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Abstract

We develop a behavioral axiomatic characterization of Subjective Expected Utility (SEU)

under risk aversion. Given is an individual agent’s behavior in the market: assume a

finite collection of asset purchases with corresponding prices. We show that such behavior

satisfies a “revealed preference axiom” if and only if there exists a SEU model (a subjective

probability over states and a concave utility function over money) that accounts for the

given asset purchases.



1. Introduction

The main result of this paper gives a revealed preference characterization of risk-averse

subjective expected utility. Our contribution is to provide a necessary and sufficient

condition for an agent’s market behavior to be consistent with risk-averse subjective

expected utility (SEU).

The meaning of SEU for a preference relation has been well understood since Savage

(1954), but the meaning of SEU for agents’ behavior in the market has been unknown until

now. Risk-averse SEU is widely used by economists to describe agents’ market behavior,

and the new understanding of risk-averse SEU provided by our paper is hopefully useful

for both theoretical and empirical purposes.

Our paper follows the revealed preference tradition in economics. Samuelson (1938)

and Houthakker (1950) describe the market behaviors that are consistent with utility

maximization. They show that a behavior is consistent with utility maximization if and

only if it satisfies the strong axiom of revealed preference. We show that there is an

analogous revealed preference axiom for risk-averse SEU. A behavior is consistent with

risk-averse SEU if and only if it satisfies the “strong axiom of revealed subjective expected

utility (SARSEU).” (In the following, we write SEU to mean risk-averse SEU when there

is no potential for confusion.)

The motivation for our exercise is twofold. In the first place, there is a theoretical

payoff from understanding the behavioral counterpart to a theory. In the case of SEU,

we believe that SARSEU gives meaning to the assumption of SEU in a market context.

The second motivation for the exercise is that SARSEU can be used to test for SEU in

actual data. We discuss each of these motivations in turn.

SARSEU gives meaning to the assumption of SEU in a market context. We can,

for example, use SARSEU to understand how SEU differs from maxmin expected util-

ity (Section 6). The difference between the SEU and maxmin utility representations is

obvious, but the difference in the behaviors captured by each model is much harder to

grasp. In fact, we show that SEU and maxmin expected utility are indistinguishable in

some situations. In a similar vein, we can use SARSEU to understand the behavioral

differences between SEU and probabilistic sophistication (Section 5). Finally, SARSEU

helps us understand how SEU restricts behavior over and above what is captured by the

more general model of state-dependent utility (Section 4). The online appendix discusses

additional theoretical implications.
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Our results allow one to test SEU non-parametrically in an important economic

decision-making environment, namely that of choices in financial markets. The test does

not only dictate what to look for in the data (SARSEU), but it also suggests experimen-

tal designs. The syntax of SARSEU may not immediately lend itself to a practical test,

but there are two efficient algorithms for checking the axiom. One of them is based on

linearized “Afriat inequalities” (see Lemma 7 of Appendix A). The other is implicit in

Proposition 2. SARSEU is on the same computational standing as the strong axiom of

revealed preference.

Next, we describe data one can use to test SARSEU. There are experiments of decision-

making under uncertainty where subjects make financial decisions, such as Hey and Pace

(2014), Ahn et al. (2014), or Bossaerts et al. (2010). Hey and Pace, and Ahn et. al. test

SEU parametrically: they assume a specific functional form. A nonparametric test, such

as SARSEU, seems useful because it frees the analysis from such assumptions. Bossaerts

et al. (2010) do not test SEU itself; they test an implication of SEU on equilibrium prices

and portfolio choices.

The paper by Hey and Pace fits our framework very well. They focus on the explana-

tory power of SEU relative to various other models, but they do not test how well SEU

fits the data. Our test, in contrast, would evaluate goodness of fit, and in addition be free

of parametric assumptions.

The experiments by Ahn et al. and Bossaerts et al. do not fit the setup in our paper

because they assume that the probability of one state is known. In an extension of our

results to a generalization of SEU (see Appendix B), we show how a version of SARSEU

characterizes expected utility when the probabilities of some states are objective and

known. Hence the results in our paper are readily applicable to the data from Ahn et al.

and Bossaerts et al. We discuss this application further in Appendix B.

SARSEU is not only useful to testing SEU with existing experimental data, but it

also guides the design of new experiments. In particular, SARSEU suggests how one

should choose the parameters of the design (prices and budgets) so as to evaluate SEU.

For example, in a setting with two states, one could choose each of the configurations

described in Section 3.1 to evaluate where violations of SEU come from: state-dependent

utility or probabilistic sophistication.

Related literature. The closest precedent to our paper is the important work of Ep-

stein (2000). Epstein’s setup is the same as ours; in particular, he assumes data on
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state-contingent asset purchases, and that probabilities are subjective and unobserved

but stable. We differ in that he focuses attention on pure probabilistic sophistication

(with no assumptions on risk aversion), while our paper is on risk-averse SEU. Epstein

presents a necessary condition for market behavior to be consistent with probabilistic

sophistication. Given that the model of probabilistic sophistication is more general than

SEU, one expects that the two axioms may be related: Indeed we show in Section 5

that Epstein’s necessary condition can be obtained as a special case of SARSEU. We

also present an example of data that are consistent with a risk averse probabilistically

sophisticated agent, but that violate SARSEU.

Polisson and Quah (2013) develops tests for models of decision under risk and uncer-

tainty, including SEU (without the requirement of risk aversion). They develop a general

approach by which testing a model amounts to solving a system of (nonlinear) Afriat

inequalities. See also Bayer et al. (2012), who study different models of ambiguity by way

of Afriat inequalities. Non-linear Afriat inequalities can be problematic because there is

no known efficient algorithm for deciding if they have a solution.

Another strain of related work deals with objective expected utility, assuming observ-

able probabilities. The papers by Green and Srivastava (1986), Varian (1983), Varian

(1988), and Kubler et al. (2014) characterize the datasets that are consistent with ob-

jective expected utility theory. Datasets in these papers are just like ours, but with the

added information of probabilities over states. Green and Srivastava allow for the con-

sumption of many goods in each state, while we focus on monetary payoffs. Varian’s and

Green and Srivastava’s characterization is in the form of Afriat inequalities; Kubler et.

al. improve on these by presenting a revealed preference axiom. We discuss the relation

between their axiom and SARSEU in the online appendix.

The syntax of SARSEU is similar to the main axiom in Fudenberg et al. (2014), and

in other works on additively separable utility.

2. Subjective Expected Utility

Let S be a finite set of states. We occasionally use S to denote the number |S| of

states. Let ∆++ = {µ ∈ RS
++|

∑S
s=1 µs = 1} denote the set of strictly positive probability

measures on S. In our model, the objects of choice are state-contingent monetary payoffs,

or monetary acts. A monetary act is a vector in RS
+.

We use the following notational conventions: For vectors x, y ∈ Rn, x ≤ y means that
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xi ≤ yi for all i = 1, . . . , n; x < y means that x ≤ y and x 6= y; and x � y means that

xi < yi for all i = 1, . . . , n. The set of all x ∈ Rn with 0 ≤ x is denoted by Rn
+ and the

set of all x ∈ Rn with 0� x is denoted by Rn
++.

Definition 1. A dataset is a finite collection of pairs (x, p) ∈ RS
+ ×RS

++.

The interpretation of a dataset (xk, pk)Kk=1 is that it describes K purchases of a state-

contingent payoff xk at some given vector of prices pk, and income pk · xk.
A subjective expected utility (SEU) model is specified by a subjective probability

µ ∈ ∆++ and a utility function over money u : R+ → R. An SEU maximizing agent

solves the problem

max
x∈B(p,I)

∑
s∈S

µsu(xs) (1)

when faced with prices p ∈ RS
++ and income I > 0. The set B(p, I) = {y ∈ RS

+ : p ·y ≤ I}
is the budget set defined by p and I.

A dataset is our notion of observable behavior. The meaning of SEU as an assumption,

is the behaviors that are as if they were generated by an SEU maximizing agent. We call

such behaviors SEU rational.

Definition 2. A dataset (xk, pk)Kk=1 is subjective expected utility rational (SEU rational)

if there is µ ∈ ∆++ and a concave and strictly increasing function u : R+ → R such that,

for all k,

y ∈ B(pk, pk · xk)⇒
∑
s∈S

µsu(ys) ≤
∑
s∈S

µsu(xks).

Three remarks are in order. Firstly, we restrict attention to concave (i.e., risk-averse)

utility, and our results will have nothing to say about the non-concave case. In second

place, we assume that the relevant budget for the kth observation is B(pk, pk ·xk). Implicit

is the assumption that pk · xk is the relevant income for this problem. This assumption is

somewhat unavoidable, and standard procedure in revealed preference theory. Thirdly, we

should emphasize that there is in our model only one good (which we think of as money)

in each state. The problem with many goods is interesting, but beyond the methods

developed in the present paper (see Remark 4).

3. A Characterization of SEU Rational Data

In this section we introduce the axiom for SEU rationality and state our main result.

We start by deriving, or calculating, the axiom in a specific instance. In this derivation,
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we assume (for ease of exposition) that u is differentiable. In general, however, an SEU

rational dataset may not be rationalizable using a differentiable u; see Remark 3 below.

The first-order conditions for SEU maximization (1) are:

µsu
′(xs) = λps. (2)

The first-order conditions involve three unobservables: subjective probability µs, marginal

utilities u′(xs) and Lagrange multipliers λ.

3.1. The 2× 2 case: K = 2 and S = 2

We illustrate our analysis with a discussion of the 2× 2 case, the case when there are two

states and two observations. In the 2×2 case we can easily see that SEU has two kinds of

implications, and, as we explain in Sections 4 and 5, each kind is derived from a different

qualitative feature of SEU.

Let us impose the first-order conditions (2) on a dataset. Let (xk1 , pk1), (xk2 , pk2) be

a dataset with K = 2 and S = 2. For the dataset to be SEU rational there must exist

µ ∈ ∆++, (λk)k=k1,k2 and a concave function u such that each observation in the dataset

satisfies the first order conditions (2). That is,

µsu
′(xks) = λkpks , (3)

for s = s1, s2, and k = k1, k2.

Equation (3) involves the observed x and p, as well as the unobservables u′, λ, and

µ. One is free to choose (subject to some constraints) the unobservables to satisfy Equa-

tion (3). We can understand the implications of Equation (3) by considering situations

in which the unobservable λ and µ cancel out:

u′(xk1s1 )

u′(xk2s1 )

u′(xk2s2 )

u′(xk1s2 )
=
µs1u

′(xk1s1 )

µs1u
′(xk2s1 )

µs2u
′(xk2s2 )

µs2u
′(xk1s2 )

=
λk1pk1s1
λk2pk2s1

λk2pk2s2
λk1pk1s2

=
pk1s1
pk2s1

pk2s2
pk1s2

(4)

Equation (4) is obtained by dividing first order conditions to eliminate terms involving

µ and λ: this allows us to constrain the observable variables, x and p. There are two

situations of interest.

Suppose first that xk1s1 > xk2s1 and that xk2s2 > xk1s2 . The concavity of u implies then that

u′(xk1s1 ) ≤ u′(xk2s1 ) and u′(xk2s2 ) ≤ u′(xk1s2 ). This means that the left hand side of Equation (4)

is smaller than 1. Thus:

xk1s1 > xk2s1 and xk2s2 > xk1s2 ⇒
pk1s1
pk2s1

pk2s2
pk1s2
≤ 1. (5)
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In second place, suppose that xk1s1 > xk1s2 while xk2s2 > xk2s1 (so the bundles xk1 and

xk2 are on opposite sides of the 45 degree line in R2). The concavity of u implies that

u′(xk1s1 ) ≤ u′(xk1s2 ) and u′(xk2s2 ) ≤ u′(xk2s1 ). The far-left of Equation (4) is then smaller than

1. Thus:

xk1s1 > xk1s2 and xk2s2 > xk2s1 ⇒
pk1s1
pk1s2

pk2s2
pk2s1
≤ 1. (6)

Requirements (5) and (6) are implications of risk-averse SEU for a dataset when S = 2

and K = 2. We shall see that they are all the implications of risk-averse SEU in this case,

and that they capture distinct qualitative components of SEU (Sections 4 and 5).

3.2. General K and S

We now turn to the general setup, and to our main result. First, we shall derive the

axiom by proceeding along the lines suggested above in Section 3.1: Using the first-order

conditions (2), the SEU-rationality of a dataset requires that

u′(xk
′

s′ )

u′(xks)
=
µs
µs′

λk
′

λk
pk
′

s′

pks
.

The concavity of u implies something about the left-hand side of this equation when

xk
′

s′ > xks , but the right-hand side is complicated by the presence of unobservable Lagrange

multipliers and subjective probabilities. So we choose pairs (xks , x
k′

s′ ) with xks > xk
′

s′ such

that subjective probabilities and Lagrange multipliers cancel out. For example, consider

xk1s1 > xk2s2 , x
k3
s2
> xk1s3 , and xk2s3 > xk3s1 .

By manipulating the first-order conditions we obtain that:

u′(xk1s1 )

u′(xk2s2 )
·
u′(xk3s2 )

u′(xk1s3 )
·
u′(xk2s3 )

u′(xk3s1 )
=

(
µs2
µs1

λk1

λk2
pk1s1
pk2s2

)
·
(
µs3
µs2

λk3

λk1
pk3s2
pk1s3

)
·
(
µs1
µs3

λk2

λk3
pk2s3
pk3s1

)
=
pk1s1
pk2s2

pk3s2
pk1s3

pk2s3
pk3s1

Notice that the pairs (xk1s1 , x
k2
s2

), (xk3s2 , x
k1
s3

), and (xk2s3 , x
k3
s1

) have been chosen so that the

subjective probabilities µs appear in the nominator as many times as in the denominator,

and the same for λk; hence these terms cancel out. Such “canceling out” motivates

conditions (2) and (3) in the axiom below.

Now the concavity of u and the assumption that xk1s1 > xk2s2 , xk3s2 > xk1s3 , and xk2s3 > xk3s1

imply that the product of the prices
p
k1
s1

p
k2
s2

p
k3
s2

p
k1
s3

p
k2
s3

p
k3
s1

cannot exceed 1. Thus, we obtain an

implication of SEU on prices, an observable entity.
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In general, the assumption of SEU rationality requires that, for any collection of

sequences as above, appropriately chosen so that subjective probabilities and Lagrange

multipliers will cancel out, the product of the ratio of prices cannot exceed 1. Formally:

Strong Axiom of Revealed Subjective Utility (SARSEU): For any sequence of

pairs (xkisi , x
k′i
s′i

)ni=1 in which

1. xkisi > x
k′i
s′i

for all i;

2. each s appears as si (on the left of the pair) the same number of times it appears as

s′i (on the right);

3. each k appears as ki (on the left of the pair) the same number of times it appears

as k′i (on the right):

The product of prices satisfies that

n∏
i=1

pkisi

p
k′i
s′i

≤ 1.

Theorem 1. A dataset is SEU rational if and only if it satisfies SARSEU.

It is worth noting that the syntax of SARSEU is similar to that of the main axiom in

Kubler et al. (2014), with “risk-neutral” prices playing the role of prices in the model with

objective probabilities. The relation between the two is discussed further in Appendix B.

We conclude the section with some remarks on Theorem 1. The proof is in Section A.

Remark 1. In the 2 × 2 case of Section 3.1, Requirements (5) and (6) are equivalent to

SARSEU.

Remark 2. The proof of Theorem 1 is in Section A. It relies on setting up a system

of inequalities from the first-order conditions of an SEU agent’s maximization problem.

This is similar to the approach in Afriat (1967), and in many other subsequent studies of

revealed preference. The difference is that our system is nonlinear, and must be linearized.

A crucial step in the proof is an approximation result, which is complicated by the fact

that the unknown subjective probabilities, Lagrange multipliers, and marginal utilities,

all take values in non-compact sets.

Remark 3. Under the following assumption on the dataset:

xks 6= xk
′

s′ if (k, s) 6= (k′, s′),
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SARSEU implies SEU rationality using a smooth rationalizing u. This condition on the

dataset plays a similar role to the assumption used by Chiappori and Rochet (1987) to

obtain a smooth utility using the Afriat construction.

Remark 4. In our framework we assume choices of monetary acts, which means that

consumption in each state is one-dimensional. Our results are not easily applicable to

the multidimensional setting, essentially because concavity is in general equivalent to

cyclic monotonicity of supergradients, which we cannot deal with in our approach. In

the one-dimensional case, concavity requires only that supergradients are monotone. The

condition that some unknown function is monotone is preserved by a monotonic trans-

formation of the function, but this is not true of cyclic monotonicity. If one sets up the

multidimensional problem as we have done, then one loses the property of cyclic mono-

tonicity when linearizing the system.

Finally, it is not obvious from the syntax of SARSEU that one can verify whether a

particular datasets satisfies SARSEU in finitely many steps. We show that, not only is

SARSEU decidable in finitely many steps, but there is in fact an efficient algorithm that

decides whether a dataset satisfies SARSEU.

Proposition 2. There is an efficient algorithm that decides whether a dataset satisfies

SARSEU.1

We provide a direct proof of Proposition 2 in Section C. Proposition 2 can also be

seen as a result of Lemma 7 together with the linearization in the proof of Theorem 1.

The resulting linear system can be decided by using linear programming.

4. State-dependent Utility

SEU asserts, among other things, the existence of a (concave) state-dependent utility

(i.e., an additively separable utility across states). SEU requires more, of course, but it is

interesting to compare SEU with the weaker theory of state-dependent utility. We shall

trace the assumption of state-dependent utility to a particular weakening on SARSEU.

The state-dependent utility model says that an agent maximizes U sd(x) =
∑

s∈S us(xs),

an additively separable utility, for some collection (us)s∈S of concave and strictly increas-

ing state-dependent functions, us : R+ → R. We should emphasize that here, as in the

rest of the paper, we restrict attention to concave utility.

1Efficient means that the algorithm runs in polynomial time.
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xs2

xs1

xk2

xk1

xs2

xs1

xk2

xk1

Figure 1: A violation of Requirement (5)

4.1. The 2× 2 case: K = 2 and S = 2

We argued in Section 3.1 that requirements (5) and (6) are necessary for SEU rationality.

It turns out that (5) alone captures state-dependent utility.

A dataset that violates Requirement (5) can be visualized on the left of Figure 1.

The figure depicts choices with xk1s1 > xk2s1 and xk2s2 > xk2s2 , but where Requirement (5) is

violated. Figure 1 presents a geometrical argument for why such a dataset is not SEU

rational. Suppose, towards a contradiction, that the dataset is SEU rational. Since the

rationalizing function u is concave, it is easy to see that optimal choices must be increasing

in the level of income (the demand function of a risk-averse SEU agent is normal). At the

right of Figure 1, we include a budget with the same relative prices as when xk2 was chosen,

but where the income is larger. The larger income is such that the budget line passes

through xk1 . Since her demand is normal, the agent’s choice on the larger (green) budget

line must be larger than at xk2 . The choice must lie in the line segment on the green budget

line that consists of bundles larger than xk2 . But such a choice would violate the weak

axiom of revealed preference (WARP). Hence the (counterfactual) choice implied by SEU

at the green budget line would be inconsistent with utility maximization, contradicting

the assumption of SEU rationality. It is useful to emphasize that Requirement (5) is a

strengthening of WARP, something we shall return to below.

So SEU rationality implies (5), which is a strengthening of WARP. Now we argue that

state-dependent utility implies (5) as well. To see this, suppose that the agent maximizes

us1(·) + us2(·), where usi is concave. As in Section 3.1, assume that usi is differentiable.
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Then, xk1s1 > xk2s1 and xk2s2 > xk1s2 imply that u′s1(x
k1
s1

) ≤ u′s1(x
k2
s1

) and u′s2(x
k2
s2

) ≤ u′s2(x
k1
s2

).

The first order conditions are u′s(x
k
s) = λkpks ; hence

pk2s1
pk1s1

pk1s2
pk2s2

=
u′s1(x

k2
s1

)

u′s1(x
k1
s1 )

u′s2(x
k1
s2

)

u′s2(x
k2
s2 )
≤ 1.

Indeed, this is Requirement (5).

4.2. General K and S

A dataset (xk, pk)Kk=1 is state-dependent utility (SDU) rational if there is an additively

separable function U sd such that, for all k,

y ∈ B(pk, pk · xk)⇒ U sd(y) ≤ U sd(xk).

In the 2×2 case, we have seen that Requirement (5) is necessary for rationalization by

a state-dependent utility. More generally, there is a natural weakening of SARSEU that

captures rationalization by a state-dependent utility. This weakening is strong enough to

imply WARP. Concretely, if one substitutes condition (2) in SARSEU with the statement

si = s′i the resulting axiom characterizes SDU rationality:

Strong Axiom of Revealed State-dependent Utility (SARSDU): For any se-

quence of pairs (xkisi , x
k′i
s′i

)ni=1 in which

1. xkisi > x
k′i
s′i

for all i;

2. si = s′i.

3. each k appears as ki (on the left of the pair) the same number of times it appears

as k′i (on the right):

The product of prices satisfies that

n∏
i=1

pkisi

p
k′i
s′i

≤ 1.

It should be obvious that SARSEU implies SARSDU. SARSDU is equivalent to SDU

rationality.

Theorem 3. A dataset is SDU rational if and only if it satisfies SARSDU.
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The proof that SARSDU is necessary for state-dependent utility is simple, and follows

along the lines developed in Section 3. The proof of sufficiency is similar to the proof

used for the characterization of SEU, and is omitted.

Note that, in the 2 × 2 case, SARSDU and Requirement (5) are equivalent. Hence,

(5) characterizes state-dependent utility in the 2× 2 case.

By the theorem above, we know that SARSDU implies the weak axiom of revealed pref-

erence (WARP), but it may be useful to present a direct proof of the fact that SARSDU

implies WARP.

Definition 3. A dataset (xk, pk)Kk=1 satisfies WARP if there is no k and k′ such that

pk · xk ≥ pk · xk′ and pk
′ · xk′ > pk

′ · xk.

Proposition 4. If a dataset satisfies SARSDU, then it satisfies WARP.

Proof. Suppose, towards a contradiction, that a dataset (xk, pk)Kk=1 satisfies SARSDU

but that it violates WARP. Then there are k and k′ such that pk · xk ≥ pk · xk′ and

pk
′ ·xk′ > pk

′ ·xk. It cannot be the case that xks ≥ xk
′
s for all s, so the set S1 = {s : xks < xk

′
s }

is nonempty. Choose s∗ ∈ S1 such that

pk
′
s∗

pks∗
≥ pk

′
s

pks
for all s ∈ S1.

Now, pk · xk ≥ pk · xk′ implies that

(xks∗ − xk
′

s∗) ≥
−1

pks∗

∑
s 6=s∗

pks(x
k
s − xk

′

s ).

We also have that pk
′ · xk′ > pk

′ · xk, so

0 >
∑
s 6=s∗

pk
′

s (xks − xk
′

s ) + pk
′

s∗(x
k
s∗ − xk

′

s∗)

≥
∑
s 6=s∗

pk
′

s (xks − xk
′

s ) +
−pk′s∗
pks∗

∑
s 6=s∗

pks(x
k
s − xk

′

s )

=
∑
s/∈S1

pk
′

s (1− pk
′
s∗p

k
s

pks∗p
k′
s

)(xks − xk
′

s )︸ ︷︷ ︸
A

+
∑

s∈S1\{s∗}

pk
′

s (1− pk
′
s∗p

k
s

pks∗p
k′
s

)(xks − xk
′

s )︸ ︷︷ ︸
B

.

We shall prove that A ≥ 0 and that B ≥ 0, which will yield the desired contradiction.
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For all s /∈ S1 we have that (xks − xk
′
s ) ≥ 0. Then SARSDU implies that

pk
′
s∗p

k
s

pks∗p
k′
s

≤ 1,

as xks∗ < xk
′
s∗ so that the sequence {(xk′s∗ , xks∗), (xks , x

k′
s )} satisfies (1), (2), and (3) in

SARSDU. Hence A ≥ 0.

Now consider B. By definition of s∗, we have that
pk
′

s∗p
k
s

pk
s∗p

k′
s
≥ 1 for all s ∈ S1. Then,

(xks − xk
′
s ) < 0 implies that (

1− pk
′
s∗p

k
s

pks∗p
k′
s

)
(xks − xk

′

s ) ≥ 0,

for all s ∈ S1. Hence B ≥ 0.

We make use of these results in the online appendix, where we show how SARSDU

and SARSEU rule out violations of Savage’s axioms. The online appendix also includes

a condition on the data under which SEU and SDU are observationally equivalent.

5. Probabilistic Sophistication

We have looked at the aspects of SARSEU that capture the existence of an additively

separable representation. SEU also affirms the existence of a unique subjective proba-

bility measure guiding the agent’s choices. We now turn to the behavioral counterpart

of the existence of such a probability. We do not have a characterization of probability

sophistication. In this section, we simply observe how SARSEU and Requirement (6) are

related to the existence of a subjective probability.2 We also show how SARSEU is related

to Epstein’s necessary condition for probability sophistication.

5.1. The 2× 2 case: K = 2 and S = 2

Consider, as before, the 2 × 2 case: S = 2 and K = 2. We argued in Section 3.1

that Requirements (5) and (6) are necessary for SEU rationality, and in Section 4 that

Requirement (5) captures the existence of a state-dependent representation. We now show

that Requirement (6) results from imposing a unique subjective probability guiding the

agent’s choices.

2In the online appendix, we also show that Requirement (6) rules out violations of Savage’s P4, which

captures the existence of a subjective probability (Machina and Schmeidler (1992)).
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Figure 2: Violation of Requirement (6)

Figure 2 exhibits a dataset that violates Requirement (6). We have drawn the indiffer-

ence curve of the agent when choosing xk2 . Recall that the marginal rate of substitution

(MRS) is µs1u
′(xs1)/µs2u

′(xs2). At the point where the indifference curve crosses the 45

degree line (dotted), one can read the agent’s subjective probability off the indifference

curve because u′(xs1)/u
′(xs2) = 1, and therefore the MRS equals µs1/µs2 . So the tangent

line to the indifference curve at the 45 degree line describes the subjective probability. It

is then clear that this tangent line (depicted in green in the figure) must be flatter than

the budget line at which xk2 was chosen. On the other hand, the same reasoning reveals

that the subjective probability must define a steeper line than the budget line at which xk1

was chosen. This is a contradiction, as the latter budget line is steeper than the former.

5.2. General K and S

In the following, we focus instead on the relation with probabilistic sophistication, namely

the relation between SARSEU and the axiom in Epstein (2000). Epstein studies the

implications of probabilistic sophistication for consumption datasets. He considers the

same kind of economic environment as we do, and the same notion of a dataset. He

focuses on probabilistic sophistication instead of SEU, and importantly does not assume

risk aversion. Epstein shows that a dataset is inconsistent with probabilistic sophistication

if there exist s, t ∈ S and k, k̂ ∈ K such that (i) pks ≥ pkt and pk̂s ≤ pk̂t , with at least one

strict inequality; and (ii) xks > xkt and xk̂s < xk̂t .

Of course, an SEU rational agent is probabilistically sophisticated. Indeed, our next

result establishes that a violation of Epstein’s condition implies a violation of SARSEU.
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Figure 3: Probabilistically sophisticated violation of SARSEU

Proposition 5. If a dataset (xk, pk)Kk=1 satisfies SARSEU, then (i) and (ii) cannot both

hold for some s, t ∈ S, k, k̂ ∈ K

Proof. Suppose that s, t ∈ S, k, k̂ ∈ K are such that (ii) holds. Then {(xks , xkt ), (xk̂t , x
k̂
s))}

satisfies the conditions in SARSEU. Hence, SARSEU requires that
pks
pkt

pk̂t
pk̂s
≤ 1, so that

pks ≤ pkt or pk̂s ≥ pk̂t . Hence, (i) is violated.

Proposition 5 raises the issue of whether SEU and probabilistic sophistication are

distinguishable. In the following, we show that we can indeed distinguish the two models:

We present an example of a dataset that violates SARSEU, but that is consistent with a

risk-averse probabilistically sophisticated agent. Hence the weakening in going from SEU

to probabilistic sophistication has empirical content.

Let S = {s1, s2}. We define a dataset as follows. Let xk1 = (2, 2), pk1 = (1, 2),

xk2 = (8, 0), and pk2 = (1, 1). It is clear that the dataset violates SARSEU: xk2s1 > xk1s1 and

xk1s2 > xk2s2 while
pk2s1
pk1s1

pk1s2
pk2s2

= 2 > 1.

Observe, moreover, that the dataset specifically violates Requirement (5), not (6). Fig-

ure 3 illustrates the dataset.

We shall now argue that this dataset is rationalizable by a risk-averse probabilistically

sophisticated agent. Fix µ ∈ ∆++ with µ1 = µ2 = 1/2, a uniform probability over S. Any
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vector x ∈ R2
+ induces the probability distribution on R+ given by x1 with probability

1/2 and x2 with probability 1/2. Let Π be the set of all uniform probability measures on

R+ with support having cardinality smaller than or equal to 2.

We shall define a function V : Π→ R that represents a probabilistically sophisticated

preference, and for which the choices in the dataset are optimal.3 We construct a monotone

increasing and quasiconcave h : R2
+ → R+, and then define V (π) = h(x̄π, xπ), where xπ

is the smallest point in the support of π, and x̄π is the largest. As a consequence of

the monotonicity of h, V represents a probabilistically sophisticated preference. The

preference is also risk-averse.

The function h is constructed so that (x1, x2) 7→ h(max{x1, x2},min{x1, x2}) has the

map of indifference curves illustrated on the left in Figure 3. There are two important

features of the indifference curves drawn in the figure. The first is that indifference curves

exhibit a convex preference, which ensures that the agent will be risk-averse. The second

is that indifference curves become “less convex” as one moves up and to the right in the

figure. As a result, the line that is normal to pk1 supports the indifference curve through

xk1 , while the line that is normal to pk2 supports the indifference curve through xk2 . It is

clear from Figure 3 that the construction rationalizes the choices in the dataset.

6. Maxmin Expected Utility

In this section, we demonstrate one use of our main result to study the differences between

SEU and maxmin expected utility. We show that SEU and maxmin are behaviorally

indistinguishable in the 2× 2 case, but distinguishable more generally.

The maxmin SEU model, first axiomatized by Gilboa and Schmeidler (1989), posits

that an agent maximizes

min
µ∈M

∑
s∈S

µsu(xs),

where M is a closed and convex set of probabilities. A dataset (xk, pk)Kk=1 is maxmin

expected utility rational if there is a closed and convex set M ⊆ ∆++ and a concave and

strictly increasing function u : R+ → R such that, for all k,

y ∈ B(pk, pk · xk)⇒ min
µ∈M

∑
s∈S

µsu(ys) ≤ min
µ∈M

∑
s∈S

µsu(xks).

3It is easy to show that there is a probabilistically sophisticated weak order � defined on the set of

all probability measures on R2
+ with finite support, such that V represents � on Π. The details of the

example are technical and left to the online appendix.
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Note that we restrict attention to risk-averse maxmin expected utility.

Proposition 6. Let S = K = 2. Then a dataset is maxmin expected utility rational if

and only if it is SEU rational.

The proof of Proposition 6 is in the online appendix. The result in Proposition 6

does not, however, extend beyond the case of two observations. In the online appendix,

we provide an example of data from a (risk-averse) maxmin expected utility agent that

violates SARSEU.

A. Proof of Theorem 1

We first give three preliminary and auxiliary results. Lemma 7 provides nonlinear Afriat

inequalities for the problem at hand. A version of this lemma appears, for example, in

Green and Srivastava (1986), Varian (1983), or Bayer et al. (2012). Lemmas 8 and 9 are

versions of the theorem of the alternative.

Lemma 7. Let (xk, pk)Kk=1 be a dataset. The following statements are equivalent:

1. (xk, pk)Kk=1 is SEU rational.

2. There are strictly positive numbers vks , λk, µs, for s = 1, . . . , S and k = 1, . . . , K,

such that

µsv
k
s = λkpks , xks > xk

′

s′ ⇒ vks ≤ vk
′

s′ . (7)

Proof. We shall prove that (1) implies (2). Let (xk, pk)Kk=1 be SEU rational. Let µ ∈ RS
++

and u : R+ → R be as in the definition of SEU rational dataset. Then (see, for example,

Theorem 28.3 of Rockafellar (1997)), there are numbers λk ≥ 0, k = 1, . . . , K such that

if we let

vks =
λkpks
µs

then vks ∈ ∂u(xks) if xks > 0, and there is w ∈ ∂u(xks) with vks ≥ w if xks = 0 (here we

have ∂u(0) 6= ∅). In fact, since u is strictly increasing, it is easy to see that λk > 0, and

therefore vks > 0.

By the concavity of u, and the consequent monotonicity of ∂u(xks) (see Theorem 24.8

of Rockafellar (1997)), if xks > xk
′

s′ > 0, vks ∈ ∂u(xks), and vk
′

s′ ∈ ∂u(xk
′

s′ ), then vks ≤ vk
′

s′ . If

xks > xk
′

s′ = 0, then w ∈ ∂u(xk
′

s′ ) with vk
′

s′ ≥ w. So vks ≤ w ≤ vk
′

s′ .
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In second place, we show that (2) implies (1). Suppose that the numbers vks , λk, µs, for

s = 1, . . . , S and k = 1, . . . , K are as in (2). Enumerate the elements of X in increasing

order: y1 < y2 < . . . < yn. Let y
i

= min{vks : xks = yi} and ȳi = max{vks : xks = yi}. Let

zi = (yi + yi+1)/2, i = 1, . . . , n − 1; z0 = 0, and zn = yn + 1. Let f be a correspondence

defined as follows:

f(z) =


[y
i
, ȳi] if z = yi,

max{ȳi : z < yi} if yn > z and ∀i(z 6= yi),

y
n
/2 if yn < z.

(8)

Then, by the assumptions placed on vks , and by construction of f , y < y′, v ∈ f(y) and

v′ ∈ f(y′) imply that v′ ≤ v. Then the correspondence f is monotone, and there exists a

concave function u for which ∂u = f (see e.g. Theorem 24.8 of Rockafellar (1997)). Given

that vks > 0 all the elements in the range of f are positive, and therefore u is a strictly

increasing function.

Finally, for all (k, s), λkpks/µs = vks ∈ ∂u(vks ) and therefore the first-order conditions

to a maximum choice of x hold at xks . Since u is concave the first-order conditions are

sufficient. The dataset is therefore SEU rational.

We shall use the following lemma, which is a version of the Theorem of the Alternative.

This is Theorem 1.6.1 in Stoer and Witzgall (1970). We shall use it here in the cases where

F is either the real or the rational number field.

Lemma 8. Let A be an m× n matrix, B be an l× n matrix, and E be an r × n matrix.

Suppose that the entries of the matrices A, B, and E belong to a commutative ordered

field F. Exactly one of the following alternatives is true.

1. There is u ∈ Fn such that A · u = 0, B · u ≥ 0, E · u� 0.

2. There is θ ∈ Fr, η ∈ Fl, and π ∈ Fm such that θ ·A+ η ·B + π ·E = 0; π > 0 and

η ≥ 0.

The next lemma is a direct consequence of Lemma 8: see Lemma 12 in Chambers and

Echenique (2014) for a proof.

Lemma 9. Let A be an m× n matrix, B be an l× n matrix, and E be an r × n matrix.

Suppose that the entries of the matrices A, B, and E are rational numbers. Exactly one

of the following alternatives is true.
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1. There is u ∈ Rn such that A · u = 0, B · u ≥ 0, and E · u� 0.

2. There is θ ∈ Qr, η ∈ Ql, and π ∈ Qm such that θ ·A+ η ·B + π ·E = 0; π > 0 and

η ≥ 0.

A.1. Necessity

Lemma 10. If a dataset (xk, pk)Kk=1 is SEU rational, then it satisfies SARSEU.

Proof. Let (xk, pk)Kk=1 be SEU rational, and let µ ∈ ∆++ and u : R+ → R be as in

the definition of SEU rational. By Lemma 7, there exists a strictly positive solution vks ,

λk, µs to the system in Statement (2) of Lemma 7 with vks ∈ ∂u(xks) when xks > 0, and

vks ≥ w ∈ ∂u(xks) when xks = 0.

Let (xkisi , x
k′i
s′i

)ni=1 be a sequence satisfying the three conditions in SARSEU. Then xkisi >

x
k′i
s′i

. Suppose that x
k′i
s′i
> 0. Then, vkisi ∈ ∂u(xkisi ) and v

k′i
s′i
∈ ∂u(x

k′i
s′i

). By the concavity of u,

it follows that λkiµs′ip
ki
si
≤ λk

′
iµsip

k′i
s′i

(see Theorem 24.8 of Rockafellar (1997)). Similarly,

if x
k′i
s′i

= 0, then vkisi ∈ ∂u(xkisi ) and v
k′i
s′i
≥ w ∈ ∂u(x

k′i
s′i

). So λkiµs′ip
ki
si
≤ λk

′
iµsip

k′i
s′i

Therefore,

1 ≥
n∏
i=1

λkiµs′ip
ki
si

λk
′
iµsip

k′i
s′i

=
n∏
i=1

pkisi

p
k′i
s′i

,

as the sequence satisfies Conditions (2) and (3) of SARSEU; and hence the numbers λk

and µs appear the same number of times in the denominator as in the numerator of this

product.

A.2. Sufficiency

We proceed to prove the sufficiency direction. An outline of the argument is as follows. We

know from Lemma 7 that it suffices to find a solution to the Afriat inequalities (actually

first order conditions), written as statement (2) in the lemma. So we set up the problem

to find a solution to a system of linear inequalities obtained from using logarithms to

linearize the Afriat inequalities in Lemma 7.

Lemma 11 establishes that SARSEU is sufficient for SEU rationality when the loga-

rithms of the prices are rational numbers. The role of rational logarithms comes from our

use of a version the theorem of the alternative (see Lemma 9): when there is no solution

to the linearized Afriat inequalities, then the existence of a rational solution to the dual
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system of inequalities implies a violation of SARSEU. The bulk of the proof goes into

constructing a violation of SARSEU from a given solution to the dual.

The next step in the proof (Lemma 12) establishes that we can approximate any

dataset satisfying SARSEU with a dataset for which the logarithms of prices are rational,

and for which SARSEU is satisfied. This step is crucial, and somewhat delicate. One

might have tried to obtain a solution to the Afriat inequalities for “perturbed” systems

(with prices that are rational after taking logs), and then considered the limit. This does

not work because the solutions to our systems of inequalities are in a non-compact space.

It is not clear how to establish that the limits exist and are well-behaved. Lemma 12

avoids the problem.

Finally, Lemma 13 establishes the result by using another version of the theorem of

the alternative, stated as Lemma 8 above.

The statement of the lemmas follow. The rest of the paper is devoted to the proof of

these lemmas.

Lemma 11. Let dataset (xk, pk)kk=1 satisfy SARSEU. Suppose that log(pks) ∈ Q for all k

and s. Then there are numbers vks , λk, µs, for s = 1, . . . , S and k = 1, . . . , K satisfying (7)

in Lemma 7.

Lemma 12. Let dataset (xk, pk)kk=1 satisfy SARSEU. Then for all positive numbers ε,

there exists qks ∈ [pks − ε, pks ] for all s ∈ S and k ∈ K such that log qks ∈ Q and the dataset

(xk, qk)kk=1 satisfy SARSEU.

Lemma 13. Let dataset (xk, pk)kk=1 satisfy SARSEU. Then there are numbers vks , λk, µs,

for s = 1, . . . , S and k = 1, . . . , K satisfying (7) in Lemma 7.

A.2.1. Proof of Lemma 11

We linearize the equation in System (7) of Lemma 7. The result is:

log vks + log µs − log λk − log pks = 0, (9)

xks > xk
′

s′ ⇒ log vks ≤ log vk
′

s′ . (10)

In the system comprised by (9) and (10), the unknowns are the real numbers log vks , log µs,

log λk, for k = 1, . . . , K and s = 1, . . . , S.

First, we are going to write the system of inequalities (9) and (10) in matrix form.
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We shall define a matrix A such that there are positive numbers vks , λk, µs the logs

of which satisfy Equation (9) if and only if there is a solution u ∈ RK×S+K+S+1 to the

system of equations

A · u = 0,

and for which the last component of u is strictly positive.

Let A be a matrix with K×S rows and K×S+S+K+1 columns, defined as follows:

We have one row for every pair (k, s); one column for every pair (k, s); one column for

every s; one column for each k; and one last column. In the row corresponding to (k, s)

the matrix has zeroes everywhere with the following exceptions: it has a 1 in the column

for (k, s); it has a 1 in the column for s; it has a −1 in the column for k; and − log pks in

the very last column.
Matrix A looks as follows:



(1,1) ··· (k,s) ··· (K,S) 1 ··· s ··· S 1 ··· k ··· K p

(1,1) 1 · · · 0 · · · 0 1 · · · 0 · · · 0 −1 · · · 0 · · · 0 − log p11
...

...
...

...
...

...
...

...
...

...
...

(k,s) 0 · · · 1 · · · 0 0 · · · 1 · · · 0 0 · · · −1 · · · 0 − log pks
...

...
...

...
...

...
...

...
...

...
...

(K,S) 0 · · · 0 · · · 1 0 · · · 0 · · · 1 0 · · · 0 · · · −1 − log pKS



Consider the system A · u = 0. If there are numbers solving Equation (9), then

these define a solution u ∈ RK×S+S+K+1 for which the last component is 1. If, on the

other hand, there is a solution u ∈ RK×S+S+K+1 to the system A · u = 0 in which the

last component (uK×S+S+K+1) is strictly positive, then by dividing through by the last

component of u we obtain numbers that solve Equation (9).

In second place, we write the system of inequalities (10) in matrix form. There is one

row in B for each pair (k, s) and (k′, s′) for which xks > xk
′

s′ . In the row corresponding to

xks > xk
′

s′ we have zeroes everywhere with the exception of a −1 in the column for (k, s)

and a 1 in the column for (k′, s′). Let B be the number of rows of B.

In third place, we have a matrix E that captures the requirement that the last compo-

nent of a solution be strictly positive. The matrix E has a single row and K×S+S+K+1

columns. It has zeroes everywhere except for 1 in the last column.

To sum up, there is a solution to system (9) and (10) if and only if there is a vector
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u ∈ RK×S+S+K+1 that solves the following system of equations and linear inequalities

S1 :


A · u = 0,

B · u ≥ 0,

E · u� 0.

Note that E · u is a scalar, so the last inequality is the same as E · u > 0.

The entries of A, B, and E are either 0, 1 or −1, with the exception of the last column

of A. Under the hypotheses of the lemma we are proving, the last column consists of

rational numbers. By Lemma 9, then, there is such a solution u to S1 if and only if

there is no vector (θ, η, π) ∈ QK×S+B+1 that solves the system of equations and linear

inequalities

S2 :


θ · A+ η ·B + π · E = 0,

η ≥ 0,

π > 0.

In the following, we shall prove that the non-existence of a solution u implies that the

dataset must violate SARSEU. Suppose then that there is no solution u and let (θ, η, π)

be a rational vector as above, solving system S2.

By multiplying (θ, η, π) by any positive integer we obtain new vectors that solve S2,

so we can take (θ, η, π) to be integer vectors.

Henceforth, we use the following notational convention: For a matrix D with K ×
S + S + K + 1 columns, write D1 for the submatrix of D corresponding to the first

K × S columns; let D2 be the submatrix corresponding to the following S columns; D3

correspond to the nextK columns; andD4 to the last column. Thus, D = [D1 D2 D3 D4 ].

Claim 14. (i) θ ·A1 +η ·B1 = 0; (ii) θ ·A2 = 0; (iii) θ ·A3 = 0; and (iv) θ ·A4 +π ·E4 = 0.

Proof. Since θ ·A+ η ·B + π · E = 0, then θ ·Ai + η ·Bi + π · Ei = 0 for all i = 1, . . . , 4.

Moreover, since B2, B3, B4, E1, E2, and E3 are zero matrices, we obtain the claim. �

We transform the matrices A and B using θ and η. Define a matrix A∗ from A by

letting A∗ have the same number of columns as A and including: (i) θr copies of the rth

row when θr > 0; (ii) omitting row r when θr = 0; and (ii) θr copies of the rth row

multiplied by −1 when θr < 0. We refer to rows that are copies of some r with θr > 0 as

original rows, and to those that are copies of some r with θr < 0 as converted rows.
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Similarly, we define the matrix B∗ from B by including the same columns as B and

ηr copies of each row (and thus omitting row r when ηr = 0; recall that ηr ≥ 0 for all r).

Claim 15. For any (k, s), all the entries in the column for (k, s) in A∗1 are of the same

sign.

Proof. By definition of A, the column for (k, s) will have zero in all its entries with the

exception of the row for (k, s). In A∗, for each (k, s), there are three mutually exclusive

possibilities: the row for (k, s) in A can (i) not appear in A∗, (ii) it can appear as original,

or (iii) it can appear as converted. This shows the claim.

Claim 16. There exists a sequence (xkisi , x
k′i
s′i

)n
∗
i=1 of pairs that satisfies Condition (1) in

SARSEU.

Proof. Define X = {xks |k ∈ K, s ∈ S}. We define such a sequence by induction. Let

B1 = B∗. Given Bi, define Bi+1 as follows: Denote by >i the binary relation on X defined

by z >i z′ if z > z′ and there is at least one copy of a row corresponding to z > z′ in Bi:

there is at least one pair (k, s) and (k′, s′) for which (1) xks > xk
′

s′ , (2) z = xks and z′ = xk
′

s′ ,

and (3) the row corresponding to xks > xk
′

s′ in B had strictly positive weight in η.

The binary relation >i cannot exhibit cycles because >i⊆>. There is therefore at

least one sequence zi1, . . . z
i
Li

in X such that zij >
i zij+1 for all j = 1, . . . , Li − 1 and with

the property that there is no z ∈ X with z >i zi1 or ziLi
>i z.

Observe that Bi has at least one row corresponding to zij >
i zij+1, for all j = 1, . . . , Li−

1. Let the matrix Bi+1 be defined as the matrix obtained from Bi by omitting one copy

of a row corresponding to zij > zij+1, for each j = 1, . . . Li − 1

The matrix Bi+1 has strictly fewer rows than Bi. There is therefore n∗ for which Bn∗+1

would have no rows. The matrix Bn∗ has rows, and the procedure of omitting rows from

Bn∗ will remove all rows of Bn∗ .

Define a sequence (xkisi , x
k′i
s′i

)n
∗
i=1 of pairs by letting xkisi = zi1 and x

k′i
s′i

= ziLi
. Note that, as

a result, xkisi > x
k′i
s′i

for all i. Therefore the sequence (xkisi , x
k′i
s′i

)n
∗
i=1 of pairs satisfies Condition

(1) in SARSEU. �

We shall use the sequence (xkisi , x
k′i
s′i

)n
∗
i=1 of pairs as our candidate violation of SARSEU.

Consider a sequence of matrices Ai, i = 1, . . . , n∗ defined as follows. Let A1 = A∗,

B1 = B∗, and C1 =

[
A1

B1

]
. Observe that the rows of C1 add to the null vector by

Claim 14.
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We shall proceed by induction. Suppose that Ai has been defined, and that the rows

of Ci =

[
Ai

Bi

]
add to the null vector.

Recall the definition of the sequence xkisi = zi1 > . . . > ziLi
= x

k′i
s′i

. There is no z ∈ X
with z >i zi1 or ziLi

>i z, so in order for the rows of Ci to add to zero there must be a −1

in Ai1 in the column corresponding to (k′i, s
′
i) and a 1 in Ai1 in the column corresponding

to (ki, si). Let ri be a row in Ai corresponding to (ki, si), and r′i be a row corresponding

to (k′i, s
′
i). The existence of a −1 in Ai1 in the column corresponding to (k′i, s

′
i), and a 1

in Ai1 in the column corresponding to (ki, si), ensures that ri and r′i exist. Note that the

row r′i is a converted row while ri is original. Let Ai+1 be defined from Ai by deleting the

two rows, ri and r′i.

Claim 17. The sum of ri, r
′
i, and the rows of Bi which are deleted when forming Bi+1

(corresponding to the pairs zij > zij+1, j = 1, . . . , Li − 1) add to the null vector.

Proof. Recall that zij >
i zij+1 for all j = 1, . . . , Li−1. So when we add rows corresponding

to zij >
i zij+1 and zij+1 >

i zij+2, then the entries in the column for (k, s) with xks = zij+1

cancel out and the sum is zero in that entry. Thus, when we add the rows of Bi that are

not in Bi+1 we obtain a vector that is 0 everywhere except the columns corresponding to

zi1 and ziLi
. This vector cancels out with ri + r′i, by definition of ri and r′i. �

Claim 18. The matrix A∗ can be partitioned into pairs of rows (ri, r
′
i), in which the rows

r′i are converted and the rows ri are original.

Proof. For each i, Ai+1 differs from Ai in that the rows ri and r′i are removed from Ai to

form Ai+1. We shall prove that A∗ is composed of the 2n∗ rows ri, r
′
i.

First note that since the rows of Ci add up to the null vector, and Ai+1 and Bi+1 are

obtained from Ai and Bi by removing a collection of rows that add up to zero, then the

rows of Ci+1 must add up to zero as well.

We now show that the process stops after n∗ steps: all the rows in Cn∗ are removed

by the procedure described above. By way of contradiction, suppose that there exist rows

left after removing rn∗ and r′n∗ . Then, by the argument above, the rows of the matrix

Cn∗+1 must add to the null vector. If there are rows left, then the matrix Cn∗+1 is well

defined.

By definition of the sequence Bi, however, Bn∗+1 is an empty matrix. Hence, rows

remaining in An
∗+1

1 must add up to zero. By Claim 15, the entries of a column (k, s) of A∗
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are always of the same sign. Moreover, each row of A∗ has a non-zero element in the first

K ×S columns. Therefore, no subset of the columns of A∗1 can sum to the null vector. �

Claim 19. (i) For any k and s, if (ki, si) = (k, s) for some i, then the row corresponding

to (k, s) appears as original in A∗. Similarly, if (k′i, s
′
i) = (k, s) for some i, then the row

corresponding to (k, s) appears converted in A∗.

(ii) If the row corresponding to (k, s) appears as original in A∗, then there is some i with

(ki, si) = (k, s). Similarly, if the row corresponding to (k, s) appears converted in A∗, then

there is i with (k′i, s
′
i) = (k, s).

Proof. (i) is true by definition of (xkisi , x
k′i
s′i

). (ii) is immediate from Claim 18 because if the

row corresponding to (k, s) appears original in A∗ then it equals ri for some i, and then

(ki, si) = (k, s). Similarly when the row appears converted. �

Claim 20. The sequence (xkisi , x
k′i
s′i

)n
∗
i=1 satisfies Conditions (2) and (3) in SARSEU.

Proof. By Claim 14 (ii), the rows of A∗2 add up to zero. Therefore, the number of times

that s appears in an original row equals the number of times that it appears in a converted

row. By Claim 19, then, the number of times s appears as si equals the number of times

it appears as s′i. Therefore Condition (2) in the axiom is satisfied.

Similarly, by Claim 14 (iii), the rows of A∗3 add to the null vector. Therefore, the

number of times that k appears in an original row equals the number of times that it

appears in a converted row. By Claim 19, then, the number of times that k appears as

ki equals the number of times it appears as k′i. Therefore Condition (3) in the axiom is

satisfied. �

Finally, in the following, we show that
∏n∗

i=1

p
ki
si

p
k′
i

s′
i

> 1, which finishes the proof of Lemma 11

as the sequence (xkisi , x
k′i
s′i

)n
∗
i=1 would then exhibit a violation of SARSEU.

Claim 21.
∏n∗

i=1

p
ki
si

p
k′
i

s′
i

> 1.

Proof. By Claim 14 (iv) and the fact that the submatrix E4 equals the scalar 1, we obtain

0 = θ · A4 + πE4 = (
n∗∑
i=1

(ri + r′i))4 + π,
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where (
∑n∗

i=1(ri + r′i))4 is the (scalar) sum of the entries of A∗4. Recall that − log pkisi
is the last entry of row ri and that log p

k′i
s′i

is the last entry of row r′i, as r′i is con-

verted and ri original. Therefore the sum of the rows of A∗4 are
∑n∗

i=1 log(p
k′i
s′i
/pkisi ). Then,∑n∗

i=1 log(p
k′i
s′i
/pkisi ) = −π < 0. Thus

∏n∗

i=1

p
ki
si

p
k′
i

s′
i

> 1. �

A.2.2. Proof of Lemma 12

For each sequence σ = (xkisi , x
k′i
s′i

)ni=1 that satisfies Conditions (1), (2), and (3) in SARSEU,

we define a vector tσ ∈ NK2S2
. For each pair (xkisi , x

k′i
s′i

), we shall identify the pair with

((ki, si), (k
′
i, s
′
i)). Let tσ((k, s), (k′, s′)) be the number of times that the pair (xks , x

k′

s′ )

appears in the sequence σ. One can then describe the satisfaction of SARSEU by means

of the vectors tσ. Define

T =
{
tσ ∈ NK2S2|σ satisfies Conditions (1), (2), (3) in SARSEU

}
.

Observe that the set T depends only on (xk)Kk=1 in the dataset (xk, pk)Kk=1. It does not

depend on prices.

For each ((k, s), (k′, s′)) such that xks > xk
′

s′ , define δ̂((k, s), (k′, s′)) = log

(
pks
pk
′

s′

)
. And

define δ̂((k, s), (k′, s′)) = 0 when xks ≤ xk
′

s′ . Then, δ̂ is a K2S2-dimensional real-valued

vector. If σ = (xkisi , x
k′i
s′i

)ni=1, then

δ̂ · tσ =
∑

((k,s),(k′,s′))∈(KS)2

δ̂((k, s), (k′, s′))tσ((k, s), (k′, s′)) = log
( n∏
i=1

pkisi

p
k′i
s′i

)
.

So the dataset satisfies SARSEU if and only if δ̂ · t ≤ 0 for all t ∈ T .

Enumerate the elements in X in increasing order: y1 < y2 < · · · < yN . And fix an

arbitrary ξ ∈ (0, 1). We shall construct by induction a sequence {(εks(n))}Nn=1, where εks(n)

is defined for all (k, s) with xks = yn.

By the denseness of the rational numbers, and the continuity of the exponential func-

tion, for each (k, s) such that xks = y1, there exists a positive number εks(1) such that

log(pksε
k
s(1)) ∈ Q and ξ < εks(1) < 1. Let ε(1) = min{εks(1)|xks = y1}.

In second place, for each (k, s) such that xks = y2, there exists a positive εks(2) such

that log(pksε
k
s(2)) ∈ Q and ξ < εks(2) < ε(1). Let ε(2) = min{εks(2)|xks = y2}.
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In third place, and reasoning by induction, suppose that ε(n) has been defined and

that ξ < ε(n). For each (k, s) such that xks = yn+1, let εks(n + 1) > 0 be such that

log(pksε
k
s(n+ 1)) ∈ Q, and ξ < εks(n+ 1) < ε(n). Let ε(n+ 1) = min{εks(n+ 1)|xks = yn}.

This defines the sequence (εks(n)) by induction. Note that εks(n + 1)/ε(n) < 1 for all

n. Let ξ̄ < 1 be such that εks(n+ 1)/ε(n) < ξ̄.

For each k ∈ K and s ∈ S, let qks = pksε
k
s(n), where n is such that xks = yn. We claim

that the dataset (xk, qk)Kk=1 satisfies SARSEU. Let δ∗ be defined from (qk)Kk=1 in the same

manner as δ̂ was defined from (pk)Kk=1.

For each pair ((k, s), (k′, s′)) with xks > xk
′

s′ , if n and m are such that xks = yn and

xk
′

s′ = ym, then n > m. By definition of ε,

εks(n)

εk
′
s′ (m)

<
εks(n)

ε(m)
< ξ̄ < 1.

Hence,

δ∗((k, s), (k′, s′)) = log
pksε

k
s(n)

pk
′
s′ ε

k′
s′ (m)

< log
pks
pk
′
s′

+ log ξ̄ < log
pks
pk
′
s′

= δ̂(xks , x
k′

s′ ).

Thus, for all t ∈ T , δ∗ · t ≤ δ̂ · t ≤ 0, as t ≥ 0 and the dataset (xk, pk)Kk=1 satisfies SARSEU.

Thus the dataset (xk, qk)Kk=1 satisfies SARSEU. Finally, note that ξ < εks(n) < 1 for all n

and each k ∈ K, s ∈ S. So that by choosing ξ close enough to 1 we can take the prices

(qk) to be as close to (pk) as desired.

A.2.3. Proof of Lemma 13

Consider the system comprised by (9) and (10) in the proof of Lemma 11. Let A, B,

and E be constructed from the dataset as in the proof of Lemma 11. The difference with

respect to Lemma 11 is that now the entries of A4 may not be rational. Note that the

entries of E, B, and Ai, i = 1, 2, 3 are rational.

Suppose, towards a contradiction, that there is no solution to the system comprised

by (9) and (10). Then, by the argument in the proof of Lemma 11 there is no solution to

System S1. Lemma 8 with F = R implies that there is a real vector (θ, η, π) such that

θ · A + η · B + π · E = 0 and η ≥ 0, π > 0. Recall that B4 = 0 and E4 = 1, so we obtain

that θ · A4 + π = 0.

Let (qk)Kk=1 be vectors of prices such that the dataset (xk, qk)Kk=1 satisfies SARSEU and

log qks ∈ Q for all k and s. (Such (qk)Kk=1 exists by Lemma 12.) Construct matrices A′,

B′, and E ′ from this dataset in the same way as A, B, and E is constructed in the proof
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of Lemma 11. Note that only the prices are different in (xk, qk) compared to (xk, pk). So

E ′ = E, B′ = B and A′i = Ai for i = 1, 2, 3. Since only prices qk are different in this

dataset, only A′4 may be different from A4.

By Lemma 12, we can choose prices qk such that |θ ·A′4−θ ·A4| < π/2. We have shown

that θ ·A4 = −π, so the choice of prices qk guarantees that θ ·A′4 < 0. Let π′ = −θ ·A′4 > 0.

Note that θ · A′i + η · B′i + π′Ei = 0 for i = 1, 2, 3, as (θ, η, π) solves system S2 for

matrices A, B and E, and A′i = Ai, B
′
i = Bi and Ei = 0 for i = 1, 2, 3. Finally, B4 = 0 so

θ ·A′4 + η ·B′4 + π′E4 = θ ·A′4 + π′ = 0. We also have that η ≥ 0 and π′ > 0. Therefore θ,

η, and π′ constitute a solution to S2 for matrices A′, B′, and E ′.

Lemma 8 then implies that there is no solution to S1 for matrices A′, B′, and E ′. So

there is no solution to the system comprised by (9) and (10) in the proof of Lemma 11.

However, this contradicts Lemma 11 because the dataset (xk, qk) satisfies SARSEU and

log qks ∈ Q for all k = 1, . . . K and s = 1, . . . , S.

B. Subjective–Objective Expected Utility

We turn to an environment in which a subset of states have known probabilities. Let

S∗ ⊆ S be a set of states, and assume given µ∗s, the probability of state s for s ∈ S∗.
We allow for the two extreme cases: S∗ = S when all states are objective and we are

in the setup of Green and Srivastava (1986), Varian (1983), and Kubler et al. (2014), or

S∗ = ∅, which is the situation in the body of our paper. The case when S∗ is a singleton

is studied experimentally by Ahn et al. (2014) and Bossaerts et al. (2010).

Definition 4. A dataset (xk, pk)Kk=1 is subjective–objective expected utility rational (SOEU

rational) if there is µ ∈ ∆++, η > 0, and a concave and strictly increasing function

u : R+ → R such that for all s ∈ S∗ µs = ηµ∗s and for all k ∈ K,

y ∈ B(pk, pk · xk)⇒
∑
s∈S

µsu(ys) ≤
∑
s∈S

µsu(xks).

In the definition above, η is a parameter that captures the difference in how the agent

treats objective and subjective probabilities. Note that, since η is constant, relative objec-

tive probabilities (the ratio of the probability of one state in S∗ to another) is unaffected

by η. The presence of η has the result of, in studies with a single objective state (as in

Ahn et al. and Bossaerts et al.), rendering the objective state subjective.

In studies of objective expected utility, a crucial aspect of the dataset are the price-

probability ratios, or “risk neutral prices,” defined as follows: for k ∈ K and s ∈ S∗,
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ρks =
pks
µ∗s

. Let rks = pks if s 6∈ S∗ and rks = ρks if s ∈ S∗. The following modification of

SARSEU characterizes SOEU rationality.

Strong Axiom of Revealed Subjective–Objective Expected Utility (SAR-

SOEU): For any sequence of pairs (xkisi , x
k′i
s′i

)ni=1 in which

1. xkisi > x
k′i
s′i

for all i;

2. for each s 6∈ S∗, s appears as si (on the left of the pair) the same number of times

it appears as s′i (on the right);

3. each k appears as ki (on the left of the pair) the same number of times it appears

as k′i (on the right):

Then
∏n

i=1(rkisi /r
k′i
s′i

) ≤ 1.

Note that SARSEU is a special case of SARSOEU when S∗ = ∅, and when S∗ is a

singleton (as in Ahn et al. and Bossaerts et al.).

Theorem 22. A dataset is SOEU rational if and only if it satisfies SARSOEU.

For completeness, we write out the SARSOEU for the case when S∗ = S.

Strong Axiom of Revealed Objective Expected Utility (SAROEU): For any

sequence of pairs (xkisi , x
k′i
s′i

)ni=1 in which

1. xkisi > x
k′i
s′i

for all i;

2. each k appears in ki (on the left of the pair) the same number of times it appears in

k′i (on the right):

The product of price-probability ratios satisfies that
∏n

i=1(ρkisi/ρ
k′i
s′i

) ≤ 1.

The proof of Theorem 22 with additional discussions are in the online appendix.

C. Proof of Proposition 2

Let Σ = {(k, s, k′, s′) ∈ K × S × K × S : xks > xk
′

s′}, and let δ ∈ RΣ be defined by

δσ = (log pks − log pk
′

s′ ). Define a (K + S)× |Σ| matrix G as follows. G has a row for each

k ∈ K and for each s ∈ S, and G has a column for each σ ∈ Σ. The entry for row k̂ ∈ K
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and column σ = (k, s, k′, s′) is 1 if k̂ = k, it is −1 if k̂ = k′, and it is zero otherwise. The

entry for row ŝ ∈ S and column σ = (k, s, k′, s′) is 1 if ŝ = s, it is −1 if ŝ = s′, and it is

zero otherwise.

Note that every sequence (xkisi , x
k′i
s′i

)ni=1 in the conditions of SARSEU can be identified

with a vector t ∈ ZΣ
+ such that t · δ > 0 and G · t = 0.

Consider the following statements,

∃t ∈ ZΣ
+ s.t. G · t = 0 and t · δ > 0, (11)

∃t ∈ QΣ
+ s.t. G · t = 0 and t · δ > 0, (12)

∃t ∈ RΣ
+ s.t. G · t = 0 and t · δ > 0, (13)

∃t ∈ [0, N ]Σ s.t. G · t = 0 and t · δ > 0, (14)

where N > 0 can be chosen arbitrarily. We show that: (11)⇔ (12)⇔ (13)⇔ (14). The

proof follows because there are efficient algorithms to decide (14) (see, e.g. Chapter 8 in

Papadimitriou and Steiglitz (1998)).

That (11) ⇔ (12) and (13) ⇔ (14) is true because if t · δ > 0 and G · t = 0, then for

any scalar λ, (λt) · δ > 0 and G · (λt) = 0.

To show that (12) ⇔ (13) we proceed as follows. Obviously (12) ⇒ (13); we focus

on the converse. Note that the entries of G are rational numbers (in fact they are 1, −1

or 0). Then one can show that the null space of the linear transformation defined by G,

namely Ω = {t ∈ RΣ : G · t = 0}, has a rational basis (qh)
H
h=1. Suppose that (13) is true,

and let t∗ ∈ RΣ
+ be such that G · t∗ = 0 and t∗ · δ > 0. Then t∗ =

∑H
h=1 αhqh for some

coefficients (αh)
H
h=1. The linear function (α′h)

H
h=1 7→

∑H
h=1 α

′
hqh is continuous and onto Ω.

For any neighborhood B of t∗ in Ω, B intersects the strictly positive orthant in Ω, which

is open in Ω. Therefore there are rational α′h such that
∑H

h=1 α
′
hqh ≥ 0 and (α′h)

H
h=1 can

be taken arbitrarily close to (αh)
H
h=1. Since t∗ · δ > 0 we can take (α′h)

H
h=1 to be rational

and such that
∑H

h=1 α
′
hqh ≥ 0 and δ ·

∑H
h=1 α

′
hqh > 0. Letting t =

∑H
h=1 α

′
hqh establishes

(12).
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