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1 Introduction

In this paper, we develop a new methodology for estimating models of differentiated products
markets. Our approach requires commonly used demand-side data on products’ prices, market
shares, observed characteristics, and firm-level cost data. The novelty of our method is that it
does not use instrumental variables to deal with the endogeneity of prices to demand shocks in
estimating demand, nor the endogeneity of outputs to cost shocks in estimating cost functions.
Instead, we use cost data for identification and estimation. Market-level demand and cost data
tend to be available for large industries that are subject to regulatory oversight (which often
requires firms to report cost data). Examples include banking, telecommunications, and nursing
home care. Such major sectors of the economy represent natural settings for the application of
our estimator.

Recently, in order to incorporate the rich heterogeneities of agents, aggregate demand or
market share equations are becoming more complex and nonlinear, and thus, more instruments
and their interactions are needed for the identification of parameters. It is, in general, a challenge
to convincingly argue that all these instruments are valid. We show in our Monte-Carlo exercises
and an empirical example, how a small subset of invalid instruments can greatly bias parameter
estimates in unanticipated directions in nonlinear demand models. In contrast, we find that the
cost data based approach that we propose tends to deliver consistent and reasonable parameter
estimates. By comparing the [V-based parameter estimates and those obtained by our cost-based
approach, our method can provide additional support for the chosen instruments if the estimates
are similar.

The frameworks of interest for this paper are the logit and random coefficient logit models
of Berry (1994) and Berry et al. (1995) (hereafter, BLP) which have had a substantial impact
on empirical research in 10 and various other areas of economics.! These models incorporate
unobserved heterogeneity in product quality and use instruments to deal with the endogeneity
of prices to such heterogeneity. As Berry and Haile (2014) and others point out, as long as there
are instruments available, demand functions can be identified using market-level data. Popular
instruments include cost shifters such as market wages, observed product characteristics of other
products in a market (“BLP instruments”), and the price of a given product in other markets

(“Hausman instruments”). The attractiveness of this approach is that even in the absence of cost

!Leading examples from IO include measuring market power (Nevo (2001)), quantifying welfare gains from
new products (Petrin (2002)), and merger evaluation (Nevo (2000)). Applications of these methods to other fields
include measuring media slant (Gentzkow and Shapiro (2010)), evaluating trade policy (Berry et al. (1999)), and
identifying sorting across neighborhoods (Bayer et al. (2007)).



data, firms’ marginal cost functions can be recovered with the assumption that firms set prices
to maximize profits given their rivals’ prices.?

Nonetheless, BLP also propose using cost data, if available, for a variety of purposes, including
improving their parameter estimates as well as understanding the relationship between prices and
marginal costs. Recently, some researchers have started incorporating cost data as an additional
source of identification. For instance, Houde (2012) combines wholesale gasoline prices with
first order conditions that characterize stations’ optimal pricing strategies to identify stations’
marginal cost function. Crawford and Yurukoglu (2012) and Byrne (2015) similarly exploit
first order conditions and firm-level cost data to identify the cost functions of cable companies.
Some researchers have also used demand and cost data to test assumptions regarding conduct
in oligopoly models. See, for instance, Byrne (2015), McManus (2007), Clay and Troesken
(2003), Kim and Knittel (2003), and Wolfram (1999). Kutlu and Sickles (2012) estimate market
power while allowing for inefficiency in production. Like previous research, these researchers use
instrumental variables (IVs) to identify demand in a first step.

We extend the existing research on BLP-type models by developing and formalizing new
ways to obtain additional identification with cost data.® Our main theoretical finding is that
by combining demand and cost data, and by using the restriction that marginal revenue equals
marginal cost in equilibrium, one can jointly identify the price coefficients in the BLP demand
model and a nonparametric cost function, without using any instruments.* The type of cost data
we have in mind comes from firms’ income statements and balance sheets, among other sources.
Such data has been used extensively in a large parallel literature on cost function estimation in
empirical 10.5

It is important to note that we do not require data on marginal cost or markups nor knowledge
of the cost function. If such information were available, it would be straightforward to use the first
order condition to identify the price parameters without any instruments. For example, Smith

(2004) estimates a demand model using consumer-level choice data for supermarket products.

2There has been some research assessing numerical difficulties with the BLP algorithm (Dube et al. (2012) and
Knittel and Metaxoglou (2012)), and the use of optimal instruments to help alleviate these difficulties (Reynaert
and Verboven (2014)).

3At a broader level, our paper shares a common theme with De Loecker (2011), where the usefulness of
demand-side data in identifying production functions and measuring productivity is investigated.

“Fox et al. (2012) establish identification of the random coefficient discrete choice models with exogenous
regressors. Berry and Haile (2014) prove nonparametric identification of a general market share function when
the regressors are endogenous but instruments are available.

®Numerous studies have used such data to estimate flexible cost functions (e.g., quadratic, translog, generalized
Leontief) to identify economies of scale or scope, measure marginal costs, and quantify markups for a variety of
industries. For identification, researchers either use instruments for output or argue that output is effectively
exogenous from firms’ point of view in the market they study.



The author does not, however, have product-level price data. To overcome this missing data
problem, the author develops an identification strategy that uses data on national price-cost
margins and identifies the price coefficient in the demand model as the one that rationalizes
these national margins. Our study differs in that we focus on the more common situation where
a researcher has data on prices, aggregate market shares, and total costs, but not marginal costs.
We also do not follow the literature on cost function estimation to measure marginal cost as doing
80 requires use of instruments to deal with the endogeneity of output due to profit maximization
by firms.

We note that in the logit as well as BLP demand equations, the inversion procedure in Berry
(1994) and BLP enables researchers to substitute away the unobserved product characteristics
using observables, and thus, marginal revenue can be expressed as a function of only observables
and the parameters. We apply this approach to the cost side as well. Assuming that cost is a
function of output, input prices, observed characteristics and a cost shock, we show that when
cost data is available, cost (or expected cost conditional on observables) can be used to control
for the cost shock. Then, both marginal revenue and marginal cost can be expressed as functions
of only observables and parameters. Therefore, no orthogonality conditions between observables
and unobservables are needed for identification. Then, the “market structure” variables, such as
the observed characteristics of rival firms in BLP, price, market share of rival firms, and market
size can be used as sources of variation for the identification of price parameters through the
exclusion restriction that they do not enter in the cost function. However, they do not have to
be instruments.

Our results then imply that one does not need to use instruments to identify the parameters
for endogenous prices in differentiated goods markets, nor to identify the cost function where
output is potentially endogenous. Our identification strategy also does not require information
on the correlation of the demand and cost shocks, which is used by MacKaye and Miller (2018)
to identify the price coefficient of demand, nor do we need orthogonality between observed and
unobserved product characteristics.

In our paper, we show that cost data can be used to deal with the endogeneity issue of
product prices to demand shocks with relatively weak assumptions. The main requirement we

have on the nonparametric cost function is that it is strictly increasing in output and cost shock

SPetrin and Seo (2016) propose an identification and estimation scheme that allows for observed and unobserved
characteristics in the demand equation to be endogenously determined. They skillfully exploit the optimal choice
of observed characteristics to create additional moments. However, in the BLP random coefficient model of
demand, the number of first order conditions is less than the number of parameters. Therefore, additional
moment restrictions are required.



and in addition marginal cost is strictly increasing in the cost shock. We also allow for cost
data with measurement error, random component of fixed cost as well as systematic over/under
reporting by firms.

We do not need any variation in market size to identify and estimate the BLP-demand
model. For logit demand, we need it, but such variation does not need to be exogenous, that
is, orthogonal to other variables that determine the equilibrium outcomes. In our Monte-Carlo
simulations, we show that our methodology yields consistent estimates even when market size is
correlated with demand and cost shocks, as well as input prices.

We also show that we can identify price coefficients without any instruments, even if the true
market size is unobservable, as long as it is a function of observables. We follow Bresnahan and
Reiss (1990) partly in that we assume, as they do, that the variables determining market size do
not enter the cost function. However, we do not exclude these variables from the demand function
as they do. We believe that our exclusion restriction is more reasonable because typically, the
determinants of market size are demographics, which are likely to affect demand but do not affect
cost directly.

We also highlight a Curse of Dimensionality problem in the nonparametric estimation of
the expected cost conditional on observables that likely makes an estimator based on the direct
application of our identification results impractical. This motivates our two-step Sieve Non-
Linear Least Squares (SNLLS) estimator, which does not suffer from the dimensionality problem.
This is essentially because we use marginal revenue, which is a parametric function, to control
for the cost shock, rather than expected cost conditional on observables. This estimator is
semi-parametric in that it assumes parametric logit or BLP demand and a nonparametric cost
function. We also show how this estimator can be adapted to accommodate various data and
specification issues that arise in practice. These include endogenous product characteristics,
imposing restrictions on cost functions such as homogeneity of degree one in input prices, dealing
with the difference between accounting cost and economic cost, missing cost data for some
products or firms, and multi-product firms.

Through a set of Monte-Carlo experiments for the BLP demand model, we illustrate how our
estimator delivers consistent parameter estimates when the demand shock is not only correlated
with the equilibrium price and output, but also with the cost shock, input prices, and market
size, observed characteristics of rival products and when the cost shock is correlated with market
size as well. In such a setting there are no valid instruments to account for price endogeneity.

In particular, market size cannot work as an exogenous variation for the supply side, and the



orthogonality between the demand and cost shocks cannot be used as a moment restriction for
consistent estimation of price parameters. Hence, the IV estimates are shown to be biased. Our
Monte-Carlo experiments also show that no variation in market size is needed for identifying the
BLP price parameters.

We then apply our methodology to the estimation of deposit demand in the US banking
industry. We find that our method works well. The magnitude of the coeflicient estimate on
deposit interest rate is smaller than the ones obtained in the existing literature such as Dick
(2008) and Ho and Ishii (2012). Further, we find that the IV-based method yields a negative
coefficient on deposit interest rate whereas ours is positive which is what one would expect.

This paper is organized as follows. In Section 2, we specify the differentiated products model
that we adopt from the literature and review the IV based estimation approach in the literature.
In Section 3, we study identification when demand and cost data are available and present
our formal identification results. In Section 4, we propose the two-step SNLLS estimator and
analyze its large sample properties. Section 5 contains a Monte-Carlo study that illustrates the
effectiveness of our estimator in environments where standard approaches to demand estimation
yield biased results. In Section 6 we apply our methodology to the estimation of deposit demand
in the banking industry. In Section 7 we conclude. The appendix contains several proofs and

further details of the deposit demand estimation exercise.

2 Differentiated products models and IV estimation

In this section, we describe the standard differentiated products model that we adopt including
some of the assumptions and provide an overview of IV estimation of the demand and supply
side. For more details, see Berry (1994), Berry et al. (1995), Nevo (2001) and others. Most
features of the model we discuss here are carried over to the next section where we explain our

cost data-based identification strategy.

2.1 Differentiated products discrete choice demand models

In the standard model, consumer ¢ in market m gets the following utility from consuming one
unit of product j:

Uijm = XjmfB + Pjm« + &jm + Eijm,

where x;,, is a 1 x K vector of observed product characteristics, pjn, is price, &, is the unobserved

product quality (or demand shock) that is known to both consumers and firms but unknown to



researchers, and €;j,, is an idiosyncratic taste shock. Let the demand parameter vector be
0= [a,ﬁ']/ where 3 is a K x 1 vector.
It is assumed that there are m = 1... M isolated markets that have respective market sizes

Qm.” Each market has j = 0....J,, products whose aggregate demand across individuals is
qim = Sijmv

where gy, denotes output and s, denotes market share. In the case of the Berry (1994) logit
demand model, €;;,, is assumed to have a logit distribution. Then, the aggregate market share

for product j in market m is,

exp (ijﬁ + Djma + fgm) B exp (5jm) (1)

Sm(0> Es(pm7Xm7£m70) = — ’
’ ’ Zi;n() exp (XkmB + Prkm@ + Skm) Z]gzo exp (0km)

where Py, = [Pom, P1ms - PJ,m) 18 & (Jm + 1) x 1 vector,

X0om

X1im

L XJImm

is a (J, + 1) x K matrix, &, = [om, E1my - &d,m)" 18 @ (Jm + 1) x 1 vector, and

5jm = ijﬁ + Pjma + é-jma (2)

is the “mean utility” of product j in market m. Using this definition, we can express market share

in Equation (1) as s; (6(0)) = sj (Pm, Xm, &,,; @) where 6(0) = [00m(0),01m(0),...,0.1,.m(0)].
Good j = 0 is labeled the “outside good” or “no purchase option” that corresponds to not

buying any of the j = 1,..., Jp, goods. This good’s product characteristics, price, and demand

shock are normalized to zero (i.e., Xgm = 0, pom = 0, and &y, = 0 for all m), which implies

50m(0> =0. (3)

This normalization, together with the logit assumption for the distribution of €;;,,, identifies the

level and scale of utility.

"With panel data the m index corresponds to a market-period.



In BLP, one allows the price coefficient and coefficients on the observed characteristics to be
different for different consumers. Specifically, o has a distribution function Fy, (.;0,), where 6,
is the parameter vector of the distribution, and similarly, 8 has a distribution function Fg (.;03)
with parameter vector 8g. The probability with which a consumer with coefficients o and 3
purchases product j is identical to that provided by the market share formula in Equation (1).
The aggregate market share of product j is obtained by integrating over the distributions of «

and 3,

exp (XjmB + pjma +

85 (Pms X, €13 0) / / T i@+ &jm) dF5(B;03) dF, (;0,),  (4)
B8 Zk 0 €Xp Xk’mIB + Pkma + Ekm)

where 8 = [9;, B’ﬂ]/. Letting p1o to be the mean of o and pg the mean of 8, the mean utility is

defined to be

6jm = XjmMg + Dimba + Ejm (5)

with &g, = 0 for the outside good.

2.1.1 Recovering demand shocks

For each market m = 1,... M, researchers are assumed to have data on prices p,,, market shares
Sm = [Soms S1m, -+, SJ,,m|" and observed product characteristics X,,, for all firms in the market.
Given 6 and this data, one can solve for the vector §,, through market share inversion. That
is, if we denote s;j (6, (0);80) to be the market share of firm j predicted by the model, market

share inversion involves obtaining d,, by solving the following set of J,,, equations,
Sj((sm(0>7j§0>_5jm:07 for j=0,...,Jm, (6)

and therefore,

0 (0) =571 (5,,;0). (7)

The vector of mean utilities that solves these equations perfectly aligns the model’s predicted
market shares to those observed in the data.

In the logit model, Berry (1994) shows we can easily recover mean utilities for product j
using its market share and the share of the outside good as 0jm, (0) = log (sjm) — log (som),
j=1,...,Jmn. In the random coefficient model, there is no such closed-form formula for mar-

ket share inversion. Instead, BLP propose a contraction mapping algorithm that recovers the



unique &5, (@) that solves Equation (7) under some regularity conditions. In both cases, dop, is
normalized to 0.

With the mean utilities and parameters in hand, one can recover the structural demand
shocks straightforwardly from Equation (2) for the logit demand and Equation (5) for the BLP

demand.

2.1.2 IV estimation of demand

A simple regression of Equation (2) or (5) with d;,, (6) being the dependent variable and x;,, and
pjm being the regressors would yield a biased estimate of the price coefficient. This is because
firms likely set higher prices for products with higher unobserved product quality, which creates
a correlation between pjy, and &y, violating the OLS orthogonality condition E[{jmpjm] = 0.
Researchers use a variety of demand instruments to overcome this issue. In particular, researchers
construct a GMM estimator for @ by assuming the following population moment conditions are

satisfied at the true value of the demand parameters 6g:

E[jm (60) zjm] = 0

where zj,, is an L x 1 vector of instruments that is correlated with x;,,. Also, instruments are

required to satisfy the exclusion restriction that at least one variable in zj,, is not contained in

Xim-

2.2 Cost Function and Supply

For each product j in market m, in addition to the data related to demand explained above,
researchers observe output ¢, (hence, market size Qpn, = ¢jm/Sjm as well), L x 1 vector of input
price wj,, and cost Cj,,. The observed cost Cj,, is assumed to be a function of output, input

prices W, observed product characteristics x;,, and a cost shock vjy,. That is,

C]m =C (q]ma Wim, Xjim, Ujm; T) )

where 7T is a parameter vector. C'() is assumed to be strictly increasing and continuously differ-
entiable in output and cost shock.

Assuming that there is one firm for each product, firm j’s profit function is as follows:

Tim = DPjm X Qjm — C (Qjmz Wim, Xjim, Ujm; T) .



Let M Rjy,, be the marginal revenue of firm j in market m. BLP assume that firms act as
differentiated products Bertrand price competitors. Therefore, the optimal price and quantity
of product j in market m are determined by the first order condition (F.O.C.) that equates

marginal revenue and marginal cost:

—1
Mij _ apijjm = Pim + Sim 83j (pmv Xons £m; 0) _ Mij _ oC (Qjmy Wim, Xjm, Ujm; 7') .
9qjm Opjm 9qjm
MR, MC;

(8)

Note that given the market share inversion in Equation (6), and the specification of mean

utility 0, &, is a function of (py,,Sm, Xy,) and 6. Therefore, marginal revenue of firm j in

market m, MRj,, in Equation (8) can be written as a function of observables and parameters
as follows:

Mij = MR] (pm,Sm,Xm; 9) N (9)

where MR; (Pm,Sm, Xm; @) is the j th element of the vector of marginal revenue functions in
market m, denoted by MR (P, Sm, Xim; 0). Equations (8) and (9) imply that demand parame-
ters can potentially be identified if there is data on marginal cost® or even without such data, if
the cost function is known or can be estimated and its derivative with respect to output can be
taken. Berry et al. (1995) assume that marginal cost is log-linear in output and observed product
characteristics, i.e., MCjp = exp (WjmYy + ¢jmYq + Vjm) (see their Equation 3.6). They then
use instruments to deal with the endogeneity of output with cost shocks and of prices to demand
shocks. As long as the parametric specification of the supply side is accurate and there are enough
instruments for identification, the demand side and F.0O.C. based orthogonality conditions are
sufficient for identifying demand parameters. We in contrast assume cost to be a nonparametric
function of output, input prices, observed product characteristics and the cost shock, and use

observed cost to control for the cost shock. This point is further explained in Section 3.

2.2.1 Cost function estimation

As with demand estimation, one can recover unobserved cost shocks through inversion:

Cj =C (Qjmijmaxjmavjm;T) = Ujm = U (qjmijﬂ’Hij? ij; T) . (10)

8Genesove and Mullin (1998) use data on marginal cost to estimate the conduct parameters of the homogeneous
goods oligopoly model.

10



Like demand estimation, there are important endogeneity concerns with standard approaches
to estimating cost functions. Specifically, output g¢;,, is endogenously determined by profit-
maximizing firms as in Equation (8), and is potentially negatively correlated with the cost shock
Vjm- That is, all else equal, less efficient firms tend to produce less. In dealing with this issue,
researchers have traditionally focused on selected industries where endogeneity can be ignored,
or used instruments for output.

The IV approach to cost function estimation typically uses excluded demand shifters as
instruments. Denoting this vector of cost instruments by zj,,, one can estimate 7 assuming

that the following population moments are satisfied at the true value of the cost parameters 7¢:

E [Vjm (@jm, Wim, Xjm, Cjm; T0) Zjm) = 0.

3 Identification using cost data

In this section, we present our methodology for dealing with the endogeneity issues in identifica-
tion mentioned above. We propose using cost data in addition to demand data to identify price
parameters. We do so by using the control function approach. That is, given output, input prices
and observed product characteristics, we use the observed cost to control for the cost shock. We
focus primarily on the BLP random coefficients model but also use logit as a simple example
to illustrate our identification strategy. Instead of Equation (10), we use a nonparametric cost
function. We elaborate on our demand and cost structure further below.

To begin with, we assume that market size is observable. In Subsection 3.3, we demonstrate
how our methodology can be modified to the case where market size is not observed, and thus

needs to be estimated.

3.1 Main Assumptions

We first state all the main assumptions for our methodology. Most of these assumptions are
standard as discussed in the previous section or simply describe the environment our methodology
is applicable to. For each market in the population, we attach a unique positive real number m
as an identifier. Then, we assume m € M, where M is the set of all market identifiers, and is

an uncountable subset of R.

Assumption 1 Data Requirements: Researchers have data on outputs, product prices, market

shares, input prices, observed product characteristics, and total costs of firms.

11



Note that market size can be derived from data on outputs and market shares. Thus, we
need to assume observability of only two of these three variables. In contrast to BLP, we require

data on total costs of firms. But we do not need data on marginal cost.

Assumption 2 Isolated Markets: Outputs, market shares, prices and costs in market m are

functions of variables in market m .
Assumption 3 Common Input Prices within Markets: Input price W, = W, for all j,m.

We make this assumption to show that we do not need within-market variation in input
prices. That is, relaxing it makes it easier for our methodology to work. The assumption is

reasonable as usually there is little within-market variation in input prices in the data.

Assumption 4 BLP demand: Market share Sy, is specified as in Equation (4). The distribu-
tions of o and each element of B are assumed to be independently normal, i.e., o ~ N (ua,ai),

5k~N(uﬁk,agk), k=1,....,K. Further, pgp =0, k=1,... K; ji < 0.

Assumption 5 Equilibrium Concept: Bertrand-Nash equilibrium holds in each market. That
is, for any j =1,...,Jy, firm j in market m chooses its price pjn, to equalize marginal revenue

and marginal cost, given market size QQ,, and prices of other firms in the same market p,jym.g

The next assumption describes the support of variables that determine the equilibrium
outcomes in market m. Let the set of these variables be denoted by V,,. Then V,, =
(Qms Wi, Xy &1, Um), and let Vo= {Vi,} . Let V \ wy, to be the set V without the
element wy,, for any [ = 1,2,..., L. For other elements of V, the set V without the element is
similarly defined. The assumption imposes substantially weaker restrictions on the support of
the variables in V than is typical in the literature. In particular, it imposes minimal restrictions

on the joint distribution of these variables as stated below.

Assumption 6 Support of V: The support of Qu, conditional on 'V \ Qn, can be any nonempty
subset of Ry for all m. The support of Wy, conditional on V \ wy,, is Ry for all l,m; the
support of Ty, conditional on V \ Ty, is either R or Ry for all k, j, m; and the support of

&jm conditional on 'V \ {p, is R. Finally, the support of vj,, conditional on 'V \ vjn, is Ry.

9Note that we have assumed this for expositional purposes only. It is not required for identification. MR is a
one-to-one function of MC in equilibrium, and not necessarily equal to MC, we can identify the price parameters.
This makes our framework applicable to firms that are under government regulation and firms under organizational
incentives or behavioral aspects that prevent them from setting MR = MC.

12



Assumption 6 ensures that the variables in V are not subject to any orthogonality conditions,
which typically restrict the moments of a subset of the unobserved variables (§,,,, v,,) conditional
on the other variables to be zero. In other words, we do not require them to be econometrically
exogenous, and thus, Assumption 6 removes the validity of any conventional instruments.

Note that we do not impose any assumptions on the support of market size other than that
it is nonempty and positive. For logit, we require the conditional support to be Ry since as we
show later, market size variation is needed for the identification of the price parameters of logit
but not for BLP.

The next two assumptions are about our nonparametric cost function.©

Assumption 7 Properties of the Cost Function: Let C5,, denote true cost. Then,
C;m =C" (Qjma Wi, Xjm, 'Ujm) + ey (Wm7xjma Ujm) + Sim, (11)

where CV () is the variable cost component, which is a continuous function of q, w, x and v,
strictly increasing, and continuously differentiable in q and v, and marginal cost is strictly in-
creasing in v; eyf () is the deterministic component of fized cost, a continuous function of w, x
and v and increasing in v. The fired cost shock < is i.i.d., with mean zero and independent of

V. Further, for any ¢ > 0, w > 0 and x € X, where X is the support of x,

oC" (¢, w,x,v)
dq

= 0, llmv/‘ooac (q5277x’ U) = OQ.

limv\o
Assumption 8 Measurement Error in Cost: Let Cjy, be the observed cost. Then,
ij = C]*m + €me (Qjmv Wim, xjm) + Vim, (12>

where epme () is a continuous function and vjp, is i.i.d. with mean 0 and independent of V,, and

the fized cost shock Gy, 't

The assumption implies that the measurement error in cost is eme (¢jm, WmsXjm) + Vjm,

where e, () is the deterministic component.'?

ONote that we assume that market share sjm does not enter in the cost function. This restriction rules out
situations in which firms with high market shares have buying power in the input market.

"'We can also include Xne,jm, a vector of additional variables that determine the deterministic component of
the measurement error as well as fixed cost. However, we omit these for the sake of expositional simplicity.

12Note that we could also allow for systematic misreporting of true costs. For example, if v (C*) is the systematic
component of the reported true cost, then, if firms report costs truthfully but with an error, then v (C*) = C*.
Alternatively, if firms systematically under-report their true costs, then we could consider a specification like
v (C*) = vC* where 0 < v < 1. Over-reporting could be captured by the same specification with v > 1.

13



Using Equations (11) and (12), we obtain
ij =C" (Qjm; Wi, Xjm, Ujm) + E€f (wjm7 Xim U) + €me (Qjm; Wim, X) + Vim + Sim-

In the next subsection, we show that cost data together with other data and our assumptions
enables us to identify the parameters of the distribution of the random coefficients on price
(Has0a), as well as 05, k = 1,..., K. Note that we can only identify (ua0,0a0,080) and ojm +
XjmMgo 10 the absence of further restrictions imposed on the model. However, this information
is sufficient to identify marginal revenue, and thus, markup, which is of primary interest of most
empirical exercises in 10. The additional orthogonality assumption E (xjm&jm) = 0 identifies
Kpo- For the logit model of demand, we identify the price coefficient o and &ojm + XjmBo-
From now on, except when notified otherwise, we will denote the vector of true parameters
0. we identify to be ag for the logit demand specification and (/Lao,aao,a'@o) for the BLP

specification. More generally, we denote by 0.9 the demand parameters that we identify.

3.2 The Main Result

In this subsection, we derive our main theoretical result, namely that given our assumptions,
parameters of the BLP model, that is, 8. = (Mam 000, a’ﬁo), are identified.

We use cost data to control for the cost shock. Since we allow for measurement error in the
cost data, the first step in proving our results is to show that the expected cost conditional on
observables contains only deterministic components of the cost function, which is done in Lemma
1. We then provide an intuitive explanation of our identification strategy using the logit example
and then develop two equivalent definitions of identification using cost data. The first definition
(Definition 1) is based on the first order condition (Equation (8)) and highlights the sources of
variation behind identification as well as the exclusion restrictions. However, since the control
function approach leads to marginal cost becoming an unspecified function of output, input
prices, observed product characteristics and the deterministic component of cost, it is difficult
to implement and thus we develop a second definition of identification (Definition 2) based on
pairing of firms that have the same output, input prices and observed characteristics. We show
that the two definitions are equivalent and then specify a condition on marginal revenue that

together with our assumptions ensures identification in the BLP model.

Lemma 1 Let Assumptions 1-8 and 7-8 be satisfied, and let the marginal revenue function be

specified as in Equation (9). Further, let R = {p,s,X,q,w,Q,j}, and let C be the deterministic
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component of cost. Then, for any firm j in the population with R being observable,

E {C‘ (E]V: ¢, W=WwW,p=0p,s = s,)~( = X,j)] =C"(q,w,x,v)+ef (W, X,0)+eme (¢, W, x) = C.

Proof. From Assumption 7, marginal cost is strictly increasing in v, and given any (q,w,Xx)
in the population, the support of marginal cost is Ry. Therefore, given Assumption 5, for any

observation R = {p,s, X,q,w, @, j} in the population, there exists a unique v such that
MRj (p,S,X;Oco) = MC (QaW7X>U)' (13)

Because Equation (13) determines a unique v given (¢, w,x), v is a function of (¢, w,x, M R; (p,s, X;0)).

Thus, Assumptions 7 and 8 result in

ElC](i=a%=wb=p5=5X=X,)]
= E|:CU (q7W7X7U (q7W7X7 MR] (p,S,X;OCQ))) + ef (W7X7U (q7W7X7 MR] (p7S7X;OCO)))
+eme (¢, W, X) +<+V‘ (6: ¢;W=W,p=p,8 = S,fi:X,jH

=C"(q,w,x,v) +ef (W, X,0) + eme (¢, W, X)

In this subsection, we call a variable observable if it is directly observable in the population
or can be recovered as the expectation of a directly observable variable conditional on other
directly observable variables. Hence, from now, we call the deterministic component of cost
as cost whenever there won’t be any confusion. C is observed because it is the conditional
expectation of observed cost conditional on other observed data.

Before providing formal results, we outline the logic of our identification argument. In par-
ticular, we first explain how we remove the need for instruments to deal with the endogeneity of
the supply shock. We use the following three equations for identification. For firm j in market

m, they are:

qjm
Siyy = , 14
T Qm (1)
MRj (Pm,vaxm;aco) =MC (Qjmawm7xjmyvjm) ) (15)
éjm =C" (Qjmy Wi, Xjm, Ujm) + E€f (Wm7 Xim Ujm) + €me (Qjma W?mejm) . (16)

15



The market size @, is subsumed in market share s,, and g;,, through Equation (14). The first
order condition (15) holds in equilibrium because we assume in Assumption 5 that firms choose
prices to equate marginal revenue to marginal cost.

If we had data on marginal cost, i.e., MCjp,, then, we could just use Equation (15) for
identification of 6.. By substituting MC},, into the RHS, we would have a function of only

observables. In the logit model, Equation (15) then becomes

1
. = MC;p,

and the price coefficient g can be identified as

1
(1 = 8jm) (MCljm — pjm)

oo =

However, marginal cost is generally not observable. Then, one could consider estimating the
cost function 5jm = C (¢jm> Wm, Xjm, Ujm), and taking its derivative with respect to output to
derive the marginal cost. However, as discussed in the previous section, this strategy runs into
the potential endogeneity issue of output being correlated with the cost shock and thus requires
the use of instruments which we propose to avoid with our methodology.'?

Instead, we use cost data to control for the cost shock. That is, we invert the cost function
in Equation (16) to derive

Vjm =V (qjm,wm,xjm, 6’j ) ) (17)

Such inversion is possible because of Assumption 7 stating that given output, input price and
observed characteristics, the deterministic component of cost is a strictly increasing function of

the cost shock. After substituting Equation (17) into Equation (15), F.O.C. becomes:

MR] (pmasmaXm;HCO) = 11[) (qjﬁhwmvxjmvéjm) ’ (18)

where 1 is an unspecified function. Note that there are no unobservables in Equation (18) that
may be correlated with the observables and create endogeneity problems.

We now define identification based on this F.O.C, letting firm jm denote firm j in market

Definition 1 Identification by F.O.C.: Let the marginal revenue function be specified as in

13Such a derivative would also include the derivative of the deterministic component of the measurement error
with respect to output, which should not be part of the marginal cost.
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Equation (9). Then, the true parameter vector O is identified if the following two statements

hold only at @

1. For any firm jm in the population, marginal revenue is positive and can be expressed as a

function of only (qjm,wm,xjm,Cj )

2. Given (q,w,X), this function is one-to-one in C.

The function of (qjm,wm,xjm,é'j ) in the above definition corresponds to ¢ () in Equa-
tion (18). From Assumption 7, we know that given (¢, w,x), C and marginal cost are strictly
increasing in the cost shock v, which implies that, given (¢, w,x), 1 is strictly increasing and
thus one-to-one in C. Our definition implies that only at the true parameter vector 6.9, given
(¢, w,x), each value of 5jm is associated with a unique marginal revenue. Intuitively this means
that for firms with the same output, input prices and observed characteristics, having equal
observed cost is equivalent to having equal marginal revenue only at the true parameter vector.

The sources of variation we use for identification of 8. are similar to the ones in the literature.
In the logit model, as we explain below, these are market size @, and price pj,,, and in BLP,
additionally we can use price, market share and observed characteristics of the rival firms. All
these sources of variation reflect the “market structure” and appear in the marginal revenue
function but not in the marginal cost function ¢ (see Equation (18)). The difference from the
literature is that these variables do not need to be instruments, i.e. orthogonal to the cost shock
vjm because we have already controlled for it using éjm- Thus, our identification strategy is
based on the exclusion restrictions that market structure variables do not enter the cost function
directly.

To illustrate how Equation (18) identifies 6.9, we use the logit model, where the parameter
we identify is the price coefficient, i.e, 8.9 = ag. Then, using Equation (14), Equation (18) can

be written as:

1 ~
MR; +Sm> Xm =p; :(-, O) 19
! (pm s " a0> p]m * (1 - Qjm/Qm) Qg @Z} QJm Wm ij m ( )

Conditions 1 and 2 of Definition 1 are clearly satisfied for ag. Next, we consider any o # «p.
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Then,

MRj (pma Smy Xom; 040)

b e e b L (L)
TP /@m0 T U= /@) (1= g/ Q) \ao @

1 11
= MR; (Pm;Sm; Xm;a) + <_>
i =g/ \ao " a

Substituting into (19), we obtain

MRj (pm7 Sm; Xm§ a)

1 ~ 1 1 1
TR C L R emrm | R

= ¢(Qjm> Wm, Xjm, ija Qma a)-

Note that 1; includes market size as an argument, violating Condition 1 of Definition 1 for
a # agp. Thus, ag is identified. Note also that if we do not have any variation in market size,
i, Qn = @, then {/; remains a function of (q,w,x7 5) Furthermore, if Q,, = @, in Equation
(20), C enters in ¢ and we know that given (¢, w,x), ¢ is a one-to-one function of C, and thus,
{bv satisfies both Conditions 1 and 2 for o # «g. Hence, the true price coefficient cannot be
identified. Thus, for the logit model, our identification strategy requires variation in market size.
Price variation is also needed unless 1/qg is zero, otherwise Equation (19) would fail to hold.
This becomes transparent later in this subsection.

However, dealing with unspecified functions 1 and QZ makes the identification analysis com-
plex and unintuitive. This is because for each parameter 6., we need to evaluate whether marginal
revenue at 0. is a function of only (q,w,x, C~'> Instead, in our analysis, we use an alternative
equivalent way of proving identification which we call the pairing approach. This approach lets
us focus on the marginal revenue side. The only role of cost data and the marginal cost function
is to identify the following two sets of pairs of firms: pairs of firms in different markets that have
the same true marginal revenue, and pairs that have different true marginal revenues. Then, from
these two sets of pairs, we proceed to identify the price coefficient by using only the demand
side. We illustrate this approach for the logit model first. As we will see, the pairing approach
provides us with the exact sources of variation needed to identify the price parameter in the logit
model, namely, market size and price of the firm’s product.

More specifically, we “fix” the variables in the marginal cost function by finding a pair of firms
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(jm, ijT) in the data that have the same output, same input price, same observed character-

istics and the same cost: (qjm,wm,xjm,Cj ) = (qumT,WmT,XijT,CijT) but (pjm, Qm) #
(PjtmtsQmt). Then, from Definition 1,

1/] (%ma Wmv iju ij> - w (qumT) WmT 9 XijT 9 CijT> )

and thus, using Equation (19), at ap,

1 ~
Pim ¥ T gpg@myag = * (1 ¥ Xim: Cin)

= ¢ (qJ‘TmTanhXijthTmT = Djtmt + (

1
1= Gt/ Qi) @0

(21)

In the above equation, v is eliminated and what remains is the equality of the true marginal
revenue of two firms that have different prices and market shares.

Then, ag can be identified straightforwardly from the above marginal revenue equality as

P [ L ! (22)

follows:

Pim = Pjtmt | (1= @im/Qm) (1= @it/ Qi) |

Note that since gjm = gjty,t, if we assume constant market size, the term in the bracket is
always zero, and thus, ag # 0 cannot be identified. Furthermore, without variation in price,
RHS is either not bounded or not well defined. Therefore, identification using pairing requires
variation in both price and market size. We also show next that given g, = Qjtmts Wm = Wyt
and Xjm = Xjtp,t, there exist (Qm,&jm) and (me,fﬁ,m) that generate the above prices pjp,,
Pjtmt and market shares sj,, Sjtmt - First, choose Qm = ¢m/Sjm, Qumt = qu/SijT. This is
feasible because from Assumption 6, the conditional support of market size Q is RT. Also, using
Equation (1), and the normalization of Equation (3), choose &jm, §;t,,t from the conditional

support of R as:

Eim = XjmPBo + Pimao — (In(sjm) — In (som)) ,
Eitmt = XjimtBo + Djimian — (In (sjimt) — In (sot)) -
It is clear from the discussion above that in logit, identification of the price coefficient is
based on the true marginal revenue equality for a pair of firms that has the same output, input

prices, observed product characteristics and cost. Indeed, Equations (21) and (22) indicate that

we only need to consider a single pair of firms to prove identification. In BLP however, marginal
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revenue is a complex, non-linear function of parameters and we cannot show analytically that
the demand parameters 6.9 are identified or that the marginal revenue equality for one pair of
firms generates a unique set of true parameters. Instead, we exploit the information contained in
the data about the set of pairs whose two firms have the same output, input prices and observed
characteristics. We divide these firm-pairs into two subsets of pairs according to whether the
two firms within a pair have equal observed cost or not. The group of pairs whose firms have
the same observed cost must have the same true marginal revenue while the opposite is true for
the other group. We use this insight to formulate a condition on the marginal revenue function
that is sufficient for identifying 6.

We now reformulate our identification definition in terms of pairing.

Definition 2 Identification by Pairing: Let the marginal revenue function be specified as in

Equation (9). We say that O is identified if the following holds only for 0. = O

1 For any firm jm in the population,

MR; (Pm, Sm, Xm,0c) >0, (23)

2 Given any two firms jm # jim' in the population with (qjm, Wm,Xjm) = (qumT,WmT,me),
MR] (pm» Sm, X’m) HC) — MR]T (me)SmT ) XmTy OC) 3

if and only if

G = G,

It is straightforward to see that the two definitions are equivalent. Both definitions require
positivity of true marginal revenue and a one-to-one relationship between the observable cost
and true marginal revenue given output, input prices and observed characteristics, and violation
of at least one of these conditions if the parameter is not the true one. The pairwise approach
to identification is simpler than the first definition because we no longer have to deal with the
unspecified marginal cost function. Instead we identify the true parameter vector by examining
all pairs in which the two firms have the same output, input prices and observed characteristics
and checking strict positivity of marginal revenue and whether the within-pair equality between
the two observed costs and between the two marginal revenues hold simultaneously at a candidate

parameter vector. If any marginal revenue is nonpositive or if simultaneity does not hold for some
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of these pairs, i.e., if for some pairs, only the costs are equal but not the marginal revenues, or
vice versa, then the candidate parameter vector cannot be the true one. Another way to interpret
this definition is to ask whether at the candidate parameter vector, all the marginal revenues in
the population are nonnegative, and the set of pairs of firms that have the same output, input
prices, observed characteristics and the observed cost is the same as the set of pairs of firms that
have the same output, input prices, observed characteristics and marginal revenue. If not, then
the parameter is not the true one. We can also state it more formally by defining the set S to be
the set of pairs whose two firms have the same output, input prices and observed characteristics,
and letting C C S be the subset of S whose two firms have the same cost, and MR (6.) C S be
the subset of § whose two firms have the same marginal revenue. Then, Definition 2 states that
0.0 is identified if for any 6. # 0., either positivity in Equation (23) is violated for some firm
jm in the population, or

C = MR (6.0) # MR (8,).
or both.
Lemma 2 Definitions 1 and 2 are equivalent.

The proof is in the Appendix.

We next state a condition on the demand model that together with our assumptions is
sufficient for indentification of the demand parameters. We need this condition because the
information we can use from data on cost and the assumptions on properties of the cost function
are not sufficient to identify the true marginal revenue. Among the pairs of firms that have the
same output, input prices and observed characteristics, the cost data allows us to identify the
subset of pairs whose two firms have the same true marginal revenue (i.e. have the same cost),
and the subset of pairs whose two firms have different true marginal revenues (i.e. different
costs). The additional source of information that identifies the true marginal revenue and 6.9
needs to come from the functional form of the demand model. It needs to be such that only
the true parameter can exactly replicate the two subsets described above that are identified by
the data. Given the assumptions stated in Subsection 3.1, we prove that the condition below is

sufficient for identification of the true parameter 6.

Condition 1 Let the marginal revenue function be specified as in Equation (9). Let D =
{p,s, X} and Dt = {pT,sT,XT} be two sets of vectors of prices, market shares and the ma-

triz of observed product characteristics with J and J' rows, and let 6.9 be the true parameter
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vector. Then, for any given 6. # 0.9, either positivity in Equation (23) is violated for a firm jm
in the population; or the following statement holds, or both. There exist D and D' that satisfy
the following properties: for a row j in D and a row j' in D, any reordering of the rows in set

DI, D # D' and

1. p1>0,0<sl<lforlzl,...,Jcmdp}L>0,0<slT<1,f0rl:1,..,JT, and0<2;]:131<1,
0< > sl <1

_ o
2. xj —Xﬁ.

3. Bither MR; (p,s,X,0,) = MR (p!,s",X1,6,) or MR; (p,s,X,0,0) = MR; (p',s",X1,6,)
but not both.

Condition 1 is the restatement of Definition 2 of identification without any restrictions on
the cost side. That is, Condition 1 applied to the population is equivalent to requiring that for
any 0. # 0., either for some firm in the population, marginal revenue is nonpositive at 8, or
within S, the set of pairs whose two firms have the same positive marginal revenue under 6.
and the corresponding set of pairs under 6, cannot be equal (that is, MR (0.9) # MR (6.)),
or both. In the lemma below we show that given our assumptions, Condition 1 is sufficient for
identification because for any pairs of observed demand variables (p, s, X, j) and (pT, s, XT,jT)
satisfying x; = x;1, we can always find two firms in the population that have the same output,

input prices and observed characteristics and these demand variables.

Lemma 3 Suppose Assumptions 1-8, 5-8 and Condition 1 are satisfied. Then, 0. is identified
according to Definition 2 of identification.

Proof. First, consider 8.,. Then, given Assumptions 5 and 7, in the population, marginal
revenue is positive at 0.9. Also, given Assumptions 2-3, 5-8, Equation (18) holds, and from

Equation (18), for any (D, q,W,X, 5’,]’) and (DT, q, W, X, éT,jT> in the population with C= éf,
MR] (pa s, X7 060) = ¢ <q7 W, X, 5) = ¢ (Q7 W, X, 51') = MR]T (pTy ST, XTa HCO) .

Similarly, if M R; (p,s,X,0c0) = MRt (pT, st, X1, 000), then, given (¢, w, x), from Assumptions

5-7, there exists a unique cost shock v such that

MR] (p7SaX3060) = MR]T (pTaSTvxTaGCO) =MC (Q7W7X>U) :
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Therefore, C = C'. Hence, for any pair of firms with the same (¢, w,x), C = CT if and
only if MR;(p,s,X,0,) = MR (pT,sT,XT,Oco). Therefore, 8.y satisfies the conditions for
identification of Definition 2.

We now consider any 0. # 6.. Suppose there exists <D,q7w,x, 5’,]’) in the population
satisfying M R; (p,s,X,0.) < 0. Then, 6. violates the first condition of Definition 2. Next, we
consider the case where any (D, q, W, X, é,j) in the population satisfies M R; (p,s, X, 60.) > 0.

We analyze the two cases of Condition 1 separately.

Case 1. Suppose D, j and D!, jt satisfy MR;(p,s,X,0.) = MR (pT,sT,XT,HC) but
MR; (p,s,X,0x) # MR (pT,sT,XT,HCO). Then, for any (¢, w,x), from Assumption 7, there
exist v, v in the population such that M R; (p,s, X, 0.0) = MC (¢, w,x,v), MR (pT, st, X1, 060) =
MC (q, W, X, UT). Because marginal cost is strictly increasing in the cost shock, this implies that
v # o', and since the deterministic component of cost is increasing in the cost shock, C #+ Ct.
Therefore, in this case, M R; (p,s, X, 0.) = MR (pT, st, X1, 00) but for (¢, w,x) = (qT, wi, XT),
C +CH.

Case 2. Suppose M R; (p,s,X,0c0) = MR (pT, s, XT, 000) but M R; (p,s,X,0.) # MR (pT, s, XT, 00).
Then, for any (¢, w,x), from Assumption 7, there exists v such that MR;(p,s,X,0q) =
MR (pT,sT, Xt 900) = MC (q,w,x,v). Therefore, both firms have the same cost shock, and
thus, C = CT. Therefore, in this case, for (q,w,x) = (qT, wi, XT), C = CTbut MR; (p,s, X, 0.) #
MR (pT,sT, Xt 06).

If marginal revenue is positive at 8. for all firms in the population, either Case 1 or Case 2
holds.

Together, we have shown that 6.9 is identified. m

Note that in proving the lemmas above or in Condition 1, we did not need to make any
assumptions about independence of any of the variables from each other, except for the fixed
cost shock and the random component of the measurement error of the cost. That is, the lemmas
go through and Condition 1 can be satisfied regardless of possible correlation across input prices,
variable cost shock, observed characteristics, unobserved product characteristics and market size,
within markets or across markets. For example, a positive correlation between market size and
the demand/cost shock can arise as larger market size may induce firms to invest in higher
quality or more advertising, which improves unobserved product quality but increases cost. But

this does not break our identification strategy.'* Thus, these findings illustrate that given cost

Y1 ater, we show that for the identification of the parameters of the distribution of the BLP price coefficients,
market size does not need to have any variation. In our Monte-Carlo analysis, we provide a scenario where market
size is correlated with demand shock. Results demonstrate consistency of our estimator. Furthermore, notice that
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data, one does not need any IV- or orthogonality assumptions.™

Also note that in the market share specification, there are no moment restrictions on the
unobserved characteristics, and thus, they can contain market-level fixed effects. In particular,

consider the BLP specification with market-level fixed effects where

uig = XjB; +pjai + Eim + €ijs
§jm = gf,m + éjma
E [gym‘xjma 5f,mi| = 07

where we denote 7, to be the market m specific heterogeneity. Because we do not use such
moment conditions for identification, those fixed effects do not prevent us from identifying and
consistently estimating the BLP parameters 6. = (fta0, 700, 0 380)-

Our main identification result is stated in the following proposition, with the proof in the

appendix:

Proposition 1 Suppose Assumptions 1-8 are satisfied. Then, the BLP coefficients 8.0 = (fta0, 0a0, 0 80)
are identified.

Note that the identification of 8.9 in the BLP demand model holds even without any variation
in market size across markets. To see why, consider the identification using the pairing approach.
That is, suppose we find a pair firms jm and jTm' that have the same marginal revenue. Then,
if the demand specification is logit, without market size variation, they have the same market
share, and Equation (22) tells us that we cannot identify the price coefficient. On the other
hand, under BLP, even though the same market size leads to the pair of firms having the same
market share, these firms can have different price effect on own market share due to differences
in prices, market shares and observed product characteristics of rival firms, and thus, different
prices in the relationship.

More formally, those two firms satisfy

s, 08 ji ot
Sjm = Sjtmts MBjm = MRjtors 5 — 3 Gt

an important component of it is the F.O.C. Equation (15). Any violation of this F.O.C. may result in 6, not
being identified. An example would be if higher prices and more advertising spending signal product quality, as
in the model of Milgrom and Roberts (1986).

15Tt is important to note that each pair of observations satisfying Condition 1 can be generated from different

equilibria. Since the observables {q, W, X, 5} uniquely determine the pair of firms that have the same cost shock

v, and the marginal cost, the above procedure identifies the true price coefficient even when multiple equilibria
exist.
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Therefore,

Thus, the relationship

s <<9Sjm)1_<3sa‘*m*>l
e T\ Opjm Opjtmt

identifies the parameters.!®

3.3 Identification of Unobserved Market Size

We now consider the case where market size @), is not observed, and thus needs to be estimated.
This is an important issue in the empirical IO literature. Because market participation is unob-
served, it is often hard for researchers to measure the total number of participants of a market
without any arbitrariness.

We follow Bresnahan and Reiss (1991) and specify the market size as follows:

In (Qm) = A0 + ZmAz0, (24)

where z,, is a 1 x K, vector of observables in market m, and Az = (Az01,- - -, A20k, )-

Then, the true market share of firm j in market m, denoted by

* dim
) 2
Zim exrp ()\CO Zm)\ZO) ’ ( 5)

is unobservable. Bresnahan and Reiss (1991) and other literature on this issue assume that
variables that determine market size are not included in the market share equation. However,
we do not impose such a restriction since one can convincingly argue that demographic variables

determine not only market size but also consumer demand. Thus, the modified utility function

6The exclusion restriction for the logit model is that marginal revenue only depends on own price and own
market share. That is, unobserved product characteristics of firms and prices of rival firms in a market do not
enter directly in the marginal revenue equation of any given firm: these variables only enter indirectly through
the market share function. For the BLP demand, we have similar exclusion restrictions at high prices. That
is, if we let pjn be own price, the exclusion restriction we use is that at high prices, in the 2nd term of the
marginal revenue function, own price only enters through pjm — pj—1,m where p;j_1 » is the next highest price in
the market), and pjm — pj+1,m where p;y1 m, is the next lowest price in the market. For details, see the appendix.

25



for individual ¢ in market m consuming product j is
Uijm = ijﬁx + Zmﬁz +pjma + gjm + €ijm- (26)

On the other hand, following the literature, we assume that the variables determining market
size are not included in the cost function. This assumption is reasonable as demographic vari-
ables usually do not enter the production function. Then, we maintain the original exclusion
restrictions that market structure variables only enter in the marginal revenue function but not
in the marginal cost function. Therefore, the identification procedure is the same as before.

We prove identification for the logit demand model here, and for the BLP model in the
appendix.

First, note that since market share s and market size () are unobserved, and market size is
a function of z in Equation (25), marginal cost is a function of (p, z, q, X) instead of (p,s, X).

Therefore, the first order condition is modified to be
MR] (pa z,q, Xa 000) =MC (q, W, X, U) s

where 8.y now includes the price coeflicient and the parameters of the market size equation, i.e.

0.0 = (o, Ao, Az0). Then, the cost shock can be expressed as follows:
v=v (Q7 W, X, MR] (pa z,q, Xa 000)) .

Furthermore, instead of R = {p,s, X,q,w,j}, now we have R = {p, X, q,w,z,j} with which

we derive the deterministic component of cost given below:

FE |:C{ (ﬁ:q,ﬁ/:w,f):p,'zv:z,f(:X,]ﬂ :C"U (q,W,X,U)+€f(W,X,U)+6me(q;wax) =(C.

Then, as before, we form pairs of firms that have the same (¢, w, x) and the same C. Through
these pairs, we identify the parameters 8.y using the following two restrictions in the cost function
and the marginal revenue function of the logit demand model. 1) p and z do not enter in the
cost function. 2) Given ¢, variation in z changes the market share only through the market size
equation (24), not through the utility function in Equation (26).

Furthermore, for any pair of firms jm and jim' in the above set, we restrict their prices to

be equal, i.e., pjm = Pjiy,+ as well. Then, since the two firms in the pair have the same marginal
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revenue, we derive
1 1

Pjm + ———— = Pjtmt + ————
(1 — s;m> Qg (1 — S;Tmf) Qg
It follows that within each pair, the true market shares must be equal. Thus, using Equation

(25), we obtain

In (s;m) = In(gjm) — In(Qm) = In(gjm) — Ao — ZmAz0

= In (S}m1> =0 (qjimt) — A0 = Zyni Aso,
which results in

(Zm - me) Azo =0. (27)

By using Equation (27), we first show that the vector A, is identified up to a multiplicative
constant. That is, Xzo = Az0/Az01 is identified. We do so by finding k = 1,..., K, pairs of firms
in different markets j®m® and jTEmI*) satisfying ARy m®) = itk i) W) = Wi,
X (k) (K) = Xt 0) (k) PjR)m (k) = Djt(k) i ey and 5j<k)m<k> = 5jT(k)mT(k)7 but z,, ) # 2,10 . If we
assume that conditional on (&,,, Vs, Wi, Xy ), the support of z,, is R®=, then the space spanned
by z,,x) — Z,,ik), k = 1,... K, subject to the restriction of Equation (27), has rank K, — 1.

Therefore, under our normalization, the equations
(Zm(k> - me(k)) AZO = Oa k= ]-a o 7KZ

identify Xz(] = >\z0/)\z01~
Next, we focus on the identification of Ao and Azg1 by setting z,, = 0 for &k = 2,... K.
That is, only one variable z,,; determines market size. We then proceed by considering two

pairs of firms k = 1,2 where w_ ) = W, 1) = W, X,,(h) = X, i(h) = X, Cj(k)m(k) = ij(k)mf(k)

and for small Az > 0, z,,;; = 0, z,,in; = Az. Output is different across the two pairs, that
8, @m0 = Giomto) = @ G pe = Giegie = ¢ for ¢ # g, Note we do not put any
restrictions on prices within the pairs. Then, these two pairs identify Ao regardless of the value

of ap. More concretely, using

q * q
4 -
exp (Aeo)’ FTOmIO = o (Aeo + Az)z01)’

* j—
SiWm@ =
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and Equation (22), we have for pair 1,

1 q q
' R = o - =A 0,Az).
DjWm@) — Pjt1)m,it) a0 Leap o) —q  emp Ovo + Aodaor) — q p(q,0,Az)
Note that
~ - €T AC + AZ>\z — ET )\C 5
exp (Ao + AzAz01) — ¢ exp(Ae0) — a4 (exp (Meo) — q)° [ezp (Ao 01) P (Aco)]

and since we can find ¢ such that g # exp (M),

1 q
Ap (q,0,A%2) = Di(1),,(1) = Pii(0) i) R ——
( » ¥ ) I\ m Vi m Oéo(exp()\co)—q)

5exp (Ao) AzAz01 # 0,

holds and is bounded.
Next, we do the same with the second pair with ¢’ # ¢ where ¢ # exp (M) as well. Letting
B(q,q,0,Az) = Ap(q,0,A2) /Ap(q',0,Az), we have

B (q,q/70, Az) =

)

Ap(g,0,Az) ¢ {el‘p(/\co) - q’} 2 _q {1 a—¢ T
Ap(q',0,Az) ¢ [exp () — ¢ 7 exp (Aco) — q
which identifies Acg. Then, to identify Azo1, we do the same with two new pairs having 2,1 = z,

zZnt1 = 2 + Az, and everything else defined in the same manner as for the first two pairs, and,

given Ao, we do similar calculations as before to derive

A A Ao Ao1) — ¢ 1 —q
Ap(q',z,Az) ¢ [exp(Ao+ 2Az01) — ¢ q exp (Ao + 2Az01) — ¢

Since Ay is already identified, the above equation identifies A,o1.
Later, we also show that in our Monte-Carlo results, even when market size is unobserved,

we can identify the price coefficients and the parameters of the market size equation well.

4 Estimation

In practice, an estimator that directly applies the parametric identification results in Subsection
3.2 will likely suffer from a Curse of Dimensionality. To implement such an estimator, one would

need to obtain the deterministic component of cost by deriving the nonparametric estimate of
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the conditional mean cost as below:

C~’jm =F [CW: Qjm; W = Wi, P = Pm,S = S, X = Xy, J
Furthermore, we need to find pairs with g;,, ~ Qitmts Xjm = Xjtmts Wim R Wi and éjm ~ éﬁmf.
For most markets of interest, X,,, will contain some product characteristics across a non-negligible
number of firms. This makes the dimensionality problem potentially quite severe.

Because of this dimensionality issue, we construct an estimator that exploits the parametric
marginal revenue in such a way that the calculation of conditional mean cost is no longer required.
This estimator conditions on marginal revenue, which is a parametric function of the observables,
rather than the conditional expected cost.

We propose to embed the estimation of demand parameters in the estimation of the deter-
ministic component of cost éjm. To overcome the problem of a possible correlation between
the cost shock vj,, and output g¢;,, we argue below that given g, wWi,, and X;,,, we can use
marginal revenue M R; (Pm,Sm, Xm,6.) to control for vj,, as long as the demand parameter
vector . equals the vector of true values 6.9. The lemma below formalizes this control function

idea.

Lemma 4 Suppose that Assumptions 3, 5-8 are satisfied. Then, 6jm = © (¢jm> Wm, Xjm, M Rjm (6c0))
for firm j in market m with observables {Pm,Sm, Xm, @jm; Wm, j}, where ¢ is a function that is

strictly increasing and continuous in marginal revenue.

Proof. By Assumption 7, we can invert the the marginal cost function with respect to to cost
shock v such that v= v(q,w,x, MC). We can use this function to control for v. Then, the

deterministic component of cost becomes

C=C"%(q,w,x,0) +ef (W, X,0) + eme (¢, W,X) = ¢ (¢, w,x, MC),

where ¢ is an increasing and continuous function of MC by Assumptions 7 and 8. Because

Equation (15) holds, i.e., MR = MC, at the true parameter vector 6.,

C=¢(q,w,x,MC)=¢(q,w,x, MR) (28)

and the claim holds. m

We call the function ¢ (¢, w,x, M R) the pseudo-cost function. Notice that in this proof, we
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invert the marginal cost function in Equation (15) rather than the cost function in Equation (16)
in Subsection 3.2 to derive v. That is, we exploit the first order condition at the true parameter
vector, and thereby use marginal revenue to control for the cost shock. By doing so, we avoid
the Curse of Dimensionality in estimation mentioned above in using C to control for v. An
equivalent way to explain what we are doing is that we invert the first order condition Equation
(18), which is the basis of our identification strategy, with respect to MR and 6, given q,w
and z. Because Definition 1 guarantees invertibility at the true parameter g, the pseudo-cost

function is derived from our identification definition.

4.1 Two-step Sieve Non-linear least squares (SNLLS) estimator

Using the above lemma, we construct an estimator that is based on the control function approach.
In the first step, it selects parameters 6. to fit the pseudo-cost function to the cost data using a
nonparametric sieve regression (see Chen (2007) and Bierens (2014)). The following assumption

formalizes this:

Assumption 9 ¢ can be expressed as a linear function of an infinite sequence of polynomials.

 (qjm> Wrns Xjms MRjm (0e0)) =D 71091 (@jms Won, Xjm, M Rjm (8c0)) , (29)
=1
where ¥y (1), 12 (+), ... are the basis functions for the sieve and v1,7e,... is a sequence of their

coefficients, satisfying > 7o, || < 00.17

Our estimator is based on Equation (29). It is useful to introduce some additional notation
before formally defining the estimator and its sample analog. Let M be the number of markets
in the sample, and Lj; an integer that increases with M. For some bounded but sufficiently
large constant T > 0, let I'y, (T') = {mx7y : [|mxy|| < T} where 7y, is the operator that applies to
an infinite sequence v = {'yn}:il, replacing v, n > k with zeros. That is, for n < k, mevn = Vn,

and for n > k, my, = 0. The norm x| is defined as [|x|| = /> 32, 22.

We now present our main result on estimation. The proof is in the appendix.

Suppose the vector (¢jms Wjim,Xjm, M Rjm) belongs to a compact finite-dimensional Euclidean space, W.
Then, if © (¢jm, Wjm,Xjm, M Rjm) is a continuous function on W, from the Stone-Weierstrass Theorem, it follows
that the function can be approximated arbitrarily well by a polynomial function of a sufficiently higher order.
However, the polynomials may not converge absolutely, so we still need to assume absolute convergence.
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Proposition 2 Suppose Assumptions 1-9 are satisfied. Then

000,70l = argming yco.xr E

0o 2
ij - Z lewl <Qjm7 Wi, Xjm, Mij (00) >] ) (30)

=1

where T' = limp—oo'L,, (T); and equation (30) identifies 0.

Note that we do not require the sieve function Y ;°; vt (¢, W, x, MRjp, (6.)) to be one-to-
one with respect to M R;p, (6.) given (¢, w,x). As shown in the proof, we rely on the functional
form of the BLP demand to do so.

Our SNLLS (Sieve-NLLS) approach deals with issues of endogeneity by adopting a control
function approach for the unobserved cost shock v;,,. With our estimator, the right-hand side of
Equation (30) is minimized only when parameters are at their true value 8 so that the computed
marginal revenue equals the true marginal revenue, and thus works as a control function for the
supply shock vjp,. If 8. # 6.9, then using the false marginal revenue adds noise, which increases
the the sum of squared residuals in Equation (30). This can be seen from the following: because

Vjm and gj,, are independent to the other observed variables,

E (ij - lZ;’Ylwl (Qjﬂ’L7Wm7xjm7 Mij (00)) )2]

0 2
- E <ij — Cim+ Cim — > N1 (@jms Wn Xjms M Rjm (96))>
=1

Y

E [(jm +5jm)?] = 02 + 02, (31)

Equation (31) holds with equality if and only if 8, = 6.9. This is because of the definition of the
pseudo-cost function in Equation (28). Thus, the true demand parameter 6.9 can be obtained
as a by-product of this control function approach.!®

We let the sample of M markets be the M random draw of the population, and denote market
m to be the mth random draw from the population. The sample analog of Equation (30), given

a sample of M markets is:

M Jp Ly 2
|:0(2M3 '7M} = argming,)e0.xT',, (T) YN [ =) (%’ma Wjims Xjms M Rjm (0.) )]
m 1 m m=1 j=1 =1

(32)

18 After estimating the marginal revenue function, we can recover the cost function. The details are discussed
in the appendix.
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The set I'r,,, (T') makes clear the fact that the complexity of the sieve is increasing in the sample’s
number of markets.
In the actual estimation exercise, the objective function can be constructed in the following

2 steps.

Step 1: Given a candidate parameter vector 6., derive the marginal revenue MRj,, (6.) for

each j,m,j=1,..,Jn, m=1,.. M.

Step 2: Derive the estimates of 7j, [ = 1,..., Lys by OLS, where the dependent variable is Cjp,
and the RHS variables are v (qjm, Wm, Xjm, M Rjm (6¢)), | = 1,...,Ly;. Then, construct

the objective function, which is the average of squared residuals

1 M Jmn Ly 2
Qu(0c) = g D D | Cim = DA%t (gms Wons Xjm, M R (6c)
Y om=1Jm 1 5 1=1

We choose 6. that minimizes the objective function Qas (6.). In sum, we search for the price
parameters in an outer loop and find the best fitting cost function on an inner loop for each
candidate set of demand parameters. We use the Newton search algorithm to find the solution.

Note that practitioners need to be careful in the nonparametric estimation of the pseudo-cost
function if x;,, includes discrete variables, just like in any cases where nonparametric estimation
involves both discrete and continuous variables.

In the second step, to identify 3 for the logit model and pg for BLP, we include additional
moment conditions in our estimator that leverage the (common) assumption that E [5 jm’ij] =
0. Then, after obtaining ch, we can recover EM by inversion, and we can simply estimate B M

for logit or gigy, for BLP simply by OLS as follows.

R M 1 om R M 1 v R
By = (Z Xinxm> > Xl (8 = Pmting) or figys = (Z X’mxm) > Xl (8 — Panfian)
m=1 m=1 m=1 m=1
(33)
Equations (32) and (33) constitute our two-step SNLLS estimator for parameters 6 = («, 3)

for logit demand and 0 = (ua,aa,uﬁ,ag) for BLP demand.'® After estimating the demand

9Note that if the exclusion restriction is not met, we can still obtain consistent parameter estimate of 3 (or
1) if we assume that the observed characteristics of other products X_ ;. and §;m are uncorrelated. Then, we
can use X_j,, as instruments for x;,,. In contrast, the literature uses these variables as instruments for both pj.,
and X;n,,. Berry et al. (1995) use the sum of product characteristics over other firms as instruments for p;,. In
that case, if no other instruments are available, only functional form restrictions identify the coefficients of pjm,
and X;,. It is also important to recall that even if 3 (or ”’B) cannot be consistently estimated, in our procedure
0. is still estimated consistently, and so are marginal revenue and profit margin.
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parameters and the semiparametric pseudo-cost function, we can recover the nonparametric cost

function as well. We present the details of this in the appendix.

4.2 Further specification and data issues

We have thus far worked with the standard differentiated products model of Berry (1994) and
BLP. Depending on the empirical context, however, a number of specification and data-related
issues can potentially arise. In this subsection, we list some empirical settings in which our
estimator can be adapted by modifying the SNLLS part of the objective function in Equation

(32). The details are in the appendix. They are:

1. Economic versus accounting cost: With only minor modifications to our estimation procedure,
we can consistently estimate the parameters even if the cost data in accounting statements

do not reflect the economic cost.

2. Endogenous product characteristics: We can deal with the case where firms also choose prod-

uct characteristics by including the additional first order conditions in our estimator.

3. Cost function restrictions: We can incorporate the restriction that the cost function satisfies
homogeneity of degree one in input price. Incorporating such a restriction in the estimation
procedure has the benefit of reducing the dimensionality of the nonparametric pseudo-cost

function.

4. Missing cost data: Because the SNLLS part of our estimator does not involve any orthogonal-
ity conditions, and because the random components of the measurement error of cost and
fixed cost are assumed to be i.i.d, choosing only those firms for which cost data is available
will not result in selection bias in estimation. It is important to notice, however, that we

still need demand-side data for all firms in the same market to compute marginal revenue.

5. Multi product firms: Even though firms produce multiple products, in most accounting state-
ments, only the total cost of all products is reported. In such a case, with logit or BLP
functional form restrictions on market share functions and additional reasonable restric-

tions on the cost function, we can still estimate the parameters of the model.

4.3 Large sample properties

In the appendix, we prove consistency and asymptotic normality of our estimator. These proofs

are based on the asymptotic analysis of sieve estimators by Bierens (2014).
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4.4 Bootstrap procedure for calculating the standard errors

In this section, we propose a bootstrap procedure for deriving the standard errors of écM. In
equilibrium models, bootstrapping by resampling the demand shocks &j,, and supply shocks
Vjm 1s computationally demanding because the equilibrium prices p,, and the market shares
sm need to be recomputed for each market m. Instead, we could follow Fu and Wolpin (2018)
and others and conduct nonparametric bootstrap where we would resample market outcomes
(X, Py Sms Wi, Qm, Cr), m = 1,..., M and estimate based on the resampled market data.
Then, one does not need to recompute the equilibrium prices and market shares. However, the
results may be subject to small sample issues due to the relatively small number of markets.
Furthermore, the bootstrapped parameter estimates would likely be affected by the additional
variation from the resampled X,,, and w,,, as well, which could overestimate the standard errors.
In addition, if the demand and supply shocks, X,, and w,, are correlated across markets, then
this correlation needs to be dealt with in resampling.

In our bootstrap, we instead resample v}, + ¢j, to reconstruct the cost data and then,
reestimate the parameters. The procedure is valid since we assume that v, +¢jp, is independent

of other variables, which we leave unchanged. We describe the procedure below.

~(1 N . .
Step 1 Estimate the parameters 0;34 and 75\}[) using Cjm, Xjm, Sjms Pjms Qjm> Wm, J = 1, ..., I,

m=1,...,M.
Step 2 Derive the residuals

(75 . = o= 0 i i (85

jm

Step 3 Resample with replacement from {(1//\—1«) Jdg=1 .. Jdnp,m=1..., M} to gener-

ate {(u/fg) =1, Jm = 1,...,M}.
ym
Step 4 Generate the bootstrapped cost
Ly

@m = ;%&2% (ijmanvij’Mij <§S‘)4>> + <m>;m

~ ~(2) .
Step 5 Go back to Step 1 with Cj,, instead of Cj,,, and reestimate to derive 0((:]\)4, 7551) using

~

Cims Xjms Sjm» Pjms Gims Wm, J =1, ..., I, m=1,..., M.
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Repeat the above steps Mp — 1 times to derive 0((}]@), Ilp=1,...,Mp and report standard errors

from the Mp bootstrapped parameter estimates.

5 Monte-Carlo experiments

This section presents results from a series of Monte-Carlo experiments that highlight the fi-
nite sample performance of our estimator. To generate samples, we use the following random

coefficients logit demand model:

. CXp X]mﬁ +p]ma+53m) i <Oé—/.La) i (B_MB> dod 34
Sjm (0 //z_oexp ot (o) e (For ) deds,

where we set the number of product characteristics K to be 1, and ¢() to be the density of the

standard normal distribution. We assume that each market has four firms, each producing one
product (e.g., J, = J = 4). Hence consumers in each market have a choice of j = 1,...,4
differentiated products or not purchasing any of them (j = 0).

On the supply-side, we assume firms compete on prices a la differentiated products Bertrand
competition, use labor and capital inputs in production and have a Cobb-Douglas production
function. Given output, input prices w = [w, r]" (w is the wage and r is the rental rate of capital),

total cost and marginal cost functions are specified as?®

1
wac,r,ﬂc /BC Q¢ Q Be actBe
5o ((e) (%) )
1
Qe . fBe G Be ac+PBe
wr <BC> + <Oéc> v 71 qaciﬂc_
B Qp Bc Q¢ + ﬁc

Notice that in the above specification, the cost function is homogeneous of degree one in input

C(q,w,r,z,v) =

MC (q,w,r,z,v) =z

prices.?!

To create our Monte-Carlo samples, we generate wage, rental rate, variable cost shock, market

20Tn our Monte-Carlo, we assume away the deterministic components of the fixed cost and the measurement
error.
21 The cost function given the Cobb-Douglas production technology is defined as

C(q,w,r,x,v) = argming, kwL + rK subject to ¢ = vilLa“KB“/a:.

35



size @, and observable product characteristics x;,, as follows:
Wi, ~ 1.0.dTN (fy, Ow) s €90y Wi = fhy + OwOwm, Quwm ~ 1.1.d. TN (0,1).

Tm ~ 0.0.d TN (i, 00), €.9.,Tm = lr + OrOrm, Orm ~ 1.i.d TN (0,1).

Qm ~ 1.0.d.U (Qr, Q) .
Tjm ~ ©.0.d.TN (fig,02), €.9,Tjm = fe + Ox0jm, Ozjm ~ 1.5.d. TN (0,1).

TN (0,1) is the truncated standard normal distribution, where we truncate both upper and
lower 0.82 percentiles. U (Qr,Qp) is the uniform distribution with lower bound of @ and

upper bound of Q. Furthermore, we specify the variable cost shock as follows:

Vjm = Ho + Op0ujm + CoP@ ! (5 + (1.0 — 26) H) . Oujm ~ i.i.d. TN (0,1).
H — YL

For transforming the uniformly distributed market size shock to truncated normal distribution,
we use small positive § = 0.025 for truncation. We truncate the distribution of the shocks to
ensure that the true cost function is positive and bounded given the parameter values of the cost
function we set (which will be discussed later). We let the cost shock vj,, be positively correlated
with the market size shock, i.e., we set (g to be 0.2.

Importantly, we specify the unobserved characteristics so as to allow for correlation between
&jm and input prices, the cost shock, market size and the observed characteristics of the products

other than j in market m denoted by zoj, = (1/3) zl# Ozlm- Specifically, we set;:

gjm = 60 + 5€Q§jm + 5wam + 57"Qrm + 5Uijm + 5Q(I)_1 <5 + (10 - 25) H) + 5$O$Oj7m
where ¢ is the idiosyncratic component of the demand shock. We set §; = ﬁ for | €

{§,w,r,v,Q, z0}.

By construction, neither input prices, nor observed characteristics of other products can be
used as valid instruments for prices in demand estimation. Furthermore, since both demand and
variable cost shocks are correlated with market size, one cannot use the variation of market size
as an instrument for prices, or for output in the cost function estimation discussed in Subsec-
tion 2.2. We let the sum of their random terms be distributed T'N (0, \/W) where
VVar (v+¢) = /o2 + 02 =0.2.
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To solve for the equilibrium price, quantity, and market share for each oligopoly firm, we use
the golden section search on price.??

Table 1 summarizes the parameter setup of the Monte-Carlo experiments. Table 2 presents
sample statistics from the simulated data of 1600 market-firm observations (there are 400 local

markets). Note that o,4¢ is about seven percent of the total cost. The parameter estimates of

0. = (fta, 0n,0p) are obtained by the following minimization algorithm:

2
Cim Wiy MRy, (6.
% - Z’Yﬂz)l <QJm7 T?ija j())] .
m ] m m

In this pseudo-cost function, we exploit the homogeneity of degree one property of the cost

~ . 1
[OM, 7M] = argmin(e.y)e®.xry,,(T) [ZMJ Z
m=1¢Ym jm

function. For a detailed discussion, see the appendix. We then recover d by inversion and in the

2nd stage, we estimate the parameter pg as follows:
~ -1 < ~
fism = (X'X) X (5M - PMaM) ~

In Table 3, we present the Monte-Carlo results for our two-step estimator. We report the
mean, standard deviation, and square root of the mean squared errors (RMSE) of the parame-
ter estimates from 100 Monte-Carlo simulation/estimation replications. From the table, we see
that as sample size increases, the standard deviation and the RMSE of the parameter estimates
decrease. The results highlight the consistency of our estimator. It is noteworthy that means of
the estimates are quite close to their true values even with a small sample size of 200. Further-
more, since the estimated parameter values are close to their true values, the standard deviations
and RMSEs are close to each other as well. Overall, these Monte-Carlo results demonstrate the
validity of our approach.?® In Table 4, we present the results where we allow for the observed
characteristics = to be correlated with the unobserved characteristics £&. That is,

Ejm = 0006 0t jm 0w Owm~+0r Orm+0u 0vjm+oQ® ! (5 + (1.0 — 26) gz:gi) +020T0jm~+02 Oxjms

(35)
where 09 = 4.0, 6¢ = 6y = 6 = 0y = 0Q = Opo = 0z = 1/ (Q\ﬁ) Now, by construction,
no observed variable of the firm can be used as a valid instrument for its prices in demand

estimation. We can see in Table 4 that the parameter vector 8. is consistently estimated. On

22The algorithm for finding equilibria in oligopoly markets is available upon request.

ZResults with ¢, 1. larger than 0.2 are similar to the ones presented, but with larger standard deviations and
RMSEs.
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Table 1: Monte Carlo Parameter Values

Parameter Description Value

(a) Demand-side parameters

Lhee Price coef. mean 2.0
Oa Price coef. std. dev. 0.5
"3 Product characteristic coef. mean 1.0
og Product characteristic coef. std. dev. 0.2
X Product characteristic mean 3.0
ox Product characteristic std. dev. 1.0
do Unobserved product quality mean 4.0
O¢ Unobserved product quality std. dev. 0.5
QL Lower bound on market size 5.0
Qu Upper bound on market size 10.0
(b) Supply-side parameters
Qe Labor coef. in Cobb-Douglas prod. fun. 0.4
Be Capital coef. in Cobb-Douglas prod. fun. 0.4
How Wage mean 1.0
Ow Wage std. dev. 0.2
L Rental rate mean 1.0
oy Rental rate std. dev. 0.2
Lo Cost shock mean 0.3
Ov Cost shock std. dev. 0.1
J Number of firms in each market 4
B Scaling factor for output in the cost function 1.0

(c) Cost measurement error
Oyt Measurement std. dev. 0.

[N

(d) Correlation parameters with unobservables &;m and vjm

Szo &im and X_ ., correlation 1/(2v/6)
Ow &jm and wy, correlation 1/(2V6)
Or &jm and 7, correlation 1/(2V6)
v &jm and vj, correlation 1/(2v6)
o) &jm and @, correlation 1/(2v/6)
Co Vjm and @, correlation 1/(2V6)

the other hand, pg is estimated to be around 1.2, much higher than the true coefficient 1.0. The
upward bias is due to the positive correlation between the demand shock £, and the random
term of the observed characteristics 0,jm as specified in Equation (35). However, since rest of the
parameters are estimated consistently, the markup of the firms can still be recovered consistently.

In Table 5, we report the results where we set the variation in market size to be zero. We
can see that overall, means of the parameter estimates become closer to the true values, and the
standard deviations and RMSEs become smaller as sample size increases. In the Monte-Carlo
results with the sample size of 200, one out of a hundred simulation/estimation exercises did
not converge, so we removed it, and took the sample statistics over 99 parameter estimates. By
comparing the results in Table 3, we can see that the standard deviations and the RMSEs are
higher than the ones where we had variation in market size. We conclude that even though the

variation in market size is not needed, it helps in improving the accuracy of the estimators.
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Table 2: Sample Statistics from Simulated Data

Variable Description Mean Std. Dev.
Dm Price 4.104 1.239
Tjm Product characteristic 1.704 0.465
Em Unobserved product quality  4.008 0.436
Sim Market share 0.191 0.091
qim Output 1.395 0.662
Cjim Total cost 2.814 1.005
W, Wage 1.007 0.183
Tm Rental Rate 1.001 0.195

Notes: Sample statistics from simulated data from a Monte Carlo
sample with 400 markets, J = 4 firms per market, and 1600 observa-
tions.

Table 3: SNLLS Estimator of Random Coefficient Demand Parameters
(Product Characteristic «j, and Unobserved Product Quality &;,, Uncorrelated)

(a) Price coefficients parameters
fla O

Markets Sample Size Polynomials Mean Std. Dev. RMSE Mean Std. Dev. RMSE CPU Minutes

50 200 144 -2.178 0.823 0.838 0.455 0.215 0.218 274.0
100 400 171 -2.195 0.539 0.571 0.547 0.178 0.183 788.5
200 800 204 -2.004 0.184 0.183 0.506 0.094 0.093 1795.4
400 1600 256 -2.020 0.124 0.125 0.504 0.053 0.053 2278.4
True Value -2.000 0.500
(b) Product characteristic coefficients parameters
s G
Markets Sample Size Polynomials Mean Std. Dev. RMSE Mean Std. Dev. RMSE Obj. Fun.
50 200 144 1.130 0.586 0.598 0.258 0.284 0.289 1.392D-2
100 400 171 1.069 0.272 0.280 0.265 0.213 0.222 2.294D-2
200 800 204 0.988 0.118 0.118 0.204 0.085 0.084 2.944D-2
400 1600 256 1.007 0.086 0.086 0.207 0.056 0.056 3.365D-2
True Value 1.000 0.200

Notes: Monte-carlo experiment results based on calibration described in panels (a)-(d) of Table 1. CPU minutes is the aver-
age estimation time in minutes across the Monte Carlo simulations. Measurement error in cost data has a standard deviation of
oy+¢ = 0.2 which is approximately seven percent of mean total cost.

Next, we consider the case where market size is not observable, and needs to be estimated.

We specify market size as follows:

Q= Ao + Aizm,

where )}, is the unobserved market size, and we set z,;, = Qm, and A\g = 0, A\; = 1. Then, the
true market share vector is s, = qmm/Q5,. We keep the BLP market share equation as specified
in Equation (34) except that market size is unobservable and therefore, parameters A\ and A;
need to be jointly estimated. Note that market shares s,, are unobservable as well. In Table
6, panel (a), we present the statistics of the parameter estimates that were generated from 100

repeated simulation/estimation exercises, based on the model used in Table 3 with unobservable
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Table 4: SNLLS Estimator of Random Coefficient Demand Parameters
(Product Characteristic «j,, and Unobserved Product Quality &j,,, Correlated)

(a) Price coefficients parameters

fla O
Markets Sample Size Polynomials Mean Std. Dev. RMSE Mean Std. Dev. RMSE CPU Minutes
50 200 144 -2.204 0.954 0.971  0.508 0.196 0.195 762.2
100 400 171 -2.071 0.272 0.279 0.517 0.117 0.118 1526.7
200 800 204 -2.012 0.150 0.150  0.500 0.066 0.065 3189.4
400 1600 256 -2.006 0.088 0.088  0.502 0.034 0.034 5770.0
True Value -2.000 0.500

(b) Product characteristic coefficients parameters
fip O
Markets Sample Size Polynomials Mean Std. Dev. RMSE Mean Std. Dev. RMSE Obj. Fun.

50 200 144 1.315 0.661 0.729 0.231 0.256 0.256 1.392D-2

100 400 171 1.222 0.158 0.272 0.213 0.111 0.111 2.320D-2

200 800 204 1.197 0.090 0.216 0.202 0.078 0.078 2.953D-2

400 1600 256 1.190 0.056 0.198 0.198 0.052 0.052 3.375D-2
True Value 1.000 0.200

Notes: Monte-carlo experiment results based on calibration described in panels (a)-(c) of Table 1 with &;,, distributed according
to Equation (35) with 6¢ = 8y = 0r = 8 = 8 = 00 = 0, = 1/ (2ﬁ). CPU minutes is the average estimation time in minutes
across the Monte Carlo simulations. Measurement error in cost data has a standard deviation of o,,4¢ = 0.2 which is approximately
seven percent of mean total cost.
market size. In addition, in panel (b), we report the results where we set z;, = ®! (z,,) in
Equation (34). As we can see, in both cases, means of the parameter estimates are close to the
true values.

In Table 7, we compare the estimated parameters using our two-step SNLLS method with
the standard IV approach using instruments that are commonly used in the literature. These
are: wage, rental rate and observed product characteristics of own and rival firms and their
interactions. Results show that in a parameter setup where the instruments are invalid, while
our two-step SNLLS estimates are consistent, the IV estimates of the demand parameters are
biased.

In the first row (SNLLS 1) of Table 7, we show results of our estimator when the demand
shock is orthogonal to the other variables, (e.g., d¢ = 0.5, dy = 0 = 6y = 6@ = 020 = 0), 50
that the instruments are valid. As we can see, the two-step SNLLS estimated coefficients are
close to the true values, as are the IV estimates presented in the third row (IV1). However, the
standard deviations of the IV estimates of o, and o are higher than those of the two-step SNLLS
estimates. That is, higher order interactions of the instruments may be needed to estimate o,
and og as accurately as the two-step SNLLS ones. Next, in the fourth row (IV2), we show the

statistics of the IV estimates when the input prices are not valid instruments. That is, we set
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Table 5: SNLLS Estimator of Random Coefficient Demand Parameters
(No Variation in Market Size)

(a) Price coefficients parameters

fia Oa
Markets Sample Size Polynomials Mean Std. Dev. RMSE Mean Std. Dev. RMSE CPU Minutes
50 200 144 -2.430 1.797 1.839 0.432 0.291 0.298 295.1
100 400 171 -2.205 0.460 0.501  0.529 0.178 0.180 670.0
200 800 204 -2.024 0.225 0.225  0.501 0.098 0.097 1226.8
400 1600 256 -2.024 0.115 0.117  0.500 0.052 0.052 2125.0
True Value -2.000 0.500
(b) Product characteristic coefficients parameters
fip o
Markets Sample Size Polynomials Mean Std. Dev. RMSE Mean Std. Dev. RMSE Obj. Fun.
50 200 144 1.389 1.596 1.635  0.208 0.206 0.205 2.537D-2
100 400 171 1.104 0.307 0.323 0.235 0.181 0.183 2.328D-2
200 800 204 1.007 0.136 0.136 0.212 0.112 0.112 2.970D-2
400 1600 256 1.015 0.084 0.085  0.205 0.060 0.060 3.390D-2
True Value 1.000 0.200

Notes: Monte-carlo experiment results based on calibration described in panels (a)-(d) of Table 1 except we restrict Qr = Qg so
that there is no variation in market size. CPU minutes is the average estimation time in minutes across the Monte Carlo simulations.
Measurement error in cost data has a standard deviation of o, 4¢ = 0.2 which is approximately seven percent of mean total cost.

the demand shock and the correlation between the demand shock and other variables?* to be
de =1/ (2\/@), 0y = 0g = 020 = 0, and d,, = &, = 0.20¢. We can see that while the two-step
SNLLS estimates in the second row (SNLLS2) are close to the true values, the IV estimated jq
has an upward bias. The positive direction of bias is to be expected because £ in Equation (5) is
set up to be positively correlated with the instruments. Notice also that the coefficient estimate
on the observed characteristic is downwardly biased, and the heterogeneity parameter of price
effect, o, is upwardly biased.

Next, in row IV3, we present the IV results where the rival firms’ observed product charac-
teristics X_;,, are correlated with own unobserved characteristics £;,,. That is, we set 0z, =
ﬁmﬁg = ﬁ,éw = 0, = 0, = 0g = 0. Hence, the observed characteristics of rival firms
cannot be used as instruments for own price. Results show that the IV-estimated p, again has
a positive bias. The parameter ug is again estimated with a negative bias, and so is o4, unlike
results in Table 3, where we show the two-step SNLLS estimator delivers consistent parameter
estimates even if the demand shock is correlated with rival product characteristics.

Finally, in row IV4, we report the results where all the instruments considered here are

positively correlated with the demand shock. Again, we have an upward bias in the I'V-estimated

241n all the subsequent analysis where we allow correlation between the demand shocks and the other variables,
these correlations are set to be smaller than the ones used for the SNLLS estimates. We also conducted the
Monte-Carlo experiments with larger correlations, but faced numerical difficulties during the IV estimation.
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Table 6: SNLLS Estimator of Random Coefficient Demand Parameters
(Unobservable Market Size)

(a) zm not in market (b) zm in market
share function share function
Parameter True Value Mean Std. Dev. RMSE Mean Std. Dev. RMSE
fla 2.000 -2.025 0.125 0.127  -1.964 0.130 0.134
o 0.500 0.510 0.043 0.041  0.506 0.050 0.050
Y 1.000 1.005 0.100 0.100  0.996 0.254 0.253
o 0.200 0.208 0.057 0.057  0.199 0.073 0.073
Ao 0.000 -0.034 0.249 0.250  0.002 0.096 0.096
A1 1.000 1.020 0.073 0.075 1.060 0.136 0.148

Notes: Monte-carlo experiment results based on calibration described in panels (a)-(d) of Table
1 except we assume market size is unobserved and distributed according to equation (42) in the
paper, where we set A\g = 0 and A\; = 1 in generating Monte Carlo samples. All results are based
on samples with 500 markets, sample size of 2000 market-firm observations, with 256 polynomi-
als used in estimation. CPU minutes is the average estimation time in minutes across the Monte
Carlo simulations. Measurement error in cost data has a standard deviation of o, = 0.2 which
is approximately seven percent of mean total cost.
fo and downward bias in the estimates of o, g and og.

Overall, we conclude that our two-step SNLLS estimator provides unbiased parameter es-
timates even in situations where the commonly-used instruments are invalid and thus the IV
estimates are biased. In addition, our two-step SNLLS estimator performs well even when mar-
ket size is not observable, and the variable that determines market size is correlated with the
demand shock or enters directly in the market share equation. Furthermore, with similar con-
vergence criteria, the CPU minutes required for the two-step SNLLS estimator are less than for

the IV estimates. Thus, we tentatively conclude that our sieve-estimation procedure does not

impose excessive computational burden.

6 Empirical application to U.S. banking industry

We next apply our method to the actual data on banks and depository institutions to estimate the
demand for deposits. We estimate a slightly different version of the demand model estimated by
Dick (2008). In particular, we assume that each consumer has one unit to deposit. The indirect

utility function of individual ¢ putting his/her deposits in bank j in market m is specified as:
Uijm = XjmPB + ragim& + Eim + €ijm,

where x;,, is a vector of observed characteristics of bank j in market m, which consists of log of
number of its branches, log of number of markets served and log of one plus bank age; rg;,, is the

deposit interest rate of bank j in market m net of the service charge, and §j, is its unobserved
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Table 7: SNLLS and IV Estimators of Random Coefficient Demand Parameters
(Variation in Market Size)

(a) Price coefficients parameters

fla Ga
Experiment Mean Std. Dev. RMSE Mean Std. Dev. RMSE CPU Minutes
SNLLS1 -2.025 0.085 0.088 0.505 0.036 0.036 9400.8
SNLLS2 -2.034 0.087 0.092 0.507 0.033 0.034 7932.0
V1 -1.978 0.086 0.089 0.475 0.069 0.073 11571.3
1v2 -1.614 0.088 0.395 0.609 0.051 0.120 13607.4
V3 -1.453 0.078 0.552 0.157 0.055 0.347 11793.1
V4 -1.278 0.086 0.727 0.394 0.054 0.119 12875.1
True Value -2.000 0.500
(b) Product characteristic coefficients parameters
s o3
Experiment Mean Std. Dev. RMSE Mean Std. Dev. RMSE Obj. Fun.
SNLLS1 1.011 0.048 0.048 0.200 0.041 0.041 3.487D-2
SNLLS2 1.016 0.052 0.054 0.204 0.043 0.042 3.504D-2
V1 0.982 0.052 0.055 0.197 0.147 0.146 8.344D-4
V2 0.620 0.046 0.383 0.206 0.148 0.148 1.498D-3
V3 0.775 0.030 0.227 0.203 0.111 0.111 9.492D-4
V4 0.533 0.035 0.468 0.159 0.120 0.126 1.203D-3
True Value 1.000 0.200

Notes: Monte-carlo experiment results based on calibration described in panels (a)-(d) of Table 1 with
variations in experimental designs described at the end of this table’s note. All results are based on
Monte Carlo samples with 500 markets, sample size of 2000 market-firm observations, with 256 poly-
nomials used in estimation. CPU minutes is the average estimation time in minutes across the Monte
Carlo simulations. Measurement error in cost data has a standard deviation of o, ¢ = 0.2 which is
approximately seven percent of mean total cost.

Monte Carlo experiment designs:

SNLLS1, IV1: instruments are valid, 6, = 6 = 0y = 6@ = dz0 =0

SNLLS2, IV2: input prices correlated with demand shock: 0¢ = 6y = o = ﬁ, 0y =6Q =020 =0

Lo e . 1
IV3: rival prodilct observed characteristic is correlated with demand shock, ¢ = VTon
ézo:m,éwzér:&):é(@:ﬂ

IV4: input price, variable cost shock, market sme and rival product observed characteristics are
: _ 1
correlated with the demand shock, §¢ = 2\/@, Ow = 6p = 0y = 6Q = 0zo = T0vi%0

characteristics. Finally, €;;,, is the random residual term in the utility function, which is assumed
to be i.i.d. Extreme-Value distributed.

Then, the market share of deposits for bank j in market m is

SN | TRTUM NG
’ a’lB [1 + Zi:l exp (XgmB + ragma + fkm)} =1 98 (o) O O

where ¢ is the density function of the standard normal distribution. We can rewrite the above

equation by applying the change of variables as follows:

/ / exp (Xjm078) B+ Tajm (Ta0 + ) +&m) s 3y 134 (0 dr

1+ erp (Xkmoog) B + rakm (ot + fa) + Ekm)
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and the market share of the outside option is

_ exp (Som)
Som = /Q/B 1+, exp (Xkmoog) B+ Takm (o + f1a) + ékm)ﬁﬁ (8) dB¢ (a) dev.

Note that we expect the sign of p, to be positive because consumers prefer higher deposit interest
rate. We follow Dick (2008) and let the outside option be depositing in credit unions.

Notice that since individuals receive deposit interest rate on their deposits, banks need to loan
out or invest the deposits to earn any revenues. Thus, we assume revenue to be (7, — 7¢jm) @jm.
where 7, is the interest rate earned by bank j in market m. In the empirical example, the
market size @, is the total number of deposits (including credit unions). We set the interest
rate to be 7, = r, where r is the interest rate on the government treasury notes in January

2002.25 Then, the marginal revenue of deposit is

95 (Cams Xy €; 0)] "

MRjm () = (r — rgjm) — Sjm o1
lim

)

where

asj (rdma Xma £m7 0)
a’l“djm
_ / / exp (Xjmoog) B + Tgjm (Tat + pa) + §jm)
alJB [1 + Zk) exp ((kaOO'g) ﬁ + Tdkm (Uoza + Ma) + gkm)]z

x |1+ Z exp (Xkmo0g) B+ Takm (Tat + ta) + &km) | | (0o + pa) ¢ (B) dB¢ (o) da.
Py

We define the variable cost of a bank to be the total annual labor cost. That is, we assume
we can measure the variable cost, and thus do not need to specify the fixed cost. We also
assume away the deterministic measurement error component of the cost data. We define the

cost function as C (¢jm, Wm,Xjm, Vjm), Where gjn, is the total deposits of bank j in market m,

25There are three possible choices of variables for the interest rate rj,. One could use the interest rate on
assets such as government bonds, loan interest rate, or a basket of the rate of returns on loans and other financial
assets. Note that setting the interest rate to be the loan interest rate would raise an additional endogeneity issue
of bank lending. Since one of the important goals of this empirical analysis is to demonstrate the validity of
our estimator, we decided to focus on the deposit side so that our results are comparable to the literature on
deposit demand estimation. We use the interest rate on the government treasury notes in January 2002, since
one can reasonably assume it to be exogenous. We believe that an interesting future direction of research would
be an empirical analysis of the banking industry where both deposits and loans are endogenous. To the best of
our knowledge, structural empirical analysis of banking that includes both deposits and loans (or investments) is
scarce in the literature.
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wp, is the wage level in market m, and vj,, is the cost shock of bank j in market m. Since the

cost function is homogeneous of degree one in wage, we can rewrite it as follows:

MR; MR;
C (q]m7 Wm, ij7 ’Ujm) = Wm Y <qjm7 Xjrn,’ m) = W Z '}/lwl (q_]m7 ij, jm) s

W ] m

where ¢, [ = 1,... are the basis functions of the sieve and ~; are the coefficients. Hence, we
estimate 0.9 by minimizing the following objective function:
1 C P () MR (Tam, T, Smy Xim, 0c) 2
jm ) ] g \Ldms 7y ®mym, YUe

ZJm ]En; W - IZ; M (QJmanma W > . (36)

with respect to both 6. and . In the second step, we estimate pg by OLS, where the dependent
variable is 6, (5(;) —TgjmMa and the vector of independent variables is Xj,,,. We obtain 6, (§C>

using the inversion algorithm explained earlier. That is, the equation we estimate is:

5]‘ (0c> - demﬁoa = XjmHg + fjm'

We calculate the standard errors of the parameter estimates of /0\0 by bootstrap, i.e., by resampling
the residuals in Equation (36).

We use data on banks in the year 2002 from similar sources as Dick (2008). That is, we
obtained the branch level information, such as the number of branches, the total deposits for
each branch and the branch location from the FDIC (Federal Deposit Insurance Corporation).
We collected data on bank characteristics from the balance sheet and income statements of
banks in the UBPR (Uniform Bank Performance Report) from the FFIEC (Federal Financial
Institutions Examination Council). Information on county level weekly wage is obtained from
the annualized data of Quarterly Census of Employment and Wages (QCEW) data files managed
by the Bureau of Labor Statistics. The definition of a market is either metropolitan statistical
areas (MSA’s) or counties if the area is not included in any of the MSA’s. In the appendix, we
provide the sample statistics and discuss some additional data and estimation issues.

By closely inspecting the data, we noticed that in some markets, credit unions seem to be
effectively nonexistent as an outside option. Therefore, we removed the markets in which market
share of credit unions is less than 1%. Furthermore, we use the cost data of only those banks that
operate in a single market. We did so because banks who operate in multiple markets may not

exercise third degree discrimination, which then violates Assumption 5. Finally, for the sake of
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reducing the computational burden, we restrict the sample to markets where there are 40 banks
or less. In the final sample, the number of banks whose cost data we use is 2067, whereas the
number of all banks is 3230. That is, about two thirds of the banks are single-market banks. As
we can see in the sample statistics and the results in Table 9, the number of banks that operate
only in a single market is high enough for identification of 6.. It is important to remember
that 6. is identified based on the assumption of independence of the measurement error to other
variables. Therefore, using cost data of only those banks that serve one market does not result
in any selection bias for estimation of 8., as long as the data of all banks are available for the
variables in the marginal revenue function. For the estimation of g, selection matters, and thus
we use all banks in the data.

Note that since we only use those banks that operate in a single market for cost estimation,

we do not include the number of markets served in the cost function.

Table 8: Parameter Estimates for Deposit Demand Model

(a) Two-Step SNLLS (b) IV-GMM

Variable Parameter Estimate  Std. Err. Estimate Std. Err.
Deposit interest rate la 31.920"**  (0.633) -208.800"**  (1.767)

Oa 9.829E-3  (0.031) 2.697"* (0.026)
Log(Number of branches) 1By 4.256" (0.053) 2.067 (12.310)

o5, 0.336™"  (0.032) 9.646 (16.350)
Log(Number of markets) 15, 0.554**  (0.021) 0.086 (1.694)

03y 5.044E-4 (6.200E-3) 1.481E-3 (1.477E-3)
Log(Bank age + 1) 15, 4.802°*  (0.045) 1.356 (8.027)

05, 2.802E-3  (0.011) 0.113 (0.264)

Notes: Bootstrap standard errors in parentheses. *p < 0.1 **p < 0.01. ***p < 0.001

We present our results in Table 8. In panel (a), we report the results where we use the two-
step SNLLS procedure. In panel (b), we report the results where we use the IV-GMM procedure.
We used regional wage, regional housing price index, observed own product characteristics (log
number of branches, log number of markets, log age plus one) and those of rival banks in the
market, and the interactions of those variables as instruments.

Our estimated price coefficient is around 32 and the average price elasticity is 1.64. The
proportion of banks whose elasticity is less than one is 4 %. In contrast the IV-estimated price
coefficient on deposit interest rate in Dick (2008) ranges from 54.19 to 100.23, depending on the
inclusion of the bank/market/state fixed effects. A possible reason for this difference could be
that Dick (2008) uses banks in MSAs which are predominantly urban, whereas we also include
rural banks in our data. Indeed, our estimated price effects are closer to the ones in Ho and Ishii

(2012), who also include rural markets in their analysis and find that the own-price elasticity is
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smaller in rural markets. The price elasticity is expected to be lower in rural markets, where the
distance to branches of other banks is likely to be greater, and our data includes rural markets
as well.

We see in panel (b) of the table that the IV estimated price coefficient is negative and
significant. It is unintuitive because it implies that a higher deposit interest rate reduces deposits.
Furthermore, the IV estimated parameters (uﬁ,ag) are all insignificant,?® whereas in panel
(a), the two-step SNLLS estimated coefficients on observed characteristics are all positive, as is

intuitive, and significant.

7 Conclusion

We have developed a new methodology for estimating demand and cost parameters of a differ-
entiated products oligopoly model. The method uses data on prices, market shares, and product
characteristics, and some data on firms’ costs. Using these data, our approach identifies demand
parameters in the presence of price endogeneity, and a nonparametric cost function in the pres-
ence of output endogeneity without any instruments. That is, demand and variable cost shocks
do not need to be uncorrelated with demand shifters, cost shifters or market size, and demand
shocks can be correlated with the observed characteristics of other products. Also, demand and
variable cost shocks are allowed to be uncorrelated with each other. Moreover, our method can
accommodate measurement error and fixed cost in cost data, endogenous product characteris-
tics, multi-product firms, difference between accounting and economic costs, and some non-profit
maximizing firms. In addition, we allow market size to be unobservable, and show that even
without conventional exclusion restrictions on the variables determining demand and market
size, we are able to identify and recover the unobserved market size, and consistently estimate
the demand parameters.

In our empirical application, we use data on the banking industry to compare our estimated
price coefficient of deposit interest rate to the one in the literature estimated using IVs. Our
results indicate that cost data identifies the demand parameters well. In contrast, studies such
as Dick (2008), Ho and Ishii (2012) and others use a large number of instruments (often 20 or

more) for estimating the demand parameters. The validity of all these instruments is often quite

26We have tried various versions of setups and instruments, both logit and BLP demand. What we find is that
among the cases we tried, only the logit specification with a relatively small number of instruments resulted in
the price coefficients with the plausible sign. What we infer from those results is: Since BLP has more parameters
that need to be estimated than the logit specification, it requires more instruments, and in this particular case,
some of the instruments or some of the polynomials of the instruments are invalid.
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difficult to assess.

The small bootstrapped standard errors, especially for . estimate in our banking application
imply that the cost data and the nonparametric pseudo-cost function provide strong identification
restrictions to control for endogeneity. This is also consistent with the favorable small sample
Monte-Carlo results provided earlier. In many situations in empirical work, researchers do not
have enough identification power from instruments to have their estimated coefficients to be
significant. Even in such cases, the cost-based estimation method could provide significant
parameter estimates. Then, our method has the potential to work well as a complement to the
IV based approach. As we have seen, both methodologies use similar variation in the data.
The input price, which is used as an instrument also appears as one of the variables in the
cost function in the cost-based approach. The main differences between the IV approach and
our cost-based approach are: 1) in the cost-based approach, such variation in the data is more
explicitly modeled, which may improve efficiency, 2) unlike the IV approach, such variation does
not need to be exogenous, and of course, 3) in our approach, unobservable market size can be
identified and estimated without strong exclusion restrictions, providing some guidance on the
specification of markets in the IV approach, and 4) the cost based approach requires cost data.

Our estimation strategy also presents an alternative tool for anti-trust authorities since they
have the power to subpoena detailed cost data from firms for merger evaluation. Fundamental
to the predictions from merger simulations based on the standard IV approach (Nevo (2001))
is the estimated demand elasticity and inferred marginal costs from the supply-side first order
conditions of the structural model. The demand elasticity and nonparametric cost estimates
based on our instrument-free approach can yield a complementary set of estimates and predictions
regarding the welfare effects of proposed mergers when reliable instruments are scarce, or there
are differences in opinions among the parties on the validity of the instruments.

Our estimation procedure requires marginal revenue to equal marginal cost. We believe that a
fruitful direction of future research would be to make the method applicable to situations where
marginal revenue fails to be equal to marginal cost. Examples include firms facing capacity

constraints, or when firms’ decisions include dynamic considerations.
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A Appendix

A.1 Proof of Lemma 2

Proof. Definition 2 says that 6.9 is identified if C = MR (6.9) # MR (0.) for 6. # 0.

If 8. is identified according to Definition 1, C = MR (6.9). On the other hand, for 8. # 0,
C # MR(0.) because at least one of the two following cases holds for 8.. 1) Marginal revenue
at 6. cannot be expressed as a function of (q,w,x, C~'> Then, there exists a pair of firms that
have the same (q,w,x, 5) but different marginal revenues. 2) Marginal revenue at 6. can be
expressed as a function of (q,w,x, 5’) but that function is not one to one in C. Then, there
is a pair of firms that have the same (q, w, x), different C’s but the same marginal revenues for
0.. In both cases 1) and 2), there is at least one pair that belongs either to group C or to group
MR (6.) but not to both. Therefore, 8. is identified according to Definition 2.

Next, suppose 0, is identified according to Definition 2. Then, C = MR (0.). Therefore, in
the population mapping from <q, W, X, 6) to marginal revenue is a function, and given (g, w,x),
the function from (q, W, X, 5) to marginal revenue is one to one. On the other hand, for 8, # 6,
C # MR (0.). Then, at least one of the following three cases need to hold for 8.. 1) Under
0., there exists pairs of firms that have the same (q,w7x, C~’> but different marginal revenues.
Then, marginal revenue cannot be expressed as a function of (q,w,x, 5’), violating Condition
1 of Definition 1. 2) Under 6., there exists a pair of firms that have the same (¢, w,x) and the
same marginal revenue but different 5’8, which violates Condition 2 of Definition 1. 3) Under 6.
there exist a pair of firms that have the same (¢, w,x) and the same marginal revenue but they
are nonpositive, which again violates Condition 1 of Definition 1. Therefore, 8.9 is identified

according to Definition 1. m

A.2 Identification of the random coefficient BLP model with endogeneity.

Proof of Proposition 1.

We prove that given Assumptions 1-8, the BLP demand function satisfies Condition 1. Then,
from Lemma 3, identification follows.

Consider two firms j and j in different markets. The first market has demand side observables
(X, p,s) where X is a J x K matrix of observed product characteristics, p is the J x 1 price vector
and s is the J x 1 market share vector. Let (XT, pf, ST) denote the corresponding observables for
the second market where the number of products/firms is JT. We start by assuming that these

two firms satisfy 1 and 2 of Condition 1. We then prove that among those pairs, there exists one
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that satisfies 3 of Condition 1. We denote @ () to be the standard normal distribution function

and ¢ () to be its density function. Then, the market shares of firms j and j' are respectively:

5 - / / exf (x;8 + pja+&jo) [ﬁ 1 5 <5k — M60k> dﬂk] 1, < /mo) do
alp [1 + > i—1exp (xiB + pra + &,0)] k—1 0 B0k T80k Ta0

f T
. exp jfﬁ+pjfo‘+§ﬁ,0) A Br — Hpok d 1 a—Hao')
Sﬁ N T T T H g 0k¢ O30k Bk 070525 Ja0 @
1—1—21 1exp( l,@‘—i—pla—l—gl’o)} 1 Y8 B o o

Now, denote, 740 = fa0/0a0- Then, by a change of variables such that o = a/oa0 — a0 and

B; = Bi/os0j — 1sok/7poj, we obtain

exp ((xj00 *+pioao (@ + +x; +&;
s = / / }; (( j BO) B pi a0 ( 77(10) iHB0 5]70) b (/3*) d,B*¢ (Oé*) do
i [1 + 21—1 exp ((Xl 0ag)B" + pioao (@ + Na0) + Xipgo + 51,0)}
T eXp T ° 050) B* + p;L-TO'aO (CM* + 77040) + X;TH'BO - §;T70> * * *
So= ] RN L (8486 (o) do
1 + Ez 1 €Xp ((Xz ° ‘7[30> B* +pjoa0 (o + Na0) + X;: g0 + fl,O)]
where x;00 30 = (210301, - .-, %jK080K ), and ¢ (B) = Hk 1 ¢ (Br) is the joint standard normal

density function. We then denote o™ to be o and B8 to be 3, and x;ug + §; to be ; (similarly
for x}uﬁ + 5} to be f}). Then,

. // exp ((xj 0080) B+ pjoao (@ + 1a0) + &)
J

¢ (B)dB¢ (o) da
1+ Zz 1exp ((x10080) B+ proao (@ +1a0) + & 0)]

P exp . oaﬁo),@+pTJao(a+na0)+§To)
’ // 1+Zl 1eXp<(XlT00ﬁ0)5+2910a0(0z+77a0)+fz,0)}¢<ﬁ)dﬂ¢(a>da

Notice now that the parameters that enter in the market share function are (14,0, g), which

corresponds to 0. = (fta,0a,03). Then,

Osj _

Op;
/ / exp ((x; 0 0g0) B+ pjoao (@ + Na0) + &j,0) [1 + 2125 €xp ((x10080) B+ Proao (@ + na0) + &10)
3

1+ 37 exp ((x1 0 70) B + Pidao (@ + 1a0) + &0)
X0a0 (@ + 1a0) ¢ (B) dB¢ () da
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and a similar expression holds for 83}T /Opjt-

Note that if we let

-0',31 0 0 ]
0 o 0
S5 = P2 ,
i 0 . 0 ok |

then (x; 0030) B = x;X503. For the sake of simplicity, we choose two markets in which prices
of firms in each market are different from each other. Further, let p; < pj41 forl=1,...,J, and
similarly for the second market. Also, let v;0 = §; /0a0-

Note that the market share function can be expressed as the aggregate of individuals with
different «, B and the i.i.d. extreme value distributed preference shock € as below. That is,
consider an individual with specific «, 3 and € values who chooses product i =0, ..., J, (where

0 is no purchase) if

X; 00808 + Pitao (¢ + 1a0) + TaoVip + € > X0 0808 + Pi1oao (o + Na0) + Taovio + €, | # 1,

where xg = 0, po = 0 voo = 0 for normalization. From now on, we set the price vector
to be vp, where v > 0 is a scalar. Since we only consider cases where v is large for the

identification of 1,0, we set v > 7 for some v > 0. Furthermore, we define vq (v, X, p,s,0) =

£ (Xa ’Yp7 S7 900) / (70'11())' Then;

si = ///HI(XiZﬁo,@+7pano(Oé+nao)+70aovz’,o(%-)+€i
aJB elyéi

> x13800 + YP1oa0 (@ +1a0) +70a0v1,0(7,-) + El) f (€) deg (B) dB¢ (o) da,

where f (€) = Hle g () is the joint distribution of €, with g () being the extreme value density

function. As v — oo, Then, dividing the integrand by 7, and holding s; fixed, as v — 00?", we

2TNote that prices vp and market shares s are observed, and the unobserved product characteristics v is implied
through the functional relationship, given X and the true parameters. Given our assumptions, we can find demand
shocks that generate vp and s, for arbitrarily large ~.
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obtain

. X; e
si = lzm'y—mo///HI (12@[3 + pitao (@ + Na0) + Taovio(y,.) + —
aJBJe I£i Y v

%zgoﬁ + p10ao (0 + a0) + Taovio(7, ) + :) f (€) de¢ (B) dB¢ (av) da,

v

and x;/y — 0,1 =1,...,J, ¢/v — 0 for any € € R’. Therefore, for a fixed vector v, the

following holds:

X; _ €& _ X| - €
I <;2ﬁol3 + Piao (O + 1a0) + Ta0Vi0 + ;Z > ;2@5 + P10ao (0 + Na0) + Ta0Vi,0 + 7)

— T (pi (a4 na0) + Vi > pi(a+nq0) +V10) as ¥ — oo.

Furthermore,

it 7éZAI()‘ <land [, [,/ [Hz 2 1} 7 (e) ded (8) dB6 () da = 1. Therefore, from

the Dominated Convergence Theorem,

5= /ﬂ JTIE 00+ 1a0) + o = b1 e+ 1) + i) (€) de (8) dBo () de
« € 14

= / 17 @i (e +m00) + B0 = pi (@ + 100) + T10) ¢ () dev
& 14
= gz (p7607060) ’

and

J
so=[ J]Z @i (a+mna0)+70<0)¢(e)da,
® =1

where v satisfies s (p,vg, 0y) = s.
Next, we prove that such vy exists and is unique, as long as we normalize U9 to be zero. In

particular, we prove that given vgo = 0, po = 0, U;0, 2 > 0 can be derived recursively as follows.

Vit1,0 = Ui0 + (i — Pit1) |Ma0 + @77 Z sy
1<i

First, let vo to be an arbitrary J x 1 vector. Denote

V3,0 — UL0 .
Qi = ; [ 7& ?
bi —pi
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Since we assumed p; < p;41 for i =0,...,J — 1, i is chosen if

a+na0+aig >0 if i>1

a+na0+ay; <0 if i<l

Then, for ¢ > 1,

i—1 J
I (choose i) = HI(a > —Na0 — Qi) H I (o < =1a0 — aiy)
1=0 l=i+1

= I(a>mazi<i {0 — aii}) I (a < mings; {—1na0 — ais})-
Therefore, if we denote a; = minj<; {a;;} @; = max;>; {a;;},

5 (P, %0, 00) = / [(=1a0 — @ < @ < —niao — 3) & () dav.

[0}

Furthermore,

I (choose 0) = I (v < ming>o{—na0 — o,}) -

Therefore, as before,

50 (P, Vo, 60) = / I(—Na0 —ag < a0 < =00 — o) ¢ (@) dav,

«

where aq = 00, @Gy = max;>o{ap,;}. Similarly,

’§J:/I(—77a0—aJ§a< ~7a0 — ) ¢ (o) dax,

where a; = minj<j{a}, a; = —o0.
Given s; > 0 for any i = 0, ..., J (2 of Condition 1), —a; < —a; holds. Furthermore, note
that

Qi1 = MiN<ip1 {0it10} < Qip1 = Qi1 < Max;s; {ai} = a;. (37)

Therefore, —a; < —a;,; i=0,...,J — 1. Now, suppose —a; < —a;,¢. Then, ... —@; 1 < —q,; <
—0; < =011 < —@i+1 < —@; 9 .... It implies that an individual with o € (—%0 — i, —Na0 — Qi+1)
will not choose any of the available product choices i € {0,1,...,J} including the no-purchase

option 0, which is a contradiction. Therefore, —a; = —a; ; holds. Furthermore, Equation (37)
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and @; = a;, imply @; = a;,1 = a; ;1. Therefore,

s0 = 50 (P, Vo, 00) = / I (04 < a0 — 61,0) ¢ () da = @ (—nao - M) (38)

P p1

and for ¢ > 1,

. — gi(p’%,go)E/I(_%o_W—w—vwgag_%o_w—mmﬂ(am
(6%

Pi—1 — Di Pi — Pi+1
Vi — Vs Vi1 — 0
- & <_77a0 Y0 z+1,0) _ P (_77&0 _ Y%i-10 2,0>
Pi — Pi+1 Pi—1 — Pi
and
V1,0 — UJ0
s;=1-® <_77a0 — > (39)
Pi—-1—DPJ

Therefore, from Equations (38) to (39), we can derive

V5,0 — Vi4+1,0
® <—77a0 - H) => s

Di — Pi+1 1<i

Uit1,0 = Uio + (Pi — Pit1) |Na0 + Z st (40)
1<i

As 799 is normalized to be 0, v;41,0 , 2 > 0 can be recursively derived as follows:
i
Tisr0 =Y 0k — Drt1) a0 + @71 [ D s ]| (41)

k=0 <k

Therefore, we have proven that v satisfying s (p, vo, 0o) = s exists and is unique.
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Next, we show that lim,_ccvo (7, X, P, s, 0c0) = Vo. Now,

///GHI[ — 1) 0a0 (@ + Na0) >

1#1
— 000 (V3,0 (7, X, P, 8,0c0) — V10 (7, X, P, 8,000))] f (€) ded (B) dﬁéf) (o) dav

= // / HI|: pl 0a0 (a+77a0) > — XlEBOB_ ‘i
Be[-vaval" Jeel-vaval” 1

—0a0 'Uz ,0 '77 X yP5 S 000) V1,0 (’77 Xa p;S, 000))] f (6) d€¢ (B) dﬁ¢ (Oé) da

X € — €
g8 — —

/ / / HI [ — 1) a0 (@ + 1a0) > X Y308 — -
Bt [-vAvAl" Jeel-vaval” 1
—0a0 /UZO %X p;s, 000) /UZ,O (77X7p757000))] f (6) ded) (B) dl@¢ (Oé) da
// / [(Pi — 1) Ta0 (@ + 7Ma0) > — X Y508 — G-
f\f I#i
—0a0 (vi,O (’77 X> p,s, 000) — V0 (’77 X> p,s, 000))] f (6) ded) (B) dﬂ¢ (Oé) do. (42)

Then, for 3 € [—ﬂ, ﬁ]Kand €c [—\ﬁ, \ﬁ]‘] , and for A = maxy,;; H— [x; — %] Ego]k‘ K+2

1 1

X; — X €; — €
‘— L3508 — o< *Iil?f}[— [xi — x| Zgol,| K sup Bkl +—  sup | — €
T pelvavil® T eel-vaval’
1 A
= ﬂ[rlrgl,?f“_[ —Xl]zﬂo ‘K+2 ﬁ

Furthermore, the 2nd and 3rd terms of Equation (42) can be made arbitrarily small by choosing
~ to be arbitrarily large. Therefore, for any 6 > 0, we can choose 7 to be sufficiently large such

that 6 > A/ (Uao\ﬁ) and

/cy/gﬂ_ﬁﬁ]l(/egl[(pi—pz)aao(wrnao) > _ngxl

—000 (Vi (7, X, P,8,0c0) — V10 (7, X, P,8,000)) | f (€) deg (B) dB¢ (o) dex

(5
< //&E _— o [ F©deo (8) a0 (@) da < 5,
/// « I[(pi—pl)aao(a+77ao)2— 2ﬁ0,3—62 a4
a B ed[-AnAlT 1
—0a0 (vio (7, X, P;8,000) — vi,0 (7, X, P,8,000)) | f (€) ded (B) dB¢ (o) dex
(5
< /// ] @0 @89 @) da < 5 (43)
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Because § > A/ (0q0,/7), for B € [—\/7, W}Kand ec -7, W}J,

X; — X € —
(pi —m1) (@ +1a0) > — 5508 — — (vi0 (7, X, p,8,0c0) — V10 (7, X, P, 8,000))
o007 a0
implies
(pl - pl) (Oé + 77a0) 2 _5 - (/Ui,o (% X7 P;s, 000) - /UZ,O (/yv X7 p,S, 000)) .
Therefore,
[ (I =
€144
U’L ,0 (77 X , P, S, 000) V1,0 (77 X7 P;s, 000)) ] f (E) d€¢ (IB) d/8¢ (a) da
> // / HI (i — o) (@ +1a0) 2 —0
Be[-vanal" Jee[-vaval" 1 [
(050 (7:X, 2,5, 0c0) = 110 (1, X, D,, 00)) | f (€) des (B) dBo () dar
X‘ — X €, — €
> / / / (pi — p1) (@ +Na0) > X508 —
Be[-vaval" Jeel-vaal® zH [ 707 70

~ (010 (1,X, 2,5, 00) — 10 (7, X, .5, 8.0)) | f (€) decr (8) dBo (o) da. (44)

Then, using Equations (43) and (44), we obtain

/ p) (0 + 100) > —5
Q£

UZO '77X b;s, 000) UlO(’Y?X p;s, 000))}(;5(&)(1044-(5
XX € — €
I o b)) -
/ / /ell;{ a o 0) 0a0” ﬁOIB 0a07Y
- (Ui,O (77 Xa p;s, 060) — U0 (77 Xa p;s, 060)) :| f (6) d€¢ (B) d/6¢ (Oé) da = Si-

Similarly, for 8 € [/, /7] and € € [—/7. 7]’
(p’L - pl) (O[ + nOéO) Z 0 — (vi,o (’Y? X7 P,s, 060) - vl,O (’77 X7 P,s, 000))

implies

€ —

X; — X]
(pl - pl) (Oé + 77040) 2 S Z]ﬁ()/a - - (Ui,(] (’Ya Xv P,S, 060) - UZ,O (’y’ Xv P, S, 000)) .

Ta07Y 0a07
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Therefore, we obtain

/ —p1) (@ +1a0) > 6
O 14
(v30 (7:X, P, 000) = 110 (3, X, B,5, 000)) | & (@) dar = §
CXi—X € — €
/// p1) (@ + na0) > 508 — :
€ l;ﬁ’L CMO’Y 0‘0[0’)/

— (vio (7, X, p,8,0c0) — v10 (7, X, P, 8,0c0)) } f(€)deg (B) dB¢ (a) do = s;.

Then, if we let

Si /HI[ ) (@ +1a0) > =0

l#1
v20(77X P,S, 900) _v10(77X p,S, 900)):|¢(a) do

s, = /HI ) (@ +Nao) =9

1#1
~ (030 (1,X, B8, 8c0) — 110 (7, X, ,5,0,0)) | & () d,

s, —0<s <5 +0. (45)

Also, from continuity of 5; and s; in d, we obtain
|5; — 5;] < @i, (46)

where w; can be made arbitrarily small by making ¢ sufficiently small, which can be done by

making ~ sufficiently large. Then, from the Triangle Inequality and Equations (45) and (46),
[5i—sil <[Si+0—si| +0<[5i+0— (s, —9)|+0 < [5i — 55| + 30 < ww; + 34. (47)

Hence, [S; — s;| can be made arbitrarily small by making «y sufficiently large. Similarly, |s; — s,|

<

|si +0 — s;| + 6, and since s; — 5 < s; <5 + 9,

Thus,
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lsi —s;] < lsi+0—s;|+0<1[si+0— (s, =)+ 0 <[5 — ;] +30 < ww; + 36. (48)

Furthermore, we can use similar arguments that resulted in Equations (40) and (41) to derive

0 _ _
(pi = pit1) a0+ ———— + @7 Z(Sz+5)

< Vi+10 (’Y,X,p,S, 960) — V3,0 (")/,X,p,S, 900)
Pi — Di+1 =
<z
< (i — Pit1) [Na0 — 0 +o! E (5, —9)
- P —pin -

1<i
where § is chosen to be a small enough positive number to satisfy

1-— 5
§ < min {Zlf‘]_ll,minl {sl}} .
Then, from Inequalities (47) and (48), for sufficiently small § > 0, both 0 < >7,; (51 +6) <1
and 0 < Y7, (s, — ) < 1 hold for any i =0,...,J — 1.2
Therefore, for any ¢ =0,...,J — 1,

Z (Pk — Pk+1) |Ma0 +
k=0

+o > (G +0)

Pi — Pi+1 1<k

: 5

< 010 (1, X,P,8,000) < D (P — Prr1) | a0 — +07H D (5 0)
=0 Pi — Pi+1 1<k

and since

7 %

0 _ _ _
> (k= prt1) [mao+ ———+ 7 D (514 0) — (Pk = Prr1) {Ma0+ 27D st | |

k=0 I Pi — Pi+1 = | — = -

i [ 5 q ; - -
D k= Prrr) M0 — ————+ Y (s =8) || = D (k= prr) [0+ @ | D os ||
k=0 Pi — Pi+1 =r — - =

as 7 — 0o, we have proven the claim.

By taking the derivative of the limit of the market share function of good j obtained above

*®Note that from Inequality (47), lims- 08 = s, therefore, lims- o [1 — Zng—1§l] =1- Zng—1 s; > 0 and
the definition of s imply § > 0.
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( see Equations (38) to (39) ) with respect to its price, we obtain

Js; s (_77 . Uj0 — '17j+1,0) 030 = Uj+10 p (—n . Uj—1,0 — 53‘,0) Uj—1,0 = Uj0
. @ . . 2 o . . 2°

9p;j Pj —Pj+1 /) (pj —pj+1) Pj-1 =P /) (pj — pj-1)

Next, we show that limit of the derivative of the market share function is the same as derived

above. Differentiating the market share function given vg, we obtain

0s; 0
87] = a///HI(ijﬁoﬁ-i-’ijUao (@ +1a0) + 7000050 (7, X, P, S, 00) + €5
Pj Pj JaJp €14

> Xlzﬁoﬁ + YP10a0 (a + 77040) + Y0 a0vi1,0 (77 X, p;s, 900) + el) / (6) deg (/@) dp¢ (a) do

0
- //a-/HI(XjEﬁoBJrvpj%o (@ +7a0) + 7000050 (7, X, P, 8, 0c0) + €5

> x125508 + YP10a0 (O + 1a0) + Y0a0v10 (7, X, P, S, 0c0) + €1) ¢ () daf (€) degp (B) dB

First, since the function [, ;I () is nonnegative and the measure space of (o, 3, €) is o-finite,
from Tonelli’s Theorem, we can interchange the order of integrals. Next, we prove that the
integral and the derivative above can be interchanged. We first focus on the function that is

inside the integral over B and €, which is,

G(Xupav(]v’)/uﬁveagd)) = / HI(XJEﬁOIB +7pj0a0 (a+77a0) +’Yo-a0/vj,(] +€J
& 15
x13808 + YP1000 (@ + 1a0) + Yoaov10 + €) ¢ (@) da.

v

It suffices to show that there exists a function H () such that

'aG(X7p7V0777/376’000) < H(X P, Vo, ? ﬁ €0 0)

Op;
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where fﬁ J.H (X,p,vo0,7,8,€0x) f (€) dep (B) dB < co. We show it as follows: First,

X , P, V0,7, /876 000)

= / H <a > a0 — vio — v 5 = x1) 508 — R R - )

pipr>0 pi—o Y(Pj— D) 0ao v (pj —m1) 000

V5.0 — V1,0 X5 — X| €, — €
< |1 I(as—nao— : _ by x) Eﬁoﬁ—ﬂ>¢(a)da
p; —Pi<0 pi—p (P —p1)oao 7 (Pj = P1) 00

Vj,0 — VL0 (xj = %) G
= I Mazy., _ {—77 0— = - ﬁ_}éa
/a ( {p] pl>0} @ p] — I ’y(p] —pl) 0a0 6 ’Y(p pl)o'ao

) Vig — VLo (x; — x1) € — €
Ming., _ —7a0 — —2 - ’ z B_j}> o) da.
{E:p; pl<0}{ 1e0 pj — DI v (pj — P1) Oa0 po Y (Pj — P1) Ga0 ¢()
(49)

IN

Now, if we let

A (X’ P, Vo, ﬁa €, ja v 060)
V5,0 — V1,0 _ (Xj — Xl)
pji—p Y (pj—pi)oao

_ € — €
g0 v (pj _pl)UaO} (50)

Ma:l:{l;pj —p1>0} {—nao -

Z(X,p,vo,,@,e,j,’y, 900)
V5,0 — V1,0 X; — X €; — €
pi—p  Y(pj—p)oao ¥ (Pj = P1) Gao

Ming.p; —p,<o0} {77&0 -

then

(49) = / (A (vavv076767j771 060) <a< Z(X?p>V0a/67€7j777 060)) ¢(a) do
[ (Z(X7p7V075767j777060)) - (A(Xu p7V076767j777060>):|

[A(Xa p7V07ﬁ7€7j7’Ya 000) < Z<X7P7V071676aja77 GCO)] .

Thus, taking the derivative of (49) with respect to p; given v being constant, we obtain

0 . — .
8]) / I (A(X7P7V05167€a]a’>/7 OCO) <a< A(X’pvvmﬂaeaja’% 900)) d)(a) do
] «
_ |:¢ (Z) 8A(Xap7V07B767]777000) _¢(A) aA(Xapav()nBae?]a/yaeCO) I [A<Z]

apj apj
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Now, let

vio—uo (% —x) € — € }

L*(j) = argmaxy.,. {—77 0— 08 —
( ) {l:pj—pi>0} o - ’Y(pj —pl) 00 RO 7(]7]' _pl) 0a0

Then, £*(j) may have multiple elements. But the values of 8 and e that results in multiple
elements have measure zero, and other than those cases, £L* () is a singleton. We denote the

singleton element to be I* (j). We also define similarly £ (j) as follows

—x . . V5,0 — V1,0 (Xj—Xl) € — €
L (j) = argming.,. _, <o {—77 0— 2 = — Y¥goB————7— .
ey O 0 e Y (=) oa0 P v (p; — p1) Ta0

and " (j) accordingly. Then,

A(X . . Ay 1 Ny 1 o Ermy -
6—( 7p7V076767j7770 0) — U]zo Ul (]),0 4+ = (XJ Xl (J)) 2ﬁﬁ+ - 63 6! (]2)

Op; (ps —per)® 7 (07— prrs))” Gao 7 (pj = pre(5))” Ta0

except for the values of 3 and € when L£* (j) contains more than one element. Then, because

>,
aA(X7p7V0767€7j777060)
8pj
o —x) 2 o
< ‘ULO Ul7(2)| + max [( l 50 Z|ﬁ|k+ max |€] 6[‘
bpj=m>0 (p; — i) klbpi=m>0 ] 5 (p; 2 0a0 Lpy=m>0 7y (pj — p1)* Gao

(51)

Since 3, € are i.i.d. normally distributed, the RHS of the above inequality is integrable with
respect to B and € for any vy > 0. Similar results hold for 0A (X, p,vo, B, € 4,7,00) /Op;.

Therefore, the derivative and the integral are interchangeable. Hence,

8pj / /e/a A(X,p,vo,3,€,7,7,600) <a< Z(X, P,Vvo,3,€, 7,7, 9(:0)) ¢ (o) dof (€) dep (B) dB

— // |: 8"4 X paV07@)€ j 77060) _¢(A) aA(X)pvv()a/@'aeaja’y’ecO)]
Op; Op;
I[AX,p,vo,B,€5,7,00) < A(X,p,v0,3,€5,7,0c0)] f (€) deg (B) dB.

Now, from Equation (50), because limy—oovo (X, 7P, s, 00) = Vo,

. . Vj0 — V0
llm'y—N)oA (X7 b, v07/67 €77, 000) = mawl:pj*pl>0 {—Uao - ‘;_pl} = —Ta0 — a’]
J
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and similarly,

. — . Vj,0 — 1,0 _
lzm’y—HX)A (X7 p7v07/87 €77, 000) = mawl:pjfpl<0 {_nao - ]} = —Na0 — Gj.

P — D
Hence,
* (s Uj0 — Lo .
L (]) - argmar{y.p; —p,>0} {_77&0 - } =j—1asy— o0.
P; —Di
Hence,
I (A <X7 P, Vo, /67 €7j7 7> 000) < Z(Xa P, Vo, ﬁa €7j7 v 000))
— I(-a; < —aj)=1lasy— o0
Therefore,
0A (X i~ 0 O [Tiinng—70s
7( ap,VUaﬁvea.]v’ya CO) 5 _ 9 |:1M):| as v — 0.
Ip; Opj | pj-1—pj
Similarly,
S , Vj0 — V10 .
£ (j)— argmin{y.p; —p,<o} {—Uao - J} =j+1as~y— oo.
pbj—nm
Hence,

0A (Xa P, Vo, Ba eaja 7> 000) - _i |:5j,0 - fﬁj+l,0:| as v — 0o,
Op; Op;j | pj—Pj+1

Therefore, as v — o0,

J

0

? / H I (ijgoﬁ + YDPj0a0 (04 + naO) + Y0a0V5,0 + €;
Pidai2oiz,

> x1X508 + YPi0ao (@ + Na0) + Yo0a0v10 + €) ¢ () da

05,0 = Uj+1,0 \ V5,0 — Uj+1,0 Uj—1,0 = Uj,0 | Uj—1,0 — V50
(e Bm) s () sy
Pj —Pj+1 /) (pj — pj+1) Pi-1=Dpi / (pj-1 —pj)

Furthermore, Equation (51) shows that the conditions for the Dominated Convergence Theorem
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holds so that the limit and the integral can be interchanged to derive

limyﬁoo/ / / H I (%2808 + Ypjoao (@ + 1a0) + Y0a0vj0 (V) + €5
BJe «@

1=0,l#7
> xXgo8 + VP00 (@ +na0) +70a0v1,0 + €) ¢ () da] f (€) dep (B) dB
> 8Z(X7P7V071376)j)77000) aA(Xa pav()aﬁvevjv’}/a 060)
= —00 A —¢(4A
A(X p?"Ovﬁve.] 75000)<A(X vaOaﬂvej 77960)]f(€)d€¢(ﬁ)d16

Vj0 = Vj41,0 \ V5,0 — Vj+1,0 Vj—1,0 — V0 \ Vj—1,0 — Vj,0
VRO SO AP I e AT
pi =i+t ) (pj —pjs1)° Pi-1=Ppj /) (pj-1—p;)

Therefore, we have shown that the derivative of the limiting market share function is the same
as the limit of its derivative.
We now argue that 7,0 is identified from the equality of marginal revenues at the limit. From

what we have derived, the following holds

MR] (X7 TP, S, 060)

lim
’Y-)OO ’_}/
i 1 0sj (X,vp,s,O00) -1 ) 1 0s; (X, 7P, s, 00) -
= lim _ ,-yp_i_|: J s:| = lim _ ,-yp_i_,y J Iy
Ty 9 () ! Ty Ip; g
N _ ~ B _ 41
V0 = Uj4+1,0 \ 05,0 — Uj41,0 Vj—1,0 — V5,0 \ Vj—1,0 — Vj,0
¢ < N0 — L s ) . & 2 +¢ <_77a0 -2 : > 2 ! 2 Sj
—Pj+1 /) (pj — pj+1) Pj-1—=Ppj / (pj-1— ;)
-1
o1 (ZK ; SZ) + Na0 o1 (ZK 1 Sz) + Na0
= gb i 1 ZSZ = - gb (I)_l Z S = S5,
1< Dj — Pj+1 1551 Pj—1 —DPj
(52)

where vg9 = 0, pg = 0, and

o (—%o B 'ﬁi,g - ’172"+1,0> _ ZSZ~
Pi — Pit1 1<i
We can similarly write down the limit of the marginal revenue function of the second market.
Note that we can ensure that the derivative of the market share function with respect to
price is negative by first choosing s and s’ so that ZK]‘ s; and Zlgﬁ slT are small enough that
(EK] sl> + a0 < 0 as well as @ (EK]f 31) + a0 < 0.
We now show that there exist p, pf, s, st and j € {1,...J -1}, jT € {1,...,JT — 1} such
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that

MR; (X,7p,s, ) . MR (XT, WPT, sf, 9c0)
= liMy 00 5 .
Y

(53)

limy oo

The equality above holds for some (p,s) and (pT, ST) because if it does not hold, then we can
adjust p; —pj.f while keeping p; —pjy1, 7 =1,...,J -1, p} —p;“rl .t =1,...,J" =1 constant
to ensure equality. Note that we can keep s, s’ the same as well by adjusting vo. Further, we
can make p; and pj.T large enough so that marginal revenues are positive.

We next claim that Equation (53) identifies 7,0. To see why, consider the case where p; = p}.

Then, from Equation (53), we derive

(sh/53) (C(0,5,5.5 + 1)+ C (B, = 1,5)) = C (BT, 81,57, jT +1) = € (pf, s, T — 1,)

Na0 = — y
(S;T/Sj) (B (pasvjvj + 1) +B(p,S,j - 17])) - B(pTvsijijT + 1) - B(pTaSTv.]T - 17]T)

where B (p7s7j7j + 1) = (b (q)il (ZZSJ 8l)> /(p] _pj+1)7

C(p,s,j,j+1)=¢ (<I>_1 (Zlgj sl>) o1 (Zlgj sl> / (pj — pj+1) and these expressions for
the second market are similarly defined. We can identify 7,0 as long as we can find (p,s) and
(pT7 ST) such that the denominator is nonzero. Such price-market share combinations exist. For
example, set j = jT, s = sf, Pj—1—Dj = p}f_1_p;fv DPj—Dj+1 7 p}f —p;hrl, and ! (Zlgj sl> =
—Na0- Note that since s = ST, market size variation is not needed for identification of 7,0.

Note also that while the above equality holds for some (p,s), (pT, ST) and identifies 7,0, the
price vectors used are not the actual prices which are infinite.

Next, we show that the equality holds also for large v, and identifies 7,0 as follows. Let

MR] (Xa 7P, S, 000)

A (pa S, 7]0407j) = llm’y%oo

5
—1
@ (Liey 1) +1ao 01 (Lieso1t) + a0
- >J -1 I<j—-1 a
= pi+|-¢|o! 51 ~¢|@ 51 s;.
’ Z bj —Pj+1 Z Pj—1—Dj ’

I<j I<j-1

Then, for any 7o # 700, A (P,S; N0, j) # A (pT,sT,na,j). Now, consider small 6 > 0 such that
0 < ‘A(p,s,na,j) —A (pT,sT,na,j)‘. Now, choose p’ such that p; = p; + 0 for i = 1,...,J.
Then, because p; —p} | =pi —piqr fori=1,...,J -1

?

A (p/;SaUaO;j) - A<p7s77]a07j) = 57 A (p/asanonj) - A(p7s777067j) = 5
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Similarly, we choose prices p” such that p/ =p; —d fori =1,...,J — 1. Then,

7

A(P",8,100,7) — A(P:S,100,4) = =0, A(D",8,7a.5) — A(P,S,7a,j) = —0.

For any é > 0, for a sufficiently large v > 0,

MR X ’ 0 6 MR XT7 T’ST,O (S
‘7( TP S, CO) — A (plasv’rIOJOaj)‘ < ’ ! ( P CO) - A (pT7ST,7]o¢07j) < 3’
S 3 v 3
MR; (X,~p",s,0
_]( 7’7p 757 CO) —A(p”,S,naUvj)’ < 5
~y 3
i (X,7p,s, C)—A(p,s,na,j) <z j (X 7p 2 _A(pT’ST’”‘”’j) <3
5 3 5 3
Then,
MR; (X77p/a S, 060) — MR; (XT”YPT’ ST’ GCO) > é >0
v 3
MR; (X7, 70”5, 600) — MB: (X!, 70! s1.00) _ 6 _
y 3

Therefore, from continuity of the marginal revenue function, it follows from the Intermediate

Value Theorem that there exists p such that |p — p| < d, and

MR; (X7 ’757 S, 000) — MR; (XT7 '7PT7 STa 080)
v

=0.

Furthermore, from the Triangle Inequality,

‘A (P8, 70y j) — A (pT,ST,na,j) ‘

< ‘A(p,s,na,j) — A(P,S,7a,]) ‘ + ’A(ﬁ,s,na,j) - A (pT,ST,na,j) ‘
. ~ . ~ . MR X7V§7S7ec
< ‘A(p,s,na,y)—A(p,s,na,J)‘Jr’A(p,syna,J)— i 5 )
. t oot , ~ _ . t oot
+ MR] (Xa’YP S 300) . A (pT,ST,T]a,j) + }MR] (X,’YP,S,HC) MR] (X,’}/p ) S aOC)|
v ¥
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Therefore, for sufficiently small § > 0,

|MR; (X,7p,s,0.) — MR; (X,p',s',6,)|
Y
. . . ~ . 2
Z ‘A(PaSﬂ?mJ) - A (pT>ST777a)]>’ - |A (pvsvnavj) - A(p,S,?]a,])| - g(s

>0

This is because ‘A (P8, Ny J) — A (pT,sT,na,j)‘ > 0 from identification, and from continuity
of A(p,s,Na,j) with respect to p, |A(P,S,Ma,j) — A(D,S,Na,j)| can be made arbitrarily small
for sufficiently small § > 0. Given the assumptions, we can find firms in the population in dif-
ferent markets m and m/’ satisfying (X, Pm, Sm) = (X,7D,8), (X, Py Smr) = (XT,fyﬁT,sT).
Therefore, 140 is identified.

We next show that the market size is identified. Recall that the equation for market size
is log (Q) = Ao + zA.0. Let s be the true market share, i.e. In (sim) = n(¢im) — In (Qm) =
In(qim) — Mo — zAz0. Then, the recovered market share satisfies s = x (z)s, where x (z) =
exp [()\0 +zX0) — <X+ zxz)}. Then, if <X, XZ> = (Ao, A20) , X (z) =1 for all z. On the other
hand, if (X, XZ> # (Ao, Az0), then for some z, we have x (z) # 1. We show below that x (z) =1
for all z.

To do so, we choose two firms with z = z' so that § = ys, 8T = ys!. Then, expected cost
conditional on observables when true market share is observed is the same for these two firms if

and only if it is also the same when the true market share is not observed. That is,

E [C| (a:q,irv B ,’§:§,X:X,j>] —E [c\ (zj:q,v~v:w,ﬁ:pT,’s“:gT,fc:XT,jT)}
(54)

I
=
T

I
T

if and only if
Ble|(i=a%=wp=p5=5X=Xj)| =F[C|(i=0%=wp=pl5=s X=X

Therefore, from Lemma 1, for those two firms with ¢ = ¢f, w = w! and x = x', we know that

Equation (54) holds if and only if
MR; (p.s,X:0c0) = MR;; (pl.s!, X600

Then, we prove that Condition 1 holds for €., = (x0,7a0), i-e., we essentially prove joint

identification of xg = 1 and 749. That is, we show that for any 7,0 < 0 and 7, < 0 such that
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Na # Nao, for x # 1, there exist (p,s) and (pT,sT) such that for s = xgs and s" = yos’, 5= xs
and st = ysf,

A (p7 Svna()vj) = A (pTa STanOtOva)

and either A (p,S,Na,j) # A (pT,/S\T,??a,jT)

or mazx Z?l, Z/S\IT > 1 or both.
1<y 1<yt

On the other hand, if x = 1, then 87 = s, and since in this case, 140 is identified, A (p,s, 7a0,7) =
A (pTv STa N0, ]T) for any (p7 S) if and Only if A (pv/s\a 770407j) =A (pT7§T7 Ta0, ]T) :

Now, consider the case x # 1. Let pji1, p;i4q satisty
. 0. pl. —pf 0
by Pj+1 — U, pjf pjT-i-l — L.
Now, choose s and s' such that Doi< SU= D <t slT = ® (—7q0). Then

@—1 (Zlgj—l Sl) + Na0

@ (L1 1) + a0 y

|7 D s el I DR

1< Pj — Dj+1 1<j-1 DPj—1—DPj
1 o1 (Zlgj—l Sl) + Nao
= —¢|® d s < 0.
15571 Dj—1 —DPj

The negative sign holds because leﬁ_l slT < @ (—1na0) and 740 < 0. Hence, p; > A (P, s, a0, J)-
Then, choose SL = sj such that >, ;51 =3t 4 szr , but p;r»_l —p; # p}_l —p;r.T. Thus,
A (p7Sa 770407.j) =A (pT7ST7 UaO,jT) , implies pj 7& p;[

Now, let, 8 = s, 8" = xsf. Then, if maz {Zlgj s, ZZSjT ng} < 1,and &1 (Zlgj §l) +Na #
0, then,

-1
o (Zlgj—l /S\l) + 7o

Pj—1 —Pj

o1 (i) 41
(e [Y5 I DY

<5 Pj — Dj+1 1551

XSj—)O

as pj—pj+1 — 0, and the same holds for firm 4. Therefore, A (p,8, Na,j) — pj,and A (pT,’s\T, na,jT) —

pj.]u. p}u_l ’ A(p)/s\anomj) 7é

A (pT,gT, na,jT). If max {Zlgﬁ 1, Zlgﬁ §Zr} > 1, then either ®~! (Zlgj é}) or 1 (Zlgﬁ §;r>

Then, since p; # p}, for sufficiently small |p; — pj41| and ‘p;f,T —
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or both are not defined.
Next, consider the case where for >, s = > )t slT =
® (—14) holds. Then choose p and p' such that p; —pj11 = p;{T —p!

Jt+1
Then,

ot (Zlgﬁ 5;) + N0 5

® (—1a0), Zlgj/S\I = Zlgj g} =

and p;_1—pj = p}_l —p}-

o1 (Elgﬁ_1 SD + 7a0

-1 T -1 T
—o [T D s T ® > s T
1<t Pjt = Pjiia 1<jt-1 Pjt—1 ™ Pji
(I)—l ) i
n i Zlgg’f—l 51 )+ 1a0
=—0¢| P Z 5 ; ; .
1<jt-1 Pjt—1 = Pyt
Next, choose p} such that
1 -1
T e ) ) o
pi=pi—|o| | D s — Sj
1<j-1 Pj—1 — Pj
P 1 Z T -1
B it—157 ) T Tao
) ) (Ee) :
tlo|?® Z 51 T T 55t
1<t -1 Pt ™ Py
Then, for x < 1, since ® is normally distributed,
o 1( 3 17
B X 2Lt Sl) + Na
oo | x D s X8

1551 Dj—1 — Dj

! <Zl§j—1 SI) + 7N
Pj—1 —Dj

(I)_l

¢

>

1<j—1

can be made arbitrarily large by making Zlgjfl s; to be sufficiently small. Then, A (p,S,7a,J) #

A (pT,/s\T, Nay J T). Similar arguments can be made for x > 1. Therefore, we have proven the identi-

fication of (x0,Ma0) using the limiting marginal revenue functions. As we argued for identification

of a0, while the argument above uses infinite prices, we can show that it works approximately

for sufficiently large prices.

We next show that o,¢ is identified. Since we have already shown that 1.0 and xg = 1

are identified, we assume we can recover the true market shares s and s', and only focus on

identifying (o4, 08) of 8. = (10, 0a,03).

Below, we start by assuming that 6. is not identified. Then, from Condition 1, there exists
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0. = (N0, 0a,08) # O such that for any (X, p,s, j) and (XT, pf, ST,jT), that satisfies x; = x},
both

MR (Xapvsaja 000) =MR (XTapTaSTaijacO) > 07 MR (X>pvsaj7 00) = MR (XT7PT7ST7jT700> >0

(55)
hold. Then, we demonstrate a contradiction.

Let v = 040/04 and

Y81 0 0
0 0
Fﬁ: ’}/ﬁ2 5
L 0 0 ’yl@K_

where vg; = ogoi/op,l = 1,..., K. Notice that yg > 0 for all [ and v > 0. We suppose that
either I'g # I or v # 1 or both, and show that for some (X, p,s, j) and (XT, pf, ST,jT), Equation
(55) is not satistied. We consider the following cases in the order given: 1) v < 1, max; {yg} < 1
2)y > 1, ming{ya} > 1; 3)y < 1, maz; {ya} > 1; 4) v > 1, miny{ya} < 1; 5) v = 1,
max; {yg} > 1; and 6) v = 1, min; {vg} < 1.

Case 1) v < 1, max; {yg} < 1. Choose (X, p,s, ) and (XT,pT,sT,jT) with s; # s;T. Denote
X)) = XI‘% , p™ = ~"p. Then, X0 =x , p@ = P, limp—oop™ = 0. Let X = LMy, —y 0o X (™).
Hence, for firms j = 1,...J and characteristics k =1,..., K, Z;, = xj; if ygr =1 and 7, =0

if vgr < 1. Using 0,0 = Y04, We obtain

Sj (X(O), p©, &0 900) = / / [ D (x; %608 + 2100 (@ + ho0) + &50) } ¢ (8) dB¢ (o) dox

1+ 370 exp (512508 + D100 (@ + 1a0) + E10)

_ / / exp (x;TgX308 + Ypjoa (@ + 1a0) + &j0) 6 (8) dB6 (o) do
1+ 37 exp (T2 B + Y106 (@ + 1a0) + & 0)}
= Sj ( ,p aéOa C) )
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s 0) (0
8 (0) <X( )7p( )7£0a000)

/ / exp (x;X808 + pjoao (@ + Na0) + &j0) [1 + 212 €xP (12808 + pioao (@ + Mao) + & o)}

2
[1 + Zl:l exp (XZZgoﬁ + D100 (Oé + 77a0) + fl,o)}

X0a0 (0 + 1a0) ¢ (B) dB¢ (o) dax
- // exp (x;TgX g8 + Ypjoa (o + Na0) + j0)

2
1+ L exp (T ZB + Yo (@ -+ 1a0) + o)

X {1 + ) exp (xiTZpB + P10 (o + na) + &0) | 0a (@ +1a0) ¢ (B) dB¢ (a) da
I#3

= 7;2%( ,p 7507 c>7

o5 T
and similarly for st it 8p . Thus,

5j=5; (X( 50, c) , sj = 8t (XT(I),pT(l),58790> , S5 F# S;L.T,

and if marginal revenues are equal for firms with (X, p,s, 8.) and (X, pf,st, 000), then they are

also equal for (X(l),p(l),s,OC) and (XT(I),pT(l),sT,GC), because,

-1
o [] (et e 00

aisfbl 71 (X0, P €0,0c) 55 (X170, 0,60 )
J

-1

_ 1 _
_ 71p§)+71

(XT(0)7 pt©® ¢l 960) 5t <XT(0), pt® ¢l 960>
-1

(X1, p!0.g).0.) s, (X100, g 00) . (56)

If 6. is not identified, then Equation (56) implies that there exist E((]l) and Eg(l) that satisfy

Sj =Sj (X(l)ap(l)’ ((]l)aBCO) 3 S;r-f = SjT (XT(I)apT(l)aég(l)aacO) )
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-1

ds, (Xu), pM), V), oco)

(1) (1) (1) (1)
Pyt 8p§-1) 8j <X P, & ,9c0>
1
91 (XT(l) piM) ¢l gco>
S (€Y J ’ 'S0 H(1) (1)
= p; + X 50 000 ) >

That is, if 8. is not identified, then there exist unobserved product characteristics E(()l) and 5(()1)
such that market shares remain the same and marginal revenues are equal at the true parameter
vector.

Using the same logic, we define 5(()”) to satisfy s; = s; (X(”),p("),f(()n),eco) and EO =
limnﬁooé(()n) which satisfies s = s (}2, 0,%0,000> because of the Implicit Function Theorem.

Then, as n — oo,

88]‘ (X(n), p(n) , 58”)7 900)
(n)
8pj

/ / exp <X§n)2ﬁ06 + p.g'n)O'a() (Oé + 770(0) + {;:)))

2
14 22]:1 exp (Xl( )Eﬁoﬁ + pg )UaO (05 + 77a0) + 51(,0))}

X [14+) exp (Xl(n) 5608 + 1" 00 (@ + 1a0) + f}f?)
l#j
X0a0 0é+77a0)¢( )¢ (8) dBdao

/ / exp X]EBOB + EJ 0) [1 + D12 €XP (ilzﬂoﬁ + gl,O)]
1 +37 exp (izzﬁoﬁ + gl,oﬂ i
X000 (¢ + 1a0) ¢> (a) ¢ (B) dBda
/ exp (%508 + &0) [1+ Tipy exp (31808 + &1 |
S
0 Jy [1 +3°7 exp (ilzﬁoﬂ + 5,0)} ’

¢ (B)dB <0

because 1,0 < 0. Therefore,

-1

s (X("), p™, £5", 9c0>

8p§n)

p{” + 5, <0

for sufficiently large n, which contradicts positivity of the marginal revenue.

Case 2) v > 1, ming {yg} > 1 Let ¥ = 1/v, 73 = 1/va1. Then 0, = 7040. Similarly, define
X = Xf‘g , p(”) = 4"p. Then, limn_,oop(”) —0. Let X = limn_moX(”). Then, z;; = x;; if
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v =1 and Z;; = 0 if 4 > 1. Then, using the same steps as in Case 1), but starting with the

parameter vector ., we find that s; (X(O) 0 ¢, 00) = 5j (X(l),p(l),é, 9c0)~ To see this, note
that:
©) (0 exp 0 25,8 —i—pj )oa (a+ na0) + fj)
1‘1‘21 1exp( 255+Pl Oa (a+77a0)+£l):|
/ / eXp X O)I‘ﬁzlggﬁ =+ ’YPE )O'aO (Oé + 77a0) + €]> ¢ (B) dﬁ¢( ) p
o) da
1+ exp ( (© )FgEgoﬂ + ﬁpl 00 (0 + Nap) + éz)]

= 5 (X<1>, pM ¢, 960) .

ds!

It then follows that - ( 5 (XO,p.€.0:) =7 88] 7 (XM, pM,€,6.) and similarly for s',, d—gg)
Pj P4

Then by applying the non-identification condltlon as in the case above, and then iterating, "we

conclude that .

W [0s (X<n>7 NONIO8 gc>
p; +

J 8p§n)

Sj<0,

which is a contradiction to positivity of marginal revenue. Thus 8. is identified.

3) v <1, max; {yg} > 1. Assume for some k € {1,..., K}, ygr > v for any [ # k.

Then, as n — oo, 1:5?/7& — 0 for | # k and mf?/vgk =z foralli=1,...,J, P(n)/ng —
0. Now, let u% = &, 0/0pok, and ul%) be such that s; = s; (X(”),p(”),’ygkaﬁ()ku(()n),9c0>. For
the sake of simplicity, we assume that the k' observed characteristics of firms in a market are
different from each other. Now, wlog. order the firms such that z1; < x94... < ;) and

T T

xi e < Toper < Thge Then, denoting X3¢ —x,—r to be the submatrix of ¥g¢ that does not
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include the kth row and the kth column, we get,

/ xl k ~ ;3) ogokBr + ( " - Xgn_)k> X 80—k, —kB_k
Br 145
+ (pl(n) § )> a0 (@ + 1a0) + V3K BOK (ul(%) - u%)) +ea—¢ < 0) ¢ (Br) dBr
; oG
= / HI (T — i k) 080Kk + %230 k=B g
Br 1#£j Vﬁk
" —p” € — ¢
+ % 0a0 (a+77a0)+0[30k(ul(:)) —Ug-ﬁ)))‘i‘Tj <0 | ¢ (Br)dBr
T3k T3k
, -
= H I\Br<— bk Tk Y50k, kB _k

n —_— .
B Ty k=T k>0 V319 B0k (Qfl,k; JTj,k)

() _ ) uf — ul?) o

VBkOBok (T — Tjik) (-’L'l,k Tik)  VpROBok (TLk — Tjk)

J (n) (n)

X kT Xk
I 1(8=>=- X 80—k, ~kB_
Y5k B0k (T — Tjik)

xl,k—wj7k<0

n” — " ufy — gl €€
- n Ta0 (a + 77040) - ~ T
VBroBok (Tik — Tjik) (e — k) VgRoBok (Tik — Tjk)

(n) (n)

X2k T Xk
VBeoBok (Tik — Tjik)

= / I /Bk S Minl‘l,k—:vjﬂk>0 - Eﬁofk‘,*kﬁ—k;
Bk

" - uiy —ully €= ¢
- n 0a0 (Oé + 77040) - ~ T
VaroBok (Tik — Tjk) @ik —Tjk)  Vprosok (Tik — Tjk)

<™ _ )
XI'| B > Maxy ,—z; <04 — =5 Lok gk Yg0-kB_k
’ ’ V319 B0k (-TlJc - ijJc)

(n) (n)

(n) (n)

b TP U0~ Ujo € — €

| = : a0 (0 + 7a0) — - — . é (Br) dpk.
VBeoBok (T1k — k) (e — i) Vgrosok (Tuk — Tjk)

(n) (n)

o (n)_ ()
Note that ——L=k 5"k 5350\ B, — 0, ( 5

—

€—€;
gkU,BOk(l“lk zj k) 'ngﬂﬁok(ﬂ?z,kfwj,k)
0 as n — oo. Hence, using earlier arguments, from continuity, there exists ug that satisfies

U1,0 Ui 0 — Uit1,0 Ui 0 — Wi—1,0 .
30=q><_ ),si:q><_zz+>_q>(_w),121,...,1
L1k (Tik — Tit1k) (Tik — Tim1,k)

)> a0 (@ + Ma0) — 0and

Y510 B0k (Iz,k*%‘,k
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It then follows that,

Ui 0 — Wit1,0 Z .
_— = 1

(mz,k - xz—l—l k 1<i

Thus, we can derive u; ¢ recursively, as earlier. Furthermore, following the similar arguments as
before, we can show that limnﬁooug%) =upfori=1,...,J.
Next, we consider the derivative of the market share with respect to the price. We define

= ——— and @; and g, similarly as well. Then,
’ (Ii,k*‘rl,k)

_ U0 — Wit1,0 _ Ui 0 — Ui—1,0 U1,0
< =a= 2T s = = o< 2D
(i — Tit1k) (g — Tim1k) Tk

, and as before, we derive

5 / HI xlk —; )> ook Bk + ( (n) —Xgn_)k) 80—k, —kB_k
j

+(ﬁm—pp)mwm+mw>+ﬁ%w%(%?—uﬁD+fr—q§0)¢wwdm

(n) _ )
_ Xk ™ Xk
= (11 — Tj k) OBoKSE + ————— 2 80—k,~kB_k
B 175J T8k
pgn) P () )y, €€
+ | === | da0 (@ +1a0) + ook — ;) + ——— < 0| ¢(Bk)dB.  (57)
V8K Y8k
Now, let
B (p"),uf”,n, X, Tg, 8, €,j.00)
(n) (n)
= - X1k~ %y 380k, kB
V5K B0k (T — Tjk) POk =k
(n) (n) (n) (n)
_ n—p Jo(a+n0)_“l,%_“ﬁ> B €€
(e} (e} M
’ygkagok (l’l E— Jij,k) (CUZ E— Xy, k) ’ngUﬂOk (wl,k - xj,k)
Then let

E (P(n)7 u(()n)v n, X7 Fﬁv Ba ev.jv 060)

= Minmlﬁk—$j7k>OB (p(n)7 u(()n) y 1y X7 Fﬁv ﬁ7 €, j7 060)
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and

B (p<n>, w)”.n, X, T, B, €, 96°>

= Mal'xlk_wjk<[)B (p(n)7 uén)7 n, X7 Fﬂa /67 €, j7 000) .

Then,
(n) :
aﬁ (p(n)vu() 77n7X7Fﬁ7/8767]7000) B a0 (a+na0)
ap" VBRoBok (Tiy ke — Tjik)’
¥o3 (n) :
0B <p(n)7u0 7n7X7P,37/87€7]7000) B 000 (a+77a0)
ap" VBkoBok (Tiy ke — Tjik)
where
ll = argminl#j,xlﬁk—xjyk>0B (p(n)7 u(()n),n,X, Fﬂaﬁv evjv 000)
l2 = argmaml#j,xuk—afj,kﬁoB (p(n)a u((]n) y 1y Xa Fﬁa Ba €, ja 000)

except for the case where [; and ls have multiple values, which we ignore because those situations

occur with probability zero. Therefore,
0 n .
(57) = a(n)/ﬂ I(ﬁ éﬁ(p(n)au(() )an7X7FB7/8a6aja000)>
p k
<1 (B = B (p"), uf”,n, X, g, 8, €, j.00) ) & (5) b

( ( uO 7n7X7Fﬁ7ﬁ7€7j7060>> ™ Uao<a+77a0)
V5RO B0k (T1y & — Tjik)

—¢ <§ (p(”), u(” n,X,Ts,B,e€, 7, 960>> a0 (@ + 7a0) ]

VRO Bok (Tigk — Tjik)

I (ﬁ (pW, u™ n,X,Tg, 8,7, 000) >~ B (p<”>, u n,X,Tg, 8, j, 000))(58)
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Then,

’ng x (58)
(n) (n) (n) (n)
, U0 ~ %0 a0 (@ + Na0) . Uy 0 — Y0 a0 (@ + 1a0)
—=¢ | limpeo —¢ | limp oo § —
(1, — T k) 8ok (T, &k — Tjk) (Z1ok — T k) T80k (Tiy k — Tj k)
(n) (n) (n) (n)
u U u — U,
< I | limy o _ k0 750 > iMoo _ b0 750
(T, 6 — Tjk) (Tip o — i)
— (_ Ujt1,0 — Uj0 ) oao (@ +Ma0) (_ Uj—1,0 — Uj0 ) a0 (@ + 1a0)
(@16 = Tik) ) ook (Tjt1,k — Tjk) (Zj—1k — k) ) opok (Tj—1k — Tjk)
Therefore,
/ / [ < Uj+1,0 — Ujo ) 000 (@ + 7a0)
Vﬁk T ‘ . .
(11,6 — k) ) opok (Tj41k — Tjk)

_¢(_ (“J Lo~ “ﬂ“) 90 (2 F 77a0) ]¢<a)da¢(ﬁ_k)dﬂ_k

Ti—1k — Tjk) ) ook (Tj—1k — Tjk)
o ﬁj+1,0 - 17]',0 Ta07a0 ajfl,O _ 17]-,0 Ta07a0
= o|-— e <0
(Tjs1e — Tjk) ) opok (Tjt1k — Tjk) (@j—1k — Tjk) ) TBok (Tj—1,k6 — Tjik)

because z 1 x — Tjk >0, ;11 — Tjr <0, Nao0 < 0. Therefore, for sufficiently large n,

-1
Pt + 95 (X(”), p™,u, 90) Sj
J (n)
op;

—1
s (n)

= "pj + VA |8 XM p™ ug” 8y)| s <0
J Bk ﬂkap( n) ( 0 ) J

J

because v < 1 < gk, which contradicts positivity of marginal revenue.

Next, we modify the above case to allow yg; to be the same for [ € K C {1,2,..., K}. Denote
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VK s Vg = @1 for | € K. Let x;c and x; i be defined accordingly. Then, letting k € K

w= / s (X.p .l 0. 8.60) F(e)ded (8) dBo(0)do

(n) _Xglé ) OaﬁOKCIBICC

/// XZIC_XEI%)OO-ﬁOKIBKJ—’_(XlKC
El#]
n)) +e€ — € < 0) ¢(5) dﬁda

(n) (n)
X e — Xj ke

/// (%160 — Xj k) © g0k B + n
el# ox
) My LG o) f(e)ded (B) dBo()da

()
pl p] (
+ a0 (@ +100) + Tgor(w g — U no =

’Yg}c K

o o gokeBice

Using earlier arguments, it is straightforward to show that

si— [ J]1(Gax —xjx) 0 ogoxBi + opor (o — Bjo) < 0) 6 (Br) dBx
Pr 1

Similarly, we can show the following:

0s; / [ ( K-k — XjK—k U, 0 — Uj o > 1
n J 1, J5 1, s
—5 = 1a00a0 |- ° o gok—kBKk—k —
oK op(" e opok (T1k — Tjk) © ST (e —2in) ) opon (1 — 25)
Xiy K-k — XjK—k Uy 0 — Ujp ) 1 ]
—¢ (- o ogok—kBr—k —
( 80k (Tipk — Tjk) p Rk (T1pk — Tjk) ) g0k (Tiy ke — Tjk)
X K-k — XjK—k U, 0 — Ujo
I- o o gok—kBr—k —
< oaok (T k —Tig) P R C )
X1y K-k — XjK—k Uiy 0 = Uj0 >
- oogok—kBx—k — 7~ | ¢ (Br-k) dBx—r <0,
08B0k (ﬂﬁlg,k - xj,k) s ok ($lz,k - Ij,k) ( * k) ok
where [; and lo are defined as earlier. Therefore, for sufficiently large n
5 -1 - 1 -1
s .
pgn) + (J) (X(n), p("), uén), 00) s; = 7'pj+ ’YEIC 'YEIC (i) (X(”), p(N), u((]n), 00) 85
ap] L 8p] .
- 4 -1
0s;
= ,anj + 'YEIC ’YEICO (i) ( (n)7 p(n)7 (n)’ 00) 55 <0
L D _

which contradicts positivity of marginal revenue
Case 4) v > 1, min; {vg1} < 1, As before, let 75, = 1/v3;, ¥ = 1/. Then7y < 1, max; {ya} >

1, and we can proceed as in Case 3).
=1, maz; {yg} > 1. We can show that this leads to contradiction as in Case 3)

Case 5) v
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Case 6) v =1, ming {yg1} < 1. Let 33, = 1/v3;, ¥ = 1/7. Then, ¥ =1, maz; {7y} > 1, and
from Case 5), this leads to contradiction.

The results of Case 1) and Case 3) imply that v < 1 leads to a contradiction. Similarly, the
results of Case 2) and Case 4) imply that v > 1 leads to a contradiction as well. Therefore, it
follows that v = 1 is the only possibility. Then, from Cases 5) and 6) it follows that v = 1 and
both max; {yg} < 1 and min; {yg} > 1 need to hold. Therefore, 3 =1 for I =1,... K and

therefore, gy and 040 are identified.

A.3 Identification of the SNLLS Estimator

Proof of Proposition 2:

For notational convenience, we denote
oo
(0 (Qjm> Wim, Xjm, Mij (ac) ) '7) = Z M (Qjma Wi, Xjm, Mij (00)) .
I=1

Recall that, from Equation (31),

B |(Cjm = @jms Wims Xjms MBjm (0c0) ,70))*| = o2+ 0,
because

Cim = U (@jms Wims Xjm, M Rjm (0c0) ,Y0) + Sjm + Vim

and jm, Vjm are assumed to be i.i.d. distributed and independent from (gjm, Wjm, Xm, Pm,Sm)-

Then, for any (6.,~)

E [(Cj — 9 (Gjms Wim Xjm> M Ry (8c) 7))

= B[ (@ W, Xjons MByn (80) o) = ¥ (@guns Wyms Xy M Ry (60) 7))
+2E [ (¥ (@jms Wims Xjms M Rjm (0c0) s Y0) = ¥ (@jms Wim, Xjm, M Rjm (8c) ,¥)) (Vjm + €jm)}
+E (vjm + §jm)2

= FE [(@b (@jms Wims Xjms M Rjm (0c0) ,Y0) = ¥ (@jms Wim, Xjm, M Rjm (6.) a‘)’))z} + o, + 0!

2 2
o, +oc.

v
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Therefore, if (0.«,7,) satisfies

. 2
[00*77*] = argmin(e,v)e(;)cxI‘E Cj - ZWM (Qjma Wi, Xjm, Mij (00)) )
=1
then,
Y (g5, Wi, Xjm, MR (0cx) ,vi) = ¥ (¢, Wi, Xjm, MR;j (0c0) ,¥0) (59)

needs to be satisfied for all (¢;, w;, Xy, Pm,Sm) in the population. Now, by assumption, given
(g5, Wj,Xjm), ¥ (,7¢) is continuous and strictly increasing in M R; (0.). Then, we show that
given (qj, Wi, Xjm), ¥ (,7,), is also continuous and strictly monotone function of MR;(6.). As
before, wlog, we only consider markets where firms have different prices, and let the numbering
of firms be ordered by price in a market. That is, the lowest price firm is j = 1 and the highest
price firm is j = J,,. Now, consider the firm j such that 2 < j < J,,, — 1. We use Equation (52).
That is,

MR] (Xa TP, S, 960)

MR; (X,p,s,0c0) = limy—00

v
—1
o1 (Zl<'3l>+na0 ot (Z » 81)—1-770
— Y _ 1<j—1 «
= pit [~o || Y s — —o et D s - 5
1<j Dj — Pj+1 1<j—1 Pj—1 —Pj

Because of Assumption 6, given X, p, there exists s such that ZKj sp = ® (—nq0). Then,

-1
ot (ZK‘ Sl) + a0
_ <j—1 o
MRj (XaP,S79co) =Pj — | 1 Z Sy S;-
Pj—1 — Py

Let

AjE

007 (Siam)) 27 (S ) ]

Then, A; <0, and M R; (X, p,s,0) = 0 implies

_ 4
_Aj—i-l

pj Pj—1 > Pj-1

if A < —1, which holds for sufficiently small Zlgjfl s;. Now, consider j = 2. Let p be such that
for some p, >0,p, = ﬁgl, py<...<p, such that M R; (X, p,s,0) > 0 for j > 2. Then,
MRy (X,E,S,OCQ) = 0. Note that by letting p; (y) = P, +y,j=1,...,J, for y > 0 and by in-
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creasing ¥, we can continuously increase M Ry (X, p,s,0) from zero to an arbitrarily large num-
ber, say B > 0. Then, by construction, for sufficiently large v > 0, M Ry (X, vp (v),s,00) is in-
creasing in y > 0 with range being [0, vB]. Therefore, ¥ (g2, Wa, X2m, M Ro (X, 7P (¥) ,S,0c0) ,Y0)
is also strictly increasing and continuous in y. Because 9 (g2, W2, X2, M R,~y,) is continuous in
MR, in order the Equation (59) to hold, M Ry (X,vp (v),s, 0.+) needs to be continuous in y as
well.

Now, suppose there exists a segment [y, y} where M Ry (X, vp (y) , S, Ocx) is constant. Then,
for any two values y € @, @] and ¢y’ € @, @], satisfying y > v/, MRy (X,7p (v),8,0c+) =
MRy (X,vp (¢'), s, 0cx) implies

¢ (QQ,W2,X2m, M Ry (X,’YP (y) ) S, Oc*) 57*) = ¢ (Q27W27X2m, M Ry (Xafyp (y/) ) S, 00*) 7’7*)

whereas

w (qQ7W27X2m7 M Ry (Xa’YP (y) S, 900) 770) > ¢ (qQ7W2aX2m7 MRy (X7'7p (y/> S, 060) 7'70) ;

which contradicts Equation (59). Next, consider the case where MRy (X, p () , s, O ) is strictly
increasing in y € [g, @] and strictly decreasing in y € [y,9]. Then, from continuity, for y < y suf-
ficiently close to y, MRy (X, vp (¥) ,8,0cx) < MR (X,vp (y),8,00:) < MR2 (X,vp (¥), 8, Ocx)
holds. Therefore, from the intermediate value function, there exist ¢’ € [, 7] such that M Ry (X, vp (v/),s,,0cx) =
MRy (X,vp (y) ,8,,0cx). Again, this contradicts ¢ (,7yy) being strictly increasing in MR. Sim-
ilar argument can be made for the case where MRy (X,p (y),s,0c«) is strictly decreasing in
y € |y,7] and strictly increasing in y € [7,7]. Thus, we have shown that MRy (X,p (y),s, 0c)
is strictly monotone in y, and therefore, from Equation (59), v (,7,), is a strictly monotone
function of MR; (0.) for j =1,...,J.
Recall that in Proposition 1 we have shown that the BLP demand function satisfies Condition

1. From Condition 1, there exist two firms with (p,s, X, q,w,j) and (pT, st, XT, q,w,jT) and
MR; (p,s,X,0:0) = MR;; (p',s', X, 6,)
Then,

¢ (Q7 W, X, MR] (p7 S, Xa 060) 770) = @Z) (q) w, X, MRJT (pTv ST7 XT? 060) 7’70) 3
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which implies, from Equation (59)
¥ (g, W%, ME; (p,5.X,0c:) . 7.) = v (q.w.x, MR (p,s', X", 600 ) 7. ) -
Then, from strict monotonicity of the function v (,-,) with respect to MR,
MR; (p,s,X,0.,) = MR, (pT,sT,XT,00*> .
On the other hand, suppose
MR; (p,s,X,0.0) # MR;; (pT,sT,XT,eco) .
Then,

¢ (Q7 W, X, MRJ (p7 S, X7 060) 770) 7é w (q7 W, X, MR]T (pTa ST? XT? 060) ) 70) P

which implies, from Equation (59)

¥ (g, w,%, MB; (p,5.X,00) . 7.) # 0 (4, w,%, MBy; (pls". X", 6. ) 7).

which implies

MR; (p,s,X,0..) # MR (pfjsf,xfjacg .

Because BLP satisfies Condition 1, 0., = 0.

A.4 Semi-Parametric Cost Function Estimation

The cost function can be recovered from the pseudo-cost function estimate in three steps.

Step 1

Suppose that we already estimated J(q,w,x, MR,~,;). We then nonparametrically estimate

marginal cost for a given point (¢, w,x, C) as follows,

]@(Q,W,X,C) = ZMR] <Xmapmvsm7§cM)
jm

X Wh (q —qjm, W — Wim, X — Xjm, C— (Qjm7 Wim, Xjm, Mij (06M> a%’M)) )
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where 0., is the vector of estimated demand parameters, and the weight function is

Wh (q —qim, W — W, X — Xjm, C - ij)
Ky (4= Gm) Kny (W = Win) King (% = Xjm) K (€ = Gjm )

> i Kny (@ — art) Ky, (W —wi) Kn, (X — Xp1) Kpe (C — TZI@Z) ‘

where h = (hg, hw, hx, he), and Ky, (), Kn,, (), Kn, () and Kj, () are kernels of ¢, w, x, and C

with bandwidths Ay, hy, hyx and hc, respectively.

Step 2

Start with a vector of input price, observed product characteristics, output and the conditional
expected cost (w,x,q, 6). Then, there exists a variable cost shock © that corresponds to
MC (a,w,x,é) = MC (g,w,x,7). Notice that we cannot derive the value of © because we
have not constructed the cost function yet. For small Ag, the cost estimate for output g + Ag,

input price w and the same variable cost shock v is

C(q+ Aq,w,x,0) =C+ MC (g,w,x,C) Aq.

Then, from the consistency of the marginal revenue estimator (which we will prove later) and

the Taylor series expansion,
C(a+Ag,w,x,0) = C(g+Aq,w,x,0) + 0 ((Ag)°) + 0, (1) Aq.
At iteration k > 1, given Cy_1 = C (§ + (k — 1) Aq, w, D)
C @+ kAg,w,x,0) = Gy + MC (7+ (k= 1) Ag, w,x, i1 ) Ag.
Then, from Taylor expansion, we know that for any k£ > 0,
C (@+ kAq,w,x,0) = C (q+ kAq,w,x,7T) + O <k (Aq)2> + kop (1) Ag

Thus, we can derive the approximate cost function for given input price w and quantity q.
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Step 3

Next, we derive the cost function for different input price. First, we derive the nonparametric
estimate of the input demand. Denote 1 (g, w, x, C') to be the vector of input demand given output

q, input prices w, observed characteristics x and cost C. Then, its nonparametric estimate is:
1 (qv W, X, C) = Z lijh <q —qim, W — Wim,X — Xjim, C - ZZ) (q]ma Wim, Xim, Mij <0]Vf) a%M)) .
jm

where 1;,,, is the vector of inputs of firm j in market m. Notice that from Shepard’s Lemma,

oC (q,w,x,D)

1= ow

Start, as before, with g, w, and C. Next, we derive the cost for the output g, w + Aw for small

Aw that has the same cost shock ©. Then:
Gy =C @ w+Aw,x,0)=C+1(g,w,x,C) Aw + 0 ((J|aw|?)) + o, (1) [ Aw] .
At iteration k > 1, given Cj_1 = C (g, w + (k — 1) Aw, x, D)
C (g, w+kAw,x,0) = Cy_1 +T(§,w +(k—1)Aw,x, @k_l) Aw

By iterating this, we can derive the approximated cost function, which satisfies

~

C (@ w+ kAw,x,7) = C (g, w + kaw,x,0) + O ( (k[ Awl?) ) + ko, (1) | Aw]
for any k£ > 0.

A.5 Further specification and data issues
A.5.1 Economic versus accounting cost

The cost data we envision using comes from accounting statements of firms.?? Such data do not
necessarily reflect the economic cost that the firm considers in making input and output choices.
More concretely, we may not be appropriately taking into account the opportunity cost of the

resources that are used in purchasing the necessary input to produce output. Fortunately, from

TIndeed, accounting data are typically used in the literature that estimates cost functions to evaluate market
power, measure economies of scale or scope, and so on.
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accounting statements, we may be able to obtain information on other activities that the firm may
be pursuing in addition to the production of output. For example, we may find details on firms’
financial investments including their rate of return.?® Suppose that the real return on a dollar of
a financial investment is r;,,. Then, the opportunity cost of production is pjm,7jm, and the firm
will produce and sell output until marginal revenue equals marginal cost that incorporates this
cost, i.e.,

M Rjp (0c) = MC (qjm, Wins Xjms Ujm) + DjmTjm.-
Substituting this into our estimator, we obtain the modified SNLLS part as follows:

1

Zig] Z [C]m - 77[) (Qva Wm, ija Mij (00) - pjmrjm7 ’7)}2

Jm
That is, as long as we can obtain information on the financial opportunities that the firm has
other than production, we can incorporate them into our estimator. Then, the estimator will

not be subject to bias even if the cost data we use corresponds to accounting costs.

A.5.2 Endogenous product characteristics.

If firms strategically choose prices and product characteristics, then elements of X,, will be
correlated with the demand shock §j,,. To accommodate endogenous product characteristics,
researchers have recently started estimating BLP models that include first order conditions for
optimal prices and product characteristics.?’ In particular, Petrin and Seo (2016) use the first
order conditions of product choice and additional panel data moment restrictions to identify the
price coefficient. The endogeneity of product characteristics does not prevent us from identifying
the price coefficient, and thus, markups, as discussed before. It is an issue only if researchers
want to estimate the coefficients of the observed characteristics.

To deal with endogenous product characteristics, we follow a strategy that is similar to Petrin
and Seo (2016). We differ from them by using cost data instead of instruments. We modify the
cost function as below:

C (q7 X7 w7 U? vx) )

30In the application of our estimator to the U.S. banking industry, such information is readily available. Most
large industries like banking that are subject to some form of regulatory oversight are likely to report such data.

31GQee, for example, Chu (2010), Fan (2013), and Byrne (2015). For an excellent overview of the empirical
literature on endogenous product characteristics, see Crawford (2012). It is worth noting that all these applications
maintain the static decision-making assumption of BLP - firms are allowed to adjust their product characteristics
period-by-period but are not forward-looking in doing so. A recent paper by Gowrisankaran and Rysman (2012)
develops and estimates a dynamic version of a differentiated products oligopoly model, the solution of which is
computationally extremely burdensome.
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where vy corresponds to the shock that affects the production of observed characteristics. The

additional F.O.C. for optimal product characteristics would then be
MRX,jm (00) = MCij (Qva Ximy Wmy Ujm, 'Ux,jm) 5

where M Ry jp, is the vector of marginal revenues of firm j in market m of the product charac-

teristics choice. Then, the SNLLS part would be modified as

2
1
ﬁz Cim = > W%t (@jms Xjm> Win, MRy (8) , M Ry jum (0)) |
m M m l

where M R, is, as before, marginal revenue with respect to output.

A.5.3 Cost function restrictions.

So far, in the estimation exercise, we have not imposed any assumptions on the shape of the
pseudo-cost function ¢ except that it is a smooth function of output, input price, observed
product characteristics and marginal revenue. The cost function that is recovered is not restricted
to have properties such as a positive slope, homogeneity of degree one in input prices, nor
convexity in output or marginal cost to increase with cost shock.

Imposing the restriction of homogeneity in input prices in estimation is straightforward. If
the cost function is homogeneous of degree one in input price, so is the marginal cost function.

Then, for an input price wy, which is the first element of the vector w of input prices,

C(qa W, X, U) = U)lC(q, 17 X, U)
w1

and

8C(Qa W/'LUl, X, U)

MC(q,w,x,v) = w; Ry

We can thus modify the SNLLS component of our pseudo-cost estimator to impose the homo-

geneity restriction as follows,

w1 W1im Wim

2
1 Cm W_1m MRm 00
G (g Y, M >)] ,
mYm m 7

j7m

where W_1 ,, = (Wam, . .., WLy) is the vector of input prices except wip,.
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A.5.4 Missing cost data and multi product firms

Until now we have assumed that cost data are available for all firms in the sample. However, it
could very well be the case that we observe costs only for some firms and not others. Even in
this case, we can estimate the structural parameters consistently by constructing the SNLLS part
using only those firms for which we have cost data. Because the SNLLS part of our estimator
does not involve any orthogonality conditions, and because the random components of the fixed
cost and the measurement error of cost are assumed to be i.i.d, choosing firms in this way for
estimation will not result in selection bias. It is important to notice, however, that we still need
demand-side data for all firms in the same market to compute marginal revenue. Luckily, such
demand-side data tends to be available to researchers for many industries. Allowing for missing
cost data is important in reducing the concern about reliability of cost data. That is, in practice,
researchers can go over the accounting cost data carefully and simply remove the cost data that
have anomalies.

A more difficult situation would be when firms produce multiple products, but only the total
cost of all products is observable in the data. To address this issue, we follow the setup of BLP
closely. Let Fy be the set of product-market combinations that is produced by firm f. That is,
Fr={(G,m): I; (j,m) = 1} where Iy (j,m) = 1 if the " product in market m is produced by
firm f and 0 if otherwise. Let q be the vector of outputs of products produced by firm f. That
is, q5 = <qj17m1,qj2,m2, s Qi ,mnf) and ny is the number of product-market combinations
produced by firm f. In our vector notation, we follow the convention of ordering the products in
the same market and the products in different markets. That is, if the firm f has two different
products j and j' with j < j” in the same market m, then ¢;, comes before g;/,, in the vector
qy. If the firm f has two different products j in market m and j" in different market m’ with
m < m/, then gj,, comes before g;/,,/ in the vector qy. Similarly, let X, be the (K X ny) matrix
of observable product characteristics and vy be the vector of cost shocks of products belonging
to Fy. Similarly, denote mcy, py and sy to be the vectors of marginal costs, prices and market
shares of products belonging to Fy. Input prices are denoted by the matrix w; with L input

prices for each market the firm operates in. Then, we can modify the cost function of firm f as

C(ap,wys, Xp,v5) .
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Then, the F.O.C. for profit maximization for product and market (j,m) € Fy is:

8sr/7m/ —0.

Sim + Z (pr’,m’ - mcr’,m’)

(r'\m")EFy Pjm

Hence, we can write

mc; = py + A;lsf,

where row h and column 4 of the matrix Ay is [Ay], . = 05, m;,/OPj;m;- Since markets are
isolated, 0s;, m,, /OPj;,m; = 0 for my, # m;.

Then, the SNLLS component can be modified as follows:

2
Cr—=> sy (Qf,WﬁXf,pf + A (Xy,py,s5,00) s (Xf7pf,5f790))] :
I

1
7o
f

where I’ is the number of firms; v/ is the 1th polynomial for firm f and ~;; is the corresponding
coefficient. These basis polynomials vary with firms because they depend on the number of
products produced by each firm. Estimation can proceed as long as the number of product-market
combination for a firm is not too large. Otherwise, we would face a Curse of Dimensionality issue
in estimation.

If the number of products ny is large, one could consider imposing more structure on the
cost function. For example, we could specify the total cost of firm f as the sum of the costs of

all the products that it produces. That is:

Cf = Z ¢ (qji:mﬂwmi’ ijmﬂvjivm/i) +vy

i
= Z Z 'Yﬂpl <Qj7;,m7;vwmi7xj1:,mw Dji,m; + [AJZI (Xf7 Pr, 8y, 00) Sy (Xf’ Py,Sf, 60)} > + vy
i l

7

. Hence, the SNLLS component of our estimator can be modified as follows,

2
Cf - Z Z'Ylwl (qjiymi7wmi’inymi7 Pj;,m; + [A;1 (va Pf;Sf, 90) Sf (Xfa Ps,Sy, OO)L)] .
i l

1
72
!

Note if we were to use the data on the total costs of the firms that operate in multiple
markets, they need to practice third-degree price discrimination. Then, the question arises as to
what to do if they don’t. In that case, we don’t use their cost data and only use the cost data

from firms that either operate in a single market or exercise third-degree price discrimination if
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they operate in multiple markets. Such choice of firms whose cost data we use does not result
in any sample selection issues because the selection does not alter the conditional distribution of

the measurement error.

A.6 Large Sample Properties

In this section we show that the estimator is consistent and asymptotically normal. Notice that
in our sample, we have oligopolistic firms in the same market. Because of strategic interaction,
equilibrium prices and outputs of the firms in the same market are likely to be correlated. To
avoid the difficulty arising from such within-market correlation, our consistency proof will pri-
marily exploit the large number of isolated markets, with the assumption that wages, unobserved
product quality and variable cost shocks are independent across markets

The assumption of independence of variables across markets is employed for simplicity. We
leave the asymptotic analysis with some across market dependence for future research. For
Strong Law of Large Numbers under weaker assumptions, see Andrews (1988) and the related
literature. As we have discussed earlier, those assumptions are not required for identification.
Without loss of generality, we assume that in each market, the number of firms is J. Notice
that in our estimation procedure, we have two steps: one that involves the difference between
the cost in the data and the nonparametrically approximated pseudo-cost function to identify 6.
(which is « for the Berry logit model and (4o, 04) and og for the BLP random coefficient logit
model) and the second step is the OLS estimation based on the orthogonality condition &,, 1X,,
which identifies 8 for the Berry logit model and pg for the BLP model. We start with denoting
0 = (03,0.), where 03 is the vector of parameters estimated in the second step. In our proof,
for the pseudo-cost function part, we follow Bierens (2014) closely.

For the description of our objective function, let y,, = (Qm, vec (W,)", Cp, vee (X)), vee (pm)', vec (sm)’)/,
Zoy = (qm, veec (W) vee (X)), vee (pm), vec (sm)’),, where Cy, = (Cim, Comy ooy, Cym), Wi =
(Wims Wom, vy ij)/.

For the sake of analytical simplicity, we derive the asymptotic results for a slightly modified

component of the objective function for firm j in market m, which is

~

b (Mijb(Oc)—t>
fj (me 0.,t, b) = [C] — ¢ <Qjm7 Wim, Xjm, Mij (06))]2

M J MRjm(8:)—t\ "
MLJ Zm:l Zj:l h (%)

We set the function h(z) > 0 to be twice differentiable; equal to 1 for z < 0; decreasing in x
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for > 0 and equal to zero for x > 4. Since the objective function is zero for M Rj,, (6.) >
t + 4b, and the rest of the variables in the objective function are assumed to be bounded,
it follows that the objective function is bounded, which simplifies the proofs. For large ¢t >
0, the modified objective function is practically equivalent to the original objective function
[Cjm = & (@jm> Wjm, Xjm, M Rjm (6.))]%.

We next specify h (). Let

Q
S
\

g = [11u3]l(0§u§1)+ l—-u——2-u)?|I1l<u<?2)

gu) = GO +FWIO0<u<2)—GA—uwI2<u<d)

and let
h(u)=I(u<0)4+g(u)I(0<u<Ad).

Then, h is a continuous function and

1 ifu<0
% ifu=1
h(u) = % if u=2
%2 ifu=3
0 if u>4.
Also,
. 1, 11 )
g(u)z—z I0<u<l1)+ —§+Z(2—u) Il<u<?2),
and I/ is a continuous function with
0 ifu<0
—1 ifu=1
Wu)y=q -1 ifu=2
—% if u=3
0 ifu>4.
Similarly,
1 1
g”(u)z—zul(ogugn—[2(2—u)]1(1<ug2),
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and h” is a continuous function with

0 ifu<0
—1 ifu=1
R (u) = 0 ifu=2
—1 ifu=3
0 ifu>4.

Now, define
Fi Fims 0,1, 0) = £ (Y, 0c) Wim (M R (6.) ,1,0)

where

fi (yms> 0c) = [Cim — 0 (qjms Wims Xjm, M Rjm (00))]2

and (MR (6.) t)
h | —=—

ﬁjjm (Mij (00) 7t7b) = r [h (M)}
b

for ¢ > 0, and b > 0. We also define

L E [%h’ (MR]m(O e)— t>2] |

el ()

Then,
MR, —t
0T jm MRymth) 37 () o (MEim —t
OMR E{h(M&ﬁfd*)} b '
Let
b = p[n(Mm0 1))
_ lh/ Mij—t
8wjm(Mij,t,b) i l ih,, Mij—t _b ( b ) 0B _ 0 Ah Mij—t
OMROMR N b2 b B? OMR OMR b '
Then, let
J
F(ym.x.t.b) = z: (Ym> X) Wim (M Rjpm (6c) ,t,b) (60)
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and Q (X) =F f (Ym,tha b) |Zm ) Where X = (0/057/), = {Xn}zo:p Wlth

Ocn forn=1,...,p,
Xn =
Yrn—p forn >p+1.
where p is the number of parameters in 6.. Denote, as before, x, = ( ’60,76), to be the

true parameter vector. In both the SNP logit estimation exercise of Bierens (2014) and ours,
the polynomials are functions of parametric functions. In our model, the parameters 8. are

identified. Let 6. € ©. be compact and let the parameter space = = O, x I, (6,,7) € = satisfy

E= {X%ozl [_XTNYH]}

where X,,, n = 1, ... are a priori chosen positive sequence satisfying > o0 | X2 < 00, SUPp>p |Xn| /Xn <

1. We also assume that the parameter space is endowed with the metric d (x1, x2) = |Ix1 — Xal|;

where [|x|| = \/> peq X2. Let xq be the vector of true parameters. Define

O, for k < p,
O, x I'y—p (T) for k> p+1,

—
=, —
=k

where k € N, I'y (T) = {mey : |7yl < T}, and 7y is the operator that applies to an infi-

o0

nite sequence v = {y.},~ 1,

replacing all the v,,’s for n > k with zeros. Suppose further that
Xo € E. Furthermore, since we assume that firms choose prices so that the marginal rev-
enue equals marginal cost, we restrict the parameter space O, so that any 6. € O, satisfies
MR (X,p,s,j,0.) >0 for all (X,p,s,j) in the population.

In proving consistency, for the sake of simplicity, we add the following assumptions:
Assumption 10 (W, Xy, Qs &,y Uiy Sms Vi), m = 1,...,M are i.i.d. across markets.
Define d,,, = (Qm,vec (W) vee (&) vee (V)" vee (X))

Assumption 11 The support of &m, denoted as Dy, is compact, i.e., Dy = @, @] X [w, @]L X

€8 x [v,7) x [-7,2)"¥.

Assumption 12 The parameter space = is compact. The true parameter x is in the interior

of Z.
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fF(¥Ym, X7y 0), Ym, m = 1,..., M, x, and E satisfy the assumptions that are similar to
the Assumption 4.1 of Bierens (2014). Some inequalities are reversed because in our case, our
estimator is derived by minimizing the objective function, whereas in Bierens (2014), it is based

on maximization.

(a) y1, yo2, -, yu are i.i.d. The support of y,, is contained in an open set ) of the Euclidean
space.

(b) E is a metric space with metric d (x;, X2)-

(c) For each x € E| f(ym, X, T, b) is a Borel measurable real function of y,,.

(d) f(ym, X, T,b) is a.s. continuous in x € =.

(€) There exists a non-negative Borel measurable real function f (y) such that E [f (ym)] > —oco

and f(ym, X;T,0) > f (ym) for all x € E.

(f) There exists an element x, € = such that @ (x) > Q (xg) for all x € Z\ {x}, and Q (xp) <

Q.

(g) There exists an increasing sequence of compact subspaces =, in = such that x, € Upe Ex =

— —_
— —
— —

(h) Each sieve space Zj, is isomorph to a compact subset of a Euclidean space.

(i) Each sieve space Zj, contains an element x, such that, limg_,oo F f(ym, Xk> Ts b)} =F [f(ym, X055 0) |-

(j) The set 2o, = {X €z F [f(ym, X5 T, b)} = oo} does not contain an open ball.
Lemma 5 Assumptions (a)~(j) hold.

Proof. First, we show that assumption (a) holds. First, since market size is bounded above
by Q, qjm < Q for any j,m by definition of market share Sjm = @im/Q@m < 1, and thus,
Gjm < Qm < Q. From Assumption 7, the cost function is continuously differentiable in output.
Therefore, M C (qjm, Wi, Xm, Ujm) is also bounded. Suppose pj,, — oo. Then, if all other prices
are bounded, since §,, is bounded, s;m, — Prob(a: a+1nq0 > 0) = @ (n40) < 1/2. Therefore,
limy,, —scoPjmSjm — 00. Now, consider for a small § > 0, s;m = ® (Nao) + 6, and p;-m corre-
sponding to it. Then, because limy,,, —00Sjm = P (1a0) > 0 and limy,; —coPjmSjm — 00, there

exists (Sjm,Djm) such that Sjm, < s}, and pjm > pj,, and p, 8%, — PjmSjm < 0. Therefore,
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from the mean value theorem, there exists s}, € <§jm, s;m> and the corresponding p7,, such

that
/ / . 3. * *
. PimSjm — PimSjm apjmgjm
limp_yoo . — =3 = —o0.
im — Sjim Sjm

On the other hand, consider s;-m = ® (1q0) — 0 for a small 6 > 0, and p;-m corresponding to it.
Then, because limy,,, —o08jm = ® (1a0) > 0 and limy;, s coPjmSjm — 00, there exists (Sjm, Djm)
such that 5j, > s, and Pjm > pj,,, and pjmSjm — Pjp, s, > 0 and can be made arbitrarily

large by choosing arbitrarily high pj,,. Therefore,

=~ . _ /
. pjmsjm p]msjm
lims. =
pP—r 00 ~. o -
gm — Sim

/

Therefore, from the mean value theorem, there exists s7,, € (sjm,gjm> and the corresponding

*
Pim such that
=~ _ / * *
lim~ DjmSjm pjmsjm o apjmsjm -
IMF—s00 = ; = s =
Sjm — Sim Sjm

From the boundedness of the marginal cost function, we conclude from continuity of the
market share function that for sufficiently large p s, marginal revenue is either negative or higher
than the marginal cost. We can show that similar results occur if the price goes to infinity for
multiple firms as well. Therefore, we conclude that prices are bounded. Furthermore, s;,, €
(0,1). Lastly, Cj,, € (—00,00). Therefore, (a) holds.

Assumption (b) is also satisfied with d () being the Euclidean metric. (c), (d) are also sat-
isfied given the Borel measurability and the continuity of the market share function and the
deterministic component of the cost C¥ (¢, w,x,v) 4 ef (W, X,v) + eme (¢, W, x), and the Borel
measurability of the random component of the fixed cost and the measurement error, vj,, + Sjm.

Assumption (e) is satisfied because ]?] (y¥,x) > 0 for any (y,x) if we set f(y) = —1, from

Equation (60). Assumption (f) follows from the identification of x in Proposition 2 as follows:

E [[CJ - 1,[) (Qjma Wim, Xjm, MR]m (00) 77)]2 'wjm (Mij (OC) )L b)

> B |:(ij + njm)Q

where strict inequality holds if (8.,7) # (8c0,7,) for sufficiently large ¢, £ and T, so that our
identification proof goes through.

Assumptions (g) and (h) hold from Assumption 9 (Equation (29)). Next, we consider As-
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sumption (i). We set x; to be x = mrx and x; = O for [ = 1,...,p. Furthermore,

E [J?j (Yms Xow: b)}

- 2
< E [UJQm + n?m] +E Z ’YOHZJZ (QJma Wi, Xjm, MR]m (000)) Wim (Mij (060) ’ t7 b)
l=p+1
_ _ o 2
< FE [U?m + 77]2m] + E | sup ¥ (¢jm> Win, Xjms M Rjm (00))* wjm (M Rjm, (00) , 1, D) Z Vo1l
[ [=p+1 1 \i=pt+1
2

)
E [UJQm + 77]2'm] +FE liupl ] (Qjm’ Wiy Xjm, Mij (00))2 Wim, (Mij (000) , b, b) Z "701| )
L zp+ J l=p+1

IN

and the RHS is uniformly bounded. Thus, by taking expectation, we obtain

E fj (ymv X0k» L, b)i| < E [UJQm + njzm] +E

sup ’lm (Qjm, Wi, Xjms Mij (90))2 Wim (Mij (060) , Ty b)] < Q.
>p+1

Therefore, from the Dominated Convergence theorem, F [E (¥m» Xok» ts b)} —F [E (¥m» X0, t, b)}

as k — oo. Hence, (i) is satisfied.

Furthermore, by construction, f (ym, Xg,t,b) is uniformly bounded, and hence,
oo = {x €2 B [Jymx.t.0)| = o0}

is an empty set, and assumption (j) is satisfied. m

Therefore, the assumptions that are equivalent of Assumption 4.1 of Bierens (2014) are
satisfied. Then, consider the e-neighborhood of a parameter vector x, € Z. Then, because yn,
is i.i.d, for x in the € neighborhood of x,, the random variable infy cz ¢y, x)<e f‘; (¥Ym, X, t,b) is
also i.i.d. Thus, we can use the Kolmogorov’s LLN. To do so, we need to show that one can take
the expectation of infx*eE,d(x,x*)«fj (¥m» X, t,b) Over y,,, i.e., that it is integrable over y,,.

Since, by construction, f(ym, Xk, t,b) is nonnegative and uniformly bounded, given any x € Z,

d

for any € > 0,

inf ; » X £, 0)| | < 00
X+ €Z,d (XX ) <€ i (Ym: X )H
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Hence, from Kolmogorov’s LLN,

—Z nt E(ym,x*jt,bma.sﬂ[ it Fmxatb)|  (61)
1 X €Edxx,) <€ X €EE,d(X,X ) <€

as M — oo. Now, let

J
1

where

h (Mij(Oc)—t>
M) 0, S b (MmO

oo (222

[MJ]*l Zle 3]:1 L (M) j g

m b

wjm (Mij (00) s t, b)

Now, let

EM[h<Mijb(00) )}E Wiéh<Mij[§90)—t>

'm( C)—
Ay = AE [h (MRJ .bo t)} .
B ()

By applying the Kolmogorov Law of Large Numbers, as M — oo,

B (2= (222

For sufficiently large t > 0, E [h (%) \zm} > 0, thus,

and let

Ay 23 1. (62)

Then, since

f(Ym7X;t7b) :A]\/[ X f(ym7X7t7b)
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Therefore, from Equation (61) and (62), for any € > 0

M
1 1 n a.s. . —~
il inf y Xs: 6, 0) = F inf Xas b
M rr; X €O XTd(x,x) <€ f (ym:x ) X+ €O XT,d(x,x.) <€ f (ym:x )

Therefore, Theorem 4.1 of Bierens holds. That is, plimas—eod (Xass Xo) = 0 if and only if for
any compact subset . of Z with x, in its interior, limps—oo Pr (Xpar € Zc) = 1.
Next, we explain how we set up the parameter space so that Assumption 4.2 of Bierens (2014)

is satisfied. That is,
Assumption 13 (Assumption 4.2, Bierens (2014) ) Either

(a)

[1]]

e )
= Up2 B, 1s compact itself, or

(b) There exists a compact set =. containing x such that Q (xg) < E [infxei\ac f(ym, X,T,b)| <

Q.

Assumption 12 and (g) guarantee (a). Then, we can prove consistency using an equivalent

of Theorem 4.2 of Bierens (2014). That is,

Theorem 1 (Theorem 4.2, Bierens (2014)) Under assumptions that are equivalent to the As-

sumptions 4.1 and 4.2 of Bierens (2014), plimps—ood (X s, Xo) = 0.

Therefore, we proved consistency of our estimator.
Next, we prove the asymptotic normality of our estimator. First, we prove that 9Ay; /00y 3

0 and 92 Ay;/00.:000 “3 0. Now, let

0o s (4202 o s (2202

Furthermore, since h (%) satisfies the conditions required for interchanging the inte-

gration and derivatives, we do so and apply the Kolmogorov’s Law of Large Numbers to derive

~ B, MRy, (0:) —t\] as. 0 MR (0:) —t B
E]\/f |:aedh< b >:| _>E|:80dh< b ) l_17"'7p7

N e R Y
e o e L
Since,
0 _ 1 94m and Ay 31 OAum 0.

890[ “u (96) B m 890l ’ ’ 800l
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By the same logic, it is straightforward to show

0 a.s.
a7 am () = 0,
aeckecl M ( ) ”

and thus,
82AM a.s.

90,00,

We next discuss how we either impose or derive Assumption 6.1 of Bierens (2014).

Assumption 14 (Assumption 6.1, Bierens (2014))

(a) Parameter space = is endowed with the norm

)
Ixll, = > n" |xnl
n=1

and the associated metric d (X1, X2) = [Ix1 — Xall,-

(b) The true parameter xo = {Xon},., satisfies ||xll, < oo.

=Int
—n

—=Int

=", where is the interior

(c) There exists k € N such that for any n >k xo, = TnXo €

of the sieve space =,,.
(d) f(ym,x,T,b) is a.s. twice continuously differentiable in an open neighborhood of x.

We assume (a) and (b). For (c), as explained earlier, we follow Bierens (2014) and construct
the compact parameter space so that (c) is satisfied. The logit and BLP marginal revenues
are twice differentiable and the cost function is also assumed to be twice continuously differen-
tiable. Furthermore, W;jp, (M Rjm,t,b) is also constructed to be twice continuously differentiable.
Therefore, (d) holds.

It is straightforward to show that Assumption 6.2 of Bierens (2014) is satisfied given As-

sumption 14 and the earlier consistency proof. That is,
Assumption 15 For any subsequence k = kpr of the sample size M satisfying kyy — oo as
M — oo, plimns—ool|Xk,, — Xollr = 0.

Then, Bierens (2014) proves in Lemma 6.1 that there exists a subsequence K,, < n, lim,,_,o K, =
oo such that
M ~
lim Pr Z Vif (ym,XnM,t,b) =0 fork=1,....K,, | =1

M—o0
m=1
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Furthermore, we also assume:
Assumption 16 (a) - E [(y—i— C)ﬂ < 00
First, we set 7 = 2. Then, we prove that Assumption 6.3 of Bierens (2014) is satisfied. That is,

Lemma 6 (Assumption 6.3, Bierens (2014))There exists a nonnegative integer rg < r such that

the following local Lipschitz conditions hold for all positive integer | € N we have

E “vlf(Y7X07tab) - Vlf(yvxo,kvta b) H < Cl HXO - XO,kHro

where V1 f (Y, Xo: 1 0) = OF (Ym» Xo» £ b) /0X015 Yoio127'C) < 0o and the sieve order k = kg

1s chosen such that

o
A}linoox/ﬂ Z n" x| = 0.
n=kp;+1

Proof. We choose kp; > p for any M > 0.

Fi ms X 6,0) = 5 (Y 0c) Wim (M Ry, (8.) , £, D)

= [Cj - (Qjmy Wim, Xjm, Mij (06) a7)]2 ﬁjm (Mij (00) )1 b)
For k> p, 1 > p,

E || Vir ms X 1:0)|| = B 211yt yiym (M By (80, 1,)]] < B. (64

for sufficiently large B > 0.
For k> p, [ <p,

X’QbMR (QJma Wim, Xjm, MR]m (00) ) 7) ﬂ)/]m (Mij (OC) ; ta b)
o OMRj, (6.)
+[Cjm — ¥ (@jm> Wims Xjms M Rjm (8c) 7)) MR im (MRjm (6c) ,t, b)] X W
(65)
~ ~ ~ 0 OMR,;, (8,
vk,lfj (ym7 X tu b) = 2¢MR¢kfpwjm - QAIwMRk*pwjm B 2A11/Jk7pmwjm (Mij (06) 7t7 b):| % ({9]91()

where A1 = Cj — ¢ (Qjm,ij,ij, Mij (90) ,’)/).
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Since 1 (; M Rjm (0c0)), ¥ (; M Rjm (0c) ,¥)s Yvr (M Rjm (0c) s ¥)s Ymrk—p (, M Ry (6c) ,7),
Wim and OWjy, (M Rjm (6c) ,t,b) JOM R, OM R}y, (6.) /00, are uniformly bounded over the com-

pact domain,

E Hvz,kf(}’m,Xatvb)H <B

for sufficiently large B > 0.

Therefore, from the mean value theorem, for k > p,

E Hvl.]?(yv XOutab) - Vlf(y7x0,k7t7b) H <B Z ‘XUn’ <B HXO — X0,k
n=k+1

o

and claim holds. m

Next, Assumption 6.4 of Bierens (2014) requires that for all k € N, F {ka(y, Xos ts b)} =0.
This holds because of the F.O.C. for the parameter value x,.

We show next that Assumption 6.5 of Bierens (2014): Z?; j27IE [(ij(y, Xos ts b))Q] <
00, holds. From Equations (63) and (65), since for [ > 0, ¥ (, MRjnm (0c0)), ¥ (, M Rjm (6¢) ,7),
Yamr (MRjm (00),7), Uamri—p ( M Rjm (0;) ,7y) for I > p, Wi, and Owjy, (M R, (6.) ,t,b) /JOMR,
OMRjy, (0.) /08, are uniformly bounded over the compact domain, for j > 0, ij(y,xo,t, b)

is uniformly bounded over the compact domain. Therefore,

E Hvlf(ym,x,t, b)ﬂ <B

for sufficiently large B > 0, and claim is satisfied.

Next, we prove that (a)-(c) of Assumption 6.6 of Bierens (2014) is satisfied.

Lemma 7 (Assumption 6.6, Bierens (2014)) For some T > 0,

(8) X320 5052 (0) 2T B |5 f (3, x001:0)|| < o0, where
Vj,k]?(YmaXOat» b) = 32f(Ym,X0>t,b) / (8X0,j8X0,k)'

(b) limejo 3252, 302, (jk) 2 E [SUPHX—XOHTSE

vj’kf(y’x’ t’ b) B V]th(Y? X0> ta b)” =0.

(c) For at least one pair of positive integers l,n, E [Vl,pJFn]?(y, Xo,t,0)| # 0.

Proof. (a): From the proof of Lemma 6, for j > p, k > p, and for j <p, k >pand j >p, k<p

E ij,kf(ym,x,t, b)H <B
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for sufficiently large B > 0. For k <p, [ <p,

><T/}MR (Qjma Wim, Xjm, Mij (00) , '7) wjm (Mij (oc) ,t, b)
OMR;,, (0.
+ [ij - 1/1 (QJmu ij7 ijv MR]m (00) 77)] Ji()

w]m (MRJm (00) 7t7 b):| X 89 .

9
MR
N 9 _ 1OMR;,(6.)
— |24 g2 9 g | OM i (Bc)
[ 1WOMRWjm + AT 5 TR Wim 90,

o _ ]1OMR(6,.)
OMR J”‘] 90,1
9> _ TOMR(8,)
LOMROMR" J’"} 90,1
OPMR;,, (6.)

890l800l

Vk,lf(}’m X, t,b) = [ 2031 R Wjm + A1UMRMRWjm + AVUMR o~

0
[ 2A1¢MR6MRw]m + A2

. 0
+ |:—2A11/JMijm + A% 6Mijm}

Once again, by earlier arguments, it follows that,

B [[Viif (3 1.0)|| = 2B[|B]) < o0

Therefore, (a) holds.

Note that all the terms of Vk,lf(ym, 7,b,x) are continuous for || x — xyl|, < € for sufficiently
small € > 0. Furthermore, it is uniformly continuous because the parameters belong to a compact
set. Therefore, (b) holds.

(¢) Suppose that for £ > p and k = [, from Equation (64),

E [ Viify m X t0)| = B 208 m (M By (80) ,£.5)] # 0

Therefore, (c) holds. m
Now, let m (u)s be orthogonal weight functions on [0, 1] such that o, = fol e (w)? du converges
fast enough to zero as k goes to infinity. Further, n in x,, denotes the number of parameters,

including the coefficients on sieve polynomials, so that xr = 0 for all & > n. K, used below is
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the subsequence defined in Lemma 6.1. of Bierens (2014).

M M
ﬁ(u) = []}W Z J?(Ym7X07t b) 77k( ) E [\/7 Z yw”LvXO’t’ b)] Nk (U) - AM& (u)
m=1
Ky T M
Wn(u) = Z LZV ym,xn,tb]nk
k=1L m=1
Ky T M
Tt = 3| 3 el et w0
k=1 m=1
Ky M
k=1L m=1
Ky | M
Va(u) = > 34 >~ (Ve s X0 1:0) = VieF ¥ Xons .5)) | 1 ()
k=1L m=1
Ky [ M _
En (u) = Z %7\4 Z Vif (ym7X07t7 b)] Mk (u>7
k=1L m=1
Kn [ M
271 (u) = Z %7\4 Z Vif (ym7X07t7 b)] Nk (u>
k=1L m=1
Ky M _
gl,” (u) = - []\14 Z vk,lf (y'm,; Xon + )‘k (Xn - XOn) 7t7 b)] Nk (u)
k=1 m=1
Ky M
/b\lﬂl (u) = - Z []\14 Z vk,lf (yma Xon + )‘k (Xn - XOn) 7t7 b)] Nk (u)
k=1 m=1

where n, (u)s are orthogonal weight functions on [0, 1] such that o3 = fol e (u)? du converges fast
enough to zero as k goes to infinity. Note that in this case, n denotes the number of parameters,

including sieve polynomials. Then,

Zgl,n (U) \/M(Xn,l - XO,l) = Zn (U) - Wy (u) —Va (u) )

where, from Lemma 1, Bierens (2014), supo<u<i ’WnN (u)| = 0p (1) and supg<y<i

Vi ()] =

op (1) because of Assumption 6.3 of Bierens (2014).

Next, we state Lemma 6.2 of Bierens (2014).

Lemma 8 Under Assumption 6.4 and 6.5, Zn = Z on [0,1] where Z is a mean zero Gaussian
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process with covariance function

P(Ul,UQ) = E[ (u1) Z ( )]

- ZZ [ka Y, Xos b5 0) Vlf(YmaXO7t b) i (u1) my (U2)]

k=1 1=1

Moreover,

SUPo<u; <1,0<up<1 | (U1, u2)| < 00

and thus, Assumptions 6.1-6.5 imply that
n o~
Zbl,n (u) VM (Xni — Xo01) = Z (u) .
Now, J?(ym,xo,t, b) is i.i.d. distributed with mean E [f(ym, Xos ts b)} and variance

E |:]?(Ym7X07t; b) - F [f(yn’wXO,t,b)}Q] < 0.

Thus, from the Central Limit Theorem, we obtain

iw i f(Ymath? b) = N (E [f(Ymath? b)} , Var (f(ym7XO7t7 b))) .

m=1

Now,

> o
because Ay “3 1, 0An /00, “3 0, A Zn = 7, { b1 %‘31‘:} [ﬁ Zn]‘/{:l fv(ym, Xos t,0) | n (w) LS
P ()] = 0 (1),

Z (u) = Api Zn +

M
fz YmaX07tb)]77k() = Z,

0. Similarly, we derive supo<u<i ‘/Wm\, (u)‘ = 0p (1) and supo<yu<1

Therefore, 2n also satisfies Lemma 6.2. Furthermore,

Z/l;l,n (u) \/M (Xn,l - XO,Z)
=1

n P
7 7 OAN~
= AM Zbl,n (u) M (Xn,l - X{],l) - W]\jbn (u) \/M(Xn,l — XO,Z)
=1 [¢
P & 9Au M
a my Aln A n 6,0 M (Xnk —
lz;k;l 00c1OBck \ﬁmz:: (rms Xon & Ak (O = Xon) 8,0 | 1 () VM O = Xo.)
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a.s.

because the 2nd converges to zero in distribution and so does the 3rd term because of 9% Ay /90,00 “3
0.

Then, given Assumptions 6.1-6.5, we have
n ~
Zbl,n (u) vV M (Xn,l - XO,Z) =7 (u) :
=1

Next, we decompose this equation as follows.

(B (@) B () VI (B = B20) + > B () VI (01 = 70,)
=1

—

= Zn(u) = Wy (0) = Vy, (u) = Z (u)
Now, as in Bierens (2014), let
G (u) = @1 (1), Ao (W), .. Gy (u)
be the residual of the following projection.
o~ o~ / o~ —~ / N
(B (@) By (@) = A (Bpiin (1) oo () + @ (w).
Then, one can show that
1 1 N
/ Gy (1) @p (u) du/M (Ocn — Oe0) = / G (1) (Zo () = W (w) = T (w)) du,
0 0

where @, (v) @, (u)' is a p by p matrix, and 0, — 0, a p by 1 vector.

Then, from Lemma 6.3, Bierens (2014),

Plimag—soc /O ‘G (w) @ () du = /0 la(u)a(u)/du

where a (u) is the residual of the following projection exercise

b(u) = (b1 (), ... by (u) = A(bps1 (1) -y boo () +a(u),
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where b (u) € L2 (0,1) satisfies

[P = || = \//01 (B () — b (u)>2 du = 0, (1)

fori=1,...,pand

Z Pl Hgln - sz =o0p(1)

I=p+1

and

lim inf Z pibr]] >0

n—00
I=p+1

We impose the Assumptions 6.7 of Bierens (2014), which is:

Assumption 17 Assumption 6.7, Bierens (2014): Let

FE [VLlf(ano,t, b)} ... E [Vlmf(y,xo,t,b)}
By, = : ’ :

)

E [Vj,lf(y,x[),mb)} SR [Vj,nf(y,x(),t, b)]
rank (Byy) = k for each k > p.

Next, we impose Assumption 6.8:

lim inf det (L{") >0

n—00 k—o0

where L") gatisfies @i/an’k = Qk’nL(”’k), and & = diag (2_2, 274 . ,2_%), Qrnisakxn

)

orthogonal matrix and Lén’k is the upper-left p x p block of the triangular matrix L") Then,

Lemma 6.4 in Bierens (2014) holds, and
1
F= / a(u)a(u) du
0
is a full rank matrix, thus, invertible. Then,
VM (831 — 80) % N, (0,FICF 1)

where

Y = /01 /01 a (up) T (ug,u2) a(u2) dugdus.
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Then, for the logit model, 8.9 = {a} and for the BLP model, 8. = {pa, 0a, 081,k =1,..., K}.
Then, because of consistency, plimMﬁooacM = 60y. Hence, SmM =51 (sm,§CM> —p O for
each m = 1,..., M and therefore, given the orthogonality assumption F [X;,£,,] = 0, given

conditions for the consistency of the OLS estimator for the logit model
BM = (XIX)—I X! [SM - Pa} —p Bos

or
~ —1 S ~
bay = (X'X) " X [6M - pua] —p g0,

as M — oo. Therefore, EM —p &o- Therefore, if we impose standard assumptions to ensure
plimpy—oo 7 X' X = E (X, X,,), and E (X[, X,,) being nonsingular, plimas—,ec 17 E%:l X, (&) Xom =
E X! 30X,,], then

VM (fig — o) —a N (0. (X0, Xom) ™" B [X0, X B (X}, X0m) )
as M — oo.

G: Details on the empirical application on the banking sector

We use the bank level total deposits as the output and the bank level employee salaries as the
variable cost. We derive the deposit interest rate by calculating the deposit interest payment per
bank level total deposit minus per deposit service fee. Market level weekly wage is used as the
input price. The controls we use are the log of population per branch, log of number of markets
served and the log of bank age plus one. We construct the bank level dataset of these variables by
merging the data from various sources. We obtain the bank level total deposits and the number of
branches for each market from Federal Deposit Insurance Corporation (FDIC), employee salaries,
deposit and loan interest rates at the bank level from the balance sheet information reported to
the Federal Financial Institutions Examination Council (FFIEC). Information on county level
weekly wage and county level population is obtained from the Census and the Bureau of Labor
Statistics. We define markets as Metropolitan Statistical Areas (MSA’s) for urban areas and
counties for rural areas.

By closely inspecting the data, we noticed that in many markets, credit unions seem to
be effectively nonexistent as an outside option. We made a judicious choice of removing the

markets whose market share of credit unions is less than 1 %. More concretely, we start with
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Log cost function

log labor cost
10 11 12
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9
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log deposits

95% ClI
kernel = epanechnikov, degree = 0, bandwidth = .55, pwidth = .82

Ipoly smooth

16417 banks in 2325 markets. After removing the markets that have missing data on banks and
credit unions, we have 11647 banks in 1117 markets. Then, removing the markets with small
share of credit unions, we are left with 10513 banks in 954 markets. Finally, for the sake of
reducing the computational burden, we only selected markets where the total number of banks
are no more than 40. Then, we are left with 8155 banks in 914 markets.

In Figure 3, we show the kernel fitted relationship between log deposits and log of salaries
divided by weekly wage, where deposits and total salaries are in millions of dollars. As we can
see, overall, the relationship between log deposits and log variable cost is increasing. In Table 9,

we report the sample statistics.

109



Table 9: Sample Statistics

Description Mean  Std.dev
(a) Bank and market data

Bank deposits (in million §) 182.2 735.4
Bank deposit market share 0.094 0.114
Bank total salaries (in million $) 455.9 1396.0
Outside option deposit market share 0.153 0.131
Deposit interest rate 0.025  7.484E-3
No. of banks per market 14.08 9.534
No. of markets per bank 2.428 6.751
Number of branches per market 4.137 7.835
Bank age 75.68 47.08
2002 Jan. treasury note interest rate 0.055 0
Housing price index 139.4 14.02
(b) Sample

Sample size 8155

No. of banks 3230

No. of markets 914

No. of single market banks 2067
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