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Abstract

The ability to share intentions and adjust one’s choices in collaboration with

others is a fundamental aspect of human nature. We discuss the forces that

would have acted for and against the evolution of this ability for a large class of

dilemmas and coordination problems that would have been faced by our hominin

ancestors. In contrast to altruism and other non-fitness maximizing preferences,

the ability to share intentions proliferates when rare without requiring repeated

interaction or assortativity in matching.
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“Yet how much and how correctly would we think if we did not think,

as it were, in community with others to whom we communicate our

thoughts, and who communicate theirs with us!”

– Immanuel Kant (1786)

1. Introduction

Humans are a collaborative species. We collaborate for good and for ill,

motivated by love, hate, spite, envy, self-aggrandisement and the basic urges

to feed and to reproduce. The understanding of collaboration and cooperation
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has long been a goal of economics. The current paper models the ability to

collaborate as the ability to jointly optimize. That is, can we choose what is

best for us rather than merely making decisions as individuals? It is shown that

the ability to share intentions and take such joint decisions could have evolved

amongst ancient populations who lacked the foresight and reasoning abilities of

modern humans, and moreover, that this could happen even in circumstances

hostile to the evolution of other behavioral types such as cooperators or altruists

who might be expected to behave in ways which appear collaborative.

It has been argued in the philosophical literature that the intentions be-

hind collective acts can be distinct from an aggregation of individual intentions

(Bratman, 1992; Searle, 1990; Tuomela and Miller, 1988). This is “shared inten-

tionality”, the idea that “we intend to do X” is distinct from “I intend to do X

[because I think that she also intends to do X]”. There is disagreement amongst

philosophers as to what extent shared intentions can be reduced to individual

intentions.2 We take no position on this as our results hold regardless of how

agents form shared intentions, whether it be through conversation, pointing and

gesturing, or alternative forms of reasoning such as ‘team reasoning’ (Bacharach,

1999, 2006; Sugden, 2000). To see that shared intentions naturally give rise to

joint optimization, consider Alice and Bob who wish to take a drink together at

one of two bars, Grandma’s and Stitch. Both Alice and Bob prefer Grandma’s

to Stitch. Now imagine Alice stating “I intend to go to Stitch because I think

that Bob intends to go to Stitch.” Such an intention is optimal from Alice’s

perspective, given her beliefs about Bob’s intentions, regardless of the Pareto

suboptimality of Stitch as a venue. Now, were Alice instead to state “We intend

to go to Stitch,” then there exists a perfectly valid criticism: given that both Al-

ice and Bob prefer Grandma’s to Stitch, and neither has any incentive to deceive

the other, it is irrational for them (as a plural entity) to hold such an inten-

tion. Economists will recognize this reasoning as similar to that underpinning

concepts in game theory such as the Core (Gillies, 1959), Strong Equilibrium

2See also Butterfill (2012); Gilbert (1990); Gold and Sugden (2007); Velleman (1997).
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(Aumann, 1959), Coalition Proofness (Bernheim, Peleg and Whinston, 1987),

Coalitional Rationalizability (Ambrus, 2009), Renegotiation Proofness (Farrell

and Maskin, 1989) and Coalitional Stochastic Stability (Newton, 2012).

This paper demonstrates how conditions faced by paleolithic hunter-gatherer

societies could have led to the evolution of the ability to collaboratively share

intentions. On the one hand, the existence of problems that could be solved by

collective action would have spurred the evolution of the ability to form shared

intentions. On the other hand, those who could not participate in collabora-

tive acts could sometimes free ride on the successes of others. This free riding

would work against the evolution of the ability to share intentions. Note that

the sharing of intentions and joint optimization is a mutualistic behavior: all

participants gain from engaging in it. This does not prevent free riding, as third

parties can obtain positive externalities from the collaboration of others, for ex-

ample if Alice and Bob collaborate in hunting a buffalo, but Colm eats some

of the leftovers. The mutualistic nature of jointly intentional behavior can be

contrasted with altruistic behavior, in which one party sacrifices fitness for the

benefit of another. It has been documented in the anthropology literature that

much of the cooperation observed in hunter-gatherer societies is mutualistic.

See Smith (2003) for a survey.

A consequence of the mutualistic nature of the sharing of intentions is that

such behavior can proliferate when rare. This is in stark contrast to cooperator

types or altruists, who become extinct in similar circumstances. Furthermore,

even when conditions are adverse to the evolution of the sharing of intentions, for

example when there are many opportunities for free riding, some amount of shar-

ing of intentions will persist in the population, a minority behavior that can then

spread when conditions become favourable. Note that unlike models of the evo-

lution of altruism and other non-fitness maximizing behaviors, neither repeated

interaction (Trivers, 1971), nor kin-selection (Fisher, 1930; Hamilton, 1963), nor

assortativity of interaction (Alger and Weibull, 2013; Eshel and Cavalli-Sforza,

1982; Wilson and Dugatkin, 1997), nor group selection (Bowles, 2006; Choi and

Bowles, 2007; Haldane, 1932) is required for shared intentions to evolve.
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It is hard to overstate the importance of shared intentions to human behav-

ior. Recent work in developmental psychology has shown that from early child-

hood, human subjects display the ability and desire to engage in collaborative

activities. This collaborative urge emerges prior to sophisticated logical infer-

ence and the ability to articulate hierarchical beliefs (Tomasello and Rakoczy,

2003, and citations therein). Moreover, the inclination towards collaborative

behaviors is considerably weaker in non-human great apes (Tomasello and Car-

penter, 2007; Tomasello and Herrmann, 2010).3 This accumulated evidence has

lent support to the hypothesis that human collaborative activity provided a

niche in which a uniquely human cognition, replete with sophisticated modes of

reasoning, could evolve. This is known as as the shared intentionality hypothe-

sis (Call, 2009) or the Vygotskian intelligence hypothesis (Moll and Tomasello,

2007; Tomasello, 2014; Vygotsky, 1980). The results of the current paper add

to the plausibility of this hypothesis, as they show how even in populations of

unsophisticated agents, collaborative behavior can evolve.

The author knows of only two other works that deal directly with the topic

of the current paper4,5: Bacharach (2006, Chapter 3) and the study of Angus

and Newton (2015). Bacharach (2006) gives a predominantly non-quantitative

argument as to why a group selection mechanism would lead to collaborative

‘team reasoning’ in coordination problems and social dilemmas. However, in a

simulations-based study of coordination games on networks, Angus and New-

ton (2015) show that group selection is far from sufficient for the evolution of

3See also Wobber, Herrmann, Hare, Wrangham and Tomasello (2014); Tomasello, Car-

penter, Call, Behne and Moll (2005) and the accompanying critical responses.
4We emphasize that we are considering the evolution of a trait - the ability to collaborate

and share intentions, not the evolution of the play of any specific ‘cooperative’ action. Alice

and Bob may intend to plan a surprise party for Colm, or to rob him of his possessions. Either

way, Alice and Bob are collaborating, but to quite different ends.
5An alternative approach to understanding collaboration is that of Gavrilets (2014), who

models collaborative ability as entering directly into production functions. Groups with high

levels of collaborative ability produce more of a public good, giving an advantage in a group

selection framework.
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collaboration, and that selective pressure against the sharing of intentions can

arise at a group level due to the possibility of collaborative behavior slowing

techno-cultural advance. The cited papers focus on multiple pairwise interac-

tions for which payoffs are given by an underlying two player game. The current

paper does not restrict itself to pairwise interaction and gives analytic results

for a setting in which members of a population are randomly matched to play

m-player public goods games. In contrast to previous work, there is no group

selection and selective pressure against the sharing of intentions arises from the

possibility of free riding. Finally, it is instructive to compare the evolution of

shared intentions to the evolution of preferences (e.g. Dekel, Ely and Yilankaya,

2007; Güth and Kliemt, 1998; Robson, 1996; Samuelson, 2001). In contrast to

the evolution of preferences, the ability to collaboratively share intentions does

not change individuals’ ranking of outcomes. Instead it makes new outcomes

available to individuals when they update their strategies as part of a group.

Any individual’s ranking of menu items does not change, but the variety of

items on the menu becomes more appealing.

The paper is organized as follows. Section 2 gives the model and considers

the evolution of shared intentions for a large class of public goods games, includ-

ing the extended example of threshold public goods games. Section 3 analyzes

the evolution of shared intentions when collaboration can exert negative exter-

nalities on others, such as when two people team up to steal from a third party.

Section 4 considers a continuum of types distinguished by different probabilities

of an individual of a given type being in a collaborative frame of mind. Section

5 compares and contrasts our results to those for altruism and other behavioral

explanations for ‘cooperation’ found in the literature. Section 6 concludes. All

proofs not in the main text are relegated to the appendix.

2. Model and analysis

We shall consider a population of individuals represented by the unit interval.

Fitnesses will be determined when randomly formed groups of m individuals
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encounter public goods problems. These problems could be opporunities to

hunt large prey such as whales (Alvard, 2001; Alvard and Nolin, 2002), or the

possibility that coordinated action could bring about a large haul of small prey,

such as is the case with fishing (Sosis, Feldstein and Hill, 1998). For a group

to at least partially solve the public goods problem it will be required that at

least n ≤ m of the individuals in the group contribute. This contribution could

be of time, effort or resources. The contribution need not be the same for each

individual, for example different roles may need to be carried out during a hunt.

2.1. The game

Formally, we represent a problem faced by a group of m individuals by

Γ, a symmetric m-player game with player set M and strategy sets Si =

{×,+1,+2, . . . ,+N}, N ∈ N, i ∈ M , where × represents non-contribution and

+i denote different forms of contribution. Let si ∈ Si and s = (s1, s2, . . . , sm)

be representative strategies and strategy profiles respectively. Let S be the set

of all strategy profiles. Let πi(s) be the payoff of player i at strategy profile s.

Payoffs represent reproductive fitness. Let × := (×, . . . ,×) be the status quo

strategy profile and a Nash equilibrium of the game. We assume that actions

other than × exert (weakly) positive externalities (relative to ×) on other in-

dividuals. This gives the public goods element to the game: a contribution of

any form by i is at least as good for j as is non-contribution by i.

(PG) For all i, j ∈M , i 6= j, s ∈ S, we have πj(si, s−i) ≥ πj(×, s−i).

Condition (PG) is satisfied by threshold public goods games and by m-

player Prisoner’s Dilemmas. These are both games in which there is one way to

contribute (N = 1) and thus no possibility of asymmetry of roles in provision of

goods. Figure 1 gives two examples that illustrate how Condition (PG) is also

satisfied by more exotic setups. In these examples, group size is two (m = 2),

there are two ways to contribute (N = 2), and both group members are required

to contribute for them to gain some net benefit. Figure 1(i) is a stag hunt with

two stags, and the hunters must both pursue the same stag in order to be
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+1 +2 ×

+1 b− c −c −c

+2 −c b− c −c

× 0 0 0

(i) Two prey

+1 +2 ×

+1 −c b− c −c

+2 b− c −c −c

× 0 0 0

(ii) Chase and ambush

Figure 1: Examples for m = n = 2, N = 2, b > c > 0. For each combination

of contribution (+1,+2) and non-contribution (×), entries give fitnesses for the

row player.

successful. Figure 1(ii) represents a situation where there are two roles required

for a successful hunt, such as when one hunter pursues the quarry and a second

hunter lies in wait, ready to ambush the quarry when it flees from the first

hunter.

From the status quo of no contribution, the assumption that × is a Nash

equilibrium implies that no individual acting alone can improve his payoff.6

However, there exist opportunities for coalitions of players who can share their

intentions to collaborate and adjust their actions together in order to obtain

higher payoffs. Let the set of collaborative opportunities for a set T ⊆M be

C(T ) = {s ∈ S : si 6= × =⇒ i ∈ T =⇒ πi(s) > πi(×)}.

That is, C(T ) gives the ways in which individuals in T can collaboratively ad-

just their strategies so that their own payoffs improve, leaving the strategies

of individuals outside of T fixed. We assume that the game affords at least

some prospect of collaboration. That is, C(T ) 6= ∅ for at least some T ⊆ M .

This is equivalent to × not being a Strong Equilibrium in the sense of Aumann

6We assume myopia. That is, individuals do not think, or rather act, beyond the impli-

cations of a direct adjustment to their strategy or the strategies of those with whom they

share intentions. We are modeling early man, not bands of game theorists roving across the

savannah. Note that even myopic payoff improvers are considerably more sophisticated than

types of players - cooperators, defectors and so on, who only play a specific action.
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(1959). For the example in Figure 1(i), C(M) = {(+1,+1), (+2,+2)} and for the

example in Figure 1(ii), C(M) = {(+1,+2), (+2,+1)}. The size of the smallest

coalition that can benefit from collaboration is

n = min
T :C(T ) 6=∅

|T |

Note that our assumption that × is a Nash equilibrium implies than n ≥ 2 and

the existence of at least some collaborative opportunity implies that n ≤ m.

We shall allow for the possibility that the behavior of individuals outside of

a set T will alter as a consequence of T exploiting a collaborative opportunity.

With this in mind, define the set of outcomes that could occur following a set

of individuals T exploiting a collaborative opportunity.

C∗(T ) = {s∗ ∈ S : For some s ∈ C(T ), s∗i = si for all i ∈ T}.

That is, were a set of individuals T to adjust their strategies according to some

collaborative opportunity in C(T ), following which the remainder M \ T of the

individuals were to adjust their strategies in some way, then C∗(T ) is the set of

strategy profiles that could be reached.

2.2. Types and behavior

There are two types of individual, those who can share intentions and those

who cannot. Those who can share intentions can collaboratively optimize when

choosing their action. We refer to such individuals as SI types. Those who lack

the cognitive ability to engage in such joint optimization we refer to as N types.

From a status quo at which everybody is playing ×, any set of n individuals

within a group can gain by adjusting their actions. However, this may not lead

to a Nash equilibrium. In fact, it may even be that playing an action other than

× is never individually rational, such as in an m-person Prisoner’s Dilemma.

However, if nobody is playing anything other than ×, then for any set of n SI

types not to contribute is not collectively rational. We defer consideration of

individuals who are sometimes in the mood for collaboration and are sometimes
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not until later in the paper. For now we assume that SI types are always willing

to participate in collaborative decisions when opportunities present themselves.7

Fix an m-player game Γ as described in Section 2.1. Consider a group M of

m individuals who encounter this problem. Let MSI ⊆ M denote the set of SI

type individuals within the group. Then we assume the outcome of the game

will be given by some strategy profile s∗ satisfying

(C) (i) If |MSI | < n, then s∗ = ×.

(ii) If |MSI | ≥ n, then select some set of SI type individuals T ⊆ MSI ,

C(T ) 6= ∅, according to some probability measure FMSI ,Γ(.). Then let

s∗ ∈ C∗(T ) be chosen according to some probability measure GT,Γ(.).

Let FMSI ,Γ(.) and GT,Γ(.) be symmetric with respect to the identities

of the players in M , except insofar as they are members of MSI or T .

That is, when there are insufficient SI types in the group for them to exploit a

collaborative opportunity, the outcome of the game is the status quo ×. When

there exist enough SI type individuals to exploit at least one collaborative op-

portunity, some set of SI types will exploit some collaborative opportunity. Note

that without specifying FMSI ,Γ(.) and GT,Γ(.), condition (C) is not a complete

description of behavior. In particular, when there are multiple collaborative op-

portunities any of them could be taken with any probability, and the behavior

of the players who are not involved in exploiting the collaborative opportunity

is similarly arbitrary. This is important to note as our main results will be

independent of FMSI ,Γ(.) and GT,Γ(.).

2.3. Matching

We consider a population comprising unit mass of individuals, each of whom

may be of SI or N type. Let the share of SI types in the population be xSI and

the share of N types be xN . Let the population state be x = (xSI , xN).

7That is to say, N types would play a Prisoner’s Dilemma, whereas SI types would play a

Prisoners’ Dilemma, the difference being in the positioning of the respective apostrophes.
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Each member of the population is matched to play Γ in a group of m individ-

uals. Given a population state x, and an individual, let Z be a random variable

denoting the number of SI types amongst the other m−1 individuals with whom

the given individual is matched. We allow correlation between Z and the type

of the individual concerned. Write Prx[Z = k |SI] and Prx[Z = k |N ] as the

probabilities that there are k SI type individuals amongst the other members

of the group, conditional on a given individual being SI type and N type re-

spectively. A matching protocol specifies these values for all x and all values of

k from 0 to m − 1. We assume that Prx[Z = k |SI] and Prx[Z = k |N ] are

continuous in xSI , and strictly positive for xSI , xN > 0.

Given this notation, any SI type has a probability Prx[Z = k − 1 |SI] of

being in a group that includes exactly k SI types, including himself. Therefore,

the mass of SI types in such groups equals xSIPrx[Z = k − 1 |SI]. Any N type

has a probability Prx[Z = k |N ] of being in a group that includes exactly k SI

types. Therefore, the mass of N types in such groups equals xNPrx[Z = k |N ].

Now, any group with k SI types has m − k N types, so the ratio of SI type

individuals in such groups to N type individuals in such groups must equal

k/(m− k). Noting that xN = 1− xSI , we have the balance condition (B).8

(B) xSIPrx[Z=k−1 |SI]
(1−xSI)Prx[Z=k |N ] = k

m−k .

An implication of (B) is that as xSI approaches zero, the ratio of Prx[Z =

k − 1 |SI] to Prx[Z = k |N ] approaches infinity. Consequently, SI types find

themselves in groups in which collaboration occurs infinitely more often than

N types find themselves in such groups. Furthermore, Prx[Z = k |N ] must

8Given the preceding, one might ask why it is that this is stated as an condition, rather

than merely as a consequence of any matching protocol. The reason for this is that although

(B) is a logical consequence of matching, it is not a mathematical consequence. Consider

groups of size two, with SI types making up a share of a quarter of the population. It is

mathematically possible to match this quarter of the population one-to-one to the remaining

three quarters of the population via a bijection. This would clearly be against the spirit of

the model.
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approach zero for k ≥ 1 and Prx[Z = 0 |N ] must approach unity.

2.4. The main theorem

Given a game Γ, some behavioral rule satisfying (C), and some matching

protocol, let fSI(x), fN(x) denote the expected fitnesses of SI and N types re-

spectively at population state x. Specifically, for |MSI | = k, denote the expected

payoff of i ∈ MSI by πkSI , and denote the expected payoff of i /∈ MSI by πkN .

Then

fSI(x) =

m−1∑
k=0

Prx[Z = k |SI] πk+1
SI , fN(x) =

m−1∑
k=0

Prx[Z = k |N ] πkN .

Note that fSI(x) and fN(x) depend continuously on the probabilities Prx[Z =

k |SI] and Prx[Z = k |N ], which in turn are continuous in xSI . Therefore,

fSI(x) and fN(x) are continuous in xSI . For some subpopulation with shares of

SI and N types given by x̃, let fx̃(x) be the average fitness of members of this

subpopulation when the population state is x. That is,

fx̃(x) := x̃SIfSI(x) + x̃NfN(x).

We use the concept of an evolutionarily stable state (Taylor and Jonker,

1978). An evolutionarily stable state is a state such that following the invasion

of the population by a small population share ε of mutants, the non-mutant

share of the population outperforms the invading mutants.

Definition 2.1. A state x∗ is an evolutionarily stable state (ESS) if for any

other state x̃, defining xε = (1− ε)x∗ + εx̃, there exists ε̃ such that

For all ε < ε̃, fx∗(xε) > fx̃(xε).

An interior state x∗ is an ESS if and only if fSI(.)−fN(.) is strictly decreasing

at x∗ and equal to 0. The extremal state x∗SI = 0 (x∗SI = 1) is an ESS if and

only if fSI(.)−fN(.) is strictly negative (positive) in some open interval bounded

below (above) by x∗SI . This implies that, unless there exists some open interval
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of xSI on which fSI(.)− fN(.) = 0, at least one ESS must exist. Such examples

can be constructed, but will necessarily be special.9

We are now in a position to state our main theorem. For any public goods

problem and any plausible matching protocol, SI types will make up a positive

share of the population at any evolutionarily stable state. Even when conditions

are highly adverse to the evolution of shared intentions, SI types will still persist

as a small share of the population, ready to expand and take a greater share as

soon as conditions become more favorable.

Theorem 1. If (C),(B),(PG) hold, then xSI > 0 in any ESS.

The reasoning behind the Theorem is as follows. Firstly, collaboration (C) is

a mutualistic act, not an altruistic act, therefore when SI types collaborate they

improve their payoffs relative to the status quo, holding fixed the strategies of

the non-collaborators. Secondly, the public goods condition (PG) ensures that

any response to the collaboration by other players can only (weakly) increase

the payoffs of the collaborators. Finally, the balance condition (B) implies that

when SI types are a small share of the population, any given SI type will find

himself in a group in which collaboration occurs much more frequently than

any given N type finds himself in such a group. Thus an SI type will enjoy the

benefits of collaboration far more often than an N type will get the opportunity

to free ride on the collaboration of others.

Note that the possibility of free riding by non-collaborating players disap-

pears when n = m. Furthermore, as any collaboration will then always in-

volve every group member, there is no need to consider the responses of non-

collaborating players to collaborative activity. Therefore, the result of Theorem

1 holds, regardless of whether or not (B) or (PG) hold.

Corollary 1. If (C) holds and n = m, then a unique ESS x∗ exists and x∗SI = 1.

9To make specific statements about genericity requires consideration not only of Γ, but

also of different behavioral rules satisfying (C), and different matching processes. This is

sufficiently involved that it is omitted here.
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+1 ×

+1 b− c b− c

× b 0

+1

+1 ×

+1 b− c −c

× 0 0

×

Figure 2: Three player threshold public goods game. Any two players must

contribute for the good to be provided. m = 3, n = 2, N = 1, b > c > 0. For

each combination of contribution (+1) and non-contribution (×), entries give

fitnesses for the row player.

An important class of games covered by the Corollary is the class of coordi-

nation games for which all symmetric pure strategy profiles are Nash equilibria

and × is Pareto dominated by one of the other equilibria.

Finally, as the state x is unidimensional, evolutionarily stable states corre-

spond to strongly uninvadable states in the sense of Bomze (1991) and are thus

locally asymptotically stable under the replicator dynamic (Bomze and Weibull,

1995).

2.5. Example: threshold public goods problems

Let Γ be a threshold public goods game with threshold n ≤ m. There are two

strategies, contribute (+1) and don’t contribute (×). If at least n individuals

contribute then the good is provided, otherwise it is not provided. When the

good is provided, every individual in the group obtains a benefit of b. When an

individual contributes, he incurs a cost of c. Assume b > c > 0. The case of

m = 3, n = 2 is shown in Figure 2. Let matching be binomial so that, given

x, from the perspective of any given individual, each of the other individuals in

the group will independently be SI type with probability xSI . That is,

(Bin) Prx[Z = k] := Prx[Z = k |SI] = Prx[Z = k |N ] =
(
m−1
k

)
xkSI(1− xSI)

m−1−k.

Assume that when |MSI | ≥ n, the realized strategy profile, s∗, always has

exactly n SI types contributing. This seems plausible, as there is no advantage
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to anyone from any additional individual contributing.10 This implies that from

the perspective of an SI type, if the good is provided and there are k other SI

types in the group, he will contribute n/k + 1 of the time. The average fitness of

SI types in this setting is

fSI(x) =

m−1∑
k=n−1

Prx[Z = k]

(
b− c n

k + 1

)
. (1)

N types will benefit when the good is provided, but are never able to be part

of a collaborative effort to provide the good. Therefore, the good will only be

provided if at least n of the other m− 1 players are SI types. When n = m, the

fitness of an N type is always zero. When n < m, the fitness of an N type is

fN(x) = Prx[Z ≥ n] b. (2)

When xSI > 0, the fitness advantage (disadvantage when negative) of SI types

over N types is

fSI(x)− fN(x) =Prx[Z = n− 1]

(
b−

m−1∑
k=n−1

Prx[Z = k]

Prx[Z = n− 1]
c

n

k + 1

)
(3)

This expression equals Prx[Z = n − 1](b − c) > 0 when n = m. When n < m,

then by showing that the term in brackets is decreasing in xSI , positive for

small positive values of xSI and negative for values of xSI close to 1, we prove

the following proposition.

Example 1. For threshold public goods games, when (C),(Bin) hold,

(i) There is a unique ESS, x∗. If n < m, then x∗SI ∈ (0, 1), and if n = m,

then x∗SI = 1.

10Note that our simple story of when the good is provided is borne out by more complex

dynamic processes. If the number of SI types in a group is at least n, then under a coalitional

better response dynamic with uniform mistakes (see, for example Newton and Angus, 2015),

provision of the good is uniquely stochastically stable in the sense of (Young, 1993). If the

number of SI types is strictly less than n − 1, then non-provision is uniquely stochastically

stable. Note that a stochastic stability analysis of such problems under individualistic best

response dynamics is given by Myatt and Wallace (2008), but results change when coalitional

behavior is allowed.
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(ii) From any mixed population such that xSI , xN > 0, the replicator dynamic

converges to x∗.

(iii) xSI decreases in m, increases in n, increases in b/c.

As (Bin) implies (B), and threshold public goods games satisfy (PG), Theo-

rem 1 applies and tells us that even when conditions are bad for collaboration,

a minority of SI types will persist in the population. Example 1 shows that, for

threshold public goods problems, such conditions are when m is large relative

to n so that there are many free riders whenever the public good is provided,

or when the benefit-cost ratio b/c is low. This minority of SI types can then ex-

pand when changes in the environment or technology lead to conditions which

are more favourable for collaborative behavior. Such a change could be an

increase in n caused by an increase in the availability of larger prey due to mi-

gration, or changes in the climate when moving between glacial and interglacial

periods. Another example would be a reduction in c due to reduced risks from

hunting due to improved technology providing better weapons.

3. Collaboration with negative externalities

A plausible sounding conjecture would be that if collaborating players gain

fitness from their collaboration following any response by the other players, then

SI will evolve. This conjecture is false. When externalities from collaboration

are negative and SI types are disproportionately likely to match with other SI

types, then negative externalities caused by collaborating SI types on other SI

types can outweigh the benefits of collaboration. To see this, first formalize the

condition, Profitable Collaboration (PC).

(PC) If T ⊆M , GT,Γ(s∗) > 0, then πi(s
∗) > πi(×) for all i ∈ T .

Now, consider the three player game in Figure 3. We call this a three player

Hawk-Dove game as any two players can exploit the third (steal his food) and

it is never worthwhile for the third player to resist this. Thus there are three

asymmetric Nash equilibria (in fact, Strong Equilibria) in which two players
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+1 ×

+1 −4 1

× −3 0

+1

+1 ×

+1 1 −1

× 0 0

×

Figure 3: Three player Hawk-Dove game. Any two players must attack the

remaining player for an attack to be successful. m = 3, n = 2, N = 1. For

each combination of contribution (+1) and non-contribution (×), entries give

fitnesses for the row player.

exploit the remaining player. However, there is also another Nash equilibrium

at which all players play ×. The only available collaborative opportunity is for

two SI type players to exploit the third (eg. s = (+1,+1,×)). When a pair

of players T take such a collaborative opportunity s ∈ C(T ), assume that the

realized strategy profile s∗ = s. That is, GT,Γ(s) = 1. This seems plausible as

the exploited player would lose payoff by adjusting his strategy. Note that (PC)

is satisfied. Now, the fitness of an N type is

fN(x) = Prx[Z = 2 |N ]︸ ︷︷ ︸
Prob. of N type
being exploited

by SI types

(−3)
xSI→0−−−−→ 0︸ ︷︷ ︸

by (B)

.

The fitness of an SI type is

fSI(x) = Prx[Z = 2 |SI]

(
2

3
(1) +

1

3
(−3)

)
︸ ︷︷ ︸
When all three are SI,

2/3 chance of being
an exploiter

+Prx[Z = 1 |SI] (1),

so if limxSI→0 Prx[Z = 2 |SI] > 3 limxSI→0 Prx[Z = 1 |SI], then limxSI→0 fSI(x)

is bounded above by a number strictly below zero. That is, positive assortative

matching can cause SI types to have lower fitness than N types, even when the

share of SI types in the population is small.

Now, consider the case where there is no assortativity in matching; a given

individual’s type does not affect the type distribution of the remaining m − 1
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individuals with whom he is matched. This is the no assortativity condition

(NA).

(NA) Prx[Z = k] := Prx[Z = k |SI] = Prx[Z = k |N ] for all k, x.

Note that binomial matching satisfies (NA). It turns out that when matching

is not assortative and collaboration is always profitable, then SI types will always

make up a strictly positive share of the population at any ESS.

Theorem 2. If (C),(B),(NA),(PC) hold, then xSI > 0 in any ESS.

The intuition behind the Theorem is simple. Recall that the balance condi-

tion (B) implies that Prx[Z = k − 1 |SI]/Prx[Z = k |N ] approaches infinity as xSI

approaches zero. Using (NA) and substituting, it must then be true that

Prx[Z = k − 1]/Prx[Z = k] and thus Prx[Z = n− 1]/Prx[Z = k], k ≥ n, also approach

infinity. That is, when collaboration occurs it will usually be when there are

exactly n SI types in the group. (PC) implies that these collaborators gain

fitness from their collaboration, and there are no other SI types in the group to

be affected by any negative externalities. Hence, SI types outperform N types

for small, positive values of xSI .

For the Hawk-Dove example of Figure 3, under binomial matching (Bin), we

have that fN = x2
SI(−3), and fSI = x2

SI

(
2
3 (1) + 1

3 (−3)
)

+ 2xSI(1− xSI)1. Then

fN < 0 and fSI > 0 for small values of xSI . Once again, SI types proliferate

when rare.

4. A continuum of types ordered by likelihood of collaboration

Consider a model where instead of two types, we have a continuum of types,

specifically the unit interval. Each time he faces a problem, any given individual

of type σ ∈ [0, 1] will be in a collaborative mood with probability σ, and in an

individualistic mood with probability 1− σ. An individual in an individualistic

mood will behave as an N type and an individual in a collaborative mood will

behave as an SI type. Let the state, x, be a probability measure on the Borel
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sets B([0, 1]). This approach, modeling the same individual as sometimes col-

laborative and sometimes not, is that suggested by Bacharach (2006) for dealing

with potential conflicts between individual and collective rationality. Any indi-

vidual, when facing a problem as part of a group, will sometimes be driven by

individual considerations and sometimes by collective considerations.11 Define

σ̄(x) :=
∫

[0,1]
σx(dσ) as the probability that a randomly drawn individual from

a population at state x is in a collaborative mood. We can adapt binomial

matching to this setting.

(Bin-σ) Prx[Z = k] =
(
m−1
k

)
(σ̄(x))k(1− σ̄(x))m−1−k.

An evolutionarily stable state will not typically exist. The reason for this

is that under binomial matching, at any interior ESS, any individual in the

population must have equal expected fitness when he collaborates and when

he does not collaborate. But then, from any state x such that x({0}) 6= 1,

x({1}) 6= 1, a small mutant subpopulation with type shares x̃ 6= x could emerge

such that σ̄(x̃) = σ̄(x). That is, some of the mutants have increased σ and some

have decreased σ, but the average remains the same as before. Such mutant

invasions do not alter the expected fitness of any individual in the population.

In particular, the mutants still obtain the same average fitness as non-mutants,

so x cannot be evolutionarily stable. Consequently, we use the weaker concept of

Neutral Stability (Maynard Smith, 1982). Write gσ(x) for the fitness of type σ

at state x. Note that the average fitness of a subpopulation of types distributed

according to x̃ when the state is x is now

gx̃(x) :=

∫
[0,1]

gσ(x)x̃(dσ).

11Bacharach (2006) thinks of individuals as sometimes reasoning individualistically and

sometimes engaging in ‘team reasoning’. Our assumptions relate to behavior and not to

reasoning per se, but our model can, should the reader wish, be interpreted as a model of the

evolution of team reasoning, specifically what Bacharach refers to as restricted team reasoning,

where at any given point in time, not every individual can team reason but those that can,

recognize one another as such.
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A neutrally stable state is then a population state such that following the inva-

sion of the population by a small population share ε of mutants, the invaders

do not do better than the non-mutants.

Definition 4.1. A state x̂ is a neutrally stable state (NSS) if for any other

state x̃, defining xε = (1− ε)x̂+ εx̃, there exists ε̃ such that

For all ε < ε̃, gx̂(xε) ≥ gx̃(xε).

Now, by definition of the behavior of type σ, and comparing (Bin) and (Bin-

σ), we have

gσ(.) = σfSI(σ̄(.)) + (1− σ)fN(σ̄(.))

where fSI , fN denote fitnesses in the two type model under (Bin), slightly abus-

ing notation to write xSI rather than x as the argument of fSI , fN . This gives

gx(.) = fN(σ̄(.)) + σ̄(x)(fSI(σ̄(.))− fN(σ̄(.))).

That is, gx(.), and specifically gx(xε), is monotonic in σ̄(x). This implies we

only need to check robustness of any conjectured NSS to invasions of extreme

types σ = 0 and σ = 1. These types correspond to N and SI types of the two

type model. Now, for the two type model under (Bin), there exists an ESS

with a positive share of SI types. Therefore, letting x∗ be an ESS of the two

type model, we have that x̂ such that x̂(0) = x∗N , x̂(1) = x∗SI , is an NSS of the

continuum type model. Furthermore, as at an NSS under binomial matching,

fitness from collaboration and non-collaboration must be the same, the only

factor that affects the fitness of any given type is the distribution over how many

of his fellow group members are in a collaborative mood. But under (Bin-σ),

this distribution is completely determined by σ̄(.). Therefore, if x′ is vulnerable

to an invasion by mutants, and σ̄(x′) = σ̄(x′′), then x′′ must be vulnerable to

the same mutant invasion. That is, the only factor that determines whether a

state x is an NSS is the value of σ̄(x).

Theorem 3. If (C),(Bin-σ),(PC) hold, then at least one NSS of the continuum

model exists. Under these conditions, a state x of the continuum model is an
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+1 ×

+1 b− c −c

× 0 0

(i) Fitnesses

+1 ×

+1 b− c b− c

× 0 0

(ii) Magical thinker

+1 ×

+1 b− c −c/2

× −c/2 0

(iii) Altruist

Figure 4: For m = n = 2, N = 1, for each combination of contribution (+1)

and non-contribution (×), entries give, for the row player, his (i) fitnesses and

his preferences when he is a (ii) magical thinker and (iii) altruist.

NSS if and only if σ̄(x) = x∗SI for some ESS x∗ of the two type model under

(Bin). This implies that a monomorphic NSS x̂ exists, with x̂(σ̂) = 1 and

σ̂ = x∗SI.

5. Cooperators, altruists and magical thinkers

Here we compare the collaborative sharing of intentions to some other modes

of behavior that have been considered in the literature. The crucial distinction is

that collaboration involves coordination in how actions are chosen rather than in

the chosen actions themselves, as we saw in the three player Hawk-Dove game,

where an efficient symmetric Nash equilibrium is destroyed by collaboration.

Naturally, collaboration will often lead to efficient coordination, but the two

things are not the same.12 This is the reason we have so far avoided the use of

the term “cooperation” in describing our model, as practitioners have become

accustomed to using this word to describe a state of efficient coordination rather

than its attainment.

12For more on this point, see Newton and Angus (2015), where it is shown how coordinated

action choice by small groups within a population can slow convergence to a globally efficient

action profile, even when all players have perfectly common interests.
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5.1. Cooperators

There has been much consideration in the academic literature of situations

where one symmetric action profile Pareto dominates all other symmetric action

profiles. The action corresponding to such a profile is then described as the

“cooperative” action. Individuals who always play such an action are called

cooperators and those who play an action corresponding to some inefficient

Nash equilibrium are called defectors. In the absence of assortative matching,

when there are few cooperators in the population, they will rarely match with

one another and will be outperformed by defectors. That is, cooperators do not

proliferate when rare and there exists an ESS in which they are absent from the

population. For the threshold public goods game of Section 2.5, this has been

formally shown by Pacheco, Santos, Souza and Skyrms (2009).

5.2. Magical thinkers

Magical Thinkers erroneously attribute causal powers to their own decisions

(Elster, 1979). Consider those magical thinkers that are referred to as ‘Kantian’

types by Alger and Weibull (2013). These types behave as if their fellow group

members will always take the same action as they take. This implies that they

will always choose the action corresponding to the most efficient of all symmetric

action profiles. For the threshold public goods game of Section 2.5, the fitness of

any given individual in the m = n = 2 case for each combination of contribution

(+1) and non-contribution (×) by the individual and his fellow group member

is given in Figure 4(i). However, the magical thinker will act as if his fitness is

given by Figure 4(ii). From this we see that if b− c > 0, then magical thinkers

will behave identically to cooperators, and if b − c < 0, then magical thinkers

will behave as defectors. Unlike cooperators and defectors, magical thinkers

are not automata, but the ordering that determines their choice of action (their

preferences) differs from the ranking given by their fitnesses. This is not the case

for SI types, whose preferences (which are given at the level of the individual)

are unaffected by their SI-ness but who may, in collaboration with other SI
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+1 ×

+1 3 0

× 4 1

(i)

+1 ×

+1 3 2

× 2 1

(i-a)

+1 ×

+1 3 −4

× 4 1

(ii)

+1 ×

+1 3 0

× 0 1

(ii-a)

Figure 5: For each combination of contribution (+1) and non-contribution (×),

entries give, for the row player in two prisoner’s dilemmas, his fitnesses [(i),(ii)]

or his preferences when he is an altruist [(i-a),(ii-a) corresponding to (i),(ii)

respectively].

types, choose action profiles from a richer set of options. Their preferences are

the same, but the menu is larger.

5.3. Altruists

Similarly to those of magical thinkers, the preferences of altruists differ from

those of a fitness maximizing individual. Altruists will, when given the oppor-

tunity, sacrifice some amount of their own fitness in order to increase the fitness

of others. This can sometimes solve coordination problems. Consider utilitar-

ian altruists whose preferences correspond to maximizing the average fitness

of those playing a game. For the prisoner’s dilemma in Figure 5(i) this gives

preferences as in Figure 5(i-a). Given these preferences, an altruist will act as

a cooperator and so, as discussed above, altruism will not proliferate when rare

in the absence of assortative matching. However, altruism may not even solve

the coordination problem to begin with, even for prisoner’s dilemmas. For the

prisoner’s dilemma in Figure 5(ii), a utilitarian altruist will still face the coordi-

nation problem of Figure 5(ii-a). A similar comment applies to threshold public

goods problems (Figure 4).

5.4. Conditional cooperators

Conditional cooperators identify the type of those with whom they interact

and condition their action choice on this information (Hamilton, 1964a,b). This
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has been called a green-beard effect (Dawkins, 1976), as individuals with some

observable characteristic - a “green beard”, behave cooperatively towards other

individuals with this characteristic. When there is a unique “cooperative action”

(Si = {×,+1}, (PG) holds), conditional cooperators who play +1 if and only

if there are least n conditional cooperators in the group are similar to SI types

and will proliferate when rare. This is the case for the threshold public goods

model of Section 2.5 and for prisoner’s dilemmas.

However, it is not clear how conditional cooperation should work when there

are multiple ways to contribute (N ≥ 2). In particular, if collaborative oppor-

tunities are asymmetric, such as in the Chase and Ambush game in Figure 1(ii),

something more than merely conditioning on the other players being conditional

cooperator types is required. One possibility would be for there to exist multi-

ple types of conditional cooperator. For example, there could exist individuals

with multiple shades of green beard, with the individual who sports the lighter

shade of beard playing +1 and the darker individual playing +2. What this con-

ditioning is of course doing, is to implement jointly profitable behavior. That

is, the individuals concerned act as if they can collaboratively share intentions

in the game under consideration. The form that conditional cooperation takes

would have to differ from game to game. How much better would it be for an

individual to have a comprehensive, multipurpose faculty that he could use for

all such problems? That faculty is, of course, what we model in our SI types.

6. Conclusion: a modest proposal

It has been shown that for broad classes of games we can expect at least some

degree of agency to act at a collective level as if motivated by shared intentions.

More specifically, we can expect to observe behavior that accords with some

degree of agency being exercised at a collective level. The paper is silent as to

how this collective agency is created, which as noted in the introduction, could

be via explicit communication, tacit understanding, or team reasoning. Such

an approach is not unusual to economics, where concepts such as the ‘firm’ and
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the ‘household’ are frequently used. It is clear that when decisions at a firm or

household level are discussed, some degree of collective agency must be present,

although the nature of this collective agency is not usually made explicit.

However, game theory in economics is in a weaker position. The most com-

monly used solution concept, Nash equilibrium, is habitually used without any

explicit justification. Moreover, many of the Nash equilibria that occur in the

literature are not Strong Equilibria; they are not robust to coalitional deviation,

or to use the language of the current paper, from a status quo of such a Nash

equilibrium, there exists an opportunity for collaboration. Therefore, an impli-

cation of the current work is that when using the concept of Nash equilibrium,

an economist should ask whether the equilibrium is a Strong Equilibrium, and

if it is not, should carefully consider the extent to which joint agency might be

expected to manifest itself in the problem under consideration. For example,

does the problem satisfy (PG), or would a collaborative move away from the

Nash equilibrium in question be likely to satisfy (PC)? How large would the

gains be for collaborators? What would the externalities of collaboration be?

Moreover, this proposal is not just predicated on the work here, but also on

rich empirical evidence that the ability to share intentions and engage in goal

directed action is a basic human trait that cannot be ignored by any field that

purports to scientifically consider human action.

Appendix A. Proofs

Denote the status quo payoff, which by symmetry is identical for all i ∈M , by

π := πi(×), i ∈M.

Let π be the lowest payoff in Γ that corresponds to some s ∈ S and is strictly

greater than π.

π := min
s∈S

πi(s)>π

πi(s), i ∈M.
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Let the highest payoff in Γ that corresponds to some s ∈ S be

πmax := max
s∈S

πi(s), i ∈M.

Proof of Theorem 1. When a set of SI types in a group collaborates, any N type

will obtain a payoff of no more than πmax. The average fitness of an N type is

then bounded above by

fN(x) ≤ Prx[Z < n |N ]︸ ︷︷ ︸
Prob. too few
SI types for

collaboration

π + Prx[Z ≥ n |N ]︸ ︷︷ ︸
Prob. some set

of SI types
collaborates

πmax.

When collaboration occurs, by (C) and (PG), any SI type within the group

will obtain an expected payoff of at least

πmin :=
n

m
π +

(
1− n

m

)
π > π,

where n/m is a lower bound on the probability of any given SI type individual

being one of the collaborators. The average fitness of an SI type is then bounded

below by

fSI(x) ≥ Prx[Z < n− 1 |SI]︸ ︷︷ ︸
Prob. too few
SI types for

collaboration

π + Prx[Z ≥ n− 1 |SI]︸ ︷︷ ︸
Prob. some set

of SI types
collaborates

πmin.

Subtracting,

fSI(x)− fN(x) = (fSI(x)− π)− (fN(x)− π) (A.1)

≥ Prx[Z ≥ n− 1 |SI](πmin − π)− Prx[Z ≥ n |N ](πmax − π).

Now, (B) implies that for small enough xSI ,

Prx[Z ≥ n− 1 |SI] > Prx[Z ≥ n |N ]

(
πmax − π
πmin − π

)
,

which, from (A.1), implies that fSI(x)− fN(x) > 0 for small enough xSI . That

is, xSI = 0 cannot be an ESS, so any ESS must have xSI > 0.

Proof of Corollary 1. When n = m, unless MSI = M , s∗ = ×. Therefore, for

any x, the fitness of an N type is

fN(x) = π,
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but the fitness of an SI type is bounded below by

fSI(x) ≥ Prx[Z < m− 1 |SI]π + Prx[Z = m− 1 |SI]πmin > π.

Proof of Example 1. The term in brackets in (3), simplified and divided by c

equals

b

c
−

m−1∑
k=n−1

n!(m− n)!

(k + 1)!(m− 1− k)!

(
xSI

1− xSI

)k−(n−1)

, (A.2)

which is clearly strictly decreasing in xSI when n < m, approaches b/c − 1 > 0

as xSI → 0, and diverges to −∞ as xSI → 1. Therefore (A.2) equals zero and

(3) crosses zero at some unique x∗, is strictly positive for all x such that xSI ∈

(0, x∗SI), and is strictly negative for all x such that xSI ∈ (x∗SI , 1). Therefore x∗

is the unique ESS and the replicator dynamic converges to x∗ from all x such

that xSI ∈ (0, 1). Now, (A.2) increases in b/c, n and decreases in m, so the value

of xSI at which (A.2) equals zero must increase or decrease respectively.

Proof of Theorem 2.

fN(x)− π =

m−1∑
k=n

Prx[Z = k](πkN − π)

and

fSI(x)− π =

m−1∑
k=n−1

Prx[Z = k](πk+1
SI − π),

giving

fSI − fN = Prx[Z = n− 1]

(
(πnSI − π) +

m−1∑
k=n

Prx[Z = k]

Prx[Z = n− 1]
(πk+1

SI − πkN)

)
.

(A.3)

Now, for a given individual i ∈MSI , when |MSI | = n, all possible collaborative

opportunities involve i, so (PC) implies that (πnSI − π) > 0. Furthermore, as
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discussed in the main body of the paper, (B) and (NA) imply that for k ≥ n,

Prx[Z = k]/Prx[Z = n− 1] → 0 as xSI → 0. This implies that for small enough

xSI , the right hand side of (A.3) is strictly positive, so any ESS must have

xSI > 0.

Proof of Theorem 3. For xε = (1− ε)x̂+ εx̃,

gx̂(xε)− gx̃(xε) = (fSI(σ̄(xε))− fN(σ̄(xε))) (σ̄(x̂)− σ̄(x̃)) .

If σ̄(x̂) = σ̄(x̃), we have gx̂(xε)−gx̃(xε) = 0. If σ̄(x̂) > σ̄(x̃), then σ̄(x̂) > σ̄(xε),

and if σ̄(x̂) < σ̄(x̃), then σ̄(x̂) < σ̄(xε). So x̂ is a NSS if and only if for small

enough δ > 0,

fSI(σ̄(x̂)− δ)− fN(σ̄(x̂)− δ) ≥ 0, fSI(σ̄(x̂) + δ)− fN(σ̄(x̂) + δ) ≤ 0,

which, as (Bin) implies that no part of fSI(.) − fN(.) is linear, is the same

condition on σ̄(x̂) as that placed on x∗SI for an ESS of the two type model.
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