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Abstract

We provide a recursive upper bound on the sequential equilibrium payo¤ set at a

�xed discount factor in repeated games with imperfect private monitoring. The bound-

ing set is the equilibrium payo¤ set in a repeated �delegation game,�where in every

period a mediator asks for the players�approval to follow a history-contingent behavior

strategy. This set admits a tractable recursive characterization and can thus be applied

�o¤-the-shelf�to bound equilibrium payo¤s in any private monitoring repeated game.

We illustrate our results with an application to a simple public goods game.

1 Introduction

Repeated games with imperfect private monitoring have been a major topic of research

for some time and have been used to model important economic settings such as collusion

with secret price cuts (Stigler, 1964) and relational contacting with subjective performance

evalutions (Levin, 2003; MacLeod, 2003; Fuchs, 2007). While extensive progress has been

made in analyzing the equilibrium set in these games in the limit where players become very

patient (see Sugaya, 2016, and references therein), our understanding of equilibria at �xed

discount factors� arguably the more relevant case for most economic applications� remains

much more limited. In particular, no simple characterization of the sequential equilibrium
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payo¤ set at a �xed discount factor is available for repeated games with private monitoring,

in contrast to the case of perfect public equilibria in games with public monitoring, where

such a characterization is provided by Abreu, Pearce, and Stacchetti (1990; henceforth APS).

Kandori (2002) discusses the well-known di¢ culties involved in generalizing the results of

APS to private monitoring.

In a recent paper (Sugaya and Wolitzky, 2016), we have shown that the equilibrium

payo¤ set in a private monitoring repeated game is bounded by the equilibrium set in the

same game played under perfect monitoring with the assistance of a mediator, so long as

attention is restricted to two-player games where the discount factor exceeds a cuto¤ value

��. This bound is as tractable as APS�s characterization for public monitoring games, and it

is also tight insofar as mediated perfect monitoring can itself be viewed as a kind of private

monitoring. However, the bound does not apply to games with more than two player or

when the discount factor is too low.

In this article, we derive a more permissive bound on the equilibrium payo¤ set in private

monitoring repeated games, which however applies to any game, regardless of the number of

players or (up to a small technicality) the discount factor. The bound again admits a simple,

APS-style recursive characterization. Thus, while the bound we provide is not always tight,

it gives a simple o¤-the-shelf method of bounding equilibrium payo¤s in any repeated game

with private monitoring.

The results of this paper come from considering the repetition of a �delegation game,�

where in every period the mediator asks for the players� approval to follow a history-

contingent behavior strategy. Each player is free to ignore the mediator and take a di¤erent

action. We �rst prove that the equilibrium payo¤ set of this delegation game upper-bounds

the equilibrium payo¤ set of any repeated game with private monitoring. We then o¤er a

recursive characterization of the equilibrium payo¤ set of the delegation game, which we

illustrate in examples.

2



2 Repeated Games with Private Monitoring

A �nite stage game G =
�
I; (Ai; ui)i2I

�
is repeated in periods t = 1; 2; : : :, where I =

f1; : : : ; jIjg is the set of players, Ai is the �nite set of player i�s actions, and ui : A ! R

is player i�s payo¤ function. Players maximize expected discounted payo¤s with common

discount factor � 2 (0; 1).

In each period t, the game proceeds as follows: Each player i takes an action ai;t 2 Ai.

A signal yt = (yi;t)i2I 2
Q
i2I Yi = Y is drawn from distribution p (ytjat), where Yi is the

�nite set of player i�s signals and (Y; p) (often abbreviated to p) is the monitoring structure.

Player i observes yi;t.

A period t history of player i�s is an element of H t
i = (Ai � Yi)

t�1, with typical element

hti = (ai;� ; yi;� )
t�1
�=1, where H

1
i consists of the null history ;. A (behavior) strategy of player

i�s is a mapping �i :
S1
t=1H

t
i ! �(Ai). Let E (�; p) be the set of Nash equilibrium payo¤s

in the repeated game with discount factor � and monitoring structure p.

3 Repeated Delegation to a Mediator

We will also consider a repeated game of delegated action choice to a mediator. In every

period of this game, players will have the choice of approving the mediator�s recommendation

or disapproving and playing any action in Ai.

LetC = (Ci)i2I := (Ai [ fapproveg)i2I with typical element c = (ci)i2I 2 (Ai [ fapproveg)i2I .

Given the stage game G, the corresponding repeated delegation game proceeds as follows in

each period t:

1. The mediator publicly recommends a mapping from histories to correlated actions �t :

H t
m ! �(A), where H t

m := (M � C � A)t�1 with typical element htm = (�� ; c� ; a� )
t�1
�=1

is the mediator�s history. Let H1
m = ;.

2. After observing �t, each player i simultaneously chooses an alternative from the set

Ci = Ai [ fapproveg, where the alternative approve is interpreted as approving the

mediator�s recommendation for that player and the alternative ai 2 Ai interpreted as

disapproving the mediator�s recommendation and instead playing action ai.
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(Note that the mediator does not announce the history htm. As we will see, players

typically face uncertainty regarding htm. Thus, players must approve or disapprove the

mapping �t without knowing the resulting correlated action � (h
t
m).)

3. If the set of players J � I approves and the set �J = InJ does not approve and

chooses actions a�J , then given the mediator�s history htm the realized action pro�le

is drawn from the distribution (�J (h
t
m) ; a�J), where �J (h

t
m) = margJ� (h

t
m). The

realized action pro�le is perfectly observed. Thus, player i�s history at the beginning

of period t + 1 is ht+1i := (�� ; ci;� ; a� )
t
�=1, where for every � �� is the recommended

mapping, ci;� 2 Ai [ fapproveg is player i�s chosen alternative, and a� is the realized

action pro�le. Let H t
i denote the set of all histories h

t
i.

We consider sequential equilibria in the repeated delegation game that satisfy the obe-

dience condition that players always choose ci;t = approve at all histories, on and o¤ the

equilibrium path. Let Edel (�) be the set of obedient sequential equilibrium payo¤s in the

repeated delegation game. Note that the �revelation principle�suggests that the restriction

to obedient equilibria is without loss of generality. We do not have a proof of this result for

this game, but this is irrelevant for our purposes as we will show that Edel (�) � E (�; p) for

every monitoring structure p even with the restriction to obedient equilibria in the delegation

game. Note that considering obedient sequential equilibria in the repeated delegation game

and Nash equilibria in the unmediated repeated game only strengthens this result.1

Two more details regarding the de�nition of sequential equilibrium: (i) In specifying an

equilibrium, we de�ne beliefs and impose sequential rationality only at histories consistent

with the mediator�s strategy. (The interpretation is that the mediator is not a player in the

game but rather a �machine�that cannot tremble.) (ii) We endow the space of beliefs and

strategies with the product topology. Neither of these choices is important for our results.

Note that players do not observe their opponents�choices from C�i. Hence, in an obedient

equilibrium, if there exists a realization of (�� )
t�1
�=1 that results in history h

t
i with positive

probability when cj;� = approve for all j 6= i and � � t� 1, then at history hti player i must
1This approach is the same as in Sugaya and Wolitzky (2016). There, we phrased our results as bounding

the sequential equilibrium payo¤ set in unmediated repeated games, but the same results hold for Nash
equilibrium.
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believe with probability 1 that cj;� = approve for all j 6= i and � � t� 1.

Finally, note that it is crucial that the mediator recommends a mapping before players

choose whether to approve or deviate. If instead players decided whether to delegate their

choice of action to the mediator before the mediator�s choice, then any feasible and individ-

ually rational payo¤ vector could be sustained in equilibrium for any discount factor, as the

mediator could immediately minimax any player who failed to delegate.2 This alternative

timing assumption would thus succeed in giving a bound on the equilibrium payo¤ set, but

only the trivial bound. In contrast, as we will see the bound we investigate here is non-trivial

and is in fact tight for some classes of games.

4 Main Results

Throughout the paper, we impose the mild assumption that there is some correlated action

pro�le that all players have strict incentives to approve when disapproval is punished at the

correlated minimax level. It will follow from our results that this is a necessary condition for

the existence of a repeated game equilibrium where all players receive payo¤s strictly above

their minimax payo¤s.

Formally, let ui = min��i2�(A�i)maxai2Ai ui (ai; ��i) be player i�s correlated minimax

payo¤, and let
�
amini ; �min�i

�
be a solution for the problem of minimaxing player i. For � 2

�(A), let di (�) = maxai ui
�
ai;marg�i�

�
be player i�s maximum deviation payo¤ against �.

We impose the following:

Assumption There exists �̂ 2 �(A) such that, for all i, we have

ui (�̂) > (1� �) di (�̂) + �ui: (1)

This assumption holds whenever G admits a static correlated equilibrium � such that

ui (�) > ui for all i. More generally, it is equivalent to the condition that

� > �̂ := min
�2�(A)

max
i2I

di (�)� ui (�)
di (�)� ui

;

2This logic is similar to, for example, Myerson�s (1991; Section 6.1) discussion of games with contracts.
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and can thus be viewed as a mild lower bound on the discount factor.

For comparison with the assumptions in our earlier work, note that

�̂ � �� := min
v2F

max
i2I

di
di + vi � ui

;

where

di = max
a2A;a0i2Ai

ui (a
0
i; a�i)� ui (a) :

In Sugaya and Wolitzky (2016), we showed that mediated perfect monitoring is the optimal

information structure in two-player repeated games with � > ��. The condition � > �̂ is thus

weaker than the condition � > �� from our earlier paper, and indeed the condition � > �̂

is always necessary for the existence of an equilibrium with strictly above-minmax payo¤s

(while the condition � > �� is not). We thus view the condition � > �̂ as a non-triviality

assumption, rather than a substantive assumption on the discount factor. Moreover, the

results in the current paper make no assumption on the number of players in the game.

4.1 Upper Bound

Our �rst main result says that the equilibrium payo¤ set in the repeated delegation game

is an upper bound on the equilibrium payo¤ set in the unmediated repeated game with any

private monitoring structure.

Theorem 1 For any any discount factor � and any monitoring structure p, the closure of

Edel (�) is an upper bound for E (�; p): Edel (�) � E (�; p).

Theorem 1 gives an o¤-the-shelf bound on the Nash equilibrium payo¤ set for repeated

games with imperfect private monitoring.

4.2 Characterization

Our second main result is a tractable characterization of Edel (�). As will be seen, it is

without loss to assume that � is history-independent on the equilibrium path: that is, there

exist �t 2 �(At) such that �t(h
t�1
m ) = �t for every ht�1m with c� = (approvei)i2I for all
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� � t � 1. Moreover, it is also without loss to assume that if player i unilaterally deviates

from the equilibrium (i.e., unilaterally disapproves the mediator�s recommended mapping),

then the mediator punishes player i at the correlated minimax level. Therefore, a payo¤

vector v 2 RjIj is supportable in an equilibrium of the delegation game if and only if there

exists an action sequence (�t)
1
t=1 for which approval is incentive compatible, given that

unilateral disapproval is punished at the correlated minimiax level.

Theorem 2 For v 2 RjIj, v 2 Edel (�) if and only if there exists (�t)1t=1 such that, for all i

and t, we have

(1� �)
X
��t
���tui (�� ) � (1� �) di (�t) + �ui (2)

and v = (1� �)
P

t�1 �
t�1u (�t).

Finally, a straightforward application of the methods of APS (modi�ed by setting punish-

ment payo¤s at the correlated minimax level) gives the following recursive characterization

of Edel (�): Given a set of payo¤ vectors W � RjIj, let V (W ) be the set of payo¤ vectors v

such that there exist � 2 �(A) and w 2 W with

(1� �)ui (�) + �wi � (1� �) di (�) + �ui for all i. (3)

Then Edel (�) is the largest �nite �xed point of the operator V .

5 Discussion

5.1 Delegation vs. Mediation

The reader may wonder why we need to introduce the repeated delegation game. In partic-

ular, an obvious alternative would be to consider a mediated repeated game, as in Forges

(1986) and Myerson (1986). In a mediated repeated game, in each period t the mediator

recommends a pure action ri;t to player i, rather than a mapping from histories to correlated

action pro�les. Player i remains free to take any action ai;t. The mediator observes (rt; at),

while player i observes only her own recommendation and the realized action pro�le, (ri;t; at).
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Let Emed (�) be the sequential equilibrium payo¤ set in this mediated repeated game with

perfect monitoring of actions.

In general, the set Emed (�) does not give an upper bound for E (�; p):

Claim 1 (Sugaya and Wolitzky (2016), Proposition 1) For some game G and dis-

count factor �, Emed (�) 6� E (�; p).3

The intuition for this result is that, compared to perfect monitoring with mediation,

imperfect private monitoring has the advantage of �pooling players�information sets.�More

precisely, under perfect monitoring of actions, a player can perfectly infer what recommenda-

tions were made to the other players on the equilibrium path, and can tailor potential devia-

tions to these recommendations. However, under imperfect private monitoring, a player can-

not infer her opponents�recommendations� if these recommendations are stochastic along

the equilibrium path� and thus has access to coarser information when contemplating a

deviation. This di¤erence can make it easier to sustain a given stochastic equilibrium path

under private monitoring.

In contrast, in the repeated delegation game, it is without loss to restrict attention

to equilibria with deterministic (history-independent) recommendations on the equilibrium

path. Imperfect private monitoring thus has no advantage over repeated delegation.

To see why it is without loss to consider history-independent recommendations in the

repeated delegation game, imagine that the mediator recommends a mapping �jhtm after one

on-path history htm and recommends �j~htm after another on-path history
~htm. Suppose the

mediator instead recommends the mapping

�� :=
Pr (htm)

Pr (htm) + Pr
�
~htm

��jhtm + Pr
�
~htm

�
Pr (htm) + Pr

�
~htm

��j~htm
after both htm and ~h

t
m, and also employs such a history-independent mapping at all subse-

quent histories. Then, since it is optimal for player i to approve �jhtm at history htm and to

approve �j~htm at history
~htm, it is also optimal for her to approve �

� at history htm or ~htm.

3The same result holds when E (�; p) is replaced with the sequential equilibrium payo¤ set in game G
with discount factor � and monitoring structure p.
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Expected payo¤s condition on reaching either htm or ~h
t
m are also unchanged. The mediator

can thus replicate any equilibrium distribution over actions using only history-independent

recommendations.

Note that the same argument does not apply with mediation rather than delegation. With

mediation, a player must separately �approve�every action in the support of the mediator�s

on-path recommendation. In order to incentivize the approval of an action for which a player

faces a high instantaneous deviation gain, the mediator must promise a high continuation

payo¤ after this action is recommended. The resulting equilibrium path must therefore be

stochastic and history-dependent. In contrast, with delegation, approval is required only

prior to the mediator�s randomization. Continuation payo¤s therefore do not need to be

tailored to realized actions, and history-independent recommendation strategies are without

loss.

Finally, this key advantage of delegation over mediation would also be shared by the re-

peated game with observable mixed strategies. There are two di¤erences between delegation

and observable mixed strategies. First, the delegation game allows for correlated mixtures.

This is needed to bound E (�; p) because players�actions can be correlated in repeated games

with correlated private signals Second, in the delegation game the mediator recommends a

mapping from history to correlated actions. We explain the role of this second di¤erence

next.

5.2 Why Delegation to a Mapping?

A simpler version of the delegation game would have the mediator recommend correlated

actions rather than mappings from histories to correlated actions. The advantage of the

�mapping� formulation is that players may disagree about the history o¤-path, and the

mapping formulation lets the mediator exploit this disagreement to punish deviators more

harshly than would be possible with the �action�formulation.

Speci�cally, consider the �action�delegation game where, given history htm, the mediator

publicly recommends a correlated action �t (h
t
m). Let Eact (�) be the sequential equilibrium

payo¤ set of this game.

Again, the set Eact (�) may not give an upper bound for E (�; p):
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Claim 2 For some game G and discount factor �, Eact (�) 6� E (�; p).4

Proof. Let G be given by the following payo¤ matrix, and let � = 1=3:

A B C

A 1; 1 �6;�6 0; 1� �

B �6;�6 1; 1 0; 1� �

A0 2;�6 �5;�6 0; 1� �

B0 �5;�6 2;�6 0; 1� �

We will show that (1; 1) 2 E (p; �) for some private monitoring structure (Y; p) but

(1; 1) =2 Eact (�).

Consider the private monitoring structure given by Y1 = Y2 = f�; �g and

p (�; �ja2) = p (�; �ja2) =
1

2
if a1 = A;B;

p (�; �ja2) = p (�; �ja2) = p (�; �ja2) = p (�; �ja2) =
1

4
if a1 = A0; B0:

Consider the following strategy for each player: In period 1, play A. In subsequent periods,

if the previous signal is �, play A; otherwise, play B. The resulting strategy pro�le yields

payo¤s (1; 1). We claim that it is a sequential equilibrium strategy pro�le.

Player 2�s incentives are trivial: at every history (on or o¤ path), he believes with prob-

ability 1 that player 1�s last signal was the same as his own, so he plays a best response.

Player 1�s non-trivial incentive constraint is that she must prefer A to A0 after signal �,

and must prefer B to B0 after signal �. If she deviates in some period t, she receives an

instantaneous gain of 1, but causes player 2 to mix half-half between A and B in period

t+ 1, indepedently of her own signal. Player 1�s expected payo¤ in period t+ 1 is therefore

(1=2) (1) + (1=2) (�6) = �5=2 following a deviation in period t, while this expected payo¤

is 1 on path. By the one-shot deviation principle, following a deviation in period t player 1

plays A or B in period t + 1, and payo¤s are again (1; 1) in every period starting in period

4Again, the same result holds for sequential equilibrium, as is clear from the proof.
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t+ 1. Thus, because

� (1) =
1

3
>
1

6
= 1� �

�
5

2

�
;

player 1�s incentive constraint is satis�ed.

By Theorem 1, this implies that (1; 1) 2 Emed (�). Hence for each � > 0, Assumption (1)

holds.

Now consider repeated �action�delegation. Since player 2�s minmax payo¤ is 1� � and

his maximum feasible payo¤ is 1, player 2 receives payo¤ at least u2 (�) in every period along

the path of play of any sequential equilibrium, where u (�) is the solution for

(1� �)u2 (�) + � � 1 = 1� � , u2 (�) =
1� � � �
1� � :

Fix " > 0, and suppose toward a contradiction that for each �, there is a sequential

equilibrium where player 1�s payo¤ exceeds 1� ". Player 1�s greatest payo¤ consistent with

player 2 receiving payo¤ u2 (�) is

u1 (�) = 1 +
1

7|{z}
slope of the line segment
connecting (1;1) and (2;�6)

(1� u2 (�)) = 1 +
1

7

�

1� � :

Hence, in such an equilibrium the instantaneous payo¤ of player 1 in period 1 must exceeds

v1 (�) such that

(1� �) v1 (�) + �
�
1 +

1

7

�

1� �

�
= 1� ", v1 (�) =

1

1� �

�
1� "� �

�
1 +

1

7

�

1� �

��
:

Since player 2 receives payo¤ at least u2 (�), probability that (A;A) or (B;B) is played in

period 1 must exceeds p (�) with8<: p (�) + q (�) 2 = v1 (�)

(1� q (�)) + q (�) (�6) = u2 (�)

) p (�) =
1

1� �

�
1� "� �

�
1 +

1

7

�

1� �

��
� 2
7

�

1� � ;
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where q (�) is the probability of (A0; A) or (B0; B). Hence player 1�s instantaneous gain from

deviating from A to A0 or from B to B0 in period 1 is at least p (�).

Now, consider the harshest punishment that the mediator can conduct after player 1�s

deviation. For each htm, suppose the mediator asks for the approval for �. Since player 2�s

instantaneous payo¤ is bounded from below by u2 (�), player 1�s payo¤ given � should be

no less than5

w1 (�) = 0�
6

6� (1� �)| {z }
slope of the line segment

connecting (0;1��) and (�6;�6)

(1� � � u2 (�)) = �6�
�

(1� �) (� + 5) :

This implies that player 1�s expected continuation payo¤ after she deviates in period 1 is at

least w1 (�). But, for " and � su¢ ciently small,

� (1) < (1� �) p (�) + �w1 (�) ;

as � < 1=2, so player 1 prefers to deviate in period 1. This gives the desired contradiction.

Intuitively, with private monitoring, it can be possible to induce one player to punish

another without realizing that a deviation has occured. This allows for punishments where

the punisher herself receives less than her minmax payo¤. With action delegation and

observable actions, this may no longer be possible.6 In contrast, with delegation to the

mapping, if players believe that they are on equilibrium path, then they are willing to

approve the recommended mapping even if it speci�es costly punishment in the event that

a deviation has in fact occured.

It can however be shown that Edel (�) = Eact (�) whenever � > �
�. This follows because

it is possible to minimax deviators with mediation when � > ��, as shown in Sugaya and

Wolitzky (2016).

5Note that players 1 and 2 may have di¤erent beliefs about the continuation play from period t + 1 on.
However, in the action delegation, � becomes common knowledge.

6This e¤ect has previously been noted by Kandori (1991), Sekiguchi (2002), and Sugaya and Wolitzky
(2016), among others.
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5.3 Tightness of the Bound?

It is obvious that, for some games and some monitoring structures, E (p; �) is a strict subset

of Edel (�). A more interesting question is whether Edel (�) a tight bound on E (p; �) from the

perspective of an observer who does not know the monitoring structure p: that is, for each

v 2 Edel (�), does there exist a monitoring structure p such that v 2 E (�; p)? Unfortunately,

in general the answer to this question is no.

The logic is similar to the reason why allowing observable mixed strategies can expand

the equilibrium set. For example, consider the following game:

L R

T 1; 1 0; 2

B 1;�1 0; 0

If � < 1=3, then player 2 cannot play L in the repeated game since the deviation gain of

1 � � would exceed the greatest possible change in continuation payo¤ (from � (2) to � (0),

noting that 0 is the minmax payo¤). Hence, the best payo¤ for player 1 is 0.

However, with delegation to the mediator, the following is an equilibrium whenever � �

1=4: play 1
2
(T; L) + 1

2
(T;R) on the equilibrium path, and play (B;R) after any deviation.

This follows because player 2�s deviation gain is (1� �) =2 and his lost continuation payo¤

from a deviation is � (3=2).

Hence, for any � 2 (1=4; 1=3), player 1�s best equilibrium payo¤ with any monitoring

structure is 0, while her best equilibrium payo¤ with delegation to the mediator is strictly

positive.

While Edel (�) does not give a tight bound in general, it does give a tight bound for

concave games as de�ned in Sugaya and Wolitzky (2016b). A concave game is one in which,

for each player i,

1. Ai is a compact and convex subset of Rn,

2. ui (a) is continuous and jointly concave in a, and

3. di (�) is jointly convex in �.
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In a concave game, replacing a distribution over actions with its expectation increases

players�payo¤s and reduces their incentives to deviate. Sugaya and Wolitzky (2016b) show

that, if under perfect monitoring it is possible to hold a deviator to her minimax payo¤, then

every v 2 E (�; p) is Pareto dominated by a subgame perfect equilibrium payo¤ vector under

perfect monitoring, for every private monitoring structure p. The same argument applies

to every v 2 Edel (�). Thus, at least as far as e¢ cient payo¤s are concerned, in concave

games Edel (�) provides a tight bound on the equilibrium payo¤ set, which coincides with

the equilibrium payo¤ set in the perfect monitoring repeated game.

5.4 E¢ cient Equilibria in Symmetric Games: A Simpler Charac-

terization

For symmetric games, a simpler characterization of the best symmetric payo¤ vector in

Edel (�) is available. In particular, in computing this payo¤vector, attention can be restricted

to stationary equilibria.7

Proposition 1 If � > �̂, G is symmetric, v is symmetric, and v 2 Edel (�), then there exists

a symmetric correlated action � 2 �(A) such that u (�) � v and, for all i,

ui (�) � (1� �) di (�) + �ui:

Proof. By Theorem 2, there exists (�t)
1
t=1 such that (2) holds and v = (1� �)

P
t�1 �

t�1u (�t).

Let w (�t) =
P

i2I ui (�t), and let w = suptw (�t). Note that (w= jIj ; : : : ; w= jIj) � v and

(by summing (2) across players) w �
P

i [(1� �) di (�t) + �ui] for all t. As A is �nite and

payo¤s are continuous in mixing probabilities, there exists � such that
P

i2I u (�) = w and

w �
P

i [(1� �) di (�) + �ui]. Now, let � be the set of all permutations � on I; for each

� 2 � let �� be the correlated action given by ��
�
a1; : : : ; ajIj

�
= �

�
a�(1); : : : ; a�(jIj)

�
; and let

�� = (1= jIj!)
P

�2� �
�. Then, for all i, ui (��) = w= jIj and di (��) = (1= jIj)

P
i di (�). As w �P

i [(1� �) di (�) + �ui] and ui is the same for all i, it follows that ui (��) � (1� �) di (��)+�ui
for all i.

7A related result for concave games appears in Sugaya and Wolitzky (2016b).
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5.5 The Characterization in an Example

We illustrate Theorem 2 and Proposition 1 with an application to a simple repeated public

good provision game.

Consider the symmetric game with Ai = R+ and

ui (a) = f

0@ jIjX
j=1

aj

1A� ai;
where f is an increasing and concave function with f (0) = 0 and f 0 (x) < 1 for all x.8 Note

that ai = 0 is dominant in the stage game. Note also that this is not a concave game in

the sense of the previous section, because the deviation payo¤ di (�) is not jointly convex

in actions: since f is concave, the deviation payo¤ can be larger if
P

j 6=i aj is known to be

intermediate than if it could be either small or large.

We wish to characterize the best symmetric payo¤ vector in Edel (�). By Proposition 1,

we know that this is given by a symmetric stationary equilibrium �, with deviators punished

at the minimax payo¤ of 0.

We �rst show that � only puts weight on vectors a with ai = 0 for all but a single player

i. That is, it is never optimal to have two players work at the same time.

To see this, let a�i =
P

j 6=i aj, and note that player i�s deviation gain from � is given by

E [ai] + E [f (a�i)]� E [f (ai + a�i)] :

A necessary condition for � to be optimal is thus that it maximizes E [f (ai + a�i)� f (a�i)]

for given E [ai] (for each i) and E [f (ai + a�i)]. As f is concave, this is given by having

player i work only when no one else is working.

It remains only to �nd the optimal e¤ort level a� such that randomly having one player

work at level a� each period is optimal. (Of course, a player does not know if she will be the

one to work when she approves the recommendation.) Assuming a� is below the �rst-best

8This game has a continuum of actions. It will become clear that discretizing and bounding Ai would
have no e¤ect on the analysis.
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level (de�ned by f 0 (na) = 1=n), this is given by

f (a�)� 1

n
a� = (1� �) n� 1

n
f (a�) ;

or

a� = f (a�) + � (n� 1) f (a�) :

The best symmetric payo¤ vector in Edel (�) thus gives each player payo¤

f (a�)� 1

n
a� = (n� 1)

�
1

n
+ �

�
f (a�) :

This payo¤ is therefore an upper bound on the best symmetric payo¤attainable in a repeated

game Nash equilibrium for any private monitoring structure.

While this payo¤ bound is permissive, it is not obvious (to us, at least) how to give a

tighter bound in this game. One obvious upper bound on each player�s action is given by

the value �a that solves

(1� �) [�a� f (�a)] = �f ((n� 1) �a) ;

or

�a = f (�a) +
�

1� �f ((n� 1) �a) :

This bound follows because a player�s minmax payo¤ is 0, the instantaneous gain from devi-

ating from ai = �a to ai = 0 is at least (1� �) [�a� f (�a)], and� if �a is the least upper bound

on a player�s equilibrium action� a player�s continuation payo¤ is at most �f ((n� 1) �a).

Comparing a� to �a, we see that a� < �a if and only if � is above some cuto¤ �� (noting

that (n� 1) f (a) > f ((n� 1) a) for all a > 0, as f is concave and f (0) = 0). Thus, for

su¢ ciently patient players the payo¤ bound coming from our theorems is tighter than the

obvious bound.
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6 Proof of Theorems

6.1 A Useful Lemma

Lemma 1 There exists �" > 0 such that, for each " < �", it is an obedient sequential equilib-

rium strategy pro�le in the delegation game for the players to always approve the mediator�s

recommendation and for the mediator to recommended the following mapping in period t:

� If all players have always approved prior to time t, then � (htm) = (1� ") �̂+ "
jAj
P

a2A a.

� If the set of players who have ever disapproved prior to time t is the singleton fig for

some i 2 I, then � (htm) =
�
amini ; �min�i

�
.

� If the set of players who have ever disapproved prior to time t is J � I with jJ j � 2, then

� (htm) =
��
aminj

�
j2J ; �

mix
�J

�
, where �mix�J is the correlated action that assigns probability

1= jA�J j to each action pro�le a�J 2 A�J .

Proof. Since the on-path correlated action (1� ") �̂+ "
jAj
P

a2A a has full support, a player

who has always previously approved believes that, (i) if she approves then (1� ") �̂ +
"
jAj
P

a2A a will be played forever; and (ii) if she disapproves and plays ai then 
ai;marg�i

 
(1� ") �̂+ "

jAj
X
a2A

a

!!

will be played in the current period and
�
amini ; �min�i

�
will be played in every future period.

For su¢ ciently small ", (1) implies that approval is optimal

If a player has ever disapproved, she believes that her opponents will play �min�i in every

subsequent period regardless of her own behavior, and she believes that she will play amini in

every subsequent period if she approves. Since amini is a best response to �min�i , approval is

optimal.

Thus, by one-shot deviation principle, it is optimal to always approve the mediator�s

recommendation.

Henceforth, we �x �" such that the conclusion of the lemma applies.
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6.2 Proof of Theorem 2

The proof of Theorem 2 consists of the following two propositions:

Given a strategy for the mediator �, let E� [�] denote expectation with respect to the

induced distribution over action pro�les.

Proposition 2 Let � be an obedient sequential equilibrium strategy for the mediator in the

delegation game. Then, letting �t = E� [� (htm)] for all t, (2) holds for all i and t.

Proof. Since a player�s continuation payo¤ cannot fall below her minimax payo¤, approval

is optimal at on-path history hti only if

(1� �)
X
��t
���tE�

�
ui (� (h

�
m)) jhti

�
� (1� �)max

ai
E�
�
ui
�
ai;marg�i�

�
htm
��
jhti
�
+ �ui: (4)

By the law of iterated expectations,

E�
"
(1� �)

X
��t
���tE�

�
ui (� (h

�
m)) jhti

�#
= (1� �)

X
��t
���tE� [ui (� (h�m))] :

By convexity of the max operator and Jensen�s inequality,

E�
�
max
ai
E�
�
ui
�
ai;marg�i�

�
htm
��
jhti
��

� max
ai
E�
�
E�
�
ui
�
ai;marg�i�

�
htm
��
jhti
��

= max
ai
E�
�
ui
�
ai;marg�i�;t

��
= di (�t) :

Hence, taking the expectation of both sides of (4) with respect to hti yields (2).

The following proposition proves the converse:

Proposition 3 If (�t)
1
t=1 satis�es (2) for all i and t, then (1� �)

P
t�1 �

t�1ui (�t) 2 Edel (�).

Proof. It su¢ ces to show that, for any � > 0, there exists an incentive-compatible strategy

for the mediator � such that maxi
��vi � (1� �)Pt�1 �

t�1E� [ui (at)]
�� < �.

Fix " 2 (0; �"), and consider the following strategy for the mediator. For every t, the

mediator recommends the mapping �t : H
t
m ! �(A) de�ned as follows:

18



� If all players have always approved prior to time t, then �t (htm) = (1� ")�t +

"
h
(1� ") �̂+ "

jAj
P

a2A a
i
.

� If the set of players who have ever disapproved prior to time t is the singleton fig for

some i 2 I, then �t (htm) =
�
amini ; �min�i

�
.

� If the set of players who have ever disapproved prior to time t is J � I with jJ j � 2,

the �t (h
t
m) =

��
aminj

�
j2J ; �

mix
�J

�
.

Since the on-path correlated action has full support, a player who has always approved

believes that all players have always approved, and a player who has ever disapproved believes

that she is the only player who has ever disapproved.

If a a player has ever disapproved, it is optimal for her to approve in the future by the

same argument as in Lemma 1. We are thus left to consider her a player�s incentives when

she has always approved.

In this case, for every i and t,

(1� �)
X
��t
���tE�

�
ui (a� ) jhti

�
= (1� ") (1� �)

X
��t
���tui (�t) + " (1� �)

X
��t
���tui

 
(1� ") �̂+ "

jAj
X
a2A

a

!

� (1� ") [(1� �) di (�t) + �ui] + "
"
(1� �) di

 
(1� ") �̂+ "

jAj
X
a2A

a

!
+ �ui

#

� (1� �) di

 
(1� ")�t + "

"
(1� ") �̂+ "

jAj
X
a2A

a

#!
+ �ui;

where the �rst inequality follows by (2) and Lemma 1 (given the assumption that " < �"),

and the second inequality follows because the function di (�) is convex (as the max operator

is convex). Hence, it is optimal to approve the mediator�s recommendation for all " 2 (0; �").

Finally, for every � > 0 there exists " 2 (0; �") such thatmaxi
��vi � (1� �)Pt�1 �

t�1E� [ui (at)]
�� <

�.
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6.3 Proof of Theorem 1

Fix a Nash equilibrium � of the repeated game with some monitoring structure, and let

�t = E� [at] be the induced distribution over period t actions. By Proposition 3, it su¢ ces

to show that (�t)
1
t=1 satis�es (2) for all i and t.

Since a player�s continuation payo¤ cannot fall below her minimax payo¤, the fact that

� is a Nash equilibrium implies that, for every on-path history hti,

(1� �)
X
��t
���tE�

�
ui (at) jhti

�
� (1� �)max

ai
E�
�
ui (ai; a�i) jhti

�
+ �ui:

As in the proof of Proposition 2, taking the expectation of both sides of this inequality

with respect to hti, collapsing the iterated expectation on the left-hand side, and using the

convexity of the max operator and Jensen�s inequality to move the outer expectation inside

the max operator on the right-hand side yields (2).
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