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Abstract

In this study, we analyze the model of general n-person overlapping generations games. It
is assumed that players strictly discount the future at a common rate and that the dimension
of feasible one-shot payoffs with individual rationality is equal to n. In contrast to previous
researches, this study shows that players can obtain payoffs outside the feasible set of one-shot
games.
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1 Introduction

Overlapping generations (OLG) games have been widely studied to
investigate economic organizations whose members change over time.
In OLG games, players in the same generation interact for a sufficiently
long time, and then are replaced sequentially by successors in the next
generation. Kandori (1992) first proved the folk theorem in general
n-person OLG games, which stated that the players in each generation
can obtain any payoffs in V ∗, the convex combination of feasible one-
shot payoffs with individual rationality. Following him, Smith (1992)
proved several versions of folk theorems with stronger results.

In the analyses of Kandori (1992), Smith (1992), and subsequent
studies on OLG games, the characterization of equilibrium set of pay-
offs is restrictive. They showed that players can obtain any payoffs
in V ∗ without discounting, and that the result is robust against low
discounting. However, this does not mean that players cannot at-
tain payoffs outside V ∗: when they discount the future, intertemporal
trades of payoffs using the difference of time preferences can be possi-
ble.

Based on this issue, we recently have shown in Morooka (2020) that
in 2-person OLG games with discounting, players can obtain payoffs
outside V ∗. In the present paper, we extend the result of Morooka
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(2020) to general n-person OLG games. Our result shows that under
the full dimensionality of V ∗, any payoffs in the cubic hull of V ∗, that
is, any payoffs in the smallest n-dimensional cube that contains V ∗,
are obtainable by the players in each generation.

In order to get the intuition of our result, we consider the one-shot
game illustrated in Figure 1. In our model of overlapping generations,
each player lives for 3T periods, and his first and second opponents
are replaced by corresponding new players in T and 2T periods, re-
spectively, after his entrance, as depicted in Figure 2. Players are
assumed to strictly discount the future at a common rate δ which is
less than 1. When each player takes Y in the first T periods, and X in
the next 2T periods, an equilibrium is formed with an average payoff

of 3(1−δT )
1−δ3T which is sufficiently close to 3 as the player’s continuation

payoffs diminish as periods pass. As a result, players’ payoffs in each
generation are almost (3, 3, 3), which Pareto-dominate (1, 1, 1) and
are outside V ∗.

The main difference between Morooka (2020) and this work is in
rewarding players after punishments. In 2-person games, mutual min-
imaxing is available for punishment against deviations by one player.
When there are 3 or more players in one-shot games, they may want
to quit punishment because their payoffs during punishment are less
than their minimax payoffs. Players must be rewarded with appropri-
ate payoffs after the punishment as an incentive, which requires the full
dimensionality of feasible one-shot payoffs with individual rationality.

In order to obtain this result, players’ strict discount is essential. In
our study, the rate of discounting has two different roles, which can
be seen as a trade-off. First, players must be so patient that do not
deviate, the argument of which is seen everywhere in the literature on
repeated games. At this point, we do not want players to discount
the future. The second role, which is our original one, is that it must
diminish the payoffs in players’ later days. If players do not discount
the future, they fail the intertemporal trades of payoffs.

It must also be noted that there is an order in the choice of param-
eters; we must fix the discount first, and then choose players’ lifespan,
depending on the discount. This is because, as the discount rate ap-
proaches 1, we need a longer lifespan in order for players’ continuation
payoffs after they become older to diminish sufficiently. This order is
inverse to that of the non-uniform OLG folk theorem in Smith (1992),
where he first fixes players’ lifespan, allowing players to punish devi-
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ations strictly under no discount, and then chooses the discount with
which the punishments are still available.

In relation to infinitely repeated games, our logic is compared to
that of Lehrer and Pauzner (1999). They studied two-person in-
finitely repeated games with different discounting between players,
and showed that players can obtain equilibrium payoffs outside the
set of feasible one-shot payoffs V . In their model, the player who eval-
uates future payoffs at a higher rate gives payoffs to his opponent with
less patience first, and is rewarded later. This allows players to ob-
tain higher payoffs outside V . In Lehrer and Pauzner (1999), however,
there is an asymmetricity of payoffs between players. In our model,
on the other hand, all players’ payoffs can be raised at no cost.

We also show that players cannot obtain even better payoffs outside
the set characterized in this research. The intuitive reason is as fol-
lows. When a player obtains a high feasible payoff without individual
rationality, he has already obtained it in his early life. Therefore, at
least one other player’s payoff early in her life must be less than the
minimax value. As a result, whatever she gets thereafter, her payoff
throughout her life is also less than the minimax value.

We define the model and prove the main theorem in Section 2.
In Section 3, we show the impossibility for players to obtain payoffs
outside the characterized set. Section 4 concludes.

2 Model and Results

Let N = {1, 2, · · · , n} for n ≥ 2 represent the set of players in a
one-shot game. For i ∈ N , let Ai be the set of i’s actions and let
A =

∏
i∈N Ai. Let gi : △(A) → R be the one-shot payoff function of

i, where △(A) is the set of players’ mixed (but not correlated) actions.
Let G = G(N, A, g) be the one-shot game considered. Without loss
of generality, we assume that each player’s minimax payoff in G is 0i.
Let V = co(g(A)) be the set of feasible payoffs in G. The set of feasible
and individually rational payoffs is then defined as V ∗ = V ∩Rn+. We
assume the full dimensionality, that is, dimV ∗ = n.

In order to rigorously characterize the set of equilibrium payoffs in
our result, consider the following value ri for i ∈ N :

ri = max
v∈V ∗

vi.

iNote that in order to minimax a player, some of his opponents may have to take a mixed action.
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This value is the best feasible and individually rational payoff for
player i. We then define the open cubic hull of V ∗, say C(V ∗), as
follows:

C(V ∗) =
∏
i∈N

(0, ri).

For example, in the game shown in Figure 1, r1 = r2 = r3 = 3 and
C(V ∗) = (0, 3)3.

We now turn to construct our model of OLG games, OLG(G; δ, T ),
as follows. Let T be a natural number. Each player lives for nT
periods: the player in k’th generation with action Ai lives between
period (k− 1)nT + (i− 1)T + 1 and knT + (i− 1)T . Exclusively, the
player in 0’th generation with action Ai for i ̸= 1 lives between period
1 and (i− 1)T . The case of n = 3 is shown in Figure 2.

In our model, each player’s future payoffs are discounted at a com-
mon rate δ ≤ 1ii. It is assumed that players can use the public random-
izing device each period, and that the monitoring is perfectiii. When
the sequence of actions {a(t)}nTt=1 is played throughout the life of a
player with Ai (except in the case of players in 0’th generation), his
average payoff is as follows:iv:

1∑nT
t=1 δ

t−1

nT∑
t=1

δt−1gi(a(t)).

The following result holds.

Theorem 1 (The Folk Theorem in discounted n-person OLGGames).
For every v ∈ C(V ∗), and for every ϵ > 0, there is δ0 ∈ (0, 1) such
that if δ ∈ [δ0, 1), then for every T sufficiently large, there is a sub-
game perfect equilibrium in OLG(G; δ, T ), where the players in each
generationv obtain average payoffs ϵ-close to v. This vector in partic-
ular need not be feasible.

Before the formal proof, we see in detail that in the OLG model of
the following stage game in Figure 3, each player can obtain vi ≒ 3
when δ is sufficiently close to 1. In the Pareto frontier of this game,

iiAlthough our result does not hold with δ = 1, it is convenient to consider this case in order to construct the
strict punishments under no discount which is still available with δ < 1.

iiiIn our model, players can only observe realized pure actions.
ivFor players in 0’th generation, please replace nT by their lifespans.
vPlayers in 0’th generation with shorter lifespans are excluded from this result.
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the sum of payoffs is 7, which is less than
∑

i vi = 9. In this game,
Y is the strongly dominant action for all players. However, in order
to generate efficient (resp. minimaxing) outcome, two players must
take X (resp. Z) enduring payoff −1, which is less than the minimax
value. Moreover, the only one Nash profile (Y, Y, Y ) is not only
Pareto-inferior but also gives considerably high payoffs to players, so
it cannot be used both on the path and for punishments. It is assumed
that in each period, the nature draws one integer from 1 to 10 with
equal probability, and that players commonly observe it. Consider the
following strategy.

If there is no deviation, players play the following path strategy:

·When a player exits, he takes Y and his opponents take X.

·In all the other periods, players play the action which gives 3 to
the youngest player and gives 2 to the other players. This payoff is
generated when players play (Y, X, X) (which yields 9 to the youngest
player and −1 to his opponents) with probability 2/5, (X, Y, X) with
probability 3/10, and (X, X, Y ) with probability 3/10.

If someone deviates, players play one from the following punish-
ments. The punishments are also applied to the deviations from them-
selves.

·(Punishment 1) If there are at least 7 periods left between the
next period and the oldest player’s exit, the deviator plays Y and
his opponents play Z in the next 3 periods. Then, in the following 3
periods, players play the action which gives 1 to the deviator and gives
3 to his opponents. The payoffs (1, 3, 3) are generated when players
play (Y, X, X) with probability 1/5, (X, Y, X) with probability 2/5,
(X, X, Y ) with probability 2/5. After that, they return to the path.

·(Punishment 2) If the oldest player deviates and there are at most
6 periods left between the next period and his exit, he plays Y and
his opponents play Z until he exits. After that, players return to the
path.

·(Punishment 3) If a younger player deviates and there are at most
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6 periods left between the next period and the oldest player’s exit,
players play (Y, Y, Y ) until the exit of the oldest player. After the
exit, players play the action which gives 1 to the deviator and gives 3
to his opponents for 21 periods. Then, they return to the path.

We show that the above strategy forms an equilibrium under δ ≒ 1.
First, observe that players’ minimum one-shot payoff is −1 and that
their maximum one-shot gain from deviations is 1, by the construction
of equilibrium strategy. Consider the deviation of one player from the
path when there are at least 7 periods left between the next period
and the oldest player’s exit. If he does not deviate, his payoff in the
current period and next 3 periods is almost at least −1 + 1 × 3 = 2
with δ sufficiently close to 1. If he deviates, it reduces to at most
1 + 0× 3 = 1 by Punishment 1.

Second, consider the deviation of one player from the minimaxing
when there are at least 7 periods left between the next period and the
oldest player’s exit. If he does not deviate, his payoff in the current
period and next 6 periods is at least −3+3×3−1 = 5. If he deviates,
it reduces to at most 1 + 0× 3 + 1× 3 = 4 by Punishment 1.

Third, consider the oldest player’s deviation right before his exit.
When there are 3 periods left between the next period and his exit,
his payoff from the current period on is at least −1×3+9 = 6 without
deviations. And when there are at least 6 periods left before his exit,
he can get at least 6 on the path. If he deviates, it reduces to at most
1 by Punishment 2.

Fourth, consider a younger player’s deviation right before the oldest
player’s exit. When there are 6 periods left between the next period
and the oldest player’s exit, his payoff from the current period to the
21st period after the oldest player’s exit is at least−7+2×21 = 35 if he
does not deviate. If he deviates, it reduces to at most 1+2×6+1×21 =
34 by Punishment 3.

Finally, we calculate each player’s equilibrium payoff. For each
player, he gets 3 in every period for the first T − 1 periods of his
life, and thereafter, he gets at least −1 in each period. Therefore,
when T is sufficiently large and players discount the future at least
a little, players’ continuation payoff after becoming older diminishes

and their average payoff, 3(1−δT−1)−(δT−1−δ3T )
1−δ3T , is almost 3.

Now, we proceed to formally prove the result. We generalize the
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punishments against the deviations described above.

Proof . Fix v = (v11, · · · , vnn) ∈ C(V ∗) and ϵ > 0. By the def-
inition of C(V ∗), there exists an (n − 1)-dimensional vector vi−i for
i ∈ N which satisfies vi = (vii, vi−i) ∈int.V ∗. Let ai be a (correlated)
profile with one-shot payoffs vi. Because dimV ∗ = n, there exists a
(correlated) profile dj,i with one-shot payoffs g(dj,i) ∈ V ∗ satisfying

gi(d
j,i) < gi(d

j,k) (no dev. from minimax k) and gi(d
j,i) < vji (no dev.

to dj,i) for i, j ∈ N and k ̸= ivi. The profile dj,i can be viewed as a
“reward” after minimaxing the deviator with Ai, when the player with
Aj is the youngest. We also denote the minimaxing profile against i,
the profile which gives the maximum payoff to i, and a one-shot Nash
profile, as mi, bi, and e, respectively.

We also define rj,i,T2({a(t)}T1
t=1) for i, j ∈ N , T1, {a(t)}T1

t=1 ∈ AT1, δ
and T2, as a (correlated) profile, which gives a one-shot payoff gk(d

j,i)−∑T1
t=1 δ

t−1gk(a(t))

δT1
∑T2

t=1 δ
t−1

to the player with Ak for k ̸= i and gi(d
j,i) to the player

with Ai. Given T1, such a profile exists when δ and T2 are sufficiently
large. According to this profile, each player with Ak is indifferent
among all actions during minimaxing to the player with Ai, because∑T1

t=1 δ
t−1gk(a(t))+δT1

∑T2

t=1 δ
t−1gk(r

j,i,T2({a(t)}T1
t=1)) = δT1

∑T2

t=1 δ
t−1gk(d

j,i)
holds.

The game starts with playing a1 in period 1. The parameters Q,
M , S, and P are natural numbers and determined later in this order
for which the following strategy profile is subgame perfect. The profile
consists of six steps. We also need the public randomizing device for
Steps 1, 3, 4, and 5 in order to let players play correlated actions.

When there is no deviation, players play the following path strategy.

Step 1. When there are at least S periods left between the next
period and the oldest player’s exit, players play ai, when the player
with Ai is the youngest.

Step 2. When there are at most S−1 periods left between the next
period and the oldest player’s exit, players play bi, when the player
with Ai is the oldest.

viWe can indeed find such (dj,i)i,j∈N . To see this, choose any i, j ∈ N . There exists a vector on the line
connecting the origin and vj , which is included in int.V ∗ \{vj}. We can choose cj as a profile of actions giving such
a vector. Then, because of the full dimensionality condition, we can choose a vector in int.V ∗ such that only the
i’th component is less than gi(c

j), with remaining other components being the same as g(cj). We can choose dj,i

as giving such a vector.
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After someone unilaterally deviates, players play the following pun-
ishments. The punishments are also applied to the deviations from
themselves. Right after the punishments, players return to the path.
Suppose that the deviator has the action set Ai.

Step 3. When there are at least Q + M + S periods left between
the next period and the oldest player’s exit, players play mi for Q
periods, and then, after {a(t)}Qt=1 is observed, play rj,i,M({a(t)}Qt=1)
for M periods, when the player with Aj is the youngest.

Step 4. When the deviation is by a younger player and there are
at most Q+M + S − 1 periods left between the next period and the
oldest opponent’s exit, players play e until the opponent’s exit. After
that, when {a(t)}Q+M+S−1

t=1 is observed and the player with Aj is the

youngest, players play rj,i,P ({a(t)}Q+M+S−1
t=1 ) for P periods.

Step 5. When the deviation is by the oldest player and there are
at most Q +M + S − 1 periods left between the next period and his
exit, players play mi until his exit. After that, when {a(t)}Q+M+S−1

t=1

is observed, players play ri,i,P ({a(t)}Q+M+S−1
t=1 ) for P periods.

When players play this strategy profile, ai is played for T−S periods
on the equilibrium path when the player with Ai is the youngest,
which guarantees that his average payoff is almost equal to vii under
the positive rate of discounting and sufficiently long lifespan. In the
remainder of this section, it is proved that the above strategy profile
forms a subgame perfect equilibrium for δ sufficiently close to 1 when
we choose the length of punishments appropriately. The methodology
is to provide strictly positive penalties for any unilateral deviation
from each step when δ = 1. Then, by continuity of payoffs, there
is some δ0 ∈ (0, 1) for which all penalties are still positive for δ ∈
[δ0, 1). For each step, the “worst-case scenario” is concerned, where
the incentive to deviate is greatest.

We define the following variables: u0 = mini,j,k∈N{vji , 1
2gi(d

j,k)},
β = maxi∈N,a∈A gi(a), β0 = mini∈N maxa∈A gi(a), ω = mini∈N,a∈A gi(a).
Suppose that the deviator has the action set Ai.

・Deviations from Steps 1 and 3 when there are at least Q+M +S
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periods left between the next period and the oldest player’s exit:
Suppose that no player is to be minimaxed in the current period. The
deviator gets at most β immediately, and at most 0 in the following
Q periods by Step 3. When he does not deviate, his payoff through
these 1+Q periods is at least u0. We can avoid the deviation when we
choose Q and M satisfying the following equations for {a(t)}Qt=1 ∈ AQ:

(1 +Q)u0 > β,

gk(d
j,i)−

∑Q
t=1 gk(a(t))

M
>

1

2
gk(d

j,i) for i, j, k ∈ N,

gk(d
j,i)−

∑Q
t=1 gk(a(t))

M
> gk(d

j,k) for i, j ∈ N and k ̸= i, and

the profile rj,i,M({a(t)}Qt=1) exists for i, j ∈ N.

・Deviations by the oldest player when there are at mostQ+M+S−1
periods left between the next period and his exit:
Suppose that the oldest player deviates from the beginning of Step 3
and there are Q+M +S− 1 periods left between the next period and
his exit. He gets at most β immediately, and at most 0 in the following
Q+M + S − 1 periods because of Step 5. When he does not deviate,
his payoff through these Q+M+S periods is at least (Q+M)ω+Sβ0.
We can avoid the deviation when we choose S satisfying the following
equations:

(Q+M)ω + Sβ0 > β.

・Deviations by a younger player when there are at mostQ+M+S−1
periods left between the next period and the oldest player’s exit:
Suppose that the player deviates from the beginning of Step 3 and
there are Q + M + S − 1 periods left between the next period and
the exit of the oldest player with Aj. He gets at most β immediately
and at most (Q + M + S − 1)β in the following Q + M + S − 1
periods. After the oldest player’s exit, his payoff in the following P
periods is reduced to Pgi(r

j,i,P ({a(t)}Q+M+S−1
t=1 )) for the observed pure
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actions {a(t)}Q+M+S−1
t=1 because of Step 4. When he does not deviate,

he gets at least (Q + M + S)ω in the following Q + M + S periods

and at least Pvji after the entry of younger opponent. We can avoid
the deviation when we choose P satisfying the following equations for
{a(t)}Q+M+S−1

t=1 ∈ AQ+M+S−1:

gk(d
j,i)−

∑Q+M+S−1
t=1 gk(a(t))

P
>

1

2
gk(d

j,i) for i, j, k ∈ N,

gk(d
j,i)−

∑Q+M+S−1
t=1 gk(a(t))

P
> gk(d

j,k) for i, j ∈ N and k ̸= i,

the profile rj,i,P ({a(t)}Q+M+S−1
t=1 ) exists for i, j ∈ N, and

(Q+M + S)ω + Pvji

> (Q+M + S)β + Pgi(r
j,i,P ({a(t)}Q+M+S−1

t=1 )) for i, j ∈ N.

Therefore, under no discount, deviations from any steps strictly
decrease deviators’ payoffs, or do not change their payoffs by r(·),
which means that the above strategy profile forms a subgame perfect
equilibrium for some δ0 ∈ (0, 1) and δ ∈ [δ0, 1). Fix such a δ. Note
that the parameters Q, M , S, and P are independent of the players’
lifespan. We then choose T0 which satisfies the following equations:

T0 > P +Q+M + S,

1

1− δnT0
{(1− δT0−S)vii + (δT0−S − δnT0)ω} > vii − ϵ, and

1

1− δnT0
{(1− δT0−S)vii + (δT0−S − δnT0)β} < vii + ϵ for i ∈ N.

In the last two equations, each LHS is the minimum and maximum
of each player’s average payoff on the path, respectively. These values
converge to vii for any δ < 1 when T0 → ∞. Set T ≥ T0. Then, the
average payoff of each player with Ai is almost equal to vii within the
distance of ϵ. □
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3 Impossibility of Further Extension of Equilibrium Payoff
Set

In this section, we show that players cannot obtain payoffs outside
C(V ∗), as the following Lemma 1.

Lemma 1. ∀ϵ > 0, ∀δ ∈ (0, 1), ∀v ∈ Rn \ C(V ∗) which satisfies
infw∈C(V ∗) ||w − v|| > 2ϵ, ∃i ∈ N , ∃T0, ∀T ≥ T0, for any subgame
perfect equilibrium in OLG(G; δ, T ), the difference between vi and
the equilibrium payoff of the player with Ai is at least ϵ.

Proof . Take any ϵ > 0, δ ∈ (0, 1), and v ∈ Rn \ C(V ∗). We only
consider the case, where v ∈ V and maxw∈V ∗ wi + 2ϵ < vi for some
i ∈ N holds. There exists at least one other player whose payoff is
less than the minimax value. Therefore, there exists a γ < 0 which
satisfies the following condition:

γ = max
j ̸=i

uj subject to u ∈ V, ui ≥ max
w∈V ∗

wi +
1

2
ϵ, and uj < 0.

For each T , take any sequence {w(t)}nTt=1 in Rn which satisfies the
following conditions:

w(t) ∈ V for all t ∈ {1, · · · , nT}, and

max
w∈V ∗

wi + ϵ <

∑nT
t=1 δ

t−1wi(t)

1 + · · ·+ δnT−1
.

When a player with Ai wants to get vi within the error of ϵ, one
sequence which satisfies these conditions must be realized.

Then, there exists a T0 and for all T ≥ T0 and {w(t)}nTt=1 which
satisfies the above conditions, the following inequations hold:

max
w∈V ∗

wi +
1

2
ϵ <

∑T0

t=1 δ
t−1wi(t)

1 + · · ·+ δT0−1
, and

T0∑
t=1

δt−1γ + δT0
β

1− δ
< 0.

Here, the first inequation means that the player with Ai has already
received the payoff almost equal to vi in his first T0 periods of life,
and the second inequation means that whatever happens after T0, one
other player’s payoff throughout her life is less then her minimax value.
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Therefore, because V is convex and w(t) ∈ V holds for each t,∑T0
t=1 δ

t−1wi(t)
1+···+δT0−1 ∈ V holds. By the definition of γ, there exists a j ̸= i,

and
∑T0

t=1 δ
t−1wj(t)

1+···+δT0−1 ≤ γ holds. As a result, the payoff of the player with

Aj is at most
∑T0

t=1 δ
t−1γ+ δT0β

1−δ < 0, which means that she can improve
her payoff by taking the best response and hence that the sequence of
payoffs {w(t)}nTt=1 with the payoff vi to the player with Ai cannot be
obtained in equilibria of OLG(G; δ, T ). □

4 Conclusion

In this paper, we have analyzed the model of n-person OLG games.
Under the condition of full dimensionality, we have seen that players
can obtain average payoffs outside the convex hull of one-shot payoffs.
One remaining question is how the result will change when the stage
game does not have the full dimensionality. Even in such a case,
players may still be able to obtain payoffs outside the feasible set of
one-shot payoffs. Consider the pure coordination game in Figure 4.
Clearly, the dimension of this game is 1. For example, when players
play Y in the first T periods and X in the following 2T periods,
one player attains almost 1 and his opponents attain almost 0. As a
result, payoffs in the cube (0, 1)3 are attainable in equilibria of the
OLG game. We will study further whether players can still attain
payoffs outside one-shot feasible payoffs in other games without full
dimensionality.
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Figure 1: Stage game 1

Figure 2: Structure of overlapping generations in the case of n=3

Figure 3: Stage game 2

Figure 4: Pure coordination game
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