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Abstract

We study the role of communication in repeated games with private moni-
toring. We �rst show that without communication, the set of Nash equilibrium
payo¤s in such games is a subset of the set of "-coarse correlated equilibrium
payo¤s ("-CCE) of the underlying one-shot game. The value of " depends on
the discount factor and the quality of monitoring. We then identify conditions
under which there are equilibria with "cheap talk" that result in nearly e¢ -
cient payo¤s outside the set "-CCE. Thus, in our model, communication is
necessary for cooperation.

1 Introduction

The proposition that communication is necessary for cooperation seems quite nat-
ural, even self-evident. Indeed, in the old testament story of the Tower of Babel,
God thwarted the mortals�attempt to build a tower reaching the heavens merely by
dividing the languages. The inability to communicate with each other was enough
to doom mankind�s building project. At a more earthly level, antitrust laws in many
countries prohibit or restrict communication among �rms. Again, the premise is that
limiting communication limits collusion.
Despite its self-evident nature, it is not clear how one may formally establish

the connection between communication and cooperation. One option is to consider
the e¤ects of pre-play communication in one-shot games. This allows players to
coordinate and even correlate their play in the game.1 But in many games of interest,
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communication coincides with set of correlated equilibria of the original game.
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this does not enlarge the set of equilibria to allow for cooperation. For instance, pre-
play communication has no e¤ect in the prisoners�dilemma. It also has no e¤ect in
a di¤erentiated-product price-setting oligopoly with linear demands.2

In this paper we study the role of in-play communication in repeated games�
the basic framework for analyzing the prospects for cooperation among self-interested
parties. The basic idea is that players are willing to forgo short-term gains in order to
reap future rewards. But this relies on the ability of players to monitor each other well.
If monitoring is poor, cooperative outcomes are hard to sustain because players can
cheat with impunity and we study whether, in these circumstances, communication
can help. Speci�cally, we show how in-play communication improves the prospects for
cooperation in repeated games with imperfect private monitoring. In such settings,
players receive only noisy private signals about the actions of their rivals.3

Our main result (Theorem 6.1) identi�es monitoring structures� the stochastic
mapping between actions and signals� with the property that communication is nec-
essary for cooperation.

Theorem For any high but �xed discount factor, there exists an open set of moni-
toring structures such that there is an equilibrium with communication whose welfare
exceeds that from any equilibrium without communication.

What kinds of monitoring structures lead to this conclusion? Two conditions
are needed. First, private signals should be rather noisy so that in the absence
of communication monitoring is poor. Second, private signals of players should be
strongly correlated (actually, a¢ liated) when they cooperate and become less so fol-
lowing a deviation.4 The second condition is natural in many economic environments:
price-setting oligopoly (Aoyagi, 2002), principal and multi-agent settings (Gromb and
Martimort, 2007 or Fleckinger, 2012) and relational contracts (Deb et. al, 2016).
How exactly does communication facilitate cooperation? The basic idea is that

players can monitor each other not only by what they "see"� the signals� but also
by what they "hear"� the messages that are exchanged. But since the messages are
just cheap talk� costless and unveri�able� one may wonder how these can be used for
monitoring. We construct equilibria in which the messages are cross-checked to ensure
truthful reporting of signals. Moreover, the cross-checking is su¢ ciently accurate so
that deviating players �nd it di¢ cult to lie e¤ectively. These essential properties rely
on the second condition on the monitoring structure mentioned above. We use these
ideas to construct an equilibrium that is nearly e¢ cient.

2This is a potential game in the sense of Monderer and Shapley (1996) and a result of Neyman�s
(1997) then implies that the set of correlated equilibria coincides with the unique Nash equilibrium.

3A classic example is Stigler�s (1964) model of secret price cuts where �rms choose prices that are
not observed by other �rms. The prices (actions) then stochastically determine �rms�sales (signals).
Each �rm only observes its own sales and must infer its rivals�actions only via these.

4Example 2 below shows that communication does not help if the reverse is true� that is, if
a¢ liation actually increases following a deviation.
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Our main result requires two steps. The �rst task is to �nd an e¤ective bound
on equilibrium payo¤s that can be achieved without communication. But the model
we study is that of a repeated game with private monitoring and there is no known
characterization of the set of equilibrium payo¤s. This is because with private mon-
itoring each player knows only his own history (of past actions and signals) and has
only noisy information about the private histories of other players. Since players�his-
tories are not commonly known, these cannot be used as state variables in a recursive
formulation of the equilibrium payo¤ set. In Section 4, we borrow an equilibrium
notion from algorithmic game theory� that of a coarse correlated equilibrium� and
are able to relate (in Proposition 4.1) the Nash equilibrium payo¤s of the repeated
game to the coarse correlated equilibrium payo¤s of the one-shot game.5 The set
of coarse correlated equilibria is larger than the set of correlated equilibria and so
has less predictive power in one-shot games. But because it is very easy to compute,
in some cases it is nevertheless useful in bounding the set of Nash equilibria� for
instance, in congestion games (Roughgarden, 2016). Here we show that it is useful
in bounding the set of Nash equilibria of repeated games as well. Precisely,

Proposition The set of Nash equilibrium payo¤s of the repeated game without com-
munication is a subset of the set of "-coarse correlated equilibria of the one-shot
game.

The """ is determined by the discount factor and the monitoring structure of the
repeated game and we provide an explicit formula for this. When the monitoring
quality is poor� it is hard for other players to detect a deviation� " is small and the
set of "-coarse correlated equilibrium payo¤s provides an e¤ective bound to the set
of equilibrium payo¤s in the repeated game.
The second task is to show that with communication, equilibrium payo¤s above

the bound can be achieved. To show this, we construct a cooperative equilibrium
explicitly in which, in every period, players publicly report the signals they have
received (see Proposition 5.1). Players�reports are aggregated into a single "score"
and the future course of play is completely determined by this summary statistic.
Deviations result in low scores and trigger punishments with higher probability. The
construction of the score function relies on an auxiliary result (Proposition B.1) that is
of some independent interest: Every generic a¢ liated distribution is a strict correlated
equilibrium of a game with identical payo¤s.
Note that the game is one with identical interests even if the distribution is asym-

metric. This result in turn lets us construct an equilibrium with communication to be
of a particularly simple "trigger-strategy" form. When signals are "very informative"
about each other, the constructed equilibrium is nearly e¢ cient.

5While a formal de�nition appears in Section 2, a coarse correlated equilibrium is a joint di-
istribution over players�actions such that no player can gain by playing a pure action under the
assumption that the other players will follow the marginal distribution over their actions. The notion
originates in the work of Moulin and Vial (1979).
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We emphasize that the analysis in this paper is of a di¤erent nature than that
underlying the so-called "folk theorems" (see Sugaya, 2015). These show that for
a �xed monitoring structure, as players become increasingly patient, near-perfect
collusion can be achieved in equilibrium. In this paper, we keep the discount fac-
tor �xed and change the monitoring structure so that the set of equilibria with
communication is substantially larger than the set without. A di¢ culty here is
that monitoring structures� which are stochastic mappings from actions to signals�
are high-dimensional objects. We show, however, that only two easily computable
parameters� one measuring how noisy the signals are and the other how strongly cor-
related they are� su¢ ce to identify monitoring structures for which communication
is necessary for cooperation.

Related literature

There is a vast literature on repeated games under di¤erent kinds of monitoring. Un-
der perfect monitoring, given any �xed discount factor, the set of perfect equilibrium
payo¤s with and without communication is the same. Under public monitoring, again
given any �xed discount factor, the set of (public) perfect equilibrium payo¤s with
and without communication is also the same. Thus, in these settings communication
does not a¤ect the set of equilibria.
Compte (1998) and Kandori and Matsushima (1998) study repeated games with

private monitoring when there is communication among the players. In this setting,
they show that the folk theorem holds� any individually rational and feasible outcome
can be approximated as the discount factor tends to one. This line of research has
been pursued by others as well, in varying environments (see Fudenberg and Levine
(2007) and Obara (2009) among others). Particularly related to the current paper
is the work of Aoyagi (2002) and Zheng (2008) concerning correlated signals. They
show that e¢ cient outcomes can be approximated as the discount factor tends to
one, again with communication. All of these papers thus show that communication is
su¢ cient for cooperation when players are su¢ ciently patient. But as Kandori and
Matsushima (1998) recognize, �One thing which we did not show is the necessity of
communication for a folk theorem" (p. 648, their italics).
In a remarkable paper, Sugaya (2015) shows the surprising result that in very

general environments, the folk theorem holds without any communication. Thus, in
fact, communication is not necessary for a folk theorem. The analysis of repeated
games with private monitoring is known to be di¢ cult� and more so if communication
is absent. Although Sugaya�s result was preceded by folk theorems for some limiting
cases where the monitoring was almost perfect or almost public, the generality of its
scope was unanticipated.
Unlike the folk theorems, in our work we do not consider the limit of the set of

equilibrium payo¤s as players become arbitrarily patient. We study the set of equilib-
rium payo¤s for a �xed discount factor. Key to our result is a method of bounding the
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set of payo¤s without communication using the easily computable set of "-coarse cor-
related equilibria. Pai, Roth and Ullman (2014) also develop a bound that depends on
a measure of monitoring quality based on the computer-science notion of "di¤erential
privacy." But the bound so obtained applies to equilibrium payo¤s with communica-
tion as well as those without, and so does not help in distinguishing between the two.
Sugaya and Wolitzky (2017) �nd su¢ cient conditions under which the equilibrium
payo¤s with private monitoring are bounded by the equilibrium payo¤s with perfect
monitoring. This bound again applies whether or not there is communication and so
is also unable to distinguish between the two.
Spector (2015) shows that communication can be bene�cial in a model of price

competition with private monitoring. Firms see their own current sales but, unlike
in our model, can see other �rms�sales with some delay. Communication is helpful
in reducing this delay in monitoring. In our model, all communication is pure cheap
talk� private signals remain so forever.
The current paper builds on our earlier work, Awaya and Krishna (2016), where

we explored some of the same issues in the special context of Stigler�s (1964) model of
secret price cuts in a symmetric duopoly with (log-) normally distributed sales. Much
of the analysis there relied on some important properties of the normal distribution as
well as the symmetry. This paper considers general n-person �nite games and general
signal distributions. More important, the bound on payo¤s without communication
that is developed here is tighter than the bound constructed in the earlier paper.6

Finally, the construction of equilibria with communication is entirely di¤erent and
does not rely on any symmetry among players.
The role of communication in fostering cooperation has also been the subject of

numerous experiments in varied informational settings. Of particular interest is the
work of Ostrom et al. (1994, Chapter 7) who �nd that in-play communication in
repeated common-pool resource games leads to greater cooperation than does pre-
play communication.

The remainder of the paper is organized as follows. The next section outlines the
formal model of repeated games with private monitoring. To motivate the subsequent
analysis, in Section 3 we present some of the main ideas, as well as some subtleties,
by means of some simple examples. Section 4 analyzes the repeated game without
communication whereas Section 5 does the same with communication. The main
result is stated in Section 6. Appendix A contains omitted proofs from Section 4.
Appendix B contains an auxiliary result regarding correlated equilibria that forms
the basis of the equilibrium constructed in Section 5.

2 Preliminaries

As mentioned in the introduction, we study repeated games with private monitoring.
6An example showing this is available from the authors.
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Stage game The underlying game is de�ned by
�
I; (Ai; Yi; wi)i2I ; q

�
where I =

f1; 2; :::; ng is the set of players, Ai is a �nite set of actions available to player i
and Yi is a �nite set of signals that i may observe. The actions of all the players
a � (a1; a2; :::; an) 2 A � �iAi together determine q (� j a) 2 �(Y ), a probability
distribution over the signals of all players.7 A vector of signals y 2 Y is drawn from
this distribution and player i only observes yi: Player i�s payo¤ is then given by the
function wi : Ai � Yi ! R so that i�s payo¤ depends on other players�actions only
via the induced signal distribution q (� j a) : We will refer to wi (ai; yi) as i�s ex post
payo¤.8

Prior to any signal realizations, the expected payo¤ of player i is then given by
the function ui : A! R; de�ned by

ui (a) =
P

yi2Yi wi (ai; yi) qi (yi j a)

where qi (� j a) 2 �(Yi) is the marginal distribution of q (� j a) on Yi so that qi (yi j a) =P
y�i2Y�i q (yi; y�i j a) : As usual, kuk1 denotes the sup-norm of u: In what follows,

we will merely specify the expected payo¤ functions ui not the underlying ex post
payo¤ functions wi: The latter can be derived from the former for generic signal
distributions� speci�cally, as long as fqi (� j a) : a 2 Ag is a linearly independent set
of vectors.
We refer to G � (Ai; ui)i2I as the stage game. The set of feasible payo¤s in G is

F = cou (A) ; the convex hull of the range of u. A payo¤ vector v� 2 F is (strongly)
e¢ cient if there does not exist a feasible v 6= v� such that v � v�:
The collection fq (� j a)ga2A is referred to as themonitoring structure. We suppose

throughout that q (� j a) has full support, that is, for all y 2 Y and a 2 A;

q (y j a) > 0 (1)

Quality of monitoring Let q�i (� j a) 2 �(Y�i) be the marginal distribution of
q (� j a) 2 �(Y ) over the joint signals of the players j 6= i: The quality of a monitoring
structure q is de�ned as

� = max
i
max
a;a0i

kq�i (� j a)� q�i (� j a0i; a�i)kTV (2)

7We adopt the following notational conventions throughout: capital letters denote sets with
typical elements denoted by lower case letters. Subscripts denote players and unsubscripted letters
denote vectors or cartesian products. Thus, xi 2 Xi and x = (x1; x2; :::; xn) 2 X = �iXi: Also, x�i
denotes the vector obtained after the ith component of x has been removed and (x0i; x�i) denotes the
vector where the ith component of x has been repaced by x0i: Finally, �(X) is the set of probability
distributions over X:

8This ensures that knowledge of one�s ex post payo¤ does not carry any infomation beyond that
in the signal. For instance, in Stigler�s (1964) model a �rm�s pro�ts depend only on its own actions
(prices) and its own signal (sales).
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where k�� �kTV denotes the total variation distance between the probability mea-
sures � and �.9 It is intuitively clear that when the quality of monitoring is poor, it
is hard for players other than i to detect a deviation by i:

Coarse correlated equilibrium The distribution � 2 �(A) is a coarse corre-
lated equilibrium (CCE) of G if for all i and all ai 2 Ai;

ui (�) � ui (ai; ��i)

where ��i 2 �(A�i) denotes the marginal distribution of � over A�i:10 The distrib-
ution � 2 �(A) is an "-coarse correlated equilibrium ("-CCE) of G if for all i and
all ai 2 Ai;

ui (�) � ui (ai; ��i)� " (3)

De�ne "-CCE (G) = fu (�) 2 F : � is an "-CCE of Gg to be the set of "-coarse cor-
related equilibrium payo¤s of G:

Repeated game We will study an in�nitely repeated version of G, denoted
by G�, de�ned as follows. Time is discrete and indexed by t = 1; 2; ::: and in each
period t, the game G is played. Payo¤s in the repeated game G� are discounted
averages of per-period payo¤s using the common discount factor � 2 (0; 1) : Precisely,
if the sequence of actions taken is (a1; a2; :::) ; player i�s ex ante expected payo¤ is
(1� �)

P
t �
tui (a

t) : A (behavioral) strategy for player i in the game G� is a sequence
of functions �i = (�1i ; �

2
i ; :::) where �

t
i : A

t�1
i � Y t�1i ! �(Ai). Hence, a strategy

determines a player�s current, possibly mixed, action as a function of his private
history� his own past actions and past signals.

Repeated game with communication We will also study a version of G�,
denoted byGcom� , in which players can communicate with each other after every period
by sending public messages mi from a �nite set Mi: The communication phase in
period t takes place after the signals in period t have been observed. Thus, a strategy
of player i in the game Gcom� consists of two sequences of functions �i = (�1i ; �

2
i ; :::)

and �i = (�
1
i ; �

2
i ; :::) where �

t
i : A

t�1
i � Y t�1i �M t�1 ! �(Ai) determines a player�s

current action as a function of his own past actions, past signals and past messages
from all the players. The function �ti : A

t
i�Y ti �M t�1 ! �(Mi) determines a player�s

current message as a function of his own past and current actions and signals as well
as past messages from all the players. The messages mi themselves have no direct
payo¤ consequences.

9The total variation distance between two probability measures � and � on X is de�ned as
k�� �kTV = 1

2

P
x2X j� (x)� � (x)j : This is, of course, equivalent to the metric derived from the

L1 norm.
10A coarse correlated equilibrium di¤ers from a correlated equilibrim in that the latter requires

that no player have a deviation at the interim stage� after a recommendation to play a particular
action. A coarse correlated equilibrium requires that no player have a deviation at the ex ante stage.
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Equilibrium notion We will consider sequential equilibria of the two games.
For G�; the repeated game without communication, the full support condition (1)
ensures that the set of sequential equilibrium payo¤s coincides with the set of Nash
equilibrium payo¤s (see Sekiguchi, 1997). In both situations, we suppose that players
have access to public randomization devices.

3 Some examples

Before beginning a formal analysis of equilibrium payo¤s in the repeated game G�
and its counterpart with communication, Gcom� , it will be instructive to consider a few
examples. The �rst example illustrates, in the simplest terms, the main result of the
paper. The other examples then point to some complexities. A word of warning is in
order. All of the following examples have the property that the marginal distributions
of players�signals are the same regardless of players�actions. This means that the
expected payo¤ functions ui (a) cannot be derived from underlying ex post payo¤
functions wi (ai; yi) : The examples have this property only to illustrate some features
of the model in the simplest way possible. This is not essential� the examples can
easily be amended so that underlying ex post payo¤ functions exist.

Example 1: Communication is necessary for cooperation. Consider the fol-
lowing prisoners�dilemma as the stage game:

c d
c 2; 2 �1; 3
d 3;�1 0; 0

Each player has two possible signals y0 and y00 and suppose that the monitoring
structure q is

q (� j cc) =
y0 y00

y0 1
2
� " "

y00 " 1
2
� "

q (� j : cc) =
y0 y00

y0 1
4

1
4

y00 1
4

1
4

where : cc denotes any action pro�le other than cc:
We argue below that without communication, it is impossible for players to

"cooperate"� that is, to play cc� and that the unique equilibrium payo¤ is (0; 0).
With communication, however, it is possible for the players to cooperate (with high
probability) and, in fact, attain average payo¤s close to (2; 2) :
The monitoring structure here has two key features. First, the marginal distribu-

tions qi (� j a) are identical no matter what action a is played, so that the quality of
monitoring � (de�ned in (2)) is zero. Second, if cc is played, each player�s signal is
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very informative about the other player�s signal. If something other than cc is played,
a player�s signal is completely uninformative about the other player�s signal.11

Claim 1 Without communication, cooperation is not possible� for all �; the unique
equilibrium payo¤ of G� is (0; 0) :

Fix any strategy of player 2: Since the marginal distribution on player 2�s signals
is not a¤ected by what player 1 does, his ex ante belief on what player 2 will play in
any future period is also independent of what he plays today. Thus, in any period,
player 1 is better o¤ playing d rather than c: Cooperation is impossible.12

Claim 2 With communication, cooperation is possible� given any � > 1
2
; there exists

an " such that for all " < ", there exists an equilibrium of Gcom� whose payo¤s are
close to (2; 2) :

Now suppose that players report their signals during the communication phase�
that is, Mi = Yi: Consider the following variant of a "trigger strategy": play c in
period 1 and in the communication phase, report the signal that was received. In
any period t; play c if in all past periods, the reported signals have agreed� that is,
if both players reported y0 or both reported y00: If the reports disagreed in any past
period, play d: In the communication phase, report your signal.
To see that these strategies constitute an equilibrium, note �rst that if all past

reports have agreed, and a player has played c in the current period, then there is
no incentive to misreport one�s signal. Misreporting only increases the probability of
triggering a punishment from 2" to 1

2
and so there is no gain from deviating during

the communication phase.
Finally, if all past reports agreed, a player cannot gain by deviating by playing

d: Such a deviation will trigger a punishment with probability 1
2
; no matter what he

reports in the communication phase. It is routine to verify that when " is small, this
is not pro�table. Each player�s payo¤ in this equilibrium is

v =
1� �

1� � + �" � 2

which converges to 2 as " converges to zero.

11The term "informative" is used in the sense of Blackwell (1951). From player i�s perspective, the
signals of the other players y�i constitute the "state of nature" and his own signal carries information
about this.
12The equality of the marginals violates one of Sugaya�s (2015) conditions and so his folk theorem

does not apply.
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Example 2: Cooperation is impossible even with communication The �rst
example exhibited some circumstances in which cooperation was not possible without
communication but with communication, it was. Does communication always facili-
tate cooperation? As the next example shows, this is not always the case� the signal
structure q matters.
Consider the prisoners�dilemma of Example 1 again but with the following "�ipped"

signal structure:

q (� j : dd) =
y0 y00

y0 1
4

1
4

y00 1
4

1
4

q (� j dd) =
y0 y00

y0 1
2
� " "

y00 " 1
2
� "

where again, : dd denotes any action pro�le other than dd:
The marginal distribution of signals qi (� j a) is, as before, una¤ected by players�

actions� � is zero again. But now the signal distribution when dd is played is more
informative than when any other action is played� in fact, the former is completely
informative.

Claim 3 With or without communication, cooperation is not possible� for all �, the
unique equilibrium payo¤ in both G� and Gcom� is (0; 0) :

First, suppose that there is an equilibrium with communication in which after
some history, player 1 is supposed to play c with probability one and report his signal
truthfully. Suppose player 1 plays d instead of c and at the communication stage,
regardless of his private signal, reports with probability one-half that his signal was y0

and with probability one-half that his signal was y00: Now regardless of whether player
2 plays c or d in that period, the joint distribution over player 1�s reports and player
2�s signals is the same as if player 1 had played c� that is, q (� j : dd) : Thus, player
1 can deviate and "lie" in a way that his deviation cannot be statistically detected.
More generally, suppose that there an equilibrium with truthful communication

in which after some history, player 1 is supposed to play c with probability p > 0.
Again, suppose that player 1 plays d instead of c and at the communication stage
reports as follows: if his private signal is y0; report y0 with probability 1� 1

2
p and y00

with probability 1
2
p; if his private signal is y00; report y0 with probability 1

2
p and y00

with probablity 1� 1
2
p: It is easy to verify that this "lying" strategy induces the same

joint distribution over player 1�s reports and player 2�s signals regardless of player 2�s
action. Precisely, if player 2 plays c; the distribution is q (� j : dd) and when player 2
plays d, it is q (� j : dd) + (1� p) q (� j dd). As above, player 1 can thus deviate and
then lie in a way that his deviation cannot be statistically detected.13

Thus, with the "�ipped" monitoring structure no cooperation is possible even
with communication. A fortiori, no cooperation is possible without communication
either. In this example, therefore, communication is unable to facilitate cooperation.
13Here we have assumed that the equilibrium communication consists only of reporting one�s

current signal truthfully. A slight extension of this argument, available from the authors, shows that
even with arbitrary messages, there is no equilibrium with cooperation.
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Example 3: Communication is not necessary for cooperation Our �nal
example illustrates the possibility that "full" cooperation is possible without commu-
nication even though monitoring is very poor� in fact, non-existent.14 Consider the
following version of "rock-paper-scissors":

r p s
r 10; 10 0; 11 11; 0
p 11; 0 10; 10 0; 11
s 0; 11 11; 0 10; 10

The stage game has a unique Nash equilibrium in which players randomize equally
among the three actions and results in a payo¤ of (7; 7) : Suppose the monitoring
structure is:

q (� j a1 = a2) =

yr yp ys

yr 1
3

0 0
yp 0 1

3
0

ys 0 0 1
3

q (� j a1 6= a2) =

yr yp ys

yr 1
9

1
9

1
9

yp 1
9

1
9

1
9

ys 1
9

1
9

1
9

so that if players coordinate on the same action, then the signals are perfectly in-
formative; otherwise, they are uninformative. Once again � = 0 since the marginal
distributions of signals are not a¤ected by players�actions.

Claim 4 Cooperation is possible without communication� for any � � 3
11
; there exists

an equilibrium of G� with a payo¤ of (10; 10) :

In what follows, we will say that the players are "coordinated" if they take the
same action and so the resulting signal distribution is q (� j a1 = a2) : Otherwise, they
are said to be "miscoordinated."
Consider the following strategy: in period 1; play r: In period t; play action

a 2 fr; p; sg if the signal received in the last period was ya:
The average payo¤ from this strategy is clearly 10 since the players are always

coordinated. Now suppose player 1 deviates once from the prescribed strategy and
then reverts back to it.
Player 1�s immediate payo¤ from the deviation is 11: But the deviation also causes

the players to become miscoordinated. So no matter what signal player 1 receives,
player 2 is equally likely to play each of his actions. As a result, once the players are
miscoordinated, the continuation payo¤ is

w = 1
3
10 + 1

3
((1� �) 11 + �w) + 1

3
((1� �) 0 + �w)

This is because with probability 1
3
; the players will become coordinated again in the

next period and then remain coordinated thereafter. With probability 1
3
; they will

14This trivally holds in games where there is an e¢ cient one-shot Nash equilibrium, of course. In
this example that is not the case.
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remain miscoordinated, player 1 will get 11 and then the continuation payo¤w; with
probability 1

3
; he will get 0 and then w again. Thus the continuation payo¤ after

miscoordination is

w =
21� 11�
3� 2�

The original deviation is not pro�table as long as

(1� �) 11 + �w � 10

and this holds as long as � � 3
11
: The one-deviation principle (Mailath and Samuelson,

2006), then ensures that the prescribed strategies constitute an equilibrium.

4 Equilibrium without communication

In this section, we develop a method to bound the set of equilibrium payo¤s in games
with private monitoring. We will show that the set of equilibrium payo¤s of the
repeated game without communication G� is contained within the set of "-coarse
correlated equilibrium payo¤s of the stage game G. In our result, we give an explicit
formula for " involving (a) the discount factor; and (b) the quality of monitoring (as
de�ned in (2)).
The main result of this section is:

Proposition 4.1
NE (G�) � "-CCE (G)

where " = 2 �2

1��� � kuk1 :

The proposition is of independent interest because repeated games with private
monitoring do not have a natural recursive structure and so a characterization of the
set of equilibrium payo¤s seems intractable. So one is left with the task of �nding
e¤ective bounds for this set. Proposition 4.1 provides such a bound and one that is
easy to compute explicitly: the set "-CCE is de�ned by

P
i jAij linear inequalities.

Moreover, the bound does not use any detailed information about the monitoring
structure� it depends only on the monitoring quality parameter �:15

The ""-coarse correlated equilibrium" in the statement cannot simply be replaced
with ""-correlated equilibrium." Precisely, if the set of "-correlated equilibrium payo¤s
of G is denoted by "-CE (G) ; then the statement NE (G�) � "-CE (G) is false for the
same value of " as above. For instance, in Example 3 the set of correlated equilibrium
payo¤s CE (G) = f(7; 7)g while the set of coarse correlated equlibria is as depicted
15Sugaya and Wolitzky (2017) show that the set of equilibrium payo¤s with perfect monitoring

and a meditor is a bound for large enough �: Our bound applies for all � and is tighter when � is
relatively small. Moreover, it does not require a �xed point computation.

12



r
(10; 10)

(0; 11)

(11; 0)

NE = CE

CCE

Figure 1: CCE of Rock-Scissors-Paper

in Figure 1. For the monitoring structure in Example 3, � = 0 and hence " = 0 as
well. But for � � 3

11
; repeated game has an equilibrium payo¤ of (10; 10) which is in

CCE (G) but not in CE (G) :
Before proceeding with the formal proof of this result, we brie�y sketch the main

ideas. Suppose that � is a strategy pro�le with a payo¤ v (�) that is not an "-CCE
payo¤ in the one-shot game. Suppose that some player i deviates to a strategy �i
in which i chooses ai in every period regardless of history� that is, �i consists of a
permanent deviation to ai: We decompose the (possible) gain from such a deviation
into two bits. Consider a �ctitious situation in which the players j 6= i are replaced
by a non-responsive machine that, in every period, and regardless of history, plays
the ex ante distribution �t�i 2 �(A�i) that would have resulted from the candidate
strategy �: In the �ctitious situation, player i�s deviation is unpunished in the sense
that the machine continues to play as if no deviation had occurred. We can then
write

vi (�i; ��i)� vi (�)| {z }
Gain from deviation

= vi (�i; ��i)� vi (�i; ��i)| {z }
Loss from punishment

+ vi (�i; ��i)� vi (�)| {z }
Gain when unpunished

(4)

The �rst component on the right-hand side represents the payo¤di¤erence from facing
the real players j 6= i versus facing the non-responsive machine. If ��i is an e¤ective
deterrent to the permanent deviation then this should be negative and in Lemma 4.1
we calculate a lower bound to this loss. The second component is the gain to player
i when his permanent deviation goes unpunished. As we will show below in Lemma
4.2, this gain can be related to the coarse correlated equilibria of the one-shot game
(see (3)).
We begin with a formal de�nition of the non-responsive strategy played by the

�ctitious "machine." Given a strategy pro�le �; the induced ex ante distribution over

13



A in period t is
�t (�) = E�

�
�j�

t
j

�
ht�1j

��
2 �(A)

and the corresponding marginal distribution over A�i in period t is

�t�i (�) = E�
�
�j 6=i�

t
j

�
ht�1j

��
2 �(A�i)

where the expectation is de�ned by the probability distribution over t � 1 histories
determined by �: Note that ��i depends on the whole strategy pro�le � and not just
on the strategies ��i of players other than i: Note also that because players�histories
are correlated, it is typically the case that �t�i (�) =2 �j 6=i�(Aj) : Given �; let ��i (�)
denote the (correlated) strategy of players j 6= i in which they play �t�i (�) in period
t following any t � 1 period history. The strategy ��i; which is merely a sequence�
�t�i
	
of joint distributions in �(A�i) ; replicates the ex ante distribution of actions

of players j 6= i resulting from � but is non-responsive to histories.
We now proceed to decompose the gain from a permanent deviation.

4.1 Loss from punishment

In this subsection we provide a bound on the absolute value of vi (�i; ��i)�vi (�i; ��i) ;
the di¤erence in payo¤s between being punished by strategy ��i of the real players j 6=
i versus not being punished by the �ctitious machine. It is clear that the magnitude
of this di¤erence depends crucially on how responsive ��i is compared to the ��i and
this in turn depends on how well the players j 6= i can detect i�s permanent deviation.
We show below that this loss can in fact be bounded by a quantity that is a

positive linear function of �: Moreover, the bound is increasing in �: The following
result provides an exact formula for the trade-o¤ between the quality of monitoring
and the discount factor.

Lemma 4.1 Suppose i plays ai always. The di¤erence in i�s payo¤ when others play
��i versus when they play the non-responsive strategy ��i derived from � satis�es

jvi (�i; ��i)� vi (�i; ��i)j � 2
�2

1� �� � kuk1

Proof. See Appendix A.

4.2 Gain when unpunished

We now relate the second component in (4) to the "-coarse correlated equilibria of
the one-shot game (see (3)). We begin by characterizing the set of "-CCE payo¤s.
For any v 2 F ; de�ne

�(v) � min
�2�(A)

max
i
max
ai

�
ui
�
ai; ��i

�
� ui (�)

�
14



subject to
u (�) = v

where ��i 2 �(A�i) denotes the marginal distribution of � over A�i:
In words, no matter how the payo¤ v is achieved via a correlated action, at least

one player can gain at least �(v) by deviating. It is easy to see that v 2 "-CCE (G)
if and only if �(v) � ": This is because �(v) � " is the same as: there exists a
� 2 �(A) satisfying u (�) = v such that

max
i
max
ai2Ai

�
ui
�
ai; ��i

�
� ui (�)

�
� "

and this is equivalent to v 2 "-CCE (G) :
Note that �(v) is also the value of an arti�cial two-person zero-sum game �

in which player I chooses a pair (i; ai) and player II chooses a joint distribution
� 2 �(A) such that u (�) = v: The payo¤ to player I is then ui

�
ai; ��i

�
� ui (�) :

The fact that �(v) � 0 is the same as v 2 CCE (G) is analogous to a result of Hart
and Schmeidler (1989) on correlated equilibria.
The following important result shows that the function �, which measures the

static incentives to deviate, also measures the dynamic incentives to deviate from
a non-responsive strategy. It shows that �(v) is also the value of a di¤erent two-
person zero-sum game �� in which player I chooses a pair (i; �i) where �i denotes
the constant sequence ai and player II chooses a sequence � 2 �(A)1 such that
v (�) = v: The payo¤ to player I in �� is vi (�i; ��i)� vi (�) :
Lemma 4.2

�(v) = min
�2�(A)1

max
i
max
�i
[vi (�i; ��i)� vi (�)]

subject to
v (�) = v

where vi (�i; ��i) is i�s payo¤ when he plays ai always and others play the non-
responsive strategy ��i =

�
�1�i; �

2
�i; :::

�
2 �(A�i)1 derived from � = (�1; �2; :::) 2

�(A)1 :

Proof. It is clear that �(v) is at least as large as the right-hand side of the equality
above. This is because the set of strategies available to player II in �� includes all
stationary strategies and the latter are equivalent to all strategies in �: The set of
strategies available to player I in � and �� are the same.
Given a sequence � = (�1; �2; :::) 2 �(A)1, let vt = u (�t) be the ex ante payo¤s

in period t: Then, if v (�) = v we have (1� �)
P1

t=1 �
tvt = v:

For any payo¤ vector w 2 F ; de�ne �i (w; ai) = min�2�(A)
�
ui
�
ai; ��i

�
� ui (�)

�
subject to u (�) = w: Then, for for all i and all ai;

vi (�i; ��i)� vi (�) = (1� �)
1P
t=1

�t
�
ui
�
ai; �

t
�i
�
� ui

�
�t
��

� (1� �)
1P
t=1

�t�i
�
vt; ai

�
(5)
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where the second inequality follows from the de�nition of �i.
Now since �i (�; ai) is convex16, it is the case that a solution to the problem:

min
vt
(1� �)

1P
t=1

�t�i
�
vt; ai

�
subject to

(1� �)
1P
t=1

�tvt = v

is to set vt = v for all t. Thus, we have that

(1� �)
1P
t=1

�t�i
�
vt; ai

�
� �i (v; ai)

which when combined with (5) yields that for all i and ai;

vi (�i; ��i)� vi (�) � �i (v; ai) = min
�:u(�)=v

�
ui
�
ai; ��i

�
� ui (�)

�
This implies that

min
�:v(�)=v

[vi (�i; ��i)� vi (�)] � min
�:u(�)=v

�
ui
�
ai; ��i

�
� ui (�)

�
and thus

max
�2�([Aj)

min
�:v(�)=v

E� [vi (ai; ��i)� vi (�)] � max
�2�([Aj)

min
�:u(�)=v

E�
�
ui
�
ai; ��i

�
� ui (�)

�
Applying the minmax theorem (Sion, 1958) in the game �� on the left-hand side and
in the game � on the right-hand side, we obtain

min
�:v(�)=v

max
i
max
ai
vi (�i; ��i)� vi (�) � min

�:u(�)=v
max
i
max
ai

�
ui
�
ai; ��i

�
� ui (�)

�
= �(v)

4.3 Payo¤ bound

With Lemmas 4.1 and 4.2 in hand, we can now complete the proof of the result
(Proposition 4.1) that the set of Nash equilibrium payo¤s of the repeated game is
contained in the set of "-coarse correlated equilibrium payo¤s of the one-shot game.
Suppose � is a strategy pro�le in G� such that v � v (�) =2 "-CCE (G) for " =

2 �2

1��� � kuk1 : Then we know that �(v) > ": Lemma 4.2 implies that

min
�2�(A)1

max
i
max
�i
[vi (�i; ��i)� vi (�)] > "

16The convexity of �i (�; ai) is a consequence of the fact that u is linear in �:
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and so
max
i
max
�i
[vi (�i; ��i)� vi (�)] > "

where � is the non-responsive strategy derived from � as above. Thus, there exists a
player i and a permanent deviation for that player such that vi (�i; ��i)� vi (�) > ":
Applying Lemmas 4.1 and 4.2 we have

vi (�i; ��i)� vi (�) = vi (�i; ��i)� vi (�i; ��i) + vi (�i; ��i)� vi (�)

> �2 �2

1� �� kuk1 + "
= 0

Thus, � is not a Nash equilibrium of G�: This completes the proof of Proposition 4.1.

4.4 E¤ective bound

Proposition 4.1 provides a bound to the set of equilibrium payo¤s of the repeated
game without communication. But in games which have an e¢ cient coarse correlated
equilibrium, the bound is ine¤ective. We will impose the condition

Condition 1 G does not have an e¢ cient coarse correlated equilibrium.

Most games of interest satisfy the condition: the prisoners�dilemma, "chicken,"
Cournot oligopoly (with discrete quantities), Bertrand with or without di¤erentiated
products, etc. The rock-paper-scissors game in Example 3, on the other hand, does
not satisfy the condition. In that example, � (rr) = � (pp) = � (ss) = 1

3
constitutes

a coarse correlated equilibrium (but not a correlated equilibrium) that is e¢ cient.

5 Equilibrium with communication

In what follows, we will consider e¢ cient actions a� that Pareto dominate some Nash
equilibrium of the stage game, that is, u (a�) � u

�
�N
�
where �N 2 �i�(Ai) is a

(possibly mixed) Nash equilibrium of the stage game.17 We will display a particular
strategy pro�le for the game with communication and identify conditions on the signal
structure q and the discount factor � that guarantee that the pro�le constitutes an
equilibrium which is "nearly" e¢ cient. We emphasize that our result is not a "folk
theorem." In the latter, the signal structure is held �xed and the discount factor is
raised su¢ ciently so that any feasible outcome can arise in equilibrium. In our result,
the discount factor is held �xed (perhaps at some high level) and the monitoring
structure is varied so that e¢ cient outcomes can be sustained in equilibrium.

17This condition can be easily weakened to require only that u (a�) Pareto dominate some convex
combination of one-shot Nash equilibrium payo¤s.
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5.1 Strategies

The strategy pro�le is similar to the well-known grim trigger strategy with the addi-
tional feature that at the end of period t, players report the signals, yi, they received
in that period. The play in any period is governed by a state variable that takes on
two values� "normal" and "punishment." The players�strategies depend only on the
state and are very simple: if the state in period t is "normal," play a�i ; if the state is
"punishment," play the one-shot Nash action �N : The state transitions from period
t to t+ 1 are determined solely by the players�reports of their signals in period t.
In period 1; the state is "normal." If the state is "normal" in period t; and the

players report signals y at the end of the period, then the probability that the state
remains "normal" in period t + 1 is p� (y) and how the reports y are aggregated to
yield p� (y) is speci�ed in detail below. The "punishment" state is absorbing� if the
state is "punishment" in any period, it remains so in every subsequent period.
Speci�cally, for all i; consider the following strategy (��i ; �

�
i ) in the repeated game

with communication. The set of messages is the same as the set of signals, that is,
Mi = Yi:
The actions chosen according to ��i are as follows:

� In period 1; choose a�i .

� In any period t > 1; if the state is "normal," choose ati = a�i ; otherwise, choose
�Ni .

The messages sent according to ��i are as follows:

� In any period t � 1; if the action chosen ati = a�i , then report mt
i = y

t
i :

� In any period t � 1; if the action chosen ati = ai 6= a�i and the signal received
is yi then report mt

i 2 argmaxzi2Yi E [p� (zi; ey�i) j yi] where the expectation is
taken with respect to the distribution q

�
� j (ai; a��i)

�
:

We will show that there exists a function p� (y) with the following key properties:

1. along the equilibrium path, p� induces truthful reporting of signals;

2. if a player deviates from a�i in the normal state, then the expected value of p
�

falls (the probability of going to the punishment state increases) regardless of
his or her report;

3. if the signals are close to being perfectly informative along the equilibrium path,
then the probability of punishment is small.
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Figure 2: Equilibrium strategy

The �rst two properties are required for the strategies outlined above to constitute
an equilibrium. The third property guarantees that the equilibrium is "nearly" e¢ -
cient. Figure 2 is a schematic depiction of the play resulting from the given strategies.

Until now we have made no assumptions about the signals and their distribution.
In particular, the bound on payo¤s without communication, obtained in the previous
section, applies without any speci�c assumptions about the signal structure. In this
section, however, we will use some speci�c features of the signals� that they are
ordered and (pairwise) a¢ liated.
For ease of notation, suppose the set of signals for each player is a �nite, ordered

set. Moreover, we will suppose that these sets of signals are of the same cardinality,
say K: Let q� = q (� j a�) be the joint distribution of signals resulting from the action
pro�le a� 2 A and denote by E� all expectations with respect to q�: We will suppose
that the signals are pairwise a¢ liated.18

Condition 2 (A¢ liation) q� is (pairwise) a¢ liated.

We can then suppose, without loss of generality, that for all i; the signals are
consecutive integers19

Yi = f1; 2; :::; Kg
We also suppose that no two signals of player i result in the same beliefs about

the signals of player j:

Condition 3 (Non-equivalent signals) For all i, yi 6= y0i and j 6= i, q�j (� j yi) 6=
q�j (� j y0i) :

A¢ liation implies that if yi < y0i; then the distribution q
�
j (� j y0i) �rst-order sto-

chastically dominates q�j (� j yi) which in turn implies that E�[eyj j yi] � E�[eyj j y0i]:
18The joint distribution q over �iYi is pairwise a¢ liated if for all i,j and all yi < y0i and yj < y0j ;

qij(y
0
i; y

0
j)qij (yi; yj) � qij (y0i; yj) qij(yi; y0j); where qij is the marginal distribution of q over Yi � Yj :

19This is because monotone transformations a¢ liated random variables are also a¢ liated.

19



The condition of non-equivalent signals now implies that the inequality must be strict,
that is, if yi < y0i; then E

�[eyj j yi] < E�[eyj j y0i]:
5.2 Incentive compatibility

We now turn to the construction of a p� which will be used to support the equilibrium
with communication. This requires that players have the incentive to report their
signals truthfully.
Given q� 2 �(Y ) ; consider the following auxiliary one-shot common-interest

game (Yi; P �)
i=n
i=1 . In this game, the set of player i�s actions is the set of signals Yi.

When players choose y 2 Y; the common payo¤ is

P � (y) =
1

2

nX
i=1

X
j 6=i

yiyj �
nX
i=1

X
xi<yi

E�
hP

j 6=i eyj j xii� 12
nX
i=1

E�
hP

j 6=i eyj j yii
where E� is the expectation operator with respect to the distribution q�:
Appendix B proves that any a¢ liated and non-equivalent q� 2 int� (Y ) is a strict

correlated equilibrium of the common interest game de�ned above. The normalized
version of P �, called the score function, is

p� (y) =
P � (y)�minP �
maxP � �minP � (6)

where minP � (resp. maxP �) denotes the minimum (resp. maximum) value of P �

over Y . Since Y is �nite, the minimum and maximum exist and since q� is a strict
correlated equilibrium, maxP � > minP �: Thus, for all y; p� (y) 2 [0; 1] : Since p� is
just an a¢ ne transform of P � it is the case that if q� is a correlated equilibrium of
the game (Yi; P �)

i=n
i=1 ; it is also a correlated equilibrium of the game (Yi; p�)

i=n
i=1 :

This has the following implication for the proposed strategy in the repeated game
with communication. Since p� (y) is the probability of continuing to cooperate if the
publicly reported signals are y 2 Y , every player�s continuation payo¤ is proportional
to p� and so it is optimal to report signals truthfully if other players are doing so.
Note that even though the proposed strategies rely on the function p�; they depend
only face-to-face communication among the players and not on any private messages
via a mediator. Moreover, even the randomization implicit in p� can be achieved
via communication (by making use of jointy controlled lotteries, as in Aumann and
Maschler, 1995).

5.2.1 A limiting case

De�nition 5.1 A distribution q 2 �(Y ) is perfectly informative if q (y) > 0 if and
only if y1 = y2 = ::: = yn:
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When the distribution is perfectly informative, then every player�s individual sig-
nal provides perfect information about the signals of the other players. Thus, the
terminology is consistent with that of Blackwell (1951). Note also that the de�nition
requires that all "diagonal" signal pro�les occur with positive probability.
Now consider the function,

P 0 (y) = �1
4

nX
i=1

X
j 6=i

(yi � yj)2 (7)

We claim that any perfectly informative distribution q0 is a correlated equilibrium of
the game (Yi; P 0)

i=n
i=1 : To see this, note that if i receives a recommendation yi; then

he knows that all the other players received exactly the same recommendation. If all
other players follow the recommendation, then choosing yi is strictly better for i than
any other choice.
Clearly maxP 0 = 0 and minP 0 < 0: When normalized, the resulting score func-

tion is

p0 (y) =
P 0 (y)�minP 0
maxP 0 �minP 0

= 1� P 0 (y)

minP 0

= 1 +
1
4

Pn
i=1

P
j 6=i (yi � yj)

2

minP 0
(8)

and because of perfect informativeness, the expected score

E0
�
p0 (ey)� = 1

where E0 is the expectation with respect to q0: This implies that the strategies have
the property that if signals are perfectly informative then the probability of a pun-
ishment is zero.

Lemma 5.1 Let
�
ql
	
2 int� (Y ) be a sequence such that ql ! q0 and q0 2 �(Y ) is

a perfectly informative distribution. Then the corresponding score functions pl ! p0:

Proof. From the de�nition of P l (see (15)), we have that

P l (y) =
1

2

nX
i=1

X
j 6=i

yiyj �
nX
i=1

X
xi<yi

El
hP

j 6=i eyj j xii� 12
nX
i=1

El
hP

j 6=i eyj j yii (9)

where El denotes expectations under ql: On the other hand, notice that

P 0 (y) =
1

2

nX
i=1

X
j 6=i

yiyj �
nX
i=1

X
x<yi

(n� 1)x� 1
2

nX
i=1

(n� 1) yi (10)
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because the right-hand side equals

1

2

nX
i=1

X
j 6=i

yiyj � (n� 1)
nX
i=1

(yi � 1) yi
2

� 1
2
(n� 1)

nX
i=1

yi

=
1

2

nX
i=1

X
j 6=i

yiyj �
1

2
(n� 1)

nX
i=1

y2i

= �1
4

nX
i=1

X
j 6=i

(yi � yj)2

Comparing terms in (9) and (10) shows that as ql ! q0; El[eyj j eyi = x] ! x
(recall that each x occurs with positive probability).
Finally, note that since maxP 0 � minP 0 > 0; lim

�
maxP l �minP l

�
> 0; and

lim pl is well de�ned. Thus, pl (the normalized version of P l) converges to p0 (the
normalized version of P 0) as well.

5.3 Equilibrium

We show below that when q� is "very informative"� that is, it is close to being
perfectly informative, there is an equilibrium with communication that is nearly ef-
�cient. We begin by considering the limit case when q� = q (� j a�) is itself perfectly
informative, say q� = q0:

5.3.1 Perfectly informative signals

Consider the strategy pro�le given above. With perfectly informative signals, the
probability of continuing in the "normal" state, when the reported signals are y; is
given by the score function p0 (y) : This means that the payo¤ from the given strategy
pro�le is

(1� �)ui (a�) + �
h
E0
�
p0 (ey)�ui (a�) + �1� E0 �p0 (ey)��ui ��N� i = ui (a�)

since the expected score E0 [p0 (ey)] = 1:
Now suppose player i deviates to ai in period t and thereby induces the signal

distribution q = q
�
� j ai; a��i

�
: Denote by E all expectations with respect to the

new signal distribution q with full support over Y: Further, suppose that after the
deviation, player i follows the strategy of reporting that his signal is zi (yi) when it is
actually yi: It is easy to verify that no matter what reporting strategy zi the deviating
player follows, the expected score

E
�
p0 (zi (eyi) ; ey�i)� = 1 +

1

2minP0

 X
j 6=i

E
�
(zi (eyi)� eyj)2�+X

k 6=i

X
j 6=k;i

E
�
(eyk � eyj)2�!

< 1
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because we have assumed that q has full support and so E[(zi (eyi) � eyj)2] > 0 and
minP 0 < 0:
Player i�s expected payo¤ from such a deviation is therefore

(1� �)ui
�
ai; a

�
�i
�

+�
h
E
�
p0 (zi (eyi) ; ey�i)�ui (a�) + �1� E �p0 (zi (eyi) ; ey�i)��ui ��N� i (11)

and this is strictly smaller than ui (a�) once � is large enough.
Choose �i such that all possible deviations ai 6= a�i and all misreporting strategies

zi for i are unpro�table. Since both the actions and the signals are �nite in number,
such a �i exists. The same is true for all players j: Let � = maxj �j: Then we know
that for all � > �; the proposed strategy pro�le constitutes an equilibrium. Note that
� depends on q (� j a) for a 6= a� and not on q (� j a�) :

5.3.2 Nearly informative signals

Recall that after renormalization, we can suppose that each Yi = f1; 2; :::; Kg : A
signal pro�le y 2 Y is then said to be diagonal if y1 = y2 = ::: = yn; that is, if all
players�signals are identical. Denote by Y D the set of all diagonal pro�les. Of course,
a perfectly informative distribution q0 2 �(Y ) has the property that q0 (y) > 0 if and
only if y 2 Y D. Let Q0 � �(Y ) be the set of all perfectly informative distributions.
Fix q (� j a�) � q� 2 int� (Y ) : First, �nd a perfectly informative distribution

q0 2 Q0 such that:
q0 2 arg min

q2Q0
kq� � qkTV

and let

 =



q� � q0


TV

(12)

It is routine to verify that 
 = 1 �
P

y2Y D q
� (y), the total probability mass that q�

assigns to non-diagonal signal pro�les. Moreover, 
 = kq� � qkTV for any q 2 Q0 such
that for all y 2 Y D; q (y) � q� (y). Thus, in the total variation metric, q� is equidistant
from any perfectly informative distribution which places greater probability mass on
all diagonal pro�les. This means that given q� 2 int� (Y ) we can always choose a q0
such that q0 (y) > 0 for all y 2 Y D:
Now as 
 ! 0; Lemma 5.1 guarantees that for all y 2 Y; the score functions

p� (y)! p0 (y)

and so
E� [p� (ey)]! 1

as well. Moreover,

max
zi
E [p� (zi (eyi) ; ey�i)]! max

zi
E
�
p0 (zi (eyi) ; ey�i)�
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Let v�i denote player i�s payo¤ in the equilibrium described above. Then we have
that,

v�i = (1� �)ui (a�) + �
h
E� [p� (ey)] v�i + (1� E� [p� (ey)])ui ��N� i

or

v�i =
(1� �)ui (a�) + � (1� E� [p� (ey)])ui ��N�

1� �E� [p� (ey)] (13)

Thus, there exists a 
0 such that for all 
 < 
0; for all i;

(1� �)ui
�
ai; a

�
�i
�

+�

�
max
zi
E [p� (zi (eyi) ; ey�i)] v�i + �1�max

zi
E [p� (zi (eyi) ; ey�i)]�ui ��N��

< (1� �)ui (a�) + �
h
E� [p� (ey)] v�i + (1� E� [p� (ey)])ui ��N� i (14)

We have thus established

Proposition 5.1 Fix q (� j a) for all a 6= a� and let � be de�ned by (11). For all
� > �; there exists a 
 such that for all 
 < 
; there is an equilibrium of the game
with communication whose payo¤s are nearly e¢ cient.

6 Main result

Suppose that a� is an e¢ cient action and u (a�) � u
�
�N
�
where �N is a Nash

equilibrium of the one-shot game. Once Condition 1 is applied, the bound developed
in Proposition 4.1 becomes e¤ective� that is, if the quality of monitoring is zero (� =
0), equilibrium welfare without communication are bounded away from u (a�). On the
other hand, when q (� j a�) is perfectly informative (
 = 0), there is an equilibrium
with communication that results in payo¤s equal to u (a�) : Our main result then
follows:

Theorem 6.1 Fix q (� j a) for all a 6= a� and let � be de�ned by (11). For any � > �,
there exist � and 
 such that if the quality of monitoring (see (2)) � < � and the
informativeness of q (� j a�) (see (12)) 
 < 
; then there is an equilibrium with com-
munication whose welfare exceeds that from any equilibrium without communication.

We end with an example where the mechanics of Theorem 1 can be seen at work.
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Example 4 Again consider the prisoners�dilemma

c d
c 2; 2 �1; 3
d 3;�1 0; 0

but now with a monitoring structure where for both players, the set of signals is
Yi = f1; 2; 3g and the signal distributions are as follows:

q� � q (� j cc) =

1 2 3
1 1

3
(1� 
) 1

6

 1

6



2 1
6

 1

3
(1� 
) 1

6



3 1
6

 1

6

 1

3
(1� 
)

and

q � q (� j : cc) =

1 2 3
1 (1

3
� �)2 1

9
� �2 1

9
� 1

3
�

2 1
9
� �2 (1

3
+ �)2 1

9
+ 1

3
�

3 1
9
� 1

3
� 1

9
+ 1

3
� 1

9

The parameter 
 is such that kq� � q0kTV = 
 where q0 is a perfectly informative
distribution that places equal weight only on the diagonal elements. The parameter
� < 1

3
is such that for both i; kq�i � qikTV = �: A¢ liation requires that 
 < 2

3
:

No communication bound For the prisoners� dilemma, the set of "-coarse
correlated equilibrium payo¤s is depicted in Figure 3. From Proposition 4.1 it follows
that in any equilibrium of G�; the repeated game without communication, symmetric
equilibrium payo¤s v1 = v2 satisfy

vi � 2� 2 �2

1� �� � kuk1

= 12
�2

1� ��

since in the prisoners�dilemma, kuk1 = 3:

Equilibrium with communication Routine calculations show that for the
monitoring structure given above, the score function p� : Y1�Y2 ! [0; 1] correspond-
ing to q� is

p� =

1 2 3
1 1 3

4
� 3

8

 0

2 3
4
� 3

8

 1� 3

4

 3

4
� 3

8



3 0 3
4
� 3

8

 1
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B
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r

(2; 2)

(�1; 3)

(3;�1)

(2"; 2")

(0; 0)

"-CCE

Figure 3: "-CCE of Prisoners�Dilemma

and so that the expected score if no one deviates is E� [p� (ey)] = 1 � 3
4

 and using

(13), we obtain that the payo¤ in the equilibrium constructed in Section 5 is

v�i =
2 (1� �)

1� �
�
1� 3

4


�

If player 1, say, deviates from cc in a "normal" state, then regardless of his true
signal, it is best for him to report y1 = 2 in the communication phase (assuming that
both 
 and � are small, speci�cally, 4�+3
 < 2). This implies that, after a deviation,
the probability of the state being "normal" in the next period is

max
z1
E [p� (z1 (ey1) ; ey2)] = E [p� (2; ey2) j ey1 = y1]

= 5
6
+ 1

2
�
�
1� 3

2


�
� 11

12



When used in (14) this implies that the suggested strategies form an equilibrium if
and only if

B � (1� �) (u1 (cc)� u1 (dc)) + �
h
E� [p� (ey)]�max

zi
E [p� (zi (eyi) ; ey�i)] iv�i

� 0

Using the expressions derived above, it is easy to verify that a necessary condition
for this to hold is that � � 3

4
:

Payo¤ comparison For there to be gains from communication� equilibrium
payo¤s from communication exceed those from no communication� it is su¢ cient
that

C � v�i � 12
�2

1� �� � 0
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Figure 4: Monitoring structures for which the conclusion of Theorem 1 holds in
Example 4 when � = 0:8.

For � = 0:8; Figure 4 depicts the parameters (
; �) for which both B � 0 and
C � 0. In the region below the two curves, there is an equilibrium with communica-
tion whose payo¤s exceed the no-communication bound. For instance, if 
 = 0:02 = �;
equilibrium payo¤s without communication are at most 0:768 whereas with commu-
nication, there is an equilibrium with payo¤s of 1:887:

A Appendix

This appendix contains omitted and auxiliary results from Section 4.
For a �xed strategy pro�le �, let �t (ht) be the probability that a history ht is

realized. Then

�t
�
ht
�
= �t�1

�
ht�1

�
�
�
at j ht�1

�
q
�
yt j at

�
where ht = (ht�1; at; yt) : Let

�t�i
�
ht�i
�
=

X
hti

�t
�
ht
�

=
X
ht�1i

X
ati

�t�1
�
ht�1

�
�
�
at j ht�1

�
q�i
�
yt�i j at

�
be the marginal distribution of �t on the private histories ht�i =

�
ht�1�i ; a

t
�i; y

t
�i
�
of

players j 6= i:
Similarly, let �t be the probability of history ht that results when i permanently

deviates to ai; that is, from the strategy pro�le (�i; ��i) : Then,
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�t
�
ht
�
=

�
�t�1 (ht�1)��i

�
at�i j ht�1�i

�
q (yt j at) if ati = ai

0 otherwise

and analogously let �t�i be the marginal distribution of �
t on player �i�s private

histories ht�i so that

�t�i
�
ht�i
�
=

X
hti

�t
�
ht
�

= �t�1�i
�
ht�1�i

�
��i

�
at�i j ht�1�i

�
q�i
�
yt�i j ai; at�i

�
Lemma A.1 For all t,



�t�i � �t�i

TV � t�:
Proof. The proof is by induction on t. For t = 1; we have

�1�i
�
h1�i
�
� �1�i

�
h1�i
�
=

X
a1i

�
�
a1
�
q�i
�
y1�i j a1

�
� ��i

�
a1�i
�
q�i
�
y1�i j ai; a1�i

�
=

X
a1i

�
�
a1
�
q�i
�
y1�i j a1

�
�
X
a1i

�
�
a1
�
q�i
�
y1�i j ai; a1�i

�
=

X
a1i

�
�
a1
� �
q�i
�
y1�i j a1

�
� q�i

�
y1�i j ai; a1�i

��
since ��i

�
a1�i
�
=
P

a1i
� (a1) and so



�1�i � �1�i

TV =
1

2

X
h1�i

���1�i �h1�i�� �1�i �h1�i���
� 1

2

X
h1�i

X
a1i

�
�
a1
� ��q�i �y1�i j a1�� q�i �y1�i j ai; a1�i���

=
1

2

X
a1�i

X
a1i

�
�
a1
�X
y1�i

��q�i �y1�i j a1�� q�i �y1�i j ai; a1�i���
=

X
a1

�
�
a1
� 

q�i �� j a1�� q�i �� j ai; a1�i�

TV

� �

the last inequality follows from our assumption that the quality of the monitoring
does not exceed �:
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Now suppose that the statement of the lemma holds for t� 1: We can write

� = �t�i
�
ht�i
�
� �t�i

�
ht�i
�

=
X
ht�1i

X
ati

�t�1
�
ht�1

�
�
�
at j ht�1

�
q�i
�
yt�i j at

�
��t�1�i

�
ht�1�i

�
��i

�
at�i j ht�1�i

�
q�i
�
yt�i j ai; at�i

�
=

X
ht�1i

X
ati

�t�1
�
ht�1

�
�
�
at j ht�1

�
q�i
�
yt�i j at

�
�
X
ht�1i

X
ati

�t�1
�
ht�1

�
�
�
at j ht�1

�
q�i
�
yt�i j ai; at�i

�
+
X
ht�1i

X
ati

�t�1
�
ht�1

�
�
�
at j ht�1

�
q�i
�
yt�i j ai; at�i

�
��t�1�i

�
ht�1�i

�
��i

�
at�i j ht�1�i

�
q�i
�
yt�i j ai; at�i

�
Combining terms, we have

� =
X
ht�1i

X
ati

�t�1
�
ht�1

�
�
�
at j ht�1

� �
q�i
�
yt�i j at

�
� q�i

�
yt�i j ai; at�i

��

+

24X
ht�1i

�t�1
�
ht�1

�
��i

�
at�i j ht�1�i

�
� �t�1�i

�
ht�1�i

�
��i

�
at�i j ht�1�i

�35 q�i �yt�i j ai; at�i�
=

X
ht�1i

X
ati

�t�1
�
ht�1

�
�
�
at j ht�1

� �
q�i
�
yt�i j at

�
� q�i

�
yt�i j ai; at�i

��
+
�
�t�1�i

�
ht�1�i

�
� �t�1�i

�
ht�1�i

��
��i

�
at�i j ht�1�i

�
q�i
�
yt�i j ai; at�i

�
where we have used the fact that

P
ati
� (at j ht�1) =

P
ati
�i
�
ati j ht�1i

�
��i

�
at�i j ht�1�i

�
=

��i
�
at�i j ht�1�i

�
:

Thus, 

�t�i � �t�i

TV
=

1

2

X
ht�i

���t�i �ht�i�� �t�i �ht�i���
� 1

2

X
ht�i

X
ht�1i

X
ati

�t�1
�
ht�1

�
�
�
at j ht�1

� ��q�i �yt�i j at�� q�i �yt�i j ai; at�i���
+
1

2

X
ht�i

���t�1�i
�
ht�1�i

�
� �t�1�i

�
ht�1�i

�����i �at�i j ht�1�i
�
q�i
�
yt�i j ai; at�i

�
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Since ht�i =
�
ht�1�i ; a

t
�i; y

t
�i
�
; the �rst term equalsX

ht�1

X
at

�t�1
�
ht�1

�
�
�
at j ht�1

� 

q�i �� j at�� q�i �� j ai; at�i�

TV
�

X
ht�1

X
at

�t�1
�
ht�1

�
�
�
at j ht�1

�
�

= �

The second term equals

1

2

X
ht�1�i

X
at�i

X
yt�i

���t�1�i
�
ht�1�i

�
� �t�1�i

�
ht�1�i

�����i �at�i j ht�1�i
�
q�i
�
yt�i j ai; at�i

�
=

1

2

X
ht�1�i

���t�1�i
�
ht�1�i

�
� �t�1�i

�
ht�1�i

���X
at�i

X
yt�i

��i
�
at�i j ht�1�i

�
q�i
�
yt�i j ai; at�i

�
=

1

2

X
ht�1�i

���t�1�i
�
ht�1�i

�
� �t�1�i

�
ht�1�i

���
=



�t�1�i � �t�1�i



TV

� (t� 1) �

This completes the proof.

Lemma A.2 Suppose i plays ai always. The di¤erence in i�s payo¤ when others play
��i versus when they play the non-responsive strategy ��i derived from � satis�es

jvi (�i; ��i)� vi (�i; ��i)j � 2
�2

1� �� � kuk1

Proof.

vi (�i; ��i) = (1� �)
1X
t=1

X
ht�1�i

X
a�i

�tui (ai; a�i)��i
�
a�i j ht�1�i

�
��i

�
ht�1�i

�

= (1� �)
1X
t=1

�t
X
ht�1�i

0@X
a�i

ui (ai; a�i)��i
�
a�i j ht�1�i

�1A��i �ht�1�i
�

= (1� �)
1X
t=1

�t
X
ht�1�i

E
�
ui (ai; ��i) j ht�1�i

�
��i

�
ht�1�i

�
Similarly,

vi (�i; ��i) = (1� �)
1X
t=1

X
a�i

�tui (ai; a�i)�
t
�i (a�i)
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and since
�t�i (a�i) =

X
ht�1�i

��i
�
a�i j ht�1�i

�
��i

�
ht�1�i

�
we have

vi (�i; ��i) = (1� �)
1X
t=1

X
ht�1�i

X
a�i

�tui (ai; a�i)��i
�
a�i j ht�1�i

�
��i

�
ht�1�i

�

= (1� �)
1X
t=1

�t
X
ht�1�i

0@X
a�i

ui (ai; a�i)��i
�
a�i j ht�1�i

�1A��i �ht�1�i
�

= (1� �)
1X
t=1

�t
X
ht�1�i

E
�
ui (ai; ��i) j ht�1�i

�
��i

�
ht�1�i

�
and so

jvi (�i; ��i)� vi (�i; ��i)j

� (1� �)
1X
t=1

�t

������
X
ht�1�i

E
�
ui (ai; ��i) j ht�1�i

� �
��i

�
ht�1�i

�
� ��i

�
ht�1�i

��������
� 2 (1� �)

1X
t=1

�t


�t�1�i � �t�1�i




TV
� kuk1

where the second inequality follows from the fact that given any two measures � and
�; jE� [f ]� E� [f ]j � 2 k�� �kTV � kfk1 for any f such that the expectations are
well-de�ned (see, for instance, Levin et al., 2009).
Now Lemma A.1 shows that



�t�1�i � �t�1�i



TV
� (t� 1) �: Thus, we obtain20

jvi (�i; ��i)� vi (�i; ��i)j � 2 (1� �)
1X
t=1

�t (t� 1) � kuk1

= 2
�2

1� �� � kuk1

B Appendix

This appendix contains a general result regarding correlated equilibria that forms
the basis of construction of the equilibrium with communication. It says that any

20The bound below is, of course, an overestimate since the TV distance between two measures is
always less than or equal to 1:
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a¢ liated distribution is a correlated equilibrium of a game with common interests
(identical payo¤s).21

De�nition B.1 Given a game (Ai; ui)
n
i=1 ; � 2 �(A) is a correlated equilibrium if

for all i; ai 2 Ai such that �i (ai) �
P

a�i
� (ai; a�i) > 0 and a0i 6= ai;

E [ui (ai; a�i) j ai] � E [ui (a0i; a�i) j ai]

It is a strict correlated equilibrium if all the inequalities are strict.

De�nition B.2 Suppose that each Yi is a �nite ordered set. Then q 2 �(Y ) is
(pairwise) a¢ liated if for all i; j, all yi < y0i and all yj < y

0
j

qij (yi; yj) qij
�
y0i; y

0
j

�
� qij (y0i; yj) qij

�
yi; y

0
j

�
where qij is the marginal distribution of q on Yi � Yj:

De�nition B.3 q 2 �(Y ) has non-equivalent signals if for all i; j and all yi 6= y0i;
the conditional distributions qj (� j yi) 2 �(Yj) and qj (� j y0i) 2 �(Yj) are distinct.

Proposition B.1 Any a¢ liated q 2 int� (Y ) that has non-equivalent signals is a
strict correlated equilibrium distribution of a game with common interests (identical
payo¤s).

Proof. Suppose that for all i; Yi is a �nite, ordered set and suppose q 2 �(Y ) is an
a¢ liated distribution. Because monotone transforms of a¢ liated random variables
are also a¢ liated, we can suppose, without loss of generality, that each Yi is a set of
consecutive positive integers, say, Yi = f1; 2; :::; Kig :
We will exhibit a function P : Y ! R such that q is a strict correlated equilibrium

of the game (Yi; P )
n
i=1 :

Given q; de�ne �i : Yi ! R by

�i (yi) = E
hP

j 6=i eyj j yii
as the expectation (with respect to q) of the sum of the other players�choices, con-
ditional on eyi = yi: A¢ liation implies that �i is non-decreasing and since q has
non-equivalent signals , �i is strictly increasing.
Consider the payo¤ function P : Y ! R;

P (y) =
1

2

nX
i=1

X
j 6=i

yiyj �
nX
i=1

X
xi<yi

�i (xi)�
1

2

nX
i=1

�i (yi) (15)

21The conclusion that the game is one of common interests distinguishes this result from that of
Crémer and McLean (1988).
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Suppose all players j 6= i follow the recommendation of a mediator who draws y 2 Y
according to q 2 �(Y ) : When player i receives a recommendation of yi and chooses
y0i, his expected payo¤ is

22

E [P (y0i; ey�i) j eyi = yi] = y0iE
hP

j 6=i eyj j yii� X
xi<y0i

�i (xi)�
1

2
�i (y

0
i)� Ci (yi)

= y0i�i (yi)�
X
x<y0i

�i (xi)�
1

2
�i (y

0
i)� Ci (yi)

where Ci (yi) are the terms that depend on the conditional distribution q (� j yi) 2
�(Y�i) but do not depend on player i�s action y0i. On the other hand, if after
receiving a recommendation of yi; player i follows the recommendation and chooses
yi, his payo¤ is

E [P (yi; ey�i) j yi] = yi�i (yi)�X
x<yi

�i (x)�
1

2
�i (yi)� Ci (yi)

Let
� = E [P (yi; ey�i) j yi]� E [P (y0i; ey�i) j yi]

First, suppose y0i < yi: Then,

� = (yi � y0i)�i (yi)�
X

y0i�x<yi

�i (x)�
1

2
(�i (yi)� �i (y0i))

=
X

y0i�x<yi

(�i (yi)� �i (x))�
1

2
(�i (yi)� �i (y0i))

=
X

y0i<x<yi

(�i (yi)� �i (x)) +
1

2
(�i (yi)� �i (y0i))

> 0

since �i is strictly increasing.
Now suppose y0i > yi: Then

� = � (y0i � yi)�i (yi) +
X

yi<x�y0i

�i (x) +
1

2
(�i (y

0
i)� �i (yi))

=
X

yi<x�y0i

(�i (x)� �i (yi)) +
1

2
(�i (y

0
i)� �i (yi))

> 0

again since �i is strictly increasing.
Thus, upon receiving the recommendation yi; player i has a strict incentive to

follow the recommendation. So q is a strict correlated equilibrium distribution.
22Note that 12

P
i 6=j yiyj = yi

P
j 6=i yj +

1
2

P
j 6=k yjyk where in the last sum j 6= i and k 6= i:
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