
Online Privacy and Information Disclosure by

Consumers

Shota Ichihashi∗

March 13, 2019

Abstract

I study the welfare and price implications of consumer privacy. A consumer discloses in-

formation to a multi-product seller, which learns about his preferences, sets prices, and makes

product recommendations. While the consumer benefits from accurate product recommenda-

tions, the seller may use the information to price discriminate. I show that the seller prefers to

commit to not use information for pricing to encourage information disclosure. However, this

commitment hurts the consumer, who could be better off by precommitting to withhold some

information. In contrast to single-product models, total surplus may be lower if the seller can

base prices on information.

1 Introduction

I study the welfare and price implications of consumers’ privacy in online marketplaces. Online

sellers can observe detailed information about consumers, such as their browsing histories, pur-
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chases, and characteristics; however, consumers can often affect whether and to what extent this

information is revealed. For instance, they can disable cookies to hide their web-browsing activ-

ities, or they can use their social networking accounts to log in to online shopping websites. For

policymakers, information revelation by consumers is an important consideration in formulating

policies concerning online privacy.

The paper considers the following economic trade-off: The benefit for consumers of disclosing

information is that sellers can recommend or advertise products that are directly relevant. The

cost is that sellers may use this information to price discriminate. For instance, Amazon, Netflix,

Spotify, and other e-commerce sellers use consumers’ personal data to offer product recommenda-

tions, which help consumers discover items that they might not have found otherwise. However,

these sellers could also use such information to obtain estimates of consumers’ willingness to pay

and, in turn, set prices on this basis.

I study a simple model capturing this trade-off. The model consists of a monopolistic seller of

K products and a consumer with unit demand. The consumer is initially uninformed of his value

of each product. At the beginning of the game, the consumer chooses a disclosure rule, which

determines what the seller learns about the consumer’s value for each product. After learning

about the values, the seller recommends one of K products. Finally, the consumer observes the

value and the price of the recommended product and decides whether to buy it.

In the model, the consumer discloses information without observing his values, which is in

line with Bayesian persuasion (Kamenica and Gentzkow, 2011). In online marketplaces, it is often

difficult for consumers to determine which item in the set of available products is most appropriate

for them; however, sellers can often do this using personal data. For example, sellers might analyze

browsing histories by using their knowledge of the products’ characteristics, the prior experiences

of other consumers, and their computing power. Sellers can then map a given consumer’s data into

estimates of his values for products. Then, even though the consumer himself cannot evaluate all

products, his privacy choices affect what sellers can learn about the values.

A novel aspect of the paper is that I consider two settings that differ in the timing at which

the seller sets prices. Under the discriminatory pricing regime, the seller sets prices after learning

about the consumer’s values; under the nondiscriminatory pricing regime, the seller sets prices

upfront without observing the information. A comparison of the two pricing regimes enables us to
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study the value of the seller’s commitment to not use the consumer’s information for pricing.

In the classical theory of (third degree) price discrimination, it is profitable for a seller to set

prices on the basis of information about consumers’ willingness to pay. Also, whereas the impact

of price discrimination on consumers is generally ambiguous, consumers are worse off if the seller

can tailor prices on fine-grained information about consumers’ values.

My model generates starkly different predictions. The first main finding is that the seller is bet-

ter off by committing to not use the consumer’s information for pricing. The key is the consumer’s

endogenous disclosure: By making such a commitment, the seller can induce the consumer to dis-

close more information, which enables the seller to make more accurate recommendations. This

shifts up the consumer’s demand for recommended products and increases revenue. Such a com-

mitment has an obvious downside that the seller cannot tailor prices on information. I provide

conditions on the set of available disclosure rules under which the seller’s benefit from accurate

recommendation dominates the potential loss. For example, the result holds if the consumer can

disclose any information about his value of each product. The result gives a potential explanation

of an observed puzzle: “The mystery about online price discrimination is why so little of it seems

to be happening” (Narayanan, 2013). Namely, price discrimination by online sellers seems to be

uncommon despite their potential ability to use consumers’ personal data to tailor prices.1

The second main finding is that the consumer is worse off if the seller commits to not use

information for pricing. A key observation is that, if the seller does not make such a commitment,

then the consumer can induce the seller to set lower prices by withholding information about

which product is most valuable to the consumer. Although this leads to less accurate product

recommendation, the consumer’s gain from low prices can exceed the loss from potential product

mismatch. In contrast, if the seller commits to prices in advance, then the consumer misses the

opportunity to influence prices by strategically conceal information. This makes the consumer

worse off compared to without the seller’s commitment.

Finally, I show that equilibrium is inefficient under a mild distributional assumption, regard-

less of whether the seller makes the aforementioned commitment. The result contrasts with the

single-product case of Bergemann et al. (2015), in which equilibrium is fully efficient whenever

1There have been several attempts by researchers to detect price discrimination by e-commerce websites. For
instance, Iordanou et al. (2017) examine around two thousand e-commerce websites and they “conclude that the
specific e-retailers do not perform PDI-PD (personal-data-induced price discrimination).”
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the seller can base prices on information. In my model, the seller’s ability to tailor prices on in-

formation discourages the consumer’s disclosure, and this leads to inefficiency due to inaccurate

recommendation. The proof is based on a “constrained” Bayesian persuasion problem, in which

the consumer chooses a disclosure rule subject to the constraint that the outcome is efficient. This

proof strategy could be useful for analyzing complex information design problems where it is

difficult to characterize optimal information structures.

The main insights are also applicable to various offline transactions. For example, consider a

consumer looking for a car. The consumer may talk to a salesperson and reveals some information—

such as lifestyle, favorite color, and preferences for fuel efficiency versus horsepower—which is

indicative of his tastes; even his clothes and smartphone may reveal his preferences. Based on this

information and her knowledge about available cars, the salesperson gives recommendations. On

the one hand, the consumer benefits from the recommendations because he can avoid extra search

and test-driving. On the other hand, disclosing too much information may put him in a disadvanta-

geous position in price negotiation, because knowing that he loves a particular car, the salesperson

would be unwilling to compromise on prices. My result points out that eliminating this trade-off is

precisely what car dealers should do: By committing to prices upfront, car dealers can encourage

consumers to disclose information; at the same time, dealers can set a relatively high price for

each product to extract surplus created by accurate recommendations. Thus, the result clarifies one

benefit of “no-haggle” policies adopted by firms such as Fiat, Tesla, and Toyota (Zeng et al., 2013,

2016).

The remainder of the paper is organized as follows. In Section 2, after discussing related work,

I present the baseline model. In Section 3, I restrict the consumer to choosing from a simple

class of disclosure rules and show that the seller is better off and the consumer is worse off under

nondiscriminatory pricing. Section 4 allows the consumer to choose any disclosure rule. I show

that equilibrium is typically inefficient and use the inefficiency results to establish the main result.

This section also shows that price discrimination can hurt efficiency. In Section 5, I discuss several

extensions including markets for personal data. Section 6 concludes.
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1.1 Related Work

This paper relates to three strands of literature: The literature on monopoly price discrimination,

the economics of privacy, and information design. In terms of modeling, one related work is

Bergemann et al. (2015), who consider a single-product monopoly pricing in which a seller has

additional information about a consumer’s value. I consider a multi-product seller with product

recommendations, which renders information useful not only for pricing but also for improving

product match quality. These components lead to different welfare consequences of information

disclosure and price discrimination. In contrast to Bergemann et al. (2015), who characterize the

entire set of attainable surplus, I focus on the case where the consumer discloses information to

maximize his own payoff.

Within the literature of monopoly pricing, this paper relates to works on third degree price

discrimination. Starting with the work of Pigou (1920), the literature examines what happens to

consumer surplus, producer surplus, and total surplus as a market is segmented.2 Relative to this

literature, my model differs in two ways. First, market segmentation is endogenous. This is espe-

cially relevant when a seller uses consumer information to segment a market but consumers can

influence how much information is available to the seller. Second, the seller can use consumer

information to recommend products. In this case, finer segmentation enables the seller to recom-

mend a more relevant product to consumers in each segment, and this can shift up demands of all

consumers. These two points are crucial to why the seller can be better off if she cannot tailor

prices to segments.

The economic forces of this paper are reminiscent of those in the durable goods monopoly

problem, such as Stokey (1979, 1981). In that setting, a seller prefers to commit to not price

discriminate based on the timing of purchase. This is because if the seller engages in such discrim-

ination, consumers would delay the timing of their purchase so as to lower profit overall. In my

model, the seller prefers to commit to not lower prices even if the consumer discloses information

that makes it (ex post) optimal for the seller to do so. That way, the consumer will disclose as much

information as possible about which product is most valuable. Despite this high level connection, I

argue that this paper provides novel insights. First, the effect of sellers’ commitment power in how

consumers reveal information is fundamental and economically important. This economic force
2For more recent papers, see, for example, Aguirre et al. (2010), Chen and Schwartz (2015), and Cowan (2016).
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relates not only to the recent discussion on consumer privacy but also to broader settings such as

markets for cars and houses as well as bargaining between workers and employers.3 Second, the

result that the seller’s commitment may increase total welfare is unique to the present model: In

the durable goods monopoly problem, the seller’s inability to commit to prices leads to efficient

outcomes if the length of the time period is short.

The paper also relates to the economics of privacy literature. As a growing number of transac-

tions are based on data about consumers’ behavior and characteristics, recent papers have devoted

considerable attention to the relationship between personal data and intertemporal price discrimi-

nation (Acquisti and Varian, 2005; Conitzer et al., 2012; Fudenberg and Tirole, 2000; Fudenberg

and Villas-Boas, 2006; Taylor, 2004; Villas-Boas, 1999, 2004). In these models, sellers learn about

a consumer’s preferences from his purchase record, which arises endogenously as a history of a

game. A consumer’s attempt to hide information is often formulated as delaying purchase or eras-

ing purchase history. In my model, the consumer is endowed with his personal data at the outset.

Hidir and Vellodi (2018) consider a model in which a buyer communicates his preferences with

the seller, who uses the information to tailor product offerings and prices. Their focus and formu-

lation differ from mine in at least two ways. First, their main focus is to understand the consumer’s

trade-off between better product match and lower prices in the face of price discrimination. In

contrast, on top of this trade-off, I ask what could lead sellers to commit to not use consumer data

for price discrimination. Thus, Hidir and Vellodi (2018) primarily focus on discriminatory pricing

whereas I compare two pricing regimes. Second, the intended applications are different. The main

application of Hidir and Vellodi (2018) is a situation where a consumer looks for a product know-

ing which product he wants to buy. This is suitable, for example, when a consumer performs a

search query on an e-commerce website. In contrast, I consider a situation where consumers make

privacy choices without knowing exactly which product he wants and how his data will be used by

sellers. For example, when a consumer decides whether or not to reveal his browsing activities (by

accepting cookies), he may not have a particular product in mind; however, the consumer expects

that by sharing more data, he will likely see more relevant products as product recommendations or

targeted ads. Consqeuntely, these papers formulate information disclosure differently: Hidir and

Vellodi (2018) adopt a cheap talk setting, whereas I employ a formulation à la Bayesian persuasion,

3See the discussion in Section 2.
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where a consumer decides what information to disclose without knowing values.4

Several papers, such as Conitzer et al. (2012) and Montes et al. (2017), examine consumers’

endogenous privacy choices. Braghieri (2017) studies a consumer search model in which a con-

sumer can choose to be “targeted” by revealing his taste to sellers. Targeting helps consumers find

appropriate products at low cost, but it can hurt them because of price discrimination. A similar

trade-off arises in De Corniere and De Nijs (2016), who study a platform’s choice of disclosing

consumers’ preferences to advertisers. In contrast to these papers, I consider the seller’s com-

mitment of not using information for pricing. Also, these papers assume that a consumer reveals

either full or no information, but I consider a consumer who can choose a general experiment of

his values. This enables me to study what kind of information is revealed in equilibrium.

Beyond the context of online disclosure, this paper relates to voluntary information disclosure

in bilateral transactions (Glode et al., 2016). Also, as information disclosure with commitment

can be interpreted as a combination of information gathering and truthful disclosure, my work

also relates to information gathering by buyers before trade (Roesler, 2015; Roesler and Szentes,

2017). Finally, several papers, such as Calzolari and Pavan (2006a,b), and Dworczak (2017), study

the privacy of agents in mechanism design problems. In their models, a principal can commit to a

mechanism and a disclosure rule. A mechanism elicits an agent’s private type and a disclosure rule

reveals information about an outcome of the mechanism to other players. Relative to these works,

the consumer in my model has more commitment power regarding what information to provide,

and the seller has less commitment power in determining allocation and pricing.

2 Baseline Model

There is a monopolistic seller of K ∈ N products with the set of products denoted by K =

{1, . . . , K}. There is a single consumer with unit demand, in that he eventually consumes one of

K products or nothing. The consumer’s value for product k, denoted by uk, is drawn independently

and identically across k ∈ K according to some non-degenerate probability distribution supported

on a compact set V ⊂ R+.5 Let u := (u1, . . . , uK) denote the vector of values.

4Because of their cheap talk setting, Hidir and Vellodi (2018) offer a careful analysis of the multiplicity of equi-
libria, which is not a focus of this paper.

5See Remark 2 for how the results extend to correlated values.
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The consumer’s preferences are quasi-linear: If he buys product k at price p, his ex post payoff

is uk − p. Otherwise, the payoff is zero. The seller’s payoff is her revenue. The consumer and the

seller are risk-neutral.

At the beginning of the game, before observing u, the consumer chooses a disclosure rule

(M,φ) from an exogenously given set D.6 Each element of D is a pair of a message space M

and a function φ : V K → ∆(M), where ∆(M) is the set of all probability distributions over

M . After the consumer chooses a disclosure rule, Nature draws u ∈ V K and a message m ∈ M

according to φ(·|u) ∈ ∆(M). In the application of online disclosure, D corresponds to the set

of consumers’ privacy choices, such as whether or not to share one’s browsing history. As in

Section 4, if D consists of all disclosure rules, information disclosure takes the form of Bayesian

persuasion (Kamenica and Gentzkow, 2011).

Next, I describe the seller’s pricing. I consider two games that differ in the timing at which the

seller sets prices. Under the discriminatory pricing regime, the seller sets the price of each product

after observing a disclosure rule (M,φ) and a realized message m. Under the nondiscriminatory

pricing regime, the seller sets the price of each product simultaneously with the consumer’s choice

of a disclosure rule.7 Note that in this case, the seller not only does not base prices on a realized

message m but also does not base prices on a disclosure rule φ.8 As in the introduction, nondis-

criminatory pricing captures the seller’s commitment of not using information to set prices. (The

next subsection discusses why I focus on these particular regimes.)

Under both pricing regimes, after observing a disclosure rule (M,φ) and a realized message

m, the seller recommends one of K products. The consumer observes the value and price of the

recommended product and decides whether to buy it.

The timing of the game under each pricing regime, summarized in Figure 1, is as follows. First,

the consumer chooses a disclosure rule (M,φ) ∈ D. Under the nondiscriminatory pricing regime,

6I will impose more structure on D in Sections 3 and 4.
7Alternatively, I can assume that under nondiscriminatory pricing, the seller sets prices first, and after observing

them, the consumer chooses a disclosure rule. This assumption does not change the equilibrium if the consumer can
only reveal information about which product has the highest value as in Section 3. In contrast, it could change the
equilibrium if the consumer can disclose information in an arbitrary way as in Section 4. However, the main result
continues to hold: The seller is better off and the consumer is worse off under nondiscriminatory pricing. This is be-
cause the seller setting prices strictly before the consumer only increases the seller’s revenue under nondiscriminatory
pricing.

8For example, an e-commerce firm that adopts this regime sets prices based on neither browsing histories nor
whether consumers share their browsing histories.
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Figure 1: Timing of moves under each pricing regime

the seller simultaneously sets the price of each product. Then Nature draws the consumer’s values

u and a message m ∼ φ(·|u). After observing (M,φ) and m, the seller recommends a product.

Under the discriminatory pricing regime, the seller sets the price of the recommended product at

this point. Finally, the consumer decides whether to buy the recommended product.

My solution concept is pure-strategy perfect Bayesian equilibrium (PBE) with four restrictions.

First, at each information set where the seller recommends a product (and sets a price under dis-

criminatory pricing), the seller forms her belief about values u according to the prior distribution,

disclosure rule (M,φ), realized message m, and Bayes’ rule.9 Second, the seller breaks a tie in

favor of the consumer whenever she is indifferent among multiple prices or recommendations.

Third, under nondiscriminatory pricing, I focus on equilibrium in which each product has the same

price. Fourth, if there are still multiple equilibria that give the consumer identical expected pay-

offs (after applying previous restrictions), I focus on equilibria that maximize the seller’s payoff.

This condition eliminates the multiplicity of equilibria due to the consumer’s indifference among

disclosure rules, which is not the main focus of the paper. Hereafter, “equilibrium” refers to PBE

that satisfies these restrictions.

As in the introduction, there are many applications beyond online privacy choices. Consider

markets for cars, houses, and financial products, in which the variety of available products is huge.

In these markets, consumers often reveal information to sellers and obtain product recommenda-

tions, which enable consumers to focus on a small subset of products; however, sellers may also

base prices on the information. The model captures the interaction between consumers’ incentives

9In particular, this uniquely pins down the seller’s beliefs after the consumer deviates from the equilibrium disclo-
sure rule.
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to reveal information and sellers’ pricing strategies in those markets.

Indeed, the application is not even restricted to buyer-seller interactions. Consider the following

situation: An employer assigns her worker one of K tasks, the completion of which delivers a

fixed value to the employer. The worker can disclose information about cost ck that he incurs

to complete each task k. For instance, he might communicate what kind of tasks he is good at.

The employer wants to maximize the value from a task minus wage payment, whereas the worker

wants to maximize wage minus costs of completing a task. It is easy to show that this model is

mathematically equivalent to the baseline model. In this case, two pricing regimes correspond to

whether the wage is set contingent on the revealed information.

2.1 Discussion of Modeling Assumptions

Before proceeding to the analysis, I provide a detailed discussion of modeling assumptions.

Pricing Regimes

It would be illustrative to interpret the two pricing regimes in terms of the seller’s commitment

power. First, discriminatory pricing corresponds to the case where the seller has no commitment

power. This is a tractable benchmark in which the consumer faces the trade-off between accurate

recommendations and low prices. Second, nondiscriminatory pricing captures the situation where

the seller commits to not use the consumer’s information to set prices. Note that this is not the only

form of commitment that yields a greater revenue than discriminatory pricing. For example, the

seller could do even better if she could commit to any contingent schedule of prices as a function

of disclosure rules and realized messages.10 I exclude this kind of commitment power and focus

on the commitment of not using information for pricing. This is because the latter seems more

practical and relevant to policymakers or firms that consider whether to regulate or engage in

personalized pricing.

Information Disclosure

The model is agnostic about what personal data and privacy choices the cosnumer has. Instead,

I formulate the consumer’s choice set as a set of Blackwell experiments about his values. This

10If the seller could commit to a mechanism that maps a disclosure rule and a realized message into prices, then
the seller would extract full surplus with a mechanism that sets price +∞ for all products if and only if the consumer
does not disclose full information.
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formulation calls for several implicit assumptions; for example, the consumer understands how his

privacy choice affects the seller’s posterior belief. While such an assumption might be restrictive,

it enables us to draw general insights on consumers’ informational incentives in online and offline

transactions without referring to specific disclosure technologies.

Relatedly, it is crucial to my results that the consumer chooses a disclosure rule before ob-

serving his values. This would be suitable, for instance, if the consumer is not informed of the

existence or characteristics of products, but understands that his personal data enable the seller to

learn about his value of each product. In Section 5, I provide a microfoundation for this idea in

a model of two-sided private information, where the consumer is informed of his subjective taste

and the seller is informed of the products’ characteristics. It would also be natural to assume that

the consumer cannot manipulate message realizations ex post, as consumers or regulators typi-

cally set disclosure rules upfront and incentives to distort or misrepresent one’s browsing history

or characteristics seem to be less relevant.

Product Recommendation and Purchase Decision

There are also two substantial assumptions on product recommendation and purchasing deci-

sion. First, the seller recommends a single product and the consumer decides whether to buy it. In

other words, the consumer cannot purchase products not recommended by the seller. This formu-

lation captures situations where there are constraints on how many products can be marketed to a

given consumer. Such constraints are natural if the variety of available products is large but the

consumer has a limited ability to assess products because of his time or cognitive constraints.11 It is

important to note that this assumption is not a result of the seller’s revenue-maximization. In other

words, the seller is assumed to recommend a single product (as opposed to recommending multi-

ple products) not because it is optimal for her to do so, but because such an assumption concisely

captures the consumer’s limited attention. Indeed, if the consumer could evaluate all products and

choose which product buy, then the seller would prefer to offer and price all products.12 The model

11Several papers, such as Salant and Rubinstein (2008) and Eliaz and Spiegler (2011), formulate consumers’ limited
attention in a similar way.

12If the consumer can evaluate all products and the seller can offer all products, then we obtain the following
results: Under nondiscriminatory pricing, the consumer always buys the highest value product k∗ ∈ arg maxk uk, and
information disclosure and recommendation play no role. In particular, even if the seller could restrict the number of
products offered to the consumer, she prefers to offer all products to ensure that the consumer can find the highest
value product. Under discriminatory pricing, if the consumer can only disclose information about product rankings as
in Section 3, then the equilibrium coincides with nondiscriminatory pricing. For a general set of disclosure rules D,
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excludes such a mechanism to incorporate the consumer’s limited attention.

Second, the consumer observes the value of the recommended product when he decides whether

to buy it. One way to interpret this assumption is that the consumer does not know what products

exist, and has not thought about how much he would be willing to pay for each possible bundle

of characteristics; however, once he is shown a particular product and sees its characteristics, he is

able to compute a value for it. In practice, the assumption is reasonable if a consumer can learn the

value after the purchase and return it for a refund whenever the price exceeds the value.

Production Costs

Finally, it is not without loss of generality to assume that production costs are equal across

products. (Assuming that they are equal, it is without loss to normalize them to zero.) For example,

if the seller can produce product 1 more cheaply, it has a greater incentive to recommend product

1 even if it is less valuable to the consumer than other products. Correspondingly, heterogeneous

production costs are likely to affect the consumer’s incentive to disclose information.

3 Restricted Information Disclosure

To illustrate the main idea in a simple way, this section imposes the following structure on the base-

line model. First, assume that the seller sells two products (K = 2). Then, identifyD with [1/2, 1].

Each δ ∈ [1/2, 1] is called a disclosure level, which represents the amount13 of information that the

consumer discloses about which product is more valuable. As in Figure 2, each δ corresponds to a

disclosure rule that draws either message 1 or 2: It draws message m ∈ {1, 2} with probability δ

if product m is strictly more valuable than the other product, and it draws messages 1 and 2 with

equal probability if products 1 and 2 have the same value. A greater δ implies that the seller can

learn more accurately about which product has a higher value.

3.1 Equilibrium Analysis

I first clarify the consumer’s economic trade-off between accurate recommendations and lower

prices. Then, I show that the seller prefers to commit to prices upfront and this commitment

the consumer might reveal some information to induce the seller to set lower prices when he has low values.
13Formally, a greater δ is associated with a more Blackwell-informative disclosure rule.
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u1 ≥ u2
δ

u1 ≤ u2
δ

1− δ

message 1

1− δ

message 2

Figure 2: Disclosure rule for δ ∈ [1/2, 1]

lowers the consumer’s welfare.

First, consider the seller’s recommendation strategy. For a given price, the seller prefers to rec-

ommend the product that is more likely to have a higher value, because it maximizes the probability

of purchase. This leads to the following lemma. See Appendix A for the proof.

Lemma 1. Fix a pricing regime and take any equilibrium. If the consumer chooses a disclosure

level δ ∈ (1/2, 1], then after observing message k ∈ {1, 2}, the seller recommends product k.

Lemma 1 implies that, in equilibrium, a disclosure level (δ) is equal to the probability of the

seller’s recommending the most valuable product (see Figure 2). Thus, greater disclosure makes it

more likely that the consumer sees his preferred product.

Next, consider how information disclosure affects prices. From the consumer’s perspective,

disclosure has no impact on prices under nondiscriminatory pricing. Thus, I focus on discrim-

inatory pricing for now. Let FMAX and FMIN denote the cumulative distribution functions of

max(u1, u2) and min(u1, u2), respectively.14 If the consumer chooses a disclosure level δ and

message k ∈ {1, 2} is realized, then the consumer’s value for the recommended product (i.e.,

product k) is drawn from δFMAX + (1− δ)FMIN . Thus, to study how information affects prices,

it is crucial to understand how δFMAX + (1− δ)FMIN depends on δ.

I show that greater disclosure leads to a lower hazard rate of the value distribution of the

recommended product. For the sake of generality, I employ the following definition, which does

not require distributions to have densities.15

14In this paper, I define CDFs as left-continuous functions. For example, FMAX(p) is the probability of
max(u1, u2) being strictly lower than p.

15I employ the hazard rate order to clarify how information disclosure affects prices. First-order stochastic dom-
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Definition 1. LetG0 andG1 be two CDFs. G1 is greater thanG0 in the hazard rate order if 1−G1(z)
1−G0(z)

increases in z ∈ (−∞,max(s1, s0)).16 Here, s0 and s1 are the right endpoints of the supports of

G0 and G1, respectively.17

The next lemma follows from Theorem 1.B.26 of Shaked and Shanthikumar (2007).

Lemma 2. FMAX is greater than FMIN in the hazard rate order.

The intuition is as follows. Suppose that the consumer prefers to buy some product at price

p. Conditional on this event, how likely is the consumer to stop buying the product if the seller

marginally increases the price by ε? If the product is the consumer’s preferred one, whose value is

max(u1, u2), then he stops buying only when both u1 and u2 are below p+ ε; if the product is his

less preferred one so that the value is min(u1, u2), then he stops buying whenever one of u1 and

u2 is below p+ ε. Thus, the consumer is more likely to stop buying the less preferred product than

the more preferred product. This implies that the value distribution FMAX has a lower hazard rate

than FMIN .

As the intuition suggests, the hazard rate order relates to demand elasticity. As in Bulow and

Roberts (1989), the demand curve for a CDF F is given by D(p) = 1−F (p), and thus the demand

elasticity is −d logD(p)
d log p

= f(p)
1−F (p)

p. Then, a CDF F1 is greater than a CDF F0 in the hazard rate

order if and only if the “demand curve” for F1 has a lower price elasticity of demand than F0.

Thus, Lemma 2 states that the consumer’s demand for the more preferred product is less elastic.

Recall that, by Lemma 1, a disclosure level δ is equal to the probability that the seller recom-

mends the consumer’s preferred product. Thus, a greater δ implies that the consumer is more likely

to have less elastic demand for the recommended product. As a result, the seller prefers to set a

higher price for it. The following result formalizes this intuition. Appendix B contains the proof.

inance, which is weaker than the hazard rate order, is not sufficient for this, because it has no implications on the
behavior of the monopoly price. For example, suppose that distribution F0 puts equal probability on values 1 and
3 and that distribution F1 puts equal probability on 2 and 3. Though F1 first-order stochastically dominates F0, the
monopoly price under F0 is 3, while the one under F1 is 2.

16a/0 is taken to be equal to +∞ whenever a > 0.
17Suppose that G0 and G1 have densities g0 and g1. By differentiating log 1−G1(z)

1−G0(z)
in z, we can show that the

above definition is equivalent to

g0(z)

1−G0(z)
≥ g1(z)

1−G1(z)
,∀z ∈ (−∞,max(s1, s0)).
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Lemma 3. Consider discriminatory pricing. Let p(δ) denote the equilibrium price for the recom-

mended product given a disclosure level δ.18 Then, p(δ) is increasing in δ.

It is crucial to note that p(δ) is also the equilibrium price under nondiscriminatory pricing when

the seller anticipates that the consumer chooses δ. The reason is as follows. Under nondiscrimina-

tory pricing, the seller sets a price of (say) product 1 to maximize the expected revenue conditional

on recommending product 1, which is the only event where the price of product 1 affects revenue.

This maximization problem is identical with the seller’s pricing problem when she recommends

product 1 after observing δ under discriminatory pricing, whose solution is p(δ).

This observation and the previous results lead to the main result of this section. Appendix C

contains the proof.

Theorem 1. In any equilibrium,19 the seller obtains a higher payoff and the consumer obtains a

lower payoff under nondiscriminatory pricing than under discriminatory pricing. Under nondis-

criminatory pricing, the consumer chooses the highest disclosure level (δ = 1) and is charged

higher prices.

The intuition is as follows. Under nondiscriminatory pricing, the consumer prefers the highest

disclosure level δ = 1, because more disclosure leads to better recommendations without affecting

prices. Now, the seller anticipates the choice of δ = 1 and resulting accurate recommedendations,

which makes the consumer’s demand less elastic. Then, the seller sets a price of p(1) for each

product upfront. In contrast, under discriminatory pricing, the consumer can influence prices by

strategically concealing information. In particular, he can always choose δ = 1 to induce the

equilibrium outcome of nondiscriminatory pricing, because p(·) describes the optimal price under

both pricing regimes. Thus, the consumer is never worse off under discriminatory pricing.

In contrast, the seller prefers committing to prices upfront. First, the optimal price depends on δ

but not on a realized message. Then, the seller is indifferent between the two pricing regimes if the

consumer chooses the same disclosure level δ. Moreover, the revenue is increasing in δ, because

greater disclosure leads to more accurate recommendations and shifts up the consumer’s demand

18Appendix H proves the existence of the lowest optimal price p(δ).
19The equilibrium payoffs of the consumer and the seller are unique. Indeed, given the equilibrium restriction, the

equilibrium is unique up to which product the seller recommends when the consumer chooses δ = 1/2.
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for recommended products. Thus, the seller prefers nondiscriminatory pricing, which guarantees

that the consumer chooses δ = 1.

It is important to note that the first part of Theorem 1—the seller is better off and the consumer

is worse off under nondiscriminatory pricing—does not use the comparative statics in Lemma 3.

Indeed, the welfare comparison for the seller relies only on that the consumer chooses δ = 1

under nondiscriminatory pricing (by Lemma 1), and the welfare comparison for the consumer

depends on that the consumer under discriminatory pricing can replicate the equilibrium outcome

of nondiscriminatory pricing by choosing δ = 1. Nonetheless, the comparative statics on prices

illuminates the economic force that makes it profitable for the consumer to withhold information

under discriminatory pricing: The consumer can induce the seller to set lower prices by concealing

some information, because a less informed seller, who can only make noisy recommendations,

faces more elastic demand. Thus, withholding information can benefit the consumer through lower

prices at the expense of recommendation accuracy.20

Theorem 1 gives an economic explanation of the observed puzzle: Online sellers seem to not

use individual data to price discriminate,21 and consumers seem to casually share their information

despite the growing concerns for personalized pricing. In light of the theorem, one may view the

puzzle as sellers’ strategic commitment to encourage information disclosure, and consumers’ best

response to such a commitment. The theorem further suggests that such a situation might not be

desirable for consumers, because they could be better off were sellers less informed about their

preferences.

Theorem 1 also has policy implications: Consumers may benefit from regulations that restrict

the amount of information sellers can expect to acquire. To see this, suppose that the seller can

commit to prices, under which the consumer chooses the greatest disclosure level. Relative to this

20Theorem 1 does not tell us when the consumer strictly prefers to withhold information under discriminatory
pricing. Unfortunately, I have not been able to identify a natural condition under which the seller is strictly better off
and the consumer is strictly worse off under nondiscriminatory pricing. Later, I address this issue in two ways: I show
that the strict welfare comparison holds under a mild distributional assumption if (i) the consumer can disclose any
information about the values, or (ii) there are a sufficiently large number of products.

21For empirical studies indicative of this, see the discussion in the introduction. For another instance, in 2000
Amazon CEO Jeff Bezos said, “We never have and we never will test prices based on customer demographics.”
(http://www.e-commercetimes.com/story/4411.html). Of course, there can be other explanations for
sellers not price discriminating. For instance, sellers may think that price discrimination would infuriate consumers
who have fairness concerns. The rational explanation in Theorem 1 suggests that, even if sellers can frame personalized
pricing in a way that consumer backlash is less likely to occur, sellers may still find it profitable to refrain from price
discrimination.
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situation, the consumer is better off if a regulator restricts the setD of available disclosure levels to

[1/2, δ∗], where δ∗ is the equilibrium choice under discriminatory pricing. With this restriction, the

consumer chooses disclosure level δ∗ and obtains a greater payoff than without the regulation.22

One may think that the main result is driven by the particular restriction on what information

the consumer can reveal. This is partly true and actually an important insight: If the consumer’s

endogenous disclosure is crucial for the seller to give accurate recommendations, then the seller

can be better off by committing to not use information for pricing. Focusing on disclosure rules

parametrized by δ is a simple way to capture such a situation. In contrast, if endogenous disclosure

is not important—for example, if the seller knows the consumer’s willingness to pay at the outset—

then the seller may prefer discriminatory pricing, which hurts the consumer.23

Nonetheless, the current restriction on D is one of various conditions under which the welfare

comparisons in Theorem 1 hold. For example, D can be any set of disclosure levels such as

D = {0.5, 0.8}, which consists of, say, enabling cookies (δ = 0.8) and disabling cookies (δ = 0.5).

Subsection 5.1 discusses more general conditions onD under which the welfare comparisons hold.

In the next section, I establish the (strict) welfare comparison result assuming that the consumer

can choose any disclosure rule.

3.2 Theorem 1 as a Tragedy of the Commons

We can interpret the current setting as a model with a continuum of consumers. This interpretation

enables us to see Theorem 1 as a tragedy of the commons due to a negative externality associated

with information sharing.

Formally, suppose that there is a unit mass of consumers, each of whom chooses a disclosure

level. The value of each product is independent across consumers.24 Under nondiscriminatory

pricing, after observing the disclosure level and realized message of each consumer, the seller sets

22the seller is indifferent between two pricing regimes.
23We can capture such a situation by assuming that D consists only of the disclosure rule that reveals the exact

value vector. That is, the consumer does not have a choice of concealing information. The preferences of the seller
and the consumer over pricing regimes could be aligned in other contexts. For instance, if there is a single product and
the value is drawn from U [0, 1], then both the seller and the consumer prefer discriminatory pricing if the consumer
can only disclose whether v ≥ 1/2 or not.

24The independence of value vectors across a continuum of consumers might raise a concern about the existence
of a continuum of independent random variables. Sun (2006) formalizes the notion of a continuum of IID random
variables for which the “law of large numbers” holds, which is all what I need.
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a single price for each product. Under discriminatory pricing, the seller can charge different prices

to different consumers. Under both pricing regimes, the seller can recommend different products

to different consumers.

The equilibrium prediction in Theorem 1 persists: Under nondiscriminatory pricing, each con-

sumer chooses the highest disclosure level and obtains a lower payoff, and the seller sets higher

prices upfront. To see this intuitively, consider an equilibrium under nondiscriminatory pricing.

Each consumer i ∈ [0, 1] chooses a disclosure level δi taking prices as given, because the choice

of a single consumer in a large population has no impact on prices. Thus, it is optimal for every i

to choose δi = 1, following which the seller sets a price of p(1).

According to this interpretation, we can view Theorem 1 as a tragedy of the commons: If some

(positive mass of) consumers disclose more information under nondiscriminatory pricing, then the

seller prefers to increase prices as she can offer accurate recommendations to a greater fraction

of consumers. But then, all consumers face higher prices. That is, greater disclosure by some

consumers lowers the welfare of other consumers through higher prices. As consumers do not

internalize this negative impact, they disclose full information, although they could be better off by

collectively withholding information. This problem does not arise under discriminatory pricing,

because each consumer internalizes the impact of disclosure on prices he has to pay. Appendix D

formalizes this observation.

Remark 1 (Limited Ability to Evaluate Products vs. Ability to Choose Disclosure Rules).

One might wonder how many of consumers, who cannot examine all the available products in the

market, have enough time to figure out optimal disclosure rules. I argue that these two assumptions

do not contradict in many applications.

First, e-commerce firms, such as Amazon and eBay, sell more products than one can exhaus-

tively examine. Then, it has to be an institutional feature of these platforms to display only a small

subset of the whole universe of products. In such cases, we cannot conclude that if consumers

know how to use privacy tools or mask information from sellers, they should also be able to find

relevant products without the help of search engines and recommendations.

Second, in some situations, it is relatively easy to figure out how to withhold information. For

instance, on the Internet, it is increasingly common that pop-up windows ask users whether to

enable cookies, due to recent legislation in the EU. In offline markets, withholding information
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would be even easier—a consumer can disclose less by talking less about his tastes about cars,

houses, and financial products.25 In this case, consumers need not be highly sophisticated to figure

out what “disclosure rules” are available to them.

Remark 2. Theorem 1 is robust to a variety of extensions.

Correlated Values: Even if u1 and u2 are correlated, the welfare comparison in Theorem 1 holds

as long as (u1, u2) is drawn from an exchangeable distribution. The comparative statics on prices

(Lemma 3) holds if this joint distribution has a multivariate hazard rate that satisfies a condition in

Theorem 1.B.29 of Shaked and Shanthikumar (2007). The condition ensures that max(u1, u2) is

greater than min(u1, u2) in the hazard rate order.

Costly disclosure: Consumers may incur some intrinsic privacy costs by disclosing information.

I can incorporate this by assuming that the consumer incurs a cost of c(δ) from a disclosure level

δ.26 This does not change the conclusion that the consumer is worse off under nondiscriminatory

pricing. Characterizing an equilibrium requires a fixed-point argument, because the consumer may

prefer different disclosure levels depending on prices he expects.

Informational Externality: In practice, online sellers may infer the preferences of some consumers

from those of others. To incorporate this “informational externality,” consider the model with a

continuum of consumers, and assume that a “true” disclosure level for consumer i is ∆(δi, δ̄),

which is an increasing function of i’s disclosure level δi and the average disclosure level of the

population δ̄ =
∫
i∈[0,1]

δidi. This captures the idea that the seller can learn about i’s preferences

from information disclosed by others. In this case, Theorem 1 continues to hold.

4 Unrestricted Information Disclosure

This section assumes that the consumer can disclose any information about the value vector u =

(u1, · · · , uK). Formally, suppose that the seller sells K ≥ 2 products, and D consists of all dis-

closure rules with finite message spaces.27 In this “unrestricted” model, the consumer can disclose
25The model of two-sided private information in Section 5 would capture this kind of information disclosure in

offline transactions.
26More precisely, if the consumer chooses disclosure level δ and purchases product k at price p, his payoff is

uk − p− c(δ). If he buys nothing, the payoff is −c(δ).
27Since I will assume that the value distribution has a finite support, this restriction is without loss of generality.

Indeed, the consumer can maximize his payoff as long as he can choose any disclosure rule that has a message space
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not only about which product is most valuable (as in the previous section) but also about the value

of a particular product, such as whether uk exceeds some deterministic threshold.

Two differences between the unrestricted model and the “restricted” model in Section 3 are

worth mentioning. First, compared to the restricted model, the unrestricted model a priori “fa-

vors” discriminatory pricing in terms of revenue. This is because given general disclosure rules,

discriminatory pricing often yields a higher revenue, as opposed to the restricted model where

the two pricing regimes yield equal revenue for any fixed disclosure level δ.28 Second, the unre-

stricted model has a theoretical connection to Bergemann et al. (2015). Their results imply that

a single-product seller is indifferent between the two pricing regimes if information is disclosed

to maximize consumer surplus, and that the equilibrium is efficient under discriminatory pricing.

In contrast, I will show that the equilibrium is typically inefficient and the seller strictly prefers

nondiscriminatory pricing.

I assume that x0, which denotes the prior value distribution of each product, has a finite support

V = {v1, . . . , vN} with 0 < v1 < · · · < vN and N ≥ 2. For any x ∈ ∆(V ), x(v) denotes the

probability that x puts on v ∈ V . Abusing notation slightly, let p(x) denote the lowest optimal

price given x ∈ ∆(V ):

p(x) := min

{
p ∈ R : p

∑
v≥p

x(v) ≥ p′
∑
v≥p′

x(v),∀p′ ∈ R

}
.

Note that p(x) does not depend onK. To focus on the most interesting case, I impose the following

assumption. Loosely speaking, it requires that the prior x0 does not put too much weight on the

lowest value of its support.

Assumption 1. The lowest optimal price at the prior value distribution strictly exceeds the lowest

value of its support: p(x0) > minV .

As the consumer can access a rich set of disclosure rules, the analysis is more involved than

before; however, there turns out to be a clear relationship between pricing regimes and the kinds

of information disclosed by the consumer. The next subsection illustrates this by showing that

M such that |M | ≤ |V | ×K, because the consumer can always “pool” two message realizations that lead to the same
recommended product and the same price.

28For example, if the consumer chooses a disclosure rule that reveals exact value vector u, then the seller can
extract full surplus only under discriminatory pricing.
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different pricing regimes exhibit different kinds of inefficiency in equilibrium. I use these results

to show that, again, the seller is better off and the consumer is worse off under nondiscriminatory

pricing.

4.1 Inefficiency of Equilibrium

In this model, an equilibrium can be inefficient in two ways: One is when the consumer decides

not to buy any products; the other is when the consumer buys some product other than the most

valuable ones. In principle, these kinds of inefficiencies can coexist. However, I show that each

pricing regime is associated with only one type of inefficiency. The following result states that

nondiscriminatory pricing leads to the first type of inefficiency. The proof is in Appendix E.

Proposition 1. Consider nondiscriminatory pricing. In any equilibrium, the seller recommends

the most valuable product with probability 1. However, trade fails to occur with a positive proba-

bility.29

The intuition is as follows. Once the seller commits to prices, information disclosure only

affects product recommendations. Thus, the consumer prefers to fully disclose the highest value

product so that the seller can recommend the best product for sure. Given efficient recommen-

dations, the consumer is less likely to have low values for the recommended product than he is

under the prior value distribution. Anticipating this, the seller prefers to commit to prices strictly

greater than minV , whenever she prefers to do so at the prior value distribution. Thus, with a

positive probability, the consumer’s value for the best product falls below the price and trade does

not occur.

The next result shows that discriminatory pricing exhibits a different kind of inefficiency: Trade

occurs whenever efficient, but it is associated with product mismatch. The proof needs some work,

which is contained in Appendix F. As the existence of an equilibrium is non-trivial, I separately

prove it in Appendix H.

Proposition 2. Consider discriminatory pricing. In any equilibrium, trade occurs with probability

29Note that I focus on perfect Bayesian equilibrium (PBE) in which the seller sets the same price for each product.
Without this restriction, there could be a fully efficient PBE where the seller sets different prices for different products.
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1. However, for generic30 priors x0 satisfying Assumption 1, in any equilibrium, the consumer

purchases some products other than the most valuable ones with a positive probability.

An intuition for the first part is as follows. Suppose that the seller charges a price that exceeds

the consumer’s value with a positive probability. Suppose that, on such an event, the consumer

discloses whether his value exceeds the price. If the seller learns that the value falls below the

original price, she prefers to revise the price downward or recommend another product, which

benefits both the consumer and the seller relative to no trade. Importantly, on the complementary

event where the seller learns that the value exceeds the price, she prefers to recommend the same

product at the same price as before.31 Overall, the consumer is always willing to disclose whether

his value exceeds the price, and this ensures that trade occurs for sure.

The second part implies that any equilibrium is generically inefficient, because the consumer

fails to purchase the highest value product with a positive probability. The interpretation is that

the seller’s ability to base prices on information incentivizes the consumer to withhold information

about which product is most valuable. The proposition implies that, under the current distributional

assumption, the consumer always finds it profitable to conceal some information. Later, I provide

a detailed discussion of why this is the case.

Now, can we use this result in policy? It would need more works to derive concrete policy

implications, but the proposition has the following takeaway. Consider a regulator or an Internet

intermediary, who cares about consumers and wants to release their information to sellers in order

to improve welfare. The analysis suggests that releasing information about consumers who have

low values (i.e., values below the monopoly price) for all products is good for the welfare of sell-

ers and consumers. In contrast, a regulator or an intermediary should be careful about releasing

information bundles that contain consumers who have low values for some products and high val-

ues for other products. Whereas releasing such information may increase total welfare, it can hurt

consumers to the extent that the loss from higher prices dominates the benefit from the improved

30The following is the formal description of genericity: Fix V and define X>v1 ⊂ ∆(V ) as the set of priors x0 in
∆(V ) such that p(x0) > v1. “Generic priors x0 satisfying Assumption 1” means that there is a Lebesgue measure-zero
set X0 ⊂ ∆(V ) such that, for any x0 ∈ X>v1

\X0, any equilibrium has a positive probability of product mismatch.
31This hinges on the following observation in the (single product) monopoly pricing problem: If the seller optimally

sets a price given some value distribution, then she does not revise the price even after learning that the value exceeds
the price. Indeed, if the value u is drawn from P(·), the optimal price p∗ maximizes p · P(u ≥ p). If the seller
additionally learns that u ≥ p∗, then her new problem is maxp≥p∗ p · P(u≥p)

P(u≥p∗) , which is clearly maximized at p = p∗.
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match quality.

I sketch the proof of Proposition 2. For ease of exposition, I use the following terminologies.

Definition 2. An equilibrium is vertically efficient if trade occurs with probability 1. An equilib-

rium is horizontally efficient if the seller recommends the most valuable products with probability

1.

We can rephrase Proposition 2 as follows: Under discriminatory pricing, any equilibrium is

vertically efficient and generically horizontally inefficient. The proof of vertical efficiency follows

the previous intuition: If an equilibrium is vertically inefficient, we can modify it so that the

consumer discloses the additional information of whether his value for the recommended product

exceeds the price. This leads to another equilibrium where the consumer and the seller obtain

greater payoffs than the original equilibrium, which is a contradiction.32

The second part of the proposition—horizontal inefficiency—is more challenging to prove at

least for three reasons. First, disclosing more information (in the sense of Blackwell) may not

lead to higher prices once we consider the full set of disclosure rules. Thus, we do not have

simple comparative statics as in the restricted model. Second, it is challenging to characterize

equilibria, as we have to solve a Bayesian persuasion problem (Kamenica and Gentzkow, 2011)

with multidimensional state and action spaces, which is known to be difficult.33 Third, there may

be multiple equilibria and we want to prove that all of them are horizontally inefficient.

To prove horizontal inefficiency without characterizing equilibrium, I take the following two-

step approach. First, solve a “constrained Bayesian persuasion” in which the consumer chooses a

disclosure rule subject to the constraint that the resulting allocation is efficient (given the seller’s

optimal behavior). Characterizing such a disclosure rule, denoted by φ∗, turns out to be simpler

than the “unconstrained” maximization problem that the consumer faces in equilibrium. Second,

modify φ∗ to create disclosure rule φI that leads to an inefficient allocation but gives the consumer

a strictly greater payoff than φ∗. These two steps imply that any equilibrium is associated with inef-

32The vertical efficiency relates to Bergemann et al. (2015), which show that equilibrium is efficient if the seller
sells a single product. In contrast to their result, which directly constructs a disclosure rule achieving an efficient
outcome, I indirectly show vertical efficiency, as it is difficult to characterize an equilibrium.

33Precisely, the model is slightly different from a Bayesian persuasion because the sender (consumer) also takes an
action. However, we can regard the consumer’s payoffs from the optimal purchase behavior as the receiver’s payoffs,
which depend only on the state (values) and the sender’s action (seller’s ecommendation and pricing).
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ficient allocation. As we proved that any equilibrium is vertically efficient, it must be horizontally

inefficient. The following example illustrates these two steps.

Example 1. Suppose that K = 2, V = {1, 2}, and (x0(1), x0(2)) = (1/3, 2/3).

Step 1: Consider disclosure rule φ in Table 1. (The first column shows possible value vectors, and

each row shows the distribution over messages 1 and 2 given each value vector.) φ only discloses

φ(1|u1, u2) φ(2|u1, u2)
(2, 2) 1/2 1/2
(2, 1) 1 0
(1, 2) 0 1
(1, 1) 1/2 1/2

Table 1: Disclosure rule φ revealing product ranking

which product is more valuable. Since such information is necessary and sufficient to achieve

horizontally efficient allocations, any efficient disclosure rules must be weakly more informative

than φ.34

I find φ∗ by maximizing the consumer’s payoff among disclosure rules weakly more informa-

tive than φ. Specifically, for each k, I first calculate the posterior distribution of uk conditional

on message k ∼ φ(·|u). Then, I apply Bergemann et al.’s (2015) consumer surplus maximizing

segmentation (CSMS) to each posterior distribution. In the single-product case, a CSMS discloses

information about the consumer’s value to maximize consumer surplus. In the current context,

applying a CSMS to each posterior enables the consumer to disclose information about the value

of the best product to maximize his payoff. Also, a property of CSMS implies that the resulting

disclosure rule ensures that trade occurs with probability 1. Thus, φ∗ constructed in this way is a

solution of the constrained problem.

Table 2 presents disclosure rule φ∗ obtained in this way. The CSMS decomposes each message

k (of φ) into messages k1 and k2.35 The seller’s best responses are as follows: After observing

message k1 (k = 1, 2), the seller recommends product k at price 1, being indifferent between

prices 1 and 2. After observing message k2 (k = 1, 2), the seller recommends product k at price 2.

34Precisely, I am restricting attention to “symmetric” disclosure rules such that permutating the indicies of the
products do not change φ. In the proof, this is shown to be without loss of generality.

35In general, a CSMS is not unique. In the proof and in this example, I use a CSMS obtained by the greedy
algorithm of Bergemann et al. (2015).
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φ∗(11|u1, u2) φ∗(12|u1, u2) φ∗(21|u1, u2) φ∗(22|u1, u2)
(2, 2) 0 1/2 0 1/2
(2, 1) 1/4 3/4 0 0
(1, 2) 0 0 1/4 3/4
(1, 1) 1/2 0 1/2 0

Table 2: Efficient disclosure rule φ∗.

φI(11|u1, u2) φI(12|u1, u2) φI(21|u1, u2) φI(22|u1, u2)
(2, 2) 0 1/2 ε′ 1/2− ε′
(2, 1) 1/4 3/4− ε ε 0
(1, 2) 0 0 1/4 3/4
(1, 1) 1/2 0 1/2 0

Table 3: Horizontally inefficient disclosure rule φI .

Step 2: I modify φ∗ twice to create φI in Table 3: First, at (u1, u2) = (2, 1), φI sends message 21

instead of 12 with a small probability ε > 0. This creates horizontal inefficiency, because once

the “new” message 21 is realized, the seller recommends product 2 even though (u1, u2) = (2, 1)

with a positive probability. However, this modification does not affect the consumer’s payoff, since

at message 12, the consumer continues to obtain a payoff of zero. Importantly, this modification

relaxes the seller’s incentive, as she now strictly prefers to set price 1 at message 21. Second, I

further modify φ∗ so that, at (u1, u2) = (2, 2), φI sends message 21 instead of 22 with a small

probability ε′ > 0. This strictly increases the consumer’s payoff: At (u1, u2) = (2, 2), where the

consumer obtains a payoff of zero at the original φ∗, he now obtains a strictly positive payoff when

message 21 is realized. To sum up, φI leads to horizontal inefficiency but gives the consumer a

strictly greater payoff than φ∗.

Finally, I discuss how to generalize the proof strategy for arbitrarily parameters (K and x0).

Generalizing Step 1 is straightforward. For Step 2, first, I prove that disclosure rule φ∗ obtained

in Step 1 (generically) sends messages m0 and m1 with the following properties: Conditional on

message m0, the consumer obtains a payoff of zero and has the lowest value v1 for all the products

that are not recommended; conditional on message m1, the seller prefers to set the lowest possible

price v1, being indifferent to setting any prices in V . I modify φ∗ so that it sends m1 instead of m0

with a small positive probability, in order to give the seller a strict incentive to set price v1 at the

new m1. This does not lower the consumer’s payoff. Finally, I use the seller’s strict incentive to

25



show that I can modify the disclosure rule to increase the consumer’s payoff.

4.2 Welfare Comparison in the Unrestricted Model

In the model of restricted disclosure, the seller is better off and the consumer is worse off under

nondiscriminatory pricing for any prior value distribution (Theorem 1). We might think that such

a result no longer holds in the unrestricted model, because discriminatory pricing has a greater

probability of trade (Proposition 2).

The following result, however, shows that the seller still prefers to commit to not use the con-

sumer’s information for pricing, and the commitment hurts the consumer. To state the result,

let RND and UND denote the equilibrium payoffs of the seller and the consumer under nondis-

criminatory pricing. Similarly, let RD and UD denote the payoffs of the seller and the consumer,

respectively, in any equilibrium under discriminatory pricing.

Theorem 2. Suppose that the consumer can choose any disclosure rule and Assumption 1 holds.

Generically, the seller is strictly better off and the consumer is strictly worse off under nondiscrim-

inatory pricing: RND > RD and UND < UD.

In the proof, I consider the disclosure rule that maximizes the consumer’s payoff subject to the

efficiency constraint, which is characterized in Proposition 2. I compare this efficient disclosure

rule with the equilibrium disclosure rule of each pricing regime in terms of the welfare of the seller

and the consumer. In this way, I can do welfare comparison without knowing how discriminatory

pricing equilibrium looks like.

Proof. Let φH denote any equilibrium disclosure rule under nondiscriminatory pricing, where the

seller recommends the most valuable products (Proposition 1). Also, let φ∗ denote the disclosure

rule constructed in the proof of Proposition 2: φ∗ maximizes the consumer’s payoff among all the

disclosure rules achieving efficient allocations. Under both disclosure rules, conditional on the

event that the seller recommends product k, the value distribution of product k is equal to xMAX ,

the distribution of maxk uk.

Let p∗ denote the equilibrium price of each product under φH . One observation is that p∗ also

maximizes revenue under any posteriors drawn by φ∗. (This is because I construct φ∗ from φH
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using the Bergemann et al.’s (2015) consumer surplus maximizing segmentation.) In other words,

under φ∗, the seller can achieve the highest revenue by posting price p∗ upfront for all products.

Denoting the optimal revenue under φH and φ∗ by RND and R∗ respectively, I obtain RND = R∗.

As φ∗ is efficient, it can never consist of an equilibrium (Proposition 2). That is, the consumer’s

equilibrium payoff under discriminatory pricing (UD) is strictly greater than the one from φ∗. This

also implies that the seller under discriminatory pricing is strictly worse off (RD < R∗ = RND).

Finally, as the consumer’s payoff is greater under φ∗ than φH , UD > UND holds.

As Proposition 2 shows, the consumer under discriminatory pricing obfuscates which product

has the highest value. However, the seller might still benefit from discriminatory pricing because

it makes trade more likely to occur. (Note that this effect was absent in Section 3.) The reason

why this argument fails is that, if the consumer can choose any disclosure rule, then he can dis-

close partial information about values to increase the probability of trade without increasing the

seller’s payoff. In other words, the seller does not lose from not being able to base prices on in-

formation. As a result, the seller prefers nondiscriminatory pricing, which leads to more accurate

recommendations.

4.3 Nondiscriminatory Pricing Can Enhance Efficiency

Which pricing regime achieves greater total surplus? The answer is not obvious because neither

of the pricing regimes achieves full efficiency under Assumption 1. Indeed, the answer depends

on the prior value distribution x0 of each product and the number K of products. For example, if

K = 1, discriminatory pricing is always (weakly) more efficient.

The next result shows that, if there are a large number of products, nondiscriminatory pricing

is more efficient. To focus on the interesting case where it leads to a strictly greater total surplus, I

assume that x0 does not put too much weight on the highest value of its support V . In the following

analysis, I do not impose Assumption 1.

Assumption 2. The optimal price at the prior distribution is strictly lower than the highest value

of its support: p(x0) < maxV < +∞.

Note that Assumption 2 holds whenever x0 has a density. The proof of the next proposition is in

Appendix G.
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Proposition 3. Under nondiscriminatory pricing, as K → +∞, the equilibrium total surplus

converges to maxV . Under discriminatory pricing, if Assumption 2 holds, then there is ε > 0 such

that for any K, the equilibrium total surplus is at most maxV − ε.

The intuition is as follows. As K grows large, the consumer’s value for the best product (i.e.,

max(u1, . . . , uK)) becomes nearly degenerate at maxV . This implies that, if the seller can always

recommend the best product, then she can set prices near maxV to achieve the revenue close to

maxV . As a result, consumer surplus converges to zero and total surplus converges to maxV . This

is indeed an equilibrium of nondiscriminatory pricing as it achieves the efficient recommendation

(Proposition 1). In contrast, under discriminatory pricing (with Assumption 2), the consumer can

secure a positive payoff that is independent of the number of products by disclosing no information.

In other words, the consumer’s equilibrium payoff never vanishes even if K grows large. This

implies that the total surplus cannot approach the efficient level maxV .

5 Extensions

5.1 General Conditions for Welfare Ranking Results

This extension provides more general conditions on the set D of available disclosure rules under

which the seller is better off and the consumer is worse off under nondiscriminatory pricing. Define

φE as a disclosure rule that only discloses the highest value product: For any realized u ∈ V K , φE

draws message k ∈ arg max` u` with probability 1
| arg max` u`|

. (Alternatively, the following results

hold if I define φE as a disclosure rule that discloses the ranking of the products in terms of their

values.) The following result provides a condition under which the seller prefers to commit to not

use information for pricing. The condition is more general than the one in Section 3.

Proposition 4. If φE belongs to D and is more informative than any other disclosure rules in D,

then the seller obtains a higher payoff under nondiscriminatory pricing than under discriminatory

pricing.

Proof. As in Theorem 1, under nondiscriminatory pricing, the consumer chooses φE and the seller

sets a price of arg maxp p[1− FMAX(p)] for each product. Now, consider discriminatory pricing.

28



Let (M,φ) ∈ D denote an equilibrium disclosure rule, and take any message realization m drawn

by φ. Conditional on m, the consumer’s value distribution for the recommended product (say

k∗) is lower than FMAX in the sense of first order stochastic dominance. Indeed, since φ is less

informative than φE , the value distribution of product k∗ conditional onm is a convex combination

of the distributions of uk∗ | {uk∗ = maxk uk} and uk∗| {uk∗ 6= maxk uk}. Thus, the seller obtains a

weakly higher payoff under nondiscriminatory pricing.

The next result provides a condition under which the consumer is worse off under the seller’s

commitment. The condition is more general than the ones in Sections 3 and 4. (However, it only

states that the consumer weakly prefers discriminatory pricing, in contrast to Theorem 2.)

Proposition 5. If φE ∈ D, then the consumer obtains a higher payoff under discriminatory pricing

than under nondiscriminatory pricing.

Proof. As in Theorem 1, under nondiscriminatory pricing, the consumer chooses φE . Under dis-

criminatory pricing, the consumer can achieve the same outcome by choosing φE . Thus, the con-

sumer is weakly better off under discriminatory pricing.

5.2 Market for Personal Data

Institutions within which consumers can sell their information have been discussed as market-

based solutions to address privacy problems. In my model, such a “market for data” could benefit

both the seller and the consumer.

To see this, consider the following extension: At the beginning of the game, the seller can

offer to purchase information: Formally, the seller chooses a disclosure rule φ ∈ D and a transfer

t ∈ R. Then, the consumer decides whether to accept it. If the consumer accepts, then he reveals

values according to φ and receives t; otherwise, he can choose any disclosure rule inD but receives

no transfer. In either case, this stage is followed by a product recommendation and a purchasing

decision. Again, I consider the two pricing regimes.

How does this “market for data” affect equilibrium outcomes? It has no impact under nondis-

criminatory pricing because the consumer is willing to disclose full information without compen-

sation. In contrast, under discriminatory pricing, the market for data benefits the seller without
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affecting the consumer. For example, if D contains disclosure rule φ∗ that reveals values u, then

the seller offers (φ∗, t), where t makes the consumer indifferent between accepting and rejecting

the offer. In equilibrium, the consumer accepts the offer and the seller engages in perfect price

discrimination with efficient recommendations. Recall that without compensation, the consumer

typically hides some information, which leads to product mismatch (Proposition 2).

Importantly, in this new setting, not only the consumer but also the seller may prefer dis-

criminatory pricing, because the market for data increases the seller’s payoff under discriminatory

pricing but has no impact under nondiscriminatory pricing. Thus, the market for data can align the

preferences of the seller and the consumer over whether the seller uses information for pricing.

5.3 A Model of Two-Sided Private Information

It is crucial to my results that the consumer chooses a disclosure rule without observing the val-

ues of products. As discussed, this is suitable if the consumer is initially uninformed of product

characteristics necessary to calculate his willingness to pay. I provide a microfoundation for this

assumption, focusing on the restricted model in Section 3.

For ease of exposition, suppose that there are two products labeled as 1 and −1. At the begin-

ning of the game, the consumer privately observes his taste θ ∈ {1,−1}. Also, the seller privately

observes product characteristics π ∈ {1,−1}. Each pair of (θ, π) is equally likely. Given a re-

alized (θ, π), the consumer draws values of products θ · π and −θ · π from (the distributions of)

max {u1, u2} and min {u1, u2}, respectively. Note that θ or π alone is not informative of product

valuations, but (θ, π) is. This formulation captures situations in which sellers have to combine

information abut the tastes of consumers and product characteristics in order to learn about prefer-

ences and give product recommendations.

The game proceeds as follows. After privately observing θ, the consumer (publicly) chooses a

disclosure level δ: With probabilities δ and 1−δ, messages θ and−θ are realized, respectively. The

seller observes δ and a realized message, and then recommends a product. As before, I consider

two pricing regimes. Note that, once the consumer observes θ, the game looks identical with the

original restricted model. Thus, this setting leads to the same result as Theorem 1:
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5.4 Alternative Interpretation: Online Advertising Platform

I can rewrite the model of restricted disclosure in Section 3 as a game between a consumer, an

online advertising platform (such as Google or Facebook), and two advertisers. Advertisers 1 and

2 sell products 1 and 2, respectively. The consumer makes a purchasing decision after seeing an

ad. Which ad the consumer sees depends on the outcome of an ad auction run by the platform.

In this interpretation, first, the consumer chooses a disclosure level δ (e.g., whether to accept

a cookie) and visits the platform. Each advertiser k ∈ {1, 2} chooses a price of product k and

a bidding rule bk : {1, 2} → R. Here, bk(j) is the bid by advertiser k for the impression of the

consumer with a realized message j ∈ {1, 2}. I assume that advertisers choose bidding rules after

observing δ and a realized message. If advertiser k wins the auction, the consumer sees the ad of

product k. After seeing an ad, the consumer learns the value and price of the advertised product,

and then decides whether to buy it.

I show that the same result as Theorem 1 holds. Suppose that the consumer chooses disclosure

level δ. First, if advertisers can base product prices on disclosure levels, each advertiser chooses

price p(δ) and bidding rule bk where bk(k) = p(δ)[1 − δFMAX(p(δ)) − (1 − δ)FMIN(p(δ))]

and bk(j) < bk(k) for j 6= k. The platform sets reserve price p(δ)[1 − δFMAX(p(δ)) − (1 −

δ)FMIN(p(δ))] to extract full surplus from advertisers. Given these strategies, the consumer sees

the ad of his preferred product with probability δ. Second, if advertisers have to set prices without

observing δ, the consumer chooses disclosure level 1 and each advertiser sets price p(1). Thus, the

consumer’s disclosure decision and its welfare and price implications are identical as before.

This result suggests that platforms could benefit from committing not to disclose the value of

δ to advertisers, because it implements nondiscriminatory pricing. For example, platforms might

classify consumers into two segments, each of which consists of consumers who are more likely

to prefer one product than the other. By committing to engage in coarse segmentation, platforms

can encourage consumers to provide information.

6 Concluding Discussion

This paper studies consumers’ privacy choices, their price implications, and welfare consequences.

The key to the analysis is the following trade-off: A consumer may benefit from revealing infor-
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mation, because a seller can then offer product recommendations. However, the seller may also

use the information to tailor prices.

The key finding, however, is to show that this trade-off may not arise in equilibrium. I identify

a condition under which the seller prefers to commit to not use the consumer’s information for

pricing. The commitment encourages the consumer to disclose more information that is useful for

accurate recommendations. Surprisingly, this commitment can hurt the consumer: The consumer

could be better off if the seller had less information and could only make noisy recommendation.

Moreover, in contrast to the standard single-product model, the seller’s commitment can enhance

total welfare at the expense of consumer welfare. These results give a potential explanation of a

casual observation that online retailers seem to not use individual data to tailor prices, and con-

sumers seem to share much information. Finally, the model of unrestricted disclosure reveals that

even with fine-grained control of information, we cannot simultaneously achieve efficient price

discrimination and efficient matching of products without sacrificing consumer welfare.

There are various directions for future research. For example, one might want to incorporate

information sharing between sellers or the presence of data brokers, which is likely to add new

policy implications. Also, it would be important to study how the market for personal data works

beyond the context of product recommendations and pricing. Finally, this paper shows that there

could be a divergence between individual and collective incentives to share information, even if

types are independent across consumers. It would be fruitful to more generally study when this

type of divergence occurs and what kind of policies can mitigate it.
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Appendix For Online Publication

A Proof of Lemma 1

Let FMAX and FMIN denote the CDFs of max(u1, u2) and min(u1, u2), respectively. Without loss

of generality, suppose that message 1 is realized. If the seller recommends products 1 and 2, then

the consumer draws values from δFMAX + (1 − δ)FMIN and δFMIN + (1 − δ)FMAX , respec-

tively. The former first order stochastically dominates the latter because δ > 1/2 and FMAX first

order stochastically dominates FMIN . Then, under both pricing regimes, recommending product

1 maximizes revenue given any prices. (Under nondiscriminatory pricing, I use the equilibrium
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restriction that all products have the same price.) Note that the seller is indifferent between rec-

ommending two products if the optimal price is equal to the lowest possible value (minV ). In this

case, the equilibrium restriction requires that the seller recommends product 1 because it uniquely

maximizes the consumer’s payoff given that the value distribution is non-degenerate.

B Proof of Lemma 3

By Lemma 1, the seller recommends the best product with probability δ. Then, at price p, trade

occurs with probability 1 − δFMAX(p) − (1 − δ)FMIN(p). Thus, the set of the optimal prices is

P (δ) := arg maxp p[1 − δFMAX(p) − (1 − δ)FMIN(p)]. By the tie-breaking rule, the seller sets

a price of p(δ) := minP (δ), which is well-defined as shown in Appendix H. I show that p(δ) is

increasing in δ. Note that

log p[1− δFMAX(p)− (1− δ)FMIN(p)]− log p[1− δ′FMAX(p)− (1− δ′)FMIN(p)]

= log
1− δFMAX(p)− (1− δ)FMIN(p)

1− δ′FMAX(p)− (1− δ′)FMIN(p)
. (1)

By Theorem 1.B.22 of Shaked and Shanthikumar (2007), if δ > δ′, δFMAX + (1 − δ)FMIN is

greater than δ′FMAX + (1 − δ′)FMIN in the hazard rate order. Then, (1) is increasing in p. This

implies that log p[1−δFMAX(p)−(1−δ)FMIN(p)] has increasing differences in (p, δ). By Topkis

(1978), P (δ) is increasing in the strong set order. Therefore, p(δ) is increasing in δ.

C Proof of Theorem 1

If the consumer is recommended his preferred and less preferred products at price p, the expected

payoffs are uMAX(p) :=
∫ +∞
p

(v− p)dFMAX(v) and uMIN(p) :=
∫ +∞
p

(v− p)dFMIN(v), respec-

tively.

Consider nondiscriminatory pricing. Let p∗ denote the equilibrium price for each product.36

If the consumer chooses δ, then his expected payoff is δuMAX(p∗) + (1 − δ)uMIN(p∗). This

is maximized at δ = 1, which is also a unique disclosure level consistent with my equilibrium

36Since the seller breaks tie in favor of the consumer, the seller sets the lowest optimal price with probability 1.
This excludes the use of a strictly mixed strategy in pricing.
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restriction. Anticipating δ = 1, the seller sets the equilibrium price p∗ = p(1), and thus the

consumer’s payoff is uMAX(p(1)).

Under discriminatory pricing, the consumer’s payoff from δ is δuMAX(p(δ))+(1−δ)uMIN(p(δ)).

Thus, the equilibrium payoff is

max
δ∈[1/2,1]

δuMAX(p(δ)) + (1− δ)uMIN(p(δ)) ≥ uMAX(p(1)),

where the existence of a maximizer is shown in Appendix H. That is, the consumer is worse off

under nondiscriminatory pricing, and he is charged higher prices by Lemma 3.

Next, consider the seller’s payoff. Since FMAX first order stochastically dominates FMIN , it

holds FMAX(p) ≤ FMIN(p), and thus δFMAX(p) + (1 − δ)FMIN(p) is decreasing in δ for any

p. Thus, p[1 − δFMAX(p) − (1 − δ)FMIN(p)] is increasing in δ for any p. Then, maxp p[1 −

δFMAX(p) − (1 − δ)FMIN(p)] is maximized at δ = 1. Therefore, the seller is better off under

nondiscriminatory pricing.

D Presence of “Negative Externality” with a Continuum of Consumers

I show that in the alternative interpretation of the model, information disclosure by a positive mass

of consumers lowers the welfare of other consumers. To see this, note that if each consumer i

chooses a disclosure level δi and the seller sets price p for each product, then the total revenue is

given by

∫
i∈[0,1]

p[1− δiFMAX(p)− (1− δi)FMIN(p)]di

=p[1− δ̄FMAX(p)− (1− δ̄)FMIN(p)],

where δ̄ :=
∫
i∈[0,1]

δidi is the average disclosure level. This implies that the optimal price under

nondiscriminatory pricing is p(δ̄), where p(·) is defined in Lemma 3. Now, if a positive mass

of consumers choose strictly greater disclosure levels, then δ̄ increases. This increases p(δ̄) and

decreases the payoffs of other consumers who have not changed disclosure levels.

In contrast, under discriminatory pricing, consumer i is charged a price of p(δi) for recom-

mended products. Thus, each consumer’s problem is identical with the one in the original formu-
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lation. Thus, consumers disclose less information and are better off under discriminatory pricing.

E Proof of Proposition 1

Take any equilibrium under nondiscriminatory pricing. Since prices are fixed and the same across

products, it is optimal for the consumer to disclose information so that the seller recommends the

most valuable products with probability 1.37 Now, the seller sets a price of product k′ to maximize

the expected revenue conditional on recommending product k′. Conditional on this event, the

seller’s posterior belief for uk′ is equal to the distribution of maxk∈K uk, denoted by xMAX . Note

that the argument does not depend on k′ because values are IID across products. Then, it holds that

p(x0)
∑

v≥p(x0)

xMAX(v) ≥ p(x0)
∑

v≥p(x0)

x0(v) > v1,

where the strict inequality follows from Assumption 1. Thus, the price for each product is strictly

greater than v1, and the consumer buys no products with a probability of at least x(v1)K > 0.

F Proof of Proposition 2

Proposition 2 follows from a series of lemmas. Lemma 4 proves vertical efficiency. Lemma 5

proves that any equilibrium is horizontally inefficient whenever prior x0 is such that the distribution

of the highest value product has a unique monopoly price. Lemma 6 proves that this condition is

true for generic priors satisfying Assumption 1.

Lemma 4. Any equilibrium is vertically efficient.

Proof. Take any disclosure rule (M∗, φ∗) that leads to a vertically inefficient allocation given the

seller’s best response and the consumer’s optimal purchase decision with the tie-breaking. (Here-

after, I omit the caveat “given the tie-breaking rule.”) Then, φ∗ draws a posterior x ∈ ∆(V K) at

which trade fails to occur with positive probability.38 Without loss of generality, suppose that given

37For the sake of completeness, I present an example. Consider disclosure rule (φ∗,M∗) such that M∗ = K and
φ∗(k|u) = 1

| argmaxk∈K uk|1{k∈argmaxk∈K uk}. Namely, φ∗ is a symmetric disclosure rule that reveals the name of
the most valuable product. An equilibrium disclosure rule is not unique; we can consider any disclosure rules weakly
more informative than (φ∗,M∗).

38Because |V K | < +∞, without loss of generality, I can assume |M∗| < +∞. Then, each message is realized
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x, the seller recommends product 1 at price vn. Consider the following disclosure rule φ∗∗: On top

of the information that φ∗ discloses, φ∗∗ also discloses u1 ≥ vn or u1 < vn whenever posterior x is

realized.

I show that φ∗∗ yields a weakly greater consumer surplus and a strictly greater total surplus than

φ∗ does. Let x+ and x− ∈ ∆(V K) denote the posterior beliefs of the seller when the consumer

discloses u1 ≥ vn and u1 < vn (following x), respectively. Note that for some α ∈ (0, 1),

x = αx+ + (1 − α)x−. First, consider the consumer’s payoff and total surplus conditional on

x−. The consumer obtains a greater payoff under φ∗∗ than under φ∗ because consumer surplus

is zero under φ∗. Total surplus is strictly greater under φ∗∗ because trade occurs with a positive

probability under φ∗∗ but occurs with probaiblity zero under φ∗. Second, I show that, conditional

on x+, the consumer’s payoff and total surplus remain the same before and after the seller learns

u1 ≥ vn. To begin with, I show that the seller continues to recommend product 1 at price vn at x+.

Suppose to the contrary that the seller strictly prefers to recommend product m at price v` where

(m, `) 6= (1, n). Let x+
1 ∈ ∆(V ) and x+

m ∈ ∆(V ) be the marginal distributions of u1 and um

given x+, respectively. Because the seller strictly prefers recommending product m at price v` to

recommending product 1 at price vn, we get

v`

N∑
j=`

x+
m(vj) > vn

N∑
j=n

x+
1 (vj),

which implies

v`

N∑
j=`

[
αx+

m(vj) + (1− α)x−m(vj)
]
≥ v`

N∑
j=`

αx+
m(vj) > vn

N∑
j=n

αx+
1 (vj) = vn

N∑
j=n

[
αx+

1 (vj) + (1− α)x−1 (vj)
]
.

(2)

The last equality follows from x−1 (v) = 0 for any v ≥ vn. Inequality (2) contradicts that the seller

prefers to recommend product 1 at price vn at x. Therefore, the seller continues to recommend the

same product at the same price between x and x+. Thus, overall, disclosing u1 ≥ vn or u1 < vn at

x leads to a weakly greater consumer surplus and a strictly greater total surplus.

To show that any equilibrium is vertically efficient, take any equilibrium disclosure rule φ∗.

with a positive probability from the ex-ante perspective. This implies that there is an ex-ante positive probability event
such that some posterior x ∈ ∆(V K) is realized and trade fails to occur.
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Appendix H proves the existence of an equilibrium. Suppose to the contrary that φ∗ is vertically

inefficient. Then, I can apply the modification described above to create φ∗∗. φ∗∗ gives the con-

sumer a weakly greater payoff than φ∗. Because φ∗ is optimal for the consumer, he is indifferent

between φ∗ and φ∗∗. However, φ∗∗ yields a strictly greater total surplus, which implies that the

seller strictly prefers φ∗∗. This contradicts the tie breaking rule, which requires that φ∗ maximizes

the seller’s payoffs among all consumer-optimal disclosure rules. Therefore, φ∗ is vertically effi-

cient.

Lemma 5. Suppose that prior x0 satisfies Assumption 1 and there is a unique monopoly price

given value distribution FMAX . Here, FMAX is a CDF of max(u1, . . . , uK) where each uk is an

IID draw from x0. Then, any equilibrium is horizontally inefficient.

Proof. I construct a disclosure rule that maximizes the consumer’s ex ante expected payoff among

E ⊂ D, where E is the set of all disclosure rules that lead to efficient recommendations given

the optimal behavior of each player. Take any disclosure rule φ ∈ E . Since the recommended

product always belongs to arg max`∈K u` with (ex ante) probability 1, the consumer’s value of the

recommended product (unconditional on which product is recommended) is drawn according to

FMAX . This implies that under φ, the seller can obtain a revenue of at least R := maxp∈V p[1 −

FMAX(p)] by setting a price of arg maxp∈V p[1 − FMAX(p)] for all realized posteriors. Thus, φ∗

maximizes the consumer’s payoff among E whenever it achieves an efficient allocation and gives

the seller a payoff of R.

To begin with, consider disclosure rule φE ∈ E such that for any realized u ∈ V K , φE draws

message k ∈ arg max` u` with probability 1
| arg max` u`|

. Two remarks are in order. First, uk is

distributed according to FMAX conditional on message k. Second, the seller prefers to recommend

product k after observing message k no matter what additional information she learns, because she

can maximize the probability of trade by recommending product k for any given price.

Next, I create φ∗ ∈ E by modifying φE as follows: For each k ∈ K, conditional on that message

k is realized under φE , φ∗ discloses additional information about uk according to a consumer

surplus maximizing segmentation (CSMS) characterized by Bergemann et al. (2015).39 In our
39In a single product monopoly pricing, a consumer surplus maximizing segmentation is equivalent to a disclosure

rule that has the following property. First, at each realized posterior, the seller is willing to set the price equal to the
minimum of its support, which implies that the trade occurs for sure. Second, at each posterior, the seller is indifferent
between charging the minimum of each posterior and charging the monopoly price for the prior.
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context, the information disclosed according to (any) CSMS ensures that the trade occurs with

probability 1 whereas the seller’s resulting revenue is R. Thus, under φ∗, the seller recommends

the highest value product and the trade occurs with probability 1, whereas the seller’s revenue is

R. Thus, φ∗ maximizes the consumer’s payoff among E .

Hereafter, I focus on a particular φ∗ where the additional information about the highest value

product is disclosed according to a CSMS constructed by the greedy algorithm in Bergemann

et al. (2015). This has the following implication. Let
{
xkS1

, . . . , xkSL

}
denote the set of posteriors

induced by φ∗ conditional on message k. Without loss of generality, we can regard xkS1
, . . . , xkSL

as realized messages. Let us also regard each xkS`
as a marginal distribution of uk instead of a joint

distribution of (u1, . . . , uK). The greedy algorithm guarantees that each xkS`
has support S` ⊂ V ,

S1 ⊂ S2 ⊂ · · · ⊂ SL = V , and the set of all optimal prices against xkS`
is S`. Moreover, it

holds that S1 = {v∗} with v∗ > v1. To see this, note that |S1| ≥ 2 implies that two prices in S1 are

optimal against all posteriors in
{
xkS1

, . . . , xkSL

}
, which in turn implies that these prices are optimal

under FMAX due to the linearity of the expected revenue in the value distribution. This contradicts

that there is a unique optimal price under FMAX . Thus, |S1| = 1, which implies that S1 = {v∗}.

v∗ > v1 follows from the proof of Proposition 1.

I modify φ∗ to create a horizontally inefficient φI that yields a strictly greater consumer surplus

than φ∗ does. For the ease of exposition, I use the following terminologies. First, I regard a

distribution x ∈ ∆(V K) as consisting of a unit mass of consumers, where mass x(u) of consumers

have valuation vector u. Second, I call any set of (a continuum of) consumers as a “segment.”

To construct φI , I make three observations. First, a positive mass of consumers in x1
S1

have

value v∗ for product 1 and the lowest possible value v1 < v∗ for product 2. Call this mass of

consumers “segment (v∗, v1).” Second, a positive mass of consumers in x1
S1

have value v∗ for both

products 1 and 2. Call these consumers “segment (v∗, v∗).”

First, I take a small but positive (say ε1) mass of segment (v∗, v1) from x1
S1

and pool this

segment with x2
SL

.40 Let x̂2
SL

denote the posterior following this pooling. For a sufficiently small

ε1 > 0, at x̂2
SL

, the seller recommend product 2, and it strictly prefers to set price v1 for product 2.

The reason is as follows. Under the original posterior x2
SL

, it is optimal for the seller to recommend

40In terms of a disclosure rule, this means that I modify φ∗ so that it draws message x2SL
with probability ε1 > 0

not only following message 2 but also when φ∗ draws segment (v∗, v1) in x1S1
.
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product 2 at any price in V because SL = V . After the modification, x̂2
SL

contains a strictly greater

mass of consumers who have value v1 for product 2 (i.e., segment (v∗, v1)). Thus, the seller strictly

prefers to set price v1 for product 2. Moreover, for a small ε1 > 0, the seller does not strictly

prefer to recommend other products. Indeed, if the seller recommended product k 6= 2 at x2
SL

, then

she would strictly prefer to set price v1. Thus, for a small ε1 > 0, the seller’s pricing incentive

does not change. This implies that the optimal revenue from recommending other products (at

the new posterior x̂2
SL

) is v1, which is no greater than the revenue from recommending product

2. Importantly, this modification does not change the consumer’s payoff, because consumers in

segment (v∗, v1) obtain zero payoffs under x1
S1

. Let φH denote the resulting disclosure rule.

Finally, I modify φH by pooling a small but positive (say ε2) mass of segment (v∗, v∗) in x1
S1

with x̂2
SL

. Let x̃2
SL

denote the posterior following this pooling. If ε2 is small, the seller continues to

recommend product 2 at price v1 under x̃2
SL

, because it strictly prefers to set price v1 for product 2 at

x̂2
SL

. This modification strictly increases the consumer’s payoff relative to φ∗, because consumers

in segment (v∗, v∗) obtain a positive payoff v∗ − v1 while they obtain to a payoff of zero under φ∗.

Note that the resulting disclosure rule φI strictly increases the consumer’s ex ante expected

payoff, but it leads to inefficient recommendation at x̃2
SL

. This implies that any equilibrium is hor-

izontally inefficient, because for any disclosure rule leading to horizontal efficiency, the consumer

can find more profitable disclosure rules that lead to horizontal inefficiency.

Lemma 6. Fix V and define X>v1 ⊂ ∆(V ) as the set of priors x0 ∈ ∆(V ) such that p(x0) > v1.

There is a Lebesgue measure-zero set X0 ⊂ ∆(V ) such that, for any x0 ∈ X>v1 \X0, the induced

FMAX has a unique monopoly price (i.e., FMAX satisfies the condition of Lemma 5.)

Proof. First, letD2 denote the set of all distributions x ∈ ∆(V ) such that there are two or more op-

timal prices. I show that D2 has measure zero. Let Dv,v′ denote the set of all distributions in ∆(V )

such that both prices v and v′ are optimal. I can write Dv,v′ = {x ∈ ∆(V ) : v
∑

vn≥v,vn∈V x(vn) =

v′
∑

vn≥v′,vn∈V x(vn)}. Dv,v′ is a subset ofN−1-dimensional hyperplane, which has measure zero

in RN . Thus, D2 = ∪(v,v′)∈V 2Dv,v′ has measure zero.

Consider a function ϕ which maps any distribution x = (x1, . . . , xN) ∈ ∆(V ) to the distribu-
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tion of max(u1, . . . , uK), where each uk is an IID draw from x. ϕ is written as follows.

ϕ(x) = K ·



1
K
xK1

x2

∑K−1
`=0 xK−1−`

1 x`1 · 1
`+1

(
K−1
`

)
x3

∑K−1
`=0 (x1 + x2)K−1−`x`3 · 1

`+1

(
K−1
`

)
...

xN
∑K−1

`=0 (x1 + · · ·+ xN−1)K−1−`x`N · 1
`+1

(
K−1
`

)


.

ϕ is infinitely differentiable and its Jacobian matrix Jϕ is a triangular matrix with the diagonal

elements being positive as long as xn > 0 for each n = 1, . . . , N . Thus, Jϕ(x) has full rank if x is

not in a measure-zero set

{(x1, . . . , xN) ∈ ∆(V ) : ∃n, xn = 0} . (3)

By Theorem 1 of Ponomarev (1987), ϕ : RN → RN has the “0-property”: The inverse image of

any measure-zero set by ϕ has measure zero. In particular, X0 := ϕ−1(D2) has measure zero.

Clearly, X0 has the desired property.

G Proof of Proposition 3

Proposition 3 relies on the following lemma.

Lemma 7. Under nondiscriminatory pricing, as K → +∞, the seller’s equilibrium payoff con-

verges to maxV and the consumer’s equilibrium payoff converges to 0. Under discriminatory

pricing, if Assumption 2 holds, then there is u > 0 such that the consumer’s equilibrium payoff is

at least u for any K.

Proof. By the same argument as Proposition 1, the seller under nondiscriminatory pricing recom-

mends the most valuable product with probability 1. Let F denote the CDF of the value for each

product (induced by x0). Take any ε > 0. Suppose that the seller sets p = maxV − ε/2 for each
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product upfront. As K → +∞, the probability 1 − F (p)K that the consumer buys the recom-

mended product goes to 1. Thus, there is K such that the seller’s revenue is at least maxV − ε if

K ≥ K. This implies that the consumer’s payoff is at most ε for any such K. This completes the

proof of the first part.

To see that the consumer can always guarantee some positive payoff u under discriminatory

pricing, observe that the consumer can choose to disclose no information and obtain a payoff of∫ maxV

p(x0)
v − p(x0)dF (v) > 0, which is positive and independent of K.

Proof of Proposition 3. The result under nondiscriminatory pricing follows from the previous

result, as total surplus is weakly greater than the seller’s revenue.

I show that total surplus under discriminatory pricing is uniformly bounded away from maxV .

Suppose to the contrary that for any n ∈ N, there exists Kn such that when the seller sells Kn

products, some equilibrium under discriminatory pricing achieves total surplus of at least maxV −
1
n

. Then, I can take a subsequence (Kn`
)` such that Kn`

< Kn`+1
for any ` ∈ N. Next, I show that

for any p < maxV and ε < 1, there exists `∗ ∈ N such that for any ` ≥ `∗,

P`(the consumer’s value for the recommended product ≥ p) ≥ ε. (4)

where P`(·) is the probability measure on the consumer’s value for the recommended product in

equilibrium of Kn`
-product model. To show inequality (4), suppose to the contrary that there is

some (p, ε) and a subsequence (K ′m)m of (Kn`
)` such that the inequality is violated. Then, given

any K ′m in this subsequence, the total surplus is at most εp + (1 − ε) maxV < maxV . This

contradicts that the equilibrium total surplus converges to maxV as K ′m → +∞.

Now, I use inequality (4) to show that the seller’s equilibrium revenue converges to maxV

along (Kn`
)`. Take any r < maxV . If the seller sets price r+maxV

2
, then for a sufficiently large

`, the consumer accepts the price with probability greater than 2r
r+maxV

< 1. That is, for a large `,

the seller’s expected revenue exceeds r. Since this holds for any r < maxV , the seller’s revenue

converges to maxV as ` → +∞. This contradicts that the consumer’s payoff is bounded from

below by a positive number independent of K, as in Lemma 7. �
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H Existence of Equilibrium under Discriminator Pricing

I prove the existence of an equilibrium under discriminatory pricing. Recall that for nondiscrimi-

natory pricing, I have proved the existence by constructing an equilibrium.

Restricted Model

Claim 1. In the restricted model, there exists an equilibrium under discriminatory pricing.

The result follows from two lemmata.

Lemma 8. Given a disclosure level δ, the lowest optimal price p(δ) exists and is lower semi-

continuous41 in δ.

Proof. Define G(p) := δFMAX(p) + (1 − δ)FMIN(p). Recall that I define a CDF as a left-

continuous function. This implies that G is lower semi-continuous. Indeed, for any p∗ and ε > 0,

take δ > 0 so that for all p ∈ (p∗ − δ, p∗], |G(p) − G(p∗)| < ε. Because G(p) is increasing in p,

for all p ∈ (p∗ − δ, p∗ + δ), G(p) > G(p∗)− ε.

Because G is lower semi-continuous, 1 − G is upper semicontinuous, and thus p[1 − G(p)],

which is a product of two nonnegative upper semicontinuous functions, is upper semi-continuous

in p.42 This implies that P (δ) := arg maxp∈V p[1 − G(p)] is nonempty and compact (Theorem

2.43 of Aliprantis and Border (2006)). Thus, p(δ) := minP (δ) exists.

Next, I show that p(δ) is lower semi-continuous in δ. If p(δ) is not lower semi-continuous at

some δ∗, there is ε > 0 such that we can construct a sequence δn → δ∗ so that p(δn) < p(δ∗) − ε

for all n. Then, we can find a convergent subsequence of (p(δn))n because p(δn) ∈ V and V

is compact. Without loss of generality, assume that (p(δn))n itself converges, so that there exists

p∗ = limn p(δn) < p(δ∗). Now, define Y (p, δ) as

Y (p, δ) := p
[
1− δFMAX(p)− (1− δ)FMIN(p)

]
−p(δ∗)

[
1− δFMAX(p(δ∗))− (1− δ)FMIN(p(δ∗))

]
.

41Depending on the context, I use one of the following two (equivalent) conditions as a definition of lower
semicontinuity. Given a (first countable) topological space X and f : X → R, f is lower semicontinuous if
{x ∈ X : c ≥ f(x)} is closed for each c ∈ R. Equivalently, f is lower semicontinuous if xn → x implies
lim infn f(xn) ≥ f(x). We obtain the definition(s) for upper semicontinuity by replacing ≥ and lim inf with ≤
and lim sup, respectively. For the equivalence of the two conditions, see Lemma 2.42 of Aliprantis and Border (2006).

42To see this, if f : X → R and g : X → R are nonnegative and upper semicontinuous, for any xn → x, we obtain
lim supn f(xn)g(xn) ≤ lim supn f(xn) lim supn g(xn) ≤ f(x)g(x). Thus, fg is upper semicontinuous.
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Because p(δn) is optimal given δn, it holds Y (p(δn), δn) ≥ 0. Also, Y (p, δ) is upper semicon-

tinuous in (p, δ).43 This implies that Y ∗ := {(p, δ) : Y (p, δ) ≥ 0} is closed. Thus, (p∗, δ∗) =

limn(p(δn), δn) ∈ Y ∗, or equivalently,

p∗
[
1− δ∗FMAX(p∗)− (1− δ∗)FMIN(p∗)

]
≥p(δ∗)

[
1− δ∗FMAX(p(δ∗))− (1− δ∗)FMIN(p(δ∗))

]
,

which implies p∗ ∈ P (δ∗). This contradicts p(δ∗) = minP (δ∗) because p∗ < p(δ∗).

Lemma 9. δuMAX(p(δ)) + (1− δ)uMIN(p(δ)) is upper semi-continuous in δ.

Proof. Note that uMAX(p) =
∫ +∞
p

(x− p)dFMAX(x) =
∫ +∞
p

1− FMAX(x)dx is continuous and

decreasing in p. Because p(δ) is lower semi-continuous, uMAX(p(δ)) is upper semi-continuous in

δ. (To see this, if g is continuous and decreasing and f is lower semi-continuous, then for xn → x,

we have limk→+∞ supn>k g(f(xn)) = limk→+∞ g(infn>k f(xn)) = g(limk→+∞ infn>k f(xn)) ≤

g(f(x)). The last inequality is from the lower semi-continuity of f .) Similarly, we can show that

uMIN(p(δ)) is upper semi-continuous. Therefore, δuMAX(p(δ)) + (1 − δ)uMIN(p(δ)) is upper

semi-continuous in δ.

Proof of Claim 1. δuMAX(p(δ)) + (1 − δ)uMIN(p(δ)) is upper semi-continuous, and the set of

disclosure levels, [0, 1], is compact. Thus,D∗ := arg maxδ∈[0,1] δu
MAX(p(δ))+(1−δ)uMIN(p(δ))

is nonempty and compact (Theorem 2.43 of Aliprantis and Border (2006)). Thus, δ∗ := maxD∗

combined with the optimal on-path and off-path actions of the seller and the consumer consists of

an equilibrium.

Unrestricted Model

Claim 2. In the unrestricted model, there exists an equilibrium under discriminatory pricing.

43This follows from the fact that a product of two nonnegative upper (lower) semicontinuous functions and a
sum of two upper (lower) semicontinuous functions are upper (lower) semicontinuous. Note that FMAX(p) and
FMIN (p) are lower semicontinuous in p, which implies that δFMAX(p)+(1−δ)FMIN (p) is lower semicontinuous.
Thus, p

[
1− δFMAX(p)− (1− δ)FMIN (p)

]
is upper semicontinuous. Because the second term of Y (p, δ), which

is p(δ∗)
[
1− δFMAX(p(δ∗))− (1− δ)FMIN (p(δ∗))

]
, is continuous in (p, δ), overall, Y (p, δ) is upper semicontin-

uous.
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Proof. I prepare some notations. Let A := K × V denote the seller’s (finite) action space, i.e.,

the set of pairs of recommended products and prices. When the seller recommends product k ∈ K

at price p ∈ V , I say that the seller chooses a = (k, p) ∈ A. Given (a, b) ∈ A × ∆(V K),

let U(a, b) and R(a, b) denote the expected payoffs of the consumer and the seller, respectively,

when the seller chooses a, the consumer’s valuations are drawn according to b, and the consumer

takes an optimal purchase decision (breaking ties in favor of the seller). Given the seller’s belief

b ∈ ∆(V K), let a(b) ∈ A denote the seller’s optimal recommendation and pricing that break ties

in favor of the consumer. (a(b) exists because A is finite.)

I prove the existence of an equilibrium (disclosure rule) following the standard procedure. The

first step shows that the consumer’s payoff is upper semi-continuous in disclosure rules. The sec-

ond step proves that the set of all disclosure rules is compact. I use weak∗ topology in ∆(∆(V K)).

Consider an information set where the seller chooses a product to recommend and a price. Let

b ∈ ∆(V K) denote the seller’s belief about the valuation vector. If the seller and the consumer

take optimal actions following the information set, the consumer’s expected payoff is given by

U(a(b), b). I show that U(a(b), b) is upper semi-continuous in b ∈ ∆(V K). Suppose to the con-

trary that there exists ε > 0 and (bn)+∞
n=1 ⊂ ∆(V K) such that limn bn = b but U(a(bn), bn) ≥

U(a(b), b) + ε for all n. Because A is finite, we can choose a subsequence (bn(m))
+∞
m=1 so that for

some a′ ∈ A, a(bn(m)) = a′ for all m. Without loss of generality, assume that a(bn) = a′ for all

n. Note that R(a′, bn) ≥ R(a(b), bn) because a′ = a(bn) is optimal for the seller given its belief

bn. Note also that R(a, b) is continuous in b with a fixed a. Indeed, suppose that a is such that the

seller recommends product k at price p, where the consumer’s value for product k is distributed

according to bk = (bk1, . . . , b
k
N) ∈ ∆(V ) under b ∈ ∆(V K). Then, R(a, b) = p ·

∑N
`=1 1{v`≥p}b

k
` ,

which is continuous in b. (1{v`≥p} is the indicator function that takes values 1 and 0 if v` ≥ p

and v` < p, respectively.) Given the continuity of R(a, b) in b, R(a′, bn) ≥ R(a(b), bn) for all

n implies R(a′, b) ≥ R(a(b), b). Thus, a′ is optimal for the seller given b. This implies that

U(a(b), b) ≥ U(a′, b) by the seller’s tie-braking rule. Also, U(a(bn), bn) ≥ U(a(b), b) + ε for all

n implies U(a′, b) ≥ U(a(b), b) + ε, because a(bn) = a′, and U(a, b) =
∑N

`=1 1{v`≥p}(v` − p)bk` is

continuous in b. However, these two inequalities lead to U(a(b), b) ≥ U(a′, b) ≥ U(a(b), b) + ε,

which is a contradiction. Thus, U(a(b), b) is upper semi-continuous in b ∈ ∆(V K). By The-

orem 15.5 of Aliprantis and Border (2006),
∫

∆(V K)
U(a(b), b)dτ(b) is upper semi-continuous in
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τ ∈ ∆(∆(V K)) when ∆(∆(V K)) is endowed with weak∗ topology. This completes the first part.

Next, I show that the set D of all disclosure rules is weak∗ compact. To do so, let b0 :=

x0×· · ·×x0 denote the prior distribution of valuation vector. Also, given a disclosure rule φ ∈ D,

I use φ̂ ∈ ∆(∆(V K)) to mean the distribution over posterior beliefs about valuation vector u

induced by φ and b0. Moreover, let D̂ := (φ̂)φ∈D ⊂ ∆(∆(V K)). Proposition 1 ( (iii)⇒ (ii) ) of

Kamenica and Gentzkow (2011) implies that if the consumer’s payoff
∫

∆(V K)
U(a(b), b)dτ(b) is

maximized at some τ ∗ ∈ D̂ =
{
τ ∈ ∆(∆(V K)) :

∫
∆(V K)

bdτ(b) = b0

}
, then there is a disclosure

rule (with a finite message space) that maximizes his payoff among all available disclosure rules.

Now, ∆(∆(V K)) is weak∗ compact because ∆(V K) is compact (e.g., Theorem 15.11 of Aliprantis

and Border (2006)). Also, D̂ is closed. To see this, take a sequence of disclosure rules τ` that

converges to τ in weak∗ topology and satisfies
∫

∆(V K)
bτ`(b) = b0 for all `. For each product

k and value vn, let bkn denote the probability that the value of product k is vn under b. Because

the projection map that takes b to bkn is continuous and bounded,
∫

∆(V )
bknτ`(b) →

∫
∆(V )

bknτ(b) as

` → +∞. Thus,
∫

∆(V K)
bτ(b) = b0, which implies τ ∈ X . Because the limit of any convergent

sequence in D̂ belongs to D̂, D̂ is closed. Thus, D̂, which is a closed subset of a compact set

∆(∆(V K)), is weak∗ compact.

Finally, in equilibrium, the consumer solves maxτ∈D̂
∫

∆(V K)
U(a(b), b)dτ(b).

∫
∆(V K)

U(a(b), b)dτ(b)

is upper semi-continuous in τ and D̂ is compact in weak∗ topology in ∆(∆(V K)). Thus, the setD∗

of maximizers is nonempty and weak∗ compact. Finally, as I prove below, the seller’s expected pay-

off
∫

∆(V K)
R(a(b), b)dτ(b) is upper semi-continuous in τ . Therefore, maxτ∈D∗

∫
∆(∆(V K))

R(a(b), b)dτ(b)

has a maximizer. Any maximizer τ ∗, combined with the optimal on-path and off-path behavior of

the seller and the consumer, consists of an equilibrium.

To see that
∫

∆(∆(V K))
R(a(b), b)dτ(b) is upper semicontinuous, I show that R(a(b), b) is upper

semicontinuous in b. Suppose to the contrary that there exists ε > 0 and (bn)+∞
n=1 ⊂ ∆(V K) such

that limn bn = b but R(a(bn), bn) ≥ R(a(b), b) + ε for all n. Because A is finite, we can choose a

subsequence (bn(m))
+∞
m=1 so that for some a′ ∈ A, a(bn(m)) = a′ for all m. As R(a, b) is continuous

in b, we obtain R(a′, b) ≥ R(a(b), b) + ε. However, this contradicts, R(a(b), b) ≥ R(a′, b).

Thus, R(a(b), b) is upper semi-continuous in b, and thus
∫

∆(∆(V K))
R(a(b), b)dτ(b) is upper semi-

continuous by Theorem 15.5 of Aliprantis and Border (2006).

48


	Introduction
	Related Work

	Baseline Model
	Discussion of Modeling Assumptions

	Restricted Information Disclosure
	Equilibrium Analysis
	[theoremFullDisclsoure]Theorem 1 as a Tragedy of the Commons

	Unrestricted Information Disclosure
	Inefficiency of Equilibrium
	Welfare Comparison in the Unrestricted Model
	Nondiscriminatory Pricing Can Enhance Efficiency

	Extensions
	General Conditions for Welfare Ranking Results
	Market for Personal Data
	A Model of Two-Sided Private Information
	Alternative Interpretation: Online Advertising Platform

	Concluding Discussion
	Proof of [lemmaSellerStraetgy]Lemma 1
	Proof of [SellerPriceIncreasing]Lemma 3
	Proof of [theoremFullDisclsoure]Theorem 1
	Presence of ``Negative Externality'' with a Continuum of Consumers
	Proof of [propositionUniformEfficient]Proposition 1
	Proof of [propositionPersonalizedEfficient]Proposition 2
	Proof of [propositionLimit2]Proposition 3
	Existence of Equilibrium under Discriminator Pricing


