jm. Thus, our identi�cation strategy is

based on the exclusion restrictions that market structure variables do not enter the cost function

directly.

To illustrate how Equation (18) identi�es θc0, we use the logit model, where the parameter

we identify is the price coe�cient, i.e, θc0 = α0. Then, using Equation (14), Equation (18) can

be written as:

MRj (pm, sm,Xm;α0) = pjm +
1

(1− qjm/Qm)α0
= ψ

(
qjm,wm,xjm, C̃jm

)
. (19)

Conditions 1 and 2 of De�nition 1 are clearly satis�ed for α0. Next, we consider any α 6= α0.
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Then,

MRj (pm, sm,Xm;α0)

= pjm +
1

(1− qjm/Qm)α0
= pjm +

1

(1− qjm/Qm)α
+

1

(1− qjm/Qm)

(
1

α0
− 1

α

)
= MRj (pm, sm,Xm;α) +

1

(1− qjm/Qm)

(
1

α0
− 1

α

)

Substituting into (19), we obtain

MRj (pm, sm,Xm;α)

= pjm +
1

(1− qjm/Qm)α
= ψ

(
qjm,wm,xjm, C̃jm

)
− 1

(1− qjm/Qm)

(
1

α0
− 1

α

)
(20)

≡ ψ̃(qjm,wm,xjm, C̃jm, Qm, α).

Note that ψ̃ includes market size as an argument, violating Condition 1 of De�nition 1 for

α 6= α0. Thus, α0 is identi�ed. Note also that if we do not have any variation in market size,

i.e., Qm = Q, then ψ̃ remains a function of
(
q,w,x, C̃

)
. Furthermore, if Qm = Q, in Equation

(20), C̃ enters in ψ and we know that given (q,w,x), ψ is a one-to-one function of C̃, and thus,

ψ̃ satis�es both Conditions 1 and 2 for α 6= α0. Hence, the true price coe�cient cannot be

identi�ed. Thus, for the logit model, our identi�cation strategy requires variation in market size.

Price variation is also needed unless 1/α0 is zero, otherwise Equation (19) would fail to hold.

This becomes transparent later in this subsection.

However, dealing with unspeci�ed functions ψ and ψ̃ makes the identi�cation analysis com-

plex and unintuitive. This is because for each parameter θc, we need to evaluate whether marginal

revenue at θc is a function of only
(
q,w,x, C̃

)
. Instead, in our analysis, we use an alternative

equivalent way of proving identi�cation which we call the pairing approach. This approach lets

us focus on the marginal revenue side. The only role of cost data and the marginal cost function

is to identify the following two sets of pairs of �rms: pairs of �rms in di�erent markets that have

the same true marginal revenue, and pairs that have di�erent true marginal revenues. Then, from

these two sets of pairs, we proceed to identify the price coe�cient by using only the demand

side. We illustrate this approach for the logit model �rst. As we will see, the pairing approach

provides us with the exact sources of variation needed to identify the price parameter in the logit

model, namely, market size and price of the �rm's product.

More speci�cally, we ��x� the variables in the marginal cost function by �nding a pair of �rms
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(
jm, j†m†

)
in the data that have the same output, same input price, same observed character-

istics and the same cost:
(
qjm,wm,xjm, C̃jm

)
=
(
qj†m† ,wm† ,xj†m† , C̃j†m†

)
but (pjm, Qm) 6=(

pj†m† , Qm†
)
. Then, from De�nition 1,

ψ
(
qjm,wm,xjm, C̃jm

)
= ψ

(
qj†m† ,wm† ,xj†m† , C̃j†m†

)
,

and thus, using Equation (19), at α0,

pjm +
1

(1− qjm/Qm)α0
= ψ

(
qjm,wm,xjm, C̃jm

)
= ψ

(
qj†m† ,wm† ,xj†m† , C̃j†m†

)
= pj†m† +

1(
1− qj†m†/Qm†

)
α0
. (21)

In the above equation, ψ is eliminated and what remains is the equality of the true marginal

revenue of two �rms that have di�erent prices and market shares.

Then, α0 can be identi�ed straightforwardly from the above marginal revenue equality as

follows:

α0 = − 1

pjm − pj†m†

[
1

(1− qjm/Qm)
− 1(

1− qj†m†/Qm†
)] . (22)

Note that since qjm = qj†m† , if we assume constant market size, the term in the bracket is

always zero, and thus, α0 6= 0 cannot be identi�ed. Furthermore, without variation in price,

RHS is either not bounded or not well de�ned. Therefore, identi�cation using pairing requires

variation in both price and market size. We also show next that given qjm = qj†m† , wm = wm†

and xjm = xj†m† , there exist (Qm, ξjm) and
(
Qm† , ξj†m†

)
that generate the above prices pjm,

pj†m† and market shares sjm, sj†m† . First, choose Qm = qm/sjm, Qm† = qm†/sj†m† . This is

feasible because from Assumption 6, the conditional support of market size Q is R+. Also, using

Equation (1), and the normalization of Equation (3), choose ξjm, ξj†m† from the conditional

support of R as:

ξjm = xjmβ0 + pjmα0 − (ln (sjm)− ln (s0m)) ,

ξj†m† = xj†m†β0 + pj†m†α0 −
(
ln
(
sj†m†

)
− ln (s0m†)

)
.

It is clear from the discussion above that in logit, identi�cation of the price coe�cient is

based on the true marginal revenue equality for a pair of �rms that has the same output, input

prices, observed product characteristics and cost. Indeed, Equations (21) and (22) indicate that

we only need to consider a single pair of �rms to prove identi�cation. In BLP however, marginal
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revenue is a complex, non-linear function of parameters and we cannot show analytically that

the demand parameters θc0 are identi�ed or that the marginal revenue equality for one pair of

�rms generates a unique set of true parameters. Instead, we exploit the information contained in

the data about the set of pairs whose two �rms have the same output, input prices and observed

characteristics. We divide these �rm-pairs into two subsets of pairs according to whether the

two �rms within a pair have equal observed cost or not. The group of pairs whose �rms have

the same observed cost must have the same true marginal revenue while the opposite is true for

the other group. We use this insight to formulate a condition on the marginal revenue function

that is su�cient for identifying θc0.

We now reformulate our identi�cation de�nition in terms of pairing.

De�nition 2 Identi�cation by Pairing: Let the marginal revenue function be speci�ed as in

Equation (9). We say that θc0 is identi�ed if the following holds only for θc = θc0:

1 For any �rm jm in the population,

MRj (pm, sm,Xm,θc) > 0, (23)

2 Given any two �rms jm 6= j†m† in the population with (qjm,wm,xjm) =
(
qj†m† ,wm† ,xm†

)
,

MRj (pm, sm,Xm,θc) = MRj† (pm† , sm† ,Xm† ,θc) ,

if and only if

C̃jm = C̃j†m† .

It is straightforward to see that the two de�nitions are equivalent. Both de�nitions require

positivity of true marginal revenue and a one-to-one relationship between the observable cost

and true marginal revenue given output, input prices and observed characteristics, and violation

of at least one of these conditions if the parameter is not the true one. The pairwise approach

to identi�cation is simpler than the �rst de�nition because we no longer have to deal with the

unspeci�ed marginal cost function. Instead we identify the true parameter vector by examining

all pairs in which the two �rms have the same output, input prices and observed characteristics

and checking strict positivity of marginal revenue and whether the within-pair equality between

the two observed costs and between the two marginal revenues hold simultaneously at a candidate

parameter vector. If any marginal revenue is nonpositive or if simultaneity does not hold for some
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of these pairs, i.e., if for some pairs, only the costs are equal but not the marginal revenues, or

vice versa, then the candidate parameter vector cannot be the true one. Another way to interpret

this de�nition is to ask whether at the candidate parameter vector, all the marginal revenues in

the population are nonnegative, and the set of pairs of �rms that have the same output, input

prices, observed characteristics and the observed cost is the same as the set of pairs of �rms that

have the same output, input prices, observed characteristics and marginal revenue. If not, then

the parameter is not the true one. We can also state it more formally by de�ning the set S to be

the set of pairs whose two �rms have the same output, input prices and observed characteristics,

and letting C ⊂ S be the subset of S whose two �rms have the same cost, andMR (θc) ⊂ S be

the subset of S whose two �rms have the same marginal revenue. Then, De�nition 2 states that

θc0 is identi�ed if for any θc 6= θc0, either positivity in Equation (23) is violated for some �rm

jm in the population, or

C =MR (θc0) 6=MR (θc) .

or both.

Lemma 2 De�nitions 1 and 2 are equivalent.

The proof is in the Appendix.

We next state a condition on the demand model that together with our assumptions is

su�cient for indenti�cation of the demand parameters. We need this condition because the

information we can use from data on cost and the assumptions on properties of the cost function

are not su�cient to identify the true marginal revenue. Among the pairs of �rms that have the

same output, input prices and observed characteristics, the cost data allows us to identify the

subset of pairs whose two �rms have the same true marginal revenue (i.e. have the same cost),

and the subset of pairs whose two �rms have di�erent true marginal revenues (i.e. di�erent

costs). The additional source of information that identi�es the true marginal revenue and θc0

needs to come from the functional form of the demand model. It needs to be such that only

the true parameter can exactly replicate the two subsets described above that are identi�ed by

the data. Given the assumptions stated in Subsection 3.1, we prove that the condition below is

su�cient for identi�cation of the true parameter θc0.

Condition 1 Let the marginal revenue function be speci�ed as in Equation (9). Let D =

{p, s,X} and D† =
{
p†, s†,X†

}
be two sets of vectors of prices, market shares and the ma-

trix of observed product characteristics with J and J† rows, and let θc0 be the true parameter
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vector. Then, for any given θc 6= θc0, either positivity in Equation (23) is violated for a �rm jm

in the population; or the following statement holds, or both. There exist D and D† that satisfy

the following properties: for a row j in D and a row j† in D†, any reordering of the rows in set

D†, D 6= D† and

1. pl > 0, 0 < sl < 1 for l = 1, ..., J and p†l > 0, 0 < s†l < 1, for l = 1, .., J†, and 0 <
∑J

l=1 sl < 1,

0 <
∑J†

l=1 s
†
l < 1.

2. xj = x†
j†
.

3. EitherMRj (p, s,X,θc) = MRj†
(
p†, s†,X†,θc

)
orMRj (p, s,X,θc0) = MRj†

(
p†, s†,X†,θc0

)
but not both.

Condition 1 is the restatement of De�nition 2 of identi�cation without any restrictions on

the cost side. That is, Condition 1 applied to the population is equivalent to requiring that for

any θc 6= θc0, either for some �rm in the population, marginal revenue is nonpositive at θc or

within S, the set of pairs whose two �rms have the same positive marginal revenue under θc0

and the corresponding set of pairs under θc cannot be equal (that is, MR (θc0) 6= MR (θc)),

or both. In the lemma below we show that given our assumptions, Condition 1 is su�cient for

identi�cation because for any pairs of observed demand variables (p, s,X, j) and
(
p†, s†,X†, j†

)
satisfying xj = xj† , we can always �nd two �rms in the population that have the same output,

input prices and observed characteristics and these demand variables.

Lemma 3 Suppose Assumptions 1-3, 5-8 and Condition 1 are satis�ed. Then, θc0 is identi�ed

according to De�nition 2 of identi�cation.

Proof. First, consider θc0. Then, given Assumptions 5 and 7, in the population, marginal

revenue is positive at θc0. Also, given Assumptions 2-3, 5-8, Equation (18) holds, and from

Equation (18), for any
(
D, q,w,x, C̃, j

)
and

(
D†, q,w,x, C̃†, j†

)
in the population with C̃ = C̃†,

MRj (p, s,X,θc0) = ψ
(
q,w,x, C̃

)
= ψ

(
q,w,x, C̃†

)
= MRj†

(
p†, s†,X†,θc0

)
.

Similarly, ifMRj (p, s,X,θc0) = MRj†
(
p†, s†,X†,θc0

)
, then, given (q,w,x), from Assumptions

5-7, there exists a unique cost shock υ such that

MRj (p, s,X,θc0) = MRj†
(
p†, s†,X†,θc0

)
= MC (q,w,x, υ) .
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Therefore, C̃ = C̃†. Hence, for any pair of �rms with the same (q,w,x), C̃ = C̃† if and

only if MRj (p, s,X,θc0) = MRj†
(
p†, s†,X†,θc0

)
. Therefore, θc0 satis�es the conditions for

identi�cation of De�nition 2.

We now consider any θc 6= θc0. Suppose there exists
(
D, q,w,x, C̃, j

)
in the population

satisfying MRj (p, s,X,θc) ≤ 0. Then, θc violates the �rst condition of De�nition 2. Next, we

consider the case where any
(
D, q,w,x, C̃, j

)
in the population satis�es MRj (p, s,X,θc) > 0.

We analyze the two cases of Condition 1 separately.

Case 1. Suppose D, j and D†, j† satisfy MRj (p, s,X,θc) = MRj†
(
p†, s†,X†,θc

)
but

MRj (p, s,X,θc0) 6= MRj†
(
p†, s†,X†,θc0

)
. Then, for any (q,w,x), from Assumption 7, there

exist υ, υ† in the population such thatMRj (p, s,X,θc0) = MC (q,w,x, υ),MRj†
(
p†, s†,X†,θc0

)
=

MC
(
q,w,x, υ†

)
. Because marginal cost is strictly increasing in the cost shock, this implies that

υ 6= υ†, and since the deterministic component of cost is increasing in the cost shock, C̃ 6= C̃†.

Therefore, in this case,MRj (p, s,X,θc) = MRj†
(
p†, s†,X†,θc

)
but for (q,w,x) =

(
q†,w†,x†

)
,

C̃ 6= C̃†.

Case 2. SupposeMRj (p, s,X,θc0) = MRj†
(
p†, s†,X†,θc0

)
butMRj (p, s,X,θc) 6= MRj†

(
p†, s†,X†,θc

)
.

Then, for any (q,w,x), from Assumption 7, there exists υ such that MRj (p, s,X,θc0) =

MRj†
(
p†, s†,X†,θc0

)
= MC (q,w,x, υ). Therefore, both �rms have the same cost shock, and

thus, C̃ = C̃†. Therefore, in this case, for (q,w,x) =
(
q†,w†,x†

)
, C̃ = C̃† butMRj (p, s,X,θc) 6=

MRj†
(
p†, s†,X†,θc

)
.

If marginal revenue is positive at θc for all �rms in the population, either Case 1 or Case 2

holds.

Together, we have shown that θc0 is identi�ed.

Note that in proving the lemmas above or in Condition 1, we did not need to make any

assumptions about independence of any of the variables from each other, except for the �xed

cost shock and the random component of the measurement error of the cost. That is, the lemmas

go through and Condition 1 can be satis�ed regardless of possible correlation across input prices,

variable cost shock, observed characteristics, unobserved product characteristics and market size,

within markets or across markets. For example, a positive correlation between market size and

the demand/cost shock can arise as larger market size may induce �rms to invest in higher

quality or more advertising, which improves unobserved product quality but increases cost. But

this does not break our identi�cation strategy.14 Thus, these �ndings illustrate that given cost

14Later, we show that for the identi�cation of the parameters of the distribution of the BLP price coe�cients,
market size does not need to have any variation. In our Monte-Carlo analysis, we provide a scenario where market
size is correlated with demand shock. Results demonstrate consistency of our estimator. Furthermore, notice that
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data, one does not need any IV- or orthogonality assumptions.15

Also note that in the market share speci�cation, there are no moment restrictions on the

unobserved characteristics, and thus, they can contain market-level �xed e�ects. In particular,

consider the BLP speci�cation with market-level �xed e�ects where

uij = xjβi + pjαi + ξjm + εij ,

ξjm = ξf,m + ξ̃jm,

E
[
ξ̃jm

∣∣∣xjm, ξf,m] = 0,

where we denote ξf,m to be the market m speci�c heterogeneity. Because we do not use such

moment conditions for identi�cation, those �xed e�ects do not prevent us from identifying and

consistently estimating the BLP parameters θc0 = (µα0, σα0,σβ0).

Our main identi�cation result is stated in the following proposition, with the proof in the

appendix:

Proposition 1 Suppose Assumptions 1-8 are satis�ed. Then, the BLP coe�cients θc0 = (µα0, σα0,σβ0)

are identi�ed.

Note that the identi�cation of θc0 in the BLP demand model holds even without any variation

in market size across markets. To see why, consider the identi�cation using the pairing approach.

That is, suppose we �nd a pair �rms jm and j†m† that have the same marginal revenue. Then,

if the demand speci�cation is logit, without market size variation, they have the same market

share, and Equation (22) tells us that we cannot identify the price coe�cient. On the other

hand, under BLP, even though the same market size leads to the pair of �rms having the same

market share, these �rms can have di�erent price e�ect on own market share due to di�erences

in prices, market shares and observed product characteristics of rival �rms, and thus, di�erent

prices in the relationship.

More formally, those two �rms satisfy

sjm = sj†m† , MRjm = MRj†m† ,
∂sjm
∂pjm

6=
∂sj†m†

∂pj†m†
.

an important component of it is the F.O.C. Equation (15). Any violation of this F.O.C. may result in θc0 not
being identi�ed. An example would be if higher prices and more advertising spending signal product quality, as
in the model of Milgrom and Roberts (1986).

15It is important to note that each pair of observations satisfying Condition 1 can be generated from di�erent

equilibria. Since the observables
{
q,w,x, C̃

}
uniquely determine the pair of �rms that have the same cost shock

υ, and the marginal cost, the above procedure identi�es the true price coe�cient even when multiple equilibria
exist.
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Therefore,

pjm = MRjm −
[
∂sjm
∂pjm

]−1

sjm 6= MRj†m† −
[
∂sj†m†

∂pj†m†

]−1

sj†m† = pj†m† .

Thus, the relationship

pjm − pj†m† = −sjm

[(
∂sjm
∂pjm

)−1

−
(
∂sj†m†

∂pj†m†

)−1
]

identi�es the parameters.16

3.3 Identi�cation of Unobserved Market Size

We now consider the case where market size Qm is not observed, and thus needs to be estimated.

This is an important issue in the empirical IO literature. Because market participation is unob-

served, it is often hard for researchers to measure the total number of participants of a market

without any arbitrariness.

We follow Bresnahan and Reiss (1991) and specify the market size as follows:

ln (Qm) = λc0 + zmλz0, (24)

where zm is a 1×Kz vector of observables in market m, and λz0 = (λz01, . . . , λz0Kz).

Then, the true market share of �rm j in market m, denoted by

s∗jm ≡
qjm

exp (λc0 + zmλz0)
, (25)

is unobservable. Bresnahan and Reiss (1991) and other literature on this issue assume that

variables that determine market size are not included in the market share equation. However,

we do not impose such a restriction since one can convincingly argue that demographic variables

determine not only market size but also consumer demand. Thus, the modi�ed utility function

16The exclusion restriction for the logit model is that marginal revenue only depends on own price and own
market share. That is, unobserved product characteristics of �rms and prices of rival �rms in a market do not
enter directly in the marginal revenue equation of any given �rm: these variables only enter indirectly through
the market share function. For the BLP demand, we have similar exclusion restrictions at high prices. That
is, if we let pjm be own price, the exclusion restriction we use is that at high prices, in the 2nd term of the
marginal revenue function, own price only enters through pjm − pj−1,m where pj−1,m is the next highest price in
the market), and pjm− pj+1,m where pj+1,m is the next lowest price in the market. For details, see the appendix.
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for individual i in market m consuming product j is

uijm = xjmβx + zmβz + pjmα+ ξjm + εijm. (26)

On the other hand, following the literature, we assume that the variables determining market

size are not included in the cost function. This assumption is reasonable as demographic vari-

ables usually do not enter the production function. Then, we maintain the original exclusion

restrictions that market structure variables only enter in the marginal revenue function but not

in the marginal cost function. Therefore, the identi�cation procedure is the same as before.

We prove identi�cation for the logit demand model here, and for the BLP model in the

appendix.

First, note that since market share s and market size Q are unobserved, and market size is

a function of z in Equation (25), marginal cost is a function of (p, z,q,X) instead of (p, s,X).

Therefore, the �rst order condition is modi�ed to be

MRj (p, z,q,X;θc0) = MC (q,w,x, υ) ,

where θc0 now includes the price coe�cient and the parameters of the market size equation, i.e.

θc0 = (α0, λc0,λz0). Then, the cost shock can be expressed as follows:

υ = υ (q,w,x,MRj (p, z,q,X;θc0)) .

Furthermore, instead of R = {p, s,X,q,w, j}, now we have R = {p,X,q,w, z, j} with which

we derive the deterministic component of cost given below:

E
[
C
∣∣ (q̃ = q, w̃ = w, p̃ = p, z̃ = z, X̃ = X, j

)]
= Cv (q,w,x, υ)+ef (w,x, υ)+eme (q,w,x) ≡ C̃.

Then, as before, we form pairs of �rms that have the same (q,w,x) and the same C̃. Through

these pairs, we identify the parameters θc0 using the following two restrictions in the cost function

and the marginal revenue function of the logit demand model. 1) p and z do not enter in the

cost function. 2) Given q, variation in z changes the market share only through the market size

equation (24), not through the utility function in Equation (26).

Furthermore, for any pair of �rms jm and j†m† in the above set, we restrict their prices to

be equal, i.e., pjm = pj†m† as well. Then, since the two �rms in the pair have the same marginal
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revenue, we derive

pjm +
1(

1− s∗jm
)
α0

= pj†m† +
1(

1− s∗
j†m†

)
α0

.

It follows that within each pair, the true market shares must be equal. Thus, using Equation

(25), we obtain

ln
(
s∗jm
)

= ln (qjm)− ln (Qm) = ln (qjm)− λc0 − zmλz0

= ln
(
s∗j†m†

)
= ln

(
qj†m†

)
− λc0 − zm†λz0,

which results in

(zm − zm†)λz0 = 0. (27)

By using Equation (27), we �rst show that the vector λz0 is identi�ed up to a multiplicative

constant. That is, λ̂z0 ≡ λz0/λz01 is identi�ed. We do so by �nding k = 1, . . . ,Kz pairs of �rms

in di�erent markets j(k)m(k) and j†(k)m†(k) satisfying qj(k)m(k) = qj†(k)m†(k) , wm(k) = wm†(k) ,

xj(k)m(k) = xj†(k)m†(k) , pj(k)m(k) = pj†(k)m†(k) and C̃j(k)m(k) = C̃j†(k)m†(k) , but zm(k) 6= zm†(k) . If we

assume that conditional on (ξm,υm,wm,Xm), the support of zm is RKz , then the space spanned

by zm(k) − zm†(k) , k = 1, . . .Kz, subject to the restriction of Equation (27), has rank Kz − 1.

Therefore, under our normalization, the equations

(zm(k) − zm†(k)) λ̂z0 = 0, k = 1, . . . ,Kz

identify λ̂z0 ≡ λz0/λz01.

Next, we focus on the identi�cation of λc0 and λz01 by setting zmk = 0 for k = 2, . . .Kz.

That is, only one variable zm1 determines market size. We then proceed by considering two

pairs of �rms k = 1, 2 where wm(k) = wm†(k) = w, xm(k) = xm†(k) = x, C̃j(k)m(k) = C̃j†(k)m†(k)

and for small ∆z > 0, zm(k)1 = 0, zm†(k)1 = ∆z. Output is di�erent across the two pairs, that

is, qj(1)m(1) = qj†(1)m†(1) = q, qj(2)m(2) = qj†(2‘)m†(2) = q′ for q′ 6= q. Note we do not put any

restrictions on prices within the pairs. Then, these two pairs identify λc0 regardless of the value

of α0. More concretely, using

s∗
j(1)m(1) =

q

exp (λc0)
, s∗

j†(1)m†(1) =
q

exp (λc0 + ∆zλz01)
,
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and Equation (22), we have for pair 1,

pj(1)m(1) − pj†(1)m†(1) = − 1

α0

[
q

exp (λc0)− q
− q

exp (λc0 + ∆zλz01)− q

]
≡ ∆p (q, 0,∆z) .

Note that

q

exp (λc0 + ∆zλz01)− q
≈ q

exp (λc0)− q
− q

(exp (λc0)− q)2 [exp (λc0 + ∆zλz01)− exp (λc0)] ,

and since we can �nd q such that q 6= exp (λc0),

∆p (q, 0,∆z) = pj(1)m(1) − pj†(1)m†(1) ≈ −
1

α0

q

(exp (λc0)− q)2 exp (λc0) ∆zλz01 6= 0,

holds and is bounded.

Next, we do the same with the second pair with q′ 6= q where q′ 6= exp (λc0) as well. Letting

B (q, q′, 0,∆z) ≡ ∆p (q, 0,∆z) /∆p (q′, 0,∆z), we have

B
(
q, q′, 0,∆z

)
≡ ∆p (q, 0,∆z)

∆p (q′, 0,∆z)
≈ q

q′

[
exp (λc0)− q′

exp (λc0)− q

]2

=
q

q′

[
1 +

q − q′

exp (λc0)− q

]2

,

which identi�es λc0. Then, to identify λz01, we do the same with two new pairs having zm1 = z,

zm†1 = z + ∆z, and everything else de�ned in the same manner as for the �rst two pairs, and,

given λc0, we do similar calculations as before to derive

B
(
q, q′, z,∆z

)
≡ ∆p (q, z,∆z)

∆p (q′, z,∆z)
≈ q

q′

[
exp (λc0 + zλz01)− q′

exp (λc0 + zλz01)− q

]2

=
q

q′

[
1 +

q − q′

exp (λc0 + zλz01)− q

]2

.

Since λc0 is already identi�ed, the above equation identi�es λz01.

Later, we also show that in our Monte-Carlo results, even when market size is unobserved,

we can identify the price coe�cients and the parameters of the market size equation well.

4 Estimation

In practice, an estimator that directly applies the parametric identi�cation results in Subsection

3.2 will likely su�er from a Curse of Dimensionality. To implement such an estimator, one would

need to obtain the deterministic component of cost by deriving the nonparametric estimate of
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the conditional mean cost as below:

C̃jm = E
[
C
∣∣q̃ = qjm, w̃ = wm, p̃ = pm, s̃ = sm, X̃ = Xm, j

]
.

Furthermore, we need to �nd pairs with qjm ≈ qj†m† , xjm ≈ xj†m† , wm ≈ wm† and C̃jm ≈ C̃j†m† .

For most markets of interest, Xm will contain some product characteristics across a non-negligible

number of �rms. This makes the dimensionality problem potentially quite severe.

Because of this dimensionality issue, we construct an estimator that exploits the parametric

marginal revenue in such a way that the calculation of conditional mean cost is no longer required.

This estimator conditions on marginal revenue, which is a parametric function of the observables,

rather than the conditional expected cost.

We propose to embed the estimation of demand parameters in the estimation of the deter-

ministic component of cost C̃jm. To overcome the problem of a possible correlation between

the cost shock υjm and output qjm, we argue below that given qjm, wm, and xjm, we can use

marginal revenue MRj (pm, sm,Xm,θc) to control for υjm as long as the demand parameter

vector θc equals the vector of true values θc0. The lemma below formalizes this control function

idea.

Lemma 4 Suppose that Assumptions 3, 5-8 are satis�ed. Then, C̃jm = ϕ (qjm,wm,xjm,MRjm (θc0))

for �rm j in market m with observables {pm, sm,Xm, qjm,wm, j}, where ϕ is a function that is

strictly increasing and continuous in marginal revenue.

Proof. By Assumption 7, we can invert the the marginal cost function with respect to to cost

shock υ such that υ= υ(q,w,x,MC). We can use this function to control for υ. Then, the

deterministic component of cost becomes

C̃ = Cv (q,w,x, υ) + ef (w,x, υ) + eme (q,w,x) = ϕ (q,w,x,MC) ,

where ϕ is an increasing and continuous function of MC by Assumptions 7 and 8. Because

Equation (15) holds, i.e., MR = MC, at the true parameter vector θc0,

C̃ = ϕ (q,w,x,MC) = ϕ (q,w,x,MR) (28)

and the claim holds.

We call the function ϕ (q,w,x,MR) the pseudo-cost function. Notice that in this proof, we
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invert the marginal cost function in Equation (15) rather than the cost function in Equation (16)

in Subsection 3.2 to derive υ. That is, we exploit the �rst order condition at the true parameter

vector, and thereby use marginal revenue to control for the cost shock. By doing so, we avoid

the Curse of Dimensionality in estimation mentioned above in using C̃ to control for υ. An

equivalent way to explain what we are doing is that we invert the �rst order condition Equation

(18), which is the basis of our identi�cation strategy, with respect to MR and C̃, given q,w

and x. Because De�nition 1 guarantees invertibility at the true parameter θ0, the pseudo-cost

function is derived from our identi�cation de�nition.

4.1 Two-step Sieve Non-linear least squares (SNLLS) estimator

Using the above lemma, we construct an estimator that is based on the control function approach.

In the �rst step, it selects parameters θc to �t the pseudo-cost function to the cost data using a

nonparametric sieve regression (see Chen (2007) and Bierens (2014)). The following assumption

formalizes this:

Assumption 9 ϕ can be expressed as a linear function of an in�nite sequence of polynomials.

ϕ (qjm,wm,xjm,MRjm (θc0)) =
∞∑
l=1

γl0ψl (qjm,wm,xjm,MRjm (θc0)) , (29)

where ψ1 (·) , ψ2 (·) , . . . are the basis functions for the sieve and γ1, γ2, . . . is a sequence of their

coe�cients, satisfying
∑∞

l=1 |γl0| <∞.17

Our estimator is based on Equation (29). It is useful to introduce some additional notation

before formally de�ning the estimator and its sample analog. Let M be the number of markets

in the sample, and LM an integer that increases with M . For some bounded but su�ciently

large constant T > 0, let Γk (T ) = {πkγ : ‖πkγ‖ ≤ T} where πk is the operator that applies to

an in�nite sequence γ = {γn}∞n=1
, replacing γn, n > k with zeros. That is, for n ≤ k, πkγn = γn,

and for n > k, πkγn = 0. The norm ‖x‖ is de�ned as ‖x‖ =
√∑∞

k=1 x
2
k
.

We now present our main result on estimation. The proof is in the appendix.

17Suppose the vector (qjm,wjm,xjm,MRjm) belongs to a compact �nite-dimensional Euclidean space, W.
Then, if ϕ (qjm,wjm,xjm,MRjm) is a continuous function onW, from the Stone-Weierstrass Theorem, it follows
that the function can be approximated arbitrarily well by a polynomial function of a su�ciently higher order.
However, the polynomials may not converge absolutely, so we still need to assume absolute convergence.

30



Proposition 2 Suppose Assumptions 1-9 are satis�ed. Then

[θc0,γ0] = argmin(θ,γ)∈Θc×ΓE

[
Cjm −

∞∑
l=1

γlψl

(
qjm,wm,xjm,MRjm (θc)

)]2

, (30)

where Γ = limM→∞ΓLM (T ); and equation (30) identi�es θc0.

Note that we do not require the sieve function
∑∞

l=1 γlψl (q,w,x,MRjm (θc)) to be one-to-

one with respect to MRjm (θc) given (q,w,x). As shown in the proof, we rely on the functional

form of the BLP demand to do so.

Our SNLLS (Sieve-NLLS) approach deals with issues of endogeneity by adopting a control

function approach for the unobserved cost shock υjm. With our estimator, the right-hand side of

Equation (30) is minimized only when parameters are at their true value θc0 so that the computed

marginal revenue equals the true marginal revenue, and thus works as a control function for the

supply shock υjm. If θc 6= θc0, then using the false marginal revenue adds noise, which increases

the the sum of squared residuals in Equation (30). This can be seen from the following: because

νjm and ςjm are independent to the other observed variables,

E

[(
Cjm −

∞∑
l=1

γlψl (qjm,wm,xjm,MRjm (θc))
)2
]

= E

(Cjm − C̃jm + C̃jm −
∞∑
l=1

γlψl (qjm,wm,xjm,MRjm (θc))

)2


≥ E
[
(νjm + ςjm)2

]
= σ2

ν + σ2
ς , (31)

Equation (31) holds with equality if and only if θc = θc0. This is because of the de�nition of the

pseudo-cost function in Equation (28). Thus, the true demand parameter θc0 can be obtained

as a by-product of this control function approach.18

We let the sample ofM markets be theM random draw of the population, and denote market

m to be the mth random draw from the population. The sample analog of Equation (30), given

a sample of M markets is:

[
θ̂cM , γ̂M

]
= argmin(θc,γ)∈Θc×ΓLM (T )

1∑M
m=1 Jm

M∑
m=1

Jm∑
j=1

[
Cjm −

LM∑
l=1

γlψl

(
qjm,wjm,xjm,MRjm (θc)

)]2

.

(32)

18After estimating the marginal revenue function, we can recover the cost function. The details are discussed
in the appendix.
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The set ΓLM (T ) makes clear the fact that the complexity of the sieve is increasing in the sample's

number of markets.

In the actual estimation exercise, the objective function can be constructed in the following

2 steps.

Step 1: Given a candidate parameter vector θc, derive the marginal revenue MRjm (θc) for

each j, m, j = 1, ..., Jm, m = 1, ...,M .

Step 2: Derive the estimates of γ̂l, l = 1, ..., LM by OLS, where the dependent variable is Cjm

and the RHS variables are ψl (qjm,wm,xjm,MRjm (θc)), l = 1, ..., LM . Then, construct

the objective function, which is the average of squared residuals

QM (θc) =
1∑M

m=1 Jm

M∑
m=1

Jm∑
j=1

[
Cjm −

LM∑
l=1

γ̂lψl (qjm,wm,xjm,MRjm (θc))

]2

.

We choose θc that minimizes the objective function QM (θc). In sum, we search for the price

parameters in an outer loop and �nd the best �tting cost function on an inner loop for each

candidate set of demand parameters. We use the Newton search algorithm to �nd the solution.

Note that practitioners need to be careful in the nonparametric estimation of the pseudo-cost

function if xjm includes discrete variables, just like in any cases where nonparametric estimation

involves both discrete and continuous variables.

In the second step, to identify β for the logit model and µβ for BLP, we include additional

moment conditions in our estimator that leverage the (common) assumption that E
[
ξjm|xjm

]
=

0. Then, after obtaining θ̂cM , we can recover δ̂M by inversion, and we can simply estimate β̂M

for logit or µ̂βM for BLP simply by OLS as follows.

β̂M =

(
M∑
m=1

X′mXm

)−1 M∑
m=1

X′m

(
δ̂m − pmα̂M

)
or µ̂βM =

(
M∑
m=1

X′mXm

)−1 M∑
m=1

X′m

(
δ̂m − pmµ̂αM

)
(33)

Equations (32) and (33) constitute our two-step SNLLS estimator for parameters θ = (α,β)

for logit demand and θ =
(
µα, σα,µβ,σβ

)
for BLP demand.19 After estimating the demand

19Note that if the exclusion restriction is not met, we can still obtain consistent parameter estimate of β (or
µβ) if we assume that the observed characteristics of other products X−jm and ξjm are uncorrelated. Then, we
can use X−jm as instruments for xjm. In contrast, the literature uses these variables as instruments for both pjm
and xjm. Berry et al. (1995) use the sum of product characteristics over other �rms as instruments for pjm. In
that case, if no other instruments are available, only functional form restrictions identify the coe�cients of pjm
and xjm. It is also important to recall that even if β (or µβ) cannot be consistently estimated, in our procedure
θc is still estimated consistently, and so are marginal revenue and pro�t margin.
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parameters and the semiparametric pseudo-cost function, we can recover the nonparametric cost

function as well. We present the details of this in the appendix.

4.2 Further speci�cation and data issues

We have thus far worked with the standard di�erentiated products model of Berry (1994) and

BLP. Depending on the empirical context, however, a number of speci�cation and data-related

issues can potentially arise. In this subsection, we list some empirical settings in which our

estimator can be adapted by modifying the SNLLS part of the objective function in Equation

(32). The details are in the appendix. They are:

1. Economic versus accounting cost : With only minor modi�cations to our estimation procedure,

we can consistently estimate the parameters even if the cost data in accounting statements

do not re�ect the economic cost.

2. Endogenous product characteristics: We can deal with the case where �rms also choose prod-

uct characteristics by including the additional �rst order conditions in our estimator.

3. Cost function restrictions: We can incorporate the restriction that the cost function satis�es

homogeneity of degree one in input price. Incorporating such a restriction in the estimation

procedure has the bene�t of reducing the dimensionality of the nonparametric pseudo-cost

function.

4. Missing cost data: Because the SNLLS part of our estimator does not involve any orthogonal-

ity conditions, and because the random components of the measurement error of cost and

�xed cost are assumed to be i.i.d, choosing only those �rms for which cost data is available

will not result in selection bias in estimation. It is important to notice, however, that we

still need demand-side data for all �rms in the same market to compute marginal revenue.

5. Multi product �rms: Even though �rms produce multiple products, in most accounting state-

ments, only the total cost of all products is reported. In such a case, with logit or BLP

functional form restrictions on market share functions and additional reasonable restric-

tions on the cost function, we can still estimate the parameters of the model.

4.3 Large sample properties

In the appendix, we prove consistency and asymptotic normality of our estimator. These proofs

are based on the asymptotic analysis of sieve estimators by Bierens (2014).
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4.4 Bootstrap procedure for calculating the standard errors

In this section, we propose a bootstrap procedure for deriving the standard errors of θ̂cM . In

equilibrium models, bootstrapping by resampling the demand shocks ξjm and supply shocks

υjm is computationally demanding because the equilibrium prices pm and the market shares

sm need to be recomputed for each market m. Instead, we could follow Fu and Wolpin (2018)

and others and conduct nonparametric bootstrap where we would resample market outcomes

(Xm,pm, sm,wm,qm,Cm), m = 1, . . . ,M and estimate based on the resampled market data.

Then, one does not need to recompute the equilibrium prices and market shares. However, the

results may be subject to small sample issues due to the relatively small number of markets.

Furthermore, the bootstrapped parameter estimates would likely be a�ected by the additional

variation from the resampled Xm and wm as well, which could overestimate the standard errors.

In addition, if the demand and supply shocks, Xm and wm are correlated across markets, then

this correlation needs to be dealt with in resampling.

In our bootstrap, we instead resample νjm + ςjm to reconstruct the cost data and then,

reestimate the parameters. The procedure is valid since we assume that νjm+ ςjm is independent

of other variables, which we leave unchanged. We describe the procedure below.

Step 1 Estimate the parameters θ̂
(1)

cM and γ̂
(1)
M using Cjm,xjm, sjm, pjm, qjm,wm, j = 1, . . . , Jm,

m = 1, . . . ,M .

Step 2 Derive the residuals

(
ν̂ + ς

)
jm

= Cjm −
LM∑
l=1

γ̂
(1)
lMψl

(
qjm,wm,xjm,MRjm

(
θ̂

(1)

cM

))
.

Step 3 Resample with replacement from

{(
ν̂ + ς

)
jm
, j = 1, . . . , Jm,m = 1, . . . ,M

}
to gener-

ate

{(
ν̃ + ς

)
jm
, j = 1, . . . , Jm,m = 1, . . . ,M

}
.

Step 4 Generate the bootstrapped cost

Ĉjm =

LM∑
l=1

γ̂
(1)
lMψl

(
qjm,wm,xjm,MRjm

(
θ̂

(1)

cM

))
+
(
ν̃ + ς

)
jm
.

Step 5 Go back to Step 1 with Ĉjm instead of Cjm, and reestimate to derive θ̂
(2)

cM , γ̂
(2)
M using

Ĉjm,xjm, sjm, pjm, qjm,wm, j = 1, . . . , Jm, m = 1, . . . ,M .
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Repeat the above steps MB − 1 times to derive θ
(lB)
cM , lB = 1, . . . ,MB and report standard errors

from the MB bootstrapped parameter estimates.

5 Monte-Carlo experiments

This section presents results from a series of Monte-Carlo experiments that highlight the �-

nite sample performance of our estimator. To generate samples, we use the following random

coe�cients logit demand model:

sjm (θ) =

ˆ
α

ˆ
β

exp (xjmβ + pjmα+ ξjm)∑Jm
j=0 exp (xjmβ + pjmα+ ξjm)

1

σα
φ

(
α− µα
σα

)
1

σβ
φ

(
β − µβ
σβ

)
dαdβ, (34)

where we set the number of product characteristics K to be 1, and φ() to be the density of the

standard normal distribution. We assume that each market has four �rms, each producing one

product (e.g., Jm = J = 4). Hence consumers in each market have a choice of j = 1, . . . , 4

di�erentiated products or not purchasing any of them (j = 0).

On the supply-side, we assume �rms compete on prices a la di�erentiated products Bertrand

competition, use labor and capital inputs in production and have a Cobb-Douglas production

function. Given output, input prices w = [w, r]′ (w is the wage and r is the rental rate of capital),

total cost and marginal cost functions are speci�ed as20

C (q, w, r, x, υ) = x

[
wαcrβc

B

((
βc
αc

)αc
+

(
αc
βc

)βc)
υq

] 1
αc+βc

MC (q, w, r, x, υ) = x

[
wαcrβc

B

((
βc
αc

)αc
+

(
αc
βc

)βc)
υ

] 1
αc+βc 1

αc + βc
q

1
αc+βc

−1
.

Notice that in the above speci�cation, the cost function is homogeneous of degree one in input

prices.21

To create our Monte-Carlo samples, we generate wage, rental rate, variable cost shock, market

20In our Monte-Carlo, we assume away the deterministic components of the �xed cost and the measurement
error.

21The cost function given the Cobb-Douglas production technology is de�ned as

C (q, w, r, x, υ) = argminL,KwL+ rK subject to q = Bυ−1LαcKβc/x.
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size Qm, and observable product characteristics xjm as follows:

wm ∼ i.i.d.TN (µw, σw) , e.g., wm = µw + σw%wm, %wm ∼ i.i.d.TN (0, 1) .

rm ∼ i.i.d.TN (µr, σr) , e.g., rm = µr + σr%rm, %rm ∼ i.i.d.TN (0, 1) .

Qm ∼ i.i.d.U (QL, QH) .

xjm ∼ i.i.d.TN (µx, σx) , e.g., xjm = µx + σx%xjm, %xjm ∼ i.i.d.TN (0, 1) .

TN (0, 1) is the truncated standard normal distribution, where we truncate both upper and

lower 0.82 percentiles. U (QL, QH) is the uniform distribution with lower bound of QL and

upper bound of QH . Furthermore, we specify the variable cost shock as follows:

υjm = µυ + συ%υjm + ζQΦ−1

(
δ + (1.0− 2δ)

Qm −QL
QH −QL

)
, %υjm ∼ i.i.d.TN (0, 1) .

For transforming the uniformly distributed market size shock to truncated normal distribution,

we use small positive δ = 0.025 for truncation. We truncate the distribution of the shocks to

ensure that the true cost function is positive and bounded given the parameter values of the cost

function we set (which will be discussed later). We let the cost shock υjm be positively correlated

with the market size shock, i.e., we set ζQ to be 0.2.

Importantly, we specify the unobserved characteristics so as to allow for correlation between

ξjm and input prices, the cost shock, market size and the observed characteristics of the products

other than j in market m denoted by xojm ≡ (1/3)
∑

l 6=j %xlm. Speci�cally, we set:

ξjm = δ0 + δξ%ξjm + δw%wm + δr%rm + δυ%υjm + δQΦ−1

(
δ + (1.0− 2δ)

Qm −QL
QH −QL

)
+ δxoxojm,

where %ξ is the idiosyncratic component of the demand shock. We set δl = 1
2
√

6
for l ∈

{ξ, w, r, υ,Q, xo}.

By construction, neither input prices, nor observed characteristics of other products can be

used as valid instruments for prices in demand estimation. Furthermore, since both demand and

variable cost shocks are correlated with market size, one cannot use the variation of market size

as an instrument for prices, or for output in the cost function estimation discussed in Subsec-

tion 2.2. We let the sum of their random terms be distributed TN
(

0,
√
V ar (ν + ς)

)
where√

V ar (ν + ς) =
√
σ2
ν + σ2

ς = 0.2.

36



To solve for the equilibrium price, quantity, and market share for each oligopoly �rm, we use

the golden section search on price.22

Table 1 summarizes the parameter setup of the Monte-Carlo experiments. Table 2 presents

sample statistics from the simulated data of 1600 market-�rm observations (there are 400 local

markets). Note that σν+ς is about seven percent of the total cost. The parameter estimates of

θc = (µα, σα, σβ) are obtained by the following minimization algorithm:

[
θ̂M , γ̂M

]
= argmin(θc,γ)∈Θc×ΓkM (T )

[ 1∑M
m=1 Jm

∑
jm

[
Cjm
rm
−
∑
l

γlψl

(
qjm,

wm
rm

,xjm,
MRjm (θc)

rm

)]2

.

In this pseudo-cost function, we exploit the homogeneity of degree one property of the cost

function. For a detailed discussion, see the appendix. We then recover δ by inversion and in the

2nd stage, we estimate the parameter µβ as follows:

µ̂βM =
(
X′X

)−1
X′
(
δ̂M − pµ̂αM

)
.

In Table 3, we present the Monte-Carlo results for our two-step estimator. We report the

mean, standard deviation, and square root of the mean squared errors (RMSE) of the parame-

ter estimates from 100 Monte-Carlo simulation/estimation replications. From the table, we see

that as sample size increases, the standard deviation and the RMSE of the parameter estimates

decrease. The results highlight the consistency of our estimator. It is noteworthy that means of

the estimates are quite close to their true values even with a small sample size of 200. Further-

more, since the estimated parameter values are close to their true values, the standard deviations

and RMSEs are close to each other as well. Overall, these Monte-Carlo results demonstrate the

validity of our approach.23 In Table 4, we present the results where we allow for the observed

characteristics x to be correlated with the unobserved characteristics ξ. That is,

ξjm = δ0+δξ%ξjm+δw%wm+δr%rm+δυ%υjm+δQΦ−1

(
δ + (1.0− 2δ)

Qm −QL
QH −QL

)
+δxoxojm+δx%xjm,

(35)

where δ0 = 4.0, δξ = δw = δr = δυ = δQ = δxo = δx = 1/
(
2
√

7
)
. Now, by construction,

no observed variable of the �rm can be used as a valid instrument for its prices in demand

estimation. We can see in Table 4 that the parameter vector θc is consistently estimated. On

22The algorithm for �nding equilibria in oligopoly markets is available upon request.
23Results with σν+ς larger than 0.2 are similar to the ones presented, but with larger standard deviations and

RMSEs.
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Table 1: Monte Carlo Parameter Values

Parameter Description Value

(a) Demand-side parameters
µα Price coef. mean 2.0
σα Price coef. std. dev. 0.5
µβ Product characteristic coef. mean 1.0
σβ Product characteristic coef. std. dev. 0.2
µX Product characteristic mean 3.0
σX Product characteristic std. dev. 1.0
δ0 Unobserved product quality mean 4.0
δξ Unobserved product quality std. dev. 0.5
QL Lower bound on market size 5.0
QH Upper bound on market size 10.0

(b) Supply-side parameters
αc Labor coef. in Cobb-Douglas prod. fun. 0.4
βc Capital coef. in Cobb-Douglas prod. fun. 0.4
µw Wage mean 1.0
σw Wage std. dev. 0.2
µr Rental rate mean 1.0
σr Rental rate std. dev. 0.2
µv Cost shock mean 0.3
σv Cost shock std. dev. 0.1
J Number of �rms in each market 4
B Scaling factor for output in the cost function 1.0

(c) Cost measurement error
σν+ς Measurement std. dev. 0.2

(d) Correlation parameters with unobservables ξjm and vjm
δxo ξjm and X−jm correlation 1/(2

√
6)

δw ξjm and wm correlation 1/(2
√
6)

δr ξjm and rm correlation 1/(2
√
6)

δv ξjm and vjm correlation 1/(2
√
6)

δQ ξjm and Qm correlation 1/(2
√
6)

ζQ vjm and Qm correlation 1/(2
√
6)

the other hand, µβ is estimated to be around 1.2, much higher than the true coe�cient 1.0. The

upward bias is due to the positive correlation between the demand shock ξjm and the random

term of the observed characteristics %xjm as speci�ed in Equation (35). However, since rest of the

parameters are estimated consistently, the markup of the �rms can still be recovered consistently.

In Table 5, we report the results where we set the variation in market size to be zero. We

can see that overall, means of the parameter estimates become closer to the true values, and the

standard deviations and RMSEs become smaller as sample size increases. In the Monte-Carlo

results with the sample size of 200, one out of a hundred simulation/estimation exercises did

not converge, so we removed it, and took the sample statistics over 99 parameter estimates. By

comparing the results in Table 3, we can see that the standard deviations and the RMSEs are

higher than the ones where we had variation in market size. We conclude that even though the

variation in market size is not needed, it helps in improving the accuracy of the estimators.
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Table 2: Sample Statistics from Simulated Data

Variable Description Mean Std. Dev.

pm Price 4.104 1.239
xjm Product characteristic 1.704 0.465
ξm Unobserved product quality 4.008 0.436
sjm Market share 0.191 0.091
qjm Output 1.395 0.662
Cjm Total cost 2.814 1.005
wm Wage 1.007 0.183
rm Rental Rate 1.001 0.195

Notes: Sample statistics from simulated data from a Monte Carlo
sample with 400 markets, J = 4 �rms per market, and 1600 observa-
tions.

Table 3: SNLLS Estimator of Random Coe�cient Demand Parameters
(Product Characteristic xjm and Unobserved Product Quality ξjm Uncorrelated)

(a) Price coe�cients parameters
µ̂α σ̂α

Markets Sample Size Polynomials Mean Std. Dev. RMSE Mean Std. Dev. RMSE CPU Minutes

50 200 144 -2.178 0.823 0.838 0.455 0.215 0.218 274.0
100 400 171 -2.195 0.539 0.571 0.547 0.178 0.183 788.5
200 800 204 -2.004 0.184 0.183 0.506 0.094 0.093 1795.4
400 1600 256 -2.020 0.124 0.125 0.504 0.053 0.053 2278.4

True Value -2.000 0.500

(b) Product characteristic coe�cients parameters
µ̂β σ̂β

Markets Sample Size Polynomials Mean Std. Dev. RMSE Mean Std. Dev. RMSE Obj. Fun.

50 200 144 1.130 0.586 0.598 0.258 0.284 0.289 1.392D-2
100 400 171 1.069 0.272 0.280 0.265 0.213 0.222 2.294D-2
200 800 204 0.988 0.118 0.118 0.204 0.085 0.084 2.944D-2
400 1600 256 1.007 0.086 0.086 0.207 0.056 0.056 3.365D-2

True Value 1.000 0.200

Notes: Monte-carlo experiment results based on calibration described in panels (a)-(d) of Table 1. CPU minutes is the aver-
age estimation time in minutes across the Monte Carlo simulations. Measurement error in cost data has a standard deviation of
σν+ς = 0.2 which is approximately seven percent of mean total cost.

Next, we consider the case where market size is not observable, and needs to be estimated.

We specify market size as follows:

Q∗m = λ0 + λ1zm,

where Q∗m is the unobserved market size, and we set zm = Qm, and λ0 = 0, λ1 = 1. Then, the

true market share vector is sm = qm/Q
∗
m. We keep the BLP market share equation as speci�ed

in Equation (34) except that market size is unobservable and therefore, parameters λ0 and λ1

need to be jointly estimated. Note that market shares sm are unobservable as well. In Table

6, panel (a), we present the statistics of the parameter estimates that were generated from 100

repeated simulation/estimation exercises, based on the model used in Table 3 with unobservable
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Table 4: SNLLS Estimator of Random Coe�cient Demand Parameters
(Product Characteristic xjm and Unobserved Product Quality ξjm Correlated)

(a) Price coe�cients parameters
µ̂α σ̂α

Markets Sample Size Polynomials Mean Std. Dev. RMSE Mean Std. Dev. RMSE CPU Minutes

50 200 144 -2.204 0.954 0.971 0.508 0.196 0.195 762.2
100 400 171 -2.071 0.272 0.279 0.517 0.117 0.118 1526.7
200 800 204 -2.012 0.150 0.150 0.500 0.066 0.065 3189.4
400 1600 256 -2.006 0.088 0.088 0.502 0.034 0.034 5770.0

True Value -2.000 0.500

(b) Product characteristic coe�cients parameters
µ̂β σ̂β

Markets Sample Size Polynomials Mean Std. Dev. RMSE Mean Std. Dev. RMSE Obj. Fun.

50 200 144 1.315 0.661 0.729 0.231 0.256 0.256 1.392D-2
100 400 171 1.222 0.158 0.272 0.213 0.111 0.111 2.320D-2
200 800 204 1.197 0.090 0.216 0.202 0.078 0.078 2.953D-2
400 1600 256 1.190 0.056 0.198 0.198 0.052 0.052 3.375D-2

True Value 1.000 0.200

Notes: Monte-carlo experiment results based on calibration described in panels (a)-(c) of Table 1 with ξjm distributed according

to Equation (35) with δξ = δw = δr = δυ = δQ = δxo = δx = 1/
(

2
√

7
)
. CPU minutes is the average estimation time in minutes

across the Monte Carlo simulations. Measurement error in cost data has a standard deviation of σν+ς = 0.2 which is approximately
seven percent of mean total cost.

market size. In addition, in panel (b), we report the results where we set xjm = Φ−1 (zm) in

Equation (34). As we can see, in both cases, means of the parameter estimates are close to the

true values.

In Table 7, we compare the estimated parameters using our two-step SNLLS method with

the standard IV approach using instruments that are commonly used in the literature. These

are: wage, rental rate and observed product characteristics of own and rival �rms and their

interactions. Results show that in a parameter setup where the instruments are invalid, while

our two-step SNLLS estimates are consistent, the IV estimates of the demand parameters are

biased.

In the �rst row (SNLLS 1) of Table 7, we show results of our estimator when the demand

shock is orthogonal to the other variables, (e.g., δξ = 0.5, δw = δr = δυ = δQ = δxo = 0), so

that the instruments are valid. As we can see, the two-step SNLLS estimated coe�cients are

close to the true values, as are the IV estimates presented in the third row (IV1). However, the

standard deviations of the IV estimates of σα and σβ are higher than those of the two-step SNLLS

estimates. That is, higher order interactions of the instruments may be needed to estimate σα

and σβ as accurately as the two-step SNLLS ones. Next, in the fourth row (IV2), we show the

statistics of the IV estimates when the input prices are not valid instruments. That is, we set
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Table 5: SNLLS Estimator of Random Coe�cient Demand Parameters
(No Variation in Market Size)

(a) Price coe�cients parameters
µ̂α σ̂α

Markets Sample Size Polynomials Mean Std. Dev. RMSE Mean Std. Dev. RMSE CPU Minutes

50 200 144 -2.430 1.797 1.839 0.432 0.291 0.298 295.1
100 400 171 -2.205 0.460 0.501 0.529 0.178 0.180 670.0
200 800 204 -2.024 0.225 0.225 0.501 0.098 0.097 1226.8
400 1600 256 -2.024 0.115 0.117 0.500 0.052 0.052 2125.0

True Value -2.000 0.500

(b) Product characteristic coe�cients parameters
µ̂β σ̂β

Markets Sample Size Polynomials Mean Std. Dev. RMSE Mean Std. Dev. RMSE Obj. Fun.

50 200 144 1.389 1.596 1.635 0.208 0.206 0.205 2.537D-2
100 400 171 1.104 0.307 0.323 0.235 0.181 0.183 2.328D-2
200 800 204 1.007 0.136 0.136 0.212 0.112 0.112 2.970D-2
400 1600 256 1.015 0.084 0.085 0.205 0.060 0.060 3.390D-2

True Value 1.000 0.200

Notes: Monte-carlo experiment results based on calibration described in panels (a)-(d) of Table 1 except we restrict QL = QH so
that there is no variation in market size. CPU minutes is the average estimation time in minutes across the Monte Carlo simulations.
Measurement error in cost data has a standard deviation of σν+ς = 0.2 which is approximately seven percent of mean total cost.

the demand shock and the correlation between the demand shock and other variables24 to be

δξ = 1/
(
2
√

1.08
)
, δυ = δQ = δx0 = 0, and δw = δr = 0.2δξ. We can see that while the two-step

SNLLS estimates in the second row (SNLLS2) are close to the true values, the IV estimated µα

has an upward bias. The positive direction of bias is to be expected because ξ in Equation (5) is

set up to be positively correlated with the instruments. Notice also that the coe�cient estimate

on the observed characteristic is downwardly biased, and the heterogeneity parameter of price

e�ect, σα is upwardly biased.

Next, in row IV3, we present the IV results where the rival �rms' observed product charac-

teristics X−jm are correlated with own unobserved characteristics ξjm. That is, we set δxo =

1
10
√

1.04
, δξ = 1

2
√

1.04
, δw = δr = δυ = δQ = 0. Hence, the observed characteristics of rival �rms

cannot be used as instruments for own price. Results show that the IV-estimated µα again has

a positive bias. The parameter µβ is again estimated with a negative bias, and so is σα, unlike

results in Table 3, where we show the two-step SNLLS estimator delivers consistent parameter

estimates even if the demand shock is correlated with rival product characteristics.

Finally, in row IV4, we report the results where all the instruments considered here are

positively correlated with the demand shock. Again, we have an upward bias in the IV-estimated

24In all the subsequent analysis where we allow correlation between the demand shocks and the other variables,
these correlations are set to be smaller than the ones used for the SNLLS estimates. We also conducted the
Monte-Carlo experiments with larger correlations, but faced numerical di�culties during the IV estimation.
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Table 6: SNLLS Estimator of Random Coe�cient Demand Parameters
(Unobservable Market Size)

(a) zm not in market (b) zm in market
share function share function

Parameter True Value Mean Std. Dev. RMSE Mean Std. Dev. RMSE

µ̂α 2.000 -2.025 0.125 0.127 -1.964 0.130 0.134
σ̂α 0.500 0.510 0.043 0.041 0.506 0.050 0.050
µ̂β 1.000 1.005 0.100 0.100 0.996 0.254 0.253
σ̂β 0.200 0.208 0.057 0.057 0.199 0.073 0.073

λ̂0 0.000 -0.034 0.249 0.250 0.002 0.096 0.096

λ̂1 1.000 1.020 0.073 0.075 1.060 0.136 0.148

Notes: Monte-carlo experiment results based on calibration described in panels (a)-(d) of Table
1 except we assume market size is unobserved and distributed according to equation (42) in the
paper, where we set λ0 = 0 and λ1 = 1 in generating Monte Carlo samples. All results are based
on samples with 500 markets, sample size of 2000 market-�rm observations, with 256 polynomi-
als used in estimation. CPU minutes is the average estimation time in minutes across the Monte
Carlo simulations. Measurement error in cost data has a standard deviation of σν+ς = 0.2 which
is approximately seven percent of mean total cost.

µα and downward bias in the estimates of σα, µβ and σβ .

Overall, we conclude that our two-step SNLLS estimator provides unbiased parameter es-

timates even in situations where the commonly-used instruments are invalid and thus the IV

estimates are biased. In addition, our two-step SNLLS estimator performs well even when mar-

ket size is not observable, and the variable that determines market size is correlated with the

demand shock or enters directly in the market share equation. Furthermore, with similar con-

vergence criteria, the CPU minutes required for the two-step SNLLS estimator are less than for

the IV estimates. Thus, we tentatively conclude that our sieve-estimation procedure does not

impose excessive computational burden.

6 Empirical application to U.S. banking industry

We next apply our method to the actual data on banks and depository institutions to estimate the

demand for deposits. We estimate a slightly di�erent version of the demand model estimated by

Dick (2008). In particular, we assume that each consumer has one unit to deposit. The indirect

utility function of individual i putting his/her deposits in bank j in market m is speci�ed as:

uijm = xjmβ + rdjmα+ ξjm + εijm,

where xjm is a vector of observed characteristics of bank j in market m, which consists of log of

number of its branches, log of number of markets served and log of one plus bank age; rdjm is the

deposit interest rate of bank j in market m net of the service charge, and ξjm is its unobserved
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Table 7: SNLLS and IV Estimators of Random Coe�cient Demand Parameters
(Variation in Market Size)

(a) Price coe�cients parameters
µ̂α σ̂α

Experiment Mean Std. Dev. RMSE Mean Std. Dev. RMSE CPU Minutes

SNLLS1 -2.025 0.085 0.088 0.505 0.036 0.036 9400.8
SNLLS2 -2.034 0.087 0.092 0.507 0.033 0.034 7932.0
IV1 -1.978 0.086 0.089 0.475 0.069 0.073 11571.3
IV2 -1.614 0.088 0.395 0.609 0.051 0.120 13607.4
IV3 -1.453 0.078 0.552 0.157 0.055 0.347 11793.1
IV4 -1.278 0.086 0.727 0.394 0.054 0.119 12875.1

True Value -2.000 0.500

(b) Product characteristic coe�cients parameters
µ̂β σ̂β

Experiment Mean Std. Dev. RMSE Mean Std. Dev. RMSE Obj. Fun.

SNLLS1 1.011 0.048 0.048 0.200 0.041 0.041 3.487D-2
SNLLS2 1.016 0.052 0.054 0.204 0.043 0.042 3.504D-2
IV1 0.982 0.052 0.055 0.197 0.147 0.146 8.344D-4
IV2 0.620 0.046 0.383 0.206 0.148 0.148 1.498D-3
IV3 0.775 0.030 0.227 0.203 0.111 0.111 9.492D-4
IV4 0.533 0.035 0.468 0.159 0.120 0.126 1.203D-3

True Value 1.000 0.200

Notes: Monte-carlo experiment results based on calibration described in panels (a)-(d) of Table 1 with
variations in experimental designs described at the end of this table's note. All results are based on
Monte Carlo samples with 500 markets, sample size of 2000 market-�rm observations, with 256 poly-
nomials used in estimation. CPU minutes is the average estimation time in minutes across the Monte
Carlo simulations. Measurement error in cost data has a standard deviation of σν+ς = 0.2 which is
approximately seven percent of mean total cost.
Monte Carlo experiment designs:

SNLLS1, IV1: instruments are valid, δw = δr = δv = δQ = δxo = 0

SNLLS2, IV2: input prices correlated with demand shock: δξ = δw = δr = 1
2
√
3
, δv = δQ = δxo = 0

IV3: rival product observed characteristic is correlated with demand shock, δξ = 1
2
√
1.04

,

δxo = 1
10
√
1.04

, δw = δr = δv = δQ = 0

IV4: input price, variable cost shock, market size, and rival product observed characteristics are
correlated with the demand shock, δξ = 1

2
√
1.20

, δw = δr = δv = δQ = δxo = 1
10
√
1.20

characteristics. Finally, εijm is the random residual term in the utility function, which is assumed

to be i.i.d. Extreme-Value distributed.

Then, the market share of deposits for bank j in market m is

sjm =

ˆ
α

ˆ
β

exp (xjmβ + rdjmα+ ξjm)[
1 +

∑J
k=1 exp (xkmβ + rdkmα+ ξkm)

] [ K∏
l=1

1

σβl
φ

(
βl
σβl

)
dβl

]
1

σα
φ

(
α− µα
σα

)
dα,

where φ is the density function of the standard normal distribution. We can rewrite the above

equation by applying the change of variables as follows:

sjm =

ˆ
α

ˆ
β

exp ((xjm◦σβ)β + rdjm (σαα+ µα) + ξjm)

1 +
∑

k exp ((xkm◦σβ)β + rdkm (σαα+ µα) + ξkm)
φ (β) dβφ (α) dα,
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and the market share of the outside option is

s0m =

ˆ
α

ˆ
β

exp (ξ0m)

1 +
∑

k exp ((xkm◦σβ)β + rdkm (σαα+ µα) + ξkm)
φ (β) dβφ (α) dα.

Note that we expect the sign of µα to be positive because consumers prefer higher deposit interest

rate. We follow Dick (2008) and let the outside option be depositing in credit unions.

Notice that since individuals receive deposit interest rate on their deposits, banks need to loan

out or invest the deposits to earn any revenues. Thus, we assume revenue to be (rjm − rdjm) qjm,

where rjm is the interest rate earned by bank j in market m. In the empirical example, the

market size Qm is the total number of deposits (including credit unions). We set the interest

rate to be rjm = r, where r is the interest rate on the government treasury notes in January

2002.25 Then, the marginal revenue of deposit is

MRjm (θ) = (r − rdjm)− sjm
[
∂sj (rdm,Xm, ξm;θ)

∂rdjm

]−1

,

where

∂sj (rdm,Xm, ξm;θ)

∂rdjm

=

ˆ
α

ˆ
β

[
exp ((xjm◦σβ)β + rdjm (σαα+ µα) + ξjm)

[1 +
∑

k exp ((xkm◦σβ)β + rdkm (σαα+ µα) + ξkm)]2

×

1 +
∑
k 6=j

exp ((xkm◦σβ)β + rdkm (σαα+ µα) + ξkm)

 (σαα+ µα)φ (β) dβφ (α) dα.

We de�ne the variable cost of a bank to be the total annual labor cost. That is, we assume

we can measure the variable cost, and thus do not need to specify the �xed cost. We also

assume away the deterministic measurement error component of the cost data. We de�ne the

cost function as C (qjm, wm,xjm, υjm), where qjm is the total deposits of bank j in market m,

25There are three possible choices of variables for the interest rate rjm. One could use the interest rate on
assets such as government bonds, loan interest rate, or a basket of the rate of returns on loans and other �nancial
assets. Note that setting the interest rate to be the loan interest rate would raise an additional endogeneity issue
of bank lending. Since one of the important goals of this empirical analysis is to demonstrate the validity of
our estimator, we decided to focus on the deposit side so that our results are comparable to the literature on
deposit demand estimation. We use the interest rate on the government treasury notes in January 2002, since
one can reasonably assume it to be exogenous. We believe that an interesting future direction of research would
be an empirical analysis of the banking industry where both deposits and loans are endogenous. To the best of
our knowledge, structural empirical analysis of banking that includes both deposits and loans (or investments) is
scarce in the literature.
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wm is the wage level in market m, and υjm is the cost shock of bank j in market m. Since the

cost function is homogeneous of degree one in wage, we can rewrite it as follows:

C (qjm, wm,xjm, υjm) = wmϕ

(
qjm,xjm,

MRjm
wm

)
= wm

∑
l

γlψl

(
qjm,xjm,

MRjm
wm

)
,

where ψl, l = 1, . . . are the basis functions of the sieve and γl are the coe�cients. Hence, we

estimate θc0 by minimizing the following objective function:

1∑
Jm

∑
j,m

Cjm
wm
−

ΓLM (T )∑
l=1

γlψl

(
qjm,xjm,

MRj (rdm, r, sm,Xm,θc)

wm

)2

. (36)

with respect to both θc and γ. In the second step, we estimate µβ by OLS, where the dependent

variable is δjm

(
θ̂c

)
−rdjmµ̂α and the vector of independent variables is xjm. We obtain δjm

(
θ̂c

)
using the inversion algorithm explained earlier. That is, the equation we estimate is:

δjm

(
θ̂c

)
− rdjmµ̂α = xjmµβ + ξjm.

We calculate the standard errors of the parameter estimates of θ̂c by bootstrap, i.e., by resampling

the residuals in Equation (36).

We use data on banks in the year 2002 from similar sources as Dick (2008). That is, we

obtained the branch level information, such as the number of branches, the total deposits for

each branch and the branch location from the FDIC (Federal Deposit Insurance Corporation).

We collected data on bank characteristics from the balance sheet and income statements of

banks in the UBPR (Uniform Bank Performance Report) from the FFIEC (Federal Financial

Institutions Examination Council). Information on county level weekly wage is obtained from

the annualized data of Quarterly Census of Employment and Wages (QCEW) data �les managed

by the Bureau of Labor Statistics. The de�nition of a market is either metropolitan statistical

areas (MSA's) or counties if the area is not included in any of the MSA's. In the appendix, we

provide the sample statistics and discuss some additional data and estimation issues.

By closely inspecting the data, we noticed that in some markets, credit unions seem to be

e�ectively nonexistent as an outside option. Therefore, we removed the markets in which market

share of credit unions is less than 1%. Furthermore, we use the cost data of only those banks that

operate in a single market. We did so because banks who operate in multiple markets may not

exercise third degree discrimination, which then violates Assumption 5. Finally, for the sake of
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reducing the computational burden, we restrict the sample to markets where there are 40 banks

or less. In the �nal sample, the number of banks whose cost data we use is 2067, whereas the

number of all banks is 3230. That is, about two thirds of the banks are single-market banks. As

we can see in the sample statistics and the results in Table 9, the number of banks that operate

only in a single market is high enough for identi�cation of θc. It is important to remember

that θc is identi�ed based on the assumption of independence of the measurement error to other

variables. Therefore, using cost data of only those banks that serve one market does not result

in any selection bias for estimation of θc, as long as the data of all banks are available for the

variables in the marginal revenue function. For the estimation of µβ, selection matters, and thus

we use all banks in the data.

Note that since we only use those banks that operate in a single market for cost estimation,

we do not include the number of markets served in the cost function.

Table 8: Parameter Estimates for Deposit Demand Model

(a) Two-Step SNLLS (b) IV-GMM

Variable Parameter Estimate Std. Err. Estimate Std. Err.

Deposit interest rate µα 31.920∗∗∗ (0.633) -208.800∗∗∗ (1.767)
σα 9.829E-3 (0.031) 2.697∗∗∗ (0.026)

Log(Number of branches) µβ1 4.256∗∗∗ (0.053) 2.067 (12.310)
σβ1 0.336∗∗∗ (0.032) 9.646 (16.350)

Log(Number of markets) µβ2 0.554∗∗∗ (0.021) 0.086 (1.694)
σβ2 5.044E-4 (6.200E-3) 1.481E-3 (1.477E-3)

Log(Bank age + 1) µβ3 4.802∗∗∗ (0.045) 1.356 (8.027)
σβ3 2.892E-3 (0.011) 0.113 (0.264)

Notes: Bootstrap standard errors in parentheses. ∗p < 0.1 ∗∗p < 0.01. ∗∗∗p < 0.001

We present our results in Table 8. In panel (a), we report the results where we use the two-

step SNLLS procedure. In panel (b), we report the results where we use the IV-GMM procedure.

We used regional wage, regional housing price index, observed own product characteristics (log

number of branches, log number of markets, log age plus one) and those of rival banks in the

market, and the interactions of those variables as instruments.

Our estimated price coe�cient is around 32 and the average price elasticity is 1.64. The

proportion of banks whose elasticity is less than one is 4 %. In contrast the IV-estimated price

coe�cient on deposit interest rate in Dick (2008) ranges from 54.19 to 100.23, depending on the

inclusion of the bank/market/state �xed e�ects. A possible reason for this di�erence could be

that Dick (2008) uses banks in MSAs which are predominantly urban, whereas we also include

rural banks in our data. Indeed, our estimated price e�ects are closer to the ones in Ho and Ishii

(2012), who also include rural markets in their analysis and �nd that the own-price elasticity is
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smaller in rural markets. The price elasticity is expected to be lower in rural markets, where the

distance to branches of other banks is likely to be greater, and our data includes rural markets

as well.

We see in panel (b) of the table that the IV estimated price coe�cient is negative and

signi�cant. It is unintuitive because it implies that a higher deposit interest rate reduces deposits.

Furthermore, the IV estimated parameters
(
µβ,σβ

)
are all insigni�cant,26 whereas in panel

(a), the two-step SNLLS estimated coe�cients on observed characteristics are all positive, as is

intuitive, and signi�cant.

7 Conclusion

We have developed a new methodology for estimating demand and cost parameters of a di�er-

entiated products oligopoly model. The method uses data on prices, market shares, and product

characteristics, and some data on �rms' costs. Using these data, our approach identi�es demand

parameters in the presence of price endogeneity, and a nonparametric cost function in the pres-

ence of output endogeneity without any instruments. That is, demand and variable cost shocks

do not need to be uncorrelated with demand shifters, cost shifters or market size, and demand

shocks can be correlated with the observed characteristics of other products. Also, demand and

variable cost shocks are allowed to be uncorrelated with each other. Moreover, our method can

accommodate measurement error and �xed cost in cost data, endogenous product characteris-

tics, multi-product �rms, di�erence between accounting and economic costs, and some non-pro�t

maximizing �rms. In addition, we allow market size to be unobservable, and show that even

without conventional exclusion restrictions on the variables determining demand and market

size, we are able to identify and recover the unobserved market size, and consistently estimate

the demand parameters.

In our empirical application, we use data on the banking industry to compare our estimated

price coe�cient of deposit interest rate to the one in the literature estimated using IVs. Our

results indicate that cost data identi�es the demand parameters well. In contrast, studies such

as Dick (2008), Ho and Ishii (2012) and others use a large number of instruments (often 20 or

more) for estimating the demand parameters. The validity of all these instruments is often quite

26We have tried various versions of setups and instruments, both logit and BLP demand. What we �nd is that
among the cases we tried, only the logit speci�cation with a relatively small number of instruments resulted in
the price coe�cients with the plausible sign. What we infer from those results is: Since BLP has more parameters
that need to be estimated than the logit speci�cation, it requires more instruments, and in this particular case,
some of the instruments or some of the polynomials of the instruments are invalid.
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di�cult to assess.

The small bootstrapped standard errors, especially for θc estimate in our banking application

imply that the cost data and the nonparametric pseudo-cost function provide strong identi�cation

restrictions to control for endogeneity. This is also consistent with the favorable small sample

Monte-Carlo results provided earlier. In many situations in empirical work, researchers do not

have enough identi�cation power from instruments to have their estimated coe�cients to be

signi�cant. Even in such cases, the cost-based estimation method could provide signi�cant

parameter estimates. Then, our method has the potential to work well as a complement to the

IV based approach. As we have seen, both methodologies use similar variation in the data.

The input price, which is used as an instrument also appears as one of the variables in the

cost function in the cost-based approach. The main di�erences between the IV approach and

our cost-based approach are: 1) in the cost-based approach, such variation in the data is more

explicitly modeled, which may improve e�ciency, 2) unlike the IV approach, such variation does

not need to be exogenous, and of course, 3) in our approach, unobservable market size can be

identi�ed and estimated without strong exclusion restrictions, providing some guidance on the

speci�cation of markets in the IV approach, and 4) the cost based approach requires cost data.

Our estimation strategy also presents an alternative tool for anti-trust authorities since they

have the power to subpoena detailed cost data from �rms for merger evaluation. Fundamental

to the predictions from merger simulations based on the standard IV approach (Nevo (2001))

is the estimated demand elasticity and inferred marginal costs from the supply-side �rst order

conditions of the structural model. The demand elasticity and nonparametric cost estimates

based on our instrument-free approach can yield a complementary set of estimates and predictions

regarding the welfare e�ects of proposed mergers when reliable instruments are scarce, or there

are di�erences in opinions among the parties on the validity of the instruments.

Our estimation procedure requires marginal revenue to equal marginal cost. We believe that a

fruitful direction of future research would be to make the method applicable to situations where

marginal revenue fails to be equal to marginal cost. Examples include �rms facing capacity

constraints, or when �rms' decisions include dynamic considerations.
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A Appendix

A.1 Proof of Lemma 2

Proof. De�nition 2 says that θc0 is identi�ed if C =MR (θc0) 6=MR (θc) for θc 6= θc0.

If θc0 is identi�ed according to De�nition 1, C =MR (θc0). On the other hand, for θc 6= θc0,

C 6= MR(θc) because at least one of the two following cases holds for θc. 1) Marginal revenue

at θc cannot be expressed as a function of
(
q,w,x, C̃

)
. Then, there exists a pair of �rms that

have the same
(
q,w,x, C̃

)
but di�erent marginal revenues. 2) Marginal revenue at θc can be

expressed as a function of
(
q,w,x, C̃

)
but that function is not one to one in C̃. Then, there

is a pair of �rms that have the same (q,w,x), di�erent C̃'s but the same marginal revenues for

θc. In both cases 1) and 2), there is at least one pair that belongs either to group C or to group

MR (θc) but not to both. Therefore, θc0 is identi�ed according to De�nition 2.

Next, suppose θc0 is identi�ed according to De�nition 2. Then, C =MR (θc0). Therefore, in

the population mapping from
(
q,w,x, C̃

)
to marginal revenue is a function, and given (q,w,x),

the function from
(
q,w,x, C̃

)
to marginal revenue is one to one. On the other hand, for θc 6= θc0,

C 6= MR (θc). Then, at least one of the following three cases need to hold for θc. 1) Under

θc, there exists pairs of �rms that have the same
(
q,w,x, C̃

)
but di�erent marginal revenues.

Then, marginal revenue cannot be expressed as a function of
(
q,w,x, C̃

)
, violating Condition

1 of De�nition 1. 2) Under θc, there exists a pair of �rms that have the same (q,w,x) and the

same marginal revenue but di�erent C̃'s, which violates Condition 2 of De�nition 1. 3) Under θc

there exist a pair of �rms that have the same (q,w,x) and the same marginal revenue but they

are nonpositive, which again violates Condition 1 of De�nition 1. Therefore, θc0 is identi�ed

according to De�nition 1.

A.2 Identi�cation of the random coe�cient BLP model with endogeneity.

Proof of Proposition 1.

We prove that given Assumptions 1-8, the BLP demand function satis�es Condition 1. Then,

from Lemma 3, identi�cation follows.

Consider two �rms j and j† in di�erent markets. The �rst market has demand side observables

(X,p, s) where X is a J×K matrix of observed product characteristics, p is the J×1 price vector

and s is the J ×1 market share vector. Let
(
X†,p†, s†

)
denote the corresponding observables for

the second market where the number of products/�rms is J†. We start by assuming that these

two �rms satisfy 1 and 2 of Condition 1. We then prove that among those pairs, there exists one
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that satis�es 3 of Condition 1. We denote Φ () to be the standard normal distribution function

and φ () to be its density function. Then, the market shares of �rms j and j† are respectively:

sj =

ˆ
α

ˆ
β

exp (xjβ + pjα+ ξj,0)[
1 +

∑J
l=1 exp (xlβ + plα+ ξl,0)

] [ K∏
k=1

1

σβ0k
φ

(
βk − µβ0k

σβ0k

)
dβk

]
1

σα0
φ

(
α− µα0

σα0

)
dα

s†
j†

=

ˆ
α

ˆ
β

exp
(
x†
j†
β + p†

j†
α+ ξ†

j†,0

)
[
1 +

∑J†

l=1 exp
(
x†lβ + p†lα+ ξ†l,0

)] [ K∏
k=1

1

σβ0k
φ

(
βk − µβ0k

σβ0k

)
dβk

]
1

σα0
φ

(
α− µα0

σα0

)
dα.

Now, denote, ηα0 = µα0/σα0. Then, by a change of variables such that α∗ = α/σα0 − ηα0 and

β∗j = βj/σβ0j − µβ0k/σβ0j , we obtain

sj =

ˆ
α∗

ˆ
β∗

exp
(
(xj ◦ σβ0)β∗ + pjσα0 (α∗ + ηα0) + xjµβ0 + ξj,0

)[
1 +

∑J
l=1 exp

(
(xl ◦ σβ0)β∗ + plσα0 (α∗ + ηα0) + xlµβ0 + ξl,0

)]φ (β∗) dβ∗φ (α∗) dα∗

s†
j†

=

ˆ
α∗

ˆ
β∗

exp
((

x†
j†
◦ σβ0

)
β∗ + p†

j†
σα0 (α∗ + ηα0) + x†

j†
µβ0 + ξ†

j†,0

)
[
1 +

∑J†

l=1 exp
((

x†l ◦ σβ0

)
β∗ + p†lσα0 (α∗ + ηα0) + x†

l†
µβ0 + ξ†l,0

)]φ (β∗) dβ∗φ (α∗) dα∗,

where xj ◦σβ0 = (xj1σβ01, . . . , xjKσβ0K), and φ (β∗) ≡
∏K
k=1 φ (βk) is the joint standard normal

density function. We then denote α∗ to be α and β∗ to be β, and xjµβ + ξj to be ξj (similarly

for x†
j†
µβ + ξ†

j†
to be ξ†

j†
). Then,

sj =

ˆ
α

ˆ
β

exp ((xj ◦ σβ0)β + pjσα0 (α+ ηα0) + ξj,0)[
1 +

∑J
l=1 exp ((xl ◦ σβ0)β + plσα0 (α+ ηα0) + ξl,0)

]φ (β) dβφ (α) dα

s†
j†

=

ˆ
α

ˆ
β

exp
((

x†
j†
◦ σβ0

)
β + p†

j†
σα0 (α+ ηα0) + ξ†

j†,0

)
[
1 +

∑J†

l=1 exp
((

x†l ◦ σβ0

)
β + p†lσα0 (α+ ηα0) + ξ†l,0

)]φ (β) dβφ (α) dα

Notice now that the parameters that enter in the market share function are (ηα, σα,σβ), which

corresponds to θc = (µα, σα,σβ). Then,

∂sj
∂pj

=

ˆ
α

ˆ
β

exp ((xj ◦ σβ0)β + pjσα0 (α+ ηα0) + ξj,0)
[
1 +

∑
l 6=j exp ((xl ◦ σβ0)β + plσα0 (α+ ηα0) + ξl,0)

]
[
1 +

∑J
l=1 exp ((xl ◦ σβ0)β + plσα0 (α+ ηα0) + ξl,0)

]2

×σα0 (α+ ηα0)φ (β) dβφ (α)dα
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and a similar expression holds for ∂s†
j†
/∂pj† .

Note that if we let

Σβ =


σβ1 0 . . . 0

0 σβ2 0

. . .

0 . . . 0 σβK

 ,

then (xj ◦ σβ0)β = xjΣβ0β. For the sake of simplicity, we choose two markets in which prices

of �rms in each market are di�erent from each other. Further, let pl < pl+1 for l = 1, . . . , J , and

similarly for the second market. Also, let vi,0 ≡ ξi,0/σα0.

Note that the market share function can be expressed as the aggregate of individuals with

di�erent α, β and the i.i.d. extreme value distributed preference shock ε as below. That is,

consider an individual with speci�c α, β and ε values who chooses product i = 0, . . ., J , (where

0 is no purchase) if

xi ◦ σβ0β + piσα0 (α+ ηα0) + σα0vi,0 + εi ≥ xl ◦ σβ0β + plσα0 (α+ ηα0) + σα0vl,0 + εl, l 6= i,

where x0 = 0, p0 = 0 v0,0 = 0 for normalization. From now on, we set the price vector

to be γp, where γ > 0 is a scalar. Since we only consider cases where γ is large for the

identi�cation of ηα0, we set γ > γ for some γ > 0. Furthermore, we de�ne v0 (γ,X,p, s,θc0) ≡

ξ (X, γp, s,θc0) / (γσα0). Then,

si =

ˆ
α

ˆ
β

ˆ
ε

∏
l 6=i

I
(
xiΣβ0β + γpiσα0 (α+ ηα0) + γσα0vi,0(γ, .) + εi

≥ xlΣβ0β + γplσα0 (α+ ηα0) + γσα0vl,0(γ, .) + εl

)
f (ε) dεφ (β) dβφ (α) dα,

where f (ε) ≡
∏J
l=1 g (εl) is the joint distribution of ε, with g () being the extreme value density

function. As γ → ∞, Then, dividing the integrand by γ, and holding si �xed, as γ → ∞27, we

27Note that prices γp and market shares s are observed, and the unobserved product characteristics ν is implied
through the functional relationship, givenX and the true parameters. Given our assumptions, we can �nd demand
shocks that generate γp and s, for arbitrarily large γ.
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obtain

si = limγ→∞

ˆ
α

ˆ
β

ˆ
ε

∏
l 6=i

I

(
xi
γ

Σβ0β + piσα0 (α+ ηα0) + σα0vi,0(γ, .) +
εi
γ

≥ xl
γ

Σβ0β + plσα0 (α+ ηα0) + σα0vl,0(γ, .) +
εl
γ

)
f (ε) dεφ (β) dβφ (α) dα,

and xl/γ → 0, l = 1, . . . , J , ε/γ → 0 for any ε ∈ RJ . Therefore, for a �xed vector ṽ0, the

following holds:

I

(
xi
γ

Σβ0β + piσα0 (α+ ηα0) + σα0ṽi,0 +
εi
γ
≥ xl

γ
Σβ0β + plσα0 (α+ ηα0) + σα0ṽl,0 +

εl
γ

)
→ I (pi (α+ ηα0) + ṽi,0 ≥ pl (α+ ηα0) + ṽl,0) as γ →∞.

Furthermore,
∣∣∣∏l 6=i I ()

∣∣∣ ≤ 1 and
´
α

´
β

´
ε

[∏
l 6=i 1

]
f (ε) dεφ (β) dβφ (α) dα = 1. Therefore, from

the Dominated Convergence Theorem,

si =

ˆ
α

ˆ
β

ˆ
ε

∏
l 6=i

I (pi (α+ ηα0) + ṽi,0 ≥ pl (α+ ηα0) + ṽl,0) f (ε) dεφ (β) dβφ (α) dα

=

ˆ
α

∏
l 6=i

I (pi (α+ ηα0) + ṽi,0 ≥ pl (α+ ηα0) + ṽl,0)φ (α) dα

≡ s̃i (p, ṽ0,θc0) ,

and

s0 =

ˆ
α

J∏
l=1

I (pl (α+ ηα0) + ṽl,0 ≤ 0)φ (α) dα,

where ṽ0 satis�es s̃ (p, ṽ0,θ0) = s.

Next, we prove that such ṽ0 exists and is unique, as long as we normalize ṽ0,0 to be zero. In

particular, we prove that given ṽ0,0 = 0, p0 = 0, ṽi,0, i > 0 can be derived recursively as follows.

ṽi+1,0 = ṽi,0 + (pi − pi+1)

ηα0 + Φ−1

∑
l≤i

sl

 .
First, let ṽ0 to be an arbitrary J × 1 vector. Denote

ai,l =
ṽi,0 − ṽl,0
pi − pl

, l 6= i
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Since we assumed pi < pi+1 for i = 0, . . . , J − 1, i is chosen if

α+ ηα0 + ai,l ≥ 0 if i > l

α+ ηα0 + ai,l < 0 if i < l.

Then, for i ≥ 1,

I (choose i) =
i−1∏
l=0

I (α ≥ −ηα0 − ai,l)
J∏

l=i+1

I (α < −ηα0 − ai,l)

= I (α ≥ maxl<i {−ηα0 − ai,l}) I (α < minl>i {−ηα0 − ai,l}) .

Therefore, if we denote ai = minl<i {ai,l} ai = maxl>i {ai,l},

s̃i (p, ṽ0,θ0) =

ˆ
α
I (−ηα0 − ai ≤ α < −ηα0 − ai)φ (α) dα.

Furthermore,

I (choose 0) = I (α < minl>0 {−ηα0 − a0,l}) .

Therefore, as before,

s̃0 (p, ṽ0,θ0) =

ˆ
α
I (−ηα0 − a0 ≤ α < −ηα0 − a0)φ (α) dα,

where a0 =∞, a0 = maxl>0 {a0,l}. Similarly,

s̃J =

ˆ
α
I (−ηα0 − aJ ≤ α < −ηα0 − aJ)φ (α) dα,

where aJ = minl<J {aJ,l}, aJ = −∞.

Given si > 0 for any i = 0, . . ., J (2 of Condition 1), −ai < −ai holds. Furthermore, note

that

ai+1 = minl<i+1 {ai+1,l} ≤ ai+1,i = ai,i+1 ≤ maxl>i {ai,l} = ai. (37)

Therefore, −ai ≤ −ai+1 i = 0, . . . , J − 1. Now, suppose −ai < −ai+1. Then, . . .− ai−1 ≤ −ai <

−ai < −ai+1 < −ai+1 ≤ −ai+2 . . .. It implies that an individual with α ∈
(
−ηα0 − ai,−ηα0 − ai+1

)
will not choose any of the available product choices i ∈ {0, 1, . . . , J} including the no-purchase

option 0, which is a contradiction. Therefore, −ai = −ai+1 holds. Furthermore, Equation (37)
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and ai = ai+1 imply ai = ai+1 = ai,i+1. Therefore,

s0 = s̃0 (p, ṽ0,θ0) =

ˆ
α
I

(
α ≤ −ηα0 −

ṽ1,0

p1

)
φ (α) dα = Φ

(
−ηα0 −

ṽ1,0

p1

)
(38)

and for i ≥ 1,

si = s̃i (p, ṽ0,θ0) ≡
ˆ
α
I

(
−ηα0 −

ṽi−1,0 − ṽi,0
pi−1 − pi

≤ α ≤ −ηα0 −
ṽi,0 − ṽi+1,0

pi − pi+1

)
φ (α) dα

= Φ

(
−ηα0 −

ṽi,0 − ṽi+1,0

pi − pi+1

)
− Φ

(
−ηα0 −

ṽi−1,0 − ṽi,0
pi−1 − pi

)

and

sJ = 1− Φ

(
−ηα0 −

ṽJ−1,0 − ṽJ,0
pJ−1 − pJ

)
(39)

Therefore, from Equations (38) to (39), we can derive

Φ

(
−ηα0 −

ṽi,0 − ṽi+1,0

pi − pi+1

)
=
∑
l≤i

sl.

Thus,

ṽi+1,0 = ṽi,0 + (pi − pi+1)

ηα0 + Φ−1

∑
l≤i

sl

 , (40)

As ṽ0,0 is normalized to be 0, ṽi+1,0 , i ≥ 0 can be recursively derived as follows:

ṽi+1,0 =

i∑
k=0

(pk − pk+1)

ηα0 + Φ−1

∑
l≤k

sl

 . (41)

Therefore, we have proven that ṽ0 satisfying s̃ (p, ṽ0,θ0) = s exists and is unique.
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Next, we show that limγ→∞v0 (γ,X,p, s,θc0) = ṽ0. Now,

ˆ
α

ˆ
β

ˆ
ε

∏
l 6=i

I

[
(pi − pl)σα0 (α+ ηα0) ≥ −xi − xl

γ
Σβ0β −

εi − εl
γ

− σα0 (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0))] f (ε) dεφ (β) dβφ (α) dα

=

ˆ
α

ˆ
β∈[−

√
γ,
√
γ]
K

ˆ
ε∈[−

√
γ,
√
γ]
J

∏
l 6=i

I

[
(pi − pl)σα0 (α+ ηα0) ≥ −xi − xl

γ
Σβ0β −

εi − εl
γ

−σα0 (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0))] f (ε) dεφ (β) dβφ (α) dα

+

ˆ
α

ˆ
β/∈[−

√
γ,
√
γ]
K

ˆ
ε∈[−

√
γ,
√
γ]
J

∏
l 6=i

I

[
(pi − pl)σα0 (α+ ηα0) ≥ −xi − xl

γ
Σβ0β −

εi − εl
γ

−σα0 (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0))] f (ε) dεφ (β) dβφ (α) dα

+

ˆ
α

ˆ
β

ˆ
ε/∈[−

√
γ,
√
γ]
J

∏
l 6=i

I

[
(pi − pl)σα0 (α+ ηα0) ≥ −xi − xl

γ
Σβ0β −

εi − εl
γ

−σα0 (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0))] f (ε) dεφ (β) dβφ (α) dα. (42)

Then, for β ∈
[
−√γ,√γ

]K
and ε ∈

[
−√γ,√γ

]J
, and for A ≡ maxk,i,l

∣∣[− [xi − xl] Σβ0]k
∣∣K + 2

∣∣∣∣−xi − xl
γ

Σβ0β −
εi − εl
γ

∣∣∣∣ ≤ 1

γ
max
k,i,l

∣∣[− [xi − xl] Σβ0]k
∣∣K sup

β∈[−
√
γ,
√
γ]
K

|βk|+
1

γ
sup

ε∈[−
√
γ,
√
γ]
J

|εi − εl|

=
1
√
γ

[
max
k,i,l

∣∣[− [xi − xl] Σβ0]k
∣∣K + 2

]
=

A
√
γ
.

Furthermore, the 2nd and 3rd terms of Equation (42) can be made arbitrarily small by choosing

γ to be arbitrarily large. Therefore, for any δ > 0, we can choose γ to be su�ciently large such

that δ > A/
(
σα0
√
γ
)
and

ˆ
α

ˆ
β/∈[−

√
γ,
√
γ]
K

ˆ
ε

∏
l 6=i

I
[

(pi − pl)σα0 (α+ ηα0) ≥ −xi − xl
γ

Σβ0β −
εi − εl
γ

−σα0 (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0))
]
f (ε) dεφ (β) dβφ (α) dα

≤
ˆ
α

ˆ
β/∈[−

√
γ,
√
γ]
K

ˆ
ε
f (ε) dεφ (β) dβφ (α) dα ≤ δ

2
,

ˆ
α

ˆ
β

ˆ
ε/∈[−

√
γ,
√
γ]
K

∏
l 6=i

I
[

(pi − pl)σα0 (α+ ηα0) ≥ −xi − xl
γ

Σβ0β −
εi − εl
γ

−σα0 (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0))
]
f (ε) dεφ (β) dβφ (α) dα

≤
ˆ
α

ˆ
β

ˆ
ε/∈[−

√
γ,
√
γ]
J
f (ε) dεφ (β) dβφ (α) dα ≤ δ

2
. (43)
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Because δ > A/
(
σα0
√
γ
)
, for β ∈

[
−√γ,√γ

]K
and ε ∈

[
−√γ,√γ

]J
,

(pi − pl) (α+ ηα0) ≥ −xi − xl
σα0γ

Σβ0β −
εi − εl
σα0γ

− (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0))

implies

(pi − pl) (α+ ηα0) ≥ −δ − (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0)) .

Therefore,

ˆ
α

ˆ
β

ˆ
ε

∏
l 6=i

I
[

(pi − pl) (α+ ηα0) ≥ −δ

− (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0))
]
f (ε) dεφ (β) dβφ (α) dα

≥
ˆ
α

ˆ
β∈[−

√
γ,
√
γ]
K

ˆ
ε∈[−

√
γ,
√
γ]
K

∏
l 6=i

I
[

(pi − pl) (α+ ηα0) ≥ −δ

− (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0))
]
f (ε) dεφ (β) dβφ (α) dα

≥
ˆ
α

ˆ
β∈[−

√
γ,
√
γ]
K

ˆ
ε∈[−

√
γ,
√
γ]
K

∏
l 6=i

I
[

(pi − pl) (α+ ηα0) ≥ −xi − xl
σα0γ

Σβ0β −
εi − εl
σα0γ

− (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0))
]
f (ε) dεφ (β) dβφ (α) dα. (44)

Then, using Equations (43) and (44), we obtain

ˆ
α

∏
l 6=i

I
[

(pi − pl) (α+ ηα0) ≥ −δ

− (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0))
]
φ (α) dα+ δ

≥
ˆ
α

ˆ
β

ˆ
ε

∏
l 6=i

I
[

(pi − pl) (α+ ηα0) ≥ −xi − xl
σα0γ

Σβ0β −
εi − εl
σα0γ

− (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0))
]
f (ε) dεφ (β) dβφ (α) dα = si.

Similarly, for β ∈
[
−√γ,√γ

]K
and ε ∈

[
−√γ,√γ

]J
(pi − pl) (α+ ηα0) ≥ δ − (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0))

implies

(pi − pl) (α+ ηα0) ≥ −xi − xl
σα0γ

Σβ0β −
εi − εl
σα0γ

− (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0)) .
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Therefore, we obtain

ˆ
α

∏
l 6=i

I
[

(pi − pl) (α+ ηα0) ≥ δ

− (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0))
]
φ (α) dα− δ

≤
ˆ
α

ˆ
β

ˆ
ε

∏
l 6=i

I
[

(pi − pl) (α+ ηα0) ≥ −xi − xl
σα0γ

Σβ0β −
εi − εl
σα0γ

− (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0))
]
f (ε) dεφ (β) dβφ (α) dα = si.

Then, if we let

si ≡
ˆ
α

∏
l 6=i

I
[

(pi − pl) (α+ ηα0) ≥ −δ

− (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0))
]
φ (α) dα

si ≡
ˆ
α

∏
l 6=i

I
[

(pi − pl) (α+ ηα0) ≥ δ

− (vi,0 (γ,X,p, s,θc0)− vl,0 (γ,X,p, s,θc0))
]
φ (α) dα,

si − δ ≤ si ≤ si + δ. (45)

Also, from continuity of si and si in δ, we obtain

|si − si| ≤ $i, (46)

where $i can be made arbitrarily small by making δ su�ciently small, which can be done by

making γ su�ciently large. Then, from the Triangle Inequality and Equations (45) and (46),

|si − si| ≤ |si + δ − si|+ δ ≤ |si + δ − (si − δ)|+ δ ≤ |si − si|+ 3δ ≤ $i + 3δ. (47)

Hence, |si − si| can be made arbitrarily small by making γ su�ciently large. Similarly, |si − si| ≤

|si + δ − si|+ δ, and since si − δ ≤ si ≤ si + δ,

si + δ − (si − δ) ≥ si + δ − si ≥ 0.

Thus,
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|si − si| ≤ |si + δ − si|+ δ ≤ |si + δ − (si − δ)|+ δ ≤ |si − si|+ 3δ ≤ $i + 3δ. (48)

Furthermore, we can use similar arguments that resulted in Equations (40) and (41) to derive

(pi − pi+1)

ηα0 +
δ

pi − pi+1
+ Φ−1

∑
l≤i

(sl + δ)

 ≤ vi+10 (γ,X,p, s,θc0)− vi,0 (γ,X,p, s,θc0)

≤ (pi − pi+1)

ηα0 −
δ

pi − pi+1
+ Φ−1

∑
l≤i

(sl − δ)

 ,
where δ is chosen to be a small enough positive number to satisfy

δ < min

{
1−

∑
l≤J−1 sl

J
,minl {sl}

}
.

Then, from Inequalities (47) and (48), for su�ciently small δ > 0, both 0 <
∑

l≤i (sl + δ) < 1

and 0 <
∑

l≤i (sl − δ) < 1 hold for any i = 0, . . . , J − 1.28

Therefore, for any i = 0, . . . , J − 1,

i∑
k=0

(pk − pk+1)

ηα0 +
δ

pi − pi+1
+ Φ−1

∑
l≤k

(sl + δ)


≤ vi+10 (γ,X,p, s,θc0) ≤

i∑
k=0

(pk − pk+1)

ηα0 −
δ

pi − pi+1
+ Φ−1

∑
l≤k

(sl − δ)


and since

i∑
k=0

(pk − pk+1)

ηα0 +
δ

pi − pi+1
+ Φ−1

∑
l≤k

(sl + δ)

 →
i∑

k=0

(pk − pk+1)

ηα0 + Φ−1

∑
l≤k

sl

 ,
i∑

k=0

(pk − pk+1)

ηα0 −
δ

pi − pi+1
+ Φ−1

∑
l≤k

(sl − δ)

 →
i∑

k=0

(pk − pk+1)

ηα0 + Φ−1

∑
l≤k

sl

 ,
as γ →∞, we have proven the claim.

By taking the derivative of the limit of the market share function of good j obtained above

28Note that from Inequality (47), limδ↘0s = s, therefore, limδ↘0

[
1−

∑
l≤J−1 sl

]
= 1 −

∑
l≤J−1 sl > 0 and

the de�nition of s imply δ > 0.
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( see Equations (38) to (39) ) with respect to its price, we obtain

∂s̃j
∂pj

= φ

(
−ηα0 −

ṽj,0 − ṽj+1,0

pj − pj+1

)
ṽj,0 − ṽj+1,0

(pj − pj+1)2 + φ

(
−ηα0 −

ṽj−1,0 − ṽj,0
pj−1 − pj

)
ṽj−1,0 − ṽj,0
(pj − pj−1)2 .

Next, we show that limit of the derivative of the market share function is the same as derived

above. Di�erentiating the market share function given v0, we obtain

∂sj
∂pj

=
∂

∂pj

ˆ
α

ˆ
β

ˆ
ε

∏
l 6=j

I (xjΣβ0β + γpjσα0 (α+ ηα0) + γσα0vj,0 (γ,X,p, s,θc0) + εj

≥ xlΣβ0β + γplσα0 (α+ ηα0) + γσα0vl,0 (γ,X,p, s,θc0) + εl) f (ε) dεφ (β) dβφ (α) dα

=

ˆ
β

ˆ
ε

∂

∂pj

ˆ
α

∏
l 6=j

I (xjΣβ0β + γpjσα0 (α+ ηα0) + γσα0vj,0 (γ,X,p, s,θc0) + εj

≥ xlΣβ0β + γplσα0 (α+ ηα0) + γσα0vl,0 (γ,X,p, s,θc0) + εl)φ (α) dαf (ε) dεφ (β) dβ

First, since the function
∏
l 6=j I () is nonnegative and the measure space of (α,β, ε) is σ-�nite,

from Tonelli's Theorem, we can interchange the order of integrals. Next, we prove that the

integral and the derivative above can be interchanged. We �rst focus on the function that is

inside the integral over β and ε, which is,

G (X,p,v0, γ,β, ε,θc0) ≡
ˆ
α

∏
l 6=j

I (xjΣβ0β + γpjσα0 (α+ ηα0) + γσα0vj,0 + εj

≥ xlΣβ0β + γplσα0 (α+ ηα0) + γσα0vl,0 + εl)φ (α) dα.

It su�ces to show that there exists a function H () such that

∣∣∣∣∂G (X,p,v0, γ,β, ε,θc0)

∂pj

∣∣∣∣ ≤ H (X,p,v0, γ,β, ε,θc0) ,
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where
´
β

´
εH (X,p,v0, γ,β, ε,θc0) f (ε) dεφ (β) dβ <∞. We show it as follows: First,

G (X,p,v0, γ,β, ε,θc0)

=

ˆ
α

∏
pj−pl>0

I

(
α ≥ −ηα0 −

vj,0 − vl,0
pj − pl

− (xj − xl)

γ (pj − pl)σα0
Σβ0β −

εj − εl
γ (pj − pl)σα0

)

×
∏

pj−pl<0

I

(
α ≤ −ηα0 −

vj,0 − vl,0
pj − pl

− (xj − xl)

γ (pj − pl)σα0
Σβ0β −

εj − εl
γ (pj − pl)σα0

)
φ (α) dα

=

ˆ
α
I

(
Max{l:pj−pl>0}

{
−ηα0 −

vj,0 − vl,0
pj − pl

− (xj − xl)

γ (pj − pl)σα0
Σβ0β −

εj − εl
γ (pj − pl)σα0

}
≤ α

≤ Min{l:pj−pl<0}

{
−ηα0 −

vj,0 − vl,0
pj − pl

− (xj − xl)

γ (pj − pl)σα0
Σβ0β −

εj − εl
γ (pj − pl)σα0

})
φ (α) dα.

(49)

Now, if we let

A (X,p,v0,β, ε, j, γ,θc0)

≡ Max{l:pj−pl>0}

{
−ηα0 −

vj,0 − vl,0
pj − pl

− (xj − xl)

γ (pj − pl)σα0
Σβ0β −

εj − εl
γ (pj − pl)σα0

}
(50)

A (X,p,v0,β, ε, j, γ,θc0)

≡ Min{l:pj−pl<0}

{
−ηα0 −

vj,0 − vl,0
pj − pl

− (xj − xl)

γ (pj − pl)σα0
Σβ0β −

εj − εl
γ (pj − pl)σα0

}
,

then

(49) =

ˆ
α
I
(
A (X,p,v0,β, ε, j, γ,θc0) ≤ α ≤ A (X,p,v0,β, ε, j, γ,θc0)

)
φ (α) dα

=
[
Φ
(
A (X,p,v0,β, ε, j, γ,θc0)

)
− Φ (A (X,p,v0,β, ε, j, γ,θc0))

]
×I
[
A (X,p,v0,β, ε, j, γ,θc0) < A (X,p,v0,β, ε, j, γ,θc0)

]
.

Thus, taking the derivative of (49) with respect to pj given v0 being constant, we obtain

∂

∂pj

ˆ
α
I
(
A (X,p,v0,β, ε, j, γ,θc0) ≤ α ≤ A (X,p,v0,β, ε, j, γ,θc0)

)
φ (α) dα

=

[
φ
(
A
) ∂A (X,p,v0,β, ε, j, γ,θc0)

∂pj
− φ (A)

∂A (X,p,v0,β, ε, j, γ,θc0)

∂pj

]
I
[
A < A

]
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Now, let

L∗ (j) ≡ argmax{l:pj−pl>0}

{
−ηα0 −

vj,0 − vl,0
pj − pl

− (xj − xl)

γ (pj − pl)σα0
Σβ0β −

εj − εl
γ (pj − pl)σα0

}
.

Then, L∗ (j) may have multiple elements. But the values of β and ε that results in multiple

elements have measure zero, and other than those cases, L∗ (j) is a singleton. We denote the

singleton element to be l∗ (j). We also de�ne similarly L∗ (j) as follows

L∗ (j) ≡ argmin{l:pj−pl<0}

{
−ηα0 −

vj,0 − vl,0
pj − pl

− (xj − xl)

γ (pj − pl)σα0
Σβ0β −

εj − εl
γ (pj − pl)σα0

}
.

and l
∗

(j) accordingly. Then,

∂A (X,p,v0,β, ε, j, γ,θc0)

∂pj
=
vj,0 − vl∗(j),0(
pj − pl∗(j)

)2 +
1

γ

(
xj − xl∗(j)

)(
pj − pl∗(j)

)2
σα0

Σββ +
1

γ

εj − εl∗(j)(
pj − pl∗(j)

)2
σα0

except for the values of β and ε when L∗ (j) contains more than one element. Then, because

γ > γ,

∣∣∣∣∂A (X,p,v0,β, ε, j, γ,θc0)

∂pj

∣∣∣∣
≤ max

l:pj−pl>0

|vj,0 − vl,0|
(pj − pl)2 + max

k,l:pj−pl>0

∣∣∣∣∣ [(xj − xl) Σβ0]k
γ (pj − pl)2 σα0

∣∣∣∣∣∑
k

|β|k + max
l:pj−pl>0

|εj − εl|
γ (pj − pl)2 σα0

(51)

Since β, ε are i.i.d. normally distributed, the RHS of the above inequality is integrable with

respect to β and ε for any γ > 0. Similar results hold for ∂A (X,p,v0,β, ε, j, γ,θ0) /∂pj .

Therefore, the derivative and the integral are interchangeable. Hence,

∂

∂pj

ˆ
β

ˆ
ε

ˆ
α
I
(
A (X,p,v0,β, ε, j, γ,θc0) ≤ α ≤ A (X,p,v0,β, ε, j, γ,θc0)

)
φ (α) dαf (ε) dεφ (β) dβ

=

ˆ
β

ˆ
ε

[
φ
(
A
) ∂A (X,p,v0,β, ε, j, γ,θc0)

∂pj
− φ (A)

∂A (X,p,v0,β, ε, j, γ,θc0)

∂pj

]
×I
[
A (X,p,v0,β, ε, j, γ,θc0) < A (X,p,v0,β, ε, j, γ,θc0)

]
f (ε) dεφ (β) dβ.

Now, from Equation (50), because limγ→∞v0 (X, γp, s,θc0) = ṽ0,

limγ→∞A (X,p,v0,β, ε, j, γ,θc0) = maxl:pj−pl>0

{
−ηα0 −

ṽj,0 − ṽl,0
pj − pl

}
= −ηα0 − aj ,
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and similarly,

limγ→∞A (X,p,v0,β, ε, j, γ,θc0) = maxl:pj−pl<0

{
−ηα0 −

ṽj,0 − ṽl,0
pj − pl

}
= −ηα0 − aj .

Hence,

L∗ (j)→ argmax{l:pj−pl>0}

{
−ηα0 −

ṽj,0 − ṽl,0
pj − pl

}
= j − 1 as γ →∞.

Hence,

I
(
A (X,p,v0,β, ε, j, γ,θc0) < A (X,p,v0,β, ε, j, γ,θc0)

)
→ I(−aj < −aj) = 1 as γ →∞

Therefore,
∂A (X,p,v0,β, ε, j, γ,θc0)

∂pj
→ − ∂

∂pj

[
ṽj−1,0 − ṽj,0
pj−1 − pj

]
as γ →∞.

Similarly,

L∗ (j)→ argmin{l:pj−pl<0}

{
−ηα0 −

ṽj,0 − ṽl,0
pj − pl

}
= j + 1 as γ →∞.

Hence,
∂A (X,p,v0,β, ε, j, γ,θc0)

∂pj
→ − ∂

∂pj

[
ṽj,0 − ṽj+1,0

pj − pj+1

]
as γ →∞.

Therefore, as γ →∞,

∂

∂pj

ˆ
α

J∏
l=0,l 6=j

I (xjΣβ0β + γpjσα0 (α+ ηα0) + γσα0vj,0 + εj

≥ xlΣβ0β + γplσα0 (α+ ηα0) + γσα0vl,0 + εl)φ (α) dα

→ φ

(
−ηα0 −

ṽj,0 − ṽj+1,0

pj − pj+1

)
ṽj,0 − ṽj+1,0

(pj − pj+1)2 + φ

(
−ηα0 −

ṽj−1,0 − ṽj,0
pj−1 − pj

)
ṽj−1,0 − ṽj,0
(pj−1 − pj)2 .

Furthermore, Equation (51) shows that the conditions for the Dominated Convergence Theorem
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holds so that the limit and the integral can be interchanged to derive

limγ→∞

ˆ
β

ˆ
ε

 ∂

∂pj

ˆ
α

J∏
l=0,l 6=j

I (xjΣβ0β + γpjσα0 (α+ ηα0) + γσα0vj,0 (γ) + εj

≥ xlΣβ0β + γplσα0 (α+ ηα0) + γσα0vl,0 + εl)φ (α) dα] f (ε) dεφ (β) dβ

=

ˆ
β

ˆ
ε
limγ→∞

[
φ
(
A
) ∂A (X,p,v0,β, ε, j, γ,θc0)

∂pj
− φ (A)

∂A (X,p,v0,β, ε, j, γ,θc0)

∂pj

]
×I
[
A (X,p,v0,β, ε, j, γ,θc0) < A (X,p,v0,β, ε, j, γ,θc0)

]
f (ε) dεφ (β) dβ.

= φ

(
−ηα0 −

ṽj,0 − ṽj+1,0

pj − pj+1

)
ṽj,0 − ṽj+1,0

(pj − pj+1)2 + φ

(
−ηα0 −

ṽj−1,0 − ṽj,0
pj−1 − pj

)
ṽj−1,0 − ṽj,0
(pj−1 − pj)2 .

Therefore, we have shown that the derivative of the limiting market share function is the same

as the limit of its derivative.

We now argue that ηα0 is identi�ed from the equality of marginal revenues at the limit. From

what we have derived, the following holds

limγ→∞
MRj (X, γp, s,θc0)

γ

= limγ→∞
1

γ

[
γpj +

[
∂sj (X, γp, s,θc0)

∂ (γpj)

]−1

sj

]
= limγ→∞

1

γ

[
γpj + γ

[
∂sj (X, γp, s,θc0)

∂pj

]−1

sj

]

= pj +

[
φ

(
−ηα0 −

ṽj,0 − ṽj+1,0

pj − pj+1

)
ṽj,0 − ṽj+1,0

(pj − pj+1)2 + φ

(
−ηα0 −

ṽj−1,0 − ṽj,0
pj−1 − pj

)
ṽj−1,0 − ṽj,0
(pj−1 − pj)2

]−1

sj

= pj +

−φ
Φ−1

∑
l≤j

sl

 Φ−1
(∑

l≤j sl

)
+ ηα0

pj − pj+1
− φ

Φ−1

 ∑
l≤j−1

sl

 Φ−1
(∑

l≤j−1 sl

)
+ ηα0

pj−1 − pj

−1

sj ,

(52)

where ṽ00 = 0, p0 = 0, and

Φ

(
−ηα0 −

ṽi,0 − ṽi+1,0

pi − pi+1

)
=
∑
l≤i

sl.

We can similarly write down the limit of the marginal revenue function of the second market.

Note that we can ensure that the derivative of the market share function with respect to

price is negative by �rst choosing s and s† so that
∑

l≤j sl and
∑

l≤j† s
†
l are small enough that

Φ−1
(∑

l≤j sl

)
+ ηα0 < 0 as well as Φ−1

(∑
l≤j† s

†
l

)
+ ηα0 < 0.

We now show that there exist p, p†, s, s† and j ∈ {1, . . . J − 1}, j† ∈
{

1, . . . , J† − 1
}
such
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that

limγ→∞
MRj (X, γp, s,θc0)

γ
= limγ→∞

MRj†
(
X†, γp†, s†,θc0

)
γ

. (53)

The equality above holds for some (p, s) and
(
p†, s†

)
because if it does not hold, then we can

adjust pj − p†j† while keeping pj − pj+1, j = 1, . . . ,J − 1, p†
j†
− p†

j†+1
, j† = 1, . . . ,J†− 1 constant

to ensure equality. Note that we can keep s, s† the same as well by adjusting ṽ0. Further, we

can make pj and p
†
j†
large enough so that marginal revenues are positive.

We next claim that Equation (53) identi�es ηα0. To see why, consider the case where pj = p†
j†
.

Then, from Equation (53), we derive

ηα0 = −

(
s†
j†
/sj

)
(C (p, s, j, j + 1) + C (p, s, j − 1, j))− C

(
p†, s†, j†, j† + 1

)
− C

(
p†, s†, j† − 1, j†

)(
s†
j†
/sj

)
(B (p, s, j, j + 1) +B (p, s, j − 1, j))−B (p†, s†, j†, j† + 1)−B (p†, s†, j† − 1, j†)

,

where B (p, s, j, j + 1) ≡ φ
(

Φ−1
(∑

l≤j sl

))
/ (pj − pj+1),

C (p, s, j, j + 1) ≡ φ
(

Φ−1
(∑

l≤j sl

))
Φ−1

(∑
l≤j sl

)
/ (pj − pj+1) and these expressions for

the second market are similarly de�ned. We can identify ηα0 as long as we can �nd (p, s) and(
p†, s†

)
such that the denominator is nonzero. Such price-market share combinations exist. For

example, set j = j†, s = s†, pj−1−pj = p†
j†−1
−p†

j†
, pj−pj+1 6= p†

j†
−p†

j†+1
, and Φ−1

(∑
l≤j sl

)
=

−ηα0. Note that since s = s†, market size variation is not needed for identi�cation of ηα0.

Note also that while the above equality holds for some (p, s),
(
p†, s†

)
and identi�es ηα0, the

price vectors used are not the actual prices which are in�nite.

Next, we show that the equality holds also for large γ, and identi�es ηα0 as follows. Let

A (p, s, ηα0, j) ≡ limγ→∞
MRj (X, γp, s,θc0)

γ

= pj +

−φ
Φ−1

∑
l≤j

sl

 Φ−1
(∑

l≤j sl

)
+ ηα0

pj − pj+1
− φ

Φ−1

 ∑
l≤j−1

sl

 Φ−1
(∑

l≤j−1 sl

)
+ ηα0

pj−1 − pj

−1

sj .

Then, for any ηα 6= ηα0, A (p, s, ηα, j) 6= A
(
p†, s†, ηα, j

)
. Now, consider small δ > 0 such that

δ ≤
∣∣A (p, s, ηα, j)−A

(
p†, s†, ηα, j

)∣∣. Now, choose p′ such that p′i = pi + δ for i = 1, . . . , J .

Then, because p′i − p′i+1 = pi − pi+1 for i = 1, . . . , J − 1,

A
(
p′, s, ηα0, j

)
−A (p, s, ηα0, j) = δ, A

(
p′, s, ηα, j

)
−A (p, s, ηα, j) = δ.
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Similarly, we choose prices p′′ such that p′′i = pi − δ for i = 1, . . . , J − 1. Then,

A
(
p′′, s, ηα0, j

)
−A (p, s, ηα0, j) = −δ, A

(
p′′, s, ηα, j

)
−A (p, s, ηα, j) = −δ.

For any δ > 0, for a su�ciently large γ > 0,

∣∣∣∣MRj (X, γp′, s,θc0)

γ
−A

(
p′, s, ηα0, j

)∣∣∣∣ < δ

3
,

∣∣∣∣∣MRj
(
X†, γp†, s†,θc0

)
γ

−A
(
p†, s†, ηα0, j

)∣∣∣∣∣ < δ

3
,

∣∣∣∣MRj (X, γp′′, s,θc0)

γ
−A

(
p′′, s, ηα0, j

)∣∣∣∣ < δ

3
,

∣∣∣∣MRj (X, γp, s,θc)

γ
−A (p, s, ηα, j)

∣∣∣∣ < δ

3
,

∣∣∣∣∣MRj
(
X†, γp†, s†,θc

)
γ

−A
(
p†, s†, ηα, j

)∣∣∣∣∣ < δ

3
,

Then,
MRi (X, γp′, s,θc0)−MRi

(
X†, γp†, s†,θc0

)
γ

>
δ

3
> 0

MRi
(
X†, γp′′, s,θc0

)
−MRi

(
X†, γp†, s†,θc0

)
γ

< −δ
3
< 0

Therefore, from continuity of the marginal revenue function, it follows from the Intermediate

Value Theorem that there exists p̃ such that |p̃− p| < δ, and

MRi (X, γp̃, s,θc0)−MRi
(
X†, γp†, s†,θc0

)
γ

= 0.

Furthermore, from the Triangle Inequality,

∣∣∣A (p, s, ηα, j)−A
(
p†, s†, ηα, j

) ∣∣∣
≤

∣∣∣A (p, s, ηα, j)−A (p̃, s, ηα, j)
∣∣∣+
∣∣∣A (p̃, s, ηα, j)−A

(
p†, s†, ηα, j

) ∣∣∣
≤

∣∣∣A (p, s, ηα, j)−A (p̃, s, ηα, j)
∣∣∣+
∣∣∣A (p̃, s, ηα, j)−

MRj (X, γp̃, s,θc)

γ

∣∣∣
+

∣∣∣∣∣MRj
(
X, γp†, s†,θc

)
γ

−A
(
p†, s†, ηα, j

)∣∣∣∣∣+

∣∣MRj (X, γp̃, s,θc)−MRj
(
X, γp†, s†,θc

)∣∣
γ
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Therefore, for su�ciently small δ > 0,∣∣MRj (X, γp̃, s,θc)−MRj
(
X, γp†, s†,θc

)∣∣
γ

≥
∣∣∣A (p, s, ηα, j)−A

(
p†, s†, ηα, j

)∣∣∣− |A (p, s, ηα, j)−A (p̃, s, ηα, j)| −
2

3
δ

> 0

This is because
∣∣A (p, s, ηα, j)−A

(
p†, s†, ηα, j

)∣∣ > 0 from identi�cation, and from continuity

of A (p, s, ηα, j) with respect to p, |A (p, s, ηα, j)−A (p̃, s, ηα, j)| can be made arbitrarily small

for su�ciently small δ > 0. Given the assumptions, we can �nd �rms in the population in dif-

ferent markets m and m′ satisfying (Xm,pm, sm) = (X, γp̃, s), (Xm′ ,pm′ , sm′) =
(
X†, γp̃†, s†

)
.

Therefore, ηα0 is identi�ed.

We next show that the market size is identi�ed. Recall that the equation for market size

is log (Q) = λ0 + zλz0. Let s be the true market share, i.e. ln (sim) = ln (qim) − ln (Qm) =

ln (qim) − λ0 − zλz0. Then, the recovered market share satis�es ŝ = χ (z) s, where χ (z) ≡

exp
[
(λ0 + zλz0)−

(
λ̂+ zλ̂z

)]
. Then, if

(
λ̂, λ̂z

)
= (λ0,λz0) , χ (z) = 1 for all z. On the other

hand, if
(
λ̂, λ̂z

)
6= (λ0,λz0), then for some z, we have χ (z) 6= 1. We show below that χ (z) = 1

for all z.

To do so, we choose two �rms with z = z† so that ŝ = χs, ŝ† = χs†. Then, expected cost

conditional on observables when true market share is observed is the same for these two �rms if

and only if it is also the same when the true market share is not observed. That is,

E
[
C
∣∣ (q̃ = q, w̃ = w, p̃ = p, s̃ = ŝ, X̃ = X, j

)]
= E

[
C
∣∣ (q̃ = q, w̃ = w, p̃ = p†, s̃ = ŝ†, X̃ = X†, j†

)]
(54)

if and only if

E
[
C
∣∣ (q̃ = q, w̃ = w, p̃ = p, s̃ = s, X̃ = X, j

)]
= E

[
C
∣∣ (q̃ = q, w̃ = w, p̃ = p†, s̃ = s†, X̃ = X†, j†

)]
Therefore, from Lemma 1, for those two �rms with q = q†, w = w† and x = x†, we know that

Equation (54) holds if and only if

MRj (p, s,X;θc0) = MRj†
(
p†, s†,X†;θc0

)
.

Then, we prove that Condition 1 holds for θ′c0 ≡ (χ0, ηα0), i.e., we essentially prove joint

identi�cation of χ0 = 1 and ηα0. That is, we show that for any ηα0 < 0 and ηα < 0 such that
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ηα 6= ηα0, for χ 6= 1, there exist (p, s) and
(
p†, s†

)
such that for s = χ0s and s† = χ0s

†, ŝ = χs

and ŝ† = χs†,

A (p, s, ηα0, j) = A
(
p†, s†, ηα0, j

†
)

and either A (p, ŝ, ηα, j) 6= A
(
p†, ŝ†, ηα, j

†
)

or max

∑
l≤j

ŝl,
∑
l≤j†

ŝ†l

 > 1 or both.

On the other hand, if χ = 1, then ŝ† = s†, and since in this case, ηα0 is identi�ed, A (p, s, ηα0, j) =

A
(
p†, s†, ηα0, j

†) for any (p, s) if and only if A (p, ŝ, ηα0, j) = A
(
p†, ŝ†, ηα0, j

†).
Now, consider the case χ 6= 1. Let pj+1, pj†+1 satisfy

pj − pj+1 → 0, p†
j†
− p†

j†+1
→ 0.

Now, choose s and s† such that
∑

l≤j sl =
∑

l≤j† s
†
l = Φ (−ηα0). Then

−φ

Φ−1

∑
l≤j

sl

 Φ−1
(∑

l≤j sl

)
+ ηα0

pj − pj+1
− φ

Φ−1

 ∑
l≤j−1

sl

 Φ−1
(∑

l≤j−1 sl

)
+ ηα0

pj−1 − pj

= −φ

Φ−1

 ∑
l≤j−1

sl

 Φ−1
(∑

l≤j−1 sl

)
+ ηα0

pj−1 − pj
< 0.

The negative sign holds because
∑

l≤j†−1 s
†
l < Φ (−ηα0) and ηα0 < 0. Hence, pj > A (p, s, ηα0, j).

Then, choose s†
j†

= sj such that
∑

l≤j−1 sl =
∑

l≤j†−1 s
†
l , but p

†
j−1 − p

†
j 6= p†

j†−1
− p†

j†
. Thus,

A (p, s, ηα0, j) = A
(
p†, s†, ηα0, j

†) , implies pj 6= p†j .

Now, let, ŝ = χs, ŝ† = χs†. Then, ifmax
{∑

l≤j ŝl,
∑

l≤j† ŝ
†
l

}
< 1, and Φ−1

(∑
l≤j ŝl

)
+ηα 6=

0, then,

−φ
Φ−1

∑
l≤j

ŝl

 Φ−1
(∑

l≤j ŝl

)
+ ηα

pj − pj+1
− φ

Φ−1

 ∑
l≤j−1

ŝl

 Φ−1
(∑

l≤j−1 ŝl

)
+ ηα

pj−1 − pj

−1

×ŝj → 0

as pj−pj+1 → 0, and the same holds for �rm j†. Therefore, A (p, ŝ, ηα, j)→ pj , andA
(
p†, ŝ†, ηα, j

†)→
p†
j†
. Then, since pj 6= p†j , for su�ciently small |pj − pj+1| and

∣∣∣p†j† − p†j†+1

∣∣∣, A (p, ŝ, ηα, j) 6=

A
(
p†, ŝ†, ηα, j

†). Ifmax{∑l≤j† ŝl,
∑

l≤j† ŝ
†
l

}
≥ 1, then either Φ−1

(∑
l≤j ŝl

)
or Φ−1

(∑
l≤j† ŝ

†
l

)
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or both are not de�ned.

Next, consider the case where for
∑

l≤j sl =
∑

l≤j† s
†
l = Φ (−ηα0),

∑
l≤j ŝl =

∑
l≤j ŝ

†
l =

Φ (−ηα) holds. Then choose p and p† such that pj−pj+1 = p†
j†
−p†

j†+1
and pj−1−pj = p†

j†−1
−p†

j†
.

Then,

−φ

Φ−1

∑
l≤j†

s†l

 Φ−1
(∑

l≤j† s
†
l

)
+ ηα0

p†
j†
− p†

j†+1

− φ

Φ−1

 ∑
l≤j†−1

s†l

 Φ−1
(∑

l≤j†−1 s
†
l

)
+ ηα0

p†
j†−1
− p†

j†

= −φ

Φ−1

 ∑
l≤j†−1

s†l

 Φ−1
(∑

l≤j†−1 s
†
l

)
+ ηα0

p†
j†−1
− p†

j†

.

Next, choose p†j such that

p†j = pj −

φ
Φ−1

 ∑
l≤j−1

sl

 Φ−1
(∑

l≤j−1 sl

)
+ ηα0

pj−1 − pj

−1

sj

+

φ
Φ−1

 ∑
l≤j+−1

s†l

 Φ−1
(∑

l≤j†−1 s
†
l

)
+ ηα0

p†
j†−1
− p†

j†

−1

s†
j†
.

Then, for χ < 1, since Φ is normally distributed,

φ
Φ−1

χ ∑
l≤j−1

sl

 Φ−1
(
χ
∑

l≤j−1 sl

)
+ ηα

pj−1 − pj

−1

χsj

−

φ
Φ−1

 ∑
l≤j−1

sl

 Φ−1
(∑

l≤j−1 sl

)
+ ηα

pj−1 − pj

−1

sj

can be made arbitrarily large by making
∑

l≤j−1 sl to be su�ciently small. Then, A (p, ŝ, ηα, j) 6=

A
(
p†, ŝ†, ηα, j

†). Similar arguments can be made for χ > 1. Therefore, we have proven the identi-

�cation of (χ0, ηα0) using the limiting marginal revenue functions. As we argued for identi�cation

of ηα0, while the argument above uses in�nite prices, we can show that it works approximately

for su�ciently large prices.

We next show that σα0 is identi�ed. Since we have already shown that ηα0 and χ0 = 1

are identi�ed, we assume we can recover the true market shares s and s†, and only focus on

identifying (σα,σβ) of θc = (ηα0, σα,σβ).

Below, we start by assuming that θc is not identi�ed. Then, from Condition 1, there exists
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θc = (ηα0, σα,σβ) 6= θc0 such that for any (X,p, s, j) and
(
X†,p†, s†, j†

)
, that satis�es xj = x†

j†
,

both

MR (X,p, s, j,θc0) = MR
(
X†,p†, s†, j†,θc0

)
> 0, MR (X,p, s, j,θc) = MR

(
X†,p†, s†, j†,θc

)
> 0

(55)

hold. Then, we demonstrate a contradiction.

Let γ ≡ σα0/σα and

Γβ ≡


γβ1 0 . . . 0

0 γβ2 0

. . .

0 . . . 0 γβK

 ,

where γβl ≡ σβ0l/σβl, l = 1, . . . ,K. Notice that γβl > 0 for all l and γ > 0. We suppose that

either Γβ 6= I or γ 6= 1 or both, and show that for some (X,p, s, j) and
(
X†,p†, s†, j†

)
, Equation

(55) is not satis�ed. We consider the following cases in the order given: 1) γ < 1, maxl {γβl} ≤ 1;

2) γ > 1, minl {γβl} ≥ 1; 3)γ < 1, maxl {γβl} > 1; 4) γ > 1, minl {γβl} < 1; 5) γ = 1,

maxl {γβl} > 1; and 6) γ = 1, minl {γβl} < 1.

Case 1) γ < 1, maxl {γβl} ≤ 1. Choose (X,p, s, j) and
(
X†,p†, s†, j†

)
with sj 6= s†

j†
. Denote

X(n) ≡ XΓnβ , p(n) ≡ γnp. Then, X(0) ≡ X , p(0) ≡ p, limn→∞p(n) = 0. Let X̃ ≡ limn→∞X(n).

Hence, for �rms j = 1, . . . J and characteristics k = 1, . . . ,K, x̃j,k = xj,k if γβk = 1 and x̃j,k = 0

if γβk < 1. Using σα0 = γσα, we obtain

sj

(
X(0),p(0), ξ0,θc0

)
=

ˆ
α

ˆ
β

exp (xjΣβ0β + pjσα0 (α+ ηα0) + ξj,0)[
1 +

∑J
l=1 exp (xlΣβ0β + plσα0 (α+ ηα0) + ξl,0)

]φ (β) dβφ (α) dα

=

ˆ
α

ˆ
β

exp (xjΓβΣββ + γpjσα (α+ ηα0) + ξj,0)[
1 +

∑J
l=1 exp (xlΓβΣββ + γplσα (α+ ηα0) + ξl,0)

]φ (β) dβφ (α) dα

= sj

(
X(1),p(1), ξ0,θc

)
,

72



∂sj

∂p
(0)
j

(
X(0),p(0), ξ0,θc0

)

=

ˆ
α

ˆ
β

exp (xjΣβ0β + pjσα0 (α+ ηα0) + ξj,0)
[
1 +

∑
l 6=j exp (xlΣβ0β + plσα0 (α+ ηα0) + ξl,0)

]
[
1 +

∑J
l=1 exp (xlΣβ0β + plσα0 (α+ ηα0) + ξl,0)

]2

×σα0 (α+ ηα0)φ (β) dβφ (α) dα

= γ

ˆ
α

ˆ
β

exp (xjΓβΣββ + γpjσα (α+ ηα0) + ξj,0)[
1 +

∑J
l=1 exp (xlΓβΣββ + γplσα (α+ ηα0) + ξl,0)

]2

×

1 +
∑
l 6=j

exp (xlΓβΣββ + γplσα (α+ ηα) + ξl,0)

σα (α+ ηα0)φ (β) dβφ (α) dα

= γ
∂sj

∂p
(1)
j

(
X(1),p(1), ξ0,θc

)
,

and similarly for s†
j†
,
∂s†
j†

∂p
j†
. Thus,

sj = sj

(
X(1),p(1), ξ0,θc

)
, s†

j†
= sj†

(
X†(1),p†(1), ξ†0,θc

)
, sj 6= s†

j†
,

and if marginal revenues are equal for �rms with (X,p, s,θc0) and
(
X,p†, s†,θc0

)
, then they are

also equal for
(
X(1),p(1), s,θc

)
and

(
X†(1),p†(1), s†,θc

)
, because,

p
(0)
j +

[
∂sj

∂p
(0)
j

]−1 (
X(0),p(0), ξ0,θc0

)
sj

(
X(0),p(0), ξ0,θc0

)

= γ−1p
(1)
j + γ−1

[
∂sj

∂p
(1)
j

]−1 (
X(1),p(1), ξ0,θc

)
sj

(
X(1),p(1), ξ0,θc

)

= p†
j†

+

 ∂sj†
∂p

(0)

j†

−1 (
X†(0),p†(0), ξ†0,θc0

)
sj†
(
X†(0),p†(0), ξ†0,θc0

)

= γ−1p
†(1)

j†
+ γ−1

 ∂sj†
∂p

(1)

j†

−1 (
X†(1),p†(1), ξ†0,θc

)
sj

(
X†(1),p†(1), ξ†0,θc

)
. (56)

If θc is not identi�ed, then Equation (56) implies that there exist ξ
(1)
0 and ξ

†(1)
0 that satisfy

sj = sj

(
X(1),p(1), ξ

(1)
0 ,θc0

)
, s†

j†
= sj†

(
X†(1),p†(1), ξ

†(1)
0 ,θc0

)
,
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p
(1)
j +

∂sj
(
X(1),p(1), ξ

(1)
0 ,θc0

)
∂p

(1)
j

−1

sj

(
X(1),p(1), ξ

(1)
0 ,θc0

)

= p
†(1)

j†
+

∂sj†
(
X†(1),p†(1), ξ

†(1)
0 ,θc0

)
∂p

(1)

j†

−1

s†
j†

(
X†(1),p†(1), ξ

†(1)
0 ,θc0

)
≥ 0.

That is, if θc is not identi�ed, then there exist unobserved product characteristics ξ
(1)
0 and ξ

(1)
0

such that market shares remain the same and marginal revenues are equal at the true parameter

vector.

Using the same logic, we de�ne ξ
(n)
0 to satisfy sj = sj

(
X(n),p(n), ξ

(n)
0 ,θc0

)
and ξ̃0 =

limn→∞ξ
(n)
0 which satis�es s = s

(
X̃,0, ξ̃0,θc0

)
because of the Implicit Function Theorem.

Then, as n→∞,

∂sj

(
X(n),p(n), ξ

(n)
0 ,θc0

)
∂p

(n)
j

=

ˆ
α

ˆ
β

exp
(
x

(n)
j Σβ0β + p

(n)
j σα0 (α+ ηα0) + ξ

(n)
j,0

)
[
1 +

∑J
l=1 exp

(
x

(n)
l Σβ0β + p

(n)
l σα0 (α+ ηα0) + ξ

(n)
l,0

)]2

×

1 +
∑
l 6=j

exp
(
x

(n)
l Σβ0β + p

(n)
l σα0 (α+ ηα0) + ξ

(n)
l,0

)
×σα0 (α+ ηα0)φ (α)φ (β) dβdα

→
ˆ
α

ˆ
β

exp
(
x̃jΣβ0β + ξ̃j,0

) [
1 +

∑
l 6=j exp

(
x̃lΣβ0β + ξ̃l,0

)]
[
1 +

∑J
l=1 exp

(
x̃lΣβ0β + ξ̃l,0

)]2

×σα0 (α+ ηα0)φ (α)φ (β) dβdα

= σα0ηα0

ˆ
β

exp
(
x̃jΣβ0β + ξ̃j,0

) [
1 +

∑
l 6=j exp

(
x̃lΣβ0β + ξ̃l,0

)]
[
1 +

∑J
l=1 exp

(
x̃lΣβ0β + ξ̃l,0

)]2 φ (β) dβ < 0

because ηα0 < 0. Therefore,

p
(n)
j +

∂sj
(
X(n),p(n), ξ

(n)
0 ,θc0

)
∂p

(n)
j

−1

sj < 0

for su�ciently large n, which contradicts positivity of the marginal revenue.

Case 2) γ > 1, minl {γβl} ≥ 1 Let γ̃ ≡ 1/γ, γ̃βl ≡ 1/γβl. Then σα = γ̃σα0. Similarly, de�ne

X(n) ≡ XΓ̃
n

β , p(n) ≡ γ̃np. Then, limn→∞p(n) = 0. Let X̃ ≡ limn→∞X(n). Then, x̃j,l = xj,l if
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γβl = 1 and x̃j,l = 0 if γβl > 1. Then, using the same steps as in Case 1), but starting with the

parameter vector θc, we �nd that sj
(
X(0),p(0), ξ,θc

)
= sj

(
X(1),p(1), ξ,θc0

)
. To see this, note

that:

sj

(
X(0),p(0), ξ,θc

)
=

ˆ
α

ˆ
β

exp
(
x

(0)
j Σββ + p

(0)
j σα (α+ ηα0) + ξj

)
[
1 +

∑J
l=1 exp

(
x

(0)
l Σββ + p

(0)
l σα (α+ ηα0) + ξl

)]φ (β) dβφ (α) dα

=

ˆ
α

ˆ
β

exp
(
x

(0)
j Γ̃βΣβ0β + γ̃p

(0)
j σα0 (α+ ηα0) + ξj

)
[
1 +

∑J
l=1 exp

(
x

(0)
l Γ̃βΣβ0β + γ̃p

(0)
l σα0 (α+ ηα0) + ξl

)]φ (β) dβφ (α) dα

= sj

(
X(1),p(1), ξ,θc0

)
.

It then follows that
∂sj

∂p
(0)
j

(
X(0),p(0), ξ,θc

)
= γ̃

∂sj

∂p
(1)
j

(
X(1),p(1), ξ,θc0

)
and similarly for s†

j†
,
∂s†
j†

∂p
(0)

j†
.

Then by applying the non-identi�cation condition as in the case above, and then iterating, we

conclude that

p
(n)
j +

∂sj
(
X(n),p(n), ξ(n),θc

)
∂p

(n)
j

−1

sj < 0,

which is a contradiction to positivity of marginal revenue. Thus θc0 is identi�ed.

3) γ < 1, maxl {γβl} > 1. Assume for some k ∈ {1, . . . ,K}, γβk > γβl for any l 6= k.

Then, as n→∞, x
(n)
i,l /γ

n
βk → 0 for l 6= k and x

(n)
i,k /γ

n
βk = xik for all i = 1, . . . , J , p(n)/γnβk →

0. Now, let u
(0)
i,0 = ξi,0/σβ0k, and u

(n)
i,0 be such that si = si

(
X(n),p(n), γnβkσβ0ku

(n)
0 ,θc0

)
. For

the sake of simplicity, we assume that the kth observed characteristics of �rms in a market are

di�erent from each other. Now, wlog. order the �rms such that x1,k < x2,k . . . < xJ,k and

x†1,k < x†2,k . . . < x†
J†,k

. Then, denoting Σβ0,−k,−k to be the submatrix of Σβ0 that does not
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include the kth row and the kth column, we get,

ˆ
βk

J∏
l 6=j

I
((
x

(n)
l,k − x

(n)
j,k

)
σβ0kβk +

(
x

(n)
l,−k − x

(n)
j,−k

)
Σβ0−k,−kβ−k

+
(
p

(n)
l − p

(n)
j

)
σα0 (α+ ηα0) + γnβkσβ0k

(
u

(n)
l,0 − u

(n)
j,0

)
+ εl − εj ≤ 0

)
φ (βk) dβk

=

ˆ
βk

J∏
l 6=j

I

(xl,k − xj,k)σβ0kβk +
x

(n)
l,−k − x

(n)
j,−k

γnβk
Σβ0−k,−kβ−k

+

(
p

(n)
l − p

(n)
j

γnβk

)
σα0 (α+ ηα0) + σβ0k(u

(n)
l,0 − u

(n)
j,0 ) +

εl − εj
γnβk

≤ 0

)
φ (βk) dβk

=

ˆ
βk

J∏
xl,k−xj,k>0

I

βk ≤ − x
(n)
l,−k − x

(n)
j,−k

γnβkσβ0k (xl,k − xj,k)
Σβ0−k,−kβ−k

−

(
p

(n)
l − p

(n)
j

γnβkσβ0k (xl,k − xj,k)

)
σα0 (α+ ηα0)−

u
(n)
l,0 − u

(n)
j,0

(xl,k − xj,k)
− εl − εj
γnβkσβ0k (xl,k − xj,k)




J∏
xl,k−xj,k<0

I

βk ≥ − x
(n)
l,−k − x

(n)
j,−k

γnβkσβ0k (xl,k − xj,k)
Σβ0−k,−kβ−k

−

(
p

(n)
l − p

(n)
j

γnβkσβ0k (xl,k − xj,k)

)
σα0 (α+ ηα0)−

u
(n)
l,0 − u

(n)
j,0

(xl,k − xj,k)
− εl − εj
γnβkσβ0k (xl,k − xj,k)




=

ˆ
βk

I

βk ≤Minxl,k−xj,k>0

− x
(n)
l,−k − x

(n)
j,−k

γnβkσβ0k (xl,k − xj,k)
Σβ0−k,−kβ−k

−

(
p

(n)
l − p

(n)
j

γnβkσβ0k (xl,k − xj,k)

)
σα0 (α+ ηα0)−

u
(n)
l,0 − u

(n)
j,0

(xl,k − xj,k)
− εl − εj
γnβkσβ0k (xl,k − xj,k)




×I

βk ≥Maxxl,k−xj,k<0

− x
(n)
l,−k − x

(n)
j,−k

γnβkσβ0k (xl,k − xj,k)
Σβ0−kβ−k

−

(
p

(n)
l − p

(n)
j

γnβkσβ0k (xl,k − xj,k)

)
σα0 (α+ ηα0)−

u
(n)
l,0 − u

(n)
j,0

(xl,k − xj,k)
− εl − εj
γnβkσβ0k (xl,k − xj,k)


φ (βk) dβk.

Note that
x
(n)
l,−k−x

(n)
j,−k

γnβkσβ0k(xl,k−xj,k)
Σβ0−k,−kβ−k → 0,

(
p
(n)
l −p

(n)
j

γnβkσβ0k(xl,k−xj,k)

)
σα0 (α+ ηα0)→ 0 and

εl−εj
γnβkσβ0k(xl,k−xj,k)

→

0 as n→∞. Hence, using earlier arguments, from continuity, there exists ũ0 that satis�es

s0 = Φ

(
− ũ1,0

x1,k

)
, si = Φ

(
− ũi,0 − ũi+1,0

(xi,k − xi+1,k)

)
− Φ

(
− ũi,0 − ũi−1,0

(xi,k − xi−1,k)

)
, i = 1, . . . , J.
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It then follows that,

− ũi,0 − ũi+1,0

(xi,k − xi+1,k)
= Φ−1

∑
l≤i

sl

 .

Thus, we can derive ũi,0 recursively, as earlier. Furthermore, following the similar arguments as

before, we can show that limn→∞u
(n)
i,0 = ũi,0 for i = 1, . . . ,J .

Next, we consider the derivative of the market share with respect to the price. We de�ne

ai,l ≡
ũi,0−ũl,0

(xi,k−xl,k)
and ai and ai similarly as well. Then,

. . . < ai+1 = ai =
ũi,0 − ũi+1,0

(xi,k − xi+1,k)
< ai = ai−1 =

ũi,0 − ũi−1,0

(xi,k − xi−1,k)
< . . . <

ũ1,0

x1,k

, and as before, we derive

∂

∂p
(n)
j

ˆ
βk

J∏
,l 6=j

I
((
x

(n)
l,k − x

(n)
j,k

)
σβ0kβk +

(
x

(n)
l,−k − x

(n)
j,−k

)
Σβ0−k,−kβ−k

+
(
p

(n)
l − p

(n)
j

)
σα0 (α+ ηα0) + γnβkσβ0k

(
u

(n)
l,0 − u

(n)
j,0

)
+ εl − εj ≤ 0

)
φ (βk) dβk

=
∂

∂p
(n)
j

ˆ
βk

J∏
l 6=j

I

(xl,k − xj,k)σβ0kβk +
x

(n)
l,−k − x

(n)
j,−k

γnβk
Σβ0−k,−kβ−k

+

(
p

(n)
l − p

(n)
j

γnβk

)
σα0 (α+ ηα0) + σβ0k(u

(n)
l,0 − u

(n)
j,0 ) +

εl − εj
γnβk

≤ 0

)
φ (βk) dβk. (57)

Now, let

B
(
p(n),u

(n)
0 , n,X,Γβ,β, ε, j,θc0

)
≡ −

x
(n)
l,−k − x

(n)
j,−k

γnβkσβ0k (xl,k − xj,k)
Σβ0−k,−kβ−k

−

(
p

(n)
l − p

(n)
j

γnβkσβ0k (xl,k − xj,k)

)
σα0 (α+ ηα0)−

u
(n)
l,0 − u

(n)
j,0

(xl,k − xj,k)
− εl − εj
γnβkσβ0k (xl,k − xj,k)

.

Then let

B
(
p(n),u

(n)
0 , n,X,Γβ,β, ε, j,θc0

)
≡ Minxl,k−xj,k>0B

(
p(n),u

(n)
0 , n,X,Γβ,β, ε, j,θc0

)
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and

B
(
p(n),u

(n)
0 , n,X,Γβ,β, ε, j,θc0

)
≡ Maxxlk−xjk<0B

(
p(n),u

(n)
0 , n,X,Γβ,β, ε, j,θc0

)
.

Then,

∂B
(
p(n),u

(n)
0 , , n,X,Γβ,β, ε, j,θc0

)
∂p

(n)
j

=
σα0 (α+ ηα0)

γnβkσβ0k (xl1,k − xj,k)
,

∂B
(
p(n),u

(n)
0 , n,X,Γβ,β, ε, j,θc0

)
∂p

(n)
j

=
σα0 (α+ ηα0)

γnβkσβ0k (xl2,k − xj,k)
,

where

l1 = argminl 6=j,xl,k−xj,k>0B
(
p(n),u

(n)
0 , n,X,Γβ,β, ε, j,θc0

)
l2 = argmaxl 6=j,xl,k−xj,k≤0B

(
p(n),u

(n)
0 , n,X,Γβ,β, ε, j,θc0

)
except for the case where l1 and l2 have multiple values, which we ignore because those situations

occur with probability zero. Therefore,

(57) =
∂

∂p
(n)
j

ˆ
βk

I
(
βk ≤ B

(
p(n),u

(n)
0 , n,X,Γβ,β, ε, j,θc0

))
×I
(
βk ≥ B

(
p(n),u

(n)
0 , n,X,Γβ,β, ε, j,θc0

))
φ (βk) dβk

=

[
φ
(
B
(
p(n),u

(n)
0 , n,X,Γβ,β, ε, j,θc0

)) σα0 (α+ ηα0)

γnβkσβ0k (xl1,k − xj,k)

−φ
(
B
(
p(n),u

(n)
0 , n,X,Γβ,β, ε, j,θc0

)) σα0 (α+ ηα0)

γnβkσβ0k (xl2,k − xj,k)

]
×I
(
B
(
p(n),u

(n)
0 , n,X,Γβ,β, ε, j,θc0

)
> B

(
p(n),u

(n)
0 , n,X,Γβ,β, ε, j,θc0

))
(58)
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Then,

γnβk × (58)

→φ

limn→∞

− u
(n)
l1,0
− u(n)

j,0

(xl1,k − xj,k)


 σα0 (α+ ηα0)

σβ0k (xl1,k − xj,k)
− φ

limn→∞

− u
(n)
l2,0
− u(n)

j,0

(xl2k − xj,k)


 σα0 (α+ ηα0)

σβ0k (xl2,k − xj,k)

× I

limn→∞

− u
(n)
l1,0
− u(n)

j,0

(xl1,k − xj,k)

 > limn→∞

− u
(n)
l2,0
− u(n)

j,0

(xl2,k − xj,k)




=φ

(
− ũj+1,0 − ũj,0

(xj+1,k − xj,k)

)
σα0 (α+ ηα0)

σβ0k (xj+1,k − xj,k)
− φ

(
− ũj−1,0 − ũj,0

(xj−1,k − xj,k)

)
σα0 (α+ ηα0)

σβ0k (xj−1,k − xj,k)

Therefore,

γnβk
∂sj

∂p
(n)
j

→
ˆ
β−k

ˆ
α

[
φ

(
− ũj+1,0 − ũj,0

(xj+1,k − xjk)

)
σα0 (α+ ηα0)

σβ0k (xj+1,k − xj,k)

− φ
(
− ũj−1,0 − ũj,0

(xj−1,k − xj,k)

)
σα0 (α+ ηα0)

σβ0k (xj−1,k − xj,k)

]
φ (α) dαφ

(
β−k

)
dβ−k

= φ

(
− ũj+1,0 − ũj,0

(xj+1,k − xj,k)

)
σα0ηα0

σβ0k (xj+1,k − xj,k)
− φ

(
− ũj−1,0 − ũj,0

(xj−1,k − xj,k)

)
σα0ηα0

σβ0k (xj−1,k − xj,k)
< 0

because xj+1,k − xj,k > 0, xj−1,k − xj,k < 0, ηα0 < 0. Therefore, for su�ciently large n,

p
(n)
j +

[
∂sj

∂p
(n)
j

]−1 (
X(n),p(n),u

(n)
0 ,θ0

)
sj

= γnpj + γnβk

[
γnβk

∂sj

∂p
(n)
j

(
X(n),p(n),u

(n)
0 ,θ0

)]−1

sj < 0

because γ < 1 < γβk, which contradicts positivity of marginal revenue.

Next, we modify the above case to allow γβl to be the same for l ∈ K ⊂ {1, 2, . . . ,K}. Denote
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γβK as γβK ≡ γβl for l ∈ K. Let xj,K and xj,Kc be de�ned accordingly. Then, letting k ∈ K,

sj =

ˆ
α

ˆ
β

ˆ
ε
sj

(
X(n),p(n),u

(n)
0 , α,β,θ0

)
f(ε)dεφ (β) dβφ(α)dα

=

ˆ
α

ˆ
β

ˆ
ε

J∏
l 6=j

I
((

x
(n)
l,K − x

(n)
j,K

)
◦ σβ0KβK +

(
x

(n)
l,Kc − x

(n)
j,Kc
)
◦ σβ0KcβKc

+
(
p

(n)
l − p

(n)
j

)
σα0 (α+ ηα0) + γnβKσβ0k

(
u

(n)
l,0 − u

(n)
j,0

)
+ εl − εj ≤ 0

)
φ (β) dβdα

=

ˆ
α

ˆ
β

ˆ
ε

J∏
l 6=j

I

(xl,K − xj,K) ◦ σβ0KβK +
x

(n)
l,Kc − x

(n)
j,Kc

γnβK
◦ σβ0KcβKc

+

(
p

(n)
l − p

(n)
j

γnβK

)
σα0 (α+ ηα0) + σβ0k(u

(n)
l,0 − u

(n)
j,0 ) +

εl − εj
γnβK

≤ 0

)
f(ε)dεφ (β) dβφ(α)dα

Using earlier arguments, it is straightforward to show that,

sj →
ˆ
βK

∏
l 6=j

I ((xl,K − xj,K) ◦ σβ0KβK + σβ0k (ũl,0 − ũj,0) ≤ 0)φ (βK) dβK

Similarly, we can show the following:

γnβK
∂sj

∂p
(n)
j

→ ηα0σα0

ˆ
βK−k

[
φ

(
−

xl1,K−k − xj,K−k
σβ0k (xl1,k − xj,k)

◦ σβ0K−kβK−k −
ũl1,0 − ũj,0

(xl1,k − xj,k)

)
1

σβ0k (xl1,k − xj,k)

−φ
(
−

xl2,K−k − xj,K−k
σβ0k (xl2,k − xj,k)

◦ σβ0K−kβK−k −
ũl2,0 − ũj,0

(xl2,k − xj,k)

)
1

σβ0k (xl2,k − xj,k)

]
×I
(
−

xl1,K−k − xj,K−k
σβ0k (xl1,k − xj,k)

◦ σβ0K−kβK−k −
ũl1,0 − ũj,0

(xl1,k − xj,k)

> −
xl2,K−k − xj,K−k
σβ0k (xl2,k − xj,k)

◦ σβ0K−kβK−k −
ũl2,0 − ũj,0

(xl2,k − xj,k)

)
φ
(
βK−k

)
dβK−k < 0,

where l1 and l2 are de�ned as earlier. Therefore, for su�ciently large n,

p
(n)
j +

[
∂sj

∂p
(n)
j

(
X(n),p(n),u

(n)
0 ,θ0

)]−1

sj = γnpj + γnβK

[
γnβK

∂sj

∂p
(n)
j

(
X(n),p(n),u

(n)
0 ,θ0

)]−1

sj

= γnpj + γnβK

[
γnβK

∂sj

∂p
(n)
j

(
X(n),p(n),u

(n)
0 ,θ0

)]−1

sj < 0

which contradicts positivity of marginal revenue.

Case 4) γ > 1,minl {γβl} < 1, As before, let γ̃βl ≡ 1/γβl, γ̃ ≡ 1/γ. Then γ̃ < 1, maxl {γ̃βl} >

1, and we can proceed as in Case 3).

Case 5) γ = 1, maxl {γβl} > 1. We can show that this leads to contradiction as in Case 3).
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Case 6) γ = 1, minl {γβl} < 1. Let γ̃βl ≡ 1/γβl, γ̃ ≡ 1/γ. Then, γ̃ = 1, maxl {γ̃βl} > 1, and

from Case 5), this leads to contradiction.

The results of Case 1) and Case 3) imply that γ < 1 leads to a contradiction. Similarly, the

results of Case 2) and Case 4) imply that γ > 1 leads to a contradiction as well. Therefore, it

follows that γ = 1 is the only possibility. Then, from Cases 5) and 6) it follows that γ = 1 and

both maxl {γβl} ≤ 1 and minl {γβl} ≥ 1 need to hold. Therefore, γβl = 1 for l = 1, . . .K and

therefore, σβ0 and σα0 are identi�ed.

A.3 Identi�cation of the SNLLS Estimator

Proof of Proposition 2:

For notational convenience, we denote

ψ (qjm,wjm,xjm,MRjm (θc) ,γ) ≡
∞∑
l=1

γlψl (qjm,wm,xjm,MRjm (θc)) .

Recall that, from Equation (31),

E
[
(Cjm − ψ (qjm,wjm,xjm,MRjm (θc0) ,γ0))2

]
= σ2

ν + σ2
ς ,

because

Cjm = ψ (qjm,wjm,xjm,MRjm (θc0) ,γ0) + ςjm + νjm

and ςjm, νjm are assumed to be i.i.d. distributed and independent from (qjm,wjm,Xm,pm, sm).

Then, for any (θc,γ)

E
[
(Cjm − ψ (qjm,wjm,xjm,MRjm (θc) ,γ))2

]
= E

[
(ψ (qjm,wjm,xjm,MRjm (θc0) ,γ0)− ψ (qjm,wjm,xjm,MRjm (θc) ,γ))2

]
+2E

[
(ψ (qjm,wjm,xjm,MRjm (θc0) ,γ0)− ψ (qjm,wjm,xjm,MRjm (θc) ,γ)) (νjm + ςjm)

]
+E (νjm + ςjm)2

= E
[
(ψ (qjm,wjm,xjm,MRjm (θc0) ,γ0)− ψ (qjm,wjm,xjm,MRjm (θc) ,γ))2

]
+ σ2

ν + σ2
ς

≥ σ2
ν + σ2

ς .
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Therefore, if (θc∗,γ∗) satis�es

[θc∗,γ∗] = argmin(θ,γ)∈Θc×ΓE

[
Cjm −

∞∑
l=1

γlψl (qjm,wm,xjm,MRjm (θc))

]2

,

then,

ψ (qj ,wj ,xjm,MRj (θc∗) ,γ∗) = ψ (qj ,wj ,xjm,MRj (θc0) ,γ0) (59)

needs to be satis�ed for all (qj ,wj ,Xm,pm, sm) in the population. Now, by assumption, given

(qj ,wj ,xjm), ψ (,γ0) is continuous and strictly increasing in MRj (θc0). Then, we show that

given (qj ,wj ,xjm), ψ (,γ∗), is also continuous and strictly monotone function of MRj(θc∗). As

before, wlog, we only consider markets where �rms have di�erent prices, and let the numbering

of �rms be ordered by price in a market. That is, the lowest price �rm is j = 1 and the highest

price �rm is j = Jm. Now, consider the �rm j such that 2 ≤ j ≤ Jm− 1. We use Equation (52).

That is,

MRj (X,p, s,θc0) ≡ limγ→∞
MRj (X, γp, s,θc0)

γ

= pj +

−φ
Φ−1

∑
l≤j

sl

 Φ−1
(∑

l≤j sl

)
+ ηα0

pj − pj+1
− φ

Φ−1

 ∑
l≤j−1

sl

 Φ−1
(∑

l≤j−1 sl

)
+ ηα0

pj−1 − pj

−1

sj .

Because of Assumption 6, given X, p, there exists s such that
∑

l≤j sl = Φ (−ηα0). Then,

MRj (X,p, s,θc0) = pj −

φ
Φ−1

 ∑
l≤j−1

sl

 Φ−1
(∑

l≤j−1 sl

)
+ ηα0

pj−1 − pj

−1

sj .

Let

Aj ≡
sj

φ
(

Φ−1
(∑

l≤j−1 sl

)) [
Φ−1

(∑
l≤j−1 sl

)
+ ηα0

] .
Then, Aj < 0, and MRj (X,p, s,θc0) = 0 implies

pj =
Aj

Aj + 1
pj−1 > pj−1

if A < −1, which holds for su�ciently small
∑

l≤j−1 sl. Now, consider j = 2. Let p be such that

for some p
1
> 0, p

2
= A2

A2+1p1
, p

3
< . . . < p

J
such that MRj (X,p, s,θc0) > 0 for j > 2. Then,

MR2

(
X,p, s,θc0

)
= 0. Note that by letting pj (y) ≡ p

j
+ y, j = 1, . . . , J , for y ≥ 0 and by in-
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creasing y, we can continuously increaseMR2 (X,p, s,θc0) from zero to an arbitrarily large num-

ber, say B > 0. Then, by construction, for su�ciently large γ > 0, MR2 (X, γp (y) , s,θc0) is in-

creasing in y > 0 with range being [0, γB]. Therefore, ψ (q2,w2,x2m,MR2 (X, γp (y) , s,θc0) ,γ0)

is also strictly increasing and continuous in y. Because ψ (q2,w2,x2m,MR,γ∗) is continuous in

MR, in order the Equation (59) to hold, MR2 (X, γp (y) , s,θc∗) needs to be continuous in y as

well.

Now, suppose there exists a segment
[
y, y
]
where MR2 (X, γp (y) , s,θc∗) is constant. Then,

for any two values y ∈
[
y, y
]
and y′ ∈

[
y, y
]
, satisfying y > y′, MR2 (X, γp (y) , s,θc∗) =

MR2 (X, γp (y′) , s,θc∗) implies

ψ (q2,w2,x2m,MR2 (X, γp (y) , s,θc∗) ,γ∗) = ψ
(
q2,w2,x2m,MR2

(
X, γp

(
y′
)
, s,θc∗

)
,γ∗
)

whereas

ψ (q2,w2,x2m,MR2 (X, γp (y) , s,θc0) ,γ0) > ψ
(
q2,w2,x2m,MR2

(
X, γp

(
y′
)
, s,θc0

)
,γ0

)
,

which contradicts Equation (59). Next, consider the case where MR2 (X,p (y) , s,θc∗) is strictly

increasing in y ∈
[
y, ŷ
]
and strictly decreasing in y ∈ [ŷ, y]. Then, from continuity, for y < ŷ suf-

�ciently close to ŷ, MR2 (X, γp (y) , s,θc∗) < MR2 (X, γp (y) , s,θc∗) < MR2 (X, γp (ŷ) , s,θc∗)

holds. Therefore, from the intermediate value function, there exist y′ ∈ [ŷ, y] such thatMR2 (X, γp (y′) , s, ,θc∗) =

MR2 (X, γp (y) , s, ,θc∗). Again, this contradicts ψ (,γ0) being strictly increasing in MR. Sim-

ilar argument can be made for the case where MR2 (X,p (y) , s,θc∗) is strictly decreasing in

y ∈
[
y, ŷ
]
and strictly increasing in y ∈ [ŷ, y]. Thus, we have shown that MR2 (X,p (y) , s,θc∗)

is strictly monotone in y, and therefore, from Equation (59), ψ (,γ∗), is a strictly monotone

function of MRj (θc∗) for j = 1, . . . , J .

Recall that in Proposition 1 we have shown that the BLP demand function satis�es Condition

1. From Condition 1, there exist two �rms with (p, s,X, q,w, j) and
(
p†, s†,X†, q,w, j†

)
and

MRj (p, s,X,θc0) = MRj†
(
p†, s†,X†,θc0

)
.

Then,

ψ (q,w,x,MRj (p, s,X,θc0) ,γ0) = ψ
(
q,w,x,MRj†

(
p†, s†,X†,θc0

)
,γ0

)
,
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which implies, from Equation (59)

ψ (q,w,x,MRj (p, s,X,θc∗) ,γ∗) = ψ
(
q,w,x,MRj†

(
p†, s†,X†,θc∗

)
,γ∗

)
.

Then, from strict monotonicity of the function ψ (,γ∗) with respect to MR,

MRj (p, s,X,θc∗) = MRj†
(
p†, s†,X†,θc∗

)
.

On the other hand, suppose

MRj (p, s,X,θc0) 6= MRj†
(
p†, s†,X†,θc0

)
.

Then,

ψ (q,w,x,MRj (p, s,X,θc0) ,γ0) 6= ψ
(
q,w,x,MRj†

(
p†, s†,X†,θc0

)
,γ0

)
,

which implies, from Equation (59)

ψ (q,w,x,MRj (p, s,X,θc∗) ,γ∗) 6= ψ
(
q,w,x,MRj†

(
p†, s†,X†,θc∗

)
,γ∗

)
,

which implies

MRj (p, s,X,θc∗) 6= MRj†
(
p†, s†,X†,θc∗

)
.

Because BLP satis�es Condition 1, θc∗ = θc0.

A.4 Semi-Parametric Cost Function Estimation

The cost function can be recovered from the pseudo-cost function estimate in three steps.

Step 1

Suppose that we already estimated ψ̂ (q,w,x,MR, γ̂M ). We then nonparametrically estimate

marginal cost for a given point (q,w,x, C) as follows,

M̂C (q,w,x, C) =
∑
jm

MRj

(
Xm,pm, sm, θ̂cM

)
×Wh

(
q − qjm,w −wjm,x− xjm, C − ψ̂

(
qjm,wjm,xjm,MRjm

(
θ̂cM

)
, γ̂M

))
,
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where θcM is the vector of estimated demand parameters, and the weight function is

Wh

(
q − qjm,w −wm,x− xjm, C − ψ̂jm

)
=

Khq (q − qjm)Khw (w −wm)Khx (x− xjm)KhC

(
C − ψ̂jm

)
∑

klKhq (q − qkl)Khw (w −wl)Khx (x− xkl)KhC

(
C − ψ̂kl

) .
where h ≡ (hq,hw,hx, hC), and Khq (), Khw (), Khx () and KhC () are kernels of q, w, x, and C

with bandwidths hq, hw, hx and hC , respectively.

Step 2

Start with a vector of input price, observed product characteristics, output and the conditional

expected cost
(
w,x, q, C

)
. Then, there exists a variable cost shock υ that corresponds to

M̂C
(
q,w,x, C

)
= MC (q,w,x, υ). Notice that we cannot derive the value of ῡ because we

have not constructed the cost function yet. For small ∆q, the cost estimate for output q + ∆q,

input price w and the same variable cost shock υ is

Ĉ (q + ∆q,w,x, υ) = C + M̂C
(
q,w,x, C

)
∆q.

Then, from the consistency of the marginal revenue estimator (which we will prove later) and

the Taylor series expansion,

Ĉ (q + ∆q,w,x, υ) = C (q + ∆q,w,x, υ) +O
(

(∆q)2
)

+ op (1) ∆q.

At iteration k > 1, given Ĉk−1 = Ĉ (q + (k − 1) ∆q,w, υ)

Ĉ (q + k∆q,w,x, υ) = Ĉk−1 + M̂C
(
q + (k − 1) ∆q,w,x, Ĉk−1

)
∆q.

Then, from Taylor expansion, we know that for any k > 0,

Ĉ (q + k∆q,w,x, υ) = C (q + k∆q,w,x, υ) +O
(
k (∆q)2

)
+ kop (1) ∆q

Thus, we can derive the approximate cost function for given input price w and quantity q.
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Step 3

Next, we derive the cost function for di�erent input price. First, we derive the nonparametric

estimate of the input demand. Denote l (q,w,x, C) to be the vector of input demand given output

q, input prices w, observed characteristics x and cost C. Then, its nonparametric estimate is:

l̂ (q,w,x, C) =
∑
jm

ljmWh

(
q − qjm,w −wjm,x− xjm, C − ψ̂

(
qjm,wjm,xjm,MRjm

(
θ̂M

)
, γ̂M

))
.

where ljm is the vector of inputs of �rm j in market m. Notice that from Shepard's Lemma,

l =
∂C (q,w,x, υ)

∂w
.

Start, as before, with q, w, and C. Next, we derive the cost for the output q, w + ∆w for small

∆w that has the same cost shock υ. Then:

Ĉ1 = Ĉ (q,w + ∆w,x, ῡ) = C + l̂
(
q,w,x, C

)
∆w +O

((
‖∆w‖2

))
+ op (1) ‖∆w‖ .

At iteration k > 1, given Ĉk−1 = Ĉ (q,w + (k − 1) ∆w,x, υ)

Ĉ (q,w + k∆w,x, υ) = Ĉk−1 + l̂
(
q,w + (k − 1) ∆w,x, Ĉk−1

)
∆w

By iterating this, we can derive the approximated cost function, which satis�es

Ĉ (q,w + k∆w,x, υ) = C (q,w + k∆w,x, υ) +O
((
k ‖∆w‖2

))
+ kop (1) ‖∆w‖

for any k > 0.

A.5 Further speci�cation and data issues

A.5.1 Economic versus accounting cost

The cost data we envision using comes from accounting statements of �rms.29 Such data do not

necessarily re�ect the economic cost that the �rm considers in making input and output choices.

More concretely, we may not be appropriately taking into account the opportunity cost of the

resources that are used in purchasing the necessary input to produce output. Fortunately, from

29Indeed, accounting data are typically used in the literature that estimates cost functions to evaluate market
power, measure economies of scale or scope, and so on.
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accounting statements, we may be able to obtain information on other activities that the �rm may

be pursuing in addition to the production of output. For example, we may �nd details on �rms'

�nancial investments including their rate of return.30 Suppose that the real return on a dollar of

a �nancial investment is rjm. Then, the opportunity cost of production is pjmrjm, and the �rm

will produce and sell output until marginal revenue equals marginal cost that incorporates this

cost, i.e.,

MRjm (θc) = MC (qjm,wm,xjm, υjm) + pjmrjm.

Substituting this into our estimator, we obtain the modi�ed SNLLS part as follows:

1∑
m Jm

∑
j,m

[Cjm − ψ (qjm,wm,xjm,MRjm (θc)− pjmrjm,γ)]2 .

That is, as long as we can obtain information on the �nancial opportunities that the �rm has

other than production, we can incorporate them into our estimator. Then, the estimator will

not be subject to bias even if the cost data we use corresponds to accounting costs.

A.5.2 Endogenous product characteristics.

If �rms strategically choose prices and product characteristics, then elements of Xm will be

correlated with the demand shock ξjm. To accommodate endogenous product characteristics,

researchers have recently started estimating BLP models that include �rst order conditions for

optimal prices and product characteristics.31 In particular, Petrin and Seo (2016) use the �rst

order conditions of product choice and additional panel data moment restrictions to identify the

price coe�cient. The endogeneity of product characteristics does not prevent us from identifying

the price coe�cient, and thus, markups, as discussed before. It is an issue only if researchers

want to estimate the coe�cients of the observed characteristics.

To deal with endogenous product characteristics, we follow a strategy that is similar to Petrin

and Seo (2016). We di�er from them by using cost data instead of instruments. We modify the

cost function as below:

C (q,x,w, υ,υx) ,

30In the application of our estimator to the U.S. banking industry, such information is readily available. Most
large industries like banking that are subject to some form of regulatory oversight are likely to report such data.

31See, for example, Chu (2010), Fan (2013), and Byrne (2015). For an excellent overview of the empirical
literature on endogenous product characteristics, see Crawford (2012). It is worth noting that all these applications
maintain the static decision-making assumption of BLP - �rms are allowed to adjust their product characteristics
period-by-period but are not forward-looking in doing so. A recent paper by Gowrisankaran and Rysman (2012)
develops and estimates a dynamic version of a di�erentiated products oligopoly model, the solution of which is
computationally extremely burdensome.

87



where υx corresponds to the shock that a�ects the production of observed characteristics. The

additional F.O.C. for optimal product characteristics would then be

MRx,jm (θ0) = MCxjm (qjm,xjm,wm, υjm,υx,jm) ,

where MRx,jm is the vector of marginal revenues of �rm j in market m of the product charac-

teristics choice. Then, the SNLLS part would be modi�ed as

1∑
m Jm

∑
j,m

[
Cjm −

∑
l

γlψl (qjm,xjm,wm,MRjm (θ) ,MRx,jm (θ))

]2

,

where MRjm is, as before, marginal revenue with respect to output.

A.5.3 Cost function restrictions.

So far, in the estimation exercise, we have not imposed any assumptions on the shape of the

pseudo-cost function ϕ except that it is a smooth function of output, input price, observed

product characteristics and marginal revenue. The cost function that is recovered is not restricted

to have properties such as a positive slope, homogeneity of degree one in input prices, nor

convexity in output or marginal cost to increase with cost shock.

Imposing the restriction of homogeneity in input prices in estimation is straightforward. If

the cost function is homogeneous of degree one in input price, so is the marginal cost function.

Then, for an input price w1, which is the �rst element of the vector w of input prices,

C(q,w,x, υ) = w1C(q,
w

w1
,x, υ)

and

MC(q,w,x, υ) = w1
∂C(q,w/w1,x, υ)

∂q
.

We can thus modify the SNLLS component of our pseudo-cost estimator to impose the homo-

geneity restriction as follows,

1∑
m Jm

∑
j,m

[
Cjm
w1m

−
∑
l

γlψl

(
qjm,

w−1,m

w1m
,xjm,

MRjm (θc)

w1m

)]2

,

where w−1,m = (w2m, . . . , wLm) is the vector of input prices except w1m.
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A.5.4 Missing cost data and multi product �rms

Until now we have assumed that cost data are available for all �rms in the sample. However, it

could very well be the case that we observe costs only for some �rms and not others. Even in

this case, we can estimate the structural parameters consistently by constructing the SNLLS part

using only those �rms for which we have cost data. Because the SNLLS part of our estimator

does not involve any orthogonality conditions, and because the random components of the �xed

cost and the measurement error of cost are assumed to be i.i.d, choosing �rms in this way for

estimation will not result in selection bias. It is important to notice, however, that we still need

demand-side data for all �rms in the same market to compute marginal revenue. Luckily, such

demand-side data tends to be available to researchers for many industries. Allowing for missing

cost data is important in reducing the concern about reliability of cost data. That is, in practice,

researchers can go over the accounting cost data carefully and simply remove the cost data that

have anomalies.

A more di�cult situation would be when �rms produce multiple products, but only the total

cost of all products is observable in the data. To address this issue, we follow the setup of BLP

closely. Let Ff be the set of product-market combinations that is produced by �rm f . That is,

Ff = {(j,m) : If (j,m) = 1} where If (j,m) = 1 if the jth product in market m is produced by

�rm f and 0 if otherwise. Let qf be the vector of outputs of products produced by �rm f . That

is, qf =
(
qj1,m1 , qj2,m2 , . . . , qjnf ,mnf

)
and nf is the number of product-market combinations

produced by �rm f. In our vector notation, we follow the convention of ordering the products in

the same market and the products in di�erent markets. That is, if the �rm f has two di�erent

products j and j′ with j < j′ in the same market m, then qjm comes before qj′m in the vector

qf . If the �rm f has two di�erent products j in market m and j′ in di�erent market m′ with

m < m′, then qjm comes before qj′m′ in the vector qf . Similarly, let Xf be the (K × nf ) matrix

of observable product characteristics and υf be the vector of cost shocks of products belonging

to Ff . Similarly, denote mcf , pf and sf to be the vectors of marginal costs, prices and market

shares of products belonging to Ff . Input prices are denoted by the matrix wf with L input

prices for each market the �rm operates in. Then, we can modify the cost function of �rm f as

C (qf ,wf ,Xf ,υf ) .
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Then, the F.O.C. for pro�t maximization for product and market (j,m) ∈ Ff is:

sjm +
∑

(r′,m′)∈Ff

(
pr′,m′ −mcr′,m′

) ∂sr′,m′
∂pjm

= 0.

Hence, we can write

mcf = pf + ∆−1
f sf ,

where row h and column i of the matrix ∆f is [∆f ]hi = ∂sjh,mh/∂pji,mi . Since markets are

isolated, ∂sjh,mh/∂pji,mi = 0 for mh 6= mi.

Then, the SNLLS component can be modi�ed as follows:

1

F

∑
f

[
Cf −

∑
l

γlfψlf

(
qf ,wf ,Xf ,pf + ∆−1

f (Xf ,pf , sf ,θ0) sf (Xf ,pf , sf ,θ0)
)]2

,

where F is the number of �rms; ψlf is the lth polynomial for �rm f and γlf is the corresponding

coe�cient. These basis polynomials vary with �rms because they depend on the number of

products produced by each �rm. Estimation can proceed as long as the number of product-market

combination for a �rm is not too large. Otherwise, we would face a Curse of Dimensionality issue

in estimation.

If the number of products nf is large, one could consider imposing more structure on the

cost function. For example, we could specify the total cost of �rm f as the sum of the costs of

all the products that it produces. That is:

Cf =
∑
i

C (qji,mi ,wmi ,Xji,mi , υji,mi) + νf

=
∑
i

∑
l

γlψl

(
qji,mi ,wmi ,Xji,mi ,pji,mi +

[
∆−1
f (Xf ,pf , sf ,θ0) sf (Xf ,pf , sf ,θ0)

]
i

)
+ νf

. Hence, the SNLLS component of our estimator can be modi�ed as follows,

1

F

∑
f

[
Cf −

∑
i

∑
l

γlψl

(
qji,mi ,wmi ,Xji,mi ,pji,mi +

[
∆−1
f (Xf ,pf , sf ,θ0) sf (Xf ,pf , sf ,θ0)

]
i

)]2

.

Note if we were to use the data on the total costs of the �rms that operate in multiple

markets, they need to practice third-degree price discrimination. Then, the question arises as to

what to do if they don't. In that case, we don't use their cost data and only use the cost data

from �rms that either operate in a single market or exercise third-degree price discrimination if
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they operate in multiple markets. Such choice of �rms whose cost data we use does not result

in any sample selection issues because the selection does not alter the conditional distribution of

the measurement error.

A.6 Large Sample Properties

In this section we show that the estimator is consistent and asymptotically normal. Notice that

in our sample, we have oligopolistic �rms in the same market. Because of strategic interaction,

equilibrium prices and outputs of the �rms in the same market are likely to be correlated. To

avoid the di�culty arising from such within-market correlation, our consistency proof will pri-

marily exploit the large number of isolated markets, with the assumption that wages, unobserved

product quality and variable cost shocks are independent across markets

The assumption of independence of variables across markets is employed for simplicity. We

leave the asymptotic analysis with some across market dependence for future research. For

Strong Law of Large Numbers under weaker assumptions, see Andrews (1988) and the related

literature. As we have discussed earlier, those assumptions are not required for identi�cation.

Without loss of generality, we assume that in each market, the number of �rms is J . Notice

that in our estimation procedure, we have two steps: one that involves the di�erence between

the cost in the data and the nonparametrically approximated pseudo-cost function to identify θc

(which is α for the Berry logit model and (µα, σα) and σβ for the BLP random coe�cient logit

model) and the second step is the OLS estimation based on the orthogonality condition ξm⊥Xm

which identi�es β for the Berry logit model and µβ for the BLP model. We start with denoting

θ = (θβ,θc), where θβ is the vector of parameters estimated in the second step. In our proof,

for the pseudo-cost function part, we follow Bierens (2014) closely.

For the description of our objective function, let ym =
(
qm, vec (Wm)′ ,Cm, vec (Xm)′ , vec (pm)′ , vec (sm)′

)′
,

zm =
(
qm, vec (Wm)′ , vec (Xm)′ , vec (pm)′ , vec (sm)′

)′
, where Cm = (C1m, C2m, ..., CJm)′, Wm =

(w1m,w2m, ...,wjm)′.

For the sake of analytical simplicity, we derive the asymptotic results for a slightly modi�ed

component of the objective function for �rm j in market m, which is

f̂j (ym,θc, t, b) ≡ [Cjm − ϕ (qjm,wjm,xjm,MRjm (θc))]
2

h
(
MRjm(θc)−t

b

)
1
MJ

∑M
m=1

∑J
j=1 h

(
MRjm(θc)−t

b

) .
We set the function h (x) ≥ 0 to be twice di�erentiable; equal to 1 for x ≤ 0; decreasing in x
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for x > 0 and equal to zero for x ≥ 4. Since the objective function is zero for MRjm (θc) ≥

t + 4b, and the rest of the variables in the objective function are assumed to be bounded,

it follows that the objective function is bounded, which simpli�es the proofs. For large t >

0, the modi�ed objective function is practically equivalent to the original objective function

[Cjm − ϕ (qjm,wjm,xjm,MRjm (θc))]
2.

We next specify h (). Let

g̃ (u) ≡
[

1

2
− 1

12
u3

]
I (0 ≤ u ≤ 1) +

[
1− 1

2
u− 1

12
(2− u)3

]
I (1 < u ≤ 2)

g (u) = g̃ (0) + g̃ (u) I (0 ≤ u ≤ 2)− g̃ (4− u) I (2 < u ≤ 4)

and let

h (u) ≡ I (u < 0) + g (u) I (0 ≤ u ≤ 4) .

Then, h is a continuous function and

h (u) =



1 if u ≤ 0

11
12 if u = 1

1
2 if u = 2

1
12 if u = 3

0 if u ≥ 4.

Also,

g̃′ (u) ≡ −1

4
u2I (0 ≤ u ≤ 1) +

[
−1

2
+

1

4
(2− u)2

]
I (1 < u ≤ 2) ,

and h′ is a continuous function with

h′ (u) =



0 if u ≤ 0

−1
4 if u = 1

−1
2 if u = 2

−1
4 if u = 3

0 if u ≥ 4.

Similarly,

g̃′′ (u) ≡ −1

2
uI (0 ≤ u ≤ 1)−

[
1

2
(2− u)

]
I (1 < u ≤ 2) ,
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and h′′ is a continuous function with

h′′ (u) =



0 if u ≤ 0

−1
2 if u = 1

0 if u = 2

−1
2 if u = 3

0 if u ≥ 4.

Now, de�ne

f̃j (ym,θc, t, b) ≡ fj (ym,θc) w̃jm (MRjm (θc) , t, b) ,

where

fj (ym,θc) ≡ [Cjm − ϕ (qjm,wjm,xjm,MRjm (θc))]
2

and

w̃jm (MRjm (θc) , t, b) ≡
h
(
MRjm(θc)−t

b

)
E
[
h
(
MRjm(θc)−t

b

)]
for t > 0, and b > 0. We also de�ne

A ≡
E
[

1
bh
′
(
MRjm(θc)−t

b

)]
E
[
h
(
MRjm(θc)−t

b

)]2 .

Then,

∂w̃jm (MRjm, t, b)

∂MR
=

1
bh
′
(
MRjm−t

b

)
E
[
h
(
MRjm(θc)−t

b

)] −Ah(MRjm − t
b

)
.

Let

B = E

[
h

(
MRjm (θc)− t

b

)]
∂w̃jm (MRjm, t, b)

∂MR∂MR
=

1

B

[
1

b2
h′′
(
MRjm − t

b

)]
−

1
bh
′
(
MRjm−t

b

)
B2

∂B

∂MR
− ∂

∂MR
Ah

(
MRjm − t

b

)
.

Then, let

f̃ (ym,χ, t, b) ≡
1

J

J∑
j=1

fj (ym,χ) w̃jm (MRjm (θc) , t, b) , (60)
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and Q (χ) = E
[
f̃ (ym,χ, t, b) |zm

]
, where χ =

(
θ′c,γ

′)′ = {χn}∞n=1, with

χn =

 θcn for n = 1, ..., p,

γn−p for n ≥ p+ 1.

where p is the number of parameters in θc. Denote, as before, χ0 =
(
θ′c0,γ

′
0

)′
to be the

true parameter vector. In both the SNP logit estimation exercise of Bierens (2014) and ours,

the polynomials are functions of parametric functions. In our model, the parameters θc are

identi�ed. Let θc ∈ Θc be compact and let the parameter space Ξ = Θc × Γ, (θc,γ) ∈ Ξ satisfy

Ξ = {×∞n=1 [−χn, χn]}

where χn, n = 1, . . . are a priori chosen positive sequence satisfying
∑∞

n=1 χ
2
n <∞, supn≥p |χn| /χn ≤

1. We also assume that the parameter space is endowed with the metric d (χ1,χ2) ≡ ‖χ1 − χ2‖,

where ‖χ‖ =
√∑∞

k=1 χ
2
k. Let χ0 be the vector of true parameters. De�ne

Ξk =

 Θc for k ≤ p,

Θc × Γk−p (T ) for k ≥ p+ 1,

where k ∈ N, Γk (T ) = {πkγ : ‖πkγ‖ ≤ T}, and πk is the operator that applies to an in�-

nite sequence γ = {γn}∞n=1, replacing all the γn's for n > k with zeros. Suppose further that

χ0 ∈ Ξ. Furthermore, since we assume that �rms choose prices so that the marginal rev-

enue equals marginal cost, we restrict the parameter space Θc so that any θc ∈ Θc satis�es

MR (X,p, s, j,θc) ≥ 0 for all (X,p, s, j) in the population.

In proving consistency, for the sake of simplicity, we add the following assumptions:

Assumption 10 (wm,Xm, Qm, ξm,υm, ςm,νm), m = 1, . . . ,M are i.i.d. across markets.

De�ne d̃m ≡
(
Qm, vec (wm)′ , vec (ξm)′ , vec (υm)′ , vec (Xm)′

)
.

Assumption 11 The support of d̃m, denoted as Dd, is compact, i.e., Dd ≡
[
Q,Q

]
× [w,w]L ×[

−ξ, ξ
]J × [υ, υ]J × [−x, x]JK .

Assumption 12 The parameter space Ξ is compact. The true parameter χ0 is in the interior

of Ξ.
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f̃ (ym,χ, τ, b), ym, m = 1, . . . ,M , χ0 and Ξ satisfy the assumptions that are similar to

the Assumption 4.1 of Bierens (2014). Some inequalities are reversed because in our case, our

estimator is derived by minimizing the objective function, whereas in Bierens (2014), it is based

on maximization.

(a) y1, y2, ..., yM are i.i.d. The support of ym is contained in an open set Y of the Euclidean

space.

(b) Ξ is a metric space with metric d (χ1,χ2).

(c) For each χ ∈ Ξ, f̃ (ym,χ, τ, b) is a Borel measurable real function of ym.

(d) f̃ (ym,χ, τ, b) is a.s. continuous in χ ∈ Ξ.

(e) There exists a non-negative Borel measurable real function f (y) such that E
[
f (ym)

]
> −∞

and f̃ (ym,χ, τ, b) > f (ym) for all χ ∈ Ξ.

(f) There exists an element χ0 ∈ Ξ such that Q (χ) > Q (χ0) for all χ ∈ Ξ\ {χ0}, and Q (χ0) <

∞.

(g) There exists an increasing sequence of compact subspaces Ξk in Ξ such that χ0 ∈
⋃∞
k=1 Ξk =

Ξ ⊂ Ξ.

(h) Each sieve space Ξk is isomorph to a compact subset of a Euclidean space.

(i) Each sieve space Ξk contains an element χk such that, limk→∞E
[
f̃ (ym,χk, τ, b)

]
= E

[
f̃ (ym,χ0, τ, b)

]
.

(j) The set Ξ∞ =
{
χ ∈ Ξ : E

[
f̃ (ym,χ, τ, b)

]
=∞

}
does not contain an open ball.

Lemma 5 Assumptions (a)∼(j) hold.

Proof. First, we show that assumption (a) holds. First, since market size is bounded above

by Q, qjm ≤ Q for any j,m by de�nition of market share sjm = qjm/Qm < 1, and thus,

qjm < Qm ≤ Q. From Assumption 7, the cost function is continuously di�erentiable in output.

Therefore, MC (qjm,wm,Xm, υjm) is also bounded. Suppose pjm →∞. Then, if all other prices

are bounded, since ξm is bounded, sjm → Prob (α : α+ ηα0 > 0) = Φ (ηα0) < 1/2. Therefore,

limpjm→∞pjmsjm → ∞. Now, consider for a small δ > 0, s′jm = Φ (ηα0) + δ, and p′jm corre-

sponding to it. Then, because limpjm→∞sjm = Φ (ηα0) > 0 and limpjm→∞pjmsjm → ∞, there

exists (s̃jm, p̃jm) such that s̃jm < s′jm and p̃jm > p′jm, and p
′
jms

′
jm − p̃jms̃jm < 0. Therefore,
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from the mean value theorem, there exists s∗jm ∈
(
s̃jm, s

′
jm

)
and the corresponding p∗jm such

that

limp̃→∞
p′jms

′
jm − p̃jms̃jm
s′jm − s̃jm

=
∂p∗jms

∗
jm

∂sjm
= −∞.

On the other hand, consider s′jm = Φ (ηα0)−δ for a small δ > 0, and p′jm corresponding to it.

Then, because limpjm→∞sjm = Φ (ηα0) > 0 and limpjm→∞pjmsjm →∞, there exists (s̃jm, p̃jm)

such that s̃jm > s′jm and p̃jm > p′jm, and p̃jms̃jm − p′jms′jm > 0 and can be made arbitrarily

large by choosing arbitrarily high p̃jm. Therefore,

limp̃→∞
p̃jms̃jm − p′jms′jm

s̃jm − s′jm
=∞.

Therefore, from the mean value theorem, there exists s∗jm ∈
(
s′jm, s̃jm

)
and the corresponding

p∗jm such that

limp̃→∞
p̃jms̃jm − p′jms′jm

s̃jm − s′jm
=
∂p∗jms

∗
jm

∂sjm
=∞.

From the boundedness of the marginal cost function, we conclude from continuity of the

market share function that for su�ciently large pJ , marginal revenue is either negative or higher

than the marginal cost. We can show that similar results occur if the price goes to in�nity for

multiple �rms as well. Therefore, we conclude that prices are bounded. Furthermore, sjm ∈

(0, 1). Lastly, Cjm ∈ (−∞,∞). Therefore, (a) holds.

Assumption (b) is also satis�ed with d () being the Euclidean metric. (c), (d) are also sat-

is�ed given the Borel measurability and the continuity of the market share function and the

deterministic component of the cost Cv (q,w,x, υ) + ef (w,x, υ) + eme (q,w,x), and the Borel

measurability of the random component of the �xed cost and the measurement error, νjm + ςjm.

Assumption (e) is satis�ed because f̃j (y, χ) ≥ 0 for any (y,χ) if we set f (y) ≡ −1, from

Equation (60). Assumption (f) follows from the identi�cation of χ0 in Proposition 2 as follows:

E
[
[Cjm − ψ (qjm,wjm,xjm,MRjm (θc) ,γ)]2 w̃jm (MRjm (θc) , t, b)

]
≥ E

[
(νjm + ηjm)2

]
where strict inequality holds if (θc,γ) 6= (θc0,γ0) for su�ciently large t, ξ and x, so that our

identi�cation proof goes through.

Assumptions (g) and (h) hold from Assumption 9 (Equation (29)). Next, we consider As-
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sumption (i). We set χk to be χk = πkχ and χl = θc0l for l = 1, . . . , p. Furthermore,

E
[
f̃j (ym,χ0k, t, b)

]
≤ E

[
v2
jm + η2

jm

]
+ E

 ∞∑
l=p+1

γ0lψl (qjm,wm,xjm,MRjm (θc0))

2

wjm (MRjm (θc0) , t, b)


≤ E

[
v2
jm + η2

jm

]
+ E

[
sup
l≥p+1

ψl (qjm,wm,xjm,MRjm (θ0))2wjm (MRjm (θc0) , t, b)

] ∞∑
l=p+1

|γ0l|

2

≤ E
[
v2
jm + η2

jm

]
+ E

[
sup
l≥p+1

ψl (qjm,wm,xjm,MRjm (θ0))2wjm (MRjm (θc0) , t, b)

] ∞∑
l=p+1

|γ0l|

2

,

and the RHS is uniformly bounded. Thus, by taking expectation, we obtain

E
[
f̃j (ym,χ0k, t, b)

]
≤ E

[
v2
jm + η2

jm

]
+E

[
sup
l≥p+1

ψl (qjm,wm,xjm,MRjm (θ0))2wjm (MRjm (θc0) , t, b)

]
<∞.

Therefore, from the Dominated Convergence theorem, E
[
f̃j (ym,χ0k, t, b)

]
→ E

[
f̃j (ym,χ0, t, b)

]
as k →∞. Hence, (i) is satis�ed.

Furthermore, by construction, f̃ (ym,χk, t, b) is uniformly bounded, and hence,

Ξ∞ =
{
χ ∈ Ξ : E

[
f̃ (ym,χ, t, b)

]
=∞

}
is an empty set, and assumption (j) is satis�ed.

Therefore, the assumptions that are equivalent of Assumption 4.1 of Bierens (2014) are

satis�ed. Then, consider the ε-neighborhood of a parameter vector χ∗ ∈ Ξ. Then, because ym

is i.i.d, for χ in the ε neighborhood of χ∗, the random variable infχ∈Ξ,d(χ∗,χ)<ε f̃j (ym,χ, t, b) is

also i.i.d. Thus, we can use the Kolmogorov's LLN. To do so, we need to show that one can take

the expectation of infχ∗∈Ξ,d(χ,χ∗)<ε
f̃j (ym,χ∗, t, b) over ym, i.e., that it is integrable over ym.

Since, by construction, f̃ (ym,χk, t, b) is nonnegative and uniformly bounded, given any χ ∈ Ξ,

for any ε > 0,

E

[∣∣∣∣ inf
χ∗∈Ξ,d(χ,χ∗)<ε

f̃j (ym,χ∗, t, b)

∣∣∣∣] <∞
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Hence, from Kolmogorov's LLN,

1

M

M∑
m=1

inf
χ∗∈Ξ,d(χ,χ∗)<ε

f̃j (ym,χ∗, t, b)→a.s. E

[
inf

χ∗∈Ξ,d(χ,χ∗)<ε
f̃j (ym,χ∗, t, b)

]
(61)

as M →∞. Now, let

f̂ (ym,χ, t, b) ≡
1

J

J∑
j=1

fj (ym,χ)wjm (MRjm (θc) , t, b)

where

wjm (MRjm (θc) , t, b) ≡
h
(
MRjm(θc)−t

b

)
[MJ ]−1∑M

m=1

∑J
j=1 h

(
MRjm(θc)−t

b

)
=

E
[
h
(
MRjm(θc)−t

b

)]
[MJ ]−1∑M

m=1

∑J
j=1 h

(
MRjm(θc)−t

b

) × w̃jm (MRjm (θc) , t, b)

Now, let

ÊM

[
h

(
MRjm (θc)− t

b

)]
≡ 1

MJ

M∑
m=1

J∑
j=1

h

(
MRjm (θc)− t

b

)
and let

AM ≡
E
[
h
(
MRjm(θc)−t

b

)]
ÊM

[
h
(
MRjm(θc)−t

b

)] .
By applying the Kolmogorov Law of Large Numbers, as M →∞,

ÊM

[
h

(
MRjm (θc)− t

b

)]
a.s.→ E

[
h

(
MRjm (θc)− t

b

)]

For su�ciently large t > 0, E
[
h
(
MRjm(θc)−t

b

)
|zm
]
> 0, thus,

AM
a.s.→ 1. (62)

Then, since

f̂ (ym,χ, t, b) = AM × f̃ (ym,χ, t, b)
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Therefore, from Equation (61) and (62), for any ε > 0

1

M

M∑
m=1

inf
χ∗∈Θc×Γ,d(χ,χ∗)<ε

f̂ (ym,χ∗, t, b)
a.s.→ E

[
inf

χ∗∈Θc×Γ,d(χ,χ∗)<ε
f̂ (ym,χ∗, t, b)

]
.

Therefore, Theorem 4.1 of Bierens holds. That is, plimM→∞d (χM ,χ0) = 0 if and only if for

any compact subset Ξc of Ξ with χ0 in its interior, limM→∞Pr (χbM ∈ Ξc) = 1.

Next, we explain how we set up the parameter space so that Assumption 4.2 of Bierens (2014)

is satis�ed. That is,

Assumption 13 (Assumption 4.2, Bierens (2014) ) Either

(a) Ξ = ∪∞n=1Ξn is compact itself, or

(b) There exists a compact set Ξc containing χ0 such that Q (χ0) < E
[
infχ∈Ξ\Ξc f̃ (ym,χ, τ, b)

]
<

∞.

Assumption 12 and (g) guarantee (a). Then, we can prove consistency using an equivalent

of Theorem 4.2 of Bierens (2014). That is,

Theorem 1 (Theorem 4.2, Bierens (2014)) Under assumptions that are equivalent to the As-

sumptions 4.1 and 4.2 of Bierens (2014), plimM→∞d (χM ,χ0) = 0.

Therefore, we proved consistency of our estimator.

Next, we prove the asymptotic normality of our estimator. First, we prove that ∂AM/∂θcl
a.s.→

0 and ∂2AM/∂θck∂θcl
a.s.→ 0. Now, let

aM (θc) ≡ log
(
E

[
h

(
MRjm (θc)− t

b

)])
− log

(
ÊM

[
h

(
MRjm (θc)− t

b

)])
.

Furthermore, since h
(
MRjm(θc)−t

b

)
satis�es the conditions required for interchanging the inte-

gration and derivatives, we do so and apply the Kolmogorov's Law of Large Numbers to derive

ÊM

[
∂

∂θcl
h

(
MRjm (θc)− t

b

)]
a.s.→ E

[
∂

∂θcl
h

(
MRjm (θc)− t

b

)]
, l = 1, . . . , p,

∂

∂θcl
aM (θc) =

E
[

∂
∂θcl

h
(
MRjm(θc)−t

b

)]
E
[
h
(
MRjm(θc)−t

b

)] −
ÊM

[
∂
∂θcl

h
(
MRjm(θc)−t

b

)]
ÊM

[
h
(
MRjm(θc)−t

b

)] a.s.→ 0.

Since,
∂

∂θcl
aM (θc) =

1

AM

∂AM
∂θcl

, and AM
a.s.→ 1,

∂AM
∂θcl

a.s.→ 0.
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By the same logic, it is straightforward to show

∂

∂θckθcl
aM (θc)

a.s.→ 0,

and thus,
∂2AM
∂θck∂θcl

a.s.→ 0.

We next discuss how we either impose or derive Assumption 6.1 of Bierens (2014).

Assumption 14 (Assumption 6.1, Bierens (2014))

(a) Parameter space Ξ is endowed with the norm

‖χ‖r =
∞∑
n=1

nr |χn|

and the associated metric d (χ1,χ2) = ‖χ1 − χ2‖r.

(b) The true parameter χ0 = {χ0,n}∞n=1 satis�es ‖χ0‖r <∞.

(c) There exists k ∈ N such that for any n ≥ k χ0,n = πnχ0 ∈ ΞIntn , where ΞIntn is the interior

of the sieve space Ξn.

(d) f (ym,χ, τ, b) is a.s. twice continuously di�erentiable in an open neighborhood of χ0.

We assume (a) and (b). For (c), as explained earlier, we follow Bierens (2014) and construct

the compact parameter space so that (c) is satis�ed. The logit and BLP marginal revenues

are twice di�erentiable and the cost function is also assumed to be twice continuously di�eren-

tiable. Furthermore, w̃jm (MRjm, t, b) is also constructed to be twice continuously di�erentiable.

Therefore, (d) holds.

It is straightforward to show that Assumption 6.2 of Bierens (2014) is satis�ed given As-

sumption 14 and the earlier consistency proof. That is,

Assumption 15 For any subsequence k = kM of the sample size M satisfying kM → ∞ as

M →∞, plimM→∞||χkM − χ0||r = 0.

Then, Bierens (2014) proves in Lemma 6.1 that there exists a subsequenceKn ≤ n, limn→∞Kn =

∞ such that

lim
M→∞

Pr

[
M∑
m=1

∇kf̃
(
ym,χnM , t, b

)
= 0 for k = 1, . . . ,KnM

]
= 1
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Furthermore, we also assume:

Assumption 16 (a) : E
[
(ν + ζ)4

]
<∞

First, we set r = 2. Then, we prove that Assumption 6.3 of Bierens (2014) is satis�ed. That is,

Lemma 6 (Assumption 6.3, Bierens (2014))There exists a nonnegative integer r0 < r such that

the following local Lipschitz conditions hold for all positive integer l ∈ N we have

E
∥∥∥∇lf̃ (y,χ0, t, b)−∇lf̃

(
y,χ0,k, t, b

)∥∥∥ ≤ Cl ∥∥χ0 − χ0,k

∥∥
r0

where ∇lf̃ (ym,χ0, t, b) = ∂f̃ (ym,χ0, t, b) /∂χ0,l,
∑∞

l=1 2−lCl < ∞ and the sieve order k = kM

is chosen such that

lim
M→∞

√
M

∞∑
n=kM+1

nr0
∣∣χ0,n

∣∣ = 0.

Proof. We choose kM > p for any M > 0.

f̃j (ym,χ, t, b) = fj (ym,θc) w̃jm (MRjm (θc) , t, b)

= [Cjm − ψ (qjm,wjm,xjm,MRjm (θc) ,γ)]2 w̃jm (MRjm (θc) , t, b)

For k > p, l > p,

∇kf̃j (ym,χ, t, b) = −2 [Cjm − ψ (qjm,wjm,xjm,MRjm (θc) ,γ)]ψk−pw̃jm (MRjm (θc) , t, b)

(63)

E
[∣∣∣∇l,kf̃ (ym,χ, t, b)

∣∣∣] = E [2 |ψl−pψk−pw̃jm (MRjm (θc) , t, b)|] < B. (64)

for su�ciently large B > 0.

For k > p, l ≤ p,

∇lf̃j (ym,χ, t, b) = [−2 [Cjm − ψ (qjm,wjm,xjm,MRjm (θc) ,γ)]

×ψMR (qjm,wjm,xjm,MRjm (θc) ,γ) w̃jm (MRjm (θc) , t, b)

+ [Cjm − ψ (qjm,wjm,xjm,MRjm (θc) ,γ)]2
∂

∂MR
w̃jm (MRjm (θc) , t, b)

]
× ∂MRjm (θc)

∂θcl

(65)

∇k,lf̃j (ym,χ, t, b) =

[
2ψMRψk−pw̃jm − 2A1ψMR,k−pw̃jm − 2A1ψk−p

∂

∂MR
w̃jm (MRjm (θc) , t, b)

]
×∂MRjm (θc)

∂θcl

where A1 ≡ Cjm − ψ (qjm,wjm,xjm,MRjm (θc) ,γ).
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Since ψ (,MRjm (θc0)), ψ (,MRjm (θc) ,γ), ψMR (MRjm (θc) ,γ), ψMR,k−p (,MRjm (θc) ,γ),

w̃jm and ∂w̃jm (MRjm (θc) , t, b) /∂MR, ∂MRjm (θc) /∂θcl are uniformly bounded over the com-

pact domain,

E
[∣∣∣∇l,kf̃ (ym,χ, t, b)

∣∣∣] < B

for su�ciently large B > 0.

Therefore, from the mean value theorem, for k > p,

E
∥∥∥∇lf̃ (y,χ0, t, b)−∇lf̃

(
y,χ0,k, t, b

)∥∥∥ ≤ B ∞∑
n=k+1

|χ0n| < B
∥∥χ0 − χ0,k

∥∥
r0

and claim holds.

Next, Assumption 6.4 of Bierens (2014) requires that for all k ∈ N, E
[
∇kf̃ (y,χ0, t, b)

]
= 0.

This holds because of the F.O.C. for the parameter value χ0.

We show next that Assumption 6.5 of Bierens (2014):
∑∞

j=1 j2
−jE

[(
∇j f̃ (y,χ0, t, b)

)2
]
<

∞, holds. From Equations (63) and (65), since for l > 0, ψ (,MRjm (θc0)), ψ (,MRjm (θc) ,γ),

ψMR (MRjm (θc) ,γ), ψMR,l−p (,MRjm (θc) ,γ) for l > p, w̃jm and ∂w̃jm (MRjm (θc) , t, b) /∂MR,

∂MRjm (θc) /∂θcl are uniformly bounded over the compact domain, for j > 0, ∇j f̃ (y,χ0, t, b)

is uniformly bounded over the compact domain. Therefore,

E

[[
∇lf̃ (ym,χ, t, b)

]2
]
< B

for su�ciently large B > 0, and claim is satis�ed.

Next, we prove that (a)-(c) of Assumption 6.6 of Bierens (2014) is satis�ed.

Lemma 7 (Assumption 6.6, Bierens (2014)) For some τ > 0,

(a)
∑∞

j=1

∑∞
k=1 (jk)−2−τ E

[∣∣∣∇j,kf̃ (y,χ0, t, b)
∣∣∣] <∞, where

∇j,kf̃ (ym,χ0, t, b) = ∂2f̃ (ym,χ0, t, b) /
(
∂χ0,j∂χ0,k

)
.

(b) limε↓0
∑∞

j=1

∑∞
k=1 (jk)−2−τ E

[
sup‖χ−χ0‖r≤ε

∣∣∣∇j,kf̃ (y,χ, t, b)−∇j,kf̃ (y,χ0, t, b)
∣∣∣] = 0.

(c) For at least one pair of positive integers l, n, E
[
∇l,p+nf̃ (y,χ0, t, b)

]
6= 0.

Proof. (a): From the proof of Lemma 6, for j > p, k > p, and for j ≤ p, k > p and j > p, k ≤ p

E
[∣∣∣∇j,kf̃ (ym,χ, t, b)

∣∣∣] < B
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for su�ciently large B > 0. For k ≤ p, l ≤ p,

∇lf̃j (ym,χ, t, b) = [−2 [Cjm − ψ (qjm,wjm,xjm,MRjm (θc) ,γ)]

×ψMR (qjm,wjm,xjm,MRjm (θc) ,γ) w̃jm (MRjm (θc) , t, b)

+ [Cjm − ψ (qjm,wjm,xjm,MRjm (θc) ,γ)]2
∂

∂MR
w̃jm (MRjm (θc) , t, b)

]
× ∂MRjm (θc)

∂θcl

=

[
−2A1ψMRw̃jm +A2

1

∂

∂MR
w̃jm

]
∂MRjm (θc)

∂θcl

∇k,lf̃ (ym,χ, t, b) =

[
−2ψ2

MRw̃jm +A1ψMR,MRw̃jm +A1ψMR
∂

∂MR
w̃jm

]
∂MR (θc)

∂θcl

+

[
−2A1ψMR

∂

∂MR
w̃jm +A2

1

∂2

∂MR∂MR
w̃jm

]
∂MR (θc)

∂θcl

+

[
−2A1ψMRw̃jm +A2

1

∂

∂MR
w̃jm

]
∂2MRjm (θc)

∂θcl∂θcl

Once again, by earlier arguments, it follows that,

E
[∣∣∣∇k,lf̃ (ym,χ, t, b)

∣∣∣] = 2E [|B|] <∞.

Therefore, (a) holds.

Note that all the terms of ∇k,lf̃ (ym, τ, b,χ) are continuous for ‖χ− χ0‖r ≤ ε for su�ciently

small ε > 0. Furthermore, it is uniformly continuous because the parameters belong to a compact

set. Therefore, (b) holds.

(c) Suppose that for k > p and k = l, from Equation (64),

E
[
∇k,lf̃j (ym,χ, t, b)

]
= E

[
2ψ2

k−pw̃jm (MRjm (θc) , t, b)
]
6= 0

Therefore, (c) holds.

Now, let ηk (u)s be orthogonal weight functions on [0, 1] such that σk =
´ 1

0 ηk (u)2 du converges

fast enough to zero as k goes to in�nity. Further, n in χn denotes the number of parameters,

including the coe�cients on sieve polynomials, so that χk = 0 for all k > n. Kn used below is
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the subsequence de�ned in Lemma 6.1. of Bierens (2014).

Ũ (u) ≡

[
1√
M

M∑
m=1

f̃ (ym,χ0, t, b)

]
ηk (u) , Û (u) ≡

[
1√
M

M∑
m=1

f̂ (ym,χ0, t, b)

]
ηk (u) = AM Ũ (u)

W̃n (u) ≡
Kn∑
k=1

[
1√
M

M∑
m=1

∇kf̃ (ym,χn, t, b)

]
ηk (u) ,

Ŵn (u) ≡
Kn∑
k=1

[
1√
M

M∑
m=1

∇kf̂ (ym,χn, t, b)

]
ηk (u)

Ṽn (u) ≡
Kn∑
k=1

[
1√
M

M∑
m=1

(
∇kf̃ (ym,χ0, t, b)−∇kf̃ (ym,χ0n, t, b)

)]
ηk (u) ,

V̂n (u) ≡
Kn∑
k=1

[
1√
M

M∑
m=1

(
∇kf̂ (ym,χ0, t, b)−∇kf̂ (ym,χ0n, t, b)

)]
ηk (u)

Z̃n (u) ≡
Kn∑
k=1

[
1√
M

M∑
m=1

∇kf̃ (ym,χ0, t, b)

]
ηk (u) ,

Ẑn (u) ≡
Kn∑
k=1

[
1√
M

M∑
m=1

∇kf̂ (ym,χ0, t, b)

]
ηk (u)

b̃l,n (u) ≡ −
Kn∑
k=1

[
1

M

M∑
m=1

∇k,lf̃ (ym,χ0n + λk (χn − χ0n) , t, b)

]
ηk (u)

b̂l,n (u) ≡ −
Kn∑
k=1

[
1

M

M∑
m=1

∇k,lf̂ (ym,χ0n + λk (χn − χ0n) , t, b)

]
ηk (u)

where ηk (u)s are orthogonal weight functions on [0, 1] such that σk =
´ 1

0 ηk (u)2 du converges fast

enough to zero as k goes to in�nity. Note that in this case, n denotes the number of parameters,

including sieve polynomials. Then,

n∑
l=1

b̃l,n (u)
√
M (χn,l − χ0,l) = Z̃n (u)− W̃n (u)− Ṽn (u) ,

where, from Lemma 1, Bierens (2014), sup0≤u≤1

∣∣∣W̃nN (u)
∣∣∣ = op (1) and sup0≤u≤1

∣∣∣ṼnN (u)
∣∣∣ =

op (1) because of Assumption 6.3 of Bierens (2014).

Next, we state Lemma 6.2 of Bierens (2014).

Lemma 8 Under Assumption 6.4 and 6.5, Z̃n ⇒ Z on [0, 1] where Z is a mean zero Gaussian
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process with covariance function

Γ (u1, u2) = E [Z (u1)Z (u2)]

=
∞∑
k=1

∞∑
l=1

E
[
∇kf̃ (ym,χ0, t, b)∇lf̃ (ym,χ0, t, b) ηk (u1) ηl (u2)

]
.

Moreover,

sup0≤u1≤1,0≤u2≤1 |Γ (u1, u2)| <∞

and thus, Assumptions 6.1-6.5 imply that

n∑
l=1

b̃l,n (u)
√
M (χn,l − χ0,l)⇒ Z (u) .

Now, f̃ (ym,χ0, t, b) is i.i.d. distributed with mean E
[
f̃ (ym,χ0, t, b)

]
and variance

E

[
f̃ (ym,χ0, t, b)− E

[
f̃ (ym,χ0, t, b)

]2
]
<∞.

Thus, from the Central Limit Theorem, we obtain

1√
M

M∑
m=1

f̃ (ym,χ0, t, b)⇒ N
(
E
[
f̃ (ym,χ0, t, b)

]
, V ar

(
f̃ (ym,χ0, t, b)

))
.

Now,

Ẑn (u) = AM Z̃n +

[
p∑

k=1

∂AM
∂θck

][
1√
M

M∑
m=1

f̃ (ym,χ0, t, b)

]
ηk (u)⇒ Z,

becauseAM
a.s.→ 1, ∂AM/∂θck

a.s.→ 0, AM Z̃n ⇒ Z,
[∑p

k=1
∂AM
∂θck

] [
1√
M

∑M
m=1 f̃ (ym,χ0, t, b)

]
ηk (u)

P→

0. Similarly, we derive sup0≤u≤1

∣∣∣ŴnN (u)
∣∣∣ = op (1) and sup0≤u≤1

∣∣∣V̂nN (u)
∣∣∣ = op (1).

Therefore, Ẑn also satis�es Lemma 6.2. Furthermore,

n∑
l=1

b̂l,n (u)
√
M (χn,l − χ0,l)

= AM

n∑
l=1

b̃l,n (u)
√
M (χn,l − χ0,l)−

p∑
l=1

∂AM
∂θcl

b̃n (u)
√
M (χn,l − χ0,l)

−
p∑
l=1

p∑
k=1

∂AM
∂θcl∂θck

[
1√
M

M∑
m=1

f̃ (ym,χ0n + λk (χn − χ0n) , t, b)

]
ηk (u)

√
M (χn,k − χ0,k)

⇒ Z (u) ,
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because the 2nd converges to zero in distribution and so does the 3rd term because of ∂2AM/∂θck∂θcl
a.s.→

0.

Then, given Assumptions 6.1-6.5, we have

n∑
l=1

b̂l,n (u)
√
M (χn,l − χ0,l)⇒ Z (u) .

Next, we decompose this equation as follows.

(
b̂1,n (u) , . . . , b̂p,n (u)

)√
M (θcn − θc0) +

n−p∑
l=1

b̂l+p,n (u)
√
M (γn,l − γ0,l)

= Ẑn (u)− Ŵn (u)− V̂n (u)⇒ Z (u)

Now, as in Bierens (2014), let

ân (u) = (â1,n (u) , â2,n (u) , . . . , âp,n (u))′

be the residual of the following projection.

(
b̂1,n (u) , . . . , b̂p,n (u)

)′
= A

(
b̂p+1,n (u) , ..., b̂n,n (u)

)′
+ ân (u) .

Then, one can show that

ˆ 1

0
ân (u) ân (u)′ du

√
M (θcn − θc0) =

ˆ 1

0
ân (u)

(
Ẑn (u)− Ŵn (u)− V̂n (u)

)
du,

where ân (u) ân (u)′ is a p by p matrix, and θcn − θc0 a p by 1 vector.

Then, from Lemma 6.3, Bierens (2014),

plimM→∞

ˆ 1

0
ân (u) ân (u)′ du =

ˆ 1

0
a (u)a (u)′ du

where a (u) is the residual of the following projection exercise

b (u) = (b1 (u) , ..., bp (u))′ = A (bp+1 (u) , ..., b∞ (u))′ + a (u) ,
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where b (u) ∈ L2
0 (0, 1) satis�es

∥∥∥b̂l,n − bl∥∥∥ =

√ˆ 1

0

(
b̂l,n (u)− bl (u)

)2
du = op (1)

for l = 1, . . . , p and
n∑

l=p+1

ρl

∥∥∥b̂l,n − bl∥∥∥ = op (1)

and

lim inf
n→∞

∥∥∥∥∥∥
n∑

l=p+1

ρlbl

∥∥∥∥∥∥ > 0

We impose the Assumptions 6.7 of Bierens (2014), which is:

Assumption 17 Assumption 6.7, Bierens (2014): Let

Bk,l =


E
[
∇1,1f̂ (y,χ0, t, b)

]
. . . E

[
∇1,nf̂ (y,χ0, t, b)

]
...

. . .
...

E
[
∇j,1f̂ (y,χ0, t, b)

]
. . . E

[
∇j,nf̂ (y,χ0, t, b)

]
 .

rank (Bk,k) = k for each k ≥ p.

Next, we impose Assumption 6.8:

lim
n→∞

inf
k→∞

det
(
L(n,k)
p

)
> 0

where L(n,k) satis�es Φ
1/2
k Bn,k = Qk,nL

(n,k), and Φk = diag
(
2−2, 2−4, . . . , 2−2k

)
, Qk,n is a k× n

orthogonal matrix and L
(n,k)
p is the upper-left p× p block of the triangular matrix L(n,k). Then,

Lemma 6.4 in Bierens (2014) holds, and

F =

ˆ 1

0
a (u) a (u)′ du

is a full rank matrix, thus, invertible. Then,

√
M (θcM − θc0)

d→ Np

(
0,F−1ΥF′−1

)
,

where

Υ =

ˆ 1

0

ˆ 1

0
a (u1) Γ (u1, u2) a (u2) du1du2.
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Then, for the logit model, θc0 = {α} and for the BLP model, θc0 = {µα, σα, σβk, k = 1, . . . ,K}.

Then, because of consistency, plimM→∞θ̂cM = θ0. Hence, δ̂mM = s−1
(
sm, θ̂cM

)
→p δm0 for

each m = 1, . . . ,M and therefore, given the orthogonality assumption E [Xmξm] = 0, given

conditions for the consistency of the OLS estimator for the logit model

β̂M =
(
X′X

)−1
X′
[
δ̂M − pα̂

]
→p β0,

or

µ̂βM =
(
X′X

)−1
X′
[
δ̂M − pµ̂α

]
→p µβ0,

as M → ∞. Therefore, ξ̂M →p ξ0. Therefore, if we impose standard assumptions to ensure

plimM→∞
1
MX′X = E (X′mXm), and E (X′mXm) being nonsingular, plimM→∞

1
M

∑M
m=1

̂X′m
(
ξ′mξm

)
Xm =

E [X′mΣ0Xm], then

√
M
(
µ̂β − µβ0

)
→d N

(
0, E

(
X′mXm

)−1
E
[
X′mΣ0Xm

]
E
(
X′mXm

)−1
)

as M →∞.

G: Details on the empirical application on the banking sector

We use the bank level total deposits as the output and the bank level employee salaries as the

variable cost. We derive the deposit interest rate by calculating the deposit interest payment per

bank level total deposit minus per deposit service fee. Market level weekly wage is used as the

input price. The controls we use are the log of population per branch, log of number of markets

served and the log of bank age plus one. We construct the bank level dataset of these variables by

merging the data from various sources. We obtain the bank level total deposits and the number of

branches for each market from Federal Deposit Insurance Corporation (FDIC), employee salaries,

deposit and loan interest rates at the bank level from the balance sheet information reported to

the Federal Financial Institutions Examination Council (FFIEC). Information on county level

weekly wage and county level population is obtained from the Census and the Bureau of Labor

Statistics. We de�ne markets as Metropolitan Statistical Areas (MSA's) for urban areas and

counties for rural areas.

By closely inspecting the data, we noticed that in many markets, credit unions seem to

be e�ectively nonexistent as an outside option. We made a judicious choice of removing the

markets whose market share of credit unions is less than 1 %. More concretely, we start with
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16417 banks in 2325 markets. After removing the markets that have missing data on banks and

credit unions, we have 11647 banks in 1117 markets. Then, removing the markets with small

share of credit unions, we are left with 10513 banks in 954 markets. Finally, for the sake of

reducing the computational burden, we only selected markets where the total number of banks

are no more than 40. Then, we are left with 8155 banks in 914 markets.

In Figure 3, we show the kernel �tted relationship between log deposits and log of salaries

divided by weekly wage, where deposits and total salaries are in millions of dollars. As we can

see, overall, the relationship between log deposits and log variable cost is increasing. In Table 9,

we report the sample statistics.
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Table 9: Sample Statistics

Description Mean Std.dev

(a) Bank and market data
Bank deposits (in million $) 182.2 735.4
Bank deposit market share 0.094 0.114
Bank total salaries (in million $) 455.9 1396.0
Outside option deposit market share 0.153 0.131
Deposit interest rate 0.025 7.484E-3
No. of banks per market 14.08 9.534
No. of markets per bank 2.428 6.751
Number of branches per market 4.137 7.835
Bank age 75.68 47.08
2002 Jan. treasury note interest rate 0.055 0
Housing price index 139.4 14.02

(b) Sample
Sample size 8155
No. of banks 3230
No. of markets 914
No. of single market banks 2067

110


