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Abstract

A key input to quantitative evaluations of transport infrastructure projects is their impact
on transport costs. This paper proposes a new method of estimating this impact relying on
the widely accessible customs data: by using the route choice of exporters. We combine our
method with a spatial equilibrium model to study the aggregate effects of the massive express-
way construction in China between 1999 and 2010. We find that the construction brings 5.6%
welfare gains, implying a net return to investment of 180%. Our analysis also produces some
intermediate output of independent interest, for example, a time-varying IV for city-sector ex-
port.

JEL codes: R13, R42, F14

1 Introduction

In 2016, the 47 member countries of the International Transport Forum—including OECD
countries and China, among others—reported a total of over 850 billion euro investment in inland
transport infrastructure (OECD, 2019). In China, the focus of this paper, the investment in inland
transport infrastructure as a percent of GDP increased steadily from 2% in 2000 to 5% in recent
years. China alone accounted for more than half of the total investment among the 47 countries.
The sheer size of the investment in China and elsewhere has motivated many researchers to
estimate the benefits of transport infrastructure. While earlier studies either adopt a measurement
approach (e.g., Fogel, 1964) or a reduced-form approach (e.g., Banerjee et al., 2012), aided by new
tools from international trade and spatial economics, a growing strand of literature is developing
computational models to evaluate transport infrastructure through quantitative experiments.
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A key input into such quantitative exercises is the mapping from the travel distance/time
along the transport network to trade cost. Two approaches of estimating this elasticity feature
prominently in the literature.1 The first approach is based on bilateral shipment data, such as
the Commodity Flow Survey in the U.S. (Allen and Arkolakis, 2014, 2019). The second approach
relies on price data. The idea is that under maintained assumptions on cost pass-through, the
differences in the price of the same good across locations can be used to recover trade costs (e.g.,
Donaldson, 2018; Atkin and Donaldson, 2015; Asturias et al., 2018).2

The data requirements of both approaches are quite demanding. Indeed, many countries do
not collect or make accessible their versions of the Commodity Flow Survey; in the U.S., the
surveys only started in 1993, when the inter-state highway system had been virtually completed.
Perhaps for this reason, most existing studies using U.S. data or similar data from other countries
rely on cross-sectional variations in bilateral road distance to estimate the trade cost elasticity. The
price-based approach requires products to be homogeneous, so its application has been limited to
agricultural commodities or goods identified by a unique producer or through bar codes.

This paper makes three contributions. First, we propose a methodology to estimate domestic
trade costs using information contained in typical customs data. We estimate a routing model
for structural parameters that determine the response of shipment to transport infrastructure, ex-
ploiting the over-time variations stemming from the expansion of the expressway network. Our
design controls for bilateral fixed effects, which purge out other unobserved barriers to trade that
are likely correlated with distance but unamenable to transport infrastructure. Second, we embed
the estimate in a rich spatial equilibrium model with three ingredients—regional specialization,
sector heterogeneity in trade costs, and intermediate inputs—to evaluate the effects of the 50, 000
kilometer expressways built in China between 1999 and 2010. Finally, we provide a second or-
der characterization of the aggregate welfare effects of expressway networks and demonstrate its
accuracy in our setting.

Our empirical design takes advantage of the increasingly available customs data. Like those of
many other countries, the Chinese customs data contain the city of exporters and the ports from
which they ship to foreign customers. Fractions of a city’s export through different ports reflect,
among potential confounding factors, the costs of transport routes through these ports. All else
equal, if an inland city A ships most of its export via port B, then the routes passing through B
likely incur lower costs than others. A direct application of this intuition to the data is subject
to several sources of biases. First, the decision to export through a port might be driven by an
unobserved connection with the port. Second, the total cost along an export route consists of costs
along both its domestic and international segments. If the two components are negatively corre-
lated, which would be the case if the data are generated by exporters minimizing the total cost,
attributing the differences in port choice entirely to the domestic transport network exaggerates

1This elasticity governs how trade costs respond to travel time or distance and should be differentiated from trade
elasticity, which governs how trade flows respond to trade costs.

2As an exception, Donaldson (2018) uses both price and shipment information to identify trade elasticity and the
distance elasticity of trade cost, exploiting over-time variations from railroad construction.
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(a) Expressway Network Expansion in China: 1999-2010 (b) Regular Road Network

Figure 1: Expressway and Regular Road Networks in China
Note: The left panel plots China’s expressway network in 1999 (blue) and in 2010 (red); the right panel plots China’s
regular road network. Regular roads depicted are from 2007 and include ‘national road’ (or ‘general highway’) and
‘provincial road’.

its importance.
We address both concerns by exploiting changes in bilateral trade costs resulting from the rapid

expressway expansion in China between 1999 and 2010. As Figure 1a shows, over the decade, the
expressway network grew from a few lines in the center and the southeast coast to covering most
of the country, greatly supplementing China’s existing regular road network, drawn in Figure
1b.3 We estimate the relationship between the effective road distance between an inland city and
a port, and the fraction of export of the city shipped through that port, controlling for city-port,
city-time, and port-time fixed effects. We find that each additional hundred kilometer effective
distance reduces the probability of exporting from a port by 15%. Not controlling for city-port
fixed effects doubles this estimate. If a researcher had taken the same data and interpreted the
cross-sectional estimate as trade cost elasticity, her estimate would have a significant upward bias.

A remaining concern is that the expressway network expansion might be endogenous to ship-
ment between pairs of cities. We adopt an IV approach using the insight of Banerjee et al. (2012)
and Faber (2014) that the expressways were planned to connect the major cities. We first construct
the minimum-length network among all networks that connect the major cities. We then calcu-
late the distance along the shortest path on this hypothetical network and use it as an IV for the
distance on the actual network. This IV, together with the restriction of the sample to non-major
cities, addresses the route endogeneity concern.

We embed the empirical design in a spatial equilibrium model consisting of Chinese prefecture

3‘Expressway’, or ‘high-grade highway’, refers to paved roads that are divided, fully enclosed, and not subject to
traffic lights. ‘Regular road’ includes ‘national’ and ‘provincial’ roads, both of which have paved surfaces and are
in general not enclosed. ‘National road’ is sometimes referred to as ‘general highway’. In the rest of this paper, we
use highway and expressway to refer to the enclosed road shown in Figure 1a. Between 1999 and 2010, most of the
investment in inter-city road infrastructure was made to expressway. In fact, the network of the regular roads in 2010
is almost the same as that in 1999.
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cities and the rest of the world (RoW). The model includes a routing block mapping road networks
into trade costs. This routing block builds on Allen and Arkolakis (2019) but differs in two aspects:
first, we allow flexible combinations of road segments from two co-existing networks, one of
regular roads and one of expressways, in forming a route; second and more importantly, we allow
trade costs to be higher for heavier sectors. We take advantage of the unit value information in the
customs data, available for a wide range of narrowly defined products, to pin down the elasticity
of sectoral trade cost in sectoral weight-to-value ratio. Our estimation finds this elasticity to be
0.3. The ad-valorem transport costs are 7.4% per hundred kilometer on regular roads and 5.5% on
expressways, implying 25% cost savings from expressways. We parameterize the rest of the model
to match the data on sectoral production and international trade, along with the average distance
of domestic shipments. The former set of data determines regional productivity; the latter statistic
pins down the level parameter in the domestic trade cost specification.

Armed with the parameterized model, we quantify the aggregate impacts of the expressway
construction in China between 1999 and 2010. We find that the aggregate welfare gains from
these expressways are around 5.6%. Deflated using the inflation rate for capital, the cumulative
investment accounts for about 10% of the 2010 GDP. The sum of discounted gains far exceeds this
cost and implies a net return of 180%. By reducing domestic trade frictions, the network increases
domestic trade by 11% and export by 16% (both as shares of GDP). The latter accounts for around
25% of the actual increase in export intensity during this period. Finally, we assess the returns to
the 14 mega projects that make up the backbone of the expressway network. The net returns to
all these projects are positive, but also heterogeneous. Projects connecting the north and south of
the country tend to generate higher returns, whereas projects connecting the hinterland to coastal
ports like Shanghai and Fuzhou have the largest effects on export.

Restricted versions of the model without the three elements—-regional specialization, sector
heterogeneity in trade costs, and intermediate inputs—predict significantly smaller welfare gains.
Overlooking trade costs heterogeneity and intermediate inputs always underestimates gains be-
cause models without these two channels predict lower values of inter-regional trade, which to
the first order determine the gains from trade cost reductions.4 Overlooking regional specializa-
tion will predict a different spatial distribution of trade and generally has an ambiguous effect
on the inferred welfare gains. In our setting, however, because the full model predicts higher
fractions of trade along the routes that actually received expressway investment, it predicts larger
gains.5 When all three ingredients are omitted, the model inferred welfare gains are only a tenth
of the actual gains, which turns the net return into negative. This stark difference highlights the
importance of using the full model for evaluating large transport infrastructure projects.

Our evaluation are based on counterfactual experiments from the model which, while captur-

4From the international trade literature (Caliendo and Parro, 2015; Costinot and Rodríguez-Clare, 2014; Baqaee
and Farhi, 2019a), it is well known that overlooking input-output linkages underestimates the gains from trade cost
reductions because it infers lower trade over value added ratio. The role of sector heterogeneity in trade costs appears
to be novel.

5In other words, according to the model without specialization, some of the investment was made in the wrong
place, whereas in the full model the choice was wiser.
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ing all general equilibrium interactions, is computationally costly and less suitable for comparison
among a large number of proposed projects; an alternative approach that focuses on the first or-
der effect (e.g. Hulten, 1978; Small, 2012) is convenient but overlooks endogenous responses of
agents, which could be important especially under our estimate where addition of an expressway
segment represents a large change in transport cost. In the last section of the paper, we propose a
second order correction to the first order approach and demonstrate how it improves the accuracy
in evaluating both individual expressway segments and large projects with many interacting seg-
ments. This characterization allows researchers to conveniently compare alternative expressway
projects without the need to solve for full counterfactual equilibria.

Our paper is related to a number of different strands of literature. First, our work contributes
to the growing research on spatial equilibrium models (e.g. Redding, 2016; Allen and Arkolakis,
2014; Caliendo et al., 2014; see Redding and Rossi-Hansberg, 2017 for a review). Within this liter-
ature, this paper is most closely related to a recent strand of work answering different questions
on the effects of transport infrastructure projects, such as their impacts on regional development
or growth (Fajgelbaum and Redding, 2014; Nagy, 2016; Cosar et al., 2019), market power of firms
(Asturias et al., 2018), migration (Morten and Oliveira, 2018), distribution of activities within a city
(Tsivanidis, 2018; Severen, 2018; Gu et al., 2018), match between buyers and suppliers (Xu, 2018),
and the optimality of the transport network for the aggregate economy (Fajgelbaum and Schaal,
2019; Alder and Kondo, 2019).6 We make two contributions to this line of research. First, we pro-
pose a new way of estimating the impacts of domestic transport infrastructure on trade costs using
widely accessible customs data, which can be applied in other settings where domestic shipment
or bar-code level price data are unavailable. Second, we characterize the second order effects for
evaluating local and large projects (see also Baqaee and Farhi, 2019b). It offers a middle ground
between the convenient but sometimes less accurate first order approach, and the more accurate
but computationally intensive approach that solves full counterfactual equilibria.

At the core of our empirical analysis is the idea that export routes contain information on
domestic transport infrastructure. We are not the first to recognize this. For example, Limao and
Venables (2001) shows the importance of domestic infrastructure on export in a cross-country set-
ting; Coşar and Demir (2016) and Martincus et al. (2017) use micro data to show road investment
increases export. Instead, we combine the data and an equilibrium routing model to recover the
deep parameters governing transport costs. Fan (2019) uses the gradient of city-level export in
the city’s distance to the nearest port as a subset of the moments identifying domestic trade costs.
This paper is different in the explicit modeling of transport infrastructure and in the use of route
of export—rather than export itself—for identification.

Finally, this paper adds to the rapidly growing literature on the spatial economy of China
(Coşar and Fajgelbaum, 2016; Tombe and Zhu, 2019; Fan, 2019; Ma and Tang, 2019; Zi, 2016). In
addition to carefully evaluating the expressway construction, which is important in its own right,

6A related literature estimates the effect of infrastructure on regional income/growth, using either heuristic or
theory-based measures of exposure (see, e.g., Baum-Snow et al., 2016; Donaldson and Hornbeck, 2016; Hsu and Zhang,
2014).
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our analyses draw some general lessons. First, the costs of moving goods across space are central
to the predictions of many of these studies. Most existing work uses either railway shipments,
which account for just 10% of total shipments and are available only at the provincial-pair level,
a level too crude for studying transport infrastructure, or relies on regional input-output tables,
which are imputed from the railway shipment data (see Zhang and Qi, 2012 for a description
of procedures). Using new and more granular data, we generate predictions for domestic and
international trade costs for 1999 and 2010, which can serve as inputs into future work in this
area. Second, as a validation, we show that the model-predicted export growth in response to
the exogenous component of the expressway expansion is strongly correlated with the actual
growth in this period. Under suitable assumptions, the model-simulated export can serve as a
time-varying IV for export at the city-sector level.7

The rest of the paper is organized as follows. Section 2 develops a routing model. Section 3
offers a first look at the data and provides some reduced-form estimates independent of the rest
of the model. Sections 4 and 5 embed the routing block into a general equilibrium framework
and bring in additional data to parameterize the model. Sections 6 and 7 perform counterfactual
experiments and compare the results to alternative models and approaches. Section 8 concludes.

2 Route Choice on the Transport Network

In this section, we develop a routing model and derive a structural equation to take to the data.

2.1 From Route Cost to Trade Cost on a Single Network

We describe the model using the example illustrated in Figure 2. Each node represents a city,
connected by edges that represent the transport network. We use ιod to denote the travel cost
along the edge o → d. Costs along any edges are greater than 1 and symmetric: ιod >= 1 and
ιod = ιdo, ∀o 6= d. A path, or a route, is a set of inter-connected edges that links an origin to a
destination; the cost it takes to travel along a path is the product of costs of the segments it is
composed of. For example, o → k→ d forms a path from o to d; the cost along this path is ιok · ιkd.8

A truck driver going from o to d chooses among multiple feasible paths. There is a single one-
edge path which costs ιod; there are also two two-edge paths: o → k → d and o → l → d. Drivers
derive idiosyncratic dis-utility ν from each potential path, drawn from a Fréchet distribution with
dispersion parameter θ and location parameter zero. The effective transport cost along a path is
the product of the travel cost and the path-specific realization of ν. For example, the travel cost of
o → k→ d is ιokιkdν.

7This IV would exploit the changes in access to foreign markets across regions driven by expressway construction
and complements existing identification strategies in estimating the effects of export. For example, a strand of literature
exploits variations across industries from the reductions in the level or uncertainty of exporting tariffs after the WTO
accession of China to estimate the effects of export (see, e.g., Facchini et al., 2019; Tian, 2019).

8This multiplicative structure arises because the shipment cost along each segment is specified as ad-valorem. Allen
and Arkolakis (2019) uses a similar structure and shows that it fits bilateral shipment data in the U.S. well.
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ιkd

ιol ιld

Figure 2: Routing on a Network: Four-Region Example
Note: This diagram illustrates the routing problem in a four-region example. In this example, except for nodes l and k,
all other pairs of nodes are directly connected by a road segment.

The driver chooses the path that gives the lowest effective travel cost. If the three paths dis-
cussed above are the only options, the Fréchet assumption implies that the average effective trade
cost between o and d across all possible realizations of ν(r) is:

τod,2 ≡ E[minr∈{od, okd, old}ιr · ν(r)] = Γ(
θ − 1

θ
)
(
[ιod]

−θ + [ιol ιld]
−θ + [ιokιkd]

−θ
)− 1

θ , o 6= d (1)

in which the subscript ‘2’ in τod,2 indicates that the choice is constrained to paths with two or fewer
edges.

We derive the matrix representation for Equation (1). Consider the following adjacency matrix,
with its elements being the −θ power of the cost between two adjacent nodes in the network.

o l d k


o 0 ι−θ
ol ι−θ

od ι−θ
ok

l ι−θ
lo 0 ι−θ

ld 0
d ι−θ

do ι−θ
dl 0 ι−θ

dk

k ι−θ
ko 0 ι−θ

kd 0

A zero in the matrix indicates that two cities are not directly connected by an edge, or that they
are connected by an edge with an infinite transport cost.9 Let L denote this matrix and [L(o,d)]

denote the (o, d) element of L. The symmetry of transport costs implies L = L′.
Define L2 ≡ L ·L. The (o, d) element of L2, denoted by [L2

(o,d)], equals ∑k ι−θ
ok · ι

−θ
kd , which is

9We assume that the diagonal elements of the adjacency matrix are zero. Throughout the rest of this paper, we
normalize the iceberg cost of trading within a city to be one.
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the sum of (−θ power of) costs across all feasible paths with exactly two edges. We can now write
Equation (1) as

τod,2 = Γ(
θ − 1

θ
)
(
[L(o,d)] + [L2

(o,d)]
)− 1

θ , o 6= d (2)

In addition to the three paths with two or fewer edges, the driver can in principle take a detour.
For example, there are two three-edge paths from o to d: o → l → o → d and o → k→ o → d. The
sum of the costs along these two three-edge paths is:

(ιol ιloιod)
−θ + (ιokιkoιod)

−θ = [L2
(o,d)] · ι

−θ
o,d = [L3

(o,d)].

Therefore, if the driver is allowed to choose among all paths with three or fewer edges, the average
travel cost between o and d across realizations of dis-utility shocks is:

τod,3 = Γ(
θ − 1

θ
)
(
[L(o,d)] + [L2

(o,d)] + [L3
(o,d)]

)− 1
θ , o 6= d.

In larger networks with more nodes and edges, as drivers are free to take multiple detours,
enumerating all possible paths is difficult. The above induction shows [Ln

(o,d)] represents the sum
of all n-edge paths that goes from o to d 6= o, so the average transport costs across all possible
paths is (assuming (I−L) is invertible):10

τod ≡ lim
N→∞

τod,N = Γ(
θ − 1

θ
)
( ∞

∑
i=1

[Li
(o,d)]

)− 1
θ = Γ(

θ − 1
θ

)
(
[(I−L)−1

(o,d)]
)− 1

θ , o 6= d.

2.2 Combining Two Transport Networks

Our empirical application focuses on the expressway network expansion, which is an addition
to—rather than the replacement of—the existing regular road network. As can be seen from Figure
1, by 2010, many adjacent cities are connected by expressways and regular roads at the same time.
In these cases, both types of roads could be used.11 Furthermore, drivers can combine the two
networks to form a route to their own taste. For example, one person might prefer to go from o
to l on regular roads, and then from l to d on expressways, while another person might choose
expressways for both segments. We extend the previous probabilistic formulation of the transport
problem to tractably accommodate these situations.

Let H and L denote the road matrix for expressways (H for High-speed) and regular roads (L
for Low-speed), respectively, and let (ιx

od)
−θ , x ∈ {H, L} be the (o, d) element of H and L. Define

A as the sum of the two matrices: A ≡ H + L. As before, drivers choose among all possible
paths subject to a path-specific idiosyncratic taste shock. But rather than being confined to either

10A sufficient condition for (I − L) to be invertible is that the spectral radius of L is less than one (Allen and
Arkolakis, 2019). This will be case if the road network adjacency matrix is sparse and the routing elasticity θ is large,
which holds in our structural estimates.

11Indeed, whereas expressways usually have a higher speed limit, they also charge more fees and are less flexible for
entry and exit, so some drivers might prefer regular roads.
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expressways or regular roads, the path can combine segments from both. In this case, the expected
transport cost across the two one-edge path from o to d is:

τod,1 = Γ(
θ − 1

θ
)
(
[H(o,d)] + [L(o,d)]

)− 1
θ = Γ(

θ − 1
θ

)
(
[A(o,d)]

)− 1
θ ,

i.e., the average cost is simply the −1/θ power of the sum of the corresponding elements of the
two networks. Similarly, if the driver were to choose among all possible paths with two or fewer
edges, the average cost across realizations of the idiosyncratic shocks is

τod,2 = Γ(
θ − 1

θ
)
(
[H(o,d)] + [H2

(o,d)] + [L(o,d)] + [L2
(o,d)] + [(H ·L)(o,d)] + [(L ·H)(o,d)]

)− 1
θ (3)

= Γ(
θ − 1

θ
)
(
[A(o,d)] + [A2

(o,d)]
)− 1

θ

In the first line of Equation (3), [(H ·L)(o,d)] = ∑k(ι
H
okιL

kd)
−θ is simply the sum of across all two-

edge paths with the first segment being an expressway and the second being a regular road;
analogously, [(L ·H)(o,d)] is the sum across all paths with the first segment being a regular road
and the second being an expressway. Equation (3) thus shows that to generalize Equation (2)
to two networks, we can simply replace L with A. More generally, we show in the appendix
by induction that this result holds for when drivers are allowed to choose any combinations of
regular roads and expressways with arbitrarily many edges. The expected trade costs across all
such paths is

τod ≡ lim
N→∞

τod,N = Γ(
θ − 1

θ
)
( ∞

∑
i=1

[Ai
(o,d)]

)− 1
θ = Γ(

θ − 1
θ

)[B(o,d)]
− 1

θ , where B = (I−A)−1. (4)

2.3 From Domestic Trade Cost to Port Choice of Exporters

A seller shipping to another location randomly meets with a driver and pays the expected
transport cost before the idiosyncratic dis-utility shocks realize. This expected cost, given by
Equation (4), is the trade cost between any two domestic locations, o 6= d. To use the export
data to estimate domestic trade costs, we embed the routing block into an international shipment
problem.

Imagine in an economy represented by Figure 3, an exporter from city o shipping one truckload
of merchandises to foreign consumers. The total export cost consists of two components: cost from
city o to one of the nation’s ports l or d, denoted by τok, k ∈ {l, d}, and the cost from that port to
the RoW, denoted by τk,RoW , k ∈ {l, d}. To highlight that city o is not necessarily directly connected
to port l or d, we indicate the two links using dotted lines.

The seller first decides from which port to ship the goods, taking the expected domestic trans-
port cost as given. For each shipment, the seller receives a port-specific export taste shock, denoted
by νF, drawn from a Fréchet distribution. This shock enters trade costs multiplicatively, so the
international shipment cost from l to the RoW, for example, is τl,RoW · νF(l). Because the reason
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τol

τod

τd,row
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Figure 3: Port Choice of Exporters
Note: The diagram illustrates the choice of port through which to ship to the rest of world (RoW).

behind the idiosyncratic shock in international shipment might be different from that in domestic
shipment, we allow the dispersion parameter of νF, θF, to be potentially different from θ.12 The
seller chooses min{τolτl,RoW · νF(l), τodτd,RoW · νF(d)}. Suppose port d is chosen, then, the seller
randomly meets with a truck driver, who will find the minimum-cost route from o to d after his
own realization of route-specific cost draws and charge the seller the expected cost.

The probability that the shipment is made via port d is:

π(o,RoW),d =
τ−θF

od · τ
−θF
d,RoW

∑All ports k τ−θF
ok · τ

−θF
k,RoW

. (5)

Equation (5) illustrates how the export data help identify domestic trade costs. All else equal, if
port d is closer or better connected to city o through the domestic transport network (lower τod),
exporters in city o will be more likely to ship via port d.

2.4 Parameterizing Road Network Matrices

In parameterizing road network matrices, as Allen and Arkolakis (2019) we assume that the
travel cost between two adjacent cities k and l along the edge k→ l is

ιx
kl = exp(κx · distkl), (6)

in which x ∈ {H, L} indicates the type of road, κx is the distance semi-elasticity of travel cost on
an edge, and distkl is the length of the edge connecting k and l. Matrix A is given by

[A(k,l)] = [exp(−θκH · distkl) + exp(−θκL · distkl)]. (7)

The structural parameters of the routing model are κH, κL, and θ. To bring out the connection

12While the heterogeneity in domestic shipment arises mainly from truck drivers’ preference across routes, the choice
of port likely depends on the routing of cargo ships, the export intermediary used, and the distance to the destination
country, all of which we abstract from.
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between the routing framework and our reduced-form analysis in the most straightforward man-
ner, we consider the case of θ → ∞. In this limit, drivers’ idiosyncratic utility draws play little role
in the route choice, and the path that gives the lowest transport cost is always chosen.13 Assuming
κH < κL, then when both types of roads coexist between two adjacent cities, expressways will be
chosen with probability one and the limit of route cost is limθ→∞[A(k,l)]

−1/θ = exp(κH · distkl).
The log of transport cost from o to d along a path of length p : o → m1 → m2 → ...→ mp−1 → d is:

p

∑
i=0

[1(
[H(mi ,mi+1)

]=0, [L(mi ,mi+1)
]>0
) · κL + 1(

[H(mi ,mi+1)
]>0
) · κH ] · distmi ,mi+1

in which distmi ,mi+1 is the distance between node mi and mi+1 (we label o as m0 and d as mp), and
1 is the indicator function. The log transport cost along any path is thus the sum of all segments
weighted by whether the segment is regular only (κL), or contains expressway (κH).

The effective trade cost between o and d, τod, is the least costly path of all. Slightly abusing
notation, we use distE

o→d and distR
o→d to denote the total length of expressways and regular roads

along the shortest path, respectively. Then the trade cost between o and d is simply κHdistH
o→d +

κLdistL
o→d. With this we can log transform Equation (5) to obtain:

log(π(o,RoW),d) = βo + βd − θF(κ
HdistH

o→d + κLdistL
o→d). (8)

In Equation (8), βo and βd capture characteristics of origin city o and port d, respectively. In the
data, we observe the fraction of export shipments through each port d, π(o,RoW),d. With measures
of distH and distL, we can estimate θFκH and θFκR directly. For transparency on identification,
in the next section we provide direct evidence based on this specification; in Section 4, we relax
the assumption of θ → ∞ and further extend the routing framework to accommodate non-road
transport modes for quantitative exercises.

3 A First Look at the Data

3.1 Data and Measurements

The empirical analysis focuses on the change between 1999 and 2010. The massive expressway
construction during this period provides variations in effective distance between cities and ports,
which we will exploit. The following are our data sources.

Export routing. We measure the port choice of exporters using monthly transaction-level
Chinese customs data. For each transaction, we observe the address of the exporter, the value and
weight (when the unit of products is kg) of the shipment, and the customs office from which it
is exported. We map the addresses of exporters and customs offices to prefecture cities, treating

13Although this limit case is intuitive, we use the probabilistic setup for quantification because it allows an analytical
characterization of the second order effects of expressway construction.
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the city of an exporter as the origin and the city of the customs office as the port.14 The ideal
measure for shipment is the number of trucks/containers. Without such information, we use the
weight of shipments as a proxy and measure shipments from each origin city to the RoW through
different Chinese ports at both the aggregate and the HS2 category level. Given that the variations
in the expressway network are between 1999 and 2010, we construct a panel with two periods
corresponding to the beginning and end of this decade.15

Transport network. We obtain the inter-city expressway maps for 1999 and 2010 from Baum-
Snow et al. (2016), which digitized transport infrastructure for the entire mainland China from
published maps.16 We supplement their expressway maps with a map of regular roads for 2007
from the ACASIAN Data Center. Regular roads include ‘National Road’ and ‘Provincial Road’,
which are paved, non-enclosed, non-divided roads, usually with two or four lanes. Because there
are virtually no variations in regular roads during this period, we treat the regular road network
as time-invariant.17 The raw data are in the form of the coordinates of points on the roads. We
convert each of the three maps into a matrix of cities (nodes) and links (edges) in two steps. Below
we give an outline of the procedures; the details are described in the appendix.

In the first step, for each of the three road maps, we identify the list of cities (prefectures)
connected to the network. A city is defined to be on a road network, or connected, if any segment
of the road cuts through within 30 kilometer of the center of the city.

The second step focuses on cities on the road network and generates the adjacent matrix among
them. For each connected city k, we check all geographically adjacent cities. If, say, a neighboring
city l is also connected, then we draw a edge between node k and l and assign a value of ιkl to the
(k, l) element of the adjacent matrix; otherwise, k and l will not be connected by an edge, and the
corresponding element on the matrix will be zero. ιkl depends on the length of the edge, which
is defined as the great circle distance between the two city centers. This effectively ‘irons out’ the
road segments connecting each adjacent city. The result of this step is the matrix representation
of each map. Figure A.1 in the appendix shows the original map (left panel) and the matrix
representation (right panel).

We denote the matrices for the three maps H1999, H2010, and L, respectively. For the reduced-
form analysis in this section, in which we treat routes as perfect substitutes, the combined matrices
are given by: A1999 = max{H1999, L} and A2010 = max{H2010, L}. For quantitative analyses
in the rest of this paper, we will use the theory-consistent definitions: A1999 = H1999 + L and

14It is possible for a shipment to be declared at the customs office in an inland city and sealed before it is shipped
through a seaport to the RoW. To address this concern, our specifications focus on the set of customs cities that are
seaports (see the appendix for the list of these cities).

15To reduce measurement errors we average between 2000-2001 for the beginning period and between 2009-2010 for
the ending period. We do not have access to the 1999 customs data.

16Expressway is named ‘high-grade highway’ in their database, and refers to the same type of road as the ‘National
Trunk Highway System’ studied in Faber (2014)

17Baum-Snow et al. (2016) also provides separate maps for ‘general highway’, which is of lower grade than ‘high-
grade highway’, or expressway. The definition of ‘general highway’ is broad and generally includes ‘national road’,
‘provincial road’, and ‘county road’. Because ‘county road’ is of much lower quality than ‘national road’ or ‘provincial
road’, and because most inter-city transports rely on the latter two, we choose not to use Baum-Snow et al. (2016) to
measure the regular road network.
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A2010 = H2010 + L.
Bilateral transport cost. With the combined networks constructed, we measure the lowest-

transport cost between city pairs for 1999 and 2010. Among multiple paths connecting two cities
composed of different combinations of regular roads and expressways, determining the least costly
one requires the knowledge of κH

κL . We query the driving time between a random set of 2000 city
pairs along expressways and regular roads separately on the Baidu Map, a Chinese search engine,
and compare the average expected travel time of the two trips. Among these queries, the average
speed on regular roads is about 55% of that on expressways, so we set κH

κL = 0.5. It means that
each kilometer on expressways is equivalent to a half kilometer on regular roads. Under this
assumption, we use the Dijkstra’s algorithm to find the shortest path between each city pairs and
measure the regular-road equivalent distance along the path.18

3.2 Expressway Construction and the Route Choice of Exporters

Our empirical exercises use various versions of the following specification, which comes out
of Equation (8):

ln(qt
(o,RoW),d) = βod + βt

o + βt
d + γ1distt

od + εt
od. (9)

The dependent variable of the specification, qt
(o,RoW),d is the total export from city o to the RoW

through port city d in period t. βod, βt
o, βt

d are fixed effects for city-port pair, city-time, and port-
time, respectively. distt

od is the equivalent regular road distance along the shortest path. In some
specifications, we will split distt

od into the expressway and regular road distance along the path,
which will allow us to separately estimate their cost parameters.

The OLS estimator of specification (9) is subject to an obvious endogeneity concern. Cities
closer to each other likely have stronger unobserved ties, which could attract shipments for reasons
unrelated to the transport infrastructure. Through city-port fixed effects, we control for all time-
invariant unobserved heterogeneity across pairs of cities. The identification thus comes from
over-time changes in the effective distance along the shortest paths, resulting from the expansion
of the expressway network. To the extent that the expressway construction might target specific
cities and ports, this channel is captured by the city-time and port-time fixed effects.

The city-port fixed effects do not address the concern that new expressways might have been
built to connect pairs of cities with growing unobserved economic ties. We adopt two strategies to
alleviate this concern. The first is to exclude origin city o that is either a provincial capital city or
otherwise had more than 5 million registered residents.19 As discussed in Banerjee et al. (2012),
the transport network in China was largely designed to link the major cities. With these cities
excluded from the sample, our estimation exploits the increase in port access for the remaining,

18Alternatively, we can estimate κL and κH recursively using nonlinear least square as in Donaldson (2018): for a
given level of κL and κH , find the shortest path between city pairs and generate bilateral shipping costs accordingly.
Then search over the space of κL and κH to find the combination that minimizes some notions of prediction error—for
example, the total deviation in the models’ prediction on routing patterns from the data. We pursue a version of this
exercise in the full structural estimation.

19We use the 2000 population census in defining this variable, according to which there were 55 large cities.
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Figure 4: The Minimum Spanning Tree for the 2010 Expressway Network
Note: The minimum spanning tree is constructed as the network with the minimum total length that
connects the 55 major cities that are on the actual 2010 expressway network.

smaller cities, which gained access because they were between major cities to be connected.
Second, in addition to excluding major cities, we adopt an IV strategy based on Faber (2014):

to use an ‘exogenous’ hypothetical expressway network as an instrument for the actual network.
Specifically, using the minimum-spanning tree algorithm, we first generate a minimum-length ex-
pressway network that connects all major cities that are on the actual network by 2010. We denote
this matrix H2010,hypothetical and define A2010, hypothetical = max{L, H2010,hypothetical}. This represents
the transport network configuration if the goal is to minimize the total length of expressway seg-
ments while still connecting the same set of major cities. From A2010, hypothetical we obtain a new
measure of effective distance from cities to ports that is exogenous to non-major cities. This dis-
tance serves as an IV for the distance along the actual network in Equation (9). Figure 4 shows
the hypothetical and actual networks.20 The identification assumption is that non-major cities ex-
perienced an improvement in access to ports (and other cities) only because they were close to the
minimum-length hypothetical network that connects the major cities.

3.3 Baseline results

Table 1 reports results from the benchmark specification. The dependent variable in all eight
specifications is the log of total shipments (in weight) from city o to the RoW through port d. The
specification in the first column includes only city, port, and time fixed effect, so the coefficient is
identified off mostly cross-sectional variations. The point estimate suggests that each additional

20The expressway network was very sparse in 1999 (see Figure 1), so we use the distance along the 1999 actual
network as an IV for itself. The IV is thus time varying and we can control for city pair fixed effects.
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Table 1: Expressway and Routing of Export Shipments

(1) (2) (3) (4) (5) (6) (7) (8)
OLS PPML

disto,d -0.346∗∗∗ -0.103∗∗∗ -0.136∗∗∗ -0.144∗∗∗ -0.655∗∗∗ -0.470∗∗∗

(0.010) (0.025) (0.033) (0.040) (0.062) (0.066)
-on express -0.082∗ -0.286∗∗

(0.042) (0.117)
-on regular -0.148∗∗∗ -0.488∗∗∗

(0.043) (0.084)
Fixed Effects o, d, t od, t od, ot, dt od, ot, dt od, ot, dt ot, dt od, ot, dt od, ot, dt
Exclude major cities yes yes yes yes yes
Observations 3625 2768 2738 2002 2002 2740 2002 2002
R2 0.601 0.820 0.893 0.882 0.882 - - -

Notes: This table reports the regressions of export shipment through a port on the distance between the city and the
port. The dependent variable is the log of total weight of goods exported in city o through port d to the RoW. The
independent variables are the shortest equivalent regular road distance between city o and port d along the shortest
path (Columns 1-4, Columns 6-7); and the separate length of expressways and regular roads along the shortest path
(Columns 5 and 8). The specification of Columns 1 through 5 is ordinary least square; the specification of Columns 6
through 8 is Poisson Pseudo-Maximum Likelihood.
Standard errors are clustered at city-port level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

hundred kilometer equivalent regular road distance reduces the shipment through a port by 35%.
As discussed, the cross-sectional variations in routing are likely correlated with non-transport

related barriers, such as information frictions, home biases, etc. To isolate the channel driven by
transport infrastructure alone, in the second column, we include city-port fixed effects.21 The point
estimate shrinks by 70% and is rather precisely estimated. To rule out that the new expressway
construction is correlated with city- or port-specific growth, in Column 3, we further control for
city-time and port-time fixed effects. This leads to a modest increase in the coefficient.

In Column 4, our preferred specification, we further exclude all origin city o that are major
cities. This restriction alleviates the concern that our finding is biased by the unobserved time-
varying linkages between big cities and ports that also drove the expressway construction plan.
The point estimate suggests that each additional hundred kilometer equivalent regular road dis-
tance decreases export through the port by 14.4%. This estimate is less than half of the coefficient
in Column 1. This difference highlights the importance of isolating other unobserved bilateral
linkages in identifying the role of transport infrastructure.

Our analysis so far focuses on the total effective distance, which is the weighted sum of the
distance on expressways (weighted by 0.5) and regular roads. To investigate the relative costs of
these two types of roads, in Column 5, we separate the total distance into the two subcomponents
and estimate their respective costs. We find that the coefficient for the regular road is around
−0.15, while the coefficient for the expressway is around −0.08—the former is close to twice as

21To the extent that that some of the non-transport barriers, such as information friction, also respond to additions to
the transport network, it should and will be picked up by our estimation. What we would like to exclude through the
addition of bilateral fixed effects is the component that does not respond to transport infrastructure.
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large as the latter, consistent with our assumption in calculating the shortest path. The relative size
of the coefficients also implies that for two adjacent cities that were already connected by regular
roads, an additional expressway segment between them can reduce the trade cost significantly.

Columns 6 to 8 show that the general findings are robust when the Poisson Pseudo-Maximum
Likelihood (PPML) method is used. Column 6 controls for city-time and port-time fixed effects
and identifies mainly from the cross-sectional variations; Column 7 further controls for city-pair
fixed effects. The coefficient shrinks by a statistically significant amount of 30%. Column 8 splits
total effective distance into that for regular roads and expressways and finds the point estimate to
be substantially larger for regular roads. Although the point estimates are generally larger with
the PPML, the broad points stand.

It is instructive to discuss the implications of our results for domestic trade costs estimation
in general. In a typical domestic trade setting without the routing block, researchers could have
interpreted the shipments from origin cities to ports as trade flows. Specification (9) then corre-
sponds to a gravity regression, with parameter γ1 being the product of trade elasticity and the
distance semi-elasticity of trade cost. For any given trade elasticity, the estimated γ̂1 maps one-
to-one into the distance semi-elasticity of trade cost. Table 1 shows that in such settings, isolating
the over-time variations in bilateral distance matters: not doing so would overestimate the key
parameter by 100%.

3.4 IV and Additional Robustness

We conduct additional exercises to show the robustness of our estimates to the identification
strategy and the choice of measurements. First, even though we have excluded major cities from
our samples, it is still possible that an expressway zigzags locally to increase the accessibility of
smaller cities. We adopt the IV strategy as described before to address this concern.

The first two columns of Table 2 report the IV estimates, controlling for the same set of fixed
effects as in Columns 4 and 5 of Table 1. The high F-statistic in the first stage indicates relevance.
The estimated coefficients for both the overall effective distance (Column 1) and the distance on
expressways and regular roads (Column 2) are similar to those based on the OLS.

Another concern is that the results could be driven by changes in the sectoral compositions of
city export. For example, if as cities gain access to ports, they also become more specialized in
export-intensive industries, such as textile, and if for some reason, the export in the textile indus-
try is concentrated among the ports that experienced disproportionate increases in expressway
connectivity to the hinterland, then the correlation between the shipment share and the bilateral
connectivity will be picked up by our regressions. Note that if the expressway expansion is truly
exogenous to non-major cities, then this concern does not pose a threat to the IV estimate. Nev-
ertheless, in Columns 3 through 5, we use shipments at the sectoral level for a robustness check.
Column 3 includes city-port-sector, city-time, port-time, and sector-time fixed effects (letter ‘i’ in
the row ‘Fixed Effects’ denote sectors). Column 4 further controls for city-sector-time and port-
sector-time fixed effects. The point estimates in these specifications are both around −0.1, slightly
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Table 2: IV and Sectoral-Level Regressions

(1) (2) (3) (4) (5)
Aggregate IV Sectoral OLS

dist -0.156∗∗∗ -0.092∗∗∗ -0.110∗∗∗

(0.050) (0.030) (0.037)
-on express -0.096 -0.088∗∗

(0.067) (0.040)
-on regular -0.164∗∗∗ -0.120∗∗∗

(0.060) (0.039)
Fixed Effects od, ot, dt od, ot, dt odi, ot, dt it odi, oit, dit odi, oit, dit
Exclude major cities yes yes yes yes yes
Observations 1926 1926 13006 11044 11044
R2 - - 0.839 0.896 0.896
First Stage KP-F statistic 1748.984 212.052 - - -

Notes: This Table reports the robustness analyses for Table 1. Columns 1 and 2 use the distance measures from the
hypothetical minimum spanning tree as an IV for the distance measures on the actual network. Columns 3 to 5 use
data at the HS2 category level.
Standard errors are clustered at city-port level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

smaller than in the benchmark specification. Finally, in Column 5, we estimate the transport
costs separately for expressways and regular roads. We find shipping via expressways less costly
compared to regular roads.

Additional robustness. In Appendix Table A.1, we show that PPML and IV specifications
using sectoral data generate similar results. While not reporting the results here, we perform
regressions with the value of shipments as the dependent variable, which is more standard in the
international trade literature but not a theory-consistent measure when sectoral heterogeneity in
transport costs are allowed. Results here are robust to this alternative.

4 Full Model

We now embed the routing block into a standard spatial equilibrium model, with costly trade
and roundabout production (Eaton and Kortum, 2002; Caliendo and Parro, 2015). The main dif-
ferences between our model and a standard spatial equilibrium model are that we connect trade
costs to transport infrastructure through a routing block and that we allow for sector heterogene-
ity in domestic trade costs. Our exposition will be brief on the standard aspects and highlight the
differences of our setting.

4.1 Preliminaries

There are N regions in the model, denoted by o and d, representing Chinese prefecture cities
and the rest of the world (RoW). There are S sectors, denoted by i or j. Workers are immobile and
consume a basket of sectoral final goods.22 These final goods are non-tradable and aggregated

22We allow workers to be mobile in the sensitivity analysis in the appendix.
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from tradable intermediate goods produced by different locations. The markets for labor, final
goods, and intermediate goods are competitive.

4.2 Consumers

Consumers in location d choose their bundle of final goods for consumption to maximize their
utility, given by the following:

U(Cd) =
S

∏
j=1

[Ci
d]

αi
d ,

where Ci
d is the consumption of final goods in sector i, with price denoted by Pi

d. This preference
gives an utility of Ud = Id

Pd
, where Id is total income and Pd = ∏S

i=1[P
i
d/αi

d]
αi

d is the price index of
the consumption basket.

4.3 Industry Final Good Production

There are representative sectoral final good producers for each industry i, location d. The task
of the final good producers is to aggregate the intermediate goods in sector i produced in different
locations into the sectoral final good. They have an Armington production technology, given by:

Qi
d =

(
∑

o
[q̃i

od]
σ−1

σ

) σ
σ−1

,

in which q̃i
od is the quantity of sector-i intermediate good from region o and Qi

d is the quantity of
final goods produced.

4.4 Intermediate Good Production and Trade

The representative intermediate good producers in sector i region d convert labor and sectoral
final goods from different sectors into the intermediate goods using the following Cobb-Douglas
technology:

qi
d = Ti

d[l
i
d]

βi
d

S

∏
j=1

[mij
d ]

γ
ij
d .

Ti
d is the location-sector specific productivity, which determines the specialization of a region. li

d

and mij
d are inputs of labor and final goods from industry j, respectively; βi

d and γ
ij
d are their

respective shares: βi
d + ∑j γ

ij
d = 1. The unit production cost of sector-i intermediate good in region

d is:

ci
d =

κi
dwβi

d
d ∏S

j=1[P
j
d]

γ
ij
d

Ti
d

, (10)
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where κi
d is a constant: κi

d = [βi
d]
−βi

d ∏S
j=1[γ

ij
d ]
−γ

ij
d .

The representative intermediate good producers sell their outputs to final good producers at
their marginal costs, which include both the production cost and an iceberg trade cost, denoted
by τ̃i

od. The price of the intermediate goods traded from region o to region d is thus pi
od = [ci

oτ̃i
od].

The price of final goods in region d sector i is:

Pi
d =

(
∑

o
([ci

oτ̃i
od])

1−σ
) 1

1−σ
.

And the value of trade flows from o to d in sector i is:

Xi
od = Ei

dπi
od = Ei

d
[pi

od]
1−σ

[Pi
d]

1−σ
,

where Ei
d is the total expenditure on intermediate goods in sector i of region d and πi

od is the trade
share (the share of expenditure in sector i of region d spent on intermediate goods from region o).

The set of conditions characterizing the competitive equilibrium of the model are standard and
hence delegated to Appendix B.2. Now we discuss how we model and parameterize τ̃i

od.

4.5 From Road Networks to Trade Costs

We construct the bilateral costs for domestic trade, τ̃i
od, by extending the routing framework

in Section 2 to incorporate transport cost heterogeneity and an alternative (non-road) mode of
transportation.

Sector heterogeneity in transport costs. We allow the ad-valorem equivalent trade cost of
goods in sector i to depend on the ‘heaviness’ of the sector, measured by its weight-to-value
ratio, hi. Consider a seller looking to ship value y of sector i goods along road segment k → l.
The number of trucks needed for this task depends on the weight of the goods. Assuming each
truck can load h0 tons, the cost of shipment for this batch of goods on k → l is simply yhi

h0
ιx
kl , in

which ιx
kl , x ∈ {H, L} is defined in Equation (6). h0 thus serves as a normalization parameter and

determines the level of transport costs.
This setting imposes a linear relationship between trade cost and the weight of a shipment.

More generally, the relationship needs not be linear. Indeed, using international shipment data
on imports into the U.S., Hummels (2007) finds that the elasticity of ad-valorem shipping cost to
weight-to-value ratio is around 0.4-0.5 for both sea-borne and air-borne shipments. We thus relax
the linear assumption and specify the domestic segment of the ad-valorem trade cost for sector i,
along route k→ l as:

(
hi

h0
)µιx

kl , x ∈ {H, L}, (11)

in which µ determines the extent of sector heterogeneity in transport costs.
Now consider the trade cost from an origin city o to a destination d of goods in sector i, the
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iceberg trade cost between o and d 6= o is:

τi
od ≡ lim

N→∞
τi

od,N = Γ(
θ − 1

θ
)
( ∞

∑
n=1

(
hi

h0
)−µθ [An

(o,d)]
)− 1

θ
= Γ(

θ − 1
θ

)(
hi

h0
)µ[B(o,d)]

− 1
θ , (12)

where B = (I−A)−1.

That is, the sector heterogeneity in transport costs on any specific road segment, k → l translates
tractably to the effective trade cost between two domestic locations, o and d.23

Alternative mode of transportation. While road transport is the dominant form of domestic
shipments in China (road transport accounts for 76% of overall domestic shipments; see National
Bureau of Statistics, 2010), there are also alternative modes of transportation via air, water, railway,
and pipeline. Given the focus of our quantification on the expansion of the expressway network,
we capture these alternative modes in a parsimonious way. Formally, we assume that between
any origin city o and destination d, in addition to transport via the road network (which incurs
an expected transport cost of τi

od), there is also an alternative mode with an expected cost of τ̄i
od,

given by

τ̄i
od = (

hi

h0
)µ exp(κ̄ · distod), o 6= d (13)

This cost specification differs from that of road transport in two aspects. First, κ̄ can be different
from κH and κL. Second, as τ̄i

od is meant to capture the average cost across all alternative modes
including air transport, we specify it to be a function of the great circle distance distod, determined
solely by geography, so there is no routing within the alternative mode.24

With this additional mode, the full structure of the routing model works as follows. A seller
from region o looking to ship a batch of goods to region d first decides whether to ship it via the
road network or the alternative mode, taking the average iceberg transport costs for the two modes,
τi

od and τ̄i
od, as given. Each seller draws two i.i.d. multiplicative Fréchet cost shocks, denoted by

νM, M ∈ {road, alt}, one for each mode, and chooses the mode with the lower effective cost:
min{τi

odνroad, τ̄i
odνalt}.

If the seller chooses the alternative mode, then the good is directly shipped to the destination,
incurring a cost of τ̄i

od · νalt for domestic destinations and τi
RoW · νalt for export.25 If the seller

23It is possible that in addition to the level of trade cost, sectors also differ in the distance semi-elasticity, κx. We do
not find evidence for heterogeneity along this dimension in the data.

24In reality, even after conditioning on the great circle distance between two cities, the cost of shipment on alternative
modes can still differ according to the accessibility of direct flights, trains, and cargo ships between the origin and
destination. Given the data limitation, we do not directly model these alternatives. Our counterfactual experiments
should thus be viewed as keeping these alternatives as fixed. A related concern is whether by overlooking these
alternatives, the estimate for the road transport cost will be biased. Our specification will control for bilateral fixed
effects and identify key parameters from over-time changes. Under the assumption that when restricted to non-major
cities, road network expansion is uncorrelated with changes in the cost of other means of transportation, the omission of
the alternative mode will not bias our estimate. This assumption appears reasonable—while in addition to expressway,
the country also invested heavily in the railway system, most of the investment went to the high-speed railway, which
was for passengers but not merchandises.

25We assume the international segments of export cost are the same across locations and between the two modes.
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chooses road transport, then the rest of the routing module plays out as described in Section 2.
Specifically, if the final destination is in China, then the seller randomly meets with a truck driver
and compensates the driver with the expected trade cost τi

od. If instead the final destination is
the RoW, the seller first chooses a potential port to minimize τi

odτi
RoW · νport, in which νport is an

idiosyncratic draw of the match quality between the seller and the port. Once the port choice is
made, the seller then again meets randomly with the trucker driver, who decides the route from o
to d.

Combining all these decisions, the expected trade cost between a domestic origin o and desti-
nation d for o 6= d is the following:

τ̃i
od =


Γ(

θM − 1
θM

)[(τ̄i
od)
−θM + (τi

od)
−θM ]−1/θM , if d 6= RoW

Γ(
θM − 1

θM
) ·
{
(τi

RoW)−θM +
(

Γ(
θF − 1

θF
)[ ∑

ports k
(τi

okτi
RoW)−θF ]

− 1
θF

)−θM}−1/θM
, if d = RoW

(14)

in which τi
od is given by Equation (12) and τ̄i

od given by Equation (13). We define the import cost
when o is the RoW and d is a destination in China symmetrically.

4.6 Properties of the Routing Block

We describe some properties of the routing block for subsequent use. It is convenient to define
the (k, l) elements of A and B as:

akl ≡ [A(k,l)] and bkl ≡ [B(k,l)].

Also define ιkl ≡ a−
1
θ

kl . For two adjacent cities connected by both regular roads and expressways,
ιkl = [(ιH

kl )
−θ + (ιL

kl)
−θ ]−

1
θ , which is the effective cost between k and l accounting for the coexistence

of both regular roads and expressways as options. The percentage decrease in ιkl from adding an
expressway segment to two cities previously connected by a regular road is:

∆ log(ιkl) = −
1
θ

(
log[exp(−θκHdistkl) + exp(−θκLdistkl)]− log[exp(−θκLdistkl)]

)
(15)

≈ (κH − κL) · distkl .

We can view a large project as a collection of expressway segments. Denote a large project by set
C. We write the second order approximation for the change in trade cost between two domestic

The structural estimation accommodates differences in international trade costs across ports through port-time fixed
effects.
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locations o and d due to expressway project C as:26

∆ log τ̃i
od ≈ ∑

kl∈C

∂ log τ̃i
od

∂ log ιkl
· ∆ log(ιkl) +

1
2 ∑

kl∈C

∑
k′ l′∈C

∂2 log τ̃i
od

∂ log ιkl ∂ log ιk′ l′
∆ log(ιkl)∆ log(ιk′ l′). (16)

The first term captures the direct effect of the project, which sums across the marginal effects
of all individual segments kl ∈ C. The elasticity of trade cost to ιkl in the summand is:

∂ log τ̃i
od

∂ log ιkl
=

∂ log τ̃i
od

∂ log τi
od
·

∂ log τi
od

∂ log ιod
=

(τi
od)
−θM

(τ̄i
od)
−θM + (τi

od)
−θM︸ ︷︷ ︸

≡ πroad
od

· bok · akl · bld

bod︸ ︷︷ ︸
≡ πkl

od

. (17)

Equation (17) decomposes the partial derivative into the product of two elasticities: the first elastic-
ity, πroad

od , equals the probability that a shipment from o to d is transported via the road network;27

the second elasticity πkl
od does not have a probability interpretation in general, but as θ → ∞, it

converges to the probability that a shipment passes the edge k → l conditional on being trans-
ported via the road network (Allen and Arkolakis, 2019). Because our structural estimation will
find θ to be fairly large (around 80), we adopt this interpretation in the rest of this paper, under
which the product of the two terms is simply the unconditional probability of a shipment between
o and d passing the edge k→ l.

Building on this intuition, the cross derivative term in Equation (16) can be written as ∂πroad
od πkl

od
∂ log ιk′ l′

,
and it is the marginal effect of a change in ιk′ l′ on the probability that the shipment between o and
d uses the edge k → l. The second term in Equation (16) thus captures the interaction between
segments through re-optimization of the traffic. We characterize the second order derivative in
the summand as

∂2 log τ̃i
od

∂ log ιkl∂ log ιk′ l′
=

∂πroad
od πkl

od
∂ log ιk′ l′

= πroad
od πkl

od

{
− θ[1(kl = k′l′) + πk′ l′

ok + πk′ l′
ld − πk′ l′

od ]− θM(1− πroad
od )πk′ l′

od

}
,

(18)

where 1(kl = k′l′) is the indicator function that takes one if kl = k′l′ and zero otherwise.28

Consider first the own effect (when kl = k′l′). The first term in the curly bracket captures the
impact on shipment over k → l through re-routing among the traffic within the road network.
Because 1 + πkl

ok + πkl
ld − πkl

od is always positive, this force contributes negatively: a decrease in the
cost on edge k→ l increases the share of shipment taking this edge. The second term in the bracket,
−θM(1− πroad

od )πk′ l′
od , captures the response in the mode choice—more shipment will be made via

road in response to a decrease in the edge cost. Both forces work in the same direction and imply

26When one of the two locations o or d is the RoW, analogous expressions can be derived.
27Notice that since the level of shipment cost, which is determined by the sectoral weight-to-value ratio, shifts τi

od
and τ̄i

od proportionally, πroad
od does not vary across sectors.

28In the proof of Equation (18) in Appendix B.3, we show that this expression is symmetric in kl and k′l′, so the order
of taking this cross derivative does not matter.
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k′ l′ k l

o d

Figure 5: Interactions Between Segments
Note: The diagram illustrates a case in which expressway in k′ → l′ and k → l complement
each other.

that as an expressway is added to k→ l, more trade flows will go through this edge.
Now consider the cross-derivative (when kl 6= k′l′). The response in the choice of mode has the

same sign as before, but the first term in the bracket capturing the re-optimization of the ground
traffic could be positive or negative, depending on the positions of k′ → l′ and k → l in the
network. When k′ → l′ and k→ l are on two different routes between o and d, shipments between
o and k and between l and d are unlikely to pass through k′ → l′, so πk′ l′

ok and πk′ l′
ld are both small

and −θ(πk′ l′
ok + πk′ l′

ld − πk′ l′
od ) is more likely to be positive. This corresponds to a situation in which

a reduction in ιk′ l′ draws ground traffic away from k → l. On the other hand, if k′ → l′ is en route
of o → k → l → d, as in the example given in Figure 5, then the opposite can happen—reducing
ιk′ l′ increases the traffic passing through k→ l.29 We summarize these results in Proposition 1.

Proposition 1. Equations (15), (16), (17) and (18) characterize the effect of expressway project C on
domestic trade costs up to the second order.

4.7 Welfare Criteria

The competitive equilibrium of the model is Pareto efficient. We define the aggregate welfare
to be the average log real income of regions, weighted by their value added:

W = ∑
d

wdLd

Y
log(

wd

Pd
), (19)

where Y = ∑d wdLd is the total value added. In the absence of international trade, the desired
allocations of a social planner with these weights replicate exactly those of the competitive equi-
librium. We can therefore evoke an argument based on the social planner’s optimization problem

29In the case illustrated, πk′ l′
ld is close to zero and πk′ l′

ok is close to one. The sum of the three terms is thus strictly
positive as long as not all shipments between o and d go through the upper branch (i.e., πk′ l′

od < 1).
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to express the welfare gains from an expressway project C as

∆W = ∑
i

∑
od

dW
d log τi

od
∆ log τi

od + SOT (20)

= −∑
i

∑
o 6=d

Xi
od

Y
∆ log τi

od + SOT

= −∑
i

∑
o 6=d

Xi
od

Y ∑
kl∈C

πroad
od πkl

od∆ log(ιkl)︸ ︷︷ ︸
FO effect

+SOR + HOR + SOT,

where SOR = −∑
i

∑
o 6=d

Xi
od

Y
1
2 ∑

kl∈C

∑
k′ l′∈C

∂2 log τ̃i
od

∂ log ιkl ∂ log ιk′ l′
∆ log(ιkl)∆ log(ιk′ l′),

and ∆ log ιkl and
∂2 log τ̃i

od
∂ log ιkl ∂ log ιk′ l′

are given by Equations (15) and (18).

The first line of the equation assumes that the resulting trade cost changes are known and ex-
presses the welfare change as the sum of the first order effects of the changes in trade cost and a
higher order residual (labeled SOT). The second line applies the Envelope Theorem to the social
planner’s problem; the third line writes the change in trade cost, ∆ log τi

od, as the sum of three
terms: the first order effect of project C on trade costs, the second order effect through changes in
routing (SOR), and a higher order residual in the routing block (HOR).

The aggregate welfare gains from project C is therefore decomposed into four components.
The first order component, labeled ‘FO effect’, is calculated under the assumption that in response
to the new project, 1) neither the mode choice nor the routing patterns change; and 2) the trade
patterns do not change. As discussed, for large θ, πroad

od · πkl
od is the probability that trade between

o and d is shipped via the edge k → l. The ‘FO effect’ is thus the sum of cost-savings from trade
flows on all the segments in C. This is an insight dating back to Hulten (1978) and has been
used in evaluating the global gains from trade (see e.g., Burstein and Cravino, 2015). The broad
approach has also been embodied in the evaluations of transport projects.30

Looking beyond the first order effect, the SOR term stands for the second order effect from
the routing block and can be evaluated using Equation (18). It captures the substitution between
modes and routes as a result of C, assuming trade flows do not respond. Finally, HOR captures
the remaining approximation errors of ∆ log τi

od; and SOT stands for the second and higher-order
effect through changes in trade flows.31 We summarize these results in Proposition 2:

30A widely used approach in transportation research in evaluating transportation programs is to focus on the value
of travel time savings, which is the product of the time saved through the new transportation infrastructure and the
value of time (see Small, 2012 for a recent survey). In our context, in which the competitive equilibrium is efficient,
this method corresponds to the first order welfare gains. See Allen and Arkolakis (2019) for a method for models with
inefficient competitive equilibria.

31We do not aim to characterize HOR and SOT—the first is of only the third order; the second, although potentially
significant, tends to be small in our setting with Cobb-Douglas production functions for intermediate goods, which is
one of the benchmark settings in most quantitative trade studies.
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Proposition 2. In a restricted model without international trade, the competitive equilibrium of the model
coincides with the allocation of a social planner whose objective function is described by Equation (19). In
this setting, the welfare gains from expressway project C is given by Equation (20).

From the proposition, all we need for the FO effect is the structural elasticities (κH, κL) and
the value of shipments passing through each edge kl ∈ C. The latter is in principle measurable,
so once the structural parameters are estimated in the next section, we can evaluate the first
order welfare gains from the expressway expansion in China using Equation (20). Instead, we
choose a different path, which is to parameterize the full model and conduct simulation exercises,
because in this setting the first order approach faces two obstacles. The first is in measurement.
Collecting the data on the value of shipments passing each of the hundreds of the segments
involved in the expressway construction is conceptually straightforward but impractical.32 We
rely on the model, parameterized to match available statistics, to infer the value of shipments.
Second, because the massive investment in expressways during the decade constitutes a large
shock to both local linkages (∆ log ιkl) and the overall structure of the network, the second order
effects through changes in routing could be important. After describing the main quantitative
results, we will return to these two points in Sections 6 and 7.

5 Parameterization

In parameterizing the model, we adopt a two-step indirect inference approach. In the first
step, without imposing the equilibrium conditions, we estimate two set of regressions to recover
coefficients informative about the routing parameters (κH, κL, θ, θF). In the second step, we
calibrate the full model to pin down their values and the remaining parameters in the equilibrium.

5.1 Export Routing Regression

The first specification is on the response in the route choice of exporters to the expressway
network expansion. It is the structural version of the regressions in Section 2.

Consider an exporter from inland city o selling to customers in the RoW. From the routing
block, conditioning on the goods being exported through a seaport, the probability that it goes
through a particular port d, among all other ports, is given by Equation (5).33 Taking log on both

32Because of the granularity and complex interactions among sectors and regions, predicting the traffic on an ex-
pressway segment ex-ante is difficult. After an expressway segment is completed, while it is straightforward to count
the vehicles passing by, it is the value of the goods on these vehicles—which are much more difficult to estimate—not
their weight, that matters for the aggregate welfare.

33Equation (5) still holds in the full model with the alternative mode because of the sample restriction—we focus on
shipments from interior cities to the RoW through seaports. In our model, because goods exported via the alternative
mode will be shipped directly to the RoW, by construction they are not in this sample. It is possible in the data, some
goods are first shipped via the alternative mode (most likely the railways) to a seaport and then sent to the RoW. This
is more likely for heavier and bulkier industries which are more dependent on railway for transportation, such as coal
and wood. We perform a robustness in which we exclude these sectors from the regressions and find the results are
similar.
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sides of the equation and applying Equation (12) to obtain:

log(πi
(o,RoW),d) =

θF

θ
log
(
[B̃(κHθ, κLθ)(o,d)]

)
+µ log(

hi

h0
)− θF log(τi

d,RoW)− log( ∑
All ports k

τ−θF
ok · τ

−θF
k,RoW)︸ ︷︷ ︸

fixed effects

(21)

On the right hand side of Equation (21), the overall international export costs τi
d,RoW , the city-

specific access to the international market, (∑All ports k τ−θF
ok · τ−θF

k,RoW), and the ‘heaviness’ of sector
i will be absorbed by fixed effects. The variations we exploit are changes in the (o, d) element
of matrix B over time. Recall that B = (I −A)−1 is entirely determined by A. Because κH

and κL enter A only multiplicatively with θ, we write[B(o,d)] as [B̃(κHθ, κLθ)(o,d)] to highlight its
dependence on κHθ, κLθ.

We estimate Equation (21) for θF
θ , κHθ, and κLθ by nonlinear least square without solving the

equilibrium model. Informed by the reduced-form evidence, we focus on over-time variations
and control for city-time, port-time, and city-port fixed effects. Formally, with the observed ex-
port route choices π̂s

(o,RoW),d,t for time t ∈ {beginning, end} in the data, we choose the structural
parameters to minimize the following expression

max
θF
θ ,κHθ,κLθ, fff

[
θF

θ
log
(
[B̃t(κ

Hθ, κLθ)(o,d)]
)
+ fff − log(π̂(o,RoW),d,t)

]2

, (22)

in which fff is the full set of fixed effects. Given the large number of fixed effect included, this is a
high-dimensional optimization problem which conventional optimization routines cannot handle.
Note, however, that only κHθ and κLθ enter the objective function non-linearly, we can thus recast
the original problem into a nested one as below:

max
κHθ,κLθ

{max
θF
θ , fff

[
θF

θ
log
(
[B̃t(κ

Hθ, κLθ)(o,d)]
)
+ fff − log(π̂(o,RoW),d,t)

]2

}.

In the inner loop, given values for κHθ and κLθ, we estimate fff and θF
θ using standard linear

regressions. In the outer loop we search over the space of κHθ and κLθ to minimize the residual
mean square error from the inner loop.

Table 3 reports the output of this exercise. While with routing information alone we cannot
identify individual parameters yet, the estimates reveal their relative magnitudes. First, express-
ways are about a quarter less costly compared to regular road ( κH

κL = 74%). This difference is
broadly in accord with measurements based on actual speeds (see Section 2). This finding is
reassuring, especially because here we do not impose that κL > κH. Second, the elasticity of sub-
stitution across routes (θ) is much larger than that across ports (θF). This appears reasonable, as
the former is driven by the preference of drivers among routes, whereas the latter depends on the
idiosyncratic shocks of sellers across ports, which could be related to business preferences.
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Table 3: Estimates from the Routing Model

Parameter κHθ κLθ θF
θ

Estimate 4.44 5.98 0.03
Notes: This table reports the estimates from Equation (22).

Note that the multiplicative nature of ( hi
h0
)µ implies that with the fixed effects we control for,

µ is not identified from the domestic routing patterns alone. We next turn to the price data and
discuss how it helps us identify µ and other structural parameters of the model.

5.2 Price Regressions

Consider a firm in sector i from an interior city o exporting to the RoW via a seaport d. Let the
factory-gate price of the good be pi

o. Under the assumption of complete pass-through, the average
(across all route-specific draws) free-on-board price at port d is given by:

pi
(o,RoW),d = pi

o · τi
od (23)

= pi
o · (

hi

h0
)µ · [B̃(κHθ, κLθ)(o,d)]

− 1
θ , o 6= d

=⇒ log(
pi
(o,RoW),d

pi
o

) = µ log(hi)−
1
θ

log
(
[B̃(κHθ, κLθ)(o,d)]

)
,

where pi
o is the producer price of a product. Equation (23) shows that variations in price ratios

across sectors with different ‘weight-to-value’ ratios identify µ; assuming κHθ and κLθ are known,
variations across city pairs with different distances identify θ.34 With this intuition, we estimate
the elasticity of price ratio with respect to hi, and the semi-elasticity of price ratio with respect to
the road distance between o and d. We then target these two estimates along with other empirical
moments in the full calibration to pin down all routing parameters.35 Because the two moments are
estimated off different variations, we estimate them separately so more controls can be included.

Data. We measure prices as the unit values of exported goods from the customs data. Without
the factory-gate price of each transaction, we construct the price ratio as follows. We restrict the
sample to transactions with the origin city o being a seaport itself. For the goods produced in
such city o, the average export price for when exporting directly from o, i.e., pi

(o,RoW),o, is then a
theory-consistent measure of the factory-gate price.

34We assume that the international trade cost, τi
RoW , is not included in the measured unit price. To the extend that it

is included, our empirical specification will control for it.
35It is possible that the variations in price ratios might be driven by other reasons, such as quality differences, which

could be attributed to trade costs. To avoid this problem, in estimating the two targets of the indirect inference, we
will control for a rich set of fixed effects. We will use only the systematic variations of price ratios across ports and
sectors—rather than the levels of price ratios—in quantification. The level, which is ultimately governed by h0 will be
pined down to match the average shipment distance in China. Alternatively, we can also estimate Equation (23) using
non-linear least squares for the structural parameters directly as in 5.1. That approach, however, would require us to
take the level of the price ratio more seriously.
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The validity of this approach rests on the assumption that goods shipped directly from o to the
RoW and goods shipped indirectly through a different city d are the same. To make this assump-
tion reasonable, we take advantage of the details in the customs data and define each ‘product’
to be a combination of city, HS8 category, and destination country. For each such product, we
calculate the average price of direct export transactions from origin city o to obtain pi

(o,RoW),o. The
log ratio between the price of the same product exported via a different city d and pi

(o,RoW),o is then
the ad-valorem trade cost between o and d.

The narrow definition of a product addresses a few concerns in interpreting price ratios as
trade costs. First, firms both export higher-quality goods and charge higher markups on these
goods for destination countries with a higher income (see, e.g., Fan et al., 2015). Second, cities with
a more skilled workforce tend to produce better products (Dingel, 2016). Conditioning on the same
destination market and origin city avoids these two sources of biases. To alleviate other concerns,
our empirical specifications further absorb remaining systematic variations in either qualities or
markups across transactions through fixed effects; we also show that the results are similar if we
focus on non-differentiated products, as classified in Rauch (1999), where such concerns are less
important.

The drawback of using narrowly defined products is that there were not enough exports at
the initial period to estimate the distance effect from over time variations, so we focus on cross-
sectional regressions using the end-of-period data only.

Price-heaviness elasticity. Table 4 reports our estimate on the price-heaviness elasticity, with
progressively more demanding fixed effects. The first four columns focus on the comparison of
the log price differences across HS2 categories. The first and second columns control for city, port,
and destination country fixed effects and city-port-country fixed effects, respectively. Even within
a city-port-country cell, some firms might systematically set prices differently. To account for this
possibility, Column 3 control for firm-port-country fixed effects. The point estimate increases from
0.16 to 0.27.

To the extent that the price ratio might still capture variations in qualities and markups de-
spite our narrow definition of products and the set of fixed effects included, as long as they are not
systematically correlated with the weight-to-value ratio, they will not affect our estimates. Nev-
ertheless, Column 4 focuses only on the HS2 categories that are classified as non-differentiated
goods (Rauch, 1999), which likely have a smaller scope for either quality differentiation or price
discrimination. Reassuringly, although that the sample is only a tenth of the baseline sample, the
point estimate remains broadly in line.

One further concern is that our measure of ‘heaviness’, the weight-to-value ratio, might capture
other characteristics of a sector that correlates systematically with prices. In Columns (5) through
(7), we estimate the specification using the weight-to-value ratio at the HS4 category level. This
allows us to control for the HS2 fixed effects. The last column of Table 4 is our preferred speci-
fication, which is identified from within a city-HS2-port-country cell, whether heavier goods are
relatively more expensive when exported through a different seaport than own city. The point
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Table 4: Transport cost and weight-to-value ratio

(1) (2) (3) (4) (5) (6) (7)
Dependent variable log price ratio log price ratio

Heaviness- HS2 Category 0.163∗∗∗ 0.161∗∗∗ 0.278∗∗∗ 0.199∗∗

(0.056) (0.056) (0.086) (0.089)
Heaviness- HS4 Category 0.303∗∗∗ 0.362∗∗∗ 0.253∗∗∗

(0.044) (0.050) (0.043)
Fixed Effects o, d, c odc f dc f dc f dc, i f dci f dci
Exclude major cities yes yes yes yes yes yes yes
Exclude differentiated goods yes yes
Observations 1987140 1985946 1805563 190836 1805563 1126941 119077
R2 0.063 0.074 0.375 0.481 0.417 0.596 0.639

Notes: This table reports the regressions of log price ratio on sector weight-to-value ratio, using data from 2010-2011.
The dependent variable is the log of price ratio and is always computed by city-destination country-HS8 category; the
independent variable is the log of the weight-to-value ratio at HS2 category level (Columns 1-4) and HS4 category level
(Columns 5-7). Letters o, d, c, f , i stand for origin city, port, destination country, firm, and HS2 category fixed effects,
respectively.
Standard errors are clustered at HS2 category level (Columns 1-4) or HS4 category level (Columns 5-7). ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.

estimate suggests that a one-percent increase in the weight-to-value ratio of a good increases the
ad-valorem cost by around 0.3%.

Our estimate is at the lower range of Hummels (2007), which finds an elasticity of 0.4-0.5 for
international shipment fees. The literature does not offer much guidance on this elasticity for
domestic shipments. But the freight costs for domestic shipments documented in the literature
is usually denoted linearly in weight (see Redding and Turner, 2015), which translates into an
elasticity of one. To be conservative on the role of sector heterogeneity, we use 0.3 as the target in
the calibration of the full model; we use an elasticity of one for sensitivity analyses.

Price-distance semi-elasticity. Table 5 reports the second set of price regressions focusing on
the distance semi-elasticity. The independent variable is the effective distance along the shortest
route from city o to port d, as defined in Section 2. Since we do not aim to identify µ in this
regression, we can absorb the category characteristics in fixed effects. The first two columns use
OLS and control for port-HS8-destination country and city-HS8-destination country fixed effects,
respectively. The former set captures, within a HS8 category, the overall tendency of some ports
or destination countries to be involved in the export of more pricey goods; the latter controls for
the overall tendency of a city in producing pricey good for exporting to specific countries. The
point estimate of the first column, which uses all categories, suggests that the price ratio increases
by around 5.5% for an additional hundred kilometer equivalent regular road distance. The second
column restricts to non-differentiated varieties for robustness and finds a similar coefficient.

To alleviate the concern about the endogeneity of the road network, Columns 3 and 4 repli-
cate Columns 1 and 2 using the cross-sectional IV from the minimums-spanning tree. The point
estimates are in the range of 0.05 to 0.06, statistically indistinguishable from the OLS estimates.

29



Table 5: Price Distance Regression

(1) (2) (3) (4)
OLS IV

distod 0.055∗∗∗ 0.061∗∗∗ 0.053∗∗∗ 0.058∗∗∗

(0.013) (0.022) (0.012) (0.021)
Fixed Effects dci, oci dci, oci dci, oci dci, oci
Exclude major cities yes yes yes yes
Exclude differentiated goods yes yes
Observations 1829372 232609 1829372 232609
R2 0.323 0.340 - -
First Stage KP-F statistic 1515.787 1156.297

Notes: This table reports the regressions of log price ratio on the distance between the origin city and the port. The
dependent variable is the log of price ratio; the independent variable is the distance along the shortest path between city
o and port d. Letters o, d, c, i stand for origin city, port, destination country, and HS-8 product fixed effects, respectively.
Standard errors are clustered at city-port level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

We use an estimate of 6% as the target for price-distance semi-elasticity in the calibration. While
this estimate has no direct structural interpretation in our framework, under the assumption that
θ → ∞, it means each additional 100 km increases the ad-valorem trade cost by 6%.

5.3 Model Parameterization

We parameterize the model to match the estimated moments described previously and addi-
tional features of the Chinese economy around 2010. Our calibration is at the prefecture-city level,
with 323 prefectures and 25 sectors.36

Parameters calibrated externally. The upper panel of Table 6 describes the parameters and
fundamentals of the regional economy calibrated externally. We assign the number of workers
in each city based on the 2010 population census; we extract the employment in the RoW from
the Penn World Table. We assume the sector shares in final consumption and intermediate pro-
duction, {αi} and {γij}, and the labor share in production, {βi}, are the same across regions and
determine them based on the input-output table of China in 2007. We assign a value of 6 to the
elasticity of substitution across goods from different regions, σ. θM governs the elasticity of substi-
tution between different modes of transport. The existing estimates for this parameter range from
1 ∼ 3 in the earlier transportation literature (Abdelwahab, 1998) to 14 in the more recent Allen
and Arkolakis (2019). We assign a value of 2.5 to θM for benchmark analyses and will conduct
robustness checks with alternative values in the appendix.

Parameters determined in equilibrium. The remaining parameters, reported in the lower
panel of Table 6, are determined jointly in equilibrium. The transport cost parameters along reg-
ular roads and expressways, κH and κL are pinned down together with the dispersion parameter
for routing preference θ. In Section 5.1, we estimate Equation (21) and find that κHθ = 4.44,

36The 25 sectors include one agriculture, four energy/mining, sixteen manufacturing, and four non-tradable sectors
including utilities, construction, transportation, and others.
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Table 6: Parameter Values

Parameters Descriptions Value Targets/Source

Parameters calibrated externally
βi, γij, αj IO structure and consumption share - 2007 IO table for China
Ld Total employment - 2010 Population Census
σ Trade elasticity 6
θM Elasticity of substitution across modes 2.5

Parameters calibrated in equilibrium
θ Routing elasticity 81.21

Estimates of Equations (21) and (23)
θF Port choice elasticity 2.45
κH Expressway route cost 0.055
κL Regular route cost 0.074
h0 Trade cost level 1.295 Average ground shipment distance: 177 km
κ̄ Alternative mode cost 0.210 Share of non-road shipment: 0.24
µ Cost-weight to value elasticity 0.3 Equation (23)
τi

RoW , τi′
RoW Export and import costs - Sectoral export and import

Ti
d Region-sector productivity - City-sector sales in 2008 Economic Census

κLθ = 5.98, θF
θ = 0.03; we also show in Table 5 that empirically, each additional 100 km in distance

leads to a 6% increases in log price ratio. We choose θ so that the price-distance semi-elasticity
estimated using the simulated data from the equilibrium of the model is also 6%. This procedure
determines θ = 81.21, θF = 2.45, κH = 0.055, κL = 0.074.

Parameter µ determines the variations of transport costs across sectors with different heaviness.
We set µ to 0.3 based on Table 4. We determine the overall level of domestic trade cost h0 by
targeting the average shipment distance in China (National Bureau of Statistics, 2010), which is
177 kilometer. Under this target, the equilibrium inter-city trade as a fraction of total output
is 44%. With all else determined, the remaining parameter of the routing model, the distance
semi-elasticity for alternative modes (such as air transport), κ̄, pins down the equilibrium share
of shipment using roads versus other modes. About 76% of domestic shipment (by weight) is
conducted by road transportation (National Bureau of Statistics, 2010). We choose κ̄ so that the
model generates the same ratio.

We use the sectoral trade costs between the port city and the RoW to target the sectoral import
and export as shares of domestic GDP.37 Finally, we use the region-sector productivity parameters,
{Ti

d}d 6=RoW , to match the sectoral output shares of each prefecture city, constructed from the 2008
China Economic Census.38 We calibrate {Ti

RoW} such that the model implied ratios between the
sectoral output of China and that of the RoW match the data.

Figure 6 plots values of shipment flows between pairs of adjacent cities. Darker colors indicate

37To match the import and export shares, our calibration takes into account exogenous international trade surpluses
of China. After the calibration, we solve for a baseline equilibrium without trade imbalances. All the counterfactual
experiments will then be compared against this baseline equilibrium. Throughout the rest of the paper we also refer to
this as the calibrated equilibrium.

38We use the economic census to construct the production shares within the manufacturing and service sectors.
We use the industry employment shares from the 2010 population census for agriculture and mining sectors that the
economic census does not cover.
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Figure 6: Model Predicted Shipment Flows
Note: This figure plots the value of road shipments between cities, normalized by the GDP of China. When two adjacent
cities are connected by both regular roads and expressways, the value plotted is the sum across the two.

higher intensities. With large heterogeneity in importance across segments, standing out from
the map are a few corridors that connect the most important economic centers of China. The
northeastern corridor surrounding the Bohai Bay, linking Beijing and Tianjin to centers of heavy
industrial sectors such as Dalian, Shenyang, and Changchun; the corridor between Beijing and the
Yangtze River Delta in the southeast, the most economically prosperous area of China; finally, the
corridor connecting the northwest to the center of China.

Zooming into local areas, the three busiest segments on the entire map are between Wuxi and
Changzhou, between Suzhou and Nanjing, and between Taizhou and Suzhou, all of which are in
the Yangtze River Delta. This is in accord with the popular press coverage that frequently dubs
the expressway between Nanjing and Shanghai, which all the three segments belong to, as the
busiest expressway in China.

5.4 Model Validation

We validate the model by comparing some of its ‘out-of-sample’ predictions to the data.
Transport hubs. Because of their central locations in the transport network, some cities be-

come ‘hubs’ that shipments to other places go through. To validate the model, we can compare
the model-inferred shipments passing a city to its empirical counterpart, sourced from the 2010
yearbook for transportation.39 Table 7 reports the regression of the log shipment in the data on

39The data is aggregated by city and produced by the National Bureau of Statistics from surveys of firms in the
logistics industry. The data series appear inconsistently defined over time, with frequent abrupt changes from one year
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Table 7: Predicting City Shipment

(1) (2) (3)
Log(shipment), model 0.365∗∗∗ 0.208∗∗∗ 0.185∗∗∗

(0.041) (0.038) (0.046)
Log(employment) 0.594∗∗∗ 0.584∗∗∗

(0.059) (0.064)
Observations 239 239 233
Fixed Effects no no prov
R2 0.236 0.490 0.633

Notes: The dependent variable is the log city shipment in the data (2010); the independent variable is the log city
shipment in the model. Robust standard errors in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

the model prediction. The first column shows the raw correlation. The second column controls for
city employment. The coefficient is still significant and meaningful. This suggests that the model
prediction correlates with the data not only because of the usual gravity force that predicts more
trade for bigger cities, but also because it captures the traffic passing by. The third column further
shows that including the provincial fixed effect does not change the estimate. This implies that
the prediction power comes from the network connections of a city shaped by the routing model,
rather than the broad location of the city.

Expressway and Export Growth. In the second validation test, we compare the model-
predicted export growth led by the expressway network expansion to the actual export growth
in the data. This is a joint test of two hypotheses: 1) whether the expressway expansion as large as
the one seen in China over the decade led to differential growth of exports across cities; 2) when
fed into the expressway expansion, whether the model can generate the changes in trade patterns
in the data. This comparison is out-of-sample, because in the calibration we absorb the level of
export through city-time fixed effects and use only the information from the patterns of routing.

In implementing this exercise, we feed in the 1999 expressway network to the model and
solve a counterfactual equilibrium holding all other parameters at the calibrated values. We treat
the export generated from this counterfactual equilibrium as the model export in 1999. We then
compare the export at the city-sector level between the model and the data for 1999 and 2010. Table
8 reports the results. The dependent variable is the log export in the data and the independent
variable is its model counterpart. The first column controls for the time fixed effects to look
at cross-sectional predictions. The second column controls for sector-time and city-sector fixed
effects, so the comparison is on export growth within a city-sector cell. The point estimate is
around 0.7 and highly statistically significant. The third column excludes major cities from the
sample and the point estimate remains similar.

Importantly, all these regression models have a F statistic above the rule-of-thumb for bound-
ing biases in IV estimates. Under the assumption that the road networks affect city export only

to another, so we do not use the time dimension of the data.
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Table 8: Predicting Export Growth

(1) (2) (3)
Log(export), model 0.362∗∗∗ 0.685∗∗∗ 0.622∗∗∗

(0.045) (0.159) (0.165)
Fixed Effects t oi, it oi, it
Exclude major cities no no yes
Observations 8544 8544 6648
R2 0.311 0.876 0.858
F-statistic 63.831 18.651 14.269

Notes: The dependent variable is the log city-sector export in the data; the independent variable is the log city-sector
export in the model. Letters t, o, i, in the ‘Fixed Effects’ stand for time, city, and sector (two-digit) fixed effects,
respectively. Standard errors (clustered by city) in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

through improving the access of a city to ports, the model predictions can serve as an IV for export
at the city-industry level. A growing literature has examined the impacts of Chinese export on
its domestic economy). One IV commonly used in this literature is the tariff cuts after the WTO
accession, which is valid assuming the pre-WTO tariffs are exogenous (Tian, 2019). The IV based
on our model predictions vary across regions and over time, and is valid under a different set of
assumptions from existing studies.

6 The Impacts of the Expressway Expansion

6.1 Benchmark Results

Armed with the parameterized model, we examine the aggregate impacts of the expressway
construction. We calculate the percentage change in a number of statistics as the economy moves
from an equilibrium with the 1999 expressway network to the one with 2010 expressway network.
Table 9 reports the result. The aggregate welfare, defined by Equation (19), increases by 5.6%.
To put this number into perspective, the welfare relevant aggregate TFP of China grew by 36%
between 1999 and 2010 (Penn World Table 9.0, see Feenstra et al., 2015). Through the lens of
our model, the reductions in domestic transport costs brought about by the expressway network
expansion account for around 16% of the increase.

The expanding expressway network has a large impact on the patterns of domestic and inter-
national trade. The domestic trade over GDP share increases by 11%. Because interior regions
ship their goods to the RoW through ports, the expressway expansion also affected international
trade. It is tempting to think that lower domestic trade costs will always encourage international
trade, but the theoretical prediction is ambiguous.40 It turns out that in our setting, the reductions
in domestic trade cost lead to a 16% increase in international trade. In the data, the export over

40On the one hand, interior regions will trade more with the RoW because of the improved access; on the other hand,
the coastal regions might be diverted to trade more intensively with the interior, leading to a decline in the aggregate
international trade.
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Table 9: The Effects of the Expressway Expansion, 1999-2010

Change in Value

Aggregate welfare 0.056
Log(Domestic trade / GDP) 0.113
Log(Exports / GDP) 0.157
Std Log(real wage) across regions -0.0288

Note: Changes in model statistics are calculated by comparing the calibrated equilibrium and a counterfactual equilib-
rium with the 1999 expressway network.

GDP ratio increased by 70%, from 18% in 1999 to 32% in 2008, before it plummeted during the
great trade collapse. About a quarter of this 70% increase in export intensity could be explained
by the expansion in the domestic expressway network.

By connecting previously remote areas to the network, the expressway generates distributional
effects. The real wage inequality across regions, measured by the standard deviation of log real
wages, decreases by around 3%. This change, however, represents only a modest decrease (around
5%) from the large income dispersion in the baseline economy.

6.2 The Role of International Trade, Sector Heterogeneity, and Input-output Linkages

Our benchmark model differs from those used in the growing literature quantifying the im-
pacts of transportation infrastructure (see, e.g., Asturias et al., 2018; Fajgelbaum and Schaal, 2019;
Allen and Arkolakis, 2019) in three aspects. First, our structural estimation exploits changes in
the route choice of exporters resulting from the domestic expressway network expansion, which
naturally implies that the expressways have the added benefit of reducing import and export costs
for the hinterland; second, with sector level information on production and export prices, we al-
low for regions to differ in sector specializations and sectors to differ in trade costs; third, we
incorporate intermediate inputs.

In this subsection, we argue that because these ingredients allow us to infer the distributions
of shipments among different routes and the shipment values more accurately, they are important
for the quantitative results. To make this point, we parameterize a series of restricted models and
comparing the inferred welfare gains in these models to the baseline results. For transparency,
throughout this subsection we recalibrate only the trade cost level parameter, h0, to match the
average domestic shipment distance, and city-sector productivity {Ti

d} to match sales by either
city or city-sector, depending on the restriction on the model. We keep other structural parameters
in the routing problem as in the benchmark.

Domestic transport costs in international trade. The second column of Table 10 is the result
from a model without international trade, i.e., with τi

RoW = ∞, ∀i. The inferred gains from
expressway construction in this model is about 7% (or 0.4 p.p.) smaller than in the baseline model
(reproduced in Column 1).

We can understand the difference by inspecting the first order effect on the aggregate welfare

35



Table 10: Welfare Gains in Alternative Models, Matching Average Ground Distance

Baseline Model (2) Model (3) Model (4) Model (5)

International trade X
Regional specialization X X
Trade cost heterogeneity X X X
Intermediate input X X X X
Welfare gains 5.64% 5.27% 4.54% 3.18% 0.74%

Note: For each alternative model, city-sector productivity {Ti
d} and the level of transport cost h0 are recalibrated to

match the same city-sector sales (or city-level sales, depending on whether regional specialization is incorporated in
the calibration) and the same average domestic ground shipment distance.

of one expressway segment, ∆ log ιkl . From Equation (20), the equation below holds in Model (2):

∆W ≈ −∑
i

∑
o 6=d

Xi
od

Y
· πroad

od πkl
od · ∆ log ιkl , o 6= RoW, d 6= RoW. (24)

Equation (24) does not hold in the full model because the social planer that replicates the
competitive equilibrium would place positive Pareto weights on the RoW. However, if we view
trading with the RoW as a reduced-form production function, then the first order domestic welfare
gains in the full model are given by an extended version of Equation (24) that allows o or d to be
the RoW. By matching the average shipment distance for goods within China, both the full model
and the model without international trade generate similar Xi

od, o 6= RoW, d 6= RoW, so they
predict similar cost savings from domestic trade. Through the lens of the full model, however,
these are only part of the benefits—the improvements in domestic infrastructure reduce the cost
for the importers and exporters from the hinterland. Because part of these additional cost savings
will accrue to the Chinese economy, overlooking this component leads to smaller inferred gains.

Regional specialization. In the data, Chinese regions specialize in different broad sectors. For
example, the manufacturing share in value added averages around 50% in the southeastern region
that encompasses Shanghai, Jiangsu, Fujian, Zhejiang, and Guangdong provinces, but only 20-25%
in Xinjiang and Qinghai autonomous regions in the northwest and Heilongjiang province in the
northeast; on the other hand, the energy share averages around 14% in the latter group but only
less than 1% along the southeastern coast. How valuable is the information on specialization?

To answer this question we recalibrate a model without specialization. Specifically, we assume
all sectors within a region have the same productivity, i.e., Ti

o = T j
o = To, ∀o, j, i, and pin down {To}

by matching the total sales of each city in the data. The input-output structure is kept the same as
in the baseline model. We assume there is no international trade, so Equation (24) remains a valid
characterization of the first order effects. Column 3 of Table 10 reports that the inferred gains in
this model are 14% smaller than an otherwise similar model with regional specialization (Column
2).

Patterns of regional specialization matters because they contain information for the distribu-
tion of trade flows across pairs of domestic partners. Because of the strong spatial clustering
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Figure 7: Differences in Shipment Value Shares, ‘No Specialization’ Minus ‘Baseline’
Note: The numbers are the differences in shipment value/GDP between Model (2) and Model (3). The values plotted
include both expressway and regular road shipments. Cold colors indicate that there is less shipment in Model (3) than
in Model (2).

of production, the calibrated productivity in the full model has a spatial correlation, too. As a
result, regions tend to trade with partners that are far away. When comparative advantages are
eliminated, the spatial clustering also disappears, so inter-city trade in the restricted model shifts
towards partners that are closer to each other. Although both models are calibrated to generate the
same average shipment distance, this simple statistic does not capture all these patterns. Indeed,
Figure 7 plots the change in shipment intensities between city pairs from Model (2) to Model
(3). The segments that see the biggest decrease in inferred shipments are the ones connecting the
northwest and northeast—the energy producing area—to the center of the country with a heavy
manufacturing presence; the segments that see an increase in inferred shipments are the ones
connecting regions within the center and the east of China. As a result, Model (3) infers higher
gains for expressway segments in the center of the country and lower gains for projects connecting
the center to the northeast and northwest—regions with very different comparative advantages.
Whether the model underestimates or overestimates the return to a specific project thus depends
crucially on where a project is. For the actual projects built during the decade, the balance comes
down to an underestimation of the welfare gains by 14%.

Transportation intensity. The comprehensive price information from the customs data allows
us to incorporate sector heterogeneity in transport costs. To demonstrate its relevance, we set µ = 0
and then calibrate the model to match both city-level sales and the average shipment distance. We
then conduct the same exercise as before. Under the assumption of homogeneous transport cost
across sectors, the inferred gains are down from Model (3) by two-fifth to 3.18%.

At first glance, this might seem surprising, as with a large enough number of regions and
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road segments, the law of large numbers should have kicked in and the heterogeneity in trans-
port intensity across sectors could be washed out. The reason why sector heterogeneity is not
simply washed out is, when calibrated to match the same average shipment distance, Model (3)
infers systematically higher values of shipment compared to Model (4). More specifically, with
heterogeneity in trade costs, for the same level of inter-city shipment, Model (3) will predict a
higher fraction of them in lighter sectors (with lower weight-to-value ratios) because they incur
lower shipping costs in Model (3) but not in Model (4). Because the welfare gains are, to the first
order, proportional to the value of goods but not their weights, the model with sector transport
intensities predicts larger welfare gains.

Intermediate inputs. In the final comparison, we further shut down intermediate inputs in
production by assuming the labor shares (βi) are 1 in all industries. The welfare gains inferred
by this model decline by three-quarters to around 0.7%. This difference can be understood by
inspecting Equation (25).

Xi
od

Y
=

Xi
od

∑i ∑o,d Xi
od
· ∑i ∑o,d Xi

od
Y

. (25)

For a simple example, assume that all regions o and d are symmetric, with positive but symmetric
inter-regional transport costs. When calibrated to match the average shipment distance, Models

(4) and (5) generate the same trade intensity, i.e., Xi
od

∑i ∑o,d Xi
od

. However, in the model without inter-

mediate inputs, the overall absorption ∑i ∑o,d Xi
od is equal to the GDP, whereas in the model with

intermediate inputs, the overall absorption is several (around three in our calibration) times of the

GDP. As a result, the inferred value of ∑i ∑o,d Xi
od

Y is too small in the model without intermediate in-
puts. By assuming away intermediate inputs, the restricted model overlooks that goods are traded
multiple times on the road, which amplifies the gains from reductions in transport cost.41

6.3 Cost-Benefit Analysis

The above comparisons underscore the importance of incorporating all necessary model in-
gredients. We now use the full model to conduct a cost-benefit analysis of the overall expressway
network expansion and a few mega projects.

To this end, we collect the total investments on the expressway network during 1999-2010 and

41Although it is well known that the inferred gains from international trade are larger when intermediate goods
are introduced (Caliendo and Parro, 2015; Costinot and Rodríguez-Clare, 2014), we show that for the evaluation of
domestic infrastructure projects, this insights matters at least as much, if not more. In recent work, Baqaee and Farhi
(2019a) shows that if the true underlying model is one with intermediate goods, and the researcher specifies a model
without intermediate goods, then calibrating the specified model to match trade over GDP ratio (as opposed to the
theory-consistent target under this model, trade over absorption/production) gives a better approximation to the true
gains from trade. In our setting, this approach (one that changes the target, but not the model) runs into two practical
difficulties. First, reliable inter-regional trade data are lacking, so we cannot directly measure trade/value added at the
regional level. Second, even when the data are available, at the micro level, this measure could be easily above one,
which a model without input-output linkages cannot accommodate. In our baseline economy, for example, this ratio is
around 1.45 for the tradable sector as a whole.
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Figure 8: Mega Expressway Projects in China
Note: Projects with higher returns are plotted with darker colors. Some segments were completed by 1999 (most of G4
and G10); the newly built segments of all selected projects during 1999-2010 account for 43.7% of the total length built
during this period.

infer the investment on individual projects. The raw data are from the yearly bulletin of road
and waterway transport development (Ministry of Transport of the People’s Republic of China,
2000-2010). We deflate it yearly using the inflation rate for capital investment. Measured in
2010 price, the cumulative investment in inter-city highway projects during the decade is around
570 billion USD, accounting for about 10% of the 2010 GDP. To compare this cost to discounted
future benefits, we assume the annual depreciation rate for expressways is around 10.5% as in Bai
et al. (2006). Given that the expressway network is planned by the central government, whose
opportunity cost is to direct investment elsewhere, a natural choice for the discount rate is the
return to capital in the overall Chinese economy. We assume this return is around 10%.42

Assuming all investment expenditures are made in 2010, then, the discounted future welfare
gains (5.6%× [1 + 0.8 + 0.82...]) is around 28% of the 2010 GDP, implying a net return of about
180%: even after taking into account the high opportunity cost in a growing economy like China,
the expressway investment generates a huge net return. In comparison, if we had used a simple
one sector model for the evaluation as in most existing quantitative studies, our conclusion would
have been that the investment led to 63% net losses (≈ 0.74%

0.2 /10%− 1).
A few mega projects more than 1000 kilometers long form the backbone of the entire express-

way network. Figure 10 plots 14 such projects. Some of them connect the north to the south.
For example, G1 connects Beijing to the Northeast, passing through industrial centers such as
Shenyang, Changchun, and ending at Harbin. G2-G5, on the other hand, connect Beijing to the

42Bai et al. (2006) finds that between 1998 and 2005, the return to capital is around 20%, a level that seems unsus-
tainable especially given the secular stagnation in much of the developed world. To be conservative we chose to use
10%.
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Table 11: Costs and Benefits of 14 Mega Projects

ID Length Cost as Cost per km Welfare Gains Net return to % Change in % Change in
(km) % GDP (million) (%) investment dom. trade/GDP Export/GDP

G1 1533.61 0.30 77.71 0.52 772.65% 0.60 0.94
G2 1768.29 0.38 85.94 0.45 497.92% 0.16 1.28
G3 2513.38 0.54 85.53 0.79 636.11% 0.65 4.37
G4 2924.88 0.65 89.14 0.40 204.45% 0.46 1.12
G5 2829.75 0.73 103.16 0.26 79.63% 0.26 0.51
G6 2095.37 0.38 72.26 0.17 118.86% 0.12 0.54
G10 891.73 0.15 67.25 0.12 286.87% 0.16 0.68
G20 1688.68 0.31 74.08 0.25 295.70% 0.30 0.73
G30 4356.49 0.85 78.04 0.63 270.24% 1.26 0.77
G40 1727.03 0.34 78.43 0.22 223.44% 0.46 0.93
G50 1936.36 0.38 79.61 0.26 234.74% 0.58 1.06
G60 2662.22 0.48 72.99 0.54 453.53% 1.08 2.13
G70 1706.35 0.38 89.62 0.43 465.28% 0.52 3.49
G80 1378.30 0.30 88.62 0.15 142.51% 0.23 0.83
Total 30012.46 6.16 - 5.16 - 6.84 19.37

Note: Each row corresponds to a counterfactual experiment by removing from the 2010 expressway network a mega
expressway project referred by ‘ID’. The statistics are calculated by comparing the benchmark equilibrium and the
counterfactual equilibrium.

South with Shanghai (G2), Fuzhou (G3), Guangzhou (G4), and Kunming (G5), respectively. A few
others connect the coastal areas to the center and the west of the country. G40, for example, links
Shaanxi province, an important coal producing region, with Shanghai.

We evaluate costs and benefits for each of these projects. In the absence of a consistently
defined cost measure for individual projects, we follow Faber (2014) and adopt a formula based
on the engineering literature linking the relative construction cost of a segment to the average slope
of the terrain and whether it passes water or wetland areas. We use the formula to evaluate all
the segments constructed between 1999 and 2010 as a function of an unknown level coefficient and
choose this coefficient so that the total cost of these segments is equal to the aggregate investment
(10% of GDP). Appendix A.3 provides more details. The output of this procedure is the cost
estimate for each of the 14 mega projects.

The third column of Table 11 reports the cost per kilometer for these projects. The most expen-
sive project is G5, which passes through the rugged terrains in the southeast. Stretching across
the flat northeastern plain in the other end of the country, G10 costs the least per kilometer. The
average cost across all projects constructed in this period is around 80 million yuan per kilometer.
This number is in the same ballpark as the best available evidence we can find.43

We evaluate the benefit of each project. Columns 4 and 5 report the per-period welfare gains
and the net return to investment of these projects. All of them generate large returns. We indicate
higher net gains using darker color in Figure 10. The projects with the highest returns are north-

43Most construction costs we can find online are for projects completed well before 2010. The website http://

news.roadcost.com/News/20120216/180.html (in Chinese) discloses an audit report of expressway projects in Fujian
province in 2011 Quarter one, according to which on average the cost is 80 million per kilometer.
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south expressway lines (G1, G2, and G3). G5, running from Xi’an to Kunming, generates the lowest
return, in part due to its hefty price tag. The last two columns report the change in domestic and
international trade as a share of GDP after each project is completed. The projects that had the
biggest impact on domestic trade are G30 and G60, which stretch across the vast central China,
likely because they connect areas with different comparative advantages. On the other hand, the
projects that had the largest impacts on export are G3, G60, and G70—roads that connect interior
China to ports like Shanghai and Fuzhou.

The last row of the table reports the sum of each column. Despite that in terms of monetary
investment, these project account only about 60% of the investment made to expressway dur-
ing the decade, the sum of the marginal gains from these projects are around 5.2%, more than
90% of the gains from the entire network. And their collective impacts on export over GDP is
19%, higher than the effect of the entire network. That the sum of marginal effects of individual
projects—assuming all existing projects have been built—is higher than the aggregate effect hints
at significant complementarity between projects. This result highlights the importance of taking
into account the interaction among regions and transport infrastructures in welfare evaluation.

To summarize, large return heterogeneity notwithstanding, until 2010 the expressway network
in China was worth every penny of the investment. More recently, there has been a heated discus-
sion among the popular press on whether China ‘over-invested’ in transport infrastructure. We
should note that our finding does not necessarily apply to the latest wave of investment. Indeed, as
the major population centers have been connected, building roads in the more mountainous areas,
usually with redistributive motives, might incur higher costs while generating smaller returns.

7 First Order Measurement and Second Order Correction

From Proposition 2, all we need for inferring the first order welfare gains from a transport
projects is the structural elasticities and the value of shipments along each segment. We chose to
evaluate the full model with all three ingredients in part because it allows us to infer the value
of shipments in GDP accurately, as demonstrated in Section 6.2. In this section, we further argue
that because the expressway expansion represents a large shock to both individual links and the
overall network, even with perfect data on shipment flows, the first order approach introduces
a significant bias, and that the second order correction to the routing problem in Proposition 2
improves the accuracy materially. This second order characterization thus offers a convenient way
to evaluate and compare many large hypothetical expressway projects. This could be useful, for
example, when researchers and practitioners need to identify the best choice among a large sets
of potential expressway configurations.
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7.1 First Order and Nonlinear Effects for a Local Segment

We start with a local project that adds an expressway segment from k to l. We shut down
international trade in all experiments in this section so Equation (20) holds. And it specializes to:

∆W =

FO Trade︷ ︸︸ ︷
∑

i
∑
o,d
−

Xi
od

Y
πroad

od πkl
od∆ log ιkl︸ ︷︷ ︸
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2 ∑
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(∂ log ιkl)2 (∆ log ιkl)
2

︸ ︷︷ ︸
SO effect from routing

+HOR +SOT, (26)

where the second order effect from routing is given by Equation (18). Note first that because

θ >> θM, the sign of ∂2 log τ̃i
od

(∂ log ιkl)2 depends mainly on the first term of Equation (18), which is negative.
Intuitively, when re-optimization is allowed, when an expressway segment is removed, trucks
originally taking the expressway from k to l might opt out to other routes. Starting from an
equilibrium with expressway k → l present and inferring the welfare gains using the first order
effect will thus overestimate the losses due to the removal of the expressway.44

Because with the parameterized full model, we can directly calculate the change in trade cost,
∆ log τi

od, we are also able to evaluate the sum of the first three terms, which captures the full
effects of routing on trade costs. We label this sum ‘FO Trade’ in Equation (26). It stands for the
inferred first order effect from trade directly, if the changes in realized effective trade costs are
measured. The difference between FO trade and the prediction of the full model is the higher
order equilibrium effects from the changes in trade cost, labeled SOT.

We use Equation (26) to evaluate the quantitative significance of various forces. We consider
the top 100 pairs of adjacent cities connected by both regular roads and expressways with the
highest values of shipment. We conduct 100 experiments, in each of which we remove one of the
expressway segment and calculate the aggregate welfare gains from that individual segment. We
then compare the full effect of each segment to different approximations assuming all data at the
calibrated equilibrium are observed perfectly.

Figure 9 plots the results. The horizontal is the full welfare effect. The range of welfare gains
is between 0.007% to 0.06%. Even within the busiest subset of the road network, some segments
are eight times as much important as others—a Zipf’s law for inter-city traffic. The vertical axis
presents predictions for welfare gains based on various approximations. The circles denote the
first order cost savings, calculated directly using the value of actual shipments on each segment.
They correspond to the first term in Equation (26). As anticipated, all circles lie above the 45
degree line, indicating overestimation of the losses from an expressway removal. The biases are
smaller in percent for segments that are less busy, with the average absolute percentage error
being around 27%.

The diamonds further incorporate the second order effect from re-routing among road net-

44Similarly, starting from an equilibrium and inferring the gains from the addition of an expressway segment ex-ante
will underestimate the gains.
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Figure 9: Nonlinear Welfare Gains v.s First Order Approximations
Note: Each point corresponds to an experiment with one expressway segment removed. The sample segments are the
top 100 busiest segments in the baseline equilibrium. ‘Error’ reported in the legend is the mean absolute value of the
percentage difference between each approximation and the full nonlinear effect.

works, assuming trade flows do not change. They correspond to ‘SO effect from routing’ in
Equation (26). The approximation is now much more accurate, centering tightly around the 45
degree line. On average, the mean absolute percentage error of this approximation falls by three
quarters to 7%. Finally, the crosses incorporate all responses in routing (corresponding to ‘FO
Trade’ in Equation (26)). This further improves the quality of the approximation, reducing the
mean absolute error to less than 1%.

7.2 Interactions Between Expressway Segments

When we move from analyzing individual segment k → l to a large expressway project with
many segments C, in addition to the approximation error documented in Figure 9, the first order
approximation also misses the interaction between segments. Formally, we can decompose SOR

in Equation (20) into the sum of two terms. The first term captures the second order routing effect
from self; the second captures the cross-derivatives between different segments, as below:

SOR = − 1
2 ∑i ∑o 6=d
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od
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Cross SOR

]. (27)

While the sign of ‘Own SOR’ is always negative, the sign of ‘Cross SOR’ is ambiguous and
depends on the network structure, as discussed in Section 4.6. We illustrate two cases in Figure
10. Consider one of the busiest expressway segments, the edge between Laiwu and Linyi, colored
solid black in the map. The colors of other edges indicate their cross-derivative term with the
edge between Laiwu and Linyi. Cold colors indicate that the cross-derivative is negative, in which
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Figure 10: Complementarities and Substitutions between Segments: An Example
Note: The selected road segment is from Laiwu to Linyi, colored black. The map shows the cross derivative between
each segment and the selected one (Laiwu to Linyi). Warm colors indicate that the cross derivative is positive, suggest-
ing that an expressway between Laiwu and Linyi would draw traffic away from that segment. Cold colors indicate the
opposite. Numbers are in percentage points of aggregate welfare.

case a new expressway between Laiwu and Linyi will increase the traffic on the segment, as they
jointly form a longer route. For example, the segment between Jinan and Laiwu.45 On the other
hand, warm colors indicate that a segment is a substitute to the expressway between Laiwu and
Linyi. For example, the route from Jinan to Xuzhou.

For a systematic evaluation of various channels, we decompose Equation (20) as follows:

∆W︸︷︷︸
0.032

= FO effect︸ ︷︷ ︸
138%

+Own SOR︸ ︷︷ ︸
−43%

+Cross SOR︸ ︷︷ ︸
9%

+HOR + SOT︸ ︷︷ ︸
−5%

. (28)

The first term on the right side of the equation is simply the sum of the first order effects of
individual segments. The second and third correspond to the two second order effects from
routing, which we calculate using Equation (27). We treat HOR and SOT as a residual term,
capturing the remaining difference between the full nonlinear effect and the analytical predictions.

The importance of the cross-derivative force crucially depends on the segments being jointly
evaluated. As an example, we calculate the nonlinear welfare gains of the segments constructed
between 1999 and 2010. Because the first order approximation can be evaluated only when k
and l are connected by both regular roads and expressways (otherwise the edge cost increases to
infinity when the expressway is removed), in this experiment we focus on expressways between
cities also connected by regular roads. In total, these expressway segments generate 3.2% welfare
gains. The first order effects based on ex-post traffic overestimate this number by 38%. The own

45The cross-derivative being negative means that the second order effect has the opposite sign of the first order effect.
So for an ex-post evaluation of the welfare losses from the removal of an expressway, it adjusts down the inferred first
order effect. The opposite is true when the cross-derivative is positive.
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substitution effects more than correct this bias; the cross-substitution effects add another 10% to
the inferred welfare gains. The overall positive cross-routing effects mask some segments that
strongly complement each other and others that compete for traffic.

Once both second order effects are included, what is left for the approximation error is mere
5%. Equation (20) thus gives a second order correction that can be used to evaluate the gains
from large projects, which could be any combinations of edges, without having to solve for the
counterfactual equilibrium.

8 Conclusion

This paper proposes a method to evaluate the effect of transport infrastructure on domestic
trade costs that circumvents the lack of reliable domestic trade data in many countries—by using
the route choice of exporters. We combine this method and a spatial equilibrium model to study
the aggregate welfare effects of the 50, 000 kilometer expressway construction taking place between
1999 and 2010 in China. We find a large positive net return to the investment and shows that
overlooking the model ingredients can lead to the opposite conclusion. We further provide a
second order characterization of the aggregate welfare gains from expressway networks. Once the
full model is parameterized, this characterization allows convenient evaluations of expressway
networks with a higher accuracy than the commonly used first order approach, without the need
to solve for full counterfactual equilibria.

The reason why having the full model is important is that in the absence of direct measure-
ments of domestic trade, we rely on the model structure and other data in inferring the value of
inter-city shipments. The information used in our evaluations (e.g., sectoral production and the
full structure of the transport network) might not be accessible in some empirical settings; inves-
tigating the minimum sufficient information to infer welfare gains from large projects, especially
ex-ante, is thus a valuable venue for future research. Throughout the paper, we also abstract from
a number of interesting channels. For example, the effects of expressways on technological dif-
fusion and the dynamic responses through regional growth. Incorporating these channels might
yield additional insights on the role of transport infrastructure.
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A Data and Empirics

A.1 Defining City Coordinates

We define the location of a county by its center of mass using the county geographic information in the
2010 census. We weight the coordinates of all counties making up a prefecture city by their popula-
tion to calculate an average coordinate, which we then define as the location of a prefecture city. For
four provincial-level cities, Beijing, Shanghai, Tianjin, and Chongqing, we generate the coordinates by
weighting the coordinates of their urban sub-divisions (districts). We exclude the rural sub-divisions in
these provincial-level cities because the rural areas are large and have a disproportionate impact on the
measured economic center.

1



A.2 Constructing Network Graphs

Our raw data consist of the geographic coordinates of city centers and the line strings of road networks
(1999 and 2010 expressway, and 2007 regular road which is treated as time-invariant). To combine the
data and the model, we first need to generate a network of cities with the roads connecting them. We do
so separately for each of the three maps, according to the following procedures.

• Define connected cities. First, each city is defined as ‘connected’ in a map, if the center of the city
is within the 30 kilometer radius of any roads on a map. Practically, it means measuring whether
any of the coordinates characterizing roads from a map are within 30 kilometer of the city center.

• Define connections between cities. We ‘re-base’ the coordinates of ‘connected’ cities to the nearest
coordinates of the road network. For each pair of connected cities, we search for the shortest
path between them along the road network using the Dijkstra’s algorithm. If the shortest path
between two cities does not pass through 30 kilometer radius of another city, we define the pair to
be ‘directly connected’.

• Construct the graph. We construct the graph in which cities and roads are nodes and edges as
follows. We start with a collections of nodes. We draw a edge between two cities, if they are
found to be ‘directly connected’ in the previous step. We define the length of the edge to be the
great-circle distance between the two city centers. This effectively ‘irons out’ the local curvatures
in constructing the network, which helps us eliminate measurement errors when comparing the
expressway networks across two periods.1 Note that in this graph, each city can only be connected
to another city through its adjacent cities.

The left panel of Figure A.1 is the original digital maps for expressways and regular roads. The right
panel is their network representation, which is the output of this step. They correspond to the network
structure underlying H1999, H2010, and L.

1The two expressway maps are digitized from the projection of published hard-copy maps, which introduce measurement
errors that change the exact locations of roads.
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(a) 1999 Expressway Map (b) 1999 Expressway Network

(c) 2010 Expressway Map (d) 2010 Expressway Network

(e) Regular Road Map (f) Regular Road Network

Figure A.1: From Road Maps to Road Networks
Note: Two cities are defined as connected on a road network if the shortest path connecting them on a road network does not
pass a third city. The distance between two connected cities is then calculated as the greater circle distance between their city
centers.
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(a) Slopes and Water Areas (b) Slopes of Expressway Segments

Figure A.2: Geography and Expressway Construction Costs
Note: The left figure plots the slope of land and the geographic distribution of water areas. The right panel plots the express-
ways in 2010, indicating using color the average slope for each 10-kilometer segment.

A.3 Backing Out Construction Costs for All Segments

We first cut expressways into 10-km segments. We calculate the average slope of each segment and
determine whether the segment passes water.2 We calculate the relative construction cost of segment i
following a simple function from the transport engineering literature:

costi = 1 + slopei + 25× PassWateri,

which is similar to the one used Faber (2014), except that we abstract from the measure of existing
buildings due to the lack of data. According to this formula, the cost of constructing a segment passing
water costs 26 times as much as on a dry plain. The level of the construction cost is determined such that
the total cost of the newly constructed segments from 1999 to 2010 is 9.92% of the 2010 GDP.

The total cost (9.92% of the 2010 GDP) is 3983 billion 2010 CNY. The total dry-plain equivalent dis-
tance of all roads constructed during this period is 453, 447 kilomter, so each dry-plain equivalent kilome-
ter of expressway costs about 8.85 million 2010 CNY. The total length of expressway actually constructed
during this period is 49, 760 km, so the average cost for each kilometer is around 80 million 2010 CNY.
This cost is much higher than the dry-plain equivalent cost, reflecting that most of the projects during
this decade pass rugged or water areas.

A.4 The Lists of Port and Major Cities

List of port cities: Tianjin, Dalian, Shanghai, Ningbo, Fuzhou, Xiamen, Qingdao, Guangzhou, Shenzhen,
Zhuhai, Shantou.

List of major cities: Beijing, Tianjin, Shijiazhuang, Tangshan, Handan, Xingtai, Baoding, Cangzhou,
Shenyang, Dalian, Changchun, Haerbin, Shanghai, Xuzhou, Suzhou, Nantong, Yancheng, Hangzhou,
Wenzhou, Fuyang, Suzhou, Liuan, Quanzhou, Ganzhou, Jinan, Qingdao, Yantai, Weifang, Jining, Linyi,
Liaocheng, Heze, Zhengzhou, Luoyang, Xinxiang, Nanyang, Shangqiu, Xinyang, Zhoukou, Zhumadian,

223.3% of the segments pass water areas.
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Table A.1: Route Choice at the Sectoral Level

(1) (2) (3) (4)
Sectoral PPML Sectoral IV

distij,t -0.387∗∗∗ -0.107∗∗

(0.074) (0.046)
-on express -0.258∗∗∗ -0.084

(0.079) (0.055)
-on regular -0.393∗∗∗ -0.119∗∗

(0.079) (0.053)
Fixed Effects odi, oit, dit odi, oit, dit odi, oit, dit odi, oit, dit
Exclude major cities yes yes yes yes
Observations 11044 11044 10808 10808
First Stage KP-F statistic 1007.661 141.529

Notes: This table reports the robustness exercises of results in Table 2 to sectoral-level data. Sectors are defined at HS-2 level.
All regressions control for the sector fixed effect and its interaction with other fixed effects. Columns 1 and 2 replicate Columns
4 and 5 of Table 2 using PPML; Columns 3 and 4 use the IV specification and replicate the first two columns of Table 2.
Standard errors are clustered at city-port level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Wuhan, Huanggang, Changsha, Hengyang, Shaoyang, Changde, Guangzhou, Zhanjiang, Munidiqu,
Chongqing, Chengdu, Nanchong, Zunyi, Bijiediqu, Xi’an.

A.5 Additional Results on Reduced-Form Regressions

Table A.1 reports additional robustness exercises for results reported in Table 2. All regressions use
HS2 level data and exclude major cities from the sample. The first two columns use the PPML and
replicate the results in Columns 4 and 5 of Table 2. The third and fourth columns use the IV based on the
minimum-spanning tree and replicate the first two columns of Table 2. In all specifications, we control
for the combinations of HS2 sector fixed effects with other fixed effects in Table 2.

B Model

B.1 Additional Properties of the Routing Block

Combining two routing matrices into one. We prove that when truck drivers choose from two networks
(regular roads L and expressways H), the average cost is as if drivers choose from one single combined
network: A = L + H.

We prove this by induction. First, consider the average cost of going from o to d among all routes
with only one edge.

τod,1 = Γ(
θ − 1

θ
)
(
[L(o,d)] + [H(o,d)]

)− 1
θ = Γ(

θ − 1
θ

)
(
[A(o,d)]

)− 1
θ .

Note also that if the (o, d) element of both L and H are zero, then τod,1 = ∞, meaning there is no feasible
one-edge path from o to d.

Assuming that the sum of (the −θ exponent of) cost from o to d across all paths with exactly N steps
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is [AN
(o,d)], then the sum across all paths with exactly N + 1 steps is:

[(AN ·H + AN ·L)(o,d)].

The first part sums across all the paths that first gets to an adjacent city of d in exactly N steps and then
goes on to d through an expressway; the second part sums across all the paths that gets to an adjacent
city of d in N steps and then goes on to d through a regular road.

The above expression equals exactly [AN+1
(o,d) ]. In other words, [AN+1

(o,d) ] is the sum across all paths goes
from o to d in exactly N + 1 steps. The average cost across all paths is then:

τod = lim
N→∞

τod,N = Γ(
θ − 1

θ
)
( ∞

∑
i=1

[Ai](o,d)
)− 1

θ = Γ(
θ − 1

θ
)B−θ

(o,d),

where B ≡
(
I−A

)−1, and A ≡ L + H.

B.2 Definition of Equilibrium

We define the competitive equilibrium as a set of prices and quantities that satisfy a number of conditions
as below.

Definition 1. Given fundamentals {τ̃i
od, Ld, Ti

d}3, a competitive equilibrium is: (1) consumption of sectoral final
goods Ci

d, labor allocation li
d, uses of sectoral final goods as intermediate input mij

d , production of sectoral final
goods Qi

d, intermediate goods traded q̃i
od, production of intermediate goods qi

d; (2) prices of final goods Pi
d, import

prices of intermediate goods pi
od, costs of input bundles for producing intermediate goods ĉi

o, wages wd, s.t.

• Consumers’ optimization conditions hold:

αi
dwdLd = Pi

dCi
d. (B.1)

• Intermediate goods producers’ optimization conditions hold:

qi
d = zi

d[l
i
d]

βi
d

S

∏
j=1

[mij
d ]

γ
ij
d

ĉj
o = κi

dwβi
d

d

S

∏
j=1

[Pj
d]

γ
ij
d

Pj
omij

o = ĉj
oγ

ij
o [li

o]
βi

o ∏
k
[mik

o ]
γik

o (B.2)

wdli
o = ĉj

oβi
o[l

i
o]

βi
o ∏

k
[mik

o ]
γik

o (B.3)

pi
od = [ĉi

oτ̃i
od]/Ti

o,

where κi
d = (βi

d)
−βi

d ∏S
j=1(γ

ij
d )
−γ

ij
d .

3The solution to the transport mode choice and the drivers’ routing problem have been incorporated through the trade cost
matrix τ̃i

od.
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• Final goods producers’ optimization conditions hold:

Qi
d =

(
∑

o
[q̃i

od]
σ−1

σ

) σ
σ−1

q̃i
od

q̃i
o′d

= [
pi

od

pi
o′d

]−σ (B.4)

Pi
d =

(
∑

o
[pi

od]
1−σ

) 1
1−σ

.

• Markets clear for labor, final goods, and intermediate goods:

∑
i

li
d = Ld (Labor markets clear)

∑
d

τ̃i
odq̃i

od = qi
o (Intermediates goods markets clear)

∑
i

mij
d + Cj

d = Qj
d (Final goods market clear).

B.3 Proof of Propositions

We first state a lemma characterizing the first order effect of the segment shipment cost on the trade cost
via the road network. The lemma is one of the key results behind the tractability of the routing block in
Allen and Arkolakis (2019), which we build on. We refer readers to the proof there.

Lemma B.1. The entries of A and of its Leontief inverse B ≡ (I−A)−1 satisfy

∂ log bod

∂ log akl
=

bok · akl · bld

bod
,

where akl and bod are the (k, l) and (o, d) elements of A and B respectively.

We now apply Lemma B.1 to prove Proposition 1.
Proof of Proposition 1.

Proof. Consider

log[exp(−θκHdistkl) + exp(−θκLdistkl)]

= −θκHdistkl + log
(

1 + exp(−θ(κL − κH)distkl)
)

= −θκHdistkl + o
(

exp(−θ(κL − κH)distkl)
)

≈ −θκHdistkl

where the approximation on the last line applies that κL > κH and θ is large. Therefore we have

∆ log(ιkl) = −
1
θ

(
log[exp(−θκHdistkl) + exp(−θκLdistkl)]− log[exp(−θκLdistkl)]

)
≈ (κH − κL)distkl ,

7



which proves Equation (16).
Equation (17) directly applies the second-order Taylor expansion w.r.t. (log(ιkl))kl∈C.
For Equation (18), recall that τi

od = ( hi
h0
)µb−1/θ

od and ιkl = a−1/θ
kl . Applying Lemma B.1, we have

πkl
od ≡

∂ log τi
od

∂ log ιkl
=

∂ log bod

∂ log akl
=

bok · akl · bld

bod
.

Then from

τ̃i
od = Γ(

θM − 1
θM

)[(τ̄i
od)
−θM + (τi

od)
−θM ]−1/θM

we have

πroad
od ≡

∂ log τ̃i
od

∂ log τi
od

=
(τi

od)
−θM

(τ̄i
od)
−θM + (τi

od)
−θM

.

For Equation (19), first it can be shown that

∂ log(πroad
od )

∂ log τi
od

= −θM(1− πroad
od ).

Combining with

∂ log τi
od

∂ log ιk′ l′
= πk′ l′

od

we have

∂ log(πroad
od )

∂ log ιk′ l′
= −θM(1− πroad

od )πk′ l′
od . (B.5)

Next start with

log πkl
od = log bok + log akl + log bld − log bod

we get

∂ log πkl
od

∂ log ιk′ l′
= −θ(πk′ l′

ok + πk′ l′
ld − πk′ l′

od + 1(kl = k′l′)), (B.6)

which applies Lemma B.1 to each of the terms. Combining (B.5) and (B.6) we arrive at

∂(πroad
od πkl

od)

∂ log ιk′ l′
= πroad

od πkl
od[−θM(1− πRoad

od )πk′ l′
od − θ(πk′ l′

ok + πk′ l′
ld − πk′ l′

od + 1(kl = k′l′))].

8



This proves Equation (19). To see that the expression is symmetric in kl and k′l′, consider

πkl
odπk′ l′

ok =
bokaklbld

bod

bok′ak′ l′bl′k

bok

=
bok′ak′ l′bl′kaklbld

bod

=
bok′ak′ l′bl′d

bod

bl′kaklbld

bl′d

= πk′ l′
od πkl

l′d

Similarly, πkl
odπk′ l′

ld = πk′ l′
od πkl

ok′ . Therefore,

−θπkl
od(π

k′ l′
ok + πk′ l′

ld − πk′ l′
od + 1(kl = k′l′)) = −θπk′ l′

od (πkl
ok′ + πkl

l′d − πkl
od + 1(kl = k′l′)).

And we have

∂(πroad
od πkl

od)

∂ log ιk′ l′
= πroad

od [−θM(1− πRoad
od )πk′ l′

od πkl
od − θπkl

od(π
k′ l′
ok + πk′ l′

ld − πk′ l′
od + 1(kl = k′l′))]

= πroad
od [−θM(1− πRoad

od )πkl
odπk′ l′

od − θπk′ l′
od (πkl

ok′ + πkl
l′d − πkl

od + 1(kl = k′l′))]

=
∂(πroad

od πk′ l′
od )

∂ log ιkl
.

Proof of Proposition 2. We now establish the First Welfare Theorem with the appropriate choice of
Pareto weights for the social planner’s problem. The Pareto weights, which are equal to the regional
value added in the corresponding competitive equilibrium, are used to evaluate the aggregate welfare
and to calculate the change of welfare between equilibria. The proof can be viewed as an application of
the standard equivalence result in an Arrow-Debreu equilibrium with production, viewing trade just as
another form of production technology—to convert from origin goods to destination goods—with the
efficiency determined by the inverse of the trade cost.

Lemma B.2. The allocations in the competitive equilibrium can be replicated by the solution to the following social
planner’s problem

W = max
li
d,Ci

d,mij
d ,qi

d,Qi
d,q̃i

od

∑
d

ωd log
( S

∏
i=1

[Cj
d]

αi
d

)
(B.7)
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subject to

qi
d = Ti

d[l
i
d]

βi
d

S

∏
j=1

[mij
d ]

γ
ij
d (Production of intermediate goods)

Qi
d =

(
∑

o
[q̃i

od]
σ−1

σ

) σ
σ−1

(Production of final goods)

∑
i

li
d = Ld (Resource constraints for labor markets)

∑
d

τ̃i
odq̃i

od = qi
o (Resource constraints for intermediates goods)

∑
i

mij
d + Cj

d = Qj
d (Resource constraints for final goods),

where the Pareto weights are given by ωd = wd Ld
Y , with wd being the equilibrium nominal wage of location d and

Y = ∑d wdLd being the aggregate nominal GDP under the competitive equilibrium.

Proof. The Lagrangian (with multipliers λ
j
d, µi

o, vi
d, nd)for the planner’s problem is4

L = ∑
d

ωd log
( S

∏
i=1

[Ci
d]

αi
d

)
+ ∑

d,j
λ

j
d

(
Qj

d − Cj
d −∑

i
mij

d

)
+ ∑

o,i
µi

o

(
Ti

o[l
i
o]

βi
o

S

∏
j=1

[mij
o ]

γ
ij
o −∑

d
τ̃i

odq̃i
od

)
+ ∑

d,i
vi

d

(
(∑

o
[q̃i

od]
σ−1

σ )
σ

σ−1 −Qi
d

)
+ ∑

d
nd

(
Ld −∑

i
li
d

)
(B.8)

The first order conditions (FOCs) for the planner’s problem thus reads

{Ci
d} :

ωdαi
d

Ci
d

= λi
d (B.9)

{mij
o } : −λ

j
o + µi

oTi
oγ

ij
o [m

ij
o ]
−1[li

o]
βi

o ∏
j
[mij

o ]
γ

ij
o = 0 (B.10)

{Qi
d} : λi

d − vi
d = 0 (B.11)

{q̃i
od} : vi

d{[q̃i
od]

σ−1
σ −1(∑̃

o
[q̃i

õd]
σ−1

σ )
σ

σ−1−1} − µi
oτ̃i

od = 0 (B.12)

{li
o} : −no + µi

oTi
oβi

o[l
i
o]
−1[li

o]
βi

o ∏
j
[mij

o ]
γ

ij
o = 0. (B.13)

The resource constraints and technology constraints in the competitive equilibrium and the social
planner’s problem agree. We now construct the Lagrangian multipliers from the prices and allocations
in the competitive equilibrium as below

λi
d =

Pi
d

Y
, µi

o =
ĉi

o
Ti

o

1
Y

, vi
d =

Pi
d

Y
, no =

wo

Y
. (B.14)

4We have combined the “production of intermediate goods” and “resource constraints for intermediates goods” to

∑
d

τi
od q̃i

od = Ti
o[l

i
o]

βi
o

S

∏
j=1

[mij
o ]

γ
ij
o .
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We now verity that the FOCs of the planner’s problem hold under these multipliers and the Pareto
weights

ωd =
wdLd

Y
.

Plug ωd and λi
d into (B.9) we arrive at (B.9)⇔(B.1). Plug λi

d and µi
o into (B.10) we arrive at (B.10)⇔(B.2).

(B.11) is implied by the definitions of λi
d and vi

d. Plug µi
o and vi

d into (B.12) we have

(B.12)⇔
Pi

d
Y
(∑̃

o
[q̃i

õd]
σ−1

σ )
σ

σ−1
[q̃i

od]
σ−1

σ

∑õ[q̃i
õd]

σ−1
σ

=
ĉi

o
Ti

o

1
Y

τ̃i
odq̃i

od

⇔
[q̃i

od]
σ−1

σ

∑õ[q̃i
õd]

σ−1
σ

=
pi

odq̃i
od

Pi
dQi

d

⇔
[q̃i

od]
σ−1

σ

∑õ[q̃i
õd]

σ−1
σ

=
pi

odq̃i
od

∑õ pi
õdq̃i

õd
⇔ (B.4).

Finally, plug no and µi
o into (B.13) we arrive at (B.13)⇔(B.3). We have thus verified that the competitive

equilibrium can be replicated by the solution to the social planner’s problem with the choice of Pareto
weights ωd.

Based on Lemma B.2 we prove a version of the Hulten’s theorem (Hulten, 1978) to associate the
marginal gains in welfare after a reduction in trade cost to the observed trade flows under the corre-
sponding competitive equilibrium.

Lemma B.3. With the social planner’s welfare function defined in (B.7), we have

dW
d log τ̃i

od
= −

Xi
od

Y
,

where Y = ∑d wdLd is the total income and Xi
od is the value of trade flows from o to d in sector i under the

corresponding competitive equilibrium.

Proof. The envelope theorem implies that at the solution to the social planner’s problem

dW
dτ̃i

od
=

∂L
∂τ̃i

od
,

where L is the Lagrangian defined in (B.8). Therefore, we have

dW
dτ̃i

od
= −µi

oqi
od,

where µi
o is the Lagrangian multiplier and is associated with equilibrium objects through (B.14), restated

here

µi
o =

ĉi
o

Ti
o

1
Y

=
pi

odτ̃i
od

Y
.
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Therefore

dW
dτ̃i

od
= −

pi
odqi

odτ̃i
od

Y

⇒ dW
d log τ̃i

od
= −

Xi
od

Y
.

Proof of Proposition 2.

Proof. Combining Lemma B.2, Lemma B.3, and Proposition 1, we have proved Proposition 2.

C Quantification

C.1 Numerical Implementation

Solve the competitive equilibria. We describe the design of the algorithm that makes it possible to load
the most intensive part of the computation to GPUs. This enables us to solve equilibria robustly and
efficiently, despite the size of the problem (our benchmark model has 323 regions and 25 sectors).5 The
large size of the problem also renders a well-known approach to solve/calibrate this type of model—
Mathematical Programming with Equilibrium Constraint (Su and Judd, 2012)—less effective as the Jaco-
bian matrix is a dense matrix with (323× 25)2 entries. Our algorithm falls back to a fixed point algorithm
described below.

With Ei
d being the total expenditure on intermediate goods in sector i of region d, the minimal system

of equations that can be used to solve the equilibrium is6

Ej
o = αjwoLo + ∑

i
γ

ij
o ∑

d
πi

odEi
d

woLo = ∑
i

βi
o[∑

d
πi

odEi
d]

Pi
d =

(
∑

o
[pi

od]
1−σ

) 1
1−σ

, (C.1)

for unknowns (Ei
d, wo, Pi

d), where pi
od and πi

od can be viewed as intermediate variables and can be evalu-
ated according to

pi
od = [κi

dwβi
d

d

S

∏
j=1

[Pj
d]

γ
ij
d τ̃i

od]/Ti
o

πi
od =

[pi
od]

1−σ

[Pi
d]

1−σ
. (C.2)

5For example, to estimate the model with indirect inference, we need to solve the equilibria numerous times. And because of
the sequential nature of many global optimization routines, paralleling this step is not straightforward, so speed is important.

6We describe the algorithm setting the exogenous deficits to zero. The model with exogenous deficits can be solved similarly.
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We design a nested fixed point algorithm according to the strength of the hardware. A key observa-
tion is that given πi

od, the first two equations of (C.1) give a (dense) system of linear equations for Ei
d and

wdLd, for which GPUs are designed to solve efficiently. Based on this observation we design the nested
fixed-point algorithm below:

Algorithm 1 Nested fixed-point algorithm for solving the competitive equilibrium using GPUs

1 Guess (wd,Old, Pi
d,Old)

2 Set flag_converged to false
while flag_converged is false do

3 Construct πi
od according to (C.2) based on (wd,Old, Pi

d,Old)

4 Solve the system of linear equations for Ei
d and wdLd (with GPUs)

5 Construct pi
od, Pi

d according to (C.2) and (C.1)
6 Set flag_converged to true if distance between (wd, Pi

d) and (wd,Old, Pi
d,Old) is small enough

7 Update (wd,Old, Pi
d,Old) according to (wd, Pi

d)
end while

The step of solving the system of linear equations (line 4 in the algorithm) takes more than 90%
of the computation time in our benchmark model. Starting from an initial guess with uniform entries
in (wd, Pi

d), the benchmark equilibrium can be solved (under the convergence criterion of 1e− 6 in log
difference) within a minute with a GTX1080Ti video card, compared to around 10 minutes with 2*Intel
Xeon CPU E5-2650 v4.

Calibrate city-sector productivities Ti
d. The indirect inference estimation proceeds in a nested man-

ner. In the inner loop, given other model parameters, we calibrate Ti
d for tradable sectors i such that

the sectoral sales ratios between each city and the RoW in the model agree with those in the data. To
do this, we treat sales ratios as observables, and solve Ti

d to generate the observable sales ratios while
respecting the equilibrium conditions. Specifically, the minimal system of equations for calibrating Ti

d to
match sales ratios Mi

d
7 while respecting the equilibrium conditions are

Mj
o = ∑

d

[ĉj
o/T j

o · τ̃
j
od]

1−σ

∑õ[ĉ
j
õ/T j

õ · τ̃
j
õd]

1−σ

(
α

j
d Id + ∑

i
γ

ij
d Mi

d

)
for j a tradable sector

wdLd = ∑
i

βi
d Mi

d

Pi
d =

(
∑

o
[pi

od]
1−σ

) 1
1−σ

, (C.3)

for unknowns
(
(Ti

d)i tradable, Pi
d, wd

)
8, where Id, ĉi

d, pi
od are intermediate variables and evaluated accord-

7 Mi
d in the model is the total sales of intermediate goods from sector i of region d and is linked to Ei

d defined before through
Mi

o = ∑d Ei
dπi

od.
8Notice the system of Equation (C.3) is homogeneous of degree one in Ti

d for any given i. That is, fixing i, scaling up Ti
d

by the same factor scales nominal price and wage proportionally but does not affect real allocations. Therefore we normalize
Ti

d = 1 for a chosen region d for all i.
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ing to

Id = ∑
i

βi
dwdLd + Dd

ĉi
d = κi

dwβi
d

d

S

∏
j=1

[Pj
d]

γ
ij
d

pi
od = [ĉi

oτ̃i
od]/Ti

o,

with Dd being the exogenous trade deficits which are necessary to match the aggregate import and export
shares. We use a similar iterative nested fixed point algorithm to Algorithm 1 to implement this.

Calibrate remaining model parameters. With the inner loop inverting Ti
d to match Mi

d exactly, in the
outer loop we search over other parameters to target the rest of the moments. These parameters include
the sectoral international export and import cost τi

RoW and τi′
RoW , routing elasticity θ, trade cost level h0,

alternative mode cost κ̄, and the cost- weight-to-value elasticity µ. Since the number of parameters is
equal to the number of moments, calibrating these parameters is to solve the system of equations such
that the model moments are equal to their data counterparts listed in Table 6. We solve the system of
equations using an iterative procedure based on a line search method. The equations are solved such
that the maximum distance between the data moments and the model moments is less than 1%, and the
maximum difference in the inner loop is smaller than 1e− 5.

C.2 Sensitivity Analyses

Table C.1: Sensitivity Analyses

(1) (2) (3) (4)
High Heterogeneity High Substitution External Economy Expressway Expansion

Change in in Sectoral Trans. Cost across Trans. Modes of Scale with Free Migration

Aggregate welfare 0.068 0.054 0.054 0.081
Log(Domestic trade / GDP) 0.085 0.099 0.165 0.278
Log(Exports / GDP) 0.165 0.164 0.208 0.277
Std Log(real wage) across regions -0.027 -0.026 -0.022 -

Note: The counterfactual experiments are calculated by changing the expressway network from 1999 to 2010, alternative mod-
els in (1)-(3) are recalibrated to match the same targets as in Table 6.

We conduct a number of exercises to assess the sensitivity of the baseline results to alternative as-
sumptions. We focus on four scenarios. The first is on the sector heterogeneity of transport costs. Instead
of 0.3 in the baseline calibration, we now set µ to 1, which corresponds to a linear relationship of iceberg
cost on weight-to-value ratio. Our second robustness allows for industry-level agglomeration. Specif-
ically, we set Ti

d = Ti
d[li

d]
χ, with χ = 0.13, around the median estimate of Bartelme et al. (2018). This

assumption implies an external increasing return to scale to specialization. The third robustness check
increases the elasticity of substitution between road transportation and the outside mode, θM, from the
benchmark value 2.5 to 14.2, an estimate by Allen and Arkolakis (2014). Finally, given the recent push
for an overhaul of the Hukou system in China, we assume there is a reform that makes labor perfectly
mobile. We then evaluate the gains from the expressway projects after the reform.

The first column of Table C.1 shows that as expected, when sector heterogeneity in transport costs is

14



more important, the inferred welfare gains are larger. When the elasticity of substitution between trans-
port modes increases, the inferred welfare gains are slightly smaller. This is because after expressways
are removed, traders can switch to the alternative mode more easily and incur less losses. Adding exter-
nal economies of scale at the industry level has very impacts on the aggregate welfare gains but affects
domestic and international trade significantly. Finally, the welfare gains increases significantly with free
labor mobility.
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